
When It’s All Just Too Much: Outsourcing
MPC-Preprocessing

Peter Scholl, Nigel P. Smart, and Tim Wood

Dept. Computer Science, University of Bristol, United Kingdom.

Abstract. Most modern actively secure multiparty computation proto-
cols make use of a function and input independent pre-processing phase.
This pre-processing phase is tasked with producing some form of cor-
related randomness and distributing it to the parties. Whilst the “on-
line” phase of such protocols is exceedingly fast, the bottleneck comes
in the pre-processing phase. In this paper we examine situations where
the computing parties in the online phase may want to outsource the
pre-processing phase to another set of parties, or to a sub-committee.
We examine how this can be done, and also describe situations where
this may be a benefit.

1 Introduction

Secure multi-party computation (MPC) is the idea of allowing multiple parties
to compute on their combined inputs in a “secure” manner. We use the word
secure to mean that the interaction provides no party with any information on
the secret inputs of the other parties, bar what can be learned from the output (a
property called “privacy” or “secrecy”). In this paper we will focus on protocols
which can tolerate a majority of the parties being corrupted. In such a situation
we know there is no hope that the honest parties can always obtain the correct
output. In such a situation we require that either the honest parties obtain the
correct result, or they abort (with overwhelming probability).

For a long time, MPC remained a theoretical exercise and implementations
were impractical. However, much work has recently been undertaken on devel-
oping practical MPC protocols in the so-called “pre-processing model”. In this
model, the protocol is split up into an offline phase and an online phase. In the
offline (i.e. pre-processing) phase the parties execute a protocol which emulates a
“trusted dealer” who distributes “raw material” (pre-processed data) to parties;
this data is then used up in the online phase as the circuit is evaluated. The
advantage of doing this is that the pre-processing involves expensive public key
operations which can be isolated to the pre-processing phase. In addition, the
pre-processed data can be made independent of both the inputs and the circuit,
so it can be computed at any point prior to the evaluation of the circuit. The
online phase is then executed with (essentially) information theoretic primitives,
and is thus very fast, whilst all the computationally expensive machinary can be
relegated to the offline phase.



This protocol idea goes back to Beaver [Bea96]. It was first used in a practical
(and implemented) MPC system in the VIFF protocol [DGKN09], which was a
protocol system built for the case of honest majority MPC. Modern dishonest
majority MPC protocols make use of information theoretic MACs to achieve
active security, an idea which goes back to [RBO89] When combined with the pre-
processed triple idea of Beaver these two ideas have, in the last five years, resulted
in a step change in what can be implemented efficiently by MPC protocols.

The first protocol in this area was BDOZ [BDOZ11], which demonstrated
that if the number of parties was constant and the parties had access to a
functionality which would provide the pre-processed data then the overhead of
computing the (arithmetic) circuit (over a large finite field) securely is only
a constant factor times the work required to compute it in the clear. The
SPDZ [DPSZ12] protocol showed that the mere constant factor overhead en-
countered in the BDOZ protocol holds for any number of parties. Further im-
provements were presented in [DKL+13] to the SPDZ protocol. In the BDOZ
and SPDZ protocols the pre-processing is produced using forms of homomorphic
encryption, and so the protocols are more suited to MPC over a large finite field.
In TinyOT [NNOB12], similar results in the two-party case for Boolean circuits
were given, where the pre-processing was implemented using oblivious transfer
(OT) extension. In [LOS14,BLN+15], the TinyOT protocol was extended to the
multi-party case, and the online phase was made consistent (in terms of com-
putational pattern) with that of the SPDZ protocol from [DKL+13]. Further
unification of these protocol families occured with the replacement of the ho-
momorphic encryption based pre-processing phase of SPDZ with an OT based
pre-processing [KOS16], forming what is known as the MASCOT protocol. To
simplify exposition, since all of these protocols are essentially the same at a high
level, we shall refer to them as one in this paper, namely as the “SPDZ family”.

As already remarked, the SPDZ family of protocols has an efficient online
phase; indeed, the online phase has a number of interesting properties:

– Computational Efficiency: Since the online phase is made up of infor-
mation theoretic primitives, the basic arithmetic operations are incredibly
simple, requiring only a constant multiplicative factor increase in the number
of operations when compared to evaluating the function in the clear. Before
every output operation, the execution of a PRF is also required for MAC
checking, but for a large computation this can be ignored.

– Communication Efficiency: The basic protocol requires interaction for
each multiplication operation1. This interaction need only be conducted over
authenticated channels, rather than private channels, and the communica-
tion required grows linearly in the number of players.

– Deterministic: Given the correlated randomness from the offline phase,
the function to be computed, and the parties’ inputs, the online phase is
essentially deterministic. The only random data needed is a small amount

1 For simplicity of expression we assume the MPC functionality is evaluating an arith-
metic circuit over a finite field. This is purely for exposition: in practice the usual
MPC tricks to remove the need for circuit based computation will be used.
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per party to ensure that dishonest parties are detected in the MAC checking
protocol. Indeed this random data can be created in the offline phase and
then stored for later use.

The simplicity and efficiency of the online phase, however, comes with a penalty
in the offline phase. Using either method to generate the pre-processed data, viz.
homomorphic encryption or OT, the offline phase requires expensive public key
machinery, and in practice is a couple of orders of magnitude slower than the
online phase. In some instances, while the online phase is computationally cheap
enough to be executed by a relatively low powered computing device, the same
device would not be sufficiently powerful to perform the associated offline phase
efficiently. This can cause a problem when we have parties with very different
computing power. Similarly the offline phase requires the transmission of a larger
amount of data per multiplication gate than the online phase. Again, this can
be a problem in practice if certain parties are on a slow part of the network.

The offline phase also requires each party to input a large amount of ran-
domness, and it is well known that one of the major challenges of running any
cryptography in the real world is the generation of randomness. Small hardware
devices may not have the capability of producing random values easily, as they
usually have very limited access to good sources of entropy. For example, devices
such as mobile phones and tablets still have problems with good entropy sources.
Moreover, it does not suffice simply to be able to generate random numbers: in
many cryptographic applications (including MPC) it is necessary that it be high
quality randomness. This has led to high-end applications requiring expensive
dedicated hardware to produce entropy; but such dedicated hardware may not
be on all computers in a computation. Thus, even in the case of high-end servers
executing the MPC protocol, it may easily not be the case that all have access
to a sufficient entropy source.

