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Abstract. Side-channel attacks represent a powerful category of attacks
against cryptographic devices. Still, side-channel analysis for lightweight
ciphers is much less investigated than for instance for AES. Although
intuition may lead to the conclusion that lightweight ciphers are weaker
in terms of side-channel resistance, that remains to be confirmed and
quantified. In this paper, we consider various side-channel analysis met-
rics which should provide an insight on the resistance of lightweight ci-
phers against side-channel attacks. In particular, for the non-profiled
scenario we use the theoretical confusion coefficient and empirical corre-
lation power analysis. Furthermore, we conduct a profiled side-channel
analysis using various machine learning attacks on PRESENT and AES.
Our results show that the difference between AES and lightweight ci-
phers is smaller than one would expect. Interestingly, we observe that
the studied 4-bit S-boxes have a different side-channel resilience, while
the difference in the 8-bit ones is only theoretically present.

Keywords: Lightweight cryptography, Machine learning, Comparison, Confu-
sion coefficient, CPA

1 Introduction

With the advent of the Internet of Things, we are surrounded with smart objects
(aka things) that have the ability to communicate with each other and with cen-
tralized resources. The two most common and widely noticed artifacts are RFID
and Wireless Sensor Networks which are used in supply-chain management, lo-
gistics, home automation, surveillance, traffic control, medical monitoring, and
many more. Most of these applications have the need for cryptographic secure
components which inspired research on cryptographic algorithms for constrained
devices. Accordingly, lightweight cryptography has been an active research area
over the last 10 years. A number of innovative ciphers have been proposed in
order to optimize various performance criteria and have been subject to many
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comparisons. Lately, the resistance against side-channel attacks has been con-
sidered as an additional decision factor.

Side-channel attacks analyze physical leakage that is unintentionally emitted
during cryptographic operations in a device (e.g., power consumption [1], elec-
tromagnetic emanation [2]). This side-channel leakage is statistically dependent
on intermediate processed values involving the secret key, which makes it possi-
ble to retrieve the secret from the measured data. So-called profiled side-channel
distinguishers assume that the attacker is able to possess an additional device
to the one he wants to attack, and on which he has the freedom of nearly full
control. In this advanced setting, Machine learning (ML) techniques have shown
to be effective in various scenarios (e.g., [3, 4]).

Side-channel analysis for lightweight ciphers is of particular interest not only
because of the apparent lack of research so far, but also because of the interesting
properties of S-boxes. Since the nonlinearity property for S-boxes usually used
in lightweight ciphers (i.e., 4 × 4) can be maximally equal to 4, the difference
between the input and the output of an S-box is much smaller than for instance
for AES [5]. Therefore, one could conclude that from that aspect, SCA for light-
weight ciphers must be more difficult. However, the number of possible classes
(e.g., Hamming weight (HW) or key classes) is significantly lower, which may
indicate that (profiled) SCA must be easier than for standard ciphers. Besides
the difference in the number of classes and consequently probabilities of correct
classification, there is also a huge time and space complexity advantage (for the
attacker) when dealing with lightweight ciphers.

Our Contributions In this paper we give a detailed study of lightweight ciphers
in terms of side-channel resistance, in particular for software implementations.
As a point of exploitation we concentrate on the non-linear operation (S-box)
during the first round. Our comparison includes SPN ciphers with 4-bit S-boxes
such as KLEIN [6], PRESENT [7], PRIDE [8], RECTANGLE [9], Mysterion [10]
as well as ciphers with 8-bit S-boxes: AES, Zorro [11], Robin [12].

In the non-profiled scenario we investigate first the relationship between dif-
ferent key hypotheses with the confusion coefficient [13,14]. Using specific prop-
erties of the confusion coefficient (like the minimum value and the variance) we
give a preliminary classification regarding the side-channel resistance. Further-
more, using simulated data for various signal-to-noise ratios (SNR) we present
empirical results for Correlation Power Analysis (CPA) [15] and discuss the dif-
ference between attacking 4-bit and 8-bit S-boxes. Finally, we compare several
supervised (i.e., profiled) machine learning techniques for PRESENT and AES.

