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Abstract

We give a polynomial-time quantum reduction from worst-case (ideal) lattice problems directly to the
decision version of (Ring-)LWE. This extends to decision all the worst-case hardness results that were
previously known for the search version, for the same or even better parameters and with no algebraic
restrictions on the modulus or number field. Indeed, our reduction is the first that works for decision
Ring-LWE with any number field and any modulus.
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1 Introduction

In recent years, Learning With Errors (LWE) [Reg05] and its more compact variant Ring-LWE [LPR10] have
served as foundations for a wide variety of lattice-based cryptographic constructions (e.g., [PW08, GPV08,
SS11, BV11, BGV12, GVW13, GSW13, Pei14, ADPS16, BCD+16]). Informally, for a dimension n and
integer modulus q, LWE is concerned with “noisy” linear equations bi = 〈ai, s〉/q + ei for a secret s ∈ Znq
and public vectors ai ∈ Znq , all uniformly random and independent. The error terms ei are drawn from some
known distribution, usually a Gaussian of width α� 1, called the error rate. Similarly, Ring-LWE deals
with noisy ring products bi = ai · s/q + ei for a secret s ∈ R∨/qR∨ and public ai ∈ R/qR, where R is
usually taken to be the ring of algebraic integers in a number field K, and R∨ ⊂ K is the “dual” ideal of R.
Here the error terms ei are drawn from an appropriate n-dimensional (usually Gaussian) distribution, with an
analogous notion of error rate.

The average-case search (Ring-)LWE problem is to find the secret, given many noisy equations as
described above. For cryptographic purposes, however, one usually relies on hardness of the decision
problem, which is to distinguish such equations from uniformly random ones, i.e., where the bi are uniform
and independent of everything else. In other words, one wants (Ring-)LWE samples to be pseudorandom.
A main attraction of these problems is their provable hardness assuming the intractability of worst-case
lattice problems. Ring-LWE is particularly attractive for its efficiency and compactness, but many of its
instantiations still lack such hardness theorems, as we now detail.

Hardness of Ring-LWE. There is a large disparity between known hardness theorems for search and
decision Ring-LWE. Following the original template of [Reg05] for plain LWE, prior work [LPR10] gives
a sequence of two main reductions. The first is a (quantum) reduction from worst-case problems like the
approximate Shortest Independent Vectors Problem (SIVP) on ideal lattices in a given ring to search Ring-
LWE over that same ring [LPR10, Section 4].1 The second is a (classical) reduction from search to decision
for Ring-LWE [LPR10, Section 5]. However, the first reduction is much more general: it applies to any
number field and any modulus that is not too small (relative to the error rate), whereas the search-to-decision
reduction works only for prime moduli that “split well” and cyclotomic number fields, or more generally,
Galois fields (see [EHL14]).2 The splitting condition can be waived via an additional “modulus switching”
reduction [LS15] (which builds on a technique from [Pei09, BV11, BLP+13]), at the cost of somewhat
increasing the error rate. However, the restriction to Galois number fields—a rather narrow class—seems
unavoidable using prior techniques.

There are a few reasons why one might wish to use Ring-LWE over non-Galois number fields. For
one, the algebraic structure of Galois fields, or cyclotomics in particular, might conceivably be used to
attack worst-case ideal-lattice problems like approximate SIVP, or Ring-LWE itself. Most cryptographic
constructions based on Ring-LWE use inverse-polynomial (or inverse-quasipolynomial) error rates, which
correspond to polynomial worst-case approximation factors for ideal-lattice problems. For such parameters,
no known algorithm significantly outperforms those for plain LWE or SIVP on general lattices. However, a
series of recent works [CGS14, BS16, CDPR16, CDW17] has yielded polynomial-time quantum algorithms
that (under plausible heuristics) obtain subexponential exp(Õ(

√
n)) approximation factors for SIVP in prime-

power cyclotomics. These algorithms are not known to apply to any nontrivial instantiations of Ring-LWE,
1An interesting alternative approach to deriving hardness of search Ring-LWE was given in [SSTX09], independently of [LPR10].

However, as explained in [LPR10, Section 1.4], this approach leads to weaker hardness results.
2An algebraic field extension K/L of degree n is Galois if there are n automorphisms of K that fix L pointwise.
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however. (Indeed, it is unknown whether Ring-LWE reduces to even the exact version of SIVP on ideal
lattices in the same ring.)

A second reason to consider alternative rings is that there are families of number fields for which the
worst-case reduction to search Ring-LWE delivers better approximation factors than for cyclotomics [Roq67,
PR07, LPR10]—as small as ω(

√
log n), versus small polynomial factors—which suggests stronger hardness

for cryptographic applications. However, decision Ring-LWE for such fields was not previously supported by
any hardness theorems.

Hardness of plain LWE. There is a less-pronounced gap between the known hardness of search and
decision for plain LWE, but the state of the art is still unsatisfactory. For search, there is a quantum reduction
(from worst-case SIVP on general lattices) that works for any large enough modulus, and obtains the
best known parameters [Reg05]. For decision, however, there are various specialized and incomparable
reductions [Reg05, Pei09, ACPS09, MM11, MP12, BLP+13], which either impose some number-theoretic
constraints on the modulus, or incur some significant loss in the LWE parameters. For example, the modulus-
switching reduction from [BLP+13] increases the error rate, which ultimately yields a weaker worst-case
approximation factor than for the corresponding search LWE problem.

1.1 Contributions

Our main contribution is a polynomial-time quantum reduction from worst-case (ideal) lattice problems
directly to decision (Ring-)LWE. This yields a conceptually simpler hardness proof for (Ring-)LWE, and
avoids the need for search-to-decision reductions. More specifically, we extend to decision all worst-case
hardness results that were previously known for search, for the same or even better parameters and with no
algebraic restrictions on the modulus or number field. In particular, our reduction works for any modulus in the
plain LWE setting (Theorem 5.1), and for any modulus and any number field in the ring setting (Theorem 6.2).
Our results also appear to be sufficiently general to adapt to “module” lattices and LWE [BGV12, LS15].3

Finally, our techniques apply entirely to the classical (non-quantum) part of the iterative quantum reduction
from [Reg05], and can therefore also be applied to the alternative classical reduction for LWE from [Pei09].

Our second contribution, which may be of independent interest, is a random self-reduction for bounded-
distance decoding (BDD) with Gaussian error. (See Section 3.) This ultimately yields a Θ̃(n1/4)-factor
improvement in the Ring-LWE error size versus the result of [LPR10, Section 5] (for non-spherical error).

1.2 Which Number Fields To Use?

Our reduction says that decision Ring-LWE with any large enough modulus (and appropriate error distribution)
is supported by a worst-case hardness guarantee, where the approximation factor is determined solely by the
error rate. This applies to any fixed choice of number field, but it gives no guidance about which number
fields are preferable for security. Apart from trivial reductions (e.g., from a number field to an extension), it is
an open question whether there is any formal connection between different number fields for worst-case ideal
lattice problems (like SIVP) or Ring-LWE. It is also unclear what properties of number fields may affect the
complexity of such problems.

We do note, however, that the geometry of the dual ideal R∨ affects the error rates that can be usefully
employed in cryptographic applications. These typically need error of rate α to be decodable relative to the

3Module-LWE interpolates between the plain and ring variants, providing a smooth tradeoff between the efficiency and
compactness of Ring-LWE and the potential additional security of plain LWE.
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dual ideal R∨, which is usually ensured by taking α to be somewhat smaller than the minimum distance
λ1(R∨). As α decreases, worst-case hardness theorems give weaker guarantees (i.e., larger approximation
factors), and known attacks on Ring-LWE become more efficient. Therefore, a smaller λ1(R∨) corresponds to
worse parameters and thereby appears to provide less security. (A similar phenomenon arises for rings having
large “expansion factors.” See, e.g., [LM06, Gen09].) Cyclotomic fields have relatively large λ1(R∨) (and
correspondingly small expansion factors), which is one of the reasons that they are often used in applications.

1.3 Techniques

Here we describe the main new techniques used in our reduction. (See Section 2 for the relevant definitions.)
Except where noted, we focus our discussion on plain LWE and general lattices.

Staring at the black box. A part of Regev’s original reduction for LWE [Reg05] transforms an instance
of Bounded Distance Decoding (BDD, the problem of finding the closest lattice vector to a target t that is
guaranteed to be rather close to a lattice L) into LWE samples whose secret corresponds to the closest lattice
vector v ∈ L to x, and whose error rate α is (proportional to) dist(t,L) = ‖t− v‖ (see Lemma 5.3). Regev
showed that, as long as dist(t,L) is small enough, a suitable oracle for search LWE will find the secret,
which allows for the recovery of v.

In contrast, our reduction uses an oracle for decision LWE for a particular error rate α̂, and works by
incrementally moving t towards the closest lattice vector v by carefully measuring the behavior of the oracle.
To accomplish this, we consider p(α), the probability that the oracle accepts when given LWE samples
with error rate α. Notice that we can closely approximate p(dist(t,L)) for any t ∈ Rn by repeatedly
invoking the oracle on LWE samples generated from t and measuring the oracle’s acceptance probability.
Our goal is to use this to detect when a point t′ is “significantly closer” to the lattice than t is (more precisely,
dist(t′,L) ≤ (1− 1/ poly(n)) dist(t,L)). This allows us to solve BDD by repeatedly perturbing t to a new
point t′, testing whether the new point is significantly closer to the lattice, and if so setting t = t′. (A similar
idea is used in [LLM06], in a different context.)