For these reasons, we propose a method of outsourcing the offline pre-processing
for the SPDZ family of protocols to a different set of parties. We will let Q denote
the set of nQ parties who are to run the online phase; the set Q will outsource
the computation of the pre-processing to a set of parties R of size nR. This set
R may be a strict subset of Q, or they could be a completely different set all to-
gether. The idea is that Q is unable to execute the pre-processing as an nQ-party
protocol, due to some limitation of resources (computation, bandwidth, or ran-
domness, for example), whereas R is “more able” to execute the pre-processing
as an nR-party protocol. Our protocol to perform this outsourcing will also aim
to minimise the communication needed to transfer the pre-processing data from
the set R to the set Q.

Of course for this to make sense it is important that the set Q trust the set
R to perform this task, and that the protocol respect this trust relationship. In
particular we assume an adversary which can corrupt a majority of parties in Q
and a majority of parties in R. We suppose the adversary can neither corrupt
all parties in R nor all parties in Q: indeed, in this case we clearly would not
even be expected to guarantee any security. In particular, this means that each
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honest party in Q believes that there is at least one honest party in R, but they
may not know which one is honest.

To understand this trust relationship in more detail: our protocol divides the
set Q into (not necessarily disjoint) subsets {Qi}i∈R and associates each subset
with a party in R; namely, party i ∈ R is assigned the set Qi. Our protocol will
be secure if there is at least one pair (i, Qi) where i ∈ R is an honest party in
R, and Qi contains at least one honest party from Q. This raises (at least) three
potential ways for the subsets to arise:

– If R ⊆ Q then we make sure Qi contains honest player i from R. This can be
done, for example, by each party i in R including itself in the set Qi. Thus,
here we guarantee that Qi contains an honest party if i is honest, so a pair
(i, Qi) as described above exists.

– It may be the case that every party in Q trusts at least one party in R
already. In this case, our cover, {Qi}i∈R, can be produced by letting parties
in Q elect which parties in R they want to be associated with.

– If no prior trust relation is known then this cover must be defined either
deterministically or probabilistically. If deterministically, to satisfy the re-
quirement above we must choose Qi = Q for all i. This guarantees a pair
(i, Qi) as described above, but results in an inefficient network topology
(since each party in R needs a secure channel to each party in Q). Alter-
natively, we make a probabilistic assignment and derive bounds on nQ and
nR which ensure that the assignment preserves security with overwhelming
probability: see Section 4 for details.

As an example of the practicality of using the protocol and probabilistic
algorithm we describe: if there are 5 parties in R of which at most 3 are corrupt,
and 1000 parties in Q of which at most 781 are corrupt, each party in R need only
send to 200 parties in Q (i.e. exactly as many are needed to provide a cover) for
the cover to be secure (i.e. so the adversary cannot with with probability greater
than 1− 2−80).

Besides the ability of the protocol we describe to enable localising the gen-
eration of pre-processed data, another potential application of the protocol is to
increase the number of parties involved in a given instance of the SPDZ protocol
dynamically (i.e. during the online phase). For example, suppose a set of parties
already running an instance of the SPDZ protocol want to (efficiently and se-
curely) allow another set of parties to join them during a reactive computation.
It may make more sense to transform the already pre-processed data (or even
just a few pre-processed values) via our protocol to a form that is amenable
for use by a larger number of parties, and then distribute it to the parties who
want to join in on the computation, instead of requiring that the parties halt
the computation and then engage in a new round of pre-processing. This would
only make sense if the parties joining the computation trusted at least one of the
pre-existing parties, which is likely to be the case in any reasonable application
of this use-case.

At its heart our technique can be described as follows, where we let FP,APrep

denote the SPDZ offline functionality for a set of parties P of size n with set of
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corrupt parties A. We suppose we now have a set of parties P = R∪Q and a set
of parties which are considered corrupt A ⊂ P.

We then define a cover {Qi}i∈R of Q such that there is at least one pair
(i, Qi) where i ∈ R is an honest party in R, and Qi contains at least one honest
party from Q. The cover is such that each party in Qi is connected by a secure
channel to the associated party i in R. Just as (i, Qi) associated a subset Qi ⊂ Q
to a party i ∈ R, we also let (j, Rj) denote the subset Rj ⊂ R associated to a
party j ∈ Q.

We then extend A to a set A ⊂ P as follows A = A ∪ {j : Rj ⊂ A}. The set
A is referred to as the set of effectively corrupt honest parties with respect to

the online phase of the protocol. The protocol we present allows FQ,Q∩APrep to be

implemented in the FR,R∩APrep -hybrid model.
The main idea of the protocol is conceptually quite simple, and is essentially

a standard ‘re-sharing’ technique similar to [BOGW88]. The main novelty is in
showing that this can be efficiently applied to the SPDZ protocol, without the
need for any expensive zero-knowledge proofs. In doing this, the difficulty comes
in proving that the protocol is actually secure in the UC framework, and also
in creating and analysing an (efficient) algorithm for assigning a cover to the
network so that the adversary can only win with negligible probability in the
security parameter in the case where we randomly assign the covers.

Related work. There is a long line of works on scalable secure computation
with a large number of parties [DI06,HN06,DKMS14,BCP15] (to name a few),
which use similar techniques to ours. These works often divide the parties into
random committees (or quorums) to distribute the workload of the computation.

Most of these papers target asymptotic efficiency, and strong models such
as adaptive security, asynchronicity and RAM computation. This gives inter-
esting theoretical results, but the practicality of these techniques has not been
demonstrated. In contrast, our work focuses on applying simple techniques to
to modern, practical MPC protocols. Furthermore, we give a concrete analysis
and examples of parameters that can be used for different numbers of parties in
real-world settings, at a given security level.

2 Preliminaries

In this section, we describe the notation used in subsequent sections, formally
define secure cover, and give an overview of the SPDZ protocol, and the offline
phase in particular.