Road Map This paper is organized as follows. Section 2 gives basic information
on the ciphers and exploitations we investigate. Next, in Section 3 we discuss Cor-
relation Power Analysis (CPA), confusion coefficient, and profiled side-channel
analysis. Section 4 concludes and offers directions for future work.
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2 Ciphers & Exploitations

2.1 Investigated Ciphers

AES [5] The Advanced Encryption Standard (AES) has been standardized by
NIST in 2001 [16]. It has an SPN structure with an internal fixed block size of
128-bits represented as a 4×4 byte matrix. At the beginning, the plaintext state
is xor-ed with the secret key. Subsequently, each encryption round consists of
the application of SubBytes, ShiftRows, MixColumns, and AddRoundKey; in the
last round, MixColumns is omitted.

KLEIN [6] KLEIN is an AES-like lightweight block cipher. The substitution
stage uses 16 similar involutive 4-bit S-boxes. Similar to AES, each encryption
round consists of AddRoundKey, SubNibbles, RotNibbles, and MixNibbles, fol-
lowed by a final key addition.

PRESENT [7] PRESENT has a 64-bit block size with a bit oriented permutation
layer. The non-linear layer is based on a single 4-bit S-box which was designed to
be optimal in hardware. An encryption round consists of AddRoundKey, a sub-
stitution (sBoxLayer), and a permutation layer (pLayer). A final key addition
is performed after the encryption rounds.

PRIDE [8] PRIDE has been optimized for 8-bit microcontrollers with a special
focus on the linear layer of the cipher. It is designed in a bit-sliced fashion to
minimize the number of instructions necessary to evaluate it. The 4-bit S-box is
an involution.

RECTANGLE [9] The state of RECTANGLE is represented as a 4×16 matrix.
The non-linear layer consists of the parallel application of a 4-bit S-box on the
columns of the state and the linear layer is a fixed rotation over a different
amount of steps in each row.

Robin [12] Robin is one instance of the so-called LS-design, in which the internal
state of the cipher is a matrix of s×L bits. The non-linear layer consists of the
parallel applications of a s× s bits (s = 8) permutation on each column, which
is chosen to be efficiently implemented in a bit-sliced fashion. The linear layer
consists of the application of a linear L × L bit (L = 16) permutation on each
row of the matrix.

Mysterion [10] The Mysterion cipher is also based on the LS-design principles.
The internal state of the block cipher is organized into a 4 × 32 bit matrix for
Mysterion-128, which is further subdivided into 4 4×8 blocks. A round contains
the following operations: S-box layer, L-Box layer and ShiftColumns. The
S-box layer is a 4-bit S-box called “Class 13”, as introduced in [17], that is
applied in parallel to each column of the internal state.
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Zorro [11] Zorro is a modified version of AES with a variant of the S-box that
is easier to mask. Fewer S-box calls are performed and the number of multiplica-
tions has been minimized. Besides, the execution is split into “steps” of 4 rounds
and the key (simply the master key) is added only at the end of each step.

2.2 Exploitations

In this paper, our main targets are the weaknesses arising in software implemen-
tations on serial microprocessors. In these applications, the Hamming weight
(HW) and the Hamming distance (HD) leakage model are most commonly found
in practice. More precisely, the loading and storing of data in memory (e.g.,
S-box calls) is usually causing HW leakage, whereas the register updating (e.g.,
writing of intermediate round states) is causing HD leakage. Typically the latter
is less significant than the former, which is why we concentrate on a specific
memory operation.