To see how we can use the oracle to detect when we have moved closer to the lattice, suppose for the
moment that its acceptance probability p(α) is a monotonically decreasing function of the error rate α, and
assume also that it decreases noticeably around α = dist(t,L). In this case, p(dist(t′,L)) will be noticeably
larger than p(dist(t,L)) if and only if t′ is significantly closer to the lattice than t is, and we can easily detect
this by approximating p(dist(t′,L)) and p(dist(t,L)).

Looking for change in all the wrong places. Let us now drop the assumption that p decreases noticeably
around α = dist(t,L), but still assume that it is monotonically decreasing. We now need to deal with
the possibility that p(α) may be nearly constant for all α ≈ dist(t,L). In this case, |p(dist(t′,L)) −
p(dist(t,L))| will be negligible for any small perturbation t′ of t. As a result, we cannot hope to tell whether
we have moved closer to the lattice by examining p(dist(t′,L)) and p(dist(t,L)) alone.

In order to overcome this, recall that by hypothesis, for a particular error rate α̂ the difference between p(α̂)
and, say, p(

√
n) is noticeable, because LWE samples with error rate

√
n are essentially uniform. Therefore,

even though p(α) could be constant for α ∈ [0, α̂], it must decrease noticeably somewhere beyond α̂. As a
first attempt to exploit this property, we can add some extra error to the LWE samples obtained from t and t′.
More precisely, if (ai, bi) are LWE samples with error rate α, then adding independent Gaussians of width β
to the bi yields samples with error rate

√
α2 + β2. This lets us approximate p(

√
dist(t,L)2 + β2) for any t

and β ≥ 0, which is quite useful. Indeed, we can use this to search for a region where p decreases noticeably:
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given t and a small perturbation t′, we can approximate p(
√

dist(t,L)2 + β2) and p(
√

dist(t′,L)2 + β2)
for various values of β. If dist(t,L)− dist(t′,L) is sufficiently large, then we will recognize this when we
use a value of β for which p decreases noticeably around parameter

√
dist(t,L)2 + β2.

Be fruitful and multiply. Unfortunately, the above technique stops working once t becomes too close
to the lattice. To see this, suppose that p(α) is constant for all α ≤ α̂, and that dist(t,L) � α̂. Then
we may not be able to distinguish between p(

√
dist(t,L)2 + β2) and p(

√
dist(t′,L)2 + β2) for any small

perturbation t′ of t and any β ≥ 0. For small β . α̂ the two values are nearly identical by assumption, and
for large β & α̂ the extra error of width β “drowns out” the original error of width dist(t,L) or dist(t′,L).

Although it is possible to salvage the technique, we choose to follow a different path, mainly because
we know how to extend it to the ring setting. Instead of increasing the error additively and working with
p(
√

dist(t,L)2 + β2), we increase the error multiplicatively and work with the function p(r dist(t,L)) for
r ≥ 1, i.e., we approximate p(r dist(t,L)) and p(r dist(t′,L)) for many different values of r. As long as
dist(t,L)/dist(t′,L)− 1 is non-negligible, we can find an r ≥ 1 such that p(r dist(t′,L)) is significantly
larger than p(r dist(t,L)). So, at least when p(α) is monotone, we can use this to recognize when t′ is
significantly closer to the lattice than t is.

Of course, in order to implement this idea, we need to generate LWE samples whose error rate is
α = r dist(t,L) for any desired r ≥ 1. Fortunately, the original reduction in [Reg05] already allows for this:
in addition to a BDD target t and lattice L, the reduction also takes samples from a discrete Gaussian of some
width r over the dual lattice L∗; the error rate of the resulting LWE samples is (proportional to) r dist(t,L).
Regev takes r to be as small as possible to minimize this error rate, but since we wish to increase the error
rate multiplicatively, we use larger values of r as well. (Intuitively, sampling from the discrete Gaussian
becomes easier as r increases.)

In need of monotony. The above discussion relied on the simplifying assumption that our oracle’s ac-
ceptance probability p(α) is monotonically decreasing in the error rate α. We now describe how to drop
this assumption. The idea is to use our ability to approximate p(r dist(t,L)) for any r ≥ 1 to allow us to
approximate a new monotonic function P (dist(t,L)).

There are many possible choices for P ; we use

P (α) := max
r≥1

(1 + log r)(p(rα)− p(∞)) .

(Here p(∞) := limα→∞ p(α), which is well approximated by, say, p(
√
n).) Clearly, P (α) is monotonically

decreasing. Furthermore, it is easy to see that P (α) decreases noticeably in the neighborhood of any α ≤ α̂.
In Lemma 4.2, we show how to efficiently approximate P (dist(t,L)) well enough to recognize when t′ is
significantly closer to the lattice than t.

Putting a ring on it. The above ideas exploit the fact that Regev’s reduction converts a BDD instance
(L, t) into plain-LWE samples whose error rate α ≥ 0 is proportional to dist(t,L). The reduction to (search)
Ring-LWE due to [LPR10] uses a variant of this procedure that works on ideal lattices. More specifically, it
converts a BDD instance (I, t) for some ideal I into Ring-LWE samples, but the resulting error distribution is
specified by a vector of error rates, not just a scalar. (See Lemma 6.8.) The error rate αi in the ith coordinate
is proportional to |σi(v − t)|, where v ∈ I is the closest ideal element to t, and σi is the ith ring embedding
from the ring into the complex numbers. (See Section 2.3.1 for details.) In general, a decision oracle’s
acceptance probability can depend on the vector (αi) of error parameters in complicated ways, so that it is
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not immediately clear how to use the oracle to detect when a perturbation t′ is significantly closer to the ideal
than t is.

To adapt our reduction to the ring setting, we therefore work with each embedding separately, vary-
ing σi(t) while holding σj(t) fixed for all j 6= i, and eventually finding every σi(v) and hence v itself. More
specifically: starting from t with z = σi(t), we repeatedly:

1. slightly perturb t in the ith embedding to t′ with z′ = σi(t
′);

2. use the reduction from [LPR10] to approximate our oracle’s acceptance probabilities for error rates
αi = r|σi(v)− z| and α′i = r|σi(v)− z′| for various values of r ≥ 1 (and αj = α′j = |σj(v − t)| for
all j 6= i); and

3. use this information to detect if |σi(v)− z′| is significantly smaller than |σi(v)− z|, setting t = t′ if so.

Note that in order for the above procedure to work, error with parameter αi = r|σi(v)−z| (and essentially
any other parameters αj for j 6= i) must be close to uniform modulo R∨ for large enough r. Fortunately, this
is indeed the case, as shown in Lemma 6.9. We also emphasize that the search for each σi(v) starts from the
same initial target t, and varies only one embedding σi(t), for the following reason. We know that our oracle
has noticeable distinguishing advantage on Ring-LWE samples having error parameters αj = |σj(v − t)|,
but we have no additional guarantees about its advantage for other parameters. It is therefore important that
we not “lose hold” of the oracle’s advantage as we vary the parameters, i.e., that when t′ is closer to the
ideal than t is, we can always find some r ≥ 1 such that our oracle still has noticeable advantage on samples
having error parameter α′i = r|σi(v)− σi(t′)| (and α′j = αj for all j 6= i).

Tighter parameters via average-case BDD. As mentioned above, the approximation factor achieved by
our reduction for Ring-LWE is tighter than the one from [LPR10] by a factor of Θ̃(n1/4). We achieve this
by giving a natural random self-reduction for BDD, showing that the ability to solve BDD with even small
non-negligible probability for Gaussian-distributed offset vectors implies the ability to solve it with high
probability for offset vectors that are distributed according to a slightly narrower Gaussian. (See Section 3.)
A morally similar reduction appears in [LPR10], but is lossier (and messier) because it solves worst-case
BDD, as opposed to solving it with high probability for Gaussian-distributed error.

At a technical level, the proof relies on an elegant theorem due to Borell [Bor85], which says that the “least-
correlated” functions under Gaussian error are indicators of half-spaces. This theorem is used extensively in
the study of the hardness of approximation and the analysis of boolean functions (see, e.g., [O’D14a, Section
11.3]), but to our knowledge, this is its first application in the study of computational problems on lattices.

2 Preliminaries

Throughout this work we assume for simplicity that for computational purposes, real numbers are specified
with sufficiently high precision.

For any real r > 0, define the Gaussian function ρr : R → R+ of parameter (or width) r as ρr(x) =
exp(−π(x/r)2), and the continuous Gaussian probability distribution Dr to have density function ρr(x)/r.

Lemma 2.1 ([Reg05, Claim 2.2]). For 0 < α < β, the statistical distance between Dα and Dβ is at most
10(β/α− 1).
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2.1 Learning with Errors

Here we recall the Learning With Errors (LWE) distribution and decision problem. We specialize to
continuous Gaussian error Dα, which will be the main case of interest in this work. Let n and q be positive
integers, and let α > 0 be an error rate. The quotient ring of integers modulo q is denoted Zq := Z/qZ. The
quotient group of reals modulo the integers is denoted T := R/Z.

Definition 2.2. For s ∈ Znq , the LWE distribution As,α over Znq × T is sampled by independently choosing
uniformly random a ∈ Znq and e← Dα, and outputting (a, b = 〈a, s〉/q + e mod Z).

Definition 2.3. For an integer q = q(n) ≥ 2 and error parameter α = α(n) > 0, the average-case decision
problem LWEq,α is to distinguish between independent samples over Znq × T, drawn from either: (1) the
LWE distribution As,α(n) for some uniformly random s ← Znq (which is fixed for all samples), or (2) the
uniform distribution.

