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Abstract

Sampling integers with Gaussian distribution is a fundamental problem that arises in almost every
application of lattice cryptography, and it can be both time consuming and challenging to implement.
Most previous work has focused on the optimization and implementation of integer Gaussian sampling
in the context of specific applications, with fixed sets of parameters. We present new algorithms for
discrete Gaussian sampling that are both generic (application independent), efficient, and more easily
implemented in constant time without incurring a substantial slow-down, making them more resilient to
side-channel (e.g., timing) attacks. As an additional contribution, we present new analytical techniques
that can be used to simplify the precision/security evaluation of floating point cryptographic algorithms,
and an experimental comparison of our algorithms with previous algorithms from the literature.

1 Introduction

Lattice-based cryptography has gained much popularity in recent years, not only within the cryptographic
community, but also in the area of computer security in both research and industry, for at least two reasons:
first, many classical cryptographic primitives can be realized very efficiently using lattices, providing strong
security guarantees, including conjectured security against quantum computers [14, 4, 39]. Second, lattices
allow to build advanced schemes that go beyond classical public key encryption, like fully homomorphic
encryption [9, 21, 16, 8], identity based encryption [2, 1], attribute based encryption [6, 7], some forms of
multilinear maps [20, 26] and even some forms of program obfuscation [10]. Discrete Gaussian distributions
(i.e., normal Gaussian distributions on the real line, but restricted to take integer values), play a fundamental
role in lattice cryptography: Gaussian sampling is at the core of security proofs (from worst-case lattice
problems) supporting both the conjectured hardness of the Learning With Errors (LWE) problem [42, 41,
27, 36], and the tightest reductions for the Short Integer Solution (SIS) problem [30, 29], which provide a
theoretical foundation to the field. The use of Gaussian distributions is especially important in the context
of the most advanced cryptographic applications of lattices that make use of preimage sampling [22, 37, 28],
as the use of other distributions can easily leak information about secret keys and open cryptographic
primitives to devastating attacks [34]. Even in the technically simpler context of LWE noise generation,
where Gaussian distributions can be safely replaced by more easily samplable (e.g., uniform) distributions
(see e.g. [12, 29]), this requires a noticeable increase in the noise level, resulting in substantial performance
degradation, and still points to discrete Gaussian distributions as the most desirable choice to achieve good
performance/security trade-offs. In summary, despite continued theoretical efforts and practical attempts
to replace Gaussian distributions with more implementation friendly ones, and a few isolated examples
where discrete Gaussians can be avoided altogether with almost no penalty [4], the cryptography research
community has been converging to accept discrete Gaussian sampling as one of the fundamental building
blocks of lattice cryptography.
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Gaussian sampling aside, lattice cryptography can be very attractive from an implementation standpoint,
requiring only simple arithmetic operations on small integer numbers (easily fitting a computer word on
commodity microprocessors), and offering ample opportunities for parallelization at the register and processor
level, both in hardware and in software implementations. In this respect, discrete Gaussian sampling can
often be the main hurdle in implementation/optimization efforts, and a serious bottleneck to achieve good
performance in practice. As many primitives find their way into practical implementations [3, 15] and lattice
cryptography is considered for possible standardization as a post-quantum security solution [35], the practical
aspects of discrete Gaussian sampling (including efficiency, time-memory trade-offs, side-channel resistance,
etc.) have started to attract the attention of the research community, e.g., see [11, 43, 14, 13, 33, 18, 46,
17]. However, most of these works address the problem of Gaussian sampling in the context of a specific
application, and for specific values of the parameters and settings that come to define the discrete Gaussian
sampling problem: the standard deviation of the Gaussian distribution, the center (mean) of the Gaussian,
how these values depend on the targeted security level, and whether the values are fixed once and for all,
or during key generation time, or even on a sample-by-sample basis. So, while implementation efforts have
clearly demonstrated that (if properly specialized and optimized) discrete Gaussian sampling can be used
in practice, it is unclear to what extent optimized solutions can be ported from one application to another,
and even when this is possible, achieving good performance still seems to require a disproportionate amount
of effort. Finally, achieving security against side-channel (e.g., timing) attacks has been recognized as an
important problem [23, 38, 45], but developing constant-time implementations of Gaussian sampling without
incurring major performance penalties is still a largely unsolved problem.

Our Contribution. We develop of a new discrete Gaussian sampling algorithm over the integers with
a unique set of desirable properties that make it very attractive in cryptographic applications. The new
algorithm

• can be used to sample efficiently from discrete Gaussian distributions with arbitrary and varying
parameters (standard deviation and center), enabling its use in a wide range of applications.

• provides a time-memory trade-off, the first of its kind for sampling with varying parameters, allowing
to fine-tune the performance on different platforms.

• can be split into an offline and online phase, where the offline phase can be carried out even before
knowing the parameters of the requested distribution. Moreover, both phases can be implemented
in constant time with only minor performance degradation, providing resilience against timing side-
channel attacks.

• can be parallelized and optimized, both in hardware and software, in a largely application-independent
manner.

We demonstrate the efficiency of the new algorithm both through a rigorous theoretical analysis, and
practical experimentation with a prototype implementation. Our experimental results show that our new
algorithms achieve generality and flexibility without sacrificing performance, matching, or even beating the
online phase of previous (specialized) algorithms. See next paragraph and Sect. 6.6 for details.

A recurring problem in the analysis of Gaussian sampling (or other probabilistic algorithms involving
the use of real numbers at some level), is to accurately account for how the use of floating point approxima-
tions affects performance and security. This is often a critical issue in practice, as using standard (53 bit)
double precision floating point numbers offers major efficiency advantages over the use of arbitrary preci-
sion arithmetic libraries, but can have serious security implications when targeting 80bit or 100bit security
levels. As an additional contribution, we develop new analytical tools for the accuracy/security analysis of
floating point algorithms, and exemplify their use in the analysis of our new Gaussian sampling algorithm.
More specifically, we propose a new notion of closeness between probability distributions (which we call the
“max-log” distance), that combines the simplicity and ease of use of statistical distance (most commonly
used in cryptography), with the effectiveness of Rényi and KL divergences recently used in cryptography to
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obtain sharp security estimates [39, 5, 40]. The new measure is closely related to the standard notion of
relative error and the Rényi divergence of order ∞, but it is easier to define1 and it is also a metric, i.e.,
it enjoys the (symmetric and triangle inequality) properties that make the statistical distance a convenient
tool for the analysis of complex algorithms. Using this new metric, we show that our new algorithms can be
implemented using standard (extended) double precision floating point arithmetic, and still provide a more
than adequate (100 bits or higher) level of security.

Finally, we also evaluate different algorithms for discrete Gaussian sampling experimentally in a common
setting. While previous surveys [19] and experimental studies [11, 24] exist, they either do not provide a fair
comparison or are incomplete. Somewhat surprisingly, an algorithm [25] that has gone mostly unnoticed in
the cryptographic community so far, emerged as very competitive solution in our study, within the class of
variable-time algorithms that can be used when timing attacks are not a concern.

Techniques. The main idea behind our algorithm is to reduce the general discrete Gaussian sampling
problem (for arbitrary standard deviation s and center c), to the generation (and recombination) of a
relatively small number of samples coming from a Gaussian distribution for a fixed and rather small value
of s. Reducing the general problem to discrete Gaussian sampling for a fixed small value of s has several
advantages:

• Gaussian sampling for fixed parameters can be performed more efficiently than general Gaussian sam-
pling because the probability tables or tree traversal data structures required by the basic sampler can
be precomputed. Moreover, as the standard deviation s of the basic sampler is small, these tables or
data structures only require a very modest amount of memory.

• Since the parameters of the basic sampler are fixed and do not depend on the application input, the
basic samples can be generated offline. The online (recombination) phase of the algorithm is very fast,
as it only needs to combine a small number of basic samples.

• The online (recombination) phase of the algorithm is easily implemented in constant time, as the
number of operations it performs only depends on the application parameters, and not on the actual
input values or randomness. The offline phase can also be made constant time with only a minor
performance penalty, observing that basic samples are always generated and used in batches. So,
instead of requiring the generation of each basic sample to take a fixed amount of time, one can look
at the time to generate a batch of samples in the aggregate. Since the basic samples are totally
independent, their aggregate generation time is very sharply concentrated around the expectation, and
can be made constant (except with negligible probability) simply by adding a small time penalty to
the generation of the whole batch.

• The parameters of the basic sampler are fixed once and for all, and do not depend on the parameters
of online phase and final application. This opens up the possibility of a hybrid hardware/software
implementation, where the basic sampler is optimized and implemented once and for all, perhaps in
hardware, and making efficient use of parallelism. The fast recombination phase is quickly executed
in software by combining the samples generated by the hardware module, based on the application
parameters.

The method we use to combine the basic samples extends and generalizes techniques that have been used
in the implementation of Gaussian samplers before. The work most closely related to ours is [39], which
generates Gaussian samples with a relatively large standard deviation s by first computing two samples
x1, x2 with smaller standard deviation ≈

√
s, and then computing kx1 +x2, for k ≈

√
s. We improve on this

basic idea in several dimensions:

• First, we use the idea recursively, obtaining x1 and x2 also by combining multiple samples with even
smaller standard deviation. While recursion is a rather natural and simple idea, and it was already

1The distance between two discrete distributions P and Q (with the same support S), is simply the maximum (over x ∈ S)
of |logP(x)− logQ(x)|.
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mentioned in [39], the realization that the performance benefits of using basic samples with even smaller
standard deviation more than compensate the overhead associated to computing several samples is new.

• Second, we employ a convolution theorem from [29] to combine the samples (at each level of the
recursion). This allows for greater flexibility in the choice of parameters, for example the number of
samples to combine at each level or the choice of coefficients. This can be important in the context of
side-channel attacks as demonstrated in [38].

• Finally, we generalize the algorithm to sample according to Gaussian distributions with arbitrary center
as follows. Assume the center c has k binary fractional digits, i.e., c ∈ Z/2k. Then, we can use a first
integer Gaussian sample (scaled by a factor 2−k) to randomly round c to a center in Z/2k−1. Then, we
use a second sample (scaled by 2−(k−1)) to round the new center to a coarser set Z/2k−2, and so on for
k times, until we obtain a sample in Z as desired. Since the final output is obtained by combining a
number of Gaussian samples together, the result still follows a discrete Gaussian distribution. Moreover,
since the scaling factors grow geometrically, the standard deviation of the final output is (up to a small
constant factor) the same as the one of the original samples.