General Concepts and Notation: Parties in the network are labelled i for
i ∈ [n] = {1, ..., n}, where n is the total number of parties. We denote by P this
complete set of parties and we split the network into two parts, which we call
R and Q (so each is a subset of n). We let nr (resp. nQ) denote the number of
parties in R (resp. Q). We let A ⊂ P denote the indexing set of corrupt parties
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in P, and A denote the superset of A which possibly contains additional honest
parties in Q, called effectively corrupt honest parties from the introduction. We
assume there is an authenticated communication channel between every pair of
parties in Q and every pair of parties in R. We define a secure cover {Qi}i∈R of
Q by R in the following way:

Definition 1. Let [n] be the indexing set of a set of parties in a given network
and suppose we are also given subsets R,Q ⊂ [n] of sizes nr and nq respectively.
Each party in the network is either corrupt or honest. We call a set {Qi}i∈R of
(not necessarily disjoint) subsets of Q a secure cover if the following hold:

– All parties in Qi are connected to player i ∈ R via a private channel.
– The subsets cover Q, i.e. Q =

⋃
i∈RQi.

– There is at least one pair (i, Qi) where i ∈ R is an honest party in R, and
Qi contains at least one honest party from Q.

We will also let Rj denote the set of parties in R which are connected to party
j ∈ Q. We will use λ to denote the security parameter, and we will say an
event occurs with overwhelming probability in the security parameter λ if it
occurs with probability at least 1− 2λ. We denote by Fq the finite field of order
q, a (large) prime power. A function ν ∈ Fq[x] is called negligible if for every
polynomial p ∈ Fq[x], there exists a C ∈ Fq such that ν(x) ≤ 1/p(x) for all
x > C. We write α← Fq to mean that α is sampled uniformly at random from
the field Fq.

In Appendix B, we discuss the different network topologies of secure channels
between our parties in R and parties in Q. In particular, we explore the different
ways in which to define the cover {Qi}i∈R, taking into account, for example, the
fact that the Qi’s are not necessarily all the same size. Section 4 then builds on
these considerations by providing concrete methods of creating the cover and
analysing the resulting protocols. This involves, for example, examining how the
likelihood of the cover being secure changes (if we define it probabilistically) as
we change the value of ` if we require that all parties in R send to the same
number ` of parties in Q.

In Appendix C, we give a brief overview of the Universally Composability
(UC) framework, which is the model in which we give the proof of our main
theorem. The power of UC is well demonstrated in the pre-processing model,
since it allows us to split up the functionality into separate independent parts
and prove security of separate protocols for each part such that when we execute
the protocols together we are guaranteed they be secure, even though we only
prove them secure individually. In this model, we define some functionality FPrep

for the pre-processing and a separate functionality FOnline for the online phase.
A protocol is designed for each, ΠPrep and ΠOnline, the protocol ΠPrep is shown
to implement FPrep securely, and finally ΠOnline is shown to implement FOnline

securely in the FPrep-hybrid model (meaning the simulator in this proof assumes
the existence of FPrep). This is particularly useful in our situation where we only
want to change how pre-processing is done since we only need to revamp the
pre-processing, and can leave the online phase unchanged, avoiding the need to
reprove security.
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SPDZ Overview: In general, computation will be done over a finite field F =
Fq where q is a (large) prime power. The protocol called MACCheck in the SPDZ
paper [DPSZ12] requires that the field be large enough to make MAC forgery
unfeasible by pure guessing. In particular this means that 1/q is negligible in λ.
For smaller finite fields, and in particular the important case of binary circuits,
adaptions to the MACCheck protocol can be made; see [LOS14], for example.
For this paper we will assume the simpler case of large q purely for exposition.
The SPDZ MPC protocol allows parties to compute an arithmetic circuit on
their combined secret input. More specifically, for an arbitrary set of parties P
and a subset set of corrupt parties A ⊂ P , the SPDZ protocol implements the
functionality FP,AMPC described in Figure 1 provided P \A 6= ∅.

The Functionality FP,AMPC.

The superscript P denotes the set of parties involved in the protocol, and A ⊂ P
is the set of corrupt parties.

Initialise: On input (Initialise,F) from all parties in P , store F.
Input: On input (Input, i, id, x) from party i and (Input, i, id) from all other parties,
with id a fresh identifier and x ∈ F, store (id, x).
Add: On command (Add, id1, id2, id3) from all parties in P (where id1 and id2 are
present in memory), retrieve (id1, x) and (id2, y) and store (id3, x+ y).
Multiply: On command (Multiply, id1, id2, id3) from all parties in P (where id1 and
id2 are present in memory), retrieve (id1, x) and (id2, y) and store (id3, x · y).
Output: On input (Output, id) from all honest parties (where id is present in mem-
ory), retrieve (id, z), output it to the adversary. If the adversary responds with OK
then output the value z to all parties, otherwise output Abort to all parties.

Figure 1. The Functionality FP,AMPC.

The main motivation for this paper is that the “standard” protocols which
implement FP,AMPC in the pre-processing model, for some set of parties P and cor-
rupt parties A, require a lot of work by the parties in P during pre-processing.
Our goal is to implement FP,AMPC using a (possibly larger) set of parties in which
some specified set of parties execute the expensive pre-processing part of the
protocol and only the parties in P (who are the only ones interested in the
computation itself) execute the cheap online part of the protocol. In our termi-
nology, the parties in Q outsource the pre-processing to a set of parties R (which
possibly includes some parties in R) and then compute using this data.

We will elaborate a little here; in what follows we use the notation and
functionalities of the latest version of the SPDZ protocol, based on OT, called
MASCOT [KOS16]. We will describe the SPDZ protocol for an arbitrary set
of parties P (later we will specialise this in our protocol to the sets Q and R
in specific instances). In the initialisation stage, the parties sample (and keep
private) random shares αi, one for each party, whose sum is taken to be a global
(secret) MAC key α, i.e. α =

∑
i∈P αi.

7



A value x ∈ Fq is secret shared among the parties in P by sampling (xi)i∈P ←
F|P |q subject to x =

∑
i∈P xi, with party i holding the value xi. In addition, we

sample (γ(x)i)i∈P ← F|P |q subject to
∑
i∈P γ(x)i = α · x and party i holding the

share γ(x)i. Thus γ(x)i is a sharing of the MAC γ(x) := α · x of x. We write
the following to denote that x is a secret value, where party i ∈ P holds xi and
γ(x)i.

〈x〉 := ((xi)i∈P , (γ(x)i)i∈P ))

Since this sharing scheme is linear, linear operations on secret values comes “for
free”, in the sense that adding secret values or multiplying them by a public
constant requires no communication. Crucially, since the MAC is linear, the
same operations applied to the corresponding MAC shares will result in MACs
on the result of the said linear computation.