For simplicity, the number of samples m = m(n) provided in the input is usually left as an unspecified
polynomial that may even depend on the algorithm. The advantage of an algorithm for the above problem is
the (absolute value of) the difference between its acceptance probabilities on the two types of inputs.

2.2 Lattices and Gaussians

The space H . When dealing with number fields and algebraic number theory, we work with a certain linear
subspace H ⊆ Rs1 × C2s2 for some integers s1, s2 ≥ 0 where n = s1 + 2s2, defined as

H = {(x1, . . . , xn) : xs1+s2+i = xs1+i, for 1 ≤ i ≤ s2} ⊆ Cn. (2.1)

One can verify that H , with the induced inner product from Cn, is isomorphic to Rn as a real inner product
space.

Lattices. For our purposes, a lattice is a full-rank discrete additive subgroup L ⊂ H . Any lattice is
generated as the set of all integer linear combinations of some (non-unique) n linearly independent basis
vectors B = {b1, . . . ,bn}, as L = L(B) = {

∑n
i=1 zibi : zi ∈ Z}. The minimum distance of L is

λ1(L) := min06=v∈L‖v‖, the length of a shortest nonzero lattice vector. More generally, for 1 ≤ i ≤ n, the
ith successive minimum of L is

λi(L) := inf{r : L has i linearly independent vectors of length at most r} .

The dual lattice of a lattice L ⊂ H is defined as L∗ := {x ∈ H : 〈L,x〉 ⊆ Z}.

Gaussians. We generalize Dr to axis-aligned elliptical Gaussian distributions over the space H ⊂ Rs1 ×
C2s2 . Define G = {r ∈ (R+)n : rs1+s2+i = rs1+i, for 1 ≤ i ≤ s2}; note this has symmetry mirroring that
of H . For consistency with prior works, we sometimes use r ∈ R+ as shorthand for the all-rs vector r1 ∈ G.
For r ∈ G, the elliptical Gaussian distribution Dr over H is defined to have density function proportional to

ρr(x) := exp
(
−π

n∑
i=1

|xi/ri|2
)
. (2.2)
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This can be seen as essentially a product distribution of s1 real and 2s2 complex Gaussians, modulo the
conjugate symmetry of H , where the ith real Gaussian has parameter ri, and the ith and (s2 + i)th complex
Gaussians have parameter rs1+i/

√
2, and are complex conjugates.

We recall a generalization of the lattice smoothing parameter [MR04] to elliptical Gaussians. In constrast
to [MR04], where the smoothing parameter is defined to be a real number, here we capture a more general
condition that makes an elliptical Gaussian “smooth” with respect to the lattice. Observe that the notation
is consistent with the partial ordering on G defined by r′ ≥ r if r′i ≥ ri for all i. We sometimes omit the
subscript ε when it is an unspecified negligible function in n.

Definition 2.4 (Smoothing Condition). For a lattice L ⊂ H , real ε > 0 and r ∈ G, we write r ≥ ηε(L) if
ρ1/r(L∗ \ {0}) ≤ ε, where 1/r = (1/r1, . . . , 1/rn).

The following lemma justifies the name “smoothing parameter,” and is an immediate generalization
of [MR04, Lemma 4.1] to elliptical Gaussians.

Lemma 2.5. For any lattice L ⊂ H , real ε > 0, and r ≥ ηε(L), the statistical distance between Dr mod L
and the uniform distribution over H/L is at most ε/2.

The following is an immediate implication of [Ban93, Lemma 1.5].

Lemma 2.6. For any lattice L ⊂ H and c ≥ 1, we have c
√
n/λ1(L∗) ≥ ηε(L) where ε = exp(−c2n).

The following standard fact can be found, e.g., in [Reg05, Claim 2.13].

Claim 2.7. For any lattice L ⊂ H and ε ∈ (0, 1), we have ηε(L) ≥
√

log(1/ε)/π/λ1(L∗).

Proof. Let s :=
√

log(1/ε)/π/λ1(L∗). Then,

ρ1/s(L∗) ≥ 1 + e−πs
2λ1(L∗)2 = 1 + ε .

For a lattice L and r ∈ G, the discrete Gaussian probability distributionDL,r is defined to have support L,
and has mass function DL,r(x) := ρr(x)/ρr(L) for x ∈ L.

Computational problems. In the following computational problems, a lattice L is represented by an
arbitrary basis B, and a lattice coset e+L is represented by its distinguished representative e = (e+L)∩P(B),
where P(B) := B · [−1

2 ,
1
2)n is the fundamental parallelepiped of B.

Definition 2.8 (Gap Shortest Vector Problem). For an approximation factor γ = γ(n) ≥ 1, the GapSVPγ
is: given a lattice L and length d > 0, output YES if λ1(L) ≤ d and NO if λ1(L) > γd.

Definition 2.9 (Shortest Independent Vectors Problem). For an approximation factor γ = γ(n) ≥ 1, the
SIVPγ is: given a lattice L, output n linearly independent lattice vectors of length at most γ(n) · λn(L).

Definition 2.10 (Discrete Gaussian Sampling). For a function γ that maps lattices to nonnegative reals,
the DGSγ problem is: given a lattice L and a parameter r ≥ γ(L), output an independent sample from a
distribution that is within negligible statistical distance of DL,r.

Definition 2.11 (Bounded Distance Decoding). For a function δ that maps lattices to nonnegative reals, the
BDDδ problem is: given a lattice L ⊂ H , a distance bound d ≤ δ(L), and a coset e + L where ‖e‖ ≤ d,
output e.
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Lemma 2.12 ([LLL82, Bab85]). There is an efficient algorithm that solves BDDδ for δ(L) = 2−n/2 ·λ1(L).

Finally, we define a new average-case problem, which is essentially BDD where the offset is drawn from
a Gaussian.

Definition 2.13 (Gaussian Decoding Problem). For a lattice L ⊂ H and a Gaussian parameter g > 0, the
GDPL,g problem is: given a coset e + L where e ∈ H was drawn from Dg, find e.

2.3 Algebraic Number Theory

Here we briefly review the requisite concepts and notation from algebraic number theory. Our presentation is
an abridged version of [LPR10, Section 2.3]; see that work and references therein for many more details.

2.3.1 Number Fields and Their Geometry

A number field is a field extension K = Q(ζ) obtained by adjoining an element ζ to the rationals Q, where ζ
satisfies the relation f(ζ) = 0 for some irreducible polynomial f(x) ∈ Q[x], called the minimal polynomial
of ζ, which is monic without loss of generality. The degree n of the number field is the degree of f .

A number fieldK = Q(ζ) of degree n has exactly n ring embeddings (i.e., injective ring homomorphisms)
σi : K → C. Each embedding sends ζ to one of the roots of its minimal polynomial f ; the embedding is
said to be real if that root is real (in which case the image of the embedding is contained in R), otherwise it
is complex. Because the roots of f come in conjugate pairs, so too do the complex embeddings. We let s1

and s2 respectively be the number of real embeddings and pairs of complex embeddings, so n = s1 + 2s2,
with σi for 1 ≤ i ≤ s1 being the real embeddings and σs1+s2+i = σs1+i for 1 ≤ i ≤ s2 being the conjugate
pairs of complex embeddings.

The (field) norm (or algebraic norm) of an element a ∈ K can be defined as N(a) :=
∏n
i=1 σi(a); clearly,

the norm is multiplicative. Similarly, the trace can be defined as Tr(a) =
∑n

i=1 σi(a). The field norm and
trace of a number field element is always rationals.

The canonical embedding σ : K → H , where H ⊂ Rs1 × C2s2 is as defined in Section 2.2 above, is
defined as σ(a) = (σ1(a), . . . , σn(a)). Observe that this is a ring homomorphism from K to H , where
multiplication and addition in the latter are both component-wise. We define norms and other geometric
quantities on K simply by identifying field elements a ∈ K with their canonical embeddings σ(a) ∈ H , e.g.,
the `2 norm is ‖a‖2 := ‖σ(a)‖2 = (

∑n
i=1|σi(a)|2)1/2 and the `∞ norm is ‖a‖∞ = maxi|σi(a)|.

The canonical embedding also allows us to view Gaussian distributions Dr over H (for r ∈ G), or their
discrete analogues over a lattice L ⊂ H , as distributions over K. Formally, the continuous distribution Dr is
actually over the field tensor product KR = K ⊗Q R, which is in bijective correspondence with H via the
natural extension of σ.

2.3.2 Ring of Integers and Ideals

An algebraic integer is an algebraic number whose minimal polynomial over the rationals has integer
coefficients. For a number field K, we denote its subset of algebraic integers by OK . This set forms a ring
(under the addition and multiplication operations of K), called the ring of integers of the number field. The
norm of any algebraic integer is a rational integer, i.e., in Z.

An (integral) ideal I ⊆ OK is a nontrivial additive subgroup that is also closed under multiplication
by OK , i.e., r · a ∈ I for any r ∈ OK and a ∈ I. Any ideal I is a free Z-module of rank n, i.e., it is the set
of all Z-linear combinations of some basis {b1, . . . , bn} ⊂ I of linearly independent (over Z) elements bi.
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The norm of an ideal I is its index as a subgroup of OK , i.e., N(I) := |OK/I|. The product IJ of two
ideals I,J is the set of all sums of terms xy for x ∈ I, y ∈ J . The norm for ideals is consistent with the
norm for field elements, in that N(aOK) = |N(a)| for any a ∈ OK , and N(IJ ) = N(I) N(J ).

A fractional ideal I ⊂ K is a set such that dI ⊆ OK is an integral ideal for some d ∈ OK . Its norm is
defined as N(I) := N(dI)/|N(d)|. The set of fractional ideals forms a group under multiplication, and the
norm is clearly multiplicative on this group.