We focus on side-channel attacks targeting the key processed within the first
round using a divide and conquer strategy. The main common operation all previ-
ous described ciphers share, is first the addition (xor) of the roundkey/masterkey
followed by (at least one) S-box call. Our study therefore concentrates on leakage
measurements X arising from an S-box lookup operation within the first round,
i.e.,

X = HW(Sbox[T ⊕ k∗]) +N, (1)

where N is independent additive noise, k∗ one chunk of the secret key (round
key or master key), and T a plaintext chunk (byte or nibble).

Note that our study does not include leakages from all operations in the
specific ciphers, nor (in case the cipher uses a key scheduling algorithm) the
complexity to go from a round key to the master key, which may be an interesting
next step for future work.

3 (Empirical) Side-Channel Evaluation

3.1 CPA & Confusion Coefficient

Correlation Power Analysis (CPA) [15] is one of the most common non-profiled
side-channel distinguishers that is also integrated in common criteria evaluations.
For CPA in order to reveal the secret key k∗, the attacker makes hypothetical
predictions depending on a key guess k on the deterministic part of the leakage.
More precisely, let n denote the number of bits of one key chunk (n bits), for
each key hypothesis k ∈ Fn2 one has:

Y (k) = HW(Sbox[T ⊕ k]). (2)

Given a set of Q leakage measurements X1, . . . , XQ corresponding to T1, . . . , TQ
plaintexts, the attacker computes the correlation between the measurements
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and the hypothetical model Y (k) for all key hypotheses. Finally, the key k̂ that
maximizes the correlation is selected, i.e.:

k̂ = arg max
k

ρ(X,Y (k)) (3)

with ρ being the Pearson correlation coefficient [18].
Before presenting the results from the empirical evaluation of CPA, we first

want to further analyze the predictions in Eq. (2) for different ciphers. Interest-
ingly, the predictions for different keys, Y (0), . . . , Y (2n−1), are not independent.
Considering the model in Eq. (2), the relationships depend on the choice of the
S-box and can be described by the so-called confusion coefficient [13,14]

κ(k∗, k) = E
{(Y (k∗)− Y (k)

2

)2}
, (4)

where the expectation is taken over T .
Figures 1a to 1e show the confusion coefficient for 4-bit S-boxes and Figures 1f

to 1h for 8-bit S-boxes. Note that, the distribution of κ(k∗, k) is independent on
the particular choice of k∗ (in the case there are no weak keys) and the values
are only permuted. For our experiments we choose k∗ = 0 and furthermore
order κ(k∗, k) in an increasing order of magnitude. One can observe that the
distribution is indeed different for the investigated ciphers. But how to judge
what is easier and harder to attack from a side-channel point of view?

Recent works [13,14] showed that the theoretical success rate of CPA can be
divided into three factors: confusion coefficient, signal to noise ratio (SNR), and
the number of measurements, but without further investigating the confusion
coefficient in particular. The authors in [19] give a first-order approximation of
the success rate of CPA (for a low SNR) which only depends on the minimum
value of κ(k∗, k), where the higher the minimum, the lower the side-channel
security. Another approach has been taken in [20] using var(κ(k∗, k)) as a cri-
terion, where smaller values indicate lower side-channel security. All values for
4-bit S-boxes are given in Table 1 on the left, where both criteria show the
same trend, in particular, Mysterion should be the easiest to attack and KLEIN
the most difficult. Note that PRESENT, PRIDE, and RECTANGLE have the
same minimum value but different variances. Interestingly, the values given for
8-bit S-boxes in Table 1 on the right indicate that the side-channel resistance
of the investigated 8-bit S-boxes is lower than for the ones with 4-bit S-boxes.
Recall that the confusion coefficient measures the relationship between different
key hypotheses. Now, as for 8-bits we have 256 possible values for T ∈ F8

2 and
Y (k) ∈ [0, 1, . . . , 8] it is easier to distinguish than for 4-bit S-boxes with T ∈ F4

