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Abstract. Known-key distinguishers have been introduced to better un-
derstand the security of block ciphers in situations where the key can not
be considered to be secret.
AES is often considered as a target of such analyses, simply because AES
or its building blocks are used in many settings that go beyond classical
encryption. The most recent known-key model of Gilbert (proposed at
Asiacrypt 2014) allows to consider two 4-round distinguishers combined
in an inside-out fashion (8 core rounds), and to extend it by one round
in each direction (two extension rounds). The resulting 10-round distin-
guisher has a time complexity of 264. In that work, arguments were put
forward suggesting that two extension rounds seems to be the limit in
the known-key model, and that likely only a distinguisher that exploits
the balance property can be extended in such way.
In this paper we disprove both these conjectures and arrive at the fol-
lowing results. We firstly show that the technique proposed by Gilbert
can also be used to extend a known-key distinguisher based on truncated
differential trails. This allows to improve all the known-key distinguish-
ers currently present in literature for AES up to 10 rounds of AES. In
particular, we are able to set up a 9-round known-key distinguisher for
AES with a time complexity of 223 and a 10-round known-key distin-
guisher with a time complexity of 250. Secondly we are also able to show
that more than two extension rounds are possible. As a result of this,
we describe the first known-key distinguishers on 12 rounds of AES, by
extending an 8-round known-key distinguisher by two rounds in each
direction (four extension rounds). The time complexity is 282.
We conclude with a discussion on why it seems not feasible to set up
similar distinguishers on 14 rounds exploiting the same strategy.
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1 Introduction

Block ciphers play an important role in symmetric cryptography providing the
basic tool for encryption. They are the oldest and most scrutinized cryptographic
tools. Consequently, they are the most trusted cryptographic algorithms that are
often used as the underlying tool to construct other cryptographic algorithms,
whose proofs of security are performed under the assumption that the underlying
block cipher is ideal.

The concept of known-key distinguishers was introduced by Knudsen and
Rijmen in [13]. In the classical single secret-key setting, the attacker does not
know the randomly generated key and aims to recover it or builds a (secret-key)
distinguisher that allows to distinguish the cipher from a random permutation.
The security model in known-key attacks is quite different though: the attacker
knows the randomly drawn key the block cipher operates with and aims to find
a structural property for the cipher under the known key - a property which
an ideal cipher (a permutation drawn at random) would not have. Only for
completeness, a more relaxed version - called chosen-key distinguisher - can be
considered, where the adversary is assumed to have a full control over the key.
This model was introduced in [2], and has been extended to a related-key attack
on the full-round AES-256.

Since their introductions, known-key attacks have been a major research topic
in the symmetric-key community. Indeed, if known-key distinguishers could be
considered less relevant than secret-key ones, they anyway allow to learn some-
thing about the security margin of a cipher. For example, if it is not possible
to find distinguishers for a block cipher when the key is given, then one cannot
find a distinguisher when the key is secret. Secondly and more important, block
ciphers and hash functions are very close cryptographic primitives, as the lat-
ter can be built from the former and vice versa. For example, the Davies-Meyer
construction or the Miyaguchi-Preneel construction can transform a secure block
cipher into a secure compression function. In a hash setting, block cipher secu-
rity models such as the known-key model (or the chosen-key model) make sense
since in practice the attacker has full access and control over the internal com-
putations. Moreover, an attack in these models depicts a structural flaw of the
cipher, while it should be desired to work with a primitive that doesn’t have
any flaw, even in the most generous security model for the attacker. A classical
example is the devastating effect on the compression function security of weak
keys for a block cipher [18], which are usually considered as a minor flaw for a
block cipher if the set of these weak-keys is small. Therefore, the security notions
to consider for a block cipher will vary depending if this block cipher will be used
in a hash function setting or not. Citing Knudsen and Rijmen [13], “imagine a
block cipher” for which a known-key distinguisher exists, “but where no efficient
attacks are known in the traditional black-box model. Should we recommend the
use of such a cipher? We don’t think so!”

The Rijndael block cipher [5] has been designed by Daemen and Rijmen in
1997 and accepted as the AES (Advanced Encryption Standard) since 2000 by
NIST. Nowadays, it is probably the most used and studied block cipher. In this
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paper, using the same strategy proposed by Gilbert at Asiacrypt 2014 [8], we
improve all the known-key distinguishers currently present in the literature, and
as major result we present the first known-key distinguisher for 12-round AES,
in turn applicable to full AES-192.

1.1 Known-Key Distinguishers for AES: the State of the Art

In the known-key model, a full access to an instance of the encryption function
associated with a known random key and its inverse is given. The purpose is to
simultaneously control the inputs and the outputs of the primitive, i.e. to achieve
input-output correlations that one could not efficiently achieve with inputs and
outputs of a perfect random permutation to which would have an oracle access.
A formal definition of known-key distinguisher is provided in Sect. 4, where we
propose and describe in details a generic scenario for known-key distinguisher.
We emphasize that all the known-key distinguishers currently present in the
literature - including the one presented in this paper - implicitly exploit (and can
be described in) the scenario proposed in Sect. 4.

AES served as a benchmark for cryptanalytic techniques since the very in-
troduction of this model by Knudsen and Rijmen [13] with a 7-round result.
Subsequently, 8-round results were obtained using truncated differentials [9],
which were later on improved in [11]. Currently, this last one - which exploits
the rebound technique [14] and the so called “multiple limited-birthday problem”
- is the best 8-round known-key distinguisher in literature, Recently, Gilbert [8]
found a way to extend an 8-round known-key distinguisher (using a novel repre-
sentation of AES) into a much more intricate 10-round distinguisher and hence
presented for the first time a known-key distinguisher for full AES-128. For the
sake of completeness, it should be mentioned that even if the strategy proposed
by Gilbert allows to set up efficient known-key distinguishers, its “impact on the
security of [...] AES when used as a known key primitive, e.g. in a hash function
construction, is questionable” (see abstract of [8]).

All these known-key distinguishers currently present in literature are briefly
recalled in Sect. 4 using the “subspace trail notation”1, recently introduced at
FSE 2017. In Table 1 we list the known-key distinguishers for AES, including
our main results (we refer to Table 2 in Sect. 4 for a complete list of our results).

1.2 Our Main Results

In the conclusion of his paper, Gilbert claims that it seems technically difficult
to use a stronger property of the balanced one to extend an 8-round known-
key distinguisher to a 10-round one. In particular, he left “the investigation
of improved 10-round known-key distinguishers and associated proofs - or even
plausible heuristic arguments if rigorous proofs turn out to be too difficult to
obtain - as an open issue.”

1 Our choice to use the subspace trail notation is due to the fact that it allows in some
cases an easier and more formal description than the original notation.

3



Table 1. AES known-key distinguishers. The computation cost is the sum of the com-
putational cost to generate N -tuples of plaintexts/ciphertexts and of the verification
cost. The word “Extended” refers to a distinguisher which exploits the technique in-
troduced by Gilbert [8] (in this case we also highlight which distinguisher is extended),
while “MultDT” refers to Multiple Differential Trail. A detailed table with all the
distinguishers presented in this paper is given in Sect. 4.

Rounds Computations Memory Property Reference

7 256 256 Zero-Sum [13]

7 224 216 Differential Trail [15]

7 220 216 Multiple Diff. Trail App. F.1

8 264 264 Zero-Sum [8] - App. D

8 248 232 Differential Trail [9]

8 244 232 Multiple Diff. Trail [11]

8 223 216 Extended 7-Rounds MultDT App. F.2

9 250 232 Extended 8-Rounds MultDT Sect. 6

9 223 216 Extended 7-Rounds MultDT App. F.3

10 264 264 Extended 8-Rounds Zero-Sum [8]

10 250 232 Extended 8-Rounds MultDT Sect. 7.1

12 282 232 Extended 8-Rounds MultDT Sect. 8

In this paper, we have accepted the challenge of Gilbert, and using a strategy
similar to the one proposed by Gilbert in [8], we show how to construct more
efficient 8-, 9- and 10-round distinguishers. To achieve this result, we exploit the
known-key distinguishers based on truncated differential trails. In particular,
we use as starting point the 8-round known-key distinguisher presented in [11],
and we extend it at the end or/and at the beginning using the same strategy
proposed by Gilbert. This allows to set up a 9-round known-key distinguisher
(see Sect. 6) and a 10-round known-key distinguisher for AES (see Sect. 7.1) with
time complexity approximately of 250. This also provides a counter-example to
the claim “the transposition of our technique to the 8-round distinguisher of [9]
does not allow to derive a valid 10-round distinguisher” made in [8]. Moreover,
starting from the 7-round known-key distinguisher presented in [15] - improved
in App. F.1 using the “multiple limited-birthday problem” proposed in [11] - and
using exactly the same technique presented for the previous cited distinguishers,
we are able to set up 8- and 9-round known-key distinguisher for AES (see App.
F.2 and F.3), both with complexity approximately of 223.

As a major result, in Sect. 8 we show that it is possible to extend our 10-
round distinguisher up to 12 rounds, which results to be the first known-key
distinguisher for full AES-192. This also provides a counter-example of the claim
made in [8] about the (im)possibility to use Gilbert’s technique to extend a 8-
round distinguisher more than 2 rounds: “The reader might wonder whether the
technique we used to derive a known-key distinguisher for the 10-round AES from
a known-key distinguisher for the 8-round AES does not allow to extend this 8-
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round known distinguisher by an arbitrary number of rounds. It is easy however
to see that the argument showing that 10-round relation R is efficiently checkable
does not transpose for showing that the relations over r > 10 rounds one could
derive from the 8-round relation by expressing that the r-round inputs and outputs
are related by r − 8 > 2 outer rounds to intermediate blocks that satisfy the 8-
round relation are efficiently checkable.” Moreover, in App. H we also show that
the same strategy can be (theoretically) used to extend the Gilbert’s 10-round
distinguisher up to 12 rounds.

Finally, we discuss why our results no longer exclude known-key distinguish-
ers up to 14 rounds, but at the same time why this seems currently not feasible.
Using our results presented in the paper as starting point, we show that one
of the main problem (but not the only one) about the possibility to extend a
known-key distinguisher exploiting the technique proposed by Gilbert is related
to the existence of key-recovery attack on AES with more than a single extension
at the end and a computational complexity lower than 2128 computations2. We
refer to Sect. 9 for a complete discussion.

2 Preliminary - Description of AES

The Advanced Encryption Standard [5] is a Substitution-Permutation network
that supports key size of 128, 192 and 256 bits. The 128-bit plaintext initializes
the internal state as a 4 × 4 matrix of bytes as values in the finite fields F256,
defined using the irreducible polynomial x8 + x4 + x3 + x + 1. Depending on
the version of AES, Nr round are applied to the state: Nr = 10 for AES-128,
Nr = 12 for AES-192 and Nr = 14 for AES-256. An AES round applies four
operations to the state matrix:

– SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times
in parallel on each byte of the state (it provides non-linearity in the cipher);

– ShiftRows (SR) - cyclic shift of each row to the left;
– MixColumns (MC) - multiplication of each column by a constant 4 × 4

invertible matrix MMC (MC and SR provide diffusion in the cipher3);
– AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In
the first round an additional AddRoundKey operation (using a whitening key)
is applied, and in the last round the MixColumns operation is omitted.

Finally, as we don’t use the details of the AES key schedule in this paper, we
refer to [5] for a complete description.

The Notation Used in the Paper. Let x denote a plaintext, a ciphertext,
an intermediate state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte

2 Note that given an attack on r rounds with a complexity lower than 2128, one can
attack r + 1 rounds of AES-256 by guessing the entire first/last secret subkey.

3 SR makes sure column values are spread, MC makes sure each column is mixed.
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in the row i and in the column j. We denote by kr the key of the r-th round,
where k0 is the secret key. If only the key of the final round is used, then we
denote it by k to simplify the notation. Finally, we denote by R one round of
AES, while we denote r rounds of AES by Rr. We sometimes use the notation
RK instead of R to highlight the round key K. As last thing, in the paper we
often use the term “partial collision” (or “collision”) when two texts belong to
the same coset of a given subspace X.

3 Subspace trails

Invariant subspace cryptanalysis can be a powerful cryptanalytic tool, and sub-
space trails [10] - introduced at FSE 2017 - are a recent generalization of it.

Let F denote a round function in a iterative block cipher and let V ⊕a denote
a coset of a vector space V . Then if F (V ⊕ a) = V ⊕ a we say that V ⊕ a is
an invariant coset of the subspace V for the function F . This concept can be
generalized to trails of subspaces.

Definition 1. Let (V1, V2, ..., Vr+1) denote a set of r+1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, ..., r and for each ai ∈ V ⊥i , there exist (unique)
ai+1 ∈ V ⊥i+1 such that F (Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1, then (V1, V2, ..., Vr+1) is sub-
space trail of length r for the function F . If all the previous relations hold with
equality, the trail is called a constant-dimensional subspace trail.

This means that if F t denotes the application of t rounds with fixed keys, then
F t(V1 ⊕ a1) = Vt+1 ⊕ at+1. We refer to [10] for more details about the concept
of subspace trails. Our treatment here is however meant to be self-contained.

3.1 Subspace trails of AES

In this section, we recall the subspace trails of AES presented in [10]. For the
following, we only work with vectors and vector spaces over F4×4

28 , and we denote

by {e0,0, ..., e3,3} the unit vectors of F4×4
28 (e.g. ei,j has a single 1 in row i and

column j). We also recall that given a subspace X, the cosets X ⊕ a and X ⊕ b
(where a 6= b) are equivalent (that is X ⊕ a ∼ X ⊕ b) if and only if a⊕ b ∈ X.

Definition 2. The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For instance, C0 corresponds to the symbolic matrix

C0 =

{
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
≡


x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 .
Definition 3. The diagonal spaces Di and the inverse-diagonal spaces IDi are
respectively defined as Di = SR−1(Ci) ≡ 〈e0,i, e1,i+1, e2,i+2, e3,i+3〉 and IDi =
SR(Ci) ≡ 〈e0,i, e1,i−1, e2,i−2, e3,i−3〉, where the indexes are taken modulo 4.
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For instance, D0 and ID0 correspond to symbolic matrix

D0 ≡


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 , ID0 ≡


x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0

 .
Definition 4. The i-th mixed spaces Mi are defined as Mi = MC(IDi).

For instance, M0 corresponds to symbolic matrix

M0 ≡


0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2
x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2

 .
Definition 5. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI and MI defined as

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.

As shown in detail in [10]:

– for any coset DI⊕a there exists unique b ∈ C⊥I such that R(DI⊕a) = CI⊕b;
– for any coset CI⊕a there exists unique b ∈M⊥I such that R(CI⊕a) =MI⊕b.

This simply states that a coset of a sum of diagonal spaces DI encrypts to a
coset of a corresponding sum of column spaces. Similarly, a coset of a sum of
column spaces CI encrypts to a coset of the corresponding sum of mixed spaces.

Theorem 1. For each I and for each a ∈ D⊥I , there exists one and only one
b ∈M⊥I such that

R2(DI ⊕ a) =MI ⊕ b. (1)

We refer to [10] for a complete proof of this theorem. Observe that b depends
on a and on the secret key k, and that this theorem doesn’t depend on the
particular choice of the S-Box (i.e. it is independent of the details of the S-Box).

Observe that if X is a generic subspace, X ⊕ a is a coset of X and x and y
are two elements of the (same) coset X ⊕ a, then x⊕ y ∈ X. It follows that:

Lemma 1. For all x, y and for all I ⊆ {0, 1, 2, 3}:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1. (2)

As demonstrated in [10], we finally recall that for each I, J ⊆ {0, 1, 2, 3}:

MI ∩ DJ = {0} if and only if |I|+ |J | ≤ 4, (3)

Theorem 2. Let I, J ⊆ {0, 1, 2, 3} such that |I|+ |J | ≤ 4. For all x 6= y:

Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ) = 0. (4)
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4 Known-Key Distinguishers for AES

Before we present our new known-key distinguishers for AES, we review the most
relevant ones to our work. First, we give a formal definition of the known-key
distinguisher scenario, using as starting point the one given in [8] by Gilbert.