2.3.3 Ideal Lattices and Duality

Under the canonical embedding σ, any fractional ideal I ⊂ K yields a lattice L = σ(I) ⊂ H , which is called
an ideal lattice. Recalling that I has a Z-basis B = {b1, . . . , bn}, we see that B = {σ(b1), . . . , σ(bn)} ⊂ L
is a basis of L. We often identify an ideal with its embedded lattice, and refer to the minimum distance λ1(I)
of an ideal, etc. The (absolute) discriminant ∆K of a number field K is the squared volume of the ring of
integers lattice σ(OK), i.e., ∆K = |det(Tr(bi · bj))| where {b1, . . . , bn} is any Z-basis of OK .

For any fractional ideal I ⊂ K, its dual ideal is defined as I∨ := {a ∈ K : Tr(xI) ⊆ Z}. Observe that
because Tr(ab) =

∑n
i=1 σi(a)σi(b) = 〈σ(a), σ(b)〉, dual ideals and dual lattices are related by σ(I∨) =

σ(I)∗. An important canonical fractional ideal in a number field K is the codifferent ideal O∨K , i.e., the dual
ideal of the ring of integers. This ideal has norm N(O∨K) = ∆−1

K , and provides a link between dual and
inverse ideals: I∨ = I−1 · O∨K for any fractional ideal I ⊂ K.

All of the computational problems on lattices defined in Section 2.2 can be specialized by restricting
them to (fractional) ideal lattices in a number field K. We refer to these specialized problems by prefixing
them by K, e.g., K-GDPI,r, K-DGSγ , etc.

2.4 Ring-LWE

Let K be a number field with ring of integers R = OK . Recall that R∨ is the (fractional) codifferent ideal
of K, and let T = KR/R

∨. Let q ≥ 2 be a (rational) integer modulus, and for any fractional ideal I of K, let
Iq = I/qI.

Definition 2.14 (Ring-LWE Distribution). For s ∈ R∨q and an error distribution ψ over KR, the R-LWE
distribution As,ψ over Rq × T is sampled by independently choosing a uniformly random a← Rq and an
error term e← ψ, and outputting (a, b = (a · s)/q + e mod R∨).

Definition 2.15 (Ring-LWE, Average-Case Decision). Let Υ be a distribution over a family of error dis-
tributions, each over KR. The average-case Ring-LWE decision problem, denoted R-LWEq,Υ, is to dis-
tinguish (with non-negligible advantage) between independent samples from As,ψ for a random choice of
(s, ψ)← U(R∨q )×Υ, and the same number of uniformly random and independent samples from Rq × T.

2.5 Probability

Lemma 2.16 (Chernoff-Hoeffding bound [Hoe63]). Let X1, . . . , XN be independent and identically dis-
tributed random variables with 0 ≤ Xi ≤ 1 and X := E[Xi]. Then, for any s > 0

Pr
[∣∣∣NX −∑Xi

∣∣∣ ≥ s] ≤ 2 exp(−s2/N) .
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3 Random Self-Reduction for GDP

Our goal in this section is to prove Proposition 3.3, a random self-reduction for GDP, showing that the ability
to solve GDP even with some small non-negligible probability over the offset vector implies the ability to
solve GDP for a slightly smaller parameter with all but negligible probability.

The proof is based on the following theorem by Borell [Bor85]. It says that the functions that are “least
correlated” under Gaussian error are indicators of two opposing half-spaces. We let Dn = Dn

1 be the
Gaussian distribution D1 in n-dimensional space. Let Φ−1 : (0, 1)→ R denote the inverse of the cumulative
distribution function of the normal distribution D1 (and notice that Φ−1(µ) < 0 for µ < 1/2).

Theorem 3.1 ([Bor85]; see also [O’D14b, Exercise 11.26]). Let f, g : Rn → [0, 1] be two functions and
let µ := Ex∼Dn [f(x)], ν := Ex∼Dn [g(x)]. Then, for any δ > 0,

E
x,z∼Dn

[f(x)g(δx + (1− δ2)1/2z)] ≥ Pr
x,z∼D1

[x ≤ Φ−1(µ) and δx+ (1− δ2)1/2z ≥ −Φ−1(ν)] .

Corollary 3.2. Let δ = δ(n) be any o(1) function, and let g : Rn → [0, 1] have expectation ν :=
Ex∼Dn [g(x)] ≥ 1/poly(n). Assume x is chosen according to Dn. Then, there exists a c > 0 such
that with all but negligible probability (over the choice of x), it holds that

E
z∼Dn

[g(δx + (1− δ2)1/2z)] > n−c . (3.1)

Proof. Let f : Rn → {0, 1} be the indicator function of the points for which Equation (3.1) does not hold,
and denote its expectation by µ := Ex∼Dn [f(x)]. Then, clearly

E
x,z∼Dn

[f(x)g(δx + (1− δ2)1/2z)] ≤ µ · n−c .

By Theorem 3.1, we get that

Pr
x,z∼D1

[x ≤ Φ−1(µ) and δx+ (1− δ2)1/2z ≥ −Φ−1(ν)] ≤ µ · n−c ,

or equivalently,

E
x∼D1

[
Pr
z∼D1

[δx+ (1− δ2)1/2z ≥ −Φ−1(ν)] | x ≤ Φ−1(µ)
]
≤ n−c .

By Markov’s inequality, with probability at least 1/2 over the choice of x conditioned on x ≤ Φ−1(µ),

Pr
z∼D1

[δx+ (1− δ2)1/2z ≥ −Φ−1(ν)] ≤ 2n−c ,

but since δ = o(1), and assuming c is large enough, this implies that x ≤ −ω(
√

log n). As a result,
Φ−1(µ) ≤ −ω(

√
log n) which in turn implies that µ is negligible, as desired.

Proposition 3.3. Assume we are given access to an oracle that solves GDPL,r with some non-negligible
probability over the choice of the coset. Then we can efficiently solve GDPL,δr with all but negligible
probability, where δ = δ(n) is any o(1) function.

Proof. Assume without loss of generality that r = 1. Given an input coset x + L, the algorithm repeats the
following a polynomial number of times. It chooses a vector z from Dr′ , where r′ := (1− δ2)1/2r, and calls
the oracle with z + x + L. At the end it returns the shortest solution among all the oracle responses, minus z.
Correctness follows from Corollary 3.2, where we take g to be the acceptance probability of the oracle.
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(a) The probability function pO(t) of an oracle O with a
horizontal line at p(∞) := limt→∞ pO(t) = 1/10.

(b) The probability functions pO−0.3
(t) and pO−0.2

(t) of
two different shifts of O.

Figure 1

4 Finding Your (Oracle’s) Center

For a (randomized) oracle O : S → {0, 1} with some domain S, let pO(t) = Pr[O(t) = 1] for any t ∈ S.
Usually, O will be clear from context, so we often omit the subscript and simply write p(t). If S = R,
then for any s ∈ R, let Os : R≥0 → {0, 1} be the “suffix” oracle Os(t) = O(s + t). (See Figure 1.) We
wish to show that, if O has certain properties, then we can tell the difference between suffix oracles having
sufficiently different shifts. (In our only application, Proposition 4.4, the shift s corresponds to log ‖z∗ − z‖,
where z∗ ∈ Rk is some unknown target vector and we choose z ∈ Rk.)

Definition 4.1 (Oracle Comparison Problem). For error parameter ε ≥ 0 and r > 0, (ε, r)-OCP is a
promise problem defined as follows. Given access to two (randomized) oracles O1 := Os1 and O2 := Os2
for some unknown shifts s1, s2 ∈ [−r, r] and some underlying oracle O : R→ {0, 1}, the goal is to output
YES if s2 ≤ s1 − ε and NO if s2 > s1. (If neither is the case, then any output is considered correct.)

Lemma 4.2. There is a poly(κ)-time algorithm that takes as input some confidence parameter κ ≥ 200 and
solves (1/κ, κ)-OCP except with probability at most exp(−κ), provided that there exists a p(∞) ∈ [0, 1]
and t∗ ≥ s1 such that

1. p(t∗)− p(∞) ≥ 1/κ ;

2. |p(t)− p(∞)| ≤ 2 exp(−t/κ) for all t; and

3. p(t) is κ-Lipschitz.

Furthermore, each of the algorithm’s oracle calls takes the form Oj(i∆) for some ∆ < 1 that depends only
on κ and integer 0 ≤ i ≤ poly(κ).

Proof. On input κ ≥ 200, the algorithm behaves as follows. For i = 0, . . . , T := 1000κ10, it calls O1 and
O2 repeatedly, N := d200 log T/∆2e times each with ∆ := 1/(200κ8), on input i∆, and sets p(1)

i , p
(2)
i to

be the respective empirical probabilities that the oracles output 1. The algorithm then computes

hj := max
i

(1 + i∆)(p
(j)
i − p

(1)
T ) .

for j ∈ {1, 2}. Finally, it returns YES if h2 − h1 > 1/(20κ4) and NO otherwise.
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The running time is clear, as is the fact that the oracle queries are polynomially bounded and lie in an
arithmetic progression.

To prove correctness, we define m := s1 − s2 and q(t) := p(s1 + t)− p(∞). Let

h′1 := max
0≤t≤T∆

(1 + t)q(t) ,

and
h′2 := max

0≤t≤T∆
(1 + t)q(t−m) = max

−m≤t≤T∆−m
(1 + t+m)q(t) .