2

and Y (k) ∈ [0, 1, . . . , 4].
However, in practice we cannot straightforwardly conclude that due to the

properties of the confusion coefficient, 4-bit S-boxes are harder to attack than
8-bit S-boxes. One reason is that the confusion coefficient is theoretical (i.e.,
holding for Q → ∞). But, especially for low noise scenarios Q might be small
(below 100). So, naturally the 4-bit variant with only 16 inputs should converge
faster than with 256 inputs. Or in other words, considering Q = 100, one can
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(a) KLEIN (b) PRESENT

(c) PRIDE (d) Mysterion

(e) RECTANGLE (f) AES

(g) Zorro (h) Robin

Fig. 1: Confusion coefficients
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Table 1: Properties of κ(k∗, k)

4-bit 8-bit

KLEIN PRESENT PRIDE Mysterion RECT. AES Zorro Robin

var(κ(k∗, k)) 0.071 0.038 0.018 0.015 0.035 0.0017 0.0019 0.0023
mink κ(k

∗, k) 0.117 0.234 0.234 0.292 0.234 0.4046 0.3774 0.3462

observe each plaintext for 4-bit S-boxes approximately 6.25 times, whereas for
the 8-bit case more than the half has not been observed yet. Another reason is
that the variance of the signal is not equivalent. In particular, as the HW follows
a binomial distribution, we have V ar(HW(Sbox[T ⊕k])) with T, k ∈ F4

2 equal to
1 for 4-bit S-boxes and equal to 2 for 8-bit S-boxes. Accordingly, given the same
amount of independent additional noise, the SNR using 8-bit S-boxes is twice as
high as for 4-bit S-boxes.

Figures 2 and 3 give the success rate for CPA for various levels of noise, where
we simulated the traces as in Eq. (1) with N ∼ N (0, σ2). To be reliable, we
use 5 000 independent experiments with randomly chosen T . For 4-bit S-boxes,
Figure 2 confirms the ranking given by the confusion coefficient: Mysterion is
the easiest to attack and KLEIN the hardest, which is independent of the noise
level. Figure 3 shows that all three ciphers behave similarly even for different
levels of noise. Accordingly, the (small) differences in the confusion coefficients
in Table 1 do not influence the side-channel resistance in practice.

There are two ways to compare the success rates for 4-bit and 8-bit S-boxes
in Figures 2 and 3, either having the same additional independent noise (envi-
ronmental noise) σ or the same SNR. Using the same amount of σ (Figures 2b
vs. 3a and 2d vs. 3c), we can observe that AES, Zorro, and Robin perform better
than KLEIN and similar to or slightly worse than the others. On the other hand,
when comparing the SNR, we observe that AES, Zorro, and Robin behave in a
similar way as KLEIN.

3.2 Profiled Side-channel Analysis

Machine learning (ML) is a term encompassing a number of methods that can be
used for clustering, classification, regression, feature selection, and other knowl-
edge discovering methods [21]. In supervised machine learning, the algorithm is
provided with a set of data instances (i.e., measurements) and data classes (i.e.,
values of Y (k∗)) in a training phase. The goal of this phase is to “learn” the
relationship between the instances and the classes in order to be able to reliably
map new instances to the classes in the testing phase.

For our study, we use one algorithm per ML family based on the form in
which the output function is represented. In particular, we use Naive Bayes
as the simplest algorithm that does not have any parameters to tune. Next,
from the decision tree family we use the C4.5 algorithm, which is an algorithm
considered to be robust to noise. From the perceptron family, we use the Multi
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(a) σ =
√

1/2, SNR = 2 (b) σ = 1, SNR = 1

(c) σ =
√

8, SNR = 1/8 (d) σ = 4, SNR = 1/16

Fig. 2: Success rates (ciphers with 4-bit S-boxes)

Layer Perceptron (MLP) algorithm, which represents an advance over the simple
perceptron algorithm.