Unfortunately, multiplication of secret values requires a little more work,
and is the reason we must generate data offline. At its heart SPDZ uses Beaver’s
method [Bea96] to multiply secret-shared values, which we outline here. In the
offline phase, we generate a large number of multiplication triples, which are
triples (〈a〉, 〈b〉, 〈c〉) such that c = a · b. Note that while other forms of pre-
processing can help in various computations, such as shared squares and shared
bits, in this paper we focus on the basic form of pre-processing and leave the
interested reader to consult [DKL+13] and [KSS13]. To multiply secret-shared
elements 〈x〉 and 〈y〉 in the online phase, we take a triple (〈a〉, 〈b〉, 〈c〉) and
partially open 〈x〉− 〈a〉 and 〈x〉− 〈b〉 to obtain ε := 〈x〉− 〈a〉 and δ := 〈x〉− 〈b〉.
By “partially open 〈x〉− 〈a〉”, we mean that each party i sends the value xi− ai
to every other party, but does not send the corresponding MAC share. Then

〈z〉 = 〈c〉+ ε · 〈b〉+ δ · 〈a〉+ ε · δ

is a correct secret sharing of z = x ·y. A similar use of pre-processed data is used
for the parties to enter their inputs into the computation.

SPDZ Preprocessing: To formalise things a little more, we now discuss the
functionality FP,APrep, given in Figure 2, which implements the necessary pre-
processing. The superscript P denotes the indexing set of parties involved in
the computation, and set A ⊂ P is a set of parties in P under the control of
the adversary. As explained in the introduction, this includes all corrupt parties
and also effectively corrupt parties, which are those nominally honest parties
which receive reshares from only corrupt parties. If the parties generate the pre-
processing themselves and do not make use of our protocol, this set A is exactly
the set of corrupt parties; when the pre-processing is outsourced, then we have
to worry about (the possibility of) effectively corrupt parties.

The functionality is a little more general than the functionality presented
in [KOS16] as we allow the corrupt parties to introduce more errors: the standard
SPDZ offline functionality only allows errors to be introduced into the MAC
shares and not the data shares, whereas this new functionality allows errors on
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The Offline Functionality FP,APrep for SPDZ.

The set A ⊂ P contains both the corrupt parties in P and also any honest parties we
wish to consider as corrupt. This is to account for the fact that honest parties which
have shares sent to it by corrupt parties only should be considered adversarially
controlled. When A is exactly the set of corrupted parties in P , the functionality
is the same as SPDZ (with the adversary’s additional power to add errors into the
secret values contained in shares as well as the MACs on them).
Initialise: On input (Initialise, q) from all players and the adversary, the function-
ality does the following:
1. The functionality samples α← Fq to be the global MAC key.
2. The functionality receives some error ∆α from the adversary and, for each

corrupted player i ∈ A, a share αi.
3. It then samples at random αi for each i /∈ A subject to

∑
i∈P αi = α+∆α.

4. The functionality sends αi to party i, for all i ∈ P .

Macro: Angle(x) The following will be run by the functionality at several points
to create 〈·〉 representations.
1. The functionality accepts ({xi, γ(x)i}i∈A,∆x,∆γ) from the adversary.
2. The functionality samples at random {xi, γ(x)i}i/∈A subject to

∑
i∈P xi = x+

∆x and
∑
i∈P γ(x)i = α · x+∆γ .

3. Finally, the macro returns ((xi)i∈P , (γ(x)i)i∈P ).

Computation: On input (DataGen, DataType) from all players and the adversary,
it executes the data generation procedures specified below.
– On input DataType = InputPrep and a value i ∈ P ,

1. The functionality samples r(i) ← Fq if i 6∈ A, otherwise the functionality
accepts r(i) from the adversary.

2. The parties calls Angle(r(i)).

3. If i /∈ A, the functionality sends party i the values {r(i), (r(i)i , γ(r(i))i)}.
(I.e. three values.)

4. For j ∈ P \ A and j 6= i the functionality sends party j the pair

(r
(j)
i , γ(r(j))i).

Thus all parties obtain a sharing 〈r(i)〉 of a value r(i) known only to party i.
– On input DataType = Triple,

1. The functionality samples a, b ∈ Fp and computes c = a · b.
2. The functionality calls Angle(a), Angle(b) and Angle(c).
3. For i /∈ A, the functionality sends ((ai, γ(a)i), (bi, γ(b)i), (ci, γ(c)i)) to i ∈

P .

Figure 2. The Offline Functionality FP,APrep for SPDZ.

both. It is fairly intuitive that we will retain a security using this functionality
as opposed to the standard one, as an adversary winning having changed shared
values and MACs needs to have forged the same MAC equation as an adversary
winning after just altering MAC values. The extra ability of altering share values
gives him no advantage, a fact which we will prove shortly.

In [KOS16] the following theorem is (implicitly) proved, where FOT and
FRand are functionalities implementing OT and shared randomness for the par-
ties.
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Theorem 1. There is a protocol ΠP,A
Prep that securely implements FP,APrep against

static, active adversaries in the FOT,FRand-hybrid model, where P is the com-
plete set of parties and A the set of corrupt parties in P .

We do not give the definition of the ΠP,A
Prep protocol here as it is identical to

MASCOT when based on OT, or identical to the original SPDZ pre-processing
when based on homomorphic encryption (in spite of the slight difference in func-
tionalities). Note that the paper [KOS16] proves the above theorem by giving
a number of different protocols which, when combined, securely implement the
required functionality FP,APrep.

The MACCheck Protocol from SPDZ/MASCOT.

On input an opened value s, a MAC share γ(s)i and a MAC key share αi from each
party i and a session id sid, each party i does the following:
1. Compute σi ← γ(s)i − s · αi and call FCommit.Commit(σi, i, sid) to commit to

this, and receive the handle τi.
2. When commitments are performed by all parties call FCommit.Open(i, sid, τi) to

open the commitments.
3. If

∑n
i=1 σi 6= 0, output ⊥ and abort; otherwise, continue.

Figure 3. The MACCheck Protocol from SPDZ/MASCOT.

SPDZ Online Protocol: The SPDZ online protocol is given in Appendix A
as Figure 7 which itself uses the subprocedure MACCheck presented in Figure 3,
which itself makes use of a commitment functionality given in Figure 8 (also in
the appendix). It has been shown that UC commitment schemes in the plain
model cannot exist, though they do exist in the common reference string model
(in which one assumes the existence of common string known to both parties)
[CF01], or, alternatively, the random oracle model (e.g. [HMQ04]).