The algorithms presented in this paper include several additional improvements and optimizations, as
described below. Using different values for the standard deviation of the basic sampler, and expressing the
center of the Gaussian c to a base other than 2, allows various time-memory trade-offs that can be used to
fine-tune the performance of the algorithm to different platforms. The exact value of the standard deviation
of the final output distribution can be finely adjusted by adding some noise to the initial center and invoking
the convolution theorem of [37]. Finally, when the center of the Gaussian c is a high precision floating point
number, the number of iterations (and basic samples required) can be greatly reduced by first rounding it
to a coarser grid using a simple biased coin flip, and using our max-log metric to get sharper estimates on
the number of precision bits required.

Outline. We begin by introducing some notation in Sect. 2, and a general framework for the analysis of
approximate samplers in Sect. 3. In Sect. 4 we introduce our new “max-log” metric, which we will use to
simplify the analysis for complex sampling algorithms. Our new sampling algorithms are presented in Sect. 5.
Section 6 concludes the paper with a description of our experimental results. Appendix A discusses pitfalls
in a previous work [44] attempting to tighten the precision/security analysis of approximate samplers.

2 Preliminaries

Notation. We denote the integers by Z and the reals by R. Roman and Greek letters can denote elements
from either set, while bold letters denote vectors over them. Occasionally, we construct vectors on the fly
using the notation (·)i∈S for some set S (or in short (·)i if the set S is clear from context), where · is a
function of i. We denote the logarithm with base 2 by log and the one with base e by ln.

Calligraphic letters are reserved for probability distributions and x← P means that x is sampled from the
distribution P. For any x in the support of P we denote its probability under P by P(x). All distributions
in this work are discrete. The statistical distance between two distributions P and Q over the same support

S is defined as ∆sd(P,Q) = 1
2

∑
x∈S |P(x)−Q(x)| and the KL-divergence as δkl(P,Q) =

∑
x∈S P(x) ln P(x)

Q(x) .

Note that the former is a metric, while the latter is not. Pinsker’s inequality bounds ∆sd in terms of δkl by
∆sd(P,Q) ≤

√
δkl(P,Q)/2. A probability ensemble Pθ is a family of distributions indexed by a parameter

θ (which is possibly a vector). We extend any measure δ between distributions to probability ensembles
as δ(Pθ,Qθ) = maxθ δ(Pθ,Qθ). For notational simplicity, we do not make a distinction between random
variables, probability distributions, and probabilistic algorithms generating them. An algorithm A with
oracle access to a sampler for distribution ensemble Pθ is denoted by AP, which means that it adaptively
sends queries θi to the sampler, which returns a sample from Pθi . If A uses only one sample from Pθ, then
we write A(Pθ).
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In this work we will occasionally encounter expressions of the form ε + O(ε2) for some small ε. In all
of these cases, the constant c hidden in the asymptotic notation is much smaller than 1/ε (say cε ≤ 2−30).
So, the higher order term O(ε2) has virtually no impact, neither in practice nor asymptotically, on our

applications. We define ε̂ = ε + O(ε2) and write a ' b for a = b̂, and similarly a . b for a ≤ b̂. This allows
us to drop the O(ε2) term and avoid tracing irrelevant terms through our calculations without losing rigor,
e.g. ln(1 + ε) = ε+O(ε2) can be written as ln(1 + ε) ' ε.

For c ∈ [0, 1) and k ∈ Z we define rounding operators dcek = d2kce/2k and bcck = b2kcc/2k, which round
c (up or down, respectively) to a number with k fractional bits. We also define a randomized rounding
operator bcek = bcck+Bα/2

k (where Bα is a Bernoulli random variable of parameter α = 2kc mod 1) which
rounds c to either dcek (with probability α) or bcck (with probability 1− α).

Approximations of Real Numbers. A p-bit floating point (FP) approximation x̄ of a real x stores the p
most significant bits of x together with a binary exponent. This guarantees that the relative error is bounded
by δre(x, x̄) = |x− x̄|/|x| ≤ 2−p. We extend the notion of relative error to any two distributions P and Q

δre(P,Q) = max
x∈S

δre(P(x),Q(x)) = max
x∈S

|P(x)− Q(x)|
P(x)

,

where S is the support of P. It is straightforward to verify that ∆sd(P,Q) ≤ 1
2δre(P,Q). The relative error

can also be used to bound the KL-divergence:

Lemma 2.1 (Strengthening [39, Lemma 2]) For any two distributions P and Q with the same support
S with µ = δre(P,Q) < 1,

δkl(P,Q) ≤ µ2

2(1− µ)2
.

In particular, if µ ≤ 1/4, then δkl(P,Q) ≤ (8/9)µ2 < µ2.

Proof: Recall that δkl(P,Q) =
∑
iP(i) ln(P(i)/Q(i)). For any p, q > 0, let x = (p− q)/p = 1− (q/p) < 1, so

that ln(p/q) = − ln(1−x) = x+e(x) with error function e(x) = −x−ln(1−x). Notice that e(0) = 0, e′(0) = 0
and e′′(x) = 1/(1 − x)2 ≤ 1/(1 − µ)2 for all x ≤ µ. It follows that e(x) ≤ x2/(2(1 − µ)2) ≤ µ2/(2(1 − µ)2)
for all |x| ≤ µ, and

δkl(P,Q) =
∑
i

P(i) ln

(
P(i)

Q(i)

)
≤
∑
i

P(i) ·
(
P(i)− Q(i)

P(i)
+ e

)
= 1− 1 + e = e

where e = µ2/(2(1− µ)2).� This is a slight improvement over [39, Lemma 2], which shows that if µ ≤ 1/4,

then δkl(P,Q) ≤ 2µ2. So, Lemma 2.1 improves the bound by a constant factor 9/4. In fact, for µ ≈ 0,
Lemma 2.1 shows that the bound can be further improved to δkl(P,Q) . 1

2µ
2.

Discrete Gaussians. Let ρ(x) = exp(−πx2) be the Gaussian function with total mass
∫
x
ρ(x) = 1. We

extend it to countable sets A by ρ(A) =
∑
x∈A ρ(x). We write ρc,s(x) = ρ((x − c)/s) for the Gaussian

function centered around c and scaled by a factor s. The discrete Gaussian distribution over the integers,
denoted DZ,c,s, is the distribution that samples y ← DZ,c,s with probability ρc,s(y)/ρc,s(Z) for any y ∈ Z.
Sampling from DZ,c,s is computationally equivalent to sampling from Dc+Z,s, the centered discrete Gaussian
over the coset c+Z. For any ε > 0, the smoothing parameter [30] of the integers ηε(Z) is the smallest s > 0
such that ρ(sZ) ≤ 1 + ε. A special case of [30, Lemma 3.3] shows that the smoothing parameter satisfies

ηε(Z) ≤
√

ln(2 + 2/ε)/π.

So, ηε(Z) < 6 is a relatively small constant even for very small values of ε < 2−160. Another useful bound,
which easily follows from Poisson summation formula [30, Lemma 2.8], is δre(s, ρc,s(Z)) ≤ δre(s, ρs(Z)) =
ρ(sZ)− 1. Therefore, for any s ≥ ηε(Z), and c ∈ R, we have

δre(s, ρc,s(Z)) ≤ ε,
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i.e., the total measure of ρc,s(Z) approximates s. We will use the smoothing parameter to invoke the following
tail bound and discrete convolution theorems.

Lemma 2.2 ([22, Lemma 4.2 (ePrint)]) For any ε > 0, any s > ηε(Z), and any t > 0,

Prx←DZ,c,s [|x− c| ≥ t · s] ≤ 2e−πt
2

· 1 + ε

1− ε
.

Theorem 2.1 ([29, Theorem 3]) Let Λ be an n-dimensional lattice, z ∈ Zm a nonzero integer vector,
s ∈ Rm with si ≥

√
2‖z‖∞ηε(Z) for all i ≤ m and ci+Λ arbitrary cosets. Let yi be independent samples from

Dci+Λ,si , respectively. Then the distribution of y =
∑
ziyi is close to DY,s, where Y =

∑
i zici + gcd(z)Λ

and s =
√∑

i z
2
i s

2
i . In particular, if D̃Y,s is the distribution of y, then δre(DY,s, D̃Y,s) ≤ 1+ε

1−ε − 1 ' 2ε.

The theorem is stated in its full generality, but in this work we will only use it for the one dimensional
lattice Z and for the case that ci = 0 and gcd(z) = 1.

Theorem 2.2 ([37, Theorem 1]) Let S1,S2 > 0 be positive definite matrices, with S = S1 + S2 and
S−1

3 = S−1
1 + S−1

2 > 0. Let Λ1, Λ2 be lattices such that
√

S1 ≥ ηε(Λ1) and
√

S3 ≥ ηε(Λ2) for some
positive ε ≤ 1/2, and let c1, c2 ∈ Rn be arbitrary. Then the distribution of x1 ← x2 + Dc1−x2+Λ1,

√
S1

,

where x2 ← Dc2+Λ2,
√
S2

, is close to Dc1+Λ1,
√
S1

. In particular, if D̃c1+Λ1,
√
S1

is the distribution of x1, then

δre(Dc1+Λ1,
√
S1
, D̃c1+Λ1,

√
S1

) ≤
(

1+ε
1−ε

)2

− 1 ' 4ε.

Again, we stated the theorem in its full generality, but we will only need it for one dimensional lattices.
Accordingly, S1, S2, and S3 will simply be (the square of) real noise parameters s1, s2, s3.

3 The Security of Approximate Samplers

Many security reductions for lattice-based cryptographic primitives assume that the primitive has access
to samplers for an ideal distribution, which may be too difficult or costly to sample from, and is routinely
replaced by an approximation in any concrete implementation. Naturally, if the approximation is good
enough, then security with respect to the ideal distribution implies that the actual implementation (using
the approximate distribution) is also secure. But evaluating how the quality of approximation directly affects
the concrete security level achieved by the primitive can be a rather technical task. Traditionally, the quality
of the approximation has been measured in terms of the statistical distance δ = ∆sd, which satisfies the
following useful properties:

1. Probability preservation: for any event E over the random variableX we have PrX←P[E] ≥ PrX←Q [E]−
δ(P,Q). This property allows to bound the probability of an event occurring under P in terms of the
probability of the same event occurring under Q and the quantity δ(P,Q). It is easy to see that this
property is equivalent to the bound ∆sd(P,Q) ≤ δ(P,Q). So the statistical distance δ = ∆sd satisfies
this property by definition.