We first wish to argue that p(j)
i ≈ p(sj + i∆), p(sj + (i + χ)∆) ≈ p(sj + i∆) for any χ ∈ [0, 1],

and p(1)
T ≈ p(∞). This will allow us to argue that hj ≈ h′j . Indeed, by the Chernoff-Hoeffding bound

(Lemma 2.16), we have

|p(j)
i − p(sj + i∆)| ≤ κ∆

10
(4.1)

for all i, j except with probability at most 10T exp(−N(κ∆)2/100) ≤ exp(−κ). So, we may assume that
this holds. By Item 3, we have

|p(sj + (i+ χ)∆)− p(sj + i∆)| ≤ κχ∆ ≤ κ∆ (4.2)

for any χ ∈ (0, 1). Furthermore, by Item 2, we have

|p(s1 + T∆)− p(∞)| ≤ 2 exp(−(s1 + T∆)/κ)� κ∆

10
. (4.3)

Combining Eqs. (4.1), (4.2), and (4.3) and recalling the definitions of hj , h′j gives

|h2 − h1 − (h′2 − h′1)| < 5κT∆2 ≤ 1

20κ4
. (4.4)

So, we move to studying h′2 − h′1.
Suppose s1 − s2 = m ≤ 0. Let t ≥ −m such that h′2 = (1 + t + m)q(t). If t > T∆, then by Item 2,

h′2 � 1/(2κ), but by Item 1, h′1 ≥ 1/κ ≥ h′2. Otherwise, t ≤ T∆ and therefore

h′1 ≥ (1 + t)q(t) ≥ (1 + t+m)q(t) = h′2 .

So, in both cases, h′1 ≥ h′2. Combining this with Equation (4.4), we see that the algorithm will correctly
output NO.

Suppose, on the other hand, that s1 − s2 = m ≥ 1/κ. Let t ≥ 0 be such that h′1 = (1 + log t)q(t). By
Item 1, we have that h′1 ≥ 1/κ. Therefore,

q(t) ≥ 1

κ(1 + t)
, (4.5)

and by Item 2, we see that
t+ 1 ≤ 10κ2 ≤ T∆−m . (4.6)
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Figure 2: A depiction of an instance of OHCP in R2. The goal is to find a good approximation to z∗ using
calls to the oracle O(z, t).

Putting everything together, we have

h′2 − h′1 ≥ (1 + t+m)q(t)− h′1
= m · q(t)

≥ m

κ(1 + t)
(Equation (4.5))

≥ 1

κ2(1 + t)

≥ 1

10κ4
(Equation (4.6)) .

It follows from Equation (4.4) that the algorithm correctly outputs YES.

Definition 4.3 (Oracle Hidden Center Problem). For any parameters ε, δ ∈ [0, 1), the (ε, δ)-OHCP is an
approximate search problem defined as follows. Given a scale parameter d > 0 and access to a (randomized)
oracle O : Rk × R≥0 → {0, 1} such that its acceptance probability p(z, t) depends only on exp(t)‖z− z∗‖
for some (unknown) “hidden center” z∗ ∈ Rk with δd ≤ ‖z∗‖ ≤ d, the goal is to output z ∈ Rk such that
‖z− z∗‖ ≤ εd.

Proposition 4.4. There is a poly(κ, k)-time algorithm that takes as input a confidence parameter κ ≥
20 log(k+1) (and the scale parameter d > 0) and solves (exp(−κ), exp(−κ))-OHCP in dimension k except
with probability exp(−κ), provided that there exists a p(∞) ∈ [0, 1] such that

1. p(0, t∗)− p(∞) ≥ 1/κ for some t∗ ≥ 0;

2. |p(0, t)− p(∞)| ≤ 2 exp(−t/κ) for any t; and

3. p(z, t) is κ-Lipschitz in t for any z ∈ Rk.

Furthermore, each of the algorithm’s oracle calls takes the form O(·, i∆) for some ∆ < 1 that depends only
on κ and k and 0 ≤ i ≤ poly(κ, k).

Proof. The idea behind the algorithm is to take a “guided random walk” towards the center z∗. In particular,
starting with z = 0, we repeatedly randomly perturb z to z′, use our oracle and Lemma 4.2 to check whether
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‖z∗ − z′‖ ≤ ‖z∗ − z‖, and update z to z′ if it is. Since we do not know ‖z∗ − z‖, we choose the size of the
perturbation randomly on an exponential scale (and we use axis-aligned perturbations for simplicity). We
proceed with the technical details.

We may assume that d = 1, since the problem is invariant under scalings. On input κ ≥ 20 log(k+1), the
algorithm first sets z0 = 0. It then does the following for i = 0, . . . , T := d100κ2k2e. It samples a coordinate
j ∈ {1, . . . , k}, x ∈ [0, 1], and σ ∈ {±1} uniformly at random. Let vi := σ exp(−2κx)ej/

√
k. The

algorithm then simulates the procedure from Lemma 4.2 with oraclesO1 := O(zi, ·) andO2 := O(zi+vi, ·)
and parameter κ′ := 100κk log κ. If the oracle outputs YES, then it sets zi+1 = zi + vi. Otherwise, it sets
zi+1 = zi. Finally, it outputs zT+1.

The running time is clear, as is the fact that the values of t used in the oracle queries lie in a polynomially
bounded arithmetic progression. To prove correctness, let O∗(·) := O(z∗ + e1, ·). Note that for any z 6= z∗,
the oracle O(z, ·) is O∗log ‖z−z∗‖. I.e., O(z, ·) is a shift of O∗ by log ‖z− z∗‖.

Therefore, the input to the subprocedure in Lemma 4.2 will be a valid instance to (−(κ′)2, 1/κ′)-
OCP as long as log ‖zi − z∗‖ and log ‖zi + vi − z∗‖ lie in the interval [−κ′, κ′]. The upper bound is
trivial, since in any given step the step size is at most 1/

√
k and there are only T + 1 steps, so that

‖zT+1‖ ≤ (T + 1)/
√
k � exp(κ′). To prove the lower bound, we must show that ‖zi − z∗‖ ≥ exp(−κ′)

for all i except with small probability. Note that this is true by assumption for z0. So, it suffices to
show that ‖zi + vi − z∗‖ ≥ exp(−κ′) for all i, except with negligible probability. Indeed, recall that
‖vi‖ = exp(−2κx)/

√
k for a uniformly random x ∈ [0, 1]. If ‖zi + vi − z∗‖ ≤ − exp(κ′), then by triangle

inequality, we must have

‖zi − z∗‖ − exp(−κ′) ≤ ‖vi‖ ≤ ‖zi − z∗‖+ exp(−κ′) .

But, the probability of this happening is at most, say, exp(−κ′/2). By union bound, this will not happen for
any i except with probability at most, say, exp(−10κ).

Now, we show that “we never get farther from z∗.” Assume for induction that ‖zj − z∗‖ ≤ ‖zj−1 − z∗‖
for all 1 ≤ j ≤ i except with probability i exp(−κ′). Note in particular that this implies that ‖zi − z∗‖ ≤
‖z0 − z∗‖. This shows that Item 1 of Lemma 4.2 holds for the ith instance of OCP. (Here, we take
(t∗)′ := t∗ + log ‖z∗‖ and s1 := log ‖zi − z∗‖ ≤ log ‖z∗‖.) The other items of Lemma 4.2 are immediate.
Therefore, except with probability exp(−κ′), the oracle only outputs YES when ‖zi +vi− z∗‖ ≥ ‖zi− z∗‖.
It follows immediately that ‖zi+1 − z∗‖ ≤ ‖zi − z∗‖ except with probability at most (i+ 1) exp(−κ′), as
needed. So, we may assume that the subprocedure from Lemma 4.2 always returns a valid response to its
input OCP instance.

Finally, we show that the output of the algorithm is correct. During the ith step, if log ‖zi − z∗‖ ≤ −κ,
then by the above argument, the same will be true of zT+1, and we are done. Otherwise, let y := z∗ − zi,
and note that there exists some coordinate j such that |yj | ≥ ‖y‖/

√
k ≥ exp(−κ)/

√
k. We also have

|yj | ≤ ‖y‖ ≤ 1. So, with probability at least log 2/(4κk), the algorithm will select the coordinate j,
σ = sign(yj), and x ∈ [− log |yj |/(2κ),− log(|yj |/2)/(2κ)]. If this happens, then

‖zi + vi − z∗‖2 ≤ (1− 1/(2
√
k))2y2

j +
∑
j′ 6=j

y2
k ≤ ‖y‖2 · (1− 1/(2k)) .

In particular, log ‖zi + vi − z∗‖ ≤ log ‖zi − z∗‖ + log(1 − 1/(2k))/2 ≤ log ‖zi − z∗‖ − 1/κ′, and the
subprocedure from Lemma 4.2 must output YES. So, if this is the case, we have zi+1 = zi +vi and therefore

log ‖zi − z∗‖ − log ‖zi+1 − z∗‖ ≥ − log(1− 1/(2k)) ≥ 1

2k
.
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We conclude that, unless log ‖zi − z∗‖ ≤ −κ, we have

Pr
[
log ‖zi − z∗‖ − log ‖zi+1 − z∗‖ ≥ 1

2k

]
≥ log 2

4κk
.

Therefore, after running the protocol T+1 times, either log ‖zi−z∗‖ ≤ −κ for some i, or by Lemma 2.16, the
log-distance will drop by at least 1/(2k) at least T log 2/(4κk)−κ2k ≥ 10κk times except with probability at
most exp(−κ4k2/(10T )) ≤ exp(−10κ). But, if this happens, then log ‖zT+1 − z∗‖ ≤ −10κk/(2k) ≤ −κ.
So, it follows that log ‖zT+1 − z∗‖ ≤ exp(−κ), as needed.