The MAC check passes if the MAC is correct for the corresponding share.
Importantly, the check fails if the MAC is incorrect for the shared value, which
occurs if the MAC or the value it authenticates (or both) is incorrect. Proofs
can be found in [KOS16, App. B] and [DPSZ12, App. D3]. It is precisely because
MACCheck detects errors in either the MAC value or share value or both that we
can use an offline phase which introduces errors into the share values themselves,
and not restrict ourselves to an offline phase in which only errors on MACs are
allowed (as in the original SPDZ papers). Given these procedures we can then
prove:

Theorem 2. The protocol ΠP,A
Online securely implements the functionality FP,AMPC

in the FP,APrep,FCommit,FRand-hybrid model.

Proof. The proof is identical to that in [DPSZ12], except that the pre-processing
may now introduce errors into the share values as well as the MAC values. To
prove the theorem, we must show that no environment can distinguish between
an adversary interacting as in the protocol ΠP,A

Prep and a simulator interacting

with the functionality FP,APrep. Thus the proof runs exactly as in [DPSZ12, App.
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D3], except that when we run the MACCheck protocol, the error can now be
on the value in the share or the MAC. However, the security game presented
in [DPSZ12] allowed the adversary to introduce errors on the shares, so the
original protocol already offers the stronger guarantee that no error can occur
on either the MAC or the value of the share it authenticated (or both). Note
that if the adversary can alter the share and the MAC and have MACCheck pass,
this is equivalent to computing, on some corrupted party’s share, a′i ← ai + c
and γ(a)′i ← γ(a)′i + α · c for some c ∈ F, which still implies it knows α, the
global MAC key.

3 Feeding One Protocol From Another

In this section we give our main result on feeding an instance of FQ,Q∩APrep from

another instance FR,R∩APrep . We assume we have a secure cover {Qi}i∈R of Q.

Method of Redistributing Data: Recall the parties in R will be performing
the offline phase on behalf of the parties in Q. The parties in Q will share data
in the standard manner (see Section 2), and the same will happen for parties in
R. To avoid confusion, a data item x ∈ F secret shared amongst partes in Q will
be denoted by 〈x〉Q, whilst the same data item shared amongst parties in R will
be denoted by 〈x〉R, where implicitly we are assuming the same MAC key α is
shared amongst the parties in R and the parties in Q.

When parties in Q want to evaluate a circuit amongst themselves, they follow
the online protocol above and whenever they require a pre-processed data-item,
they will ask R to provide one2. Thus we simply require a methodology to
translate 〈x〉R sharings into 〈x〉Q sharings. Recall a shared value in the network
R is denoted by

〈x〉R = ((xi)i∈R, (γ(x)i)i∈R)

The principal idea of the protocol is, for each i ∈ R, to take the value xi held
by i and sample a set {xji}j∈Qi

subject to xi =
∑
j∈Qi

xji so that∑
i∈R

xi =
∑
i∈R

∑
j∈Qi

xji =
∑
j∈Q

∑
i∈Rj

xji =
∑
j∈Q

xj

which holds because, by definition,

{(i, j) : i ∈ R, j ∈ Qi} = {(i, j) : j ∈ Q, i ∈ Rj}.

If we do the same for the MAC shares, and at initialisation also share the global
MAC key α in the same way, we obtain the same secret value x under the same
global MAC key but shared instead amongst the parties in Q, which we denote
by

〈x〉Q = ((xj)j∈Q, (γ(x)j)j∈Q).

2 Of course, Q could ask R for these to be obtained all in one go in a form of outsourced
pre-processing.
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It is hopefully now clear how to define a feeding protocol to send shares from
the R parties to the Q parties. We give the protocol in Figure 4.

Protocol ΠR→Q
Feed

Usage: Parties in R reshare and send their reshares to the appropriate parties in
Q, as specified by the secure cover.

Macro: FeedValue(v) On input an element v ∈ Fq shared amongst the parties as
v =

∑
i∈R vi with party i ∈ R holding vi,

1. Each party i ∈ R samples {vji }j∈Qi subject to
∑
j∈Qi

vji = vi.

2. Each party i ∈ R sends vji to party j in Q.
3. Each party j ∈ Q sets vj =

∑
i∈Rj

vji .

FeedShare: On input 〈v〉R for some secret-shared value v:
1. The value 〈v〉R corresponds to some secret, v =

∑
i∈R vi, and its corresponding

MAC, γ(v) =
∑
i∈R γ(v)i, where party i ∈ R holds vi and γ(v)i: the parties

execute FeedValue(v) and then FeedValue(γ(v)) after.
2. The value v and its MAC are now shared amongst the parties in Q; we write
〈v〉Q.

Figure 4. Protocol ΠR→Q
Feed

It is important to note that honest parties use incoming shares in an entirely
deterministic manner; as such, observe that if some party j ∈ Q is honest but
it receives shares from only corrupt parties in R, the adversary has complete
control over what this party’s share will look like. For this reason, we consider
them as effectively corrupt, contained in the extended adversary set A. This is
why in the online protocol, run by the parties in Q, we also need to consider
the set A. Note, a nominally honest party in A which also lies in R will behave
honestly when running the offline phase. Thus we need to consider R ∩ A and
not R ∩ A when running the online phase amongst parties in Q.

Composing the Protocol with the Functionality: The idea of the protocol
is to convert the pre-processing generated by the parties in R to pre-processing
that can be used by the parties in Q. Our goal, then, is to show that if the set of
parties R ∪Q is provided with the functionality FR,R∩APrep and the parties engage

in the protocol ΠR→Q
Feed to send their pre-processing to the parties in Q, then this

“looks the same” to the parties in Q as a functionality FQ,Q∩APrep .

The precise way in which the functionality FR,R∩APrep and protocol ΠR→Q
Feed com-

pose to approximate FQ,Q∩APrep is given in Figure 5. To help make it clear that the

composition should provide the same interface as the functionality FQ,Q∩APrep , Fig-

ure 5 gives the composition in a directly comparable structure to FR,R∩APrep as
presented in Figure 2.
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Definition of the Composition ΠR→Q
Feed ◦ F

R,R∩A
Prep

Initialise: On input (Initialise, q) from all parties in Q, parties in R execute
FR,R∩APrep .Initialise and then from ΠR→Q

Feed .FeedValue(α) to share the MAC amongst
the parties in Q.