2. Sub-additivity for joint distributions: if (Xi)i and (Yi)i are two lists of discrete random variables over
the support

∏
i Si, then

δ((Xi)i, (Yi)i) ≤
∑
i

max
a

δ([Xi | X<i = a], [Yi | Y<i = a]),

where X<i = (X1, . . . , Xi−1) (and similarly for Y<i), and the maximum is taken over a ∈
∏
j<i Sj .

3. Data processing inequality: δ(f(P), f(Q)) ≤ δ(P,Q) for any two distributions P and Q and (possibly
randomized) algorithm f(·), i.e., the measure does not increase under function application.
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We call any measure that satisfies these three properties a useful measure. Indeed, the usefulness of the mea-
sure is illustrated by the following simple lemma, but first we need to define the class of generic cryptographic
schemes it applies to.

Definition 1 (Standard cryptographic scheme) We consider an arbitrary cryptographic scheme S, con-
sisting of one or more algorithms with oracle access to a probability distribution ensemble Pθ, and whose
security against an adversary A (also consisting of one or more algorithms) is described in terms of a game
GP
S,A defining the event that A succeeded in breaking the scheme S. The success probability of A against S

(when using samples from Pθ) is defined as εPA = Pr{GP
S,A}. The cost of an attack A against S is defined as

tA/ε
P
A, and the bit-security of S is the minimum (over all adversaries A) of log(tA/ε

P
A).

For simplicity, we assume that the running time tA of the game GP
S,A does not depend on the distributions

Pθ, and that the number of calls to Pθ performed during any run of the game GP
S,A is bounded from above

by tA.

Lemma 3.1 Let SP be a standard cryptographic scheme as in Definition 1 with black-box access to a prob-
ability distribution ensemble Pθ, and δ any cryptographically useful measure. If SP is κ-bit secure and
δ(Pθ,Qθ) ≤ 2−κ, then SQ is (κ− 1)-bit secure.

Before we prove Lemma 3.1, we begin with a technical observation that will be used throughout this
section.

Lemma 3.2 Let δ be a cryptographically useful measure, let Pθ and Qθ be two probability ensembles and let
AP be an algorithm querying Pθ at most q times. Let θi (resp. θ̃i) be the distribution of the i-th query made
by AP (resp. AQ). Then,

δ((θi,Pθi | Xi), (θ̃i,Qθ̃i | Xi)) ≤ δ(Pθ,Qθ)

for any event Xi that (θj ,Pθj )j<i and (θ̃j ,Qθ̃j )j<i take some specific (and identical) value.

Proof: Note that at any point during the execution of A, conditioned on the event Xi, A
P and AQ behave

identically up to the point they make the ith query. In particular, the conditional distributions (θi | Xi) and
(θ̃i | Xi) are identical and δ((θi | Xi), (θ̃i | Xi)) = 0. It follows by subadditivity (for joint distributions) that

δ((θi,Pθi | Xi), (θ̃i,Qθ̃i | Xi)) ≤ δ((θi | Xi), (θ̃i | Xi)) + max
θ
δ(Pθ,Qθ) = max

θ
δ(Pθ,Qθ).

�

Proof:[of Lemma 3.1] First observe that the number of queries drawn from Pθ (Qθ resp.) is bounded
by the running time tA. For arbitrary adversary A, we have εPA ≥ εQA − δ(GP

S,A, G
Q
S,A) by probability

preservation of δ. By the bound on the number of queries and the data processing inequality, we have
δ(GP

S,A, G
Q
S,A) ≤ δ((θi,Pθi)i<tA , (θ̃i,Qθ̃i)i<tA), where (θi)i<tA (resp. (θ̃i)i<tA) is the sequence of queries

made to Pθ (resp. Qθ) when A is attacking SP (resp. SQ). By sub-additivity for joint distributions and
Lemma 3.2, this quantity is at most tAδ(Pθ,Qθ). So εPA ≥ εQA − tAδ(Pθ,Qθ). Dividing by tA, we get
εPA
tA
≥ εQA

tA
− δ(Pθ,Qθ) ≥ εQA

tA
−2−κ. Because SP is κ bit secure, we have 2−κ ≥ εPA

tA
≥ εQA

tA
−2−κ, or, equivalently,

21−κ ≥ εQA
tA

. This shows that log tA
εQA
≥ κ− 1, i.e., SQ provides κ− 1 bits of security. �

Lemma 3.1 captures the intuition that security with respect to an ideal distribution implies security
with respect to any sufficiently good approximation, and it also gives a way to establish concrete security
bounds. In order to (almost) preserve κ bits of security, one needs δ(Pθ,Qθ) < 2−κ, e.g., as obtained, using
δ = ∆sd and estimating the ideal probabilities Q(x) with κ-bit (fixed point or floating point) approximations.
Additionally, Lemma 3.1allows us to view DZ,c,s as a ts-bounded distribution without losing security. Notice

that for a security parameter κ we can set t to about
√
κ ln 2/π ≈ η2−κ(Z), which by Lemma 2.2 implies a
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statistical distance of less than 2−κ if s ≥ ηε(Z). So in the rest of this work we will identify the unbounded
Gaussian distribution DZ,c,s with its truncation with support Z ∩ [c± ts] whenever appropriate.

While using ∆sd is asymptotically efficient, it has been observed that in practice it can lead to unneces-
sarily large memory cost and slow computations. The work of [39] showed that we can improve the security
analysis of approximate distributions. Assume we have a measure δ that satisfies the following strengthening
of the probability preservation property:

1.* Pythagorean probability preservation with parameter λ ∈ R, which states that for any joint distributions
(Pi)i and (Qi)i over support

∏
i Si, if

δ(Pi | ai,Qi | ai) ≤ λ

for all i and ai ∈
∏
j<i Sj , then

∆sd((Pi)i, (Qi)i) ≤ ‖(max
ai

δ(Pi | ai,Qi | ai))i‖2.

We call a measure that satisfies this property λ-pythagorean. A pythagorean measure additionally satisfying
sub-additivity for joint distributions and the data processing inequality (i.e. properties 2 and 3) will be called
λ-efficient. Using a pythagorean δ, we can improve Lemma 3.1as follows.

Lemma 3.3 Let SP be a standard cryptographic scheme as in Definition 1 with black-box access to a proba-
bility distribution ensemble Pθ. If SP is κ-bit secure and δ(Pθ,Qθ) ≤ 2−κ/2 for some 2−κ/2-efficient measure
δ, then SQ is (κ− 3)-bit secure.

Proof: Towards a contradiction, assume for some adversary A we have tA
εPA
≥ 2κ, but tA

εQA
< 2κ−3. Consider

the hypothetical game [GQ
S,A]n (resp. [GP

S,A]n) consisting of n independent copies of GQ
S,A (resp. GP

S,A).

Denote the probability of the event that A wins at least one of the n games by εQAn (resp. εPAn). We begin
by showing that we can bound εPAn from below in terms of εQAn using probability preservation and data
processing inequality of ∆SD:

εPAn ≥ εQAn −∆SD([GP
S,A]n, [GQ

S,A]n) ≥ εQAn −∆SD((θi,Pθi)i, (θ̃i,Qθ̃i)i)

where (θi)i (resp. (θ̃i)i) is the sequence of queries made during the game [GP
S,A]n (resp. [GQ

S,A]n). Lemma

3.2 ensures that we can apply pythagorean probability preservation (Property 1*) to obtain

εPAn ≥ εQAn −
√
tAn · δ(Pθ,Qθ) ≥ εQAn −

√
tAn · 2−κ/2 ≥ εQAn −

√
n · tA

2κ
. (1)

Now we set n = 1/εQA so that εQAn = 1− (1− εQA)n > 1− exp(−1). Substituting into (1) and using tA
εQA
< 2κ−3

we get

εPAn > 1− exp(−1)−
√

tA

2κεQA
> 1− exp(−1)− 2−3/2 ≈ 0.279.

Finally, to achieve a contradiction, we derive a simple upper bound. By union bound εPAn ≤ nεPA. Since SP

is κ-bit secure, εPA ≤ tA/2κ, which shows that

εPAn ≤
ntA
2κ

=
tA

2κεQA
< 2−3 = 0.125

which is smaller than the lower bound. �

This shows that δ(Pθ,Qθ) ∼ 2−κ/2 is sufficient to maintain κ bits of security. This type of analysis
was first used in [39] for the special case of fixed distributions (i.e. θ is fixed and cannot be chosen by the
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adversary) and the KL-divergence δ =
√
δkl, which is efficient (see e.g. [5, 39] for proofs). Lemma 2.1, in

combination with Lemma 3.3, shows that it is sufficient for algorithms to approximate the probabilities of the
target distribution with floating point numbers of precision about half the security parameter. Interestingly,
in this setting, it is important to approximate probabilities in floating point, as κ/2 bits of fixed-point
precision is not secure. (See the full version [31] for an attack.)

In this work, we make use of the Theorem 2.1 and 2.2 to reduce the task of generating a specific dis-
crete Gaussian, to generating samples from different distributions. Observe that these theorems assume
access to exact samplers. In order to analyze our algorithms, we need to bound the divergence from the
true distribution when applying the theorems to samples from a distribution close to the exact Gaussian
distributions.

Lemma 3.4 Let ∆ be a useful or efficient metric. Let AP be an algorithm querying a distribution ensemble
Pθ at most q times. Then we have

∆(AQ ,R) ≤ ∆(AP,R) + q ·∆(Pθ,Qθ)

for any distribution R and any ensemble Qθ.

Proof: By triangle inequality, ∆(AQ ,R) ≤ ∆(AP,R) + ∆(AP, AQ). Let (θi)i (resp. (θ̃i)i) be the sequence
of queries made by AP (resp. AQ). By data processing inequality ∆(AP, AQ) ≤ ∆((θi,Pi)i, (θ̃i,Qi)i). The
rest follows from sub-additivity and Lemma 3.2. �

By letting A be the algorithm that performs the convolution as in Theorem 2.1 and applying Lemma 3.4 to
it with Pi = DΛ,ci,si and approximate distributions Qi = D̃Λ,ci,si , we can show that convolving approximate
discrete Gaussians results in good approximations of the expected discrete Gaussian. Furthermore, we can
also apply Lemma 3.4 to Theorem 2.2, if we have a bound on the approximation of the second sampler for
any center c2.