5 Hardness of plain LWE

Before we present our main result, a worst-case to average-case reduction for Ring-LWE for any ring, we
show how to use the same technique to derive a worst-case to average-case reduction for plain LWE. This
reduction is significantly simpler and illustrates most of the new ideas necessary for the ring case. In particular,
we prove the following result, which is identical to [Reg05, Theorem 3.1], except that we reduce to decision
LWE, rather than search.

Theorem 5.1. Let α = α(n) ∈ (0, 1), and let q = q(n) be an integer such that αq ≥ 2
√
n. There

is a polynomial-time quantum reduction from DGSγ to (average-case, decision) LWEq,α, where γ :=√
2nη(L)/α.

Using known reductions (see, e.g., [Reg05, Section 3.3]), we immediately derive the following corollary.

Corollary 5.2. Let α = α(n) ∈ (0, 1), and let q = q(n) be an integer such that αq ≥ 2
√
n. Then, there is

a polynomial-time quantum reduction from SIVPγ′ and GapSVPγ′ to (average-case, decision) LWEq,α for
some γ′ = Õ(n/α).

The high-level structure of the proof of Theorem 5.1 is nearly identical to that of the corresponding
statement in [Reg05]. In particular, [Reg05] shows (1) a quantum reduction from DGS√

n/2/d
to BDDd

over L∗ for d < λ1(L∗)/2; and (2) a classical reduction that allows us to solve BDDd over L∗ using
discrete Gaussian samples over L with parameter r ≥

√
2qη(L) together with a search LWEq,α oracle, with

d := αq/(
√

2r). By combining these two steps, we can use an LWEq,α oracle to convert discrete Gaussian
samples with parameter γ to samples with parameter γ′, where

γ′ := max{
√

2nη(L)/α,
√
nγ/(αq)} .

The full reduction is obtained by starting with very large Gaussian samples (which we can sample efficiently)
and then repeatedly running this procedure to lower the parameter.

The main difference between our reduction and that of [Reg05] is that we use a novel classical reduction
from BDD to decision LWE, rather than search LWE. (See Lemma 5.4.) Like [Reg05], we also require access
to discrete Gaussian samples to achieve this. But, while this part of Regev’s reduction uses samples with a
single parameter r, we require samples with many parameters r′ ≥ r. (Recall from Section 1.3 that we vary
this parameter in order to obtain LWE samples with a variety of errors.) Regev’s quantum reduction allows
for this, so this is a nonissue.

In Lemma 5.4, we show our modified classical reduction. We will need the following lemma from [Reg05],
which shows how to convert discrete Gaussian samples together with a BDD instance into LWE samples.
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Lemma 5.3. There is an efficient algorithm that takes as input an integer q ≥ 2, a lattice L ⊂ Rn, a coset
x + L∗, bound d ≥ ‖x‖, a parameter r ≥

√
2q · η(L), and samples from DL,r. It outputs samples that are

within negligible statistical distance of LWE samples with a uniformly random secret s ∈ Znq and error rate
(r′)2 := (r‖x‖/q)2 + (rd/q)2.

With this, we can present our modified classical reduction.

Lemma 5.4. There exists a probabilistic polynomial-time (classical) algorithm with access to an oracle that
solves LWEq,α that takes as input a number α ∈ (0, 1) and an integer q ≥ 2, a lattice L ⊂ Rn, a parameter
r ≥
√

2q · η(L), and poly(n) samples from the discrete Gaussian distribution DL,ri for poly(n) parameters
ri ≥ r, solves BDDL∗,d for d := αq/(

√
2r).

Proof. Let κ = poly(n) with κ ≥ 100n2` be such that the advantage of our LWEq,α oracle is at least 1/κ,
where ` ≥ 1 is the number of samples required by the oracle.

The reduction takes as input an integer q ≥ 2, a lattice L ⊂ Rn, a parameter r ≥
√

2q · η(L), samples
from DL,ri for 1 ≤ i ≤ poly(n), and a coset x + L∗ where ‖x‖ ≤ d. The goal is to recover x. Without
loss of generality, we may assume that ‖x‖ ≥ exp(−n)λ1(L∗) ≥ (q/r) · exp(−n/2) (where the second
inequality follows from Lemma 2.6), since otherwise we can find x efficiently using Lemma 2.12.

The reduction will use its LWE oracle to simulate an oracle O such that the probability that O(z, t)
outputs 1 depends only on exp(t)‖z − x‖. In other words, O is an oracle with a “hidden center” x as in
our definition of OHCP (Definition 4.3). We will then use Proposition 4.4 to find good approximations to x,
which will allow us to recover x.

On input (x, t), the oracle O uses fresh samples from DL,exp(t)r. It then runs the transformation from
Lemma 5.3 on these samples, the coset x − z + L∗, parameter r, and distance bound d . Let Az,t be the
resulting samples. O then calls the LWE oracle on Az,t and outputs 1 if and only if it accepts.

Using the oracle O, the reduction runs the procedure from Proposition 4.4 with confidence parameter
κ and distance bound d, receiving as output some approximation z to the oracle’s “center.” Finally, the
reduction runs Babai’s algorithm (Lemma 2.12) on the coset x− z+L∗, receiving as output ẑ ∈ x− z+L∗,
and returns ẑ + z as its own output.

The running time is clear. We first assume that z is a valid solution to (exp(−κ), exp(−κ))-OHCP with
“hidden center” x and show that the reduction outputs the correct answer in this case. By definition, we have

‖z− x‖ ≤ exp(−κ)d ≤ α exp(−κ)/η(L) ≤ 2−nλ1(L∗) ,

where the last inequality follows from Claim 2.7. So, the procedure from Lemma 2.12 will output exactly
ẑ = x− z. Therefore, the reduction returns the correct answer, x = ẑ + z.

It remains to show that (1) the oracle O represents a valid instance of (exp(−κ), exp(−κ))-OHCP with
“hidden center” z; and (2) the oracle additionally satisfies the requirements needed to apply Proposition 4.4.

To prove validity, we simply observe that Lemma 5.3 implies that the distribution of Az,t depends only
on exp(t)‖z− x‖ (up to negligible statistical distance). Furthermore, by assumption ‖x‖ ≥ exp(−n)d ≥
exp(−κ)d. Therefore, O, κ, and d correspond to a valid instance of (exp(−κ), exp(−κ))-OHCP with
“hidden center” x, as needed.

It remains to show that O satisfies the requirements from Proposition 4.4. We write p(z, t) for the
probability that O outputs 1 on input (z, t) and p(∞) for the probability that our LWE oracle outputs 1 on
uniformly random input. Again by Lemma 5.3, we have that Az,t is statistically close to LWE samples with
error rate (r/q) ·

√
exp(2t)‖z− x‖2 + d2. In particular, the error rate is α when z = 0 and t = log(d/‖x‖),
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and it follows that p(0, log(d/‖x‖))−p(∞) ≥ 1/κ. I.e., Item 1 holds. For Item 2, notice that by Lemma 2.5,
Lemma 2.6, and the union bound, the distribution of A0,t is within statistical distance

min{1, 2` exp(− exp(t− n))} ≤ 2 exp(−t/κ)

of the uniform distribution. It follows that |p(0, t)− p(∞)| ≤ 2 exp(−t/κ), as needed. Finally, for Item 3,
notice that by Lemma 2.1 the distributions of Az,t1 and Az,t2 are within statistical distance

min
{

1, 10`(exp(|t1 − t2|)− 1)
}
≤ κ|t1 − t2|

of each other, where we have applied the union bound over the ` samples in Az,tj . Therefore, p(z, t) is
κ-Lipschitz in t, as needed.

6 Main Theorem

Throughout this section, let K be a number field having s1 real embeddings and s2 pairs of complex
embeddings, with n = s1 + 2s2, and denote its ring of integers by R = OK .

We now define the distribution Υα over error distributions that we will use in our reduction. We note that
this distribution is slightly different than the one used in [LPR10], and is in particular narrower by a factor of
essentially n1/4.

Definition 6.1. Fix an arbitrary f(n) = ω(
√

log n). For α > 0, a distribution sampled from Υα is an
elliptical Gaussian Dr, where r ∈ G is sampled as follows: for i = 1, . . . , s1, sample xi ← D1 and set
r2
i = α2(x2

i + f2(n))/2. For i = s1 + 1, . . . , s1 + s2, sample xi, yi ← D1/
√

2 and set r2
i = r2

i+s2
=

α2(x2
i + y2

i + f2(n))/2.

Equivalently, r2
i is distributed as a shifted chi-squared distribution for real embeddings, and a shifted

chi-squared distribution with two degrees of freedom for complex embeddings. The following is the main
result of the paper.

Theorem 6.2. Let K be an arbitrary number field of degree n and R = OK . Let α = α(n) ∈ (0, 1), and let
q = q(n) ≥ 2 be an integer such that αq ≥ 2 · ω(1). There is a polynomial-time quantum reduction from
K-DGSγ to (average-case, decision) R-LWEq,Υα for any

γ = max
{
η(I) ·

√
2/α · ω(1),

√
2n/λ1(I∨)

}
. (6.1)

Using the easy inequality η(I) > ω(
√

log n)/λ1(I∨) (Claim 2.7) we get that as long as α <
√

log n/n
(which is typically the case in applications), the first term in the maximum in Equation (6.1) dominates. Using
known reductions (see, e.g., [Reg05, Section 3.3]), we immediately derive the following corollary.