Macro: Angle(x) This is never called, since below all calls involving Angle are to
FR,R∩APrep .Angle.

Computation: On input (DataGen, DataType) from all players in Q,
– On input DataType = InputPrep and a value j ∈ Q,

1. We call FRPrep.Computation(DataGen, InputPrep) a total of |Rj | times,
once for each i ∈ Rj which is given as input: this means each party i ∈ R
has a set of shares {r̃(k)i }k∈Rj , and each party i ∈ Rj additionally holds

r̃(i).
2. The parties in R then locally sum their shares to get r̃i :=

∑
k∈Rj

r̃
(k)
i . Then

we let r(j) :=
∑
i∈R r̃i =

∑
k∈Rj

r̃(k). Doing the same with the MACs gives

us 〈r(j)〉R.
3. Each party i ∈ Rj sends its value r̃(i) to party j ∈ Q, who computes

the sum, which is r(j) by definition. (We can think of this as running
ΠR→Q

Feed .FeedValue where each party i ∈ R \Rj sends a 0 to all parties in
Qi.)

4. Finally, we run ΠR→Q
Feed .FeedShare on 〈r(j)〉R.

Thus all parties in Q obtain a sharing 〈r(j)〉Q of a value r(j) known only to
party j ∈ Q.

– On input DataType = Triple by parties in Q,
1. The functionality FR,R∩APrep samples a, b ∈ Fp and computes c = a · b.
2. The functionality runs FR,R∩APrep .Angle(a), FR,R∩APrep .Angle(b) and

FR,R∩APrep .Angle(c).
3. For i /∈ A, the functionality sends ((ai, γ(a)i), (bi, γ(b)i), (ci, γ(c)i)) to i ∈

R.
4. The parties in R now run ΠR→Q

Feed .FeedShare on 〈a〉R, 〈b〉R and 〈c〉R.

Figure 5. Definition of the Composition ΠR→Q
Feed ◦ F

R,R∩A
Prep

Main theorem: Before we give the statement of the theorem, we briefly give
some intuition as to why our construction gives us the desired security. We
defined a cover to be secure if at least one honest party in R sends to at least
one honest party in Q; the negation of this statement is that all honest parties
in R send only to corrupt parties in Q. Observe that if we do not have a secure
cover, then for every secret value v, the adversary either has share vi (when i ∈ R
is corrupt), or all “reshares”, {vji }j∈Qi

(when i ∈ R is honest but all j ∈ Qi are
corrupt); using these shares and reshares, the adversary can construct v and
hence he breaks secrecy: thus a secure cover is necessary. Conversely, a secure
cover also suffices, since if the cover is secure, there is at least one party in Q\A
(i.e. one effectively honest party in Q). This is sufficient for running the SPDZ
preprocessing securely. Our main theorem is then given by the following (and
we defer the proof to Appendix D).
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Theorem 3. The construction ΠR→Q
Feed ◦ F

R,R∩A
Prep , where ΠR→Q

Feed converts an R-
sharing to a Q-sharing as in Figure 4, securely implements the functionality

FQ,Q∩APrep in the presence of static, active adversaries assuming a secure cover of
Q is given and we augment the set A of corrupt parties in Q to include those
honest parties in Q which are only sent to by corrupt parties in R.

4 Making a Secure Cover

In our scenario for outsourcing we assumed three potential use cases. The first
situation was where the subset R is contained in the set Q, in which case guar-
anteeing a secure cover is trivial; in the second case, each party in Q knows a
subset of parties in R in which it thinks there is (at least) one honest party;
and in the third case, no such knowledge is known. In this last scenario we have
two choices: either to set each covering subset Qi equal to the whole set Q, or
to assign the players randomly to subsets of Q whose union is the whole. For
communication efficiency, here we analyse this last possibility by giving an al-
gorithm to produce the assignment, and working out the associated probability
of obtaining a secure cover. We no longer at this point assume at most nq − 1
dishonest parties in Q and nr−1 dishonest parties in R, since in such a situation
essentially the best we can do is to set Qi = Q for all i ∈ R. Thus we assume
that a certain proportion of the sets are corrupt. In particular, we assume tq
parties in Q are corrupt, and tr parties in R. We set εr = tr/nr and εq = tq/nq
to be the associated ratios.

Recall, when creating the secure cover, is necessary to ensure that at least
one honest party in Q receives a share from at least one honest party in R with
overwhelming probability in the security parameter λ. If this is not true, while
the MAC checks ensure the adversary cannot tamper with the share (recall the
MACs ensure correctness), he is able to reconstruct the share (i.e. the adversary
will break secrecy).

To help with the analysis, and for efficiency and load-balancing reasons, we
will assume that each party in R sends to the same number of parties ` ≥ dnq/nre
in Q. Note, any assignment of sets to parties in R which covers Q where ` = tq+1
is automatically secure, since every party in R necessarily sends to at least one
honest party in Q. We will see how small ` can be to provide statistical security
for a given security parameter.

To assign a cover randomly in such a situation we use the Algorithm in
Figure 6. The high-level idea of the algorithm is the following:
1. For each party in Q, we assign a random party in R, until each party in R

has dnq/nre parties in Q assigned to it (or, equivalently, until the sets of
parties in Q assigned to parties in R forms a disjoint cover).

2. For each party in R, we assign random parties in Q until each party in R
has ` total parties which it sends to.

Note that in practice, the parties may want to run this algorithm using a
trusted source of randomness (such as a blockchain or lottery), or execute a
coin-tossing protocol to generate the necessary randomness.
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Algorithm for randomly assigning elements of a cover of Q to parties in R.

For ease of notation, we label parties in R as ik for k ∈ [nr] and parties in Q as
jk for k ∈ [nq]; then the output array M is a binary matrix with a 1 in the (k, l)th

position if and only if ik in R sends to jl in Q.
Inputs: nr, nq, n = nr + nq, `, and sets R,Q ⊂ [n] whose disjoint union is [n].