As an example, consider again the statistical distance ∆sd. By applying Lemma 3.4 to the convolutions
in Theorem 2.1 (resp. 2.2), the resulting approximation error satisfies:

∆sd(AD̃Λ,ci,si ,DY,s) . 2ε+
∑
i

∆sd(D̃Λ,ci,si ,DΛ,ci,si).

Conveniently, this works recursively: if we use the obtained approximate samples as input to another convo-
lution, the loss in statistical distance is simply additive in the number of convolutions we apply. This shows
that using a metric to analyze approximation errors is relatively straight-forward.

Unfortunately, ∆sd is not cryptographically efficient and thus requires high precision to guarantee security.
While

√
δkl allows to improve on that, it is not a metric and thus Lemma 3.4 does not apply. One can still

use
√
δkl to improve on the efficiency by exploiting the metric properties of ∆sd, i.e. one first decomposes

the statistical distance of the approximate distribution as in the previous paragraph, and then bounds the
individual parts using property 3. But as we start working with more complex and recursive algorithms,
this method becomes more involved. One needs to be careful to not rely on typical metric properties when
analyzing algorithms using

√
δkl, like triangle inequality and symmetry. We found it much more convenient

to use a cryptographically useful and efficient metric ∆. This allows to carry out the analysis using only ∆,
and directly claim bit security of 2 log ∆(Pθ,Qθ) by Lemma 3.3.

4 A New Closeness Metric

In this section we introduce a new measure of closeness between probability distributions which combines
the ease of use of a metric with the properties of divergences that allow to obtain sharper security bounds.
More specifically, we provide an efficient metric with a simple definition.

Definition 2 The max-log distance between two distributions P and Q over the same support S is

∆ml(P,Q) = max
x∈S
|lnP(x)− lnQ(x)| .

9



For convenience, we also write ∆ml(p, q) = |ln p − ln q| for any two positive reals p and q. It is easy to
see that ∆ml is a metric.

Lemma 4.1 ∆ml is a metric, i.e., it is symmetric (∆ml(P,Q) = ∆ml(Q,P)), positive definite (∆ml(P,Q) ≥
0 with equality if and only if P = Q), and it satisfies the triangle inequality (∆ml(P,Q) ≤ ∆ml(P,R) +
∆ml(R,Q)).

Proof: All properties are inherited from the infinity norm, simply by noticing that ∆ml(P,Q) = ‖f(P) −
f(Q)‖∞ for some function f(P) = (lnP(x))x. �

We note that in the regime close to 0, ∆ml is essentially equal to δre.

Lemma 4.2 For any two positive real p and q,

∆ml(p, q) ≤ − ln(1− δre(p, q)) . δre(p, q) (2)

δre(p, q) ≤ exp(∆ml(p, q))− 1 . ∆ml(p, q). (3)

The same bounds hold for ∆ml(P,Q) and δre(P,Q) for any two distributions P,Q over the same support S.

Proof: Let ε = δre(p, q), so that (q/p) ∈ (1±ε). It follows that ∆ml(p, q) = |ln(p/q)| ≤ max[ln(1+ε), ln(1/(1−
ε))] = − ln(1− ε). This proves (2). For (3), let ε = ∆ml(p, q), so that max(p/q, q/p) ≤ exp(ε). If p < q, then
δre(p, q) = (q/p)− 1 ≤ exp(ε)− 1. Else, p ≥ q, and δre(p, q) = 1− (q/p) ≤ (p/q)− 1 ≤ exp(ε)− 1. The same
bounds for distributions easily follow by taking the maximum of ∆ml(P(x),Q(x)) and δre(P(x),Q(x)) when
x ranges over the support of the two distributions. �

The next two lemmas prove that ∆ml is an efficient metric.

Lemma 4.3 ∆ml satisfies the sub-additivity property (for joint distributions) and data processing inequality.

Proof: We start by proving the subadditivity property for sequences of length two. The general case follows
by induction. By triangle inequality,

∆ml((X1, X2), (Y1, Y2)) ≤ ∆ml((X1, X2), (X1, [Y2 | Y1 = X1]))

+ ∆ml((X1, [Y2 | Y1 = X1]), (Y1, Y2))

where (X1, [Y2 | Y1 = X1]) is the distribution that selects a pair (x, y) by first choosing x with probability
Pr{X1 = x}, and then y with probability Pr{Y2 = y | Y1 = x}. By definition,

∆ml((X1, [Y2 | Y1 = X1]), (Y1, Y2)) = max
(x,y)

∣∣∣∣ln Pr{X1 = x} · Pr{Y2 = y | Y1 = x}
Pr{Y1 = x} · Pr{Y2 = y | Y1 = x}

∣∣∣∣
= ∆ml(X1, Y1).

and also

∆ml((X1, X2), (X1, [Y2 | Y1 = X1])) = max
(x,y)

∣∣∣∣ln Pr{X1 = x} · Pr{X2 = y | X1 = x}
Pr{X1 = x} · Pr{Y2 = y | Y1 = x}

∣∣∣∣
= max

x
∆ml([X2 | X1 = x], [Y2 | Y1 = x])

This proves subadditivity for joint distributions.
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For the data processing inequality, let P and Q be two probability distributions with support S and
f : S 7→ T be any (deterministic) function. Then

∆ml(f(P), f(Q)) = max
j∈T
|ln Pr[f(P) = j]− lnPr[f(Q) = j]|

= max
j∈T

ln

(
max

{∑
i∈f−1(j) P(i)∑
i∈f−1(j) Q(i)

,

∑
i∈f−1(j) Q(i)∑
i∈f−1(j) P(i)

})

≤ max
j∈T

ln

(
max

{
max

i∈f−1(j)

P(i)

Q(i)
, max
i∈f−1(j)

Q(i)

P(i)

})
= max

i∈S
ln

(
max

{
P(i)

Q(i)
,
Q(i)

P(i)

})
= ∆ml(P,Q)

where the inequality holds, because (
∑
i ai)/(

∑
i bi) ≤ maxi(ai/bi) for all bi ≥ 0. The result for randomized

functions follows by treating the random coins as explicit input and combining the above with the sub-
additivity property. �

Finally, we show that ∆ml also satisfies the pythagorean probability preservation property for any pa-
rameter λ ≤ 1

3 .

Lemma 4.4 For distributions Pi and Qi over support
∏
i Si, if ∆ml(Pi | ai,Qi | ai) ≤ 1/3 for all i and

ai ∈
∏
j<i Sj, then

∆sd((Pi)i, (Qi)i) ≤ ‖(max
ai

∆ml(Pi | ai,Qi | ai))i‖2.

Proof: First, we observe that under the condition ∆ml(P,Q) ≤ 1/3, we have δkl(P,Q) ≤ 2∆ml(P,Q)2.
This can be checked using Equation (3) as follows. Let x = ∆ml(P,Q) ≤ 1/3. Applying Lemma 2.1 with
µ = ex − 1, we get

δkl(P,Q) ≤ (ex − 1)2

2(2− ex)2
≤ 2x2,

where the last inequality is implied by (ex − 1)(1 + 1/(2x)) ≤ 1, which can be verified using the convexity

bound ex − 1 ≤ (e
1
3 − 1)3x (valid for x ∈ [0, 1/3]) as follows:

(ex − 1) ·
(

1 +
1

2x

)
≤ (e

1
3 − 1) · (3x+ 1.5) ≤ (e

1
3 − 1) · 2.5 ≈ 0.99.

Now that we have established the bound δkl(P,Q) ≤ 2∆ml(P,Q)2, we can use Pinsker’s inequality and
the sub-additivity of δkl (which directly follows from what is often referred to as the chain rule) to get

∆sd((Pi)i, (Qi)i) ≤
√
δkl((Pi)i, (Qi)i)/2

≤
√

1

2

∑
i

max
ai

δkl(Pi | ai,Qi | ai)

≤
√∑

i

max
ai

∆ml(Pi | ai,Qi | ai)2

= ‖(max
ai

∆ml(Pi | ai,Qi | ai))i‖2.

�

It follows that we can instantiate Lemma 3.4 with it to analyze the increase of approximation error if
applying multiple convolutions to approximate samples. We make this explicit by reformulating Theorem 2.1
and 2.2 in terms of the max-log distance and approximate distributions (following Lemma 3.4), specializing
them to our setting.
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Corollary 4.1 Let z ∈ Zm be a nonzero integer vector with gcd(z) = 1 and s ∈ Rm with si ≥
√

2‖z‖∞ηε(Z)
for all i ≤ m. Let yi be independent samples from D̃Z,si , respectively, with ∆ml(DZ,si , D̃Z,si) ≤ µi for all i.

Let D̃Z,s be the distribution of y =
∑
ziyi. Then ∆ml(DZ,s, D̃Z,s) . 2ε+

∑
i µi.

Corollary 4.2 Let s1, s2 > 0, with s2 = s2
1 + s2

2 and s−2
3 = s−2

1 + s−2
2 . Let Λ = KZ be a copy of the integer

lattice Z scaled by a constant K. For any c1 and c2 ∈ R, denote the distribution of x1 ← x2 + D̃c1−x2+Z,s1 ,

where x2 ← D̃c2+Λ,s2 , by D̃c1+Z,s. If s1 ≥ ηε(Z), s3 ≥ ηε(Λ) = Kηε(Z), ∆ml(Dc2+Λ,s2 , D̃c2+Λ,s2) ≤ µ2 and

∆ml(Dc+Z,s1 , D̃c+Z,s1) ≤ µ2 for any c ∈ R, then ∆ml(Dc1+Z,s, D̃c1+Z,s) . 4ε+ µ1 + µ2.

Relationship to Other Measures. The max-log distance is closely related to the Rényi divergence of
order∞ and shares many of its properties, including a multiplicative probability preservation: PrX←P[E] ≥
PrX←Q [E]/ exp(∆ml(P,Q)) [5]. This can be useful for other definitions of bit security than Definition 1.
In particular, consider a setting where the number of queries to the distribution is bounded by some fixed
number q. This seems reasonable in many applications since queries often require interaction with an honest
user. In this setting, it is easy to show that the success probability of an adversary can only increase by a
multiplicative factor of exp(q∆ml(Pθ,Qθ)) using sub-additivity, data processing inequality, and multiplicative
probability preservation. This shows that as long as ∆ml(P,Q) < 1/q, one loses almost no security. In a
subsequent work [40], Prest shows that by generalizing Lemma 2.1 to Rényi divergences of arbitrary order,
one can achieve tighter bounds (∆ml(P,Q) ≈

√
1/q) in this setting by optimizing over the order of the

divergence. In cases where the number of queries q is only bounded by the running time of the adversary,
as in Definition 1, the bound of [40] reduces to the one in Lemma 3.3.