4.1 Definition of Known-Key Distinguisher

Informally, a known-key distinguisher exploits the fact that it is in general harder
for an adversary who doesn’t know the key to derive an N -tuple of input blocks
of the considered block cipher E that is “abnormally correlated” with the corre-
sponding N -tuple of output blocks than for one who knows the secret key. This
difficulty is well expressed by the T -intractable definition, first proposed in [3]
and [1], and then re-expressed by Gilbert as follows:

Definition 6. Let E : (K,X) ∈ {0, 1}k × {0, 1}n → EK(X) ∈ {0, 1}n denote a
block cipher of block size n bits. Let N ≥ 1 and R denote an integer and any
relation over the set S of N -tuples of n-bit blocks. R is said to be T -intractable
relatively to E if, given any algorithm A′ that is given an oracle access to a
perfect random permutation Π of {0, 1}n and its inverse, it is impossible for A′
to construct in time T ′ ≤ T two N -tuples X ′ = (X ′i) and Y ′ = (Y ′i ) such that
Y ′i = Π(X ′i), i = 1, ..., N and X ′RY ′ with a success probability p′ ≥ 1/2 over
Π and the random choices of A′. The computing time T ′ of A′ is measured as
an equivalent number of computations of E, with the convention that the time
needed for one oracle query to Π or Π−1 is equal to 1. Thus if q′ denotes the
number of queries of A′ to Π or Π−1, then q′ ≤ T ′.

Definition 7. Let E : (K,X) ∈ {0, 1}k × {0, 1}n → EK(X) ∈ {0, 1}n denote a
block cipher of block size n bits. A known-key distinguisher (R,A) of order N ≥1
consists of (1) a relation R over the N -tuples of n-bit blocks (2) an algorithm A
that on input a k-bit key K produces in time TA, i.e. in time equivalent with TA
computations of E, an N -tuple X = (Xi) i = 1, ..., N of plaintext blocks and an
N -tuple Y = (Yi) i = 1, ..., N of ciphertext blocks related by Yi = EK(Xi) and
by X RY. The two following conditions must be met:

– The relation R must be TA-intractable relatively to E;

– The validity of R must be efficiently checkable: we formalize this requirement
by incorporating the time for checking whether two N -tuples are related by
R in the computing time TA of algorithm A.

We emphasize that while the algorithm A takes a random key K as input, the
relation R satisfied by the N -tuples of input and output blocks constructed by A
or A′ is the same for all values of K (in other words, it is independent of K)
and must be efficiently checkable without knowing K.
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Fig. 1. A Known-Key Distinguisher Scenario. Step (0): a relationshipR is chosen. Step
(1): the secret key is given to the Oracle Π/Π−1 and to the Shortcut Player A. Step
(2): the Shortcut Player A and the Generic Player A′ generate the N -tuples that satisfy
the required relationship R. Step (3): the Verifier receives the N -tuple and checks if R
is satisfied or not. The faster player to generate the N -tuple wins the “game”.

The Known-Key Distinguisher Scenario. To better understand these defi-
nitions, we propose and describe in more details a generic scenario for a known-
key distinguisher, which is depicted in Fig. 1. This scenario is composed of five
characters, which are a key generator, an oracle, two players and a verifier. First
of all - step (0), we assume that a relation R defined as in Def. 6 is chosen. At
step (1), the key generator generates a key, which is given to the oracle and to
one of the two player. For the following, we call “shortcut player” the player that
knows the key and “generic player” the player that doesn’t know it. Referring
to the previous definitions by Gilbert, the generic player can be identified with
the algorithm A′, while the shortcut player can be identified with the algorithm
A. At step (2), the two players generate the N -tuple of (plaintexts, ciphertexts)
which satisfy the required relation R. Since the generic player doesn’t know
the key, he must ask the oracle (identified with Π and/or Π−1 in the previous
definitions) for the encryption (resp. decryption) of random plaintexts (resp. ci-
phertexts). We stress that this step doesn’t consist only on the generation of
(plaintext, ciphertext) pairs, but also includes any computational cost that the
player must do in order to find the N -tuple with the required property. When
a player finds the N -tuple which satisfies the required relation R, he sends it to
the verifier - step (3). The verifier receives it and checks if the N -tuple satisfied
this relation (remember that the verifier doesn’t know the key). The first/fastest
player who sends the N -tuple with the required property wins the “game”.

Before going on, we emphasize that the role of the verifier is only to prevent
one or both of the two players from cheating. In other words, in the case of honest
players, the verifier can be skipped, and the winner of the game is simply the
first/fastest player that claims to have found the N -tuple of (plaintexts, cipher-
texts) which satisfy the required relation R. We highlight that such a verifier is
implicitly present in all the distinguishers currently present in literature.
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Table 2. Details of AES known-key distinguishers presented in this paper, obtained by
extending distinguishers based on Multiple Differential Trails. “Rounds” denotes the
number of rounds of the basic distinguisher + the number of rounds of the extensions
(if even, the number of extension rounds is equal at the end and at the beginning).
“Cost Case 1” denotes the cost of the shortcut player when the total cost of the generic
player is approximated by the number of oracle-queries, while “Cost Case 2” refers to
the case in which the total cost of the generic player is the sum of number of queries and
of its computational cost. “Cost Verifier” denotes the cost of the verifier. A check-mark
3 in the “KS” column denotes the case in which the key schedule holds, 7 denotes the
case in which the sub-keys are independent, while white-space/no-mark denotes the
case in which the two previous cases are equivalent (for the distinguisher purposes).

Rounds KS Cost Case 1 Cost Case 2 Cost Verifier Memory Reference

7 + 1 223 221 211.8 216 App. F.2

8 + 1 250 245.6 211.6 232 Sect. 6 - App. E.1

7 + 2 7 223 221 212.6 216 App. F.3

7 + 2 3 221 221 212.6 216 App. F.3

8 + 2 7 250 245.6 212.5 232 Sect. 7.1

8 + 2 3 246 245 212.5 232 Sect. 7.2 - App. E.2

8 + 4 282 282 271.1 232 Sect. 8

A distinguisher is meaningful if the cost of the generic player - we assume that
the cost of one oracle-query is equal to the cost of one encryption - to generate
the N -tuple is higher than the cost of the shortcut player, when the probability of
success is equal for the two players. Note that in this scenario we are considering
the computational costs of the two players to generate the N -tuples with a
fixed probability of success (equal for both the players). We highlight that this
scenario is completely equivalent to the one in which the computational cost to
generate the N -tuple is fixed and equal for the two players, and one considers
the probabilities of success of the two players (where it is requested that the
probability of success is higher for the shortcut player than for the generic one).

Both for the distinguisher that we are going to present and for the Gilbert’s
one, the computational cost of the verification step is not negligible. Thus, in
order to compare our distinguishers to the others present in literature, we de-
fine the cost of the distinguisher as the sum of the cost of the verification step
(that is, the cost of the verifier) and of the cost to construct the set of plain-
texts/ciphertexts with the required property (that is, the cost of the shortcut
player - the cost of the other player is higher). For this reason, we assume for
the following that a relationship R is efficiently checkable if and only if the com-
putational cost of the verifier is negligible with respect to the player ones. This
implies that the cost of the distinguisher can be approximated with the compu-
tational cost of the shortcut player (the cost of the other player is always higher).
Moreover, this assumption prevents the construction of meaningless known-key
distinguishers, as discussed in Sect. 9.
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Fig. 2. 7- and 8-round differential paths for AES-128.

Table 2 summarizes the main details of all the known-key distinguishers
presented in this paper with respect to the above scenario. To better understand
this table, some considerations must be done. Since the generic player depends
by the oracle to generate the N -tuple (i.e. he cannot work alone to generate it),
two possible settings can be analyzed. In the first one, only the number of oracle
queries is considered to determine the computational cost of this player, that
is the number of encryptions/decryptions required by the generic player to the
oracle - this case is denoted by “Case 1” in Table 2. In the second one, both the
number of oracle queries and any other computational cost of the generic player
(which is in general not negligible) are considered - this case is denoted by “Case
2” in Table 2. Intuitively this second setting is weaker than the first one, in the
sense that a known-key distinguisher in the first setting works also in the second
one but not viceversa. In other words, one can expect that the required number
Nof tuples is higher in the first setting than in the second one (or equal in the
best case). If the total cost of the generic player is well approximated by the
number of queries, these two settings are completely equivalent.

In the following, we recall the known-key distinguishers present in literature
in the above scenario. Before going on, we emphasize that despite the claim made
in [8], Gilbert’s 10 rounds distinguisher doesn’t satisfy the requirement that the
verification cost is lower than the cost of the two players, i.e. that the requirement
R is efficiently checkable (we refer to App. A for more details).

4.2 7- and 8-Round Known-Key Distinguisher

In the 7- and 8-round known-key distinguishers proposed in [15] and [9], the goal
of the two players is to find two pairs of (plaintexts, ciphertexts) - i.e. (p1, c1)
and (p2, c2) - with the following properties: the two plaintexts belong to the same
coset of Di - i.e. p1⊕ p2 ∈ Di - and the two ciphertexts belong to the same coset
of Mi - i.e. c1 ⊕ c2 ∈Mi - for a fixed i ∈ {0, 1, 2, 3}.

In the above known-key distinguisher setting, the best technique that the
shortcut player (i.e. the player who knows the key) can use to win the game
is the Rebound Attack. The rebound attack is a differential attack and it was
proposed in [16] for the cryptanalysis of AES-based hash functions. Since it is
a differential attack, one needs a “good” (truncated) differential trail in order
to exploit it. Examples of truncated differential trails used for 7- and 8-round
AES are depicted in Fig. 2. The rebound attack consists of two phases, called
inbound and outbound phase. In the first one, the attacker uses the knowledge

11



Fig. 3. 8-round differential characteristic for known-key distinguisher of AES-128.

of the key to find pairs of texts that satisfy the middle rounds of the truncated
differential trail. In the second one, he propagates the solutions found in the first
phase in the forward and in the backward directions, and checks if at least one of
them satisfies the entire differential trail. A complete description of the rebound
attack is given in App. C, with particular attention to the AES case.

As proved in [9], in the case of a perfect random permutation 264 operations
are required to find (plaintexts, ciphertexts) pairs (p1, c1) and (p2, c2) that have
the required properties with good probability. Instead, for the AES case and
using the rebound attack, 248 computations are sufficient to find them with the
same probability (besides a memory cost of 16× 232 = 236 bytes).

4.3 Multiple Limited-Birthday 8-Round Known-Key Distinguisher

An improvement of the previous known-key distinguisher on 8-round of AES
was proposed in [11]. Using the subspace trail notation, in this modified version
of the 8-round known-key distinguisher, the goal of the two players is to find
two pairs of (plaintexts, ciphertexts) such that the two plaintexts belong to the
same coset of Di for an arbitrary i and the two ciphertexts belong to the same
coset of Mj for an arbitrary j, where i and j are not fixed in advance and it is
not required that they are equal (i.e. no condition is imposed on i and j). For
arbitrary initial and final subspaces, the computational cost is reduced from 248

to 244 (note that there are 4 initial and final different subspaces Di andMj , for
a total of 42 = 24 possibilities) while the required memory is still 232, as shown
in detail in [11]. In App. F.1 we show that the same technique can be used to
improve the 7-round known-key distinguisher of AES presented in [15].

4.4 10-Round Gilbert’s Known-Key Distinguisher

Integral 8-Round Known-Key Distinguisher. Another 8-round known-key
distinguisher for AES is based on the balance property and it was proposed by
Gilbert in [8]. In this case, the goal of the two players is to find a set of 264

(plaintext, ciphertext) pairs such that the sums over the plaintexts and over
the ciphertexts are equal to zero (i.e. the plaintexts and the ciphertexts are
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uniformly distributed). We review this distinguisher in details in App. D using
the subspace trails notation instead of the Super-SB notation introduced by
Gilbert (Super-SB(·) ≡ S-Box ◦ARK ◦MC◦ S-Box(·)).

We limit here to recall briefly the best strategy that the shortcut player can
use to win the game. The idea is to start in the middle with a set S of texts
defined as S := Di⊕Mj⊕c for a constant c, where |S| = 264. After encrypting S
for 4 rounds, the texts are uniform distributed in each coset ofMI of dimension
12 (i.e. |I| = 3 fixed). That is, after 4 rounds, each coset of MI for |I| = 3
contains exactly 232 elements. The same happens if one decrypts S for 4 rounds.
In this case, after decrypting S for 4 rounds, the texts are uniform distributed
in each coset of DI of dimension 12 (i.e. |I| = 3 fixed), that is each coset of DI

for |I| = 3 contains exactly 232 elements. This implies the balance property both
on the plaintexts and on the ciphertexts. We refer to App. D for details.

Extension to 10 Rounds. This distinguisher is the starting point used by
Gilbert in order to set up the first 10-round known-key distinguisher for AES.
The basic idea is to extend this 8-round distinguisher based on the balance
property adding one round at the end and one at the beginning. In the known-
key distinguisher scenario presented above, the players have to send to the verifier
264 (plaintext, ciphertext) pairs, that is (pi, ci) for i = 0, ..., 264 − 1, with the
following properties4:

1. there exists a key k0 s.t. the texts {Rk0(pi)}i are uniform distributed among
the cosets of DI with |I| = 3 fixed, i.e. 232 texts for each coset of DI ;

2. there exists a key k10 s.t. the texts {R−1k10(ci)}i are uniform distributed among
the cosets of MJ with |J | = 3 fixed, i.e. 232 texts for each coset of MJ .

Equivalently, a key k0 must exist such that the sum of the plaintexts after

one round is equal to zero, i.e.
⊕264−1

i=0 Rk0(pi) = 0, and a key k10 must ex-
ist such that the sum of the ciphertexts one round before is equal to zero, i.e.⊕264−1

i=0 R−1k10(ci) = 0. We emphasize that even if this is a known-key distin-
guisher, the verifier must be able to check the previous properties without the
knowledge of the key or the subkeys. Since the verifier has no information of the
key, one must show that the above conditions are efficiently checkable.

The only way to verify these requirements is to find these two subkeys in an
efficient way, which is not possible using a brute force attack (k0 and k10 have
128 bits). Instead to check all the 2 · 2128 = 2129 possible values of k0 and k10,
the idea proposed by Gilbert is to use the integral attack [4]-[12] working on
single columns of ci and of SR−1(pi). In this way, the verifier must guess only
32 bits instead of 128, and she has to repeat this operation 4 times (one for each
column/diagonal) for each key. Thus, working independently on each column of
the keys and of the texts, the verifier can check the zero-sum property. In App.

4 For this and the following distinguishers, we abuse the notation kr to denote a key
of a certain round r. We emphasize that kr is not necessarily equal to the secret key,
that is kr can be different from the r-th subkey. Remember that it is only required
that such a key exists, and not that it is equal to the real secret key.
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H, we show that this procedure can be even improved working independently on
each byte of k0 and k10 instead of entire column/diagonal. This (theoretically)
allows to extend the 10-round distinguisher of Gilbert up to 12 rounds using the
technique presented in this paper.

In conclusion, the shortcut player (i.e. the one who knows the key) can con-
struct these 264 (plaintext, ciphertext) pairs using the same strategy proposed
for the 8 rounds distinguisher (note that in this case the keys k0 and k10 cor-
responds to the secret sub-keys). Instead, Gilbert showed that the probability
that the generic player (i.e. the one who doesn’t know the secret key) success-
fully outputs (input, output) pairs that satisfy the previous properties (both
in the input and in the output) is upper bounded by 2−16.5 (see [8] - Prop. 6,
for more details). Equivalently, the computational cost required by the generic
player to construct such set with the same probability of the shortcut player is
of 216.5 × 264 = 280.5, which is higher than the cost of the other player.

Finally, a consideration about the cost of the verifier (i.e. of the verification
step) has to be done. In [8], it is claimed that5 “the overall complexity of checking
R is strictly smaller than N = 264 AES?

10 operations” (see Sect. 4.2 - page 218),
that is the computational cost of the verifier is negligible with respect to the
cost of the two players. In spite of this, even using a better strategy than the
one proposed by Gilbert, we show in App. A that this claim is not true, that
is the cost of the verifier (approximately 269.4 ten-round encryptions) is higher
than the cost of the shortcut player (approximately 264 ten-round encryptions)
using an integral attack - which is the strategy proposed in [8]. On the other
hand, we show how to modify the distinguisher proposed by Gilbert in order to
fix the problem and to fulfill this requirement (see App. H for all the details).

Generic Considerations. The previous 10-round distinguisher proposed by
Gilbert is different from all the previous distinguishers up to 8 rounds present in
literature. For all the distinguishers up to 8-round, the relation R that the N -
tuple of (plaintexts, ciphertexts) must satisfy doesn’t involve any operation of the
block cipher E. As a consequence, it allows the verifier to check whether the N -
tuple of (plaintexts, ciphertexts) satisfy the required relation R without knowing
anything of the key. When R doesn’t re-use operations of E, this provides some
heuristic evidence that it can be considered meaningful.