Outputs: Matrix M ∈ Fnr×nq

2 .
Method: (Note that ` is a constant, whereas l is an index.)
1. Set M [1..nr, 1..nq]← {{0, 0, . . . , 0}, . . . , {0, 0, . . . , 0}}
2. Set NoOfOnes[1..nr]← {0, . . . , 0}
3. For l ∈ [nq],

– Do
• k ← FRand([nr])

– Until NoOfOnes[k] < dnq/nre
– M [k, l]← 1, NoOfOnes[k]← NoOfOnes[k] + 1

4. For k ∈ [nr],
(a) While NoOfOnes[k] < `,

– Do
• l← FRand([nq])

– Until M [k, l] <> 1,
– M [k, l]← 1, NoOfOnes[k]← NoOfOnes[k] + 1

5. Output matrix M .

Figure 6. Algorithm for randomly assigning elements of a cover of Q to parties in R.

The algorithm allows different parties in Q to receive from different numbers
of parties in R, whilst parties in R always send to the same number of parties in
Q. Over Z, each row of the matrix we generate, M , sums to `, whilst the array
NoOfOnes records how many parties in Q the ithk party in R sends to. Step 3
assigns all parties in Q to a party in R: this is the part of the algorithm which
ensures we have a cover. In fact, this is done in such a way that each party in R
sends to the same number of parties in Q, namely dnq/nre. The reason for doing
this is that it lends itself better to analysis of relevant probabilities below. Step
4 assign parties in Q to parties in R at random until each party in R is assigned
` parties in Q.

In the worst case, there is only one honest party in each of R and Q. Since
we ensure that each party in R is assigned the same number of parties, the
probability we obtain a secure cover is given by:

1−Pr[Every good party in R is assigned only dishonest parties in Step 3]

· Pr[Every good party in R is assigned only dishonest parties in Step 4]

Then the probability that we obtain a secure cover is given by:

1−

 ( tq
dnq/nre

)
·
(tq−dnq/nre
dnq/nre

)
· · · · ·

(tq−(nr−tr−1)dnq/nre
dnq/nre

)( nq

dnq/nre
)
·
(nq−dnq/nre
dnq/nre

)
· · · · ·

(nq−(nr−tr−1)dnq/nre
dnq/nre

)
·
 (tq−dnq/nre

`−dnq/nre
)(nq−dnq/nre

`−dnq/nre
)
nr−tr−1

After some simplification we find that this is equal to
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1− tq! · (nq − (nr − tr − 1)dnq/nre)!
nq! · (tq − (nr − tr − 1)dnq/nre)!

·

 (tq−dnq/nre
`−dnq/nre

)(nq−dnq/nre
`−dnq/nre

)
nr−tr−1

(1)

To see what happens in the extreme case where all but one party is corrupt
in each of R and Q, we set have tq = nq−1 and tr = nr−1. Then the probability
that we obtain a secure cover is given by

1

nr
+

(
1− 1

nr

)
·

((nq−1)−dnq/nre
`−dnq/nre−1

)(nq−dnq/nre
`−dnq/nre

) =
1

nr
+

(
1− 1

nr

)
· `− dnq/nre
nq − dnq/nre

≈ `

nq
.

When ` is equal to nq, i.e. each party in R sends to every party in Q, we obtain a
secure cover. For any other choice of ` with this high proportion of corruptions,
we do not obtain a sufficiently high probability of obtaining a secure cover.

When ` is at least tq, the generated cover is secure by default (since each
party necessarily sends to an honest party). If there are 5 parties in R of which
at most 2 are corrupt, and 50 parties in Q of which at most 25 are corrupt, each
party in R must be assigned ` = 23 parties in Q to ensure at least one honest
party in R sends to one honest party in Q with probability at least 1− 2−80. So
we have saved on communication overall, since to guarantee a secure cover, we
need ` = 25.

If we now consider the case where R is still 5 with at most 2 corruptions but
now we increase nq to 1000 parties, of which at most 500 are corrupt, each party
in R now need only send to 200 parties in Q (i.e. the same number as is required
for a cover) to get a secure cover with overwhelming probability. In fact, we can
even allow 3 parties in R and 750 parties in Q to be corrupt and keep ` = 200
and still get 80 bits of security.

For the data in Table 1, we fix the number of parties in R at 5, fix the number
of allowable corruptions to be at most 3, and compute the lower bound on the
size of Q (i.e. on nq) to guarantee that the adversary cannot win even where ` is
fixed as the smallest number of connections necessary to make {Qi}i∈R to cover
Q, and vary the number of corruptions we allow in Q. In other words, ` need be
no larger to provide 80-bit security than it need be for enabling the partition to
be an exact cover (i.e. each party in Q sent to by at most one party in R).

nr tr tq/nq Min. nq for λ = 80 and ` = dnq/nre
5 3 1/2 336
5 3 1/3 201
5 3 1/4 148
5 3 1/5 125

Table 1. We fix nr = 5, tr = 3 and vary the fraction of corruptions in Q; the last
column in the table is the least nq such that the cover is secure even if each party in
R only sends to ` = dnq/nre parties.
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A SPDZ Online Protocol

In Figure 7 we give the SPDZ online protocol. In Figure 8 we give the commit-
ment functionality.

The SPDZ Online Protocol ΠP,A
Online.

The set P is the complete set of parties, and the set A ⊂ P the set of corrupt
parties in P .

Initialise: The parties call FP,APrep for the handles of enough multiplication triples
(〈a〉, 〈b〉, 〈c〉) and enough input mask values (ri, 〈ri〉) as are needed for the function
being evaluated. If FP,APrep aborts then the parties output ⊥ and abort.
Input: To share an input xi, party i ∈ P takes an available unused input mask
value (ri, 〈ri〉) and does the following:
1. Broadcast ε← xi − ri.
2. The parties compute 〈xi〉 ← 〈ri〉+ ε.

Add: On input (〈x〉, 〈y〉), locally compute 〈x+ y〉 ← 〈x〉+ 〈y〉.
Multiply: On input (〈x〉, 〈y〉), the parties do the following:
1. Take one multiplication triple (〈a〉, 〈b〉, 〈c〉), compute 〈ε〉 ← 〈x〉−〈a〉 and 〈ρ〉 ←
〈y〉 − 〈b〉 and partially open these shares to obtain ε and ρ respectively.
Partially opening a sharing 〈x〉 consists of each party i ∈ P sending its share
xi to every other party j ∈ P and computing the sum of all of these shares,
including the party’s own. The values of γ(x)i are kept secret.