It has also been noted that the Rényi divergence is related to the notion of differential privacy. More
specifically, an algorithm A(D), taking a databaseD as input, is ε-differentially private if the Rényi divergence
of order ∞ between the output distributions of A(D1) and A(D2) is less than ε for any two neighboring
databases D1 and D2. Since neighborhood is often defined using a symmetric relation on the set of databases,
this is equivalent to a formulation using the max-log distance. Finally, the techniques used in [40] are related
to advanced composition theorems in the differential privacy terminology. For more details we refer the
reader to [32] and references therein.

5 Sampling the Integers

In this section we describe and analyze our new algorithm to sample the discrete Gaussian distribution.
The entire algorithm SampleZ is presented in Algorithm 1. In Sect. 5.1 and 5.2, we analyze the sub-
routines SampleI and SampleC, which may already be directly useful in some applications. Then, in Sect.
5.3, we analyze the full algorithm SampleZ. All algorithms assume access to a base sampler SampleB to
approximate the distribution Dci+Z,s0 , for a small and fixed set of values for the coset ci and one fixed s0.

Any algorithm can be used as a base sampler, provided it produces distributions D̃ci+Z,s0 within a small

distance ∆ml(D̃ci+Z,s0 ,Dci+Z,s0) ≤ µ from the exact Gaussian Dci+Z,s0 . By Lemma 4.2, this is essentially
equivalent to approximating the Gaussian probabilities with a relative error bound of µ. The reader is
referred to Sect. 6.2 for a possible choice of SampleB.
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SampleZb,k,max(c, s)
x← SampleI(max)

K ←
√
s2 − s̄2/smax

c′ ← bc+Kxek
y ← SampleCb,s0(c′)
return y

SampleCb(c ∈ b−kZ)
if k = 0

return 0
g ← b−k+1 · SampleBs0(bk−1c)
return g + SampleCb(c− g ∈ b−k+1Z)

SampleI(i)
if i = 0
x← SampleBs0(0)
return x

x1 ← SampleI(i− 1)
x2 ← SampleI(i− 1)
y = zix1 + max(1, zi − 1)x2

return y

Algorithm 1: A sampling algorithm for Dc+Z,s for arbitrary c and s. Definitions for zi and si as in (4) and
(5) and s̄ as in (6). SampleB is an arbitrary base sampler for Dc+Z,s0 with fixed s0 and small number of
cosets c+ Z, where c ∈ Z/b.

5.1 Large deviations

In this section we show how to efficiently sample DZ,s for an arbitrarily large s� ηε(Z) using samples from
DZ,s0 for some small fixed value of s0 ≥

√
2ηε(Z). For this we make use of convolution to combine the samples

from the basic sampler to yield a distribution with larger noise parameter. The algorithm accomplishing
this is given in Algorithm 1 as SampleI.

Lemma 5.1 For a given value of s0 ≥ 4
√

2ηε(Z) define the following sequence of values2 for i > 0:

zi =

⌊
si−1√

2η

⌋
(4)

s2
i = (z2

i + max((zi − 1)2, 1))s2
i−1 (5)

If ∆ml(DZ,s0 ,SampleBs0(0)) ≤ µ, then ∆ml(DZ,si ,SampleI(i)) ≤ (µ + 2ε)2i and the running time of

SampleI is at most 2i plus 2i invocations of SampleB. Finally, si(s0) ≥ 22i , implying i ≤ dlog log se is
sufficient to achieve a given target s.

Proof:Note that SampleI repeatedly invokes Corollary 4.1. The conditions of Corollary 4.1 are met by
definition of zi (Equation (4)), so every application incurs a loss in ∆ml of 2ε by Corollary 4.1. The bound
on the number of base samples and convolutions is immediate.

We conclude by proving the statement si(s0) ≥ 22i under the conditions of the lemma. Let η = ηε(Z).
By definition we have zi ≥ si−1√

2η
− 1 and so

s2
i ≥ 2s2

i−1

(
si−1√

2η
− 2

)2

and so

si ≥
√

2si−1

(
si−1√

2η
− 2

)
≥ s2

i−1

(
1

η
− 2
√

2

si−1

)
≥ s2

i−1

(
1

η
− 2
√

2

s0

)
≥
s2
i−1

2η
.

2Notice that the values in (4) and (5) depend both on the index i and the initial s0, so we will write them as zi(s0) and
si(s0) when we need to emphasize this dependency.
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Equivalently,
log si ≥ 2 log si−1 − log 2η.

Unrolling the recursion, we obtain

log si ≥ 2i log s0 −

i−1∑
j=0

2j

 log 2η = 2i log s0 − (2i − 1) log 2η ≥ 2i(log s0 − log 2η) ≥ 2i

and so si ≥ 22i . �

The algorithm SampleI will overshoot the noise parameter, but in many applications (including ours
further below) this is enough. In fact, for us it will not matter by how much we overshoot a given target
s, as we will show in the following sections how to adjust the noise parameter to obtain a sample from a
specific target distribution (with arbitrary center).

SampleCenteredGaussian(s)
Select largest i such that si < s
x1 ← SampleI(i)
x2 ← SampleI(i)

z ←

⌈
1
2

(
1 +

√
2
(
s
si

)2

− 1

)⌉
return zx1 + (z − 1)x2

Algorithm 2: A sampling algorithm for DZ,s̃ for some s̃ not much larger than s. Definition of si as in (5).

If all we are interested in is the centered Gaussian distribution with a specific noise parameter not much
larger than a certain target width, as is the case in many applications, it is relatively easy to adapt the
algorithm to get closer to the target s. One way of doing this is to adjust zi in the top level of the recursion
to yield something closer to s. This is demonstrated by Algorithm 2, for which the following corollary
establishes a bound on the size of the resulting noise parameter.

Corollary 5.1 If ∆ml(SampleI(i),DZ,si) . µ for the largest i such that si ≤ s and s ≥ s0 ≥
√

2ηε(Z), then
∆ml(SampleCenteredGaussian(s),DZ,s̃) . 2µ+ 2ε for some s̃ such that s ≤ s̃ ≤

√
5s.

Proof: First note that si < s implies z ≥ 2. The choice of z and si now guarantees that Corollary 4.1 is

applicable and that (z − 1)2 + (z − 2)2 < s2

s2i
≤ z2 + (z − 1)2. Since s̃2 = (z2 + (z − 1)2)s2

i this establishes

the lower bound and shows that s̃2 ≤ z2+(z−1)2

(z−1)2+(z−2)2 s
2. The upper bound follows from the fact that the ratio

z2+(z−1)2

(z−1)2+(z−2)2 is decreasing in z and equals 5 for z = 2.

The bound on the ∆ml distance is immediate from Corollary 4.1. �

Note that the constant
√

5 in Corollary 5.1 follows from the worst case where z = 2. Using a little more
care in the choice of small coefficients, the bound can be improved to

√
2, but for a simpler exposition we

omitted this optimization. However, it will not be possible to get arbitrarily close to any target s if given a
fixed s0, but if the target s is fixed we can always choose a suitable small s0 such that the target distribution
will be generated exactly.

For a fixed s0, zi(s0) and si(s0) are fixed, so one can precompute si and corresponding zi for a small set
of i. As Lemma 5.1 shows, the si grow very rapidly so only a very small number (∼ log log s) of precomputed
values are necessary to generate extremely wide distributions. If the target s is fixed, only the coefficients
zi need to be stored.
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5.2 Arbitrary center

We now show how to sample from an arbitrary coset c+Z using samplers for only a small number of cosets.
We assume c is given as a k digit number in base b between 0 and 1. The parameter k dictates the trade-off
between running time and output precision, while the basis b determines the number of cosets the base
sampler SampleB needs to be able to sample from.

The idea of our new algorithm SampleC (see Algorithm 1) is to round the center randomly digit by digit
to finally obtain a sample from c+ Z. Every rounding operation consumes a sample from one of b cosets of
Z (where b is a parameter). To show correctness, we iteratively use a convolution theorem.

While this process of iterative rounding increases the noise of the output distribution, this increase is
minor as the following lemma shows.

Lemma 5.2 Let 2 ≤ b ∈ Z be a base, s0 ≥ (
√

(b+ 1)/b)ηε(Z) and c ∈ b−kZ. If

∆ml(Dci+Z,s0 ,SampleBs0(ci)) ≤ µ

for all ci ∈ Z/b, then ∆ml(SampleCb(c),Dc+Z,s̄) . (4ε+ µ)k where

s̄ = s0


√√√√k−1∑

i=0

b−2i

 . (6)

Proof: The proof follows by induction and Corollary 4.2. For k = 1 the claim is obviously true. For

k > 1, invoke the induction hypothesis and apply Corollary 4.2 with s1 = s0

√∑k−2
i=0 b

−2i, s2 = s0/b
k−1,

Λ = b−k+1Z, c2 = b−k[c]k (where [c]k is the k-th digit in the b-ary expansion of c), and c1 = c.

It remains to show that the conditions on the noise parameters are met. First note that
∑k
i=0 b

−2i ≥ 1
for all k ≥ 1, and so s1 ≥ s0 > ηε(Z).

Then we have

s−2
3 = s−2

1 + s−2
2 = s−2

0

(k−2∑
i=0

b−2i

)−1

+ b2(k−1)


= s−2

0

(
1− b−2

1− b−2(k−1)
+ b2(k−1)

)
= s−2

0

b2(k−1) − b−2

1− b−2(k−1)

and so

s3 =

√
1− b−2(k−1)

b2(k−1) − b−2
s0 =

1

bk−1

√
1− b−2(k−1)

1− b−2k
s0 =

1

bk−1

√
b2k − b2
b2k − 1

s0

Note that
b+ 1

b
· b

2k − b2

b2k − 1
≥ 1

for all k > 1, which shows that s3 ≥ b−k+1ηε(Z) = ηε(Λ). �

The parameter b in SampleC offers a trade-off between running time and number of required samplers
for cosets of Z. As most efficient samplers require storage for each coset, this is effectively a time-memory
trade-off. The larger the base b, the more bits we can round at a time, but that requires more cosets. Note
that the running time decreases by a logarithmic factor in b, while the storage requirement increases linearly
with b.
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5.2.1 Reducing the number of required samples

Recall from the previous section that the parameter k determines the trade-off between running time and
output precision: the larger k, the closer the approximation of the centers and thus the better the output
distribution, but the number of required base samples and the running time grow linearly with k. We now
show that by using a biased coin flip we can speed up the algorithm by a factor 2 while maintaining a good
approximation.