On the other hand, the previous 10-round distinguisher and the ones that
we are going to propose don’t satisfy this requirement, i.e. in these cases the
relation R involves and re-uses some operations of E. We refer to Sect. 3 of
[8] for a detailed discussion on the reasons why such known-key distinguishers
should not be systematically ruled out as if they were artificial.

A Variant of Gilbert’s Distinguisher. Before we go on, we highlight a
variant of the Gilbert’s distinguisher - that also applies to all our proposed dis-
tinguishers present in the paper - which allows to better understand it. Consider
the case in which the two players have to send to the verifier the N -tuple that

5 We emphasize that no proof or strong argumentation of this fact is given in [8].
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verify the required relation R together with the subkeys for which such relation
is satisfied. As an example, in the 10-round integral distinguisher just presented,
the players have to send 264 (plaintexts, ciphertexts) pairs (pi, ci) and the two

subkeys k0 and k10 such that
⊕264−1

i=0 Rk0(pi) =
⊕264−1

i=0 R−1k10(ci) = 0. Thus,
since the task of the verifier is to check that the relation R is satisfied only for
the keys she received, it follows that her computational cost is negligible. On the
other hand, we show in details in App. B that such variant of the distinguisher
is meaningless, since it can be set up for any number of rounds of AES.

5 Key-Recovery Extensions using Truncated Differentials

Our known-key distinguishers exploit the same idea proposed for the first time
by Gilbert. In particular, our idea is to extend the 8-round distinguishers recalled
in Sect. 4.3 at the end or/and at the beginning, in the same way used by Gilbert
to extend the 8-round distinguisher based on the balance property.

Since we are going to extend known-key distinguishers based on truncated
differential properties, we need an efficient key-recovery attack that allows the
verifier to check the required property on the N -tuple of (plaintexts, ciphertexts)
that she receives by the players. For this reason, we re-propose the low-data
complexity truncated differential attacks6 on 3- and 4-round AES-128 presented
in [10]. The attacks that we present here are a little modified with respect to
those presented in [10] due to different scope of this work. In particular, the
attack on 3 rounds of [10] is described here as an attack on a single round, while
the attack on 4 rounds is described here as an attack on 2 rounds (besides other
changes for this second case, which are described in the following).

5.1 Attack for the Case of 1-Round Extension

Consider three plaintexts in the same coset ofMi for |i| = 1 and the correspond-
ing ciphertexts after one round7, that is (pj , cj) for j = 1, 2, 3. The goal of the
attack is to find the key k such that the ciphertexts belong to the same coset of
Mi one round before, that is k has to satisfy the following condition8:

R−1k (c1)⊕R−1k (c2) ∈Mi and R−1k (c1)⊕R−1k (c3) ∈Mi.

For simplicity, we assume that the final MixColumns operation is omitted (oth-
erwise one simply switches the final MixColumns and the final AddRoundKey
operation, as usual in literature). Since each column ofMi depends on different
and independent variables, the idea of the attack is to work independently on
each column of Mi or equivalently of SR−1(k), and to exploit the relationships
that hold among the bytes that lie in the same column of Mi.

6 We emphasize that both these attacks have been practical verified (see [10] for details).
7 More generally, consider two couples of (plaintexts, ciphertexts) pairs, that is
{(pj0, c

j
0), (pj1, c

j
1)} for j = 1, 2 such that pj0 ⊕ p

j
1 ∈Mi.

8 Note that if R−1
k (c1)⊕R−1

k (c2) ∈Mi and R−1
k (c1)⊕R−1

k (c3) ∈Mi, it follows that
also R−1

k (c2)⊕R−1
k (c3) ∈Mi since Mi is a subspace.
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Without loss of generality, we assume I = {0} and we present the attack
only for the first column of SR−1(k) (analogous for the others). The conditions
that the bytes of the first column of SR−1(k) must satisfy are:

sh0,0 = 0x02 · sh1,3, sh2,2 = sh1,3, sh3,1 = 0x03 · sh1,3, (5)

where shi,j = S-Box−1(c1i,j ⊕ ki,j)⊕ S-Box−1(chi,j ⊕ ki,j) for h = 2, 3. For each

value of k1,3 (28 possible values in total), the idea is to find the values of k0,0,
k2,2 and k3,1 that satisfy the previous relationships. On average, using a single
pair of ciphertexts and working in this way, it is possible to find 28 combinations
of these four bytes (i.e. one for each possible value of k1,3). The idea is to test
them using the second pair of ciphertexts: on average, only the right combination
passes the test. The same procedure is used for the others columns.

The total computational cost of the attack is well approximated by the cost
of the first phase, that is by the cost to find (on average) the 28 combinations of
k0,0, ..., k3,1 that satisfy (5) for the first column and similar for the others (the
cost to check them with the second pair of texts is negligible). In particular, the
computational cost of this attack using 3 chosen plaintexts can be approximated
by 217.1 S-Box look-ups (and negligible memory cost), or approximately 211.6

table look-ups and a memory cost of 16 × 212 = 216 using a precomputation
phase. We refer to [10] for all the details.

For the following, we emphasize that the same attack works exactly in the
same way also in the decryption direction (chosen ciphertexts attack) with the
same complexity. In this case the idea is to consider three ciphertexts in the
same coset of Di, and to look for a key such that the corresponding plaintexts
belong to the same coset of Di after one round (see [10] for details).

5.2 Attack for the Case of 2-Round Extension

To set up the first 12-round known-key distinguisher of AES-128, we also need
to recall (a modified version of) the low-data complexity truncated differential
attack on 4-round of AES-128, which is obtained by extending the previous
attack on 3 rounds at the end. We refer to [10] for a complete description of the
attack, and for simplicity we assume that the final MixColumns is omitted.

Consider plaintexts in the same coset ofMi for |i| = 1 and the corresponding
ciphertexts after two rounds. The goal of the attack is to find the key such that
the ciphertexts belong to the same coset of Mi two rounds before. The idea of
the attack is to guess two columns of SR−1(k2), where k2 is the final key. Given
5 plaintexts and the corresponding ciphertexts (pj , cj) for j = 1, ..., 5, for each
one of the 264 possible values of these two columns of SR−1(k2), the idea is to
partially decrypt these 5 ciphertexts one round, that is to compute the eight
bytes sj := R−1k2 (cj) for each i = 1, ..., 5. Due to the ShiftRows operation, these
8 bytes are distributed in two columns. Thus, the idea is to simply to repeat
the previous attack on 3 rounds. However, due to the ShiftRows operation, the
eight bytes of si are uniform distributed in the four columns, i.e. two byte for
each column, that is for each column one can only exploit the relationship that
holds among these two bytes (see [10] for details).
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Using two pairs of ciphertexts (e.g. (c1, c2) and (c1, c3)), it is possible to find
(on average) at most one combination of eight bytes of k3 for each possible guess
of the eight bytes of k2, for a total of 264 possibilities. The idea is to test these
found values against other pairs of ciphertexts, that is to check if the relationships
among the bytes of the keys hold also for these other pairs of ciphertexts9. Since
each relationship is satisfied with probability 2−32 (there are four relationships,
each one satisfied with probability 2−8), it is sufficient to test the found values
of k1 and k2 against only other two pairs of ciphertexts, in order to eliminate all
the wrong candidates with high probability. Thus, using 5 chosen plaintexts (i.e.
4 pairs with a common plaintext10), it is possible to recover 8 bytes of k1 and
of k2. To discover the complete key, the idea is essentially to repeat the same
procedure on the last two columns of k2 (we refer to [10] for details).

As shown in [10], the computational cost of this attack is well approximated
by 281 S-Box look-ups (with negligible cost of memory) or 276 table look-ups
and a memory cost of 16 · 212 = 216 bytes. Moreover, the same attack works
also in the decryption direction, with the same complexity. In particular, given
ciphertexts in the same coset of Di for |i| = 1 and the corresponding plaintexts
two rounds before, the idea is to look for the keys such that the plaintexts belong
to the same coset of Di after two rounds.

6 9-Round Known-Key Distinguisher for AES

Exploiting the same idea proposed by Gilbert, we set up our known-key distin-
guisher for 9 rounds of AES by extending the 8-round distinguisher presented in
[11] (and recalled in Sect. 4.3) at the end (or at the beginning).

In the above defined known-key scenario, the players have to send to the
verifier n different tuples of (plaintext, ciphertext) pairs, that is {(p1i , c1i ), (p2i , c

2
i )}

for i = 0, ..., n− 1, with the following properties11:

1. for each tuple, there exists j s.t. the two plaintexts belong to the same coset
of Dj , that is

∀i = 0, ..., n− 1, ∃j ∈ {0, ..., 3} s.t. p1i ⊕ p2i ∈ Dj ;

2. there exists a key k s.t. for each tuple there exists l for which the two ci-
phertexts belong to the same coset of Ml one round before, that is

∃ k s.t. ∀i = 0, ..., n− 1, ∃l ∈ {0, ..., 3} s.t. R−1k (c1i )⊕R−1k (c2i ) ∈Ml.

9 This step is different from the one proposed in [10]. In that case, the idea is to find
the right key by a brute force attack in order to keep the data complexity as low as
possible. For our distinguisher, we propose to test the found key against other pairs
of plaintexts and ciphertexts, since it is not possible to use a brute force attack.

10 Note that 4 different pairs can be obtained by 3 chosen plaintexts. However, such
pairs are not useful for the attack, essentially for the same reason given in footnote
8. We refer to [10] for a complete and detailed explanation.

11 We say that the tuples are different if p1i 6= p2i for each i and if (p1i , p
2
i ) 6= (p1j , p

2
j )

and (p1i , p
2
i ) 6= (p2j , p

1
j ) for each i 6= j.
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The fastest player to construct these n-tuples wins the game.
We stress that the key k must be equal for all the tuples. In other words, if

there exist two different tuples (c0, c1) and (c2, c3) such that R−1k (c0)⊕R−1k (c1) ∈
Ml and R−1

k̃
(c2) ⊕ R−1

k̃
(c3) ∈ Ml̃ for two different keys k 6= k̃, then the above

defined relationship R is not satisfied. Note that without this request on the
secret key k, it is extremely easy to construct tuples such that the two ciphertexts
belong to the same coset of Ml one round before. Indeed, as we have seen for
the attack of Sect. 5, given two ciphertexts c1 and c2, on average there exist
4 · (28)4 = 234 different keys such that R−1(c1)⊕R−1(c2) ∈ Ml for a certain l.
Thus, it is straightforward to construct n different tuples with the above defined
relationship R but without any condition on the key12 k.

Before we go on, it is also important to emphasize that no condition on the
key k is imposed, except that it exists and it is equal for all the tuples. That
is, it is not required that this key is equal to the real secret subkey. The same
consideration holds also for the next distinguishers presented in this paper, and
for the 10-round distinguisher presented by Gilbert in [8].

In the following, we present the distinguisher in details. To obtain a suitable
value for n, we consider the best strategy that the generic player can adopt to
win the game. A value of n is suitable when the computational cost of the generic
player using this best strategy is worse than the one of the other player.

As we show in details in the following, to do this one has to consider the num-
bers of oracle-queries done by the two player and any further cost of the generic
player. In particular, if only the number of oracle-queries is taken in account,
then n must be equal or greater than 8, which implies that the computational
cost for the shortcut player is of 247 and for the generic player is of 248.9. In order
to make the advantage of the shortcut player more significant, we have chosen
an (arbitrary) value of n = 64, which implies a cost for the shortcut player of
250 computations and of 265.6 computations for the generic player. Instead, if all
the costs are considered (number of oracle-queries + cost of the generic player),
then a suitable value of n is 3, the computational cost for the shortcut player
is 245.6 and for the generic player is approximately 2109.5. In both cases, the
computational cost of the verifier is well approximated by 211.6.

The Verifier. Given n tuples, for each one of them the verifier can easily check
if the two plaintexts belong (or not) to the same cosets of Dj for a certain j, by
computing their XOR sum and checking that three diagonals are equal to zero.

More complicated is to check if there exists a (unique) key k for which the
requirement on the ciphertexts is fulfilled. The idea is to find such key (if exists),
using the attack described in Sect. 5.1. First of all, given a single tuple, there exist
on average 4 · (28)4 = 234 keys of the final round such that the two ciphertexts

12 We observe that the claim “the transposition of our technique to the 8-round dis-
tinguisher of [9] does not allow to derive a valid 10-round distinguisher” made in
[8] is justified only when no assumption on the key k is done. In other words, the
above defined relationship R together with the requirement of uniqueness of the key
k allows to extend the 8-round distinguisher of [9] as in [8].
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belong to the same coset of Ml one round before for a certain l. Given two
tuples, the probability that such key exists is only (234)2 · 2−128 = 2−60, while
more generally, given n tuples, the probability that at least one key exists (for
which the previous requirements are satisfied) is given by:

234n · 2−128(n−1) = 2−94·n+128.

This is due to the fact that for each tuple there are one average 234 different keys
and that the probability that two keys are equal is 2−128. By this preliminary
analysis, it is already possible to deduce that the number of tuples should be at
least 2 (i.e. n ≥ 2). Indeed, for n = 1 such a key always exists (which implies
that using a random tuple it is possible to win the game), while for n = 2 the
probability that such key exists for two random tuples is only 2−60.

Thus, assume that the verifier receives n ≥ 2 tuples. The idea is to use two
tuples and the attack described in Sect. 4.3 to recover (if exists) the key that
satisfies the required property. If n > 2, the verifier simply checks if the relation
R is satisfied by the found key for the other n− 2 tuples.
In more details, working independently on each column, the attacker uses the
first tuple to find 28 combinations for each column of SR−1(k) and checks im-
mediately them with the second tuple. Since she repeats this attack for each
possible Mi (i.e. 4 times), the cost of this step is of 4 · 217.1 = 219.1 S-Box look-
ups. In this way, the verifier finds on average only one key (if exists). If at least
one possible key is found using two tuples, she simply checks if the other n− 2
tuples satisfy the relation R for this found key (more generally, she repeats this
step for all the keys found using the first two tuples). The cost of this operation
is well approximated by 2 · 16 = 25 S-Box look-ups for each tuple (note that she
must decrypt one round two ciphertexts).

In conclusion, given n ≥ 2 tuples, the cost of the verifier is well approxi-
mated by 219.1 + (n− 2) · 25 S-Box look-ups, that is approximately 211.6 9-round
encryptions if n� 214.

The Shortcut Player. The shortcut player can simply use the same strategy
described in [11] and in Sect. 4.3 for the known-key distinguisher on 8 rounds
to find the n tuples that satisfy the above defined relation R. Indeed, it is
straightforward to prove that all the properties are satisfied, since for each tuple
the two plaintexts belong to the same coset of Di (for a certain i) and the two
ciphertexts belong to the same coset of Mj (for a certain j) one round before
with respect to the known key - by construction. Since the computational cost
to build one tuple is of 244 encryptions, the cost to construct n tuples is well
approximated13 by n · 244.

The Generic Player. Here we analyze and present the (intuitively) best strat-
egy that the generic player can use to find n tuples with the required properties,

13 We don’t exclude the possibility of some trade-offs that could allow to reduce the
computational cost to construct n tuples, i.e. such that the total computational
which increases less than linear. However, for our results, the “roughly” linear ap-
proximation is sufficient.
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and the corresponding computational cost. Intuitively, the best strategy for this
player is to choose tuples such that for each one of them the two plaintexts be-
long to the same coset of Dj for a certain j. In this way, the required condition
on the plaintexts is (obviously) satisfied. Then, the player asks the oracle for
the corresponding ciphertexts. The idea is to check if there exists a key k and
n tuples such that the two ciphertexts of each of these n tuples belong to the
same coset of Ml one round before. We remember that it is not necessary that
the key for which this condition is satisfied is the real one.

As we have already seen, given a single tuple there exist on average 234 keys
such that the two ciphertexts belong to the same coset ofMj one round before.
To set up a meaningful distinguisher, a value of n is suitable if the number of
oracle-queries of the generic player is higher than the cost of the shortcut player.
By previous observations, given a set of n tuples, the probability that at least
one common key exists for which the property on the ciphertexts is satisfied is
2−94n+128. Thus, the idea is to estimate the number of (plaintext, ciphertext)
pairs that this player has to generate in order to win the game (that is, in order
to find with high probability n tuples with the required property). If this number
is higher than 244 · n for a fixed n, then the other player wins the game.