Corollary 6.3. Let K be an arbitrary number field of degree n and R = OK . Let α = α(n) ∈ (0, 1), and
let q = q(n) ≥ 2 be an integer such that αq ≥ ω(1). There is a polynomial-time quantum reduction from
K-SIVPγ to (average-case, decision) R-LWEq,Υα for any

γ = max
{
ω(
√
n/α) · η(I)/λn(I),

√
2n/(λ1(I∨)λn(I))

}
≤ max

{
ω(
√
n log n/α),

√
2n
}
.
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We remark that for the families of number fields in [Roq67, PR07], λ1(I∨)λn(I) = Θ(n) and
η(I)/λn(I) = Θ(1/

√
n) for any ideal I. So, in this special case, we obtain a worst-case approxima-

tion factor of γ = ω(1/α). Furthermore, these number fields can potentially allow for applications with
constant α, in which case the worst-case approximation factor is essentially constant.

We now proceed to describe the the high-level structure of the proof of Theorem 6.2, which is nearly
identical to that of the corresponding statement in [LPR10, Theorem 4.1] (which in turn is very similar to
the proof in [Reg05]). As in Section 5, the most significant difference is that we use a direct reduction to
the average-case Ring-LWE decision problem in our classical step, Lemma 6.6. Furthermore, we again
require discrete Gaussian samples with various different parameters, but unlike in Section 5, we now need
non-spherical parameters, as follows.

Definition 6.4. For r > 0, ζ > 0, and T ≥ 1, define Wr,ζ,T as the set of cardinality (s1 + s2) · (T + 1)
containing for each i = 1, . . . , s1 + s2 and j = 0, . . . , T the vector ri,j ∈ G which is equal to r in all
coordinates except in the ith, and the (i+ s2)th if i > s1, where it is equal to r · (1 + ζ)j .

The reduction works by repeated applications of the following iterative step.

Lemma 6.5. There exists an efficient quantum algorithm that given an oracle that solves R-LWEq,Υα on
input a number α ∈ (0, 1) and an integer q ≥ 2, a fractional ideal I ⊂ K, a number r ≥

√
2q · η(I) such

that r′ := r ·ω(1)/(αq) >
√

2n/λ1(I∨), polynomially many samples from the discrete Gaussian distribution
DI,r for each r ∈Wr,ζ,T (for some ζ = 1/ poly(n) and T = poly(n)), and a vector r′ ∈ G where r′ ≥ r′,
outputs an independent sample from DI,r′ .

Theorem 6.2 follows easily from this iterative step, as we now sketch. We start with a very large value of r,
say r ≥ 22nλn(I), so that samples from DI,r for each r ∈Wr,ζ,T can be generated classically (see [Reg05,
Lemma 3.2]). Then, given those samples, we apply the algorithm of Lemma 6.5 a polynomial number of
times with various values of r′ (using the same samples) to obtain a polynomial number of samples from DI,r
for each r ∈Wr′,ζ,T where r′ := r ·ω(1)/(αq) ≤ r/2. Repeating this, we obtain samples from progressively
narrower and narrower distributions, until we get samples with the desired Gaussian parameter s ≥ γ. Note
that the γ given in (6.1) corresponds to values of r, r′ satisfying the hypotheses of Lemma 6.5.

The iterative step given by Lemma 6.5 is obtained by combining two reductions, described next in
Lemmas 6.6 and 6.7. The first, whose proof is given in Section 6.1, is a reduction from GDP to (average-case,
decision) R-LWE, which uses Gaussian samples. This is the main novel component in our paper.

Lemma 6.6. There exists a probabilistic polynomial-time (classical) algorithm that given an oracle that
solves R-LWEq,Υα and input a number α ∈ (0, 1) and an integer q ≥ 2 together with its factorization, a
fractional ideal I in K, a parameter r ≥

√
2q · η(I), and polynomially many samples from the discrete

Gaussian distribution DI,r for each r ∈ Wr,ζ,T (for some ζ = 1/ poly(n) and T = poly(n)), solves
GDPI∨,g for any g = o(1) · αq/(

√
2r).

The second part is quantum, and is a very slight extension of [Reg05, Lemma 3.14].

Lemma 6.7. There is an efficient quantum algorithm that, given any n-dimensional lattice L, a real g <
λ1(L∗)/(2

√
2n), a vector r ≥ 1, and an oracle that solves GDPL∗,g (with all but negligible probability),

outputs an independent sample from DL,r/(2g).

Proof. The case r = 1 is precisely [LPR10, Lemma 4.4] (which is essentially [Reg05, Lemma 3.14]). We
solve the general case by reducing to this special case by rescaling coordinates. Namely, we apply the special
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case to the lattice R−1L and g where R = diag(r), and obtain as output a sample from DR−1L,1/(2g), which
by left-multiplying by R gives us the desired sample from DL,r/(2g). The special case also requires an oracle
that solves GDPRL∗,g. We construct such an oracle from our given GDPL∗,g oracle O in the following way:
on input a coset z+RL∗ where z← Dg, sample a point y from Dr′g where r′ := (1− r−2)1/2, then call O
with the coset y + R−1z +L∗ and return its output multiplied by R. It is easy to check that the input to O is
properly distributed, and that our oracle works as needed.

6.1 Proof of Lemma 6.6

In this section we prove Lemma 6.6, providing a reduction from GDP on any ideal lattice in any number
field to a corresponding Ring-LWE decision problem. (The reduction uses discrete Gaussian samples
over the dual ideal.) We adopt the notation from Section 2.3 for the ring embeddings σi : K → C for
i = 1, . . . , n = s1 + 2s2, the (fractional) codifferent ideal R∨ ⊂ K, and the discriminant ∆K of the number
field K.

As our starting point, the following restatement and slight generalization of [LPR10, Lemma 4.7]
describes a transformation from an instance of BDD on an ideal lattice to Ring-LWE samples, which uses
discrete Gaussian samples over the dual ideal. The generalization considers samples from an elliptical discrete
Gaussian, rather than just a spherical one. The proof is nearly identical, except that in [LPR10, Lemma 4.8],
one needs to replace the use of [Reg05, Claim 3.9] with the more general [Pei10, Theorem 3.1] in order to
analyze the sum of an elliptical discrete Gaussian and a continuous Gaussian. (In addition, for convenience
the lemma says that the Ring-LWE secret is uniformly random; this is achieved using the standard technique
of randomizing the secret. See, e.g., [Reg10, Lemma 3.2].)

Lemma 6.8. There is an efficient algorithm that takes as input an integer q ≥ 2 with known factorization, a
fractional ideal I∨ ⊂ K, a coset e+ I∨ and bound d ≥ ‖e‖∞ = maxi|σi(e)|, a parameter r ≥

√
2q · η(I),

and samples from DI,r for some r ≥ r. It outputs samples that are within negligible statistical distance of
the Ring-LWE distribution As,r′ for a uniformly random s ∈ R∨q , where the coordinates of r′ are given by
(r′i)

2 := (ri|σi(e)|/q)2 + (rd/q)2.

In particular, notice that if we sample a coset e+ I∨ as in GDPI∨,g with g := αq/(
√

2r) and then apply
Lemma 6.8 with d := αqf(n)/(

√
2r), then the distribution of the resulting error rate r′ is distributed exactly

Υα, as defined in Definition 6.1. This is the reason that we work with Υα.
We will also use the following lemma, which says that any elliptical Gaussian whose parameters’ product

is sufficiently large is “smooth” modulo an ideal.

Lemma 6.9. For any fractional ideal I ⊂ K and r ∈ G where

c :=
( n∏
i=1

ri

)1/n
· (N(I) ·∆K)−1/n ≥ 1, (6.2)

we have r ≥ ηε(I) for ε = exp(−c2n).

Our particular case of interest is I = R∨, where N(I) ·∆K = 1 and so c = (
∏
i ri)

1/n.

Proof. Let R = diag(r) and L = R−1 · σ(I), so L∗ = R · σ(I)∗ and any nonzero w ∈ L∗ has the form
R · σ(w) for some nonzero w ∈ I∨. By the inequality of arithmetic and geometric means and the fact that
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∏
i|σi(w)| = |N(w)| ≥ N(I∨) = (N(I) ·∆K)−1, we have

‖w‖2 =
∑
i

r2
i · |σi(w)|2 ≥ n

(∏
i

r2
i · |σi(w)|2

)1/n

≥ c2n ,

so λ1(L∗) ≥ c
√
n. Lemma 2.6 then implies that 1 ≥ ηε(L), or equivalently, r ≥ ηε(I).

Proof of Lemma 6.6. If α ≤ exp(−n), then with high probability the coset representative e from the GDP
instance will satisfy

‖σ(e)‖ ≤
√
ng ≤ α

√
n/η(I) ≤ 2−nλ1(I∨) ,

where the last inequality follows from Claim 2.7. In this case, the problem can be solved efficiently using
Babai’s algorithm (Lemma 2.12). So, we may assume that α > exp(−n). Furthermore, by Proposition 3.3,
it suffices to solve GDPI∨,g′ with non-negligible probability, where g′ := αq/(

√
2r). Finally, we let

κ = poly(n) with κ ≥ 100n2` be such that the advantage of our R-LWEq,Υα oracle is at least 2/κ, where
` ≥ 1 is the number of samples required by the oracle.