Lemma 5.3 Let s ≥ ηε(Z) and b, k ∈ Z such that τ = b−k ≤ (4π)−1. Then

∆ml(DZ,c,s,DZ,bcek,s) . π
2τ2 + 2ε = π2/b2k + 2ε,

where DZ,bcek,s is the distribution of the process of computing c′ = bcek and then returning a sample from
DZ,c′,s.

To prove the lemma, we first observe that linear functions can approximate the Gaussian function well
on small enough intervals.

Lemma 5.4 For any x1, x2 with x2 − x1 = τ , |x1|, |x2| ≤ ts for some t ≥ 1 and x ∈ [x1, x2], we have

δre

(
ρs(x),

x− x1

τ
ρs(x2) +

x2 − x
τ

ρs(x1)

)
≤ π2t2τ2

2s2
e

2πτt
s .

In particular, if τ ≤ s
4πt , the bound on the right hand side is less than π2t2τ2

s2 .

Proof: By linear interpolation,∣∣∣∣ρs(x)−
(
x− x1

τ
ρs(x2) +

x2 − x
τ

ρs(x1)

)∣∣∣∣ ≤ τ2

8
max

x1≤x′≤x2

|ρ′′s (x′)|

Observe that

ρ′′s (x) =

(
2πx2

s2
− 1

)
2π

s2
ρs(x)

implying that ‖ρ′′s (x′)‖ ≤ max( 2πx′2

s2 , 1) 2π
s2 ρs(x

′) ≤ 4π2t2

s2 ρ(x′). Finally note that if x′2 ≥ x2, then ρs(x
′) ≤

ρs(x). Otherwise,
ρs(x

′)

ρs(x)
= e−π( x

′2−x2

s2
) = eπ( x

2−x′2

s2
) = eπ(

(x−x′)(x+x′)
s2

) ≤ e 2πτt
s

concluding the proof. �

Proof:[of Lemma 5.3] We set t = ηε(Z), which allows us to treat Dc+Z,s as a ts-bounded distribution. If
we assume that s ≥ ηε(Z) for some negligible ε, we can conclude that Lemma 5.4 also holds for the respective
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distributions, since ρs(c+ Z) ≈ s for any c, i.e. with c1 = bcck and c2 = dcek:

∆ml(DZ,c,s,DZ,bcer,s) = max
x

∣∣∣∣ln DZ,c,s(x)

DZ,bcer,s(x)

∣∣∣∣
= max

x

∣∣∣∣∣ln DZ,c,s(x)(
c2−c
τ DZ,c1,s(x) + c−c1

τ DZ,c2,s(x)
) ∣∣∣∣∣

≤ max
x

∣∣∣∣∣ln ρs(x− c)(1± ε)s
(1± ε)s

(
c2−c
τ ρs(x− c1) + c−c1

τ ρs(x− c2)
) ∣∣∣∣∣

≤ max
x

∣∣∣∣∆ml

(
ρs(x− c),

c2 − c
τ

ρs(x− c1) +
c− c1
τ

ρs(x− c2)

)
+ ln

1± ε
1± ε

∣∣∣∣
. max

x
δre

(
ρs(x− c),

c2 − c
τ

ρs(x− c1) +
c− c1
τ

ρs(x− c2)

)
+ 2ε

≤ π2t2τ2

s2
+ 2ε

.
π2

b2k
+ 2ε

where we used Lemma 5.4 and Lemma 4.2. �

In combination with SampleC (cf. Algorithm 1), Lemma 5.3 suggests an efficient algorithm to sample
from DZ,c,s̄ for fixed s and arbitrary c:

1. write c in base b (which is a parameter of the algorithm) and divide this representation into the
k = logb

1
τ higher order digits (representing chead) and the rest ctail

2. use ctail to define the bias of a Bernoulli distribution to round chead either up or down

3. return SampleCb,s0(chead ∈ b−kZ).

These steps correspond to the computation of c′ and the following invocation of SampleC in the algorithm
SampleZ. The efficiency gain stems from the fact that sampling from a biased Bernoulli distribution is
much cheaper than drawing samples from the discrete Gaussian. This allows us to support centers c with
arbitrary precision above k with essentially no efficiency loss, since the lower order bits only define the bias
of the Bernoulli distribution, which is cheap to implement.

5.3 The Full Sampler

So far we have shown how to generate samples efficiently from DZ,si for potentially very large si and how to
sample from DZ,c,s̄ for arbitrary c ∈ R and a specific s̄, both using only b samplers for DZ,ci,s0 for ci ∈ b−1Z
and fixed s0 ≥ ηε(Z). We now prove correctness of the full sampler, SampleZ, which puts all the pieces
together by leveraging Corollary 4.2 yet again.

Lemma 5.5 Let b, k ∈ Z be a base and a precision parameter such that k > logb 4π. If

• ∆ml(DZ,smax
,SampleI(max)) ≤ µi and

• ∆ml(Dc′+Z,s̄,SampleCb(c
′)) ≤ µc for any c′ ∈ Z/bk and some s̄ ≥ ηε(Z),

then
∆ml(Dc+Z,s,SampleZb,k,max(c, s)) . 6ε+ π2/b2k + µi + µc

for any c and s such that 1 < s/s̄ ≤ smax/ηε(Z).
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Proof: By Lemma 5.3 and 3.4, ∆ml(Dc+Kx,SampleC(bc+Kxek)) ≤ π2/b2k + 2ε+µc. By correctness of
SampleI (Lemma 5.1), ∆ml(DKZ,Ksmax ,Kx) ≤ µi (where x ← SampleI(max)) and by definition of K we

have s =
√

(Ksmax)2 + s̄2. Now rewrite DZ,c+Kx,s̄ = c + Kx + D−Kx−c+Z,s̄ and apply Corollary 4.2 with
c2 = 0, c1 = c, x1 = Kx and x2 = y to see that ∆ml(Dc+Z,s,SampleZb,k,max(c, s)) . 6ε+ π2/b2k + µi + µc,
if the conditions in the theorem are met. This can easily be seen to be true from the assumptions on s by
the following calculation.

s3 =
(
(Ksmax)−2 + s̄−2

)− 1
2 =

(
1

s2 − s̄2
+

1

s̄2

)− 1
2

=

(
s̄2(s2 − s̄2)

s2

) 1
2

=
s̄

s

√
s2 − s̄2 ≥

√
s2 − s̄2ηε(Z)/smax = ηε(KZ)

�

The running time of SampleZ is obvious: one invocation of SampleI and one of SampleC, which we
analyzed in Sect. 5.1 and 5.2, resp., and a few additional arithmetic operations to calculate K and c′. It is
worth noting that the computation of K, the most complex arithmetic computation of the entire algorithm,
depends only on s. In many applications, for example trapdoor sampling, s is restricted to a relatively small
set, which depends on the key. This means that Ks can be precomputed for the set of possible s’s allowing
to avoid the FP computation at very low memory cost. Finally, the algorithm may approximate the scaling
factor K by a value K̃ such that δre(K̃,K) ≤ µK , which results in an approximation of the distribution of

width s̃ =
√

(K̃si)2 + s̄ instead of s. Elementary calculations show that ∆ml(DZ,c,s,DZ,c,s̃) . 4πt2µK which

by triangle inequality adds to the approximation error.
As an example, assume we have an application, where we know that s̄ ≤ s ≤ 220 = smax. It can be

checked, that for any base b and s0 ≥ 4
√

2ηε(Z), the following parameter settings for our algorithm result in

∆ml(DZ,c,s,SampleZb,k,max(c, s)) ≤ 2−52,

and thus in ≥ 100 bits of security by Lemma 3.3:

• t = ηε(Z) = 6, which results in ε ≤ 2−112

• µ = 2−60, the precision of the base sampler, resulting in µi ≤ 2−55

• k = d30/ log be, which results in µc ≤ 2−55 and π2/b2k ≤ 2−56

• µK = 2−64, the precision of calculating K, resulting in 4πt2µK ≤ 2−55.

5.4 Online-Offline Phase and Constant-Time Implementation

Note that a large part of the computation time during our convolution algorithm is spent in the base sampler,
which is independent of the center and the noise parameter. This allows us to split the algorithm into an
offline and an online phase, similar in spirit to Peikert’s sampler [37], which gives rise to a number of platform
dependent optimizations. The obvious approach is to simply precompute a number of samples for each of
the b cosets and combine them in the online phase until we run out. Note that the trade-off now is not only
a time-memory trade-off anymore, it is a time-memory-lifetime trade-off for the device that depends on b.
Increasing b speeds up the algorithm, but requires to precompute and store samples for more cosets. While
it also means that we effectively decrease the number of samples required per output sample, the latter
dependence is only logarithmic, while the former is linear in b.

There are a number of other ways to exploit this structure without limiting the lifetime of the device.
Most devices that execute cryptographic primitives have idle times (e.g. web servers) which can be used to
restock the number of precomputed samples. As another example, one can separate the offline phase (basic
sampler) and the online phase (combination phase) into two parallel devices with a shared buffer. While
the basic sampler keeps filling the buffer with samples, the online phase can combine these samples into the
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desired distribution. An obvious architecture for such a high performance system would implement the base
sampler in a highly parallel fashion (e.g. FPGA or GPU) and the online phase on a regular CPU. This shows
that in many scenarios the offline phase can be for free.

The separation of offline and online phase also allows for a straight-forward constant-time implementation
with very little overhead. A general problem with sampling algorithms in this context is that the running
time of the sampler can leak information about the output sample or the input, which clearly hurts security.
For a fixed Gaussian, a simple mitigation strategy is to generate the samples in large batches. This approach
breaks down in general when the parameters of the target distribution vary per sample and are not known in
advance. In contrast, this idea can be used to implement our algorithm in constant time by generating the
basic samples in batches in constant time. Note that every output sample requires the exact same number of
base samples and convolutions, so the online phase lends itself naturally to a constant-time implementation.

Assume every invocation of SampleZ requires q base samples and let t̂0 be the maximum over ci ∈ Z/b
of the expected running time (over the random coins) of the base sampler (computed either by analysis or
experimentation). Consider the following algorithm.