Since each coset of Dj contains 232 different plaintexts, it is possible to con-
struct approximately 263 different couples {(p1, c1), (p2, c2)}. Given t different
cosets of Dj , it is possible to construct s = 263 · t different couples. It follows
that one can construct approximately(

s

n

)
≈ sn

n!

different sets of n different tuples (i.e. n different couples {(p1, c1), (p2, c2)}),
where the approximation holds for n � s. Since the probability that a set of n
tuples satisfy the above defined relation R is 2−94n+128, the generic player must
consider at least s different couples such that sn/n! ' 294n−128 or equivalently

s ' 294−
128
n · (n!)

1
n . (6)

By this formula, for n = 8 this player has to consider approximately 279.9 dif-
ferent tuples, or equivalently 248.9 (plaintext, ciphertext) pairs (that is, 216.9

initial different cosets of Dj). Indeed, given 216.9 initial different cosets of Dj ,
it is possible to construct approximately 216.9 · 263 = 279.9 different couples,
that is approximately 2624 different sets of 8 tuples. Since each of these sets
satisfies the required properties with probability 2−94·8+128 = 2−624, he has a
good probability to find 8 different tuples with the required property. The cost
to generate these 248.9 (plaintexts, ciphertexts) pairs is of 248.9 oracle-queries
(with the assumption 1 oracle-query ' 1 encryption). On the other hand, the
cost to generate these 8 tuples for the shortcut player is of 8 · 244 = 247 (which
is smaller). We emphasize that the cost of the generic player is higher than the
cost of the shortcut player is satisfied for any value n with n ≥ 8.

Finally, the same strategy can be used to extend the 7-round known-key
distinguisher of App. F.1 in order to set up a 8-round known-key distinguisher
with a time complexity of 221.6. All the details are given in App. F.2.

20



6.1 The Computational Cost of Generic Player is Not Negligible!

Until now, we haven’t considered the (further) cost of the generic player to
identify the n tuples with the required relationship R that he must send to the
verifier. That is, we have only considered the cost (as number of oracle-queries) to
generate a sufficient number of (plaintexts, ciphertexts) pairs to guarantee that
n tuples with the required properties exist with a good probability. However,
note that the player has to identify the n tuples with the required properties
before to send them to the verifier. As we show in App. E.1, the computational
cost of this step is not negligible. In particular, we propose a modified version
of the attack presented in Sect. 5.1 that allows to find the required n-tuples and
to minimize the total computational cost. As a final result, it follows that if the
cost of this step is taken into account, then n = 3 tuples are sufficient to set up
our distinguisher on 9 rounds of AES. We refer to App. E.1 for all the details.

7 10-Round Distinguisher of AES - Full AES-128

Using the same strategy proposed by Gilbert in [8], we set up our 10-round
distinguisher by extending the 8-round one presented in [11] and in Sect. 4.3
both at the beginning and at the end, or equivalently by extending our 9-round
distinguisher presented in the previous section at the beginning.

In the above defined known-key distinguisher scenario, the players have to
send to the verifier n different tuples of (plaintext, ciphertext) pairs, that is
{(p1i , c1i ), (p2i , c

2
i )} for i = 0, ..., n− 1, with the following properties:

1. there exists a key k0 s.t. for each tuple there exists j for which the two
plaintexts belong to the same coset of Dj after one round, that is

∃ k0 s.t. ∀i = 0, ..., n− 1, ∃j ∈ {0, ..., 3} s.t. Rk0(p1i )⊕Rk0(p2i ) ∈ Dj ;

2. there exists a key k10 s.t. for each tuple there exists l for which the two
ciphertexts belong to the same coset of Ml one round before, that is

∃ k10 s.t. ∀i = 0, ..., n−1, ∃l ∈ {0, ..., 3} s.t. R−1k10(c1i )⊕R−1k10(c2i ) ∈Ml.

We stress that the keys k0 and k10 must be equal for all the tuples, otherwise it
is straightforwards to generate tuples with the required properties (same argu-
mentation of the 9-round case). However, a difference with the previous 9-round
distinguisher arises. In the previous case, the verifier must verify the existence
of a single key (by finding it, if exists), since the property on the plaintexts can
be verified directly on them without guessing any secret-key material. For the
10-round case instead, the verifier has to check the existence of both k0 and k10.
Thus, two possible scenarios can be considered and studied:

1. no key-schedule holds - k0 and k10 are independent;
2. AES key-schedule among k0 and k10.
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Intuitively, the second case (i.e. with key schedule) is harder than the first one
(i.e. without key schedule) for the generic player, since a further property must
be verified. In other words, the time required by this player to generate the tuples
for the second scenario is not lower than for the first one, or in other words the
probability of success in the second scenario is not higher than in the first one.

Before we present this distinguisher in detail, we highlight that the same
strategy can be used to extend the 7-round known-key distinguisher of App. F.1
both at the beginning and at the end in order to set up the best 9-round known-
key distinguisher from the computational point of view - its time complexity is
approximately of 223 computations. All the details are given in App. F.3.

The Shortcut Player. First of all, we study the computational cost of the
player who knows the key. For this player, the two scenarios (with/without
key schedule) are completely identical. Indeed, using the 8-round distinguisher
described in [11] and in Sect. 4.3, he is able to generate n tuples that satisfy
all the conditions (included the key schedule without any additional cost). The
computational cost of this player is well approximated by n · 244 computations.

7.1 Independent Subkeys: No Key Schedule

The strategies used by the verifier and by the generic player depend on which
scenario one considers, that is depend on the fact that the two keys k0 and k10 are
independent or that a key schedule holds. Following the same strategy adopted
by Gilbert in [8], as first case we assume that these two keys are independent.

The Generic Player. For the 9-round distinguisher, the best strategy that
the generic player could adopt was to choose plaintexts in the same coset of Dj ,
in order to fulfill the requested property on the plaintexts. The idea is simply
to adapt this strategy for this case, that is the idea is to choose plaintexts such
that the condition on the plaintexts is fulfilled with probability 1.

To do this, the generic player must fix a random key k̂, and computes for a
certain j ∈ {0, ..., 3} and for a random a ∈ D⊥j the following set:

Da := R−1
k̂

(Dj ⊕ a). (7)

The idea is choose/use plaintexts in this set Da just defined. In other words,
the player works in the same way described for the 9-round distinguisher but
using Da defined above instead of a coset of Dj . The corresponding ciphertexts
are simply got by oracle-queries. Since the cardinality of a coset of Dj is 232,
the computation of a set Da requires 232+4 = 236 S-Box look-ups for each coset
Dj⊕a. Note that if the player needs more than 232 (plaintext, ciphertext) pairs,
he simply chooses another a′ ∈ D⊥j (or/and another j) and, using the same key

k̂, he computes the corresponding set Da′ defined as before. We emphasize that
the player must use always the same key k̂ to compute these sets, in order to
fulfill the property on the plaintexts.

Given the set Da, the idea is to use the same strategy presented for the 9-
round distinguisher in the previous section in order to find the n tuples with
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the required properties. Since the procedure to choose tuples such that the re-
quirement on the ciphertexts is fulfilled is identical to the one presented for the
9-round distinguisher, we refer to that section for more details. We stress that
given plaintexts in the same set Da, the requirement on the plaintexts is al-
ways fulfilled since by construction there exists a key (which is k̂) such that the
plaintexts of each tuple belong to the same coset of Dj after one round.

As a result, the strategy and the computational cost used to find these n
tuples are (approximately) identical to the one presented in the previous section
- note that the cost to compute the set Da is negligible compared to the total
cost. It follows that n ≥ 8 tuples are sufficient for the case in which the cost of
the generic player is approximated by the number of oracle-queries, while n ≥ 3
tuples are sufficient for the case in which all the costs (oracle-queries + cost of
the player) are considered. As before, we choose an (arbitrary) value of n = 64
in order to make the advantage of the shortcut player more significant.

The Verifier. Given n tuples, the verifier has to check the existence of keys k0

and k10 as defined previously. Since no key schedule is considered, the idea is
simply to work independently on the plaintexts (in order to find k0) and on the
ciphertexts (in order to find k10). Since the verifier performs two independent
attacks (as described in Sect. 5.1) on the plaintexts and on the ciphertexts, the
cost doubles with respect to the 9-round case. As for the previous case, note that
the verification cost is much lower than the players costs.

7.2 The Key Schedule Case

The scenario in which a key schedule holds is more complicated to analyze.
Before we present our strategy, we recall the one adopted by Gilbert to set up
his 10-round distinguisher. First he considers the case of AES with independent
subkeys - denoted by AES?

10, and he presents a 10-round known-key distinguisher
for AES?. Then, he simply observes that this known-key distinguisher on AES∗10
“is obviously applicable without any modification to AES10, i.e. the full AES-
128 ” (see Sect. 4.2 - page 221 of [8]). Using the same argumentation, we can
easily conclude that also our distinguisher can be applied to real AES, i.e. to the
case in which the key schedule holds. Indeed, as we have already pointed out,
note that nothing changes for the shortcut player, while this scenario is more
complicated for the generic player who doesn’t know the key, since a further
condition on k0 and k10 (the key schedule) is imposed. Even if it is possible
to refer to previous results, here we show that a less number of tuples can be
sufficient to set up this distinguisher in the case in which the key schedule holds.

The Verifier. Given n tuples, the verifier has to check the existence of k0

and k10 that satisfy the AES key schedule and for which the properties on the
plaintexts and on the ciphertexts are fulfilled. Working as before, the verifier can
use several (equivalent) strategies, and here we focus on two of them.

In the first case, the idea is to work again independently on the plaintexts
and on the ciphertexts, and find independently the two keys. Only as final step,
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she checks if there exist keys k0 and k10 (among the ones found previously) that
satisfy the key schedule. In the second case, the idea is to work only on the
plaintexts and to find k0 such that the property on the plaintexts is satisfied.
When a candidate for k0 is found using the n tuples, the verifier finds k10 using
the key schedule and checks if the requirement on the ciphertexts is satisfied.

For both these two cases, since on average only one key k0 and one key k10

is found if the number of tuples n is greater or equal than 2, the computational
cost for the verifier is comparable and well approximated by the cost of the
(previous) case in which the subkeys are independent.

The Generic Player. When the key schedule holds, the strategy presented
before for the generic player must be modified since it is no more the best one.
Indeed, suppose this player fixes a key k0 = k̂ as before. It follows that the
probability that k̂ (fixed) and a suitable k10 satisfy the key schedule is only
2−128, which implies that the probability of success is very low.

For this reason, we present a modified strategy that he can use in this sce-
nario. The idea is to look for plaintexts that maximize the number of keys k0

and k10 for which the requirements are satisfied (included the key-schedule). If
we consider two random pairs of texts (p1, c1) and (p2, c2), there are on aver-
age 234 keys k0 such that Rk0(p1) ⊕ Rk0(p2) ∈ Dj and 234 keys k10 such that
R−1k10(c1)⊕R−1k10(c2) ∈Ml for certain j and l. Thus, an initial key and a final one
that satisfy the key schedule exist only with probability (234)2 · 2−128 = 2−60.
Consider instead two plaintexts that belong to the same coset of Dj . Since a
coset of Dj is mapped into a coset of Cj (see Sect. 3.1), after one round the two
texts belong to the same coset of Cj for all the possible keys with probability 1.
At the same time, it is possible to prove that there exist 2106 keys for which the
two plaintexts belong to the same coset of Cj ∩ Dl ⊆ Dl after one round.

Proposition 1. Let p1 and p2 two plaintexts that belong to the same coset of
Dj for a certain j, that is p1⊕p2 ∈ Dj. Moreover, assume that p1⊕p2 /∈ Dj ∩CL
for each L ⊆ {0, 1, 2, 3} with |L| ≤ 3. Then there exist on average 2106 different
keys k such that Rk(p1)⊕Rk(p2) ∈ Dl for a certain l ∈ {0, 1, 2, 3}.

The proof is given in App. G. Thus, if one considers two couples (p1, c1) and
(p2, c2) that satisfy the hypothesis of the previous proposition (in particular,
p1 ⊕ p2 ∈ Dl for a certain l), then there are on average 2106 keys k0 such that
Rk0(p1)⊕Rk0(p2) ∈ Di and 234 keys k10 such that R−1k10(c1)⊕R−1k10(c2) ∈Mj . It
follows that there exist on average 2106 · 234 · 2−128 = 212 combinations of initial
and final subkeys k0 and k10 that satisfy the key schedule. Even if we don’t
exclude better strategies, we conjecture that this is one of the best strategy that
this player can use in order to maximize the number of keys (k0, k10) that satisfy
the key schedule and the other required properties.

Number n of Tuples: Oracle-Queries. Starting by these considerations,
we show that n = 4 tuples are sufficient to set up the distinguisher when a key-
schedule holds and when only the number of oracle-queries is considered (remem-
ber that for independent subkeys n must be equal or greater than 8). First of all,

24



working as in Sect. 6, note that given n tuples (where the plaintexts are chosen as
described previously), the probability that there exist keys (k0, k10) that satisfy
the key schedule and for which the properties on the plaintexts/ciphertexts are
satisfied is 212·n · 2−128·(n−1) = 2−116·n+128 instead of 2−94·n+128 (see Eq. (6)),
since for each couple there are only 212 possible combinations14 of keys (k0, k10)
instead of 234. Thus, using similar argumentation as before, in order to win the
game the generic player must consider s different couples, where s is given by

s ' 2116−
128
n · (n!)

1
n . (8)

In particular, he has to consider at least 285.14 different couples in order to find
n = 4 tuples that satisfy the requirements. Since each coset of Dj contains 232

different plaintexts (or approximately 263 different couples), he must consider
approximately 222.14 different cosets of Dj defined as in (7), for a total of 254.14

(plaintexts, ciphertexts) pairs. Thus, in the case in which the cost of the generic
player is approximated by the number of oracle-queries, his cost is of approxi-
mately 254.2 oracle-queries. On the other hand, the cost for the shortcut player
to generate the same number of different tuples with the required properties is
approximately of 4 · 244 = 246 computations, which is lower.

Number n of Tuples: Oracle-Queries and Cost of Generic Player. As
for the 9-round case, if one considers all the costs (that is the number of oracle-
queries and the computational cost of the generic player), it turns that a lower
number of tuples (precisely n = 2) is sufficient. We refer to App. E.2 for details.

8 12-Round Distinguisher of AES

As one of the major contributions of this paper, in this section we present the
first known-key distinguisher for 12 rounds of AES. This distinguisher is ob-
tained by extending the previous 10-round distinguisher both at the end and
at the beginning, or equivalently by extending two times at the end and at the
beginning the 8-round known-key distinguisher presented in [11] and in Sect.
4.3. We highlight that this is the first known-key distinguisher for full AES-192
(and on 12 rounds of AES-128, i.e. full AES-128 with two more rounds) and it
also provides a counterexample to the claims made in [8].

In the know-key distinguisher scenario, the players have to send to the verifier
n different tuples of (plaintext, ciphertext) pairs, that is {(p1i , c1i ), (p2i , c

2
i )} for

i = 0, ..., n− 1, with the following properties:

1. there exist keys k0, k1 s.t. for each tuple there exists j for which the two
plaintexts belong to the same coset of Dj after two rounds, that is

∃ k0, k1 s.t. ∀i = 0, ..., n−1 ∃j ∈ {0, ..., 3} s.t. R2
k0,k1(p1i )⊕R2

k0,k1(p2i ) ∈ Dj ;

14 If two combinations (k̃0, k̃10) and (k̂0, k̂10) satisfy the key schedule, then they are
equal with prob. 2−128 (e.g. if k̃0 = k̂0 then k̃10 = k̂10 due to the key schedule).
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2. there exist keys k11, k12 s.t. for each tuple there exists l for which the two
ciphertexts belong to the same coset of Ml two rounds before, that is

∃k11, k12 s.t. ∀i = 0, ..., n−1 ∃l ∈ {0, ..., 3} s.t. R−2k11,k12(c1i )⊕R−2k11,k12(c2i ) ∈Ml;

where R2
k0,k1(·) ≡ Rk1(Rk0(·)) and R−2k11,k12(·) ≡ R−1k11(R−1k12(·)).