The reduction takes as input an integer q ≥ 2 with known factorization, a fractional ideal I ⊂ K, a
parameter r ≥

√
2q ·η(I), samples from the distributions DI,r for each r ∈Wr,ζ,T = {ri,j} (Definition 6.4),

and a coset e + I∨ where e ← Dg′ . The goal is to recover e. The reduction will use its R-LWE oracle to
simulate oraclesOi : R×R≥0 → {0, 1} for 1 ≤ i ≤ s1 andOi : C×R≥0 for s1 < i ≤ s1 + s2 such that the
probability that Oi(z, t) outputs 1 depends only on exp(t)|z − σi(e)|. In other words, Oi is an oracle with a
“hidden center” σi(e) as in our definition of OHCP (Definition 4.3), with k = 1 for 1 ≤ i ≤ s1 and k = 2
for s1 < i ≤ s1 + s2. (Here, we assume that the oracles corresponding to complex embeddings implicitly
identify z ∈ R2 with z ∈ C in the natural way.) We will then use Proposition 4.4 to find good approximations
to σi(e) for each i, which will allow us to recover e.

For this purpose, for 1 ≤ i ≤ s1 define ki : R→ KR as ki(z) = σ−1(z · ei), and for s1 < i ≤ s1 + s2

define ki : C→ KR as ki(z) = σ−1(z · ei + z · ei+s2), where ei ∈ Rs1 × C2s2 has 1 in the ith coordinate
and 0 elsewhere. On input (z, t), the oracle Oi uses fresh samples from DI,ri,j , where (1 + ζ)j = exp(t).
It then runs the transformation from Lemma 6.8 on these samples, the coset e− ki(z) + I∨, parameter r,
and distance bound d := g′f(n)/

√
2 for some f(n) = ω(

√
log n) with f(n) ≤ n. Let Ai,z,t be the resulting

samples. Oi then calls the LWE oracle on Ai,z,t and outputs the 1 if and only if it accepts.
Using the oracles Oi, the reduction runs the procedure from Proposition 4.4 for each i = 1, . . . , s1 + s2,

with oracle Oi, confidence parameter κ, and distance bound d, receiving as output some approximation zi to
the oracle’s “center.” Finally, the reduction runs Babai’s algorithm (Lemma 2.12) on the coset e−

∑
ki(zi) +

I∨, receiving as output ê ∈ K, and returns ê+
∑
ki(zi) as its own output.

The running time is clear. We first assume that the zi are valid solutions to (exp(−κ), exp(−κ))-OHCP
with “hidden center” σi(e) and show that the reduction outputs the correct answer in this case. Since the zi
are valid solutions, by definition we have

|zi − σi(e)| ≤ exp(−κ)d = exp(−κ)αqf(n)/(
√

2r) ≤ exp(−κ)f(n)/η(I) ≤ 2−nλ1(I∨)/
√
n ,

where the last inequality follows from Claim 2.7. So, ‖e−
∑
ki(zi)‖ ≤ 2−nλ1(I∨), and the procedure from

Lemma 2.12 will therefore output exactly ê = e −
∑
ki(zi). Therefore, the reduction returns the correct

answer, e = ê+
∑
ki(zi).

It remains to show that, with non-negligible probability over the choice of e, for all i (1)Oi represents valid
instances of (exp(−κ), exp(−κ))-OHCP with “hidden center” σi(e); and (2) Oi satisfies the requirements
needed to apply Proposition 4.4.
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To prove validity, we first observe that Lemma 6.8 implies that the distribution of Ai,z,t depends only
on exp(t)|z − σi(e)| (up to negligible statistical distance). And, since e was drawn from Dg′ and d =
ω(
√

log n) · g′, we have
exp(−κ)d ≤ |σi(e)| ≤ d (6.3)

for all i except with negligible probability. Therefore, Oi, κ, and d correspond to a valid instance of
(exp(−κ), exp(−κ))-OHCP with “hidden center” σi(e), except with negligible probability.

We now analyze the oracles Oi. We write pi(z, t) for the probability that Oi outputs 1 on input (z, t)
and p(∞) for the probability that our R-LWE oracle outputs 1 on uniformly random input. Notice that
pi(0, 0) = pj(0, 0) for all i, j, and pi(0, 0) − p(∞) is exactly the advantage that our R-LWE oracle has
against the error rate that we get from applying Lemma 6.8 to e + I∨ with the parameters chosen above.
Furthermore, recall that when e is sampled as in GDPI∨,g′ , the resulting error rate is distributed exactly as
Υα. Since our oracle has advantage 2/κ against this distribution of error rate, by a standard Markov argument,
we may assume that pi(0, 0)− p(∞) ≥ 1/κ, which must hold with non-negligible probability.

We can now show that all of the items necessary to apply Proposition 4.4 hold, which will complete the
proof. Indeed, we have already shown Item 1, which asks that pi(0, 0)− p(∞) ≥ 1/κ. For Item 2, notice that
by Lemma 6.9, Lemma 2.5, and the union bound, for t ≥ κ/10, the distribution of Ai,0,t is within statistical
distance

` exp
(
−n exp(2t/n)r2

∏
j

|σj(e)|2/n
)
≤ ` exp

(
−n exp(2t/n− 4n− 1)q2

)
≤ 2 exp(−t/κ)

of the uniform distribution, where we have used Equation (6.3) to get |σj(e)| ≥ exp(−n)g′ = exp(−n)αq/(
√

2r) >
exp(−2n− 1)q/r except with negligible probability. It follows that |pi(0, t)− p(∞)| ≤ 2 exp(−t/κ), as
needed. Finally, for Item 3, notice that by Lemma 2.1 the distributions of Ai,z,t1 and Ai,z,t2 are within
statistical distance

min
{

1, 10`(exp(|t1 − t2|)− 1)
}
≤ κ|t1 − t2|

of each other, where we have applied the union bound over the ` samples in Ai,z,tj . Therefore, pi(z, t) must
be κ-Lipschitz in t, as needed.

7 Spherical Error

The goal of this section is to extend the main theorem, Theorem 6.2, to the case of spherical Gaussian
error (see Corollary 7.3). This would follow easily from Lemma 7.2, showing how to reduce LWE with
non-spherical error into LWE with spherical error, with a loss in approximation factor depending on the
number of samples used by the latter. The lemma is very similar to [LPR10, Lemma 5.16], and is included
here for completeness. We start with the following claim from [LPR10].

Claim 7.1. Let r1, . . . , rn ∈ R+ and s1, . . . , sn ∈ R+ be such that for all i, |si/ri − 1| <
√

log n/n. Then
any set A ⊆ Rn whose measure under the Gaussian distribution Dr1 × · · · ×Drn is non-negligible, also has
non-negligible measure under Ds1 × · · · ×Dsn .

In the lemma below, we use R-LWE with a fixed error distribution, as opposed to a distribution over error
distributions as in Lemma 2.15.

Lemma 7.2 (Worst-case to average-case with spherical error). There is a randomized polynomial-time
algorithm that given any α > 0 and ` ≥ 1, as well as an oracle that solves R-LWEq,Dξ given only ` samples,
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where ξ = α(n`/ log(n`))1/4, solves R-LWEq,Dr for any (possibly unknown) r satisfying that all ri are in
[0, α].

Proof. For e1, . . . , e` ∈ T, consider the transformation mapping ` samples (ai, bi)
`
i=1 to (ai, bi + ei)

`
i=1.

Then it is easy to see that for all s ∈ R∨q , ψ, r′, if we sample from (As,ψ)` (i.e., ` independent samples
from As,ψ) and apply this transformation with e1, . . . , e` chosen independently from Dr′ , then the output
distribution (averaged over the choice of e1, . . . , e`) is (As,ψ+Dr′ )

`.
The reduction repeats the following a polynomial number of times. Choose e1, . . . , e` independently from

Dξ. Then estimate the acceptance probability of the oracle on the following two input distributions: the first
is obtained by applying the above transformation with e1, . . . , e` to our input samples (each time with fresh
inputs); the second is the uniform distribution (Rq × T)`. If in any of these polynomial number of attempts
a non-negligible difference is observed between the two acceptance probabilities, output “non-uniform”
(accept); otherwise output “uniform” (reject).

Notice that if our input distribution is uniform, then in each of the attempts, the two distributions on
which we estimate the oracle’s acceptance probability are exactly the same, hence we output “uniform”
with overwhelming probability. So assume that our input distribution is As,Dr for a uniform s and some r
satisfying that all ri are in [0, α]. Let B(e1, . . . , e`) be the distribution on ` pairs that our reduction uses as
input to the oracle. Define the vector r′ with coordinates r′2j = ξ2 − r2

j so that Dr + Dr′ = Dξ. By our
observation above, the average of B(e1, . . . , e`) over e1, . . . , e` chosen independently from Dr′ is (As,Dξ)

`.
Let S be the set of all tuples (e1, . . . , e`) for which the oracle has a non-negligible difference in acceptance
probability on B(e1, . . . , e`) and on the uniform distribution. By assumption and a Markov argument, with
non-negligible probability over the choice of s, the measure of S under (Dr′)

` is non-negligible. Since

1 ≤ ξ√
ξ2 − r2

i

≤ ξ√
ξ2 − α2

≤ 1 +

√
log(n`)

n`
,

it follows from Claim 7.1 that the measure of S under (Dξ)
` is also non-negligible, and we are done.

Recalling the definition of Υα from Definition 6.1 and noting that with high probability all the coordinates
of its error rate r are at most α · ω(

√
log n), we immediately obtain the following hardness result for

average-case, decision Ring-LWE with spherical error.

Corollary 7.3. With notation as in Theorem 6.2, there is a polynomial-time quantum reduction fromK-DGSγ
to the (average-case, decision) problem of solving R-LWEq,Dξ using ` samples, where

γ = max
{
η(I) · (

√
2/ξ) · (n`/ log(n`))1/4 · ω(

√
log n),

√
2n/λ1(I∨)

}
.
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