Initialization:

• Use the base sampler to fill b buffers of size q, where the i-th buffer stores discrete Gaussian samples
Dci+Z,so for all ci ∈ Z/b.

Query phase:

• On input c and s, call SampleZ(c, s), where SampleBs0(ci) simply reads from the respective buffer.

• Call the base sampler q times to restock the buffers and pad the running time of this step to T =
qt̂0 +O(

√
κq).

Note that the restocking of base samples in the query phase runs in constant time with overwhelming
probability, which follows from Hoeffding’s inequality (the constant in the O-notation depends on the worst-
case running time of the base sampler). It follows, that the query phase runs in constant time if all the
arithmetic operations in SampleZ are implemented in constant time and the randomized rounding operation
is converted to constant time, both of which are easy to achieve.

The amortized overhead is only O(
√
κ/q), where q is the number of base samples required per output

sample. This can be further reduced, if enough memory for larger buffers is available. Finally, the separation
of online and offline phase into different independent systems or precomputation of the offline phase allow for
an even more convenient constant-time implementation: One only needs to convert the arithmetic operations
and the coin flip into constant time. This incurs only a minimal penalty in running time.

6 Applications and Comparison

We first give a short overview of existing sampling algorithms (Sect. 6.1) and select a suitable one as our
base sampler, before we describe the experimental study.

6.1 Brief Survey of Existing Samplers

All of the currently known samplers can be categorized into two types3: rejection-based samplers and tree
traversal algorithms. Table 1 summarizes the existing sampling algorithms and their properties in comparison
to our work. The table does not contain a column with the running time, since this depends on a lot of
factors (speed of FP arithmetic vs memory access vs randomness etc.), but for the rejection-based samplers,
the rejection rate can be thought of as a measure of the running time. Tree-traversal algorithms should be

3Technically, even rejection-based samplers can be thought of as tree traversal algorithms, but this is not as natural for
them, hence our categorization.
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Table 1: Comparison of Sampling Algorithms, starting with rejection-based sampler, followed by tree-
traversal samplers and finally Algorithm 1. The column exp(·) indicates if the algorithm requires to evaluate
exp(·) online. The column “Generic” refers to the property of being able to produce samples from discrete
Gaussians with different parameters not known before precomputation (i.e. which may vary from query to
query). The security parameter is denoted by κ.

Algorithm Memory Rejection Rate exp(·) Generic
Rejection Sampling [22] 0 ∼ .9 Yes Yes
Discrete Ziggurat [11] var var Yes No
Bernoulli-type [14] O(κ log s) ∼ .5 No No
Karney [25] 0 ∼ .5 No Yes
Knuth-Yao [18] O(κs) - No No
Inversion Sampling [37] O(κs) - No No
Our work var - No Yes

thought of as much faster than rejection based samplers. A more concrete comparison on a specific platform
will be given in Sect. 6.4 and Sect. 6.6.

6.2 The Base Sampler

We first consider the problem of generating samples from DZ,c,s when s = O(ηε(Z)) is relatively small and
c is fixed. We are interested in the amortized cost of sample generation, where we want to generate a large
batch of samples.

We first observe that we are sampling from a relatively narrow Gaussian distribution, so memory will not
be a concern for us. For example, assume we choose s ≈ 34 > 4

√
2ηε(Z) for reasonable ε, and the tailbound

parameter t = 6 and store all probabilities, i.e. Dc+Z,s(i) for all 0 ≤ i ≤ ts with i ∈ c + Z, with 64 bit
precision. Then we obtain a memory requirement of only ∼ 1.5kb for each of the b cosets. Note that storing
half the probability table is sufficient in this case, which is obvious if c ∈ {0, 1/2}, but is also true for other
c since we can exploit symmetries in the different tables that we store. If indeed less memory is available,
one can reduce s ≥

√
2η(Z), which is the minimum to be usable for our algorithms. This will come at a

moderate cost in performance.
Finally, the algorithm can also be implemented using a sampler for only the 0-coset and noise parameter

bs0 by bucketing the samples from different cosets in intermediate buffers. This approach has the advantage
of being potentially simpler, but can make constant time implementations more troublesome (see Section
5.4).

Since we want to generate a large number of samples, our main criteria for the suitability of an algorithm
is its expected running time. For any algorithm, this is lower bounded by the entropy of DZ,c,s, so a natural
choice is (lazy) inversion sampling [37] or Knuth-Yao [18], since both are (close to) randomness optimal
and their running time is essentially the number of random bits they consume, hence providing us with an
optimal algorithm for our purpose. In fact, Knuth-Yao is a little faster than inversion sampling, so we focus
on that.

6.3 Setup of Experimental Study

There are a number of cryptographic applications for our sampler, most of which use an integer sampler in
one of three typical settings.

• The output distribution is the centered discrete Gaussian with fixed noise parameter. This is the case
in most basic LWE based schemes, where the noise for the LWE instance is sampled using an integer
sampler.
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• The output distribution is the discrete Gaussian with fixed noise parameter, but varying center. This
is the case in the online phase of Peikert’s sampler [37]. In particular, if applied to q-ary lattices the
centers are restricted to the set 1

qZ.

• The output distribution is the discrete Gaussian where both, the center and the noise parameter may
vary for each sample. This is typically used as a subroutine for sampling from the discrete Gaussian
over lattices, as the GPV sampler [22] or in the offline phase of Peikert’s sampler.

The ideas presented in this work can be applied to any of these settings. In particular, the algorithms
in Sect. 5 can be used to achieve new time-memory trade-offs in all three cases. The optimal trade-off
is highly application specific and depends on a lot of factors, for example, the target platform (hardware
vs. software), the cost of randomness (TRNGs vs. PRNGs), available memory, cost of evaluating exp(·),
cost of basic floating point/integer arithmetic, etc. In the following we present an experimental comparison
of our algorithm to previous algorithms. Obviously, we are not able to take all factors into account, so
we restrict ourselves to a comparison in a software implementation, where all algorithms use the same
source of randomness (NTL’s PRNG), evaluate the randomness bit by bit in order to minimize randomness
consumption, and use only elementary data types during the sampling. In particular, whenever FP arithmetic
is necessary or ρs(·) needs to be evaluated during the sampling, all the algorithms use only double or
extended double precision. This should be sufficient since we are targeting around 100 bits of security and
the arguments in Sect. 3 apply to any algorithm. We do not claim that the implementation is optimal for any
of the evaluated algorithms, but it should provide a fair comparison. We instantiated our algorithms with
the parameters as listed at the end of Sect. 5.3. Our implementation makes no effort towards a constant-time
implementation. Even though turning Algorithm 1 into a constant-time algorithm is conceptually simple
(cf. Sect. 5.4), this still requires a substantial amount of design and implementation effort, which is out of
the scope of this work.

When referring to specific settings of the parameter s, we will often refer to it as multiple of
√

2π. The
reason is that two slightly different definitions of ρs(·) are common in the literature and the factor

√
2π

converts between them. While we found one of them to be more convenient in the analytic part of this work,
most previous experimental studies [11, 39] use the other. So this notation is for easier comparability.

6.4 Fixed Centered Gaussian

In this section we consider the simplest scenario for discrete Gaussian sampling: sampling from the centered
discrete Gaussian distribution above a certain noise level. This is accomplished by Algorithm 2. Note
that the parameter s0 allows for a time memory trade-off in our setting: the larger s0, the more memory
required by our base sampler (Knuth-Yao), but the fewer the levels of recursion. More precisely, the memory
requirement grows linearly with s0, while the running time decreases logarithmically.

We compare the method in different settings to the only other adjustable time-memory trade-off known to
date – the discrete Ziggurat. For our evaluation we modified the implementation of [11] to use elementary data
types only during the sampling (as opposed to arbitrary precision arithmetic in the original implementation).
The baseline algorithms in this setting are the Bernoulli-type sampler and Karney’s algorithm, as they allow
to sample from the centered discrete Gaussian quite efficiently using very little or no memory. Figure 1
shows the result of our experimental analysis for a set of representative s’s. We chose the examples mostly
according to the examples in [11], where we skipped the data point at s = 10

√
2π, since this is already

a very narrow distribution which can be efficiently sampled using Knuth-Yao with very moderate memory
requirements. Instead, we show the results for s = 214

√
2π (chosen somewhat arbitrarily), additionally to

data points close to the ones presented in [11]: s ∈ {25, 210, 217}
√

2π.
Figure 1 shows that the two algorithms complement each other quite nicely: while Ziggurat allows for

better trade-offs in the low memory regime, using convolution achieves much better running times in the high
memory regime. This suggests that Ziggurat might be the better choice for constrained devices, but recall
that it requires evaluations of exp(·). So if s is not too large, even for constrained devices the convolution
type sampler can be a better choice (see for example [39]).
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Note that the improvement gained by using more memory deteriorates in our implementation, up to
the point where using more memory actually hurts the running time (see Fig. 1, bottom right). A similar
effect can be observed with the discrete Ziggurat algorithm. At first sight this might be counter-intuitive,
but can be easily explained with a limited processor cache size: larger memory requirement in our case
means fewer cache hits, which results in more RAM accesses, which are much slower. This nicely illustrates
how dependent this trade-off is on the speed of the available memory. Since fast memory is usually much
more expensive than slower memory, for a given budget it is very plausible that the money is better spent
on limited amounts of fast memory and using Algorithm 2 rather than implementing the full Knuth-Yao
with larger and slower memory. In our specific example (Fig. 1, bottom right), this means that using a
convolution of two samples generated by smaller Knuth-Yao samplers is actually faster than generating the
samples directly with a large Knuth-Yao sampler.
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Figure 1: Time memory trade-off for Algorithm 2 and discrete Ziggurat compared to Bernoulli-type sam-
pling and Karney’s algorithm for s ∈ {25, 210, 214, 217}

√
2π. Knuth-Yao corresponds to right most point of

Algorithm 2.

6.5 Fixed Gaussian with Varying Center

We now turn to the second setting, where the noise parameter is still fixed but the center may vary. In
order to take advantage of the fact that the noise parameter is fixed and the center in a restricted set for
the online phase, Peikert suggested that “if q is reasonably small it may be worthwhile (for faster rounding)
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to precompute the tables of the cumulative distribution functions for all q possibilities” [37]. This might be
feasible, but only for very small q and s (depending on the available memory). If not enough memory is
available, there is currently no option other than falling back to Karney’s algorithm or rejection sampling.