As for the known-key distinguisher for 10-round AES, two scenarios can be
considered, that is the case of independent subkeys and the case in which the
key schedule holds. For the following, we consider only the first scenario, that
is we limit ourselves to present a known-key distinguisher for 12-round of AES
with independent subkeys. However, using similar argumentation as before, we
claim that the same distinguisher can be applied to the case in which the key
schedule holds. In particular, we remember that nothing change for the shortcut
player (who knows the key) in this second case, while the challenge becomes
much harder for the other player.

The strategy used by the players and by the verifier is very similar to the one
presented for the 10-round distinguisher in the case of no key-schedule. Thus,
we refer to the previous section for all the details, and we limit here to highlight
the idea and the major differences.

The Two Players. Exactly as before, the shortcut player can generate n tuples
with the required properties for a cost of n · 244 computations.

The generic player exploits the same strategy proposed for the 10-round
distinguisher with no key-schedule. First he fixes random keys k̂0, k̂1 and k̂12,
and using the keys k̂0 and k̂1, he computes the set Da = R−1

k̂0
(R−1

k̂1
(Dj ⊕ a)).

Similar to the previous case, the idea is to work with plaintexts in the same set
Da. He then gets the corresponding ciphertexts by oracle-queries, and the idea
is simply to decrypt them using the key k̂12. As a result, using the same strategy
proposed for the 9- and 10-round distinguisher, he can construct n tuples that
satisfy the relation R, that is he is able to find n tuples for which a common key
k11 exists such that the requirement on the ciphertexts is satisfied.

By analogous calculation as before, at least n ≥ 8 tuples are sufficient to set
up the distinguisher when only the number of the oracle-queries is considered.

The Verifier. When the verifier receives the n tuples, she can use the following
strategy to check if the required properties are satisfied or not. First of all, since
there is no key schedule, the verifier can work independently on k0, k1 (that is
on the plaintexts) and on k11, k12 (that is on the ciphertexts). Similarly to the
previous cases where the verifier uses the key-recovery attack of Sect. 5.1 to find
the keys, for this 12-round distinguisher the idea is to exploit the key-recovery
attack presented in Sect. 5.2 to find (if exist) the four keys k0, k1 and k11, k12.

We present in details the verification procedure for the ciphertexts case (anal-
ogous for the plaintexts). Given the first tuple and using the strategy described
in Sect. 5.2, the verifier guesses eight bytes of the final subkey k12 (two diago-
nals), decrypts partially, and finds 234 values for eight bytes of k11 working as
in Sect. 5.1, for a total of 234 · 264 = 298 candidates. Then, she eliminates wrong
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candidates by testing them using the other tuples - to reduce the computational
cost, she can work independently on each column of k11. Note that the proba-
bility that found subkeys k11 and k12 satisfy the required property for another
tuple is 4 · 2−32 = 2−30. Thus, using other four tuples, with high probability the
verifier finds approximately only on pair of subkeys k11 and k12 for which the
property on the ciphertexts is satisfied (note 298 · (2−30)4 = 2−22). The cost of
this step is of 276 table look-ups (using the pre-computation phase), as shown
in Sect. 5.2 or in [10] in more details. The remaining eight bytes of k11 and of
k12 and the subkeys k0 and k1 can be found in a similar way.

As a result, given 5 different tuples, the total cost for this attack is approxi-
mately of 4 · 276 = 278 table look-ups (using the pre-computation phase). When
the verifier has found possible candidates for the four keys, she checks that also
the other n − 5 tuples satisfy the relation R for the found keys. In conclu-
sion, given n ≥ 5 tuples, the total cost for the verifier can be approximated at
2 · (278 + 26 · (n− 5)) table look-ups. If n� 272, then the computational cost of
the verifier is approximately 271.1 twelve-round encryptions.

Number n of Tuples. As we have just seen, it is possible to set up the
distinguisher for n equal or greater than 8. However, if n = 8 then the cost
of the shortcut player (247 computations) is much lower than the cost of the
verifier (271.1 computations), which is not consistent with the given definition
of known-key distinguisher (see Sect. 4.1). Indeed, by definition the verification
cost must be less than the cost of the shortcut players (and so the cost of the
generic player), that is the entire cost of the distinguisher (computational cost of
the shortcut player + verification cost) must be well approximated by the cost
of the shortcut player. In order to fulfill this condition, it is sufficient to choose
a number of tuple n that satisfy the condition n · 244 � 271.1 (and n� 272). It
follows that a good (arbitrary) choice for this distinguisher15 could be n ≥ 238.

In conclusion, to win the game, the two players have to send 238 tuples
of (plaintext, ciphertext) pairs with the required properties. The cost for the
shortcut player is of 282 computations, while the verification cost is of 271.1

computations. Note that even if this result is obtained considering only the
number of the oracle-queries and the case of independent subkeys, it holds also
for the cases in which all the costs are considered and/or the key schedule holds.
Indeed, it is simple to observe that also in these cases (1) the choice of a suitable
number n is more influenced by the request that the verification cost is lower
than the cost to generate the n tuples and (2) the game becomes harder for the
generic player, while nothing changes for the shortcut one.

Finally, in App. H we show that a similar strategy can be (theoretically) used
to extend both at the end and at the beginning the Gilbert’s 10-round known-
key distinguisher, obtaining in a similar way a 12-round known-key distinguisher
based on the balance property.

15 By previous analysis, we remember that the cost of the shortcut player is always
lower than the cost of the generic player for each value of n that satisfies n ≥ 8.
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9 Infeasibility of a 14-round Known-Key Distinguisher

In this paper, we have shown that Gilbert’s known-key distinguisher model can
lead to results on more rounds than previous expected. Even though the core
distinguisher remains at 8 rounds, 12 instead of 10 rounds are achieved. This
may raise the question: How meaningful is this distinguisher model? We claim
that it appears meaningful in the sense that it does not seem to allow results on
an arbitrary number of rounds.

We analyze this claim in more details, assuming by contradiction the ex-
istence of a meaningful known-key distinguisher on 14 rounds of AES (to be
meaningful, we assume that the probability of the shortcut player to win the
game is higher than the one of the generic player). The main criticism in order
to extend a known-key distinguisher both at the end and at the beginning as
in the Gilbert model regards the computational cost to verify the existence of
keys such that the n tuples of (plaintexts, ciphertexts) pairs satisfy the relation
R. We stress that the verification cost must be lower than the players costs.
Thus, consider the known-key distinguishers that exploit the balance property
or a truncated differential trail. In order to extend 1 round at the beginning and
at the end, a classical key recovery attack - as the integral attack [4] and the
truncated differential attack [10] - is sufficient for this task. In order to extend 2
rounds as for the distinguishers presented in this paper, the idea is to use a key
recovery attack with an extension at the end, e.g. the integral attack with an
extension at the end [4] and the truncated differential attack of Sect. 5.2. In a
similar way, in order to extend for r ≥ 3 rounds, one needs a key-recovery attack
with two extensions at the end, that is more than a single one16. Since balance
and/or truncated differential attacks with this property don’t exist in literature
for AES-12817 and since it seems very unlikely to set up them without guessing
an entire subkey (which leads to a brute force attack), we claim that it is not
possible to extend the 8-round distinguishers currently present in the literature
for more than 4 rounds, that is 2 rounds at the end and 2 at the beginning. We
leave the open problem to confute our claims for future investigations.

10 Conclusion, Discussion, and Open Problems

In this paper, we improve all the known-key distinguishers currently present in
the literature for AES up to 10 rounds of AES and we set up the first known-
key distinguisher on 12 rounds of AES, by extending distinguishers based on
truncated differential trails using the technique proposed by Gilbert in [8]. In
particular, we set up a 9-round known-key distinguisher for AES with a time
complexity of 223, a 10-round known-key distinguisher with a time complexity
of 250, and a 12-round known-key distinguisher with a time complexity of 282.

16 In App. I we show why attacks with both an extension at the end and at the begin-
ning are completely useless for this scope, taking as example the partial-sum attack
on 7 rounds of AES-128 presented in [6] - also known as herds attack.

17 Note that for AES-256 it is possible to set up such attacks by simply guessing an
entire subkey. However, since the complexity of such attacks is higher than 2128 (an
entire subkey is guessed), the verification cost is higher than the costs of the players.
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In order to set up our known-key distinguishers presented in this paper, for
each case we consider the intuitively best strategy that the generic player can
exploit to win the game, giving strong argumentations to justify it. In this sense,
we adopt the same strategy also used by authors of [15] and [9] to present their
7- and 8-rounds known-key distinguishers. Indeed, also for these works, authors
exploit the intuitively best strategy that the generic player can use, while no
formal proof of this fact is given. In other words, both in these papers and
in our work, we conjecture that the (intuitively) best strategy of the generic
player is (1) to consider plaintexts that satisfy the required properties (e.g. that
belong to the same coset of a diagonal space Di), and (2) to look for the ones for
which the required properties on the corresponding ciphertexts are also satisfied.
We leave the problem to formally prove the statements that our distinguisher
works (equivalently, that our conjectures are correct) for future investigation. We
emphasize that for the cases of [15] and [9], a formal proof has been provided
only after approximately two years (see [17] for details).

Drawing conclusions about AES because of our concrete results seems pre-
mature. Perhaps more interestingly our example of AES emphasizes a gap in our
understanding of distinguishers in open-key models (which includes chosen-key
and known-key models). Our results exploit subtle properties in the known-
key model which seem currently not possible in the chosen-key model. Indeed,
whereas in the chosen-key model the best result (excluding related-key variants
as in [2]) is on 9 rounds [7], we now have results on 12 rounds in the known-
key model. This seems to hint towards more possibilities in the chosen-key model.
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A Considerations on Gilbert’s 10-round Distinguisher

In this section, we show that the verification cost for the Gilbert’s 10-round
distinguisher is not lower than the cost of the shortcut player, i.e. the relationship
R defined in [8] is not efficiently checkable, despite what it is claimed.

We refer to Sect. 4.4 for a detailed presentation of the Gilbert’s known-key
distinguisher. We limit to recall that the two players have to find 264 (plaintext,
ciphertext) pairs, i.e. (pi, ci) for i = 0, ..., 264− 1, s.t. there exist keys k0 and k10

for which the following sums
⊕264−1

i=0 Rk0(pi) = 0 and
⊕264−1

i=0 R−1k10(ci) = 0 are
satisfied. When the verifier receives the set of 264 (plaintext, ciphertext) pairs
from the players, she checks if the required properties are satisfied or not by
finding the two keys. Since no key-schedule holds, the verifier can work indepen-
dently on k0 and k10. Both for k0 and k10, Gilbert proposes to work on 4 bytes of
the key at the same time, that is to work on entire column in the case of k10 (the
first operation of R−1k10(·) to compute is MC−1(·)) and to work on entire diagonal
in the case of k0 (the first operations of Rk0(·) to compute are MC ◦ SR(·)).
Since there are 4 columns/diagonals and (28)4 = 232 possible values for each of
them, the total cost is of approximately 2 · 4 · 232 · 264 = 299 S-Box look-ups.
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As we are going to show, it is not necessary to work on 4 bytes of the subkeys
k0 and k10 simultaneously, but it is possible to find k0 and k10 working on
single bytes (independently of the others). The idea for k10 (very common in the
literature) is simply to change the positions of the final MixColumns operation
and of the final AddRoundKey operation, using the fact that the MixColumns
is linear. In this way, the verifier can work on single byte of k̂10 ≡MC−1(k10) -

the existence of the key k̂10 obviously implies the existence of k10.
For the case of k0, remember that a set of balanced texts is mapped into a set

of balanced texts by the MixColumns operation (since it is linear), that is given a
set of texts {ti}i=0,...,n then

⊕n
i=0 t

i = 0 if and only if
⊕n

i=0MC(ti) = 0. Thus,

in order to verify that
⊕264−1

i=0 Rk0(pi) = 0, the verifier can simply check if the

condition
⊕264−1

i=0 S-Box(pij,l ⊕ k0j,l) = 0 holds for each byte, i.e. ∀j, l = 0, ..., 3.

It follows that the verifier can work on single byte of k0.
Using this strategy, the verification cost can be approximated by 2 · 16 · 28 ·

264 = 277 S-Box look-ups, or equivalently 269.36 ten-round AES encryptions -
better than the strategy proposed in [8], which is still (much) higher than the
cost of the shortcut player even in this case (approximately of 264 ten-round AES
encryptions). Even if we don’t exclude that better strategies exist, it follows that
using a (classical) integral attack the claim made in [8] “the overall complexity
of checking R is strictly smaller than N = 264 AES?

10 operations” (see Sect. 4.2
- page 218) is false, i.e. the computational cost of the verifier is not negligible
w.r.t. the cost of the players. On the other hands, in App. H we show how to
modify the Gilbert’s 10 rounds distinguisher in order to overcome this problem.

B A possible Variant of Gilbert’s Distinguisher - Details

In Sect. 4.4, we proposed a possible variant of the Gilbert’s distinguisher - that
also applies to all our proposed distinguishers present in the paper - which allows
to better understand it. Consider the case in which the two players have to send
to the verifier the N -tuple that verify the required relation R together with the
subkeys for which such relation is satisfied.

In more details, assume that the relationship R depends on the existence of
subkey(s) such that the required property is not directly verified on the plain-
texts or/and on the ciphertexts but one (or more) round(s) before/after. As
an example, consider the 10-round known-key distinguisher proposed by Gilbert
and based on the balance propoerty. In this case, the two players have to send 264

(plaintexts, ciphertexts) pairs, i.e. (pi, ci) for i = 0, ..., 264−1 and the two subkeys
k0 and k10 such that the plaintexts are uniformly distributed after one round in
the cosets of DI and the ciphertexts are uniformly distributed one round before

in the cosets ofMJ , or equivalently that
⊕264−1

i=0 Rk0(pi) =
⊕264−1

i=0 R−1k10(ci) = 0.
In this case, the task of the verifier is to check if the relation R is satis-

fied (or not) only for the subkeys she received by the players. It follows that
her computational cost is negligible, in the sense that it is comparable to the
computational cost of the 8-round integral distinguisher presented in [8] where
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the required property R can be directly verified on the plaintexts/ciphertexts
(or equivalently comparable to the computational costs of the other known-key
distinguishers present in literature up to 8 rounds). Here we show in details why
such distinguisher is meaningless.

The main problem of such a distinguisher regards the fact that it can be set
up for any number of rounds. To explain this problem, consider our known-key
distinguisher on r = 8 + 2 · r′ rounds of AES, for r′ ≥ 1 (the same considerations
apply e.g. to the Gilbert integral distinguisher). The players have to send to the
verifier n different tuples of (plaintext, ciphertext) pairs, that is {(p1i , c1i ), (p2i , c

2
i )}

for i = 0, ..., n− 1, and 2 · r′ subkeys k0, ..., kr
′−1 and kr, ..., kr−r

′+1 such that

1. for each tuple there exists j for which the two plaintexts belong to the same
coset of Dj after r′ rounds, that is

∀i = 0, ..., n− 1 ∃j ∈ {0, ..., 3} s.t. Rk0,...,kr′−1(p1i )⊕Rk0,...,kr′−1(p2i ) ∈ Dj ;

2. for each tuple there exists l for which the two ciphertexts belong to the same
coset of Ml r

′ rounds before, that is

∀i = 0, ..., n−1 ∃l ∈ {0, ..., 3} s.t. R−1
kr,...,kr−r′+1(c1i )⊕R−1

kr,...,kr−r′+1(c2i ) ∈Ml,

where Rk0,...,kr′−1(·) ≡ Rkr′−1 ◦ ... ◦Rk0(·) and R−1
kr,...,kr−r′+1(·) ≡ R−1

kr−r′+1 ◦ ... ◦
R−1kr (·).

Consider now the costs of the verifier and of the two players. As we have
already said, the cost of the verifier is negligible, since she has to check if the
relation R is satisfied only for the received subkeys. The cost of the shortcut
player is approximately of n ·244 computations for n tuples, since he can use the
rebound attack (see Sect. 4.2 and App. C for details) to find them. The generic
player instead can use the strategy proposed in details Sect. for the 10 rounds
case and in Sect. for the 12 rounds one in order to win the game. Such strategy
allows the player to find plaintexts (or ciphertexts) that satisfy the required
condition with negligible computational cost. However, the only way to satisfy
both the conditions (i.e. the relation R) is to test the texts found in the first step
by brute force. It follows that increasing the number n of required tuples (and
the number of rounds r′), the computational cost of the generic player grows
faster than the cost of the shortcut player. In other words, even if we don’t
exclude that a better strategy exists, it seems hard that the cost of the generic
player can be lower than the cost of the shortcut one. By definition of known-key
distinguisher given in Sect. 4.1, it follows that such a distinguisher can be set
up for any number of rounds (of AES), which is meaningless according to our
definition given in Sect. 9.