Our experiments are divided in two phases: training and testing (i.e., attack-
ing) with datasets containing 10 000, 30 000, and 50 000 instances. As common
for ML techniques we use 2/3 of the instances for training and 1/3 for testing
(e.g., results for 10 000 instances are obtained with 6 650 training instances and
3 350 instances in the testing phase). On the training set we conduct a 10-fold
cross-validation with all the considered parameters. Note that the training phase
contains a tuning phase in which we select the best parameters for each algo-
rithm. Due to the lack of space, we do not present results from the training phase
but we mention the best obtained parameters that are then used in the testing
phase. We also conducted the same set of experiments with more advanced ML
techniques – Rotation Forest and Support Vector Machines, but the results did
not differ significantly from those presented here.

Note that our simulated measurements only contain one feature (time in-
stance), which is commonly accepted for simulated data, but not usual when
using ML techniques or profiled SCA (at least before dimension reduction). If
one has at his disposal a sufficient number of measurements with many features
and the level of noise is low, previous results confirm that such a scenario is easy
for profiled attack. However, if the level of noise is high or the number of mea-
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(a) σ = 1, SNR = 2 (b) σ =
√

2, SNR = 1

(c) σ = 4, SNR = 1/8 (d) σ =
√

32, SNR = 1/16

Fig. 3: Success rates (ciphers with 8-bit S-boxes)

surements is too low, then the process becomes more cumbersome. Our study
shows that even if only a single feature is available (with sufficient information),
the attack can be very powerful. Moreover, with the increase in the number of
features, the “curse of dimensionality” can appear: as the number of features
grow, the classification effort grows exponentially. Common ways to overcome
this problem in SCA are dimension reduction techniques like PCA and LDA.
Finally, we note that working with only a single feature also makes theoretical
analysis, such as probably approximately correct (PAC) learning, easier; we leave
this for future work.

Naive Bayes (NB) classifier is a method based on the Bayesian rule (similar
to template attacks [22]). Naive Bayes works under the simplifying assumption
that the predictor attributes (measurements) are mutually independent among
the features given the target class. The existence of highly correlated attributes
in a dataset can thus influence the learning process and reduce the number of
successful predictions. Additionally, Naive Bayes assumes a normal distribution
for predictor attributes and outputs posterior probabilities.

The space complexity for the Naive Bayes algorithm for both the training
and the testing phase equals O

(
|Y|Dv

)
, where |Y| is the number of classes, D

is the number of features, and v is the average number of values for a feature.
On the other hand, for the training phase, the time complexity equals O

(
QD

)
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and for the testing phase O
(
|Y|D

)
, where Q is the number of training examples.

Further information about the Naive Bayes algorithm can be found in [23].

C4.5 is the landmark decision tree algorithm [24]. It is a divide-and-conquer
algorithm that splits features at tree nodes using the information-based gain
ratio criterion. The node splits in further branches if more information is gained
(as measured by the gain ratio) by the split than by keeping all the instances
at the node. The runtime of the algorithm is O

(
D×Q× logQ

)
, where D is the

number of features and Q is the number of instances [25]. The trees are first
grown to full length and pruned afterwards in order to avoid data overfitting.

With the C4.5 algorithm we investigate the influence of the confidence factor
parameter that is used for pruning, where smaller values relate to more prun-
ing. We tested that parameter in the range [0.05, 0.4] with a step of 0.05. We
conducted a separate tuning phase for each noise level and selected a confidence
factor of 0.1 for σ = 1, 0.2 for σ = 3, and 0.05 for σ = 5.

Multi Layer Perceptron (MLP) is a feedforward neural network that maps
sets of inputs onto sets of appropriate outputs. Multi layer perceptron consists of
multiple layers of nodes in a directed graph, where each layer is fully connected to
the next one. To train the network, the backpropagation algorithm is used, which
is a generalization of the least mean squares algorithm in the linear perceptron.
A perceptron is a linear binary classifier applied to the feature vector. Each
vector component has an associated weight wi. Furthermore, each perceptron
has a threshold value θ. The output of a perceptron is “1” if the direct sum
between the feature vector and the weight vector is larger than zero and “-1”
otherwise. A perceptron classifier works only for data that are linearly separable,
i.e., if there is some hyperplane that separates all the positive points from all
the negative points [21].