Depending on the cost of randomness, speed and amount of available memory and processor speed for
arithmetic, Knuth-Yao can be significantly faster than Karney’s algorithm. For example, in our prototype
implementation, Knuth-Yao was up to 6 times faster, but keep in mind that this number is highly platform
dependent and can vary widely. Accordingly, we can afford to invoke Knuth-Yao several times, sacrificing
some running time for memory savings, and still outperform Karney’s algorithm. Our algorithms offer exactly
this kind of trade-off. There are two ways in which we can take advantage of convolution theorems to address
the challenge of having to store q Knuth-Yao samplers. The first simply consists in storing the samplers for
some smaller s0, which will reduce the required memory by a factor s/s0. After obtaining a sample from the
right coset, using only the 0-coset we can generate and add a sample from a wider distribution to obtain the
correct distribution. This is very similar to Algorithm 2 with the additional step of adding a sample from
the right coset, where we simply invoke Corollary 4.1 once more. This step will increase the running time
by at most logs0 s additively (cf. Lemma 5.1).

Note that there is a limit to this technique though, since we need s0 >
√

2ηε(Z) for the convolution to
yield the correct output distribution. If s is already small, but there is not enough memory available because
q is too large, this approach will fail. In this case we can use the algorithm from Sect. 5.2 to reduce the
number of samplers needed to be stored. In particular, for any base b such that4 rad(q) | b, we can cut down
on the memory cost by a factor q/b, which will increase the running time by dlogb qe. For this, we simply
need to express the center c in the base b and round the digits individually using SampleCb. For example,
if q is a power of a small prime p, we can choose b to be any multiple of p. This can dramatically increase
the modulus q for which we can sample fast with a given amount of memory, assuming rad(q) is small. As
a more specific example, say q is a perfect square and let b =

√
q. Instead of storing q Knuth-Yao samplers

and invoking one when a sample is required for a coset 1
qZ, we can store b samplers and randomly round

each of the 2 digits of the center in base b successively. This effectively doubles the running time, but this
is likely to still be much faster than Karney’s algorithm (again, depending on the platform), but we reduced
the amount of necessary memory by a factor

√
q.

Clearly, depending on the specific q, s and platform, the two techniques can be combined. The optimal
trade-off depends on all three factors and has to be evaluated for each application. Our algorithms provide
developers with the tools to optimize this trade-off and make the most of the available resources.

6.6 Varying Gaussian

Finally, we evaluate the practical performance of our full sampler, SampleZ. Precomputing the value K,
as suggested in Sect. 5.3, made little difference in our software implementation and we show results for the
algorithm that does not precompute K. The bottleneck in our algorithm is the call to SampleC, as it
consumes a number of samples which depends on the base b. Again, similar to the previous section, the base
b offers a time-memory trade-off, which is the target of our evaluation. We experimented with the sampler
for a wide range of noise parameters s, but since our algorithm is essentially independent of s (as long as it
is ≤ smax), it is not surprising that the trade-off is essentially the same in all cases. Accordingly, we present
only one exemplary result in Fig. 2. As a frame of reference, rejection sampling achieved 0.994 · 106 samples
per second, which shows that by spending only very moderate amounts of memory (< 1mb), our algorithm
can match and outperform rejection sampling. On the other hand, Karney’s algorithm achieved 3.281 · 106

samples per second, which seems out of reach for reasonable amounts of memory, making it the most efficient
choice in this setting, if no other criteria are of concern. But we stress again that this depends highly on how
efficiently Knuth-Yao can be implemented compared to Karney’s algorithm on the target platform. While
the running time of both, rejection sampling and Karney’s algorithm depends on s, this dependence is rather
weak (logarithmic with small constants) so the picture does not change much for other noise parameters.

4This is the condition for 1
q

being expressible as a finite number in base b.
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Figure 3: Performance of Algorithm 1 compared to
Karney’s algorithm, (online phase only).

Recall that our algorithm can be split into online and offline phase, since the base samples are independent
of the target distribution. Karney’s algorithm also initially samples from a Gaussian that is independent
of the target distribution, so a similar approach can be applied. However, the trade-off is fixed and no
speed-ups can be achieved by spending more memory.

We tested both algorithms, where we assumed that the offline phase is free, for a wide range of s. For this,
we fixed b = 16 for our algorithm, which seemed to be a good choice in our setting. Note that similar to Sect.
6.4, spending more memory (and increasing b) should in theory only improve the algorithm. But if this comes
at the cost of slowing down memory access due to a limited cache size, this can actually hurt performance.
The results are depicted in Fig. 3. The graph allows for two interesting observations: First, our algorithm
consistently outperforms Karney’s algorithm in this setting. So if the offline phase can be considered to be
free or a limited life-time is acceptable (cf. Sect. 5.4), our algorithm seems to be the better choice. Second,
as expected, our algorithm is essentially independent of s (as long as it is < smax), while the performance
of Karney’s algorithm deteriorates as s grows. This is due to the fact that Karney’s algorithm requires to
sample a uniform number in [0, s] during the online phase, which is logarithmic in s. This leads to a larger
gap between the performance of the two algorithms as s grows, and supports the claim that our sampler
allows for an efficient constant time implementation. In contrast, both Karney’s algorithm and rejection
sampling seem to be inherently costly to turn into constant time algorithms, due to their dependence on s
and the fact that they are probabilistically rejecting samples.

In summary, we believe that there are a number of applications and target platforms, where our algorithm
will be the best choice to implement a discrete Gaussian sampler.

A Distinguishing Distributions

In a recent work [44], Saarinen claimed that a sampling algorithm approximating a distribution using p-bit
fixed point approximations, achieves about 2p bits of security, i.e. any algorithm successfully distinguishing
the two distributions with constant advantage requires at least 22p running time. The claim is based on
a theorem of Gregory and Paul Valiant [47], which, roughly speaking (and oversimplifying), presents a
tester that can distinguish any unknown distribution from a known one using O(1/ε2) samples, where ε
is the statistical distance between the two distribution. Furthermore, [47] shows that this is tight: there
is no algorithm that can distinguish any unknown distribution from a known one using fewer samples.
Put differently, this result shows that for every distribution P there exists an unknown distribution Q with
∆SD(P,Q) ≤ ε that requires O(1/ε2) samples to distinguish from P. The author of [44] seems to misinterpret
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this to mean that for any known distributions P, any unknown distribution Q with ∆SD(P,Q) ≤ ε requires
at least O(1/ε2) samples to distinguish. The conclusion drawn in [44] is that a p-bit fixed point approximation
is sufficient for 2p bits security, as it implies a statistical distance of . 2−p.

Paradoxically, [44] also mentions a simple attack on such an algorithm which is dubbed tail detector
test : consider an element x in the support of P, such that P(x) ≈ 2−p−2 is so small that its fixed point
approximation is 0, i.e. x is not in the support of the approximate distribution Q5. Simply drawing ∼ 2p+2

samples, one would expect x to appear once if drawing from P, and not at all if drawing from Q. This gives
a simple way of distinguishing the two distributions in running time only ∼ 2p. In [44], this issue is stated
but dismissed by conjecturing “that lack of tail has only marginal effect on the entropy of random quantities
and the security of the resulting cryptosystem.”

While this simple tail detector test is already enough to falsify the claim made in [44], we reinforce the
point by presenting a simple generalization of the attack that also applies to elements that are in the support
of both distributions but have very small probabilities.

Lemma A.1 Let P and Q be two distributions and x an element in the support of P with ε = P(x)−Q(x).
Then there exists an algorithm that, given oracle access to a distribution, can distinguish between P and Q

with advantage O(exp(−Q(x)/ε)) using 1/ε samples in expectation.

Proof: Let the Poisson distribution with parameter λ be Poiλ(k) = λke−λ/k!. The algorithm is based
on the following observation: if we draw n′ ← Poin and then draw n′ samples independently from a
distribution P, the frequency of every element x in the support of P follows the Poisson distribution with
parameter n · P(x) [47]. Define q = Q(x). Consider an algorithm that draws n′ ← Poi1/ε, draws n′

samples from the distribution and outputs 1 iff x is not in the set of samples. The probability that the
algorithm outputs 1 when drawing from Q is Poiq/ε(0) = exp(−q/ε), and if drawing from P is PoiP(x)/ε(0) =
exp(−P(x)/ε) = exp(−(q+ε)/ε). The algorithm’s distinguishing advantage is thus Poiq/ε(0)−PoiP(x)/ε(0) =
(1− exp(−1)) exp(−q/ε) = O(exp(−q/ε)). �

Lemma A.1 shows that picking any element in the support of P with P(x) = O(2−p ln p), which is
approximated using a p-bit fixed point number (i.e. ε ≈ 2−p), yields a distinguishing attack in poly(p) · 2p.
Note that the attack does not apply to floating point approximations, because they guarantee that Q(x)/ε ≥
2p.
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[4] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange—a new hope. In
USENIX Security, 2016.
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cryptography: Using the Rényi divergence rather than the statistical distance. In ASIACRYPT, 2015.

[6] X. Boyen. Attribute-based functional encryption on lattices. In TCC, 2013.

[7] X. Boyen and Q. Li. Attribute-based encryption for finite automata from LWE. In ProvSec, 2015.

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. In ITCS, 2012.

[9] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and security for
key dependent messages. In CRYPTO, 2011.

[10] Z. Brakerski, V. Vaikuntanathan, H. Wee, and D. Wichs. Obfuscating conjunctions under entropic ring
LWE. In ITCS, 2016.
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Archive, Report 2017/480, 2017. http://eprint.iacr.org/2017/480.

[41] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of ACM,
Sept. 2009. Preliminary version in STOC 2005.

[42] O. Regev. The learning with errors problem (invited survey). In CCC, 2010.

[43] S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede. Compact and side channel secure discrete
Gaussian sampling. Cryptology ePrint Archive, Report 2014/591, 2014. http://eprint.iacr.org/

2014/591.

[44] M.-J. O. Saarinen. Gaussian sampling precision in lattice cryptography. Cryptology ePrint Archive,
Report 2015/953, 2015. http://eprint.iacr.org/2015/953.

[45] M.-J. O. Saarinen. Arithmetic coding and blinding countermeasures for lattice signatures. Journal of
Cryptographic Engineering, 2017.

27



[46] S. Sinha Roy, F. Vercauteren, and I. Verbauwhede. High precision discrete Gaussian sampling on
FPGAs. In SAC, 2014.

[47] G. Valiant and P. Valiant. An automatic inequality prover and instance optimal identity testing. In
FOCS, 2014.

28