C The Rebound Attack - Details

In the 7- and 8-round known-key distinguishers proposed in [15] and [9], the goal
of the two players is to find two pairs of (plaintexts, ciphertexts) - i.e. (p1, c1)
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and (p2, c2) - with the following property: the two plaintexts belong to the same
coset of Di - i.e. p1⊕ p2 ∈ Di - and the two ciphertexts belong to the same coset
of Mi - i.e. c1 ⊕ c2 ∈Mi - for a fixed index i.

Consider the known-key distinguisher setting of the two players proposed in
Sect. 4.1. In order to win the proposed game, the technique that the shortcut
player (i.e. the player that knows the key) should use is the Rebound Attack.

The rebound attack was proposed in [16] for the cryptanalysis of AES-based
hash functions. The rebound attack consists of two phases, called inbound and
outbound phase. According to these phases, the internal permutation of the
hash function is split into three sub-parts. Let f be the permutation, then we
get f = ffw ◦ fin ◦ fbw. The part of the inbound phase is placed in the middle
of the permutation and the two parts of the outbound phase are placed next
to the inbound part. In the outbound phase, two high-probability (truncated)
differential trails are constructed, which are then connected in the inbound phase.

Since the rebound attack is a differential attack, as first thing an attacker
needs to construct a “good” (truncated) differential trail. A good trail used for a
rebound attack should have a high probability in the outbound phases and can
have a rather low probability in the inbound phase. In particular, two properties
are important: first, the system of equations that determine whether a pair
follows the differential trail in the inbound phase should be under-determined.
This contributes to the fact that many solutions (starting points for the outbound
phase) can be found efficiently by using guess-and-determine strategies. Second,
the outbound phases need to have high probability in the outward direction.

When searching for solutions of the inbound part, the attacker first guesses
some variables such that the remaining system is easier to solve. Hence, the
inbound phase of the attack is similar to message modification in an attack
on hash functions. The available freedom in terms of the actual values of the
internal variables is used to find a solution deterministically or with a very high
probability.

In the outbound phase, the attacker verifies whether the solutions of the
inbound phase also follow the differential trail in the outbound parts. Note that in
the outbound phase, there are usually only a few or no free variables left. Hence,
a solution of the inbound phase will lead to a solution of the outbound phase with
a low probability. Therefore, the attacker aims for narrow (truncated) differential
trails in the outbound parts, which can be fulfilled with a probability as high as
possible (in the outward directions). The advantage of using an inbound phase
in the middle and two outbound phases at the beginning and end is that one
can construct differential trails with a higher probability in the outbound phase
and at the same time cover a relatively high number of rounds.

The AES Case. Here we consider in details the strategy of the shortcut player
for 7- and 8-round of AES. The truncated differential trails used for 7- and 8-
round AES are depicted in Fig. 4. Referring to the 8-round trail (the 7-round
case is analogous), the inbound phase is composed of the states from S2 to S5,
which are highlight in Fig. 5. The player chooses differences in 8 bytes, that is
4 bytes in S′start (i.e. S2 after the S-Box) and the 4 output bytes in Send (i.e.
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Fig. 4. 7- and 8-round differential paths for AES-128.

Fig. 5. A detail of the inbound phase (rounds 2 - 4) of the 8-round differential.

S5 before the S-Box). Since ShiftRows and MixColumns are linear operations,
the player can propagate these difference through these operations in order to
compute Sin and Sout. We define the operations between these two states as
Super-SB:

Super-SB(·) := S-Box ◦ARK ◦MC ◦ S-Box(·), (9)

where note that the key is known. The player has to look for two states Sin and
Sout such that the differential trail is satisfied though this Super-SB operation.
When the player finds these two states, he can easily compute the corresponding
states S2 and S5.

In the outbound phase, the player simply propagates the results found in the
previous step in the backward and in the forward directions, and checks if they
satisfy the entire differential trail.

As proved in [9], in the case of a perfect random permutation on average 264

operations are required to find two (plaintexts, ciphertexts) pairs that satisfy
the 8-round differential trail. Instead, in the AES case and when the initial and
the final subspaces are fixed, it requires 248 computations and 232 memory.

D Known-Key Distinguishers for 7- and 8-Round of AES
based on the Square Property

The 7- and the 8-round known-key distinguisher based on the balance property
are a direct application of the 3- and 4-round secret-key distinguishers based on
the square property and used in an inside-out fashion.

First of all, we re-call some definitions. Given a set of texts, we say that a
byte X could be:

– Active (A): Every value in F28 appears the same number of times in X;
– Balance (B): The XOR of all values in X is 0;
– Constant (C): The value is fixed to a constant for all texts in X.
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First, we formally define the 7- and the 8-round known-key distinguisher
based on the balance property. Assume there are two players - one knows the key
and the other not, and the verifier. To win the game, the players have to send to
the verifier 2n (plaintext, ciphertext) pairs, that is (pi, ci) for i = 0, ..., 2n−1, such
that the balance property holds both on the plaintexts and on the ciphertexts:

2n−1⊕
i=0

pi =

2n−1⊕
i=0

ci = 0.

A suitable value of n is 56 for 7 rounds of AES and 64 for 8 rounds case.
What is the best strategy that the shortcut player can use to win the game?

Consider 232 plaintexts with one active diagonal (i.e. 4 bytes), and all the others
12 bytes constants. It is a well-known fact that the sum of 232 corresponding
ciphertexts after four rounds is equal to zero. A similar property holds in the
decryption direction, that is the following integral properties hold:

B B B B
B B B B
B B B B
B B B B

 R(-3)

←−−−


A C C C
A C C C
A C C C
A C C C

 and


A C C C
C A C C
C C A C
C C C A

 R(4)

−−−→


B B B B
B B B B
B B B B
B B B B


where R(4) denotes 4 consecutive AES encryption rounds and R(−3) denotes 3
full AES decryption rounds.

Equivalent, this means that if one takes a coset of Di for a certain i, then
the sum of the corresponding ciphertexts after 4 rounds is equal to zero. Again,
if one takes a coset of Cj for a certain j as the set of ciphertexts, the sum of
the corresponding plaintexts 3 rounds before is equal to 0. Thus, starting in
the middle with a coset of Di ⊕ Cj for a certain i and j, then the sum of the
corresponding plaintexts 3 rounds before and the ciphertexts after 4 rounds is
equal to 0: 

B B B B
B B B B
B B B B
B B B B

 R−3

←−−−


A C C C
A A C C
A C A C
A C C A

 R4

−−→


B B B B
B B B B
B B B B
B B B B

 .
This distinguisher on 7 rounds AES was proposed for the first time by Knudsen
and Rijmen in [13], and it has a complexity of 256. In particular, in this case
it is possible to prove that the probability of success of the player who doesn’t
know the key is strictly less than 1. In other words, the other player needs
more computations to generate a set of (plaintexts, ciphertexts) pairs with the
required properties.

Since a coset of Cj is mapped into a coset of Mj after one round with prob.
1, then given a coset of Mj for a certain j as the set of ciphertexts, the sum of
the corresponding plaintexts 4 rounds before is equal to 0. Equivalently, starting
in the middle with a coset of Di⊕Mj for a certain i and j, then the sum of the
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corresponding plaintexts 4 rounds before and of the ciphertexts after 4 rounds
is equal to 0: 

B B B B
B B B B
B B B B
B B B B

 R−4

←−−− Di ⊕Mj ⊕ a
R4

−−→


B B B B
B B B B
B B B B
B B B B


for a constant a. A similar distinguisher was proposed for the first time by Gilbert
in [8], and it has a complexity of 264.

D.1 The 8-round Known-Key Distinguisher based on the Balance
Property - A Formal Description.

To set up a known-key distinguisher on 8 rounds, the idea is simply to connect
two 4-round trails in the middle and to choose a middle space Di⊕Mj for i and
j fixed (with |i| = |j| = 1). In the middle, the set Di ⊕Mj can be re-written as⋃

b∈Di

Mj ⊕ b =
⋃

a∈Mj

Di ⊕ a,

that is as union of cosets of the space Di or as union of cosets of the space Mj .

Forward Direction. If one encrypts Di ⊕ a for four rounds (a ∈ Mj), then
the set R(4)(Di ⊕ a) is a set of (28)4 = 232 ciphertexts where each ciphertext
belongs to a different coset of a mixed space MI of dimension 12. Thus if one
encrypts all 232 cosets of Di, we get all the 232 cosets of MI , where each coset
contains exactly 232 ciphertexts. Only for completeness, if the final MixColumns
operation is omitted, then the encryption of all 232 cosets of Di results in all the
232 cosets of IDI , where each coset contains exactly 232 ciphertexts.

Indeed, note that by Theorem 2 two elements that belong to the same coset
of DI can not belong to the same coset of MJ for |I| + |J | ≤ 4. Thus, given a
coset of Di with |i| = 1, after 4 rounds each element is distributed in a different
coset of MJ for |J | = 3. Note that Di ⊕Mj =

⋃
a∈Mj

Di ⊕ a. Thus, since the

coset of Di contains 232 elements and since there are exactly 232 cosets of MJ ,
the elements of Di ⊕Mj are uniformly distributed in each coset of MI .

Backward Direction. If one decryptsMj ⊕ b for four rounds (b ∈ Di), then -
due to Theorem 2 - the set R(−4)(Mj ⊕ b) is a set of 232 plaintexts where each
plaintext belongs to a different coset of a diagonal space DJ of dimension 12. If
one decrypts all 232 cosets of Mj , one gets all the 232 cosets of DJ , where each
coset contains exactly 232 plaintexts.

A Distinguisher with complexity 264: Uniform Distribution. Suppose
to start in the middle with 264 texts in the same coset of Di ⊕ Mj , and let
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J and I fixed such that |I| = |J | = 3. As we have seen, the ciphertexts are
uniform distributed in all the cosets of MI , that is each coset contains exactly
232 ciphertexts. In the same way, the plaintexts are uniform distributed in all
the cosets of DJ , that is each coset contains exactly 232 plaintexts. Thus, one
needs only to count the number of elements in the ciphertexts and plaintexts
that belongs to each coset to distinguish an 8-round AES permutation from a
random one.

Description as Zero-Sum Distinguisher. An even simpler approach is pos-
sible: the simplest method is to XOR the 264 plaintexts and ciphertexts and
verify that the result is zero. The complexity is 264. This is the distinguisher
which exploits the integral property proposed by Gilbert in [8].

Even if we’ve already presented it, we recall it using the subspace trail no-
tation, which allows an easier explanation than using the Super-SB operation
(9) introduced by Gilbert. To do this, we recall the 7-round AES distinguisher
proposed by Knudsen and Rijmen in [13], which has a complexity of 256 and
which exploits the following integral property:

Zero-Sum
R−3

←−−− D0 ⊕ C0 ⊕ a
R4

−−→ Zero-Sum,

where a ∈ (D0 ⊕ C0)⊥. Equivalently, this means that if one starts from a (col-
lection of) coset(s) of D0 then after four rounds (without the final MixColumns
operation) the integral property holds. In a similar way, if one starts from a (col-
lection of) coset(s) of C0, then the integral property holds three rounds before.

As shown in detail in [10] and in Sect. 3, for each a ∈ C⊥0 there exists unique
b ∈ M⊥0 such that R−1(M0 ⊕ b) = C0 ⊕ a. This means that if one starts from
a coset of M0, then the integral property holds four rounds before. Indeed, this
coset of M0 is mapped into a coset of C0, and then the integral property holds.
Thus if one takes a collection of cosets of M0, then the integral property holds
four rounds before. In conclusion, if one starts in the middle with a coset of
D0 ⊕M0 instead of a coset of D0 ⊕ C0, then the integral property holds both
after four rounds and four rounds before:

Zero-Sum
R−4

←−−− D0 ⊕M0 ⊕ a′
R4

−−→ Zero-Sum

where a′ ∈ (D0 ⊕M0)⊥. The complexity is 264 since |D0 ⊕M0 ⊕ a′| = 264.
Finally, we show that the probability of success of a generic player is neg-

ligible, and we give an approximation of the computational cost of the generic
player. First, note that given 264 random plaintexts which are balanced and uni-
formly distributed, the probability that also the corresponding ciphertexts have
these properties is upper bounded by 2−128.

What is the cost of such a player? The authors of [13] conjecture that the
complexity to find an N (plaintexts, ciphertexts) pairs for which the sum in k
bits is equal to zero is O(N ·2k/1+log2 N ). Even this is an inaccurate estimation of
the complexity we are looking for (due to the fact that the complexity estimate
above is in the big O notation), it gives an idea of the cost of the generic player
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- approximately of O(264 · 2128/65) ≈ O(265.97) computations - with respect to
the shortcut one - approximately 264 computations.

E Details of Known-Key Distinguisher when the
Computational Cost of the Generic Player is
Considered

Referring to the known-key distinguisher scenario described in Sect. 4.1, the
generic player depends by the oracle to generate the N -tuple (i.e. he cannot
work alone to generate it). As a consequence, note that two possible settings
can be analyzed. In the first one, only the number of oracle queries is considered
to determine the computational cost of this player, that is the number of en-
cryptions/decryptions required by the generic player to the oracle. In the second
one, both the number of oracle queries and any further computational cost of
the generic player (which is in general not negligible) are considered. As we have
already said, we expect that a known-key distinguisher in the first setting works
also in the second one but not viceversa. If the total cost of the generic player
is well approximated by the number of queries (assuming 1 oracle-query ≈ 1
computation/encryption), these two settings are completely equivalent.

In the main text, we have focused only on the first case, that is we have
approximated the cost of the generic player by the number of oracle-queries
necessary to generate a sufficient number of (plaintexts, ciphertexts) pairs such
that n tuples with the required properties exist with a good probability. However,
note that the player has also to identify the n tuples with the required properties
before sending them to the verifier. As we are going to show, this computational
cost is not negligible. In this section, we present the details of this case both for
the 9-round distinguisher presented in Sect. 6 and for the 10-round one with key
schedule presented in Sect. 7.2.

E.1 Known-Key Distinguisher on 9-Round AES

For a complete description of the 9-round known-key distinguisher for AES, we
refer to Sect. 6. Here we limit to consider the cost of the generic player to find
the n tuples with the required properties. In particular, we are going to show
that if this cost is taken into account, then n = 3 tuples are sufficient for our
distinguisher on 9 rounds of AES.

By formula (6), if n = 3 then 252.2 different couples, or approximately 226.6

plaintexts/ciphertexts pairs are sufficient to find the 3-tuples with the required
properties (where the plaintexts belong to the same coset of Di). Indeed, note
that with 252.2 different couples it is possible to construct approximately 2154

different sets of 3 tuples. Since the probability that a set satisfies the required
properties is 2−154, there is at least one set that satisfies the property with non-
negligible property. Thus, the cost to generate them is of 226.6 oracle-queries.

Given these 226.6 (plaintexts, ciphertexts) pairs, the generic player must
work on the ciphertexts (note that the property on the plaintexts is already
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satisfied) in order to find the 3-tuples with the required properties. For each
couple {(p1, c1), (p2, c2)}, a possible strategy is to find the key k such that
R−1k (c1) ⊕ R−1k (c2) ∈ Mi, using the attack of Sect. 5.1, and then to find 3
couples with a common key k. In the following, we present a modified strategy
that allows to reduce the computational cost.

A possible way to reduce the total computational cost is to work first on only
two couples (instead of three), that is to find two couples with the same key for
which the required property is satisfied. Since there are 252.2 couples, the player
can construct approximately 2103.4 2-tuples (i.e. different sets of two different
couples). Approximately, there are 2103.4 · (4 · 232)2 · 2−128 = 243.4 different sets
with on average one key in common for the two couples. For this step and using
the attack of Sect. 5.1, the cost can be approximated at 2103.4 · 4 · 211.6 = 2117

table look-ups. Then, given two couples with a common key k, the attacker looks
for a third couple for which the required property is satisfied by the found key k.
Note that for a given key, the probability that a pair of ciphertexts belong to the
same coset ofMl one round before for that key is only 234−128 = 2−94. It follows
that the player has to consider all the 243.4 possible sets of two couples just found
and all the possible 252.4 couples (for a total of approximately 243.4 ·252.2 = 295.6

possibilities) in order to find the three tuples. Thus, given two couples with a
common key, the idea is simply to test this found key on all the other couples,
until one couple that satisfies the required property is found. To do this, the
player computes 243.4 · 252.2 · 2 · 24 = 2100.6 S-Box look-ups tables. It follows that
the attacker is able to find the three desired couples, with a cost of approximately
2117 table look-ups or 2109.5 nine-round encryptions, besides the (non-negligible)
memory cost to store the couples found at the first step with the corresponding
key.