MLP must consist of 3 or more layers (since input and output represent
two layers) of nonlinearly-activating nodes [26]. We investigate a learning rate
parameter in range [0.05, 0.4] with a step of 0.05, a momentum with values
[0.1, 0.2, 0.3, 0.4], a training time with values [400, 500, 600], and a validation
threshold with values [10, 20, 30]. In our experiments we set the number of hid-
den layers to be equal to (number of classes + number of attributes)/2, the
learning rate is set to 0.1, the momentum applied to the weights during the
update is set to 0.2, the training time is set to 500, and the validation threshold
to 20.

4-bit vs. 8-bit We highlight with a gray cell if the the Area Under Curve
(AUC) [18] is close to 0.5 which means that the algorithm is closer to random
guessing. Note that in our study we use PRESENT and AES. However, the
results (in particular the accuracy) are not specific to these ciphers but rather
to the fact of using 4-bit/8-bit S-boxes, the intermediate states and the binomial
distribution of the HW.

In addition to the previous scenario of attacking the HW of the output of
the S-box, we first perform classifications on key chunks, directly resulting in 16
and 256 classes. The results are presented in Table 2, showing that the accuracy



11

(given in percentages) for PRESENT is higher than for AES for all levels of
noise, which seems natural since PRESENT has a significantly smaller number
of classes than AES. However, when comparing the best values directly, one can
observe that the difference is rather small (e.g., for σ = 1: 41.55 vs. 38.33). What
is interesting to observe, is that the level of noise has much less impact when
comparing σ = 3 and σ = 5 than when comparing σ = 1 and σ = 3. Finally, we
observe that the number of measurements does not play a significant role in this
case.

Table 2: Testing results for classifying a key chunk (nibble or byte)
PRESENT: 16 classes

10,000 30,000 50,000

Algorithm σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5

NB 41.55 19.94 12.06 42.62 18.68 13.86 41.72 18.53 14.04

C4.5 40.73 14.85 11.79 41.88 15.79 12.05 41.9 16.08 12.76

MLP 40.67 19.3 11.15 41.4 18.3 14.15 40.82 18.24 13.85

AES: 256 classes

10,000 30,000 50,000

Algorithm σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5

NB 38.33 12.67 7.42 37.43 13.04 8.23 38.84 13.29 8.47

C4.5 34.88 9.67 7.69 35.71 10.94 7.18 36.25 10.98 7.04

MLP 35.21 10.94 7.11 37.27 13 7.85 38.67 13.2 8.05

Table 4 gives the results for attacking the HW output of the S-box. Again,
we observe that the accuracy is higher for PRESENT than for AES, but we
notice that for AES the algorithm is rather “randomly” guessing than predicting
meaningful classes. This is mainly due to the imbalance of the HWs since they
follow a binomial distribution (see Table 3). In particular, for AES with randomly
distributed inputs, the HW value 4 is occurring in 27.34% of all events, which is
rather high. Therefore, the classifier mainly outputs class 4, giving an accuracy
between 27% and 28%. For PRESENT we can see that HW class 2 is occurring
in 37.5% of all cases. However, as there are fewer classes in total, the algorithm
seems to try to find a reasonable classification.