The cost of the shortcut player can instead be approximated by 3 ·244 = 245.6

nine-round encryptions. Thus, n = 3 tuples are sufficient to set up the 9-round
known-key distinguisher when all the costs (oracle queries + computational cost
of generic player). Even if we don’t exclude that the generic player can use better
strategies to find these three couples, it seems improbable that the generic player
is able to find the 3-tuples faster than the shortcut player when all the costs are
considered. It follows that if the two players have to send 3 different tuples with
the desired properties, then the game is win (with very high probability) by the
player who knows the key. We leave as an open problem the research of a better
strategy that the generic player can use to find these n tuples. For completeness,
using the above strategy it is possible to prove that n = 2 tuples are not sufficient
to set up this distinguisher18.

18 In this case, 230.5 different couples instead of 252.2 are sufficient, that is 216.75 different
(plaintexts, ciphertexts) pairs, for a cost of 216.75 oracle-queries. In order to find
the key, the total cost can be approximated at 242.1 table look-ups, or 234.6 nine-
round encryptions. The cost for the player who knows the key is of 245 nine-round
encryptions. It follows that n = 2 tuples are not sufficient.
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E.2 Known-Key Distinguisher on 10-Round AES with Key
Schedule

For a complete description of the 10-round known-key distinguisher for AES
with key schedule, we refer to Sect. 7.2. Here we limit to consider the cost of the
generic player to find the n tuples with the required properties. In this case, it
turns that n = 2 tuples are sufficient.

Indeed, in this case the cost for the shortcut player is of 245 computations.
Instead, if n = 2 and using formula (8), the other player must consider at
least s = 252.5 different couples, that is approximately 226.75 different (plaintext,
ciphertext) pairs (with a cost of 226.75 oracle-queries), where all the plaintexts
belong to the same coset of Dj . The player can construct approximately 2104

2-tuples. First of all, for each one the player look for a final key k10 (if exists).
Since the probability that such key exists for a given 2-tuple is only 2−60, only
244 2-tuples survive this step. The cost of this step is well approximated by
2104 · 4 · 211.6 = 2117.6 table look-ups, using the attack described in Sect. 5.1.

Given these 244 2-tuples just found with the corresponding key k10, for each
key k10 the player can simply find the j-th column of the first key k0 (note that
three columns of k0 can take any possible values), and checks if the property
on the plaintexts is satisfied. Since this happens with probability19 2−44, such
key usually exists. The cost of this step is well approximated by 244 · 234 · 40 =
283.1 S-Box look-ups to check the key schedule, that is approximately 275.5 ten-
round encryptions, besides the (not-negligible) memory cost. It follows that the
computational cost for this player is much higher than the one of the shortcut
player. However, since we don’t exclude that the generic player can use a better
strategy to win the game, we leave the open problem to improve the strategy
that we have just presented here. On the other hand, even if a better strategy
is found, it seems improbable that the generic player is able to find the 2-tuples
faster than the shortcut player when all the costs are considered.

F New 7-, 8- and 9-round Known-Key Distinguishers for
AES

In this section, we propose new 8- and 9-round known-key distinguisher for AES,
which are obtained extending at the end or/and at the beginning a 7-round
known-key distinguisher for AES. The strategy to set up them is the same used
in Sect. 6 and 7. For this reason, we refer to those sections for all the details.
We highlight that the 9-round known-key distinguisher proposed in this section
is the best one both for the computational and data cost among those currently
present in the literature.

19 Remember that we’re working with plaintexts in the same coset of Dj . After one
round, they are mapped into the same coset of Cj . Thus, two texts belong to the
same coset of Cj ∩ Di for a certain i, if three bytes of the j-th column are equal to
zero. This happens with probability 4 · 2−24 = 2−22.
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Fig. 6. 7-round differential characteristic for known-key distinguisher of AES-128.

F.1 7-Round Known-Key Distinguisher

For the following, we briefly recall the currently best known distinguisher on
8 rounds of AES (proposed in [11] and already presented in Sect. 4.3). This
distinguisher is obtained starting from the 8-round distinguisher presented in
[9], and depicted in Fig. 4. Using the subspace trail notation and the known-key
distinguisher scenario, the goal of the two players in this distinguisher is to find
a pair of (plaintexts, ciphertexts) - i.e. (p1, c1) and (p2, c2) - with the following
properties: the two plaintexts belong to the same coset of Di - i.e. p1 ⊕ p2 ∈ Di

- and the two ciphertexts belong to the same coset of Mi - i.e. c1 ⊕ c2 ∈ Mi,
where the index i is fixed. The idea proposed in [11] to improve this distinguisher
is simply to not fix the initial subspace Di and the final oneMj , that is to leave
i and j completely arbitrary (i.e. they can take any possible values). It follows
that the probability that a solution of the inbound phase of the rebound attack
satisfies the outbound phase is higher, which implies that a complexity of 244 is
sufficient (instead of 248) for the shortcut player.

The same strategy can be applied to the 7 rounds distinguisher presented in
[15] and recalled in Sect. 4.2. In particular, using the same argumentation of [11],
the computational cost of the distinguisher illustrated in Fig. 6 is 220 instead of
224. Indeed, note that for free Di andMj , the probability that a solution of the
inbound phase satisfies the outbound phase increases of a factor 42 = 24.

F.2 8-Round Known-Key Distinguisher

A possible 8-round known-key distinguisher can be set up starting from the 7-
round distinguisher just presented and extending it at the end (or at the begin-
ning) using a similar technique presented in Sect. 6 for the 9-round distinguisher.
We refer to Sect. 6 for a complete discussion of this technique and we limit here
to give a formal definition of the distinguisher and to do some considerations
about the data and the computational cost.

In the known-key distinguisher scenario, the two players have to send to the
verifier n different tuples of (plaintext, ciphertext) pairs, that is {(p1i , c1i ), (p2i , c

2
i )}

for i = 0, ..., n− 1, with the following properties:
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1. for each tuple, there exists j s.t. the two plaintexts belong to the same coset
of Dj , that is

∀i = 0, ..., n− 1, ∃j ∈ {0, ..., 3} s.t. p1i ⊕ p2i ∈ Dj ;

2. there exists a key k s.t. for each tuple there exists l for which the two ci-
phertexts belong to the same coset of Ml one round before, that is

∃! k s.t. ∀i = 0, ..., n−1, ∃l ∈ {0, ..., 3} s.t. R−1k (c1i )⊕R−1k (c2i ) ∈Ml.

If only the number of oracle-queries is considered, it is possible to prove
that n ≥ 3 tuples are sufficient to set up this distinguisher. Indeed, using the
same argumentation of Sect. 6, the generic player has to consider approximately
252.18 different couples (see (6)), that is approximately 226.59 different (plain-
texts, ciphertexts) pairs, for a cost of 226.6 oracle-queries, in order to have good
probability to construct 3 tuples with the required properties. On the other
hand, the cost for the shortcut player is only of 3 · 220 = 221.6 computations. In
order to make the advantage of the shortcut player more significant, we choose
an (arbitrary) value of n = 8, which implies a cost for the shortcut player of 223

computations and of 248.9 computations for the generic player.

In a similar way, it is possible to prove that n = 2 tuples are sufficient to set
up this 8-round distinguisher when all the costs (number of oracle-queries + cost
of generic player) are taken into account. Indeed, in this case and in order to
construct 2 tuples that satisfy the required property for the same key, the second
player has to consider approximately 230.4 different tuples, that is 215.74 different
(plaintexts, ciphertexts) pairs. Using the same analysis proposed in App. E.1,
the cost to find the 2-tuples that satisfy the relation R can be approximated
at 230.4 · 211.6 = 242 table look-ups, that is 234.68 eight-round AES encryptions.
On the other hand, the cost of the player that knows the key is of 2 · 220 = 221

computations, which is (much) lower than 235.68.

For both cases, the verifier uses the same strategy presented in Sect. 6, and
her cost is well approximated by 211.6 eight-round encryptions.

F.3 9-Round Known-Key Distinguisher

An efficient 9-round known-key distinguisher can be set up by extending the
previous 8-round distinguisher at the beginning, or equivalent by extending the
7-round known-key distinguisher both at the beginning and at the end. Such a
distinguisher is the best one both for the computational and data cost among
those presented in literature.

In order to set up this distinguisher on 9 rounds, we exploit the same strategy
proposed for 10-round one. For this reason, we refer to Sect. 7 for a complete
discussion. In the known-key distinguisher scenario, the two players have to
send to the verifier n different tuples of (plaintext, ciphertext) pairs, that is
{(p1i , c1i ), (p2i , c

2
i )} for i = 0, ..., n− 1, with the following properties:
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1. there exists a key k0 s.t. for each tuple there exists j for which the two
plaintexts belong to the same coset of Dj after one round, that is

∃! k0 s.t. ∀i = 0, ..., n−1, ∃j ∈ {0, ..., 3} s.t. Rk0(p1i )⊕Rk0(p2i ) ∈ Dj ;

2. there exists a key k9 s.t. for each tuple there exists l for which the two
ciphertexts belong to the same coset of Ml one round before, that is

∃! k9 s.t. ∀i = 0, ..., n−1, ∃l ∈ {0, ..., 3} s.t. R−1k9 (c1i )⊕R−1k9 (c2i ) ∈Ml.

We discuss here the two scenarios in which (1) the subkeys are independent and
in which (2) a key schedule holds. Since the strategies used by the players are
equivalent of the ones proposed in Sect. 7, we refer to that section for all the
details and we limit here to do some considerations about the computational
and data cost.

Independent Subkeys: No Key Schedule. As for the 10-round known-key
distinguisher, we first consider the case in which there is no key schedule. The
idea for the generic player is to choose an initial key k̂ and to choose the plaintexts
in the set Da = R−1

k̂
(Di ⊕ a). If this player needs more plaintexts, the idea is

to compute other Da′ sets for another a′ ∈ D⊥i using the same key k̂, as for the
10-round distinguisher case.

In a similar way as before, n ≥ 3 tuples are sufficient for the case in which only
the number of oracle-queries is considered, while n ≥ 2 tuples are sufficient to set
up the distinguisher for the case in which all the cost are considered. As before,
we choose an (arbitrary) value of n = 8 to make the advantage of the shortcut
player more significant. The costs of the two players are well approximated by
the costs given for the previous 8-round distinguisher (note that the cost to
compute R−1

k̂
(Di ⊕ a) is negligible compared to the total cost). Finally, the cost

of the verifier is double with respect the previous case (since she has to check
the existence of two keys).

The Key Schedule Case. Similar to what done in Sect. 7, the idea for the
generic player is to choose the plaintexts in the same coset of Di in order to
maximize the possible number of key k0 and k10 for which the required properties
are satisfied - we refer to Sect. 7 - Prop. 1 for all the details. By analogous
calculation of Sect. 7, if n = 2 then this player needs approximately 252.48

different couples in order to have a good probability of success, that is he must
do approximately 226.74 oracle-queries. On the other hand, the computational
cost for the shortcut player is of 221. Thus, n = 2 tuple is sufficient for this
setting. Since n must be at least equal to 2, note that the same result holds also
for the case in which we consider the total computational cost (oracle cost +
player cost). The verification cost is (approximately) equivalent to the one given
for the case of independent subkeys, due to the (same) argumentations given in
Sect. 7.
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F.4 Consideration and Comparison with Gilbert’s Distinguisher

Using the technique described in Sect. 8, one can theoretically extend again the
previous 9-round known-key distinguisher at the end or/and at the beginning,
obtaining a 10- or/and 11-round known-key distinguisher. Even if this is possible,
we show that this distinguisher is (much) less competitive than the one described
in Sect. 7 - obtained by a single extension at the end and at the beginning of a 8-
round distinguisher - and the one proposed by Gilbert in [8]. The main problem
of a 10-round distinguisher obtained extending a 7-round distinguisher two times
at the end and one at the beginning (or viceversa) regards the computational cost
of the verifier. Indeed, it is possible to show that this cost is much higher than
264, using similar argumentations proposed in Sect. 8 and due to the complexity
of the key-recovery attack described in Sect. 5.2. Thus, since by definition the
computational cost of verifier must be smaller than the costs of the two players,
it follows that the overall computational cost of such a distinguisher is much
higher than 264, that is it is much higher than the computational cost of our
10-round known-key distinguisher proposed in Sect. 7 and the one proposed by
Gilbert in [8].

A final observation regards the possibility to set up a 8- and 9-round known-
key distinguisher by extending at the beginning or/and at the end the 7-round
known-key distinguisher proposed by Knudsen and Rijmen in [13] and based
on the balance property (in a similar way of what Gilbert did to set up his
distinguisher on 10-round). Note that the 7-round distinguisher based on the
balance property [13] has a complexity of 256. Thus, the 8-round known-key
distinguisher obtained by extending the 7-round distinguisher at the end (or
at the beginning) has at least a complexity of 256, which is higher than the
8-round known-key distinguisher proposed in [11] (complexity of 244) and our
one proposed in App. F.2 (complexity of 223). Similar argumentation holds for
the 9-round distinguisher (obtained by extending at the beginning and at the
end the cited 7-round distinguisher). It follows that such distinguishers are not
competitive with respect to the others currently present in literature.

G Proof of Proposition 1 - Sect. 7.2

Proposition 2. Let p1 and p2 two plaintexts that belong to the same coset of
Dj for a certain j, that is p1⊕p2 ∈ Dj. Moreover, assume that p1⊕p2 /∈ Dj ∩CL
for each L ⊆ {0, 1, 2, 3} with |L| ≤ 3. Then there exist on average 2106 different
keys k such that Rk(p1)⊕Rk(p2) ∈ Dl for a certain l ∈ {0, 1, 2, 3}.

Proof. First of all, suppose by contradiction that p1⊕ p2 ∈ Dj ∩CL for a certain
L ⊆ {0, 1, 2, 3} with |L| ≤ 3. Since Dj ∩CL ⊆ CL, it follows that R(p1)⊕R(p2) ∈
Cj ∩ML ⊆ ML for |L| ≤ 3. By (3), it follows that if R(p1) ⊕ R(p2) ∈ ML for
|L| ≤ 3, then R(p1)⊕R(p2) /∈ Dj for |j| = 1.

Now, without loss of generality assume j = 0 (the proof can be easily
generalized for each j). The idea is to look for the number of keys such that
Rk(p1)⊕Rk(p2) ∈ Cj ∩ Dl ⊆ Dl for a certain l ∈ {0, 1, 2, 3}.
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By definition, p1i,l = p2i,l for each i 6= l. Thus, it is easy to note that for each

value of ki,l for i 6= l (that is 12 bytes) then R(p1)i,l = R(p2)i,l for each i and
for each l = 1, 2, 3 (i.e. the second, the third and the fourth columns of R(p1)
and R(p1) are equal), for a total of 296 possibilities.

Consider now the bytes on the first diagonal, that is in positions i = l. In
this case, one has to guarantee that after one round three bytes of the two texts
are equal, in order to have Rk(p1) ⊕ Rk(p2) ∈ Cj ∩ Dl. As shown in the attack
on 3 rounds of Sect. 5.1, for each l on average there are 28 possible combinations
of these four bytes such that this condition is satisfied. Since there are four
different possible values of l, the number of possible keys for this second point
are on average 4 · 28 = 210.

In conclusion, the number of keys such that Rk(p1)⊕Rk(p2) ∈ Cj ∩Dl for a
certain l are (28)12 · 210 = 2106.

ut

Let p1 and p2 in the same coset of Dj (that is p1 ⊕ p2 ∈ Dj), and without
loss of generality assume j = {0}. We do a consideration about the hypothesis
that p1 ⊕ p2 /∈ D0 ∩ CL for each L ⊆ {0, 1, 2, 3} with |L| ≤ 3. If p1 ⊕ p2 ∈ D0,
then p1 ⊕ p2 /∈ D0 ∩ CL for each L ⊆ {0, 1, 2, 3} with |L| ≤ 3 if and only if p1i,i 6=
p2i,i for each i = 0, ..., 3. By simple calculation, this happens with probability

(255/256)4 ' 2−0.0225.

Thus, given a coset of D0, it is possible to construct approximately 231 ·(232−
1) = 262.9999... ' 263 different couples. If one eliminates all the pairs (p1, p2) for
which there exists at least one i such that p1i,i = p2i,i, then the number of survived

pairs is 262.9999... · (255/256)4 = 262.9775..., which is still well approximated by
263 for our scope. The cases for the other subspaces Dj are similar.

H Gilbert’s Known-Key Distinguisher on 12 Rounds

In this section, using a technique similar to the one presented in Sect. 8, we
show how to extend the Gilbert’s 10-round known-key distinguisher both a the
end and at the beginning in order to set up (theoretically) a 12-round know-
key distinguisher based on the balance property. Before we do this, we first do
some considerations about the computational cost of the verification step for the
Gilbert’s 10-round known-key distinguisher model.

H.1 Considerations about the Computational Cost of the Verifier -
Gilbert’s 10-round Distinguisher

First of all, we recall a formal definition of the Gilbert’s distinguisher on 10
rounds of AES, already given in Sect. 4.4. In the known-key distinguisher sce-
nario and in order to win the game, the players have to send to the verifier
264 (plaintext, ciphertext) pairs, that is (pi, ci) for i = 0, ..., 264 − 1, with the
following properties:
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1. there exists a key k0 such that the texts {Rk0(pi)}i are uniform distributed
among the cosets of DI with |I| = 3 fixed, or equivalently s.t. the sum of the

plaintexts after one round is equal to zero, that is
⊕264−1

i=0 Rk0(pi) = 0;

2. there exists a key k10 such that the texts {R−1k10(ci)}i are uniform distributed
among the cosets ofMJ with |J | = 3 fixed, or equivalently s.t. the sum of the

ciphertexts one round before is equal to zero, that is
⊕264−1

i=0 R−1k10(ci) = 0.

As for our distinguisher, we assume that all the subkeys are independent, that
is no key schedule holds. Note that the same distinguisher works also in the case
in which the subkeys are not independent.

When the verifier receives the set of 264 (plaintext, ciphertext) pairs from
one of the two players, she check if the properties are satisfied or not by finding
the two keys. Note that since no key schedule holds, the verifier can work inde-
pendently on k0 and k10. As we have already showed in App. A, the verifier can
work on single bytes of k0 and k10 (i.e. independently of the others) in order to
check the existence of these keys. By simple computation, the verification cost
can be approximated by 2 · 16 · 28 · 264 = 277 S-Box look-ups, or equivalently
269.36 ten-rounds encryptions of AES. Note that even using an improved strategy
with respect to the one proposed in [8], the computational cost of the verifier
is still higher than the cost of the shortcut player, which is approximately of
264 ten-rounds encryptions of AES. Thus, the claim “the overall complexity of
checking R is strictly smaller than N = 264 AES?

10 operations” made in [8] (see
Sect. 4.2 - page 218) is false, that is the computational cost of the verifier is not
negligible with respect to the cost of the players. We refer to App. A for details.

Before we go on, we stress the importance of this fact. If the verifier guesses
4 bytes of the key at the same time, then there is no way to extend this distin-
guisher again at the beginning and at the end. This justifies the claim made in
[8] that it is not possible to extend again Gilbert’s 10-round known-key distin-
guisher in order to set up a 12-round one. Indeed, a further extension requires
to guess the entire initial and final subkey, which implies a brute force attack
for the verifier. Instead, the possibility to work on single bytes of k0 and k10

independently of the other allows to set up a 12-round known-key distinguisher,
as shown in the following. To do this, the idea is simply to use the square attack
on 5-round AES with the extension at the end for the verification process.

Before we present how to extend this 10-round distinguisher both at the
end and at the beginning, we show a possible way to modify the Gilbert’s 10-
round distinguisher in order to overcome the problem regarding the cost of the
verification step. In the known-key distinguisher setting, the players have to send
to the verifier a suitable number n of sets of 264 (plaintext, ciphertext) pairs,
i.e. (pji , c

j
i ) for i = 0, ..., 264 − 1 and j = 0, ..., n − 1, where n > 26 - note that

269.4 · 2−64 ' 25.4, where 269.4 is the verification cost - such that:

1. there exists a keys k0 such that for all j = 0, ..., n − 1 there exists I ⊆
{0, 1, 2, 3} with |I| = 3 fixed such that the texts {Rk0(pji )}i are uniform
distributed among the cosets of DI , or equivalently such that the sum of the
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plaintexts after one round is equal to zero:

∀j = 0, ..., n− 1 :

264−1⊕
i=0

Rk0(pji ) = 0;

2. there exists a key k10 such that for all j = 0, ..., n − 1 there exists J ⊆
{0, 1, 2, 3} with |J | = 3 fixed such that the texts {R−1k10(cji )}i are uniform
distributed among the cosets of MJ , or equivalently such that the sum of
the ciphertexts one round before is equal to zero:

∀j = 0, ..., n− 1 :

264⊕
i=1

R−1k10(cji ) = 0.

Note that as for our known-key distinguishers on 10- and 12-round of AES, it is
very important that the keys k0 and k10 are equals for all the sets of (plaintext,
ciphertext) pairs, i.e. for each j = 0, ..., n− 1.

H.2 Known-Key Distinguisher on 12 Rounds Based on the Balance
Property

A formal definition of the Gilbert’s distinguisher on 12 rounds of AES can be the
following. As before, assume there are two players - one knows the key and the
other not, and the verifier. In the known-key distinguisher scenario, the players
have to send to the verifier 264 (plaintext, ciphertext) pairs, that is (pi, ci) for
i = 0, ..., 264 − 1, with the following properties:

1. there exist keys k0, k1 for which there exists I ⊆ {0, 1, 2, 3} with |I| = 3
fixed such that the texts {Rk1(Rk0(pi))}i are uniform distributed among the
cosets of DI , or equivalently such that the sum of the plaintexts after two
rounds is equal to zero:

264−1⊕
i=0

Rk1(Rk0(pi)) = 0;

2. there exist keys k11, k12 for which there exists J ⊆ {0, 1, 2, 3} with |J | = 3
fixed such that the texts {R−1k11(R−1k12(ci))}i are uniform distributed among
the cosets of MJ , or equivalently such that the sum of the ciphertexts two
rounds before is equal to zero:

264−1⊕
i=0

R−1k11(R−1k12(ci)) = 0.

As for our distinguishers, we assume that all the subkeys are independent, that
is no key schedule holds. However, such distinguisher works exactly in the same
way also in the case in which a key schedule holds.
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The two major problems that arise for this setting regard (1) the computa-
tional cost of the verifier and (2) the probability of success of a generic player
(with respect to the shortcut player). We start to analyze the first one. For the
10 rounds distinguisher, the verifier can simply work on each byte of the keys
independently of the others. In other words, the verifier simply performs a clas-
sical square attack on the ciphertexts and on the plaintexts in order to find (if
exist) the initial and the final key, working independently on each byte. For the
12-round distinguisher, the idea is to perform a square attack with the extension
at the end (see [4] for details). For example, working on the ciphertexts, the
attacker guesses one diagonal of the final key k12, decrypts that diagonal and
then finds (independently) four bytes of k11, using the classical integral attack.
Repeating four times this attack, she is able to check the existence of k11 and k12.
The total cost of this step can be approximated by 2·4·232 ·(16·28)·264 ·32 = 2116

S-Box look-ups, since the attack must be performed on the plaintexts and on
the ciphertexts (i.e. 2), and for each guess key (i.e. 4 · 232 (possibilities for k12)
·(4 · 28) (possibilities for k11)) the attacker must compute 264 · 32 S-Box (i.e. 32
for each text). Using the approximation of 20 S-Box look-ups ≈ 1 round of AES,
this corresponds to do approximately 2106 twelve rounds encryptions. Since the
cost of the shortcut player is well approximated by 264 computations (using the
same procedure proposed for the 8-round known-key distinguisher based on the
integral property), the requirement that the cost of the verifier is much smaller
than the cost of the players is not satisfied.

The second and probably major problem is to prove (or to give a strong
argumentation) that the probability of the generic player to win the game is
(much) smaller than the one of the other player, or equivalently that the time to
create the set of 264 (plaintexts, ciphertexts) is higher for a generic player than
for the shortcut player (for the same probability of success).

Open Problem. A possible way to fix both the problems is to send not a single
set of 264 (plaintexts, ciphertexts) but more sets, such that the zero-sum property
is always satisfied for the same subkeys k0, k1, k11 and k12. In particular, since
the cost of the verifier much be lower than the costs of the players, the number
of sets n should be greater than n ≥ 2106 · 2−64 = 242, for a total cost which is
higher than our distinguisher. This implies that such a distinguisher can not be
better that our one proposed in Sect. 8.

As first thing, we give a formal definition of this modified 12-round known-
key distinguisher, obtained extending the Gilbert one. In the known-key distin-
guisher scenario, the players have to send to the verifier n sets of 264 (plaintext,
ciphertext) pairs, that is (pji , c

j
i ) for i = 0, ..., 264 − 1 and j = 0, ..., n− 1, where

n ≥ 1, with the following properties:

1. there exist keys k0, k1 for which for all j = 0, ..., n − 1 there exists I ⊆
{0, 1, 2, 3} with |I| = 3 fixed such that the texts {Rk1(Rk0(pji ))}i are uniform
distributed among the cosets of DI , or equivalently such that the sum of the
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plaintexts after two rounds is equal to zero:

∀j = 0, ..., n− 1 :

264−1⊕
i=0

Rk1(Rk0(pji )) = 0;

2. there exist keys k11, k12 for which for all j = 0, ..., n − 1 there exists J ⊆
{0, 1, 2, 3} with |J | = 3 fixed such that the texts {R−1k11(R−1k12(cji ))}i are uni-
form distributed among the cosets ofMJ , or equivalently such that the sum
of the ciphertexts two rounds before is equal to zero:

∀j = 0, ..., n− 1 :

264⊕
i=1

R−1k11(R−1k12(cji )) = 0.

We leave as open problems (1) to research a suitable value of n for which
this distinguisher works, and (2) to prove that such a distinguisher is meaningful,
that is to prove that the probability of success of a generic player is lower than
the one of the shortcut player for that value of n.

I The Herds Attack

N. Ferguson et al. [6] presented the first (and unique) integral attack on 7 rounds
of AES-128. The attack is obtained by extending at the beginning the integral
attack on 6 rounds of AES-128 [4]-[12]. This attack requires 2128 − 2119 chosen
plaintexts, which are distributed in 296 − 287 different cosets of Di for a certain
i ⊆ {0, 1, 2, 3} with |i| = 1, it has a computational complexity of 2120 seven-round
AES-encryptions and a memory cost of 264 bits of memory.

Here we show why this attack can not be used to set up a 14-round known-
key distinguisher for AES, based on the balanced property. Moreover, the same
argumentation can also be used to justify why key-recovery attacks with both an
extension at the end and at the beginning can not be used to set up known-key
distinguisher in the Gilbert model.

We briefly recall the idea used in [6] to set up the attack on 7 rounds of AES.
As we have already seen, given 232 plaintexts in the same coset of a diagonal
space Di, their sum after 4 rounds is equal to zero for each key. Thus, it is
possible to set up an integral attack on 5 rounds of AES (working independently
on each byte of the final subkey), and on 6 rounds. In this second case, assuming
that the final MixColumns is omitted (otherwise the idea is simply to exchange
the final MixColumns operation and the final AddRoundKey operation - they
are linear), the idea is to guess one column of SR(k) - where k is the final round,
decrypt one round and repeat the attack on 5 rounds. We refer to [4] for more
details.

In order to attack 7 rounds, a first possibility is to extend the previous
attack at the end, by guessing the entire final subkey, decrypting one round and
repeating the attack on 6 rounds. However, while for AES-192 and AES-256 this
attack is better than a brute force one, this is not true for AES-128. The idea
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of Ferguson et al. is the following. Consider the entire codebook, that is 2128

plaintexts (which can be seen as the union of 296 different cosets of a diagonal
space Di). Their sum after 5 rounds is equal to zero for each key. Similar to the
previous attack on 6 rounds, the idea is to guess 4 byte of the final key (i.e. one
column of SR(k)), decrypt one round and do a classical integral attack (as the
one already described for 5-round). However, as the authors observe, the sum is
zero also for wrong keys and not only for the right one, since the full codebook
is used.

To solve the problem, the idea is not to consider the sum of all the ciphertexts,
but only of part of them. In particular, given a byte x ∈ F28 fixed, one guesses
four byte of the initial key and computes one-round encryption of each plaintext.
The idea is to select the plaintexts such that after one round the byte in the j-th
row and l-th column of the corresponding text is equal to x, for a total of 2120

plaintexts. Then, the idea is to consider only the sum of the ciphertexts of these
2120 plaintexts, which is equal to zero only for the right key. Thus, by guessing
4 bytes of the final key and working independently on each byte of the second
to last key, one checks if the sum is equal to zero.

Finally the authors show how to improve this technique in order to use only
2128−2119 chosen plaintexts instead of the full codebook, besides other improve-
ments on the computational cost. We refer to [6] for a complete description of the
attack, and we limit ourselves to explain why it can not be used for a known-key
distinguisher.

Given the details of the herds attack, we now focus on the 14-round known-
key distinguisher. Suppose by contradiction that such distinguisher can be set up.
Without being too formal, we first give a more precise idea of this distinguisher.
In the known-key distinguisher scenario, the players have to send to the verifier
2n (plaintext, ciphertext) pairs, that is (pi, ci) for i = 0, ..., 2n− 1 where n ≥ 64,
with the following properties:

1. there exist keys k0, k1, k2 and I ⊆ {0, 1, 2, 3} with |I| = 3 fixed such that
the texts {Rk2(Rk1(Rk0(pi)))}i are uniform distributed among the cosets of
DI , or equivalently such that the sum of the plaintexts after three rounds is
equal to zero:

2n−1⊕
i=0

Rk2(Rk1(Rk0(pi))) = 0;

2. there exist keys k12, k13, k14 and J ⊆ {0, 1, 2, 3} with |J | = 3 fixed such that
the texts {R−1k12(R−1k13(R−1k14(ci))))}i are uniform distributed among the cosets
of MJ , or equivalently such that the sum of the ciphertexts three rounds
before is equal to zero:

264⊕
i=1

R−1k12(R−1k13(R−1k14(ci))) = 0.

First of all, note 2n must be greater or equal than 2128 − 2119, that is
2n ≥ 2128 − 2119. Indeed, this is the minimum number of texts for which the
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attacker is able to use the herds attack (i.e. the computational cost is lower than
a brute force one). Assuming that this distinguisher is meaningful, we analyze
the strategies of the players and of the verifier.

First consider the shortcut player, i.e. the player who knows the key. As for
the 8-round known-key distinguisher based on the integral property (see App.
D for details), in order to guarantee the balanced property holds both on the
plaintexts and on the ciphertexts, the best strategy for this player is to consider
the union of at least 264 − 255 different cosets of Di ∩Mj , that is

264−255−1⋃
k=0

(Di ⊕Mj ⊕ ak)

for 264 − 255 different ak ∈ (Di ⊕Mj)
⊥ (where |(Di ⊕Mj)

⊥| = 264). Note that
the previous union of cosets can be rewritten in the following way:

264−255−1⋃
k=0

(Di ⊕Mj ⊕ ak) =

264−255−1⋃
k=0

(
⋃

b∈Mj

Di ⊕ (b⊕ ak)) =

296−287−1⋃
k=0

Di ⊕ âk,

that is the player is considering in the middle a union of cosets of Di (analogous
forMj). In particular, the computational cost of this player is at least 2128−2119.

Consider now the verification strategy. The idea is to use the herds attack
to find the subkeys and so to prove their existences. However, as we are going
to show, a problem arises for the verifier, since when she receives the plaintexts
and the ciphertexts by the player, the only way in which she can check the
existence of the six subkeys is using a brute force attack. In other words, the
verifier can not use in any way the herds attack presented before. Indeed, to do
this, she has to know the “intermediate” texts, which corresponds to the 7-round
encryption of the plaintexts or to the 7-round decryption of the ciphertexts. Since
she doesn’t know them, she can not divide the texts in set of 2120 elements. In
other words, the extension at the beginning of the herds attack creates a problem
for the verifier, since she doesn’t have any access to the intermediate values of
the plaintexts/ciphertexts. This justifies why this attack can not be used in order
to set up a 14-round known-key distinguisher, and more generally why an attack
with both the extension at the end and the beginning can not be used to set up
a known-key distinguisher in the Gilbert model.
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