Table 3: Occurrences of Hamming weights in %
HW 0 1 2 3 4 5 6 7 8

4-bit 6.25 25 37.5 25 6.25 – – – –
8-bit 0.39 3.12 10.93 21.87 27.34 21.87 10.93 3.12 0.39

We additionally investigate the scenario of chosen plaintexts during the pro-
filing phase. Table 5 presents the results for both PRESENT and AES with ex-
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Table 4: Testing results for classifying the HW of the S-box output
PRESENT: 5 classes

10,000 30,000 50,000

Algorithm σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5

NB 51.27 38.55 37.12 51.17 38.57 37.1 51.04 38.92 37.81

C4.5 50.06 38.82 37.03 51.05 38.16 37.19 50.72 38.73 37.59

MLP 51.27 39.12 37.03 51.07 38.47 37.31 50.57 39 38

AES: 9 classes

10,000 30,000 50,000

Algorithm σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5

NB 27.67 27.63 28.18 27.07 27.04 27.52 27.94 27.93 28.04

C4.5 27.76 26.91 27.64 27.07 26.77 27.26 27.94 27.94 28.15

MLP 27.64 27.64 27.21 27.03 27.03 27.47 27.93 27.93 28.33

actly 1 000 measurements for each class, i.e., the total number of measurements
equals 5 000 for PRESENT and 9 000 for AES. We can see that the problem
of predicting only a subset of classes is not present and again we observe that
classifying PRESENT is more accurate than AES.

Table 5: Results with 1 000 measurements per class, HW model

PRESENT (5 classes) AES (9 classes)

Algorithm σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5

NB 49.7 30.55 24.97 45.32 21.85 19.19

C4.5 50.73 30.79 24.06 43.67 21.26 19.36

MLP 50.12 29.7 24.18 44.14 21.82 19.02

4 Conclusions

In this paper, we investigate whether side-channel analysis is easier for light-
weight ciphers than e.g. for AES. We cover both profiled and non-profiled tech-
niques. In the case of non-profiled attacks, we evaluate a number of S-boxes
appearing in lightweight ciphers using the confusion coefficient and empirical
simulations. Interestingly, we see that the 8-bit S-boxes from AES, Zorro, and
Robin perform similarly, whereas for 4-bit S-boxes we have a clear ranking, with
the S-box of Mysterion being the weakest to attack and the S-box of KLEIN the
hardest. Further, we cannot conclude that the 4-bit S-boxes are generally sig-
nificantly less resistant than the investigated 8-bit S-boxes. For profiled attacks,
we analyze several machine learning techniques for PRESENT and AES. Note
that in this scenario our results are applicable to all 4-bit and 8-bit S-boxes. Our
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results show that attacking PRESENT is somewhat easier than attacking AES,
with the difference mainly stemming from the varying number of classes in one
or the other scenario. Still, that difference is not so apparent as one could imag-
ine. Since we work with only a single feature and yet obtain a good accuracy in a
number of test scenarios, we are confident (as our experiments also confirm) that
adding more features will render classification algorithms even more powerful,
which will result in an even higher accuracy.

Finally, we did not consider any countermeasures for the considered light-
weight algorithms, since the capacity for adding countermeasures is highly de-
pendent on the environment (which we assume to be much more constrained
than in the case of AES). However, our results show that a smart selection of
S-boxes results in an inherent resilience (especially for 4-bit S-boxes).

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Proceedings of
CRYPTO’99. Volume 1666 of LNCS., Springer-Verlag (1999) 388–397

2. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Proceedings of the Third International Workshop on Cryptographic Hardware
and Embedded Systems. CHES ’01, London, UK, UK, Springer-Verlag (2001) 251–
261

3. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Ma-
chine learning in side-channel analysis: a first study. Journal of Cryptographic
Engineering 1 (2011) 293–302 10.1007/s13389-011-0023-x.

4. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against
a masked AES - Reaching the limit of side-channel attacks with a learning model.
J. Cryptographic Engineering 5(2) (2015) 123–139

5. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

6. Gong, Z., Nikova, S., Law, Y.W. In: KLEIN: A New Family of Lightweight Block
Ciphers. Springer Berlin Heidelberg, Berlin, Heidelberg (2012) 1–18

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: CHES. Volume 4727 of LNCS., Springer (September 10-13 2007) 450–466 Vi-
enna, Austria.

8. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T. In:
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