2. Set 〈z〉 ← 〈c〉+ ε · 〈b〉+ ρ · 〈a〉+ ε · ρ.
Output: To output a share 〈y〉, do the following:
1. Check all partially opened values since the last MACCheck in the following

manner.
(a) The parties have some id’s id1, . . . , idk for some k, and corresponding par-

tially opened values x1, . . . , xk.
(b) The players agree on a random vector r← FRand(Fkq ).

(c) Party i in P computes z ←
∑k
j=1 rj ·xj and γ(z)i ←

∑k
j=1 rj ·γ(xj)i where

γ(xj)i denotes the MAC share held by party i ∈ P on xj .
(d) The parties now run MACCheck on z, with party i inputting z and γ(z)i.

2. If the check fails, output ⊥ and abort.
3. Open the value by each party i ∈ P sending yi to all other parties j ∈ P

to compute y ←
∑
j∈P yi, and then run MACCheck once more, so party i ∈

P inputs y and γ(y)i, to verify 〈y〉. If this check fails, output ⊥ and abort;
otherwise, accept y as a valid output.

Figure 7. The SPDZ Online Protocol ΠP,A
Online.

19



Commitment Functionality FCommit.

Commit: On input Commit(v, i, sid) by party i, where v is the value to committed,
sample a handle τv and send (i, sid, τv) to all parties.
Open: On input Open(i, sid, τv) by party i, output (v, i, sid, τv) to all parties. If
some party Pi is corrupt and the adversary inputs (Abort, i, sid, τv), the functionality
outputs (⊥, i, sid, τv) to all parties.

Figure 8. Commitment Functionality FCommit.

B Communication between subnetworks

Here we discuss the topology of the network of secure channels between the
subnetworks R and Q. Recall that Q has been partitioned into sets {Qi}i∈R
and party i ∈ R assigned the set Qi, and each Qi is assumed to be of size `.
The topology depends primarily on the choice for the size ` of each set Qi. We
assume Qi is the same size for all i, and note that obviously ` is lower-bounded
by dnq/nre (so that ` · nr ≥ nq), since {Qi}i∈R together need to cover Q.

B.1 Complete

A näıve approach to connecting the two graphs with bilateral secure channels
would be to form the complete bipartite graph between them (so ` = nq). This
topology requires nr · nq secure connections and is shown in Figure 9.

i1

i2

i3

i4

...

inr

j1

j2

j3

j4

j5

j6

...

jnq

Fig. 9. Complete bipartite graph

If there is at least one honest party in each of R and Q then an adversary
controlling any number of other parties still can never recover the MAC key.
Unfortunately, there is a big communication overhead. Additionally, each party
in R must compute nq reshares for their share. If we assume the adversary is
able to corrupt at most some t of the n total parties, we can clearly improve
efficiency by instead requiring each party in R to send to t+1 parties in Q, since
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then it is guaranteed each party, and in particular at least one honest party,
sends to an honest party in Q.

B.2 Load-balanced

To aim for a load-balanced solution, we could instead ask each party i ∈ R to
reshare its share into ` = k · dnq/nre shares for some integer k ≥ 1, and sending
these to some set Qi of ` parties in Q. If we have a secure cover, then the intuition
is that there exist shares held by only honest players which are independent of
all shares held by the adversary and are necessary for reconstructing the secret.
This is discussed in more detail in the proof of our main theorem (see Appendix
D. Figure 10 shows an example of our load-balanced topology for when nq ≈ 2nr
and k = 1.
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Fig. 10. Load-balanced topology

Note that it is not necessarily the case that each party in Q receive the same
number of shares, even though we require each party in R to reshare to the same
number of parties in Q.

C UC Model Overview

In this section, we give a brief overview of the UC framework, the model in
which we proof our main theorem. Readers familiar with the model can skip this
section.

Our proof is in the Universal Composability (UC) framework introduced by
Canetti [Can00]. The model was introduced to enable protocols to be “com-
posed”, meaning that multiple different protocols (or multiple instances of the
same protocol) can be run simultaneously such that the overall system is still
“secure”. There are some protocols which can offer no security if we permit mul-
tiple simulataneous executions. This framework works well in the pre-processing
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model in MPC, as we split the circuit evaluation into two phases, the offline
phase and the online phase; the overall protocol is the composition of these
phases.

In this model, we compare executions in an ideal world with executions in the
real world. In the real world, there is a set of honest parties who communicate
in a protocol with a real-world adversary A. In the ideal world, there is a set
of honest parties and an ideal-world adversary called the simulator S, but now
these entities interact not with each other, but some trusted third party called
a functionality F , which takes inputs from all parties, computes on these data,
and provides the output to all parties including the simulator.

The protocol between all parties in the real world somehow needs to resemble
the interaction the parties have with the functionality in the ideal world. More
formally, the real-world view of an environment, which provides inputs to all
parties, sees all internal actions of the real-world adversary, and sees the outputs
of all parties, needs to be indistinguishable from the ideal-world view.

To achieve this in “practice”, the adversary engages in the protocol with
the simulator, which extracts the adversary’s inputs and forwards them on to
the functionality, which then interacts with honest parties. If the protocol is
designed correctly, the indistinguishability of the two views of the environment
guarantees that the real-world adversary has no more power than the ideal-world
adversary. In the design of the functionality, we limit the power of the adversary
according to our security model: for example, if we want to allow the adversary
to cause the interaction to abort without output, we design the functionality to
allow it to accept an abort flag from the adversary and to halt when it receives
it. The reason we make the functionality “weaker” than it could be (i.e. why
we allow the adversary to have any control in the interaction at all) is because
it may proven that no protocol exists which can stop an adversary doing some
particular malicious behaviour. Since the simulator does not have any control
over the honest parties and yet is supposed to simulate an execution of the
protocol with the real-world adversary, the simulator has to do what it can
to provide a view (i.e. messages from the alleged honest parties to the corrupt
parties) close to what honest parties would actually send. In practice, this means
it internally does what each honest party would do in the protocol and passes
this on to the adversary.

The environment models any behaviour of the system in which the protocol
is run. Proving the indistinguishability of the views shows there is no efficient
attack strategy for breaking the protocol by running other protocols alongside
it. If the environment cannot distinguish between the real- and ideal-world exe-
cutions, the protocol is therefore secure even when run alongside any number of
other protocols (as long as those are also proven secure in this model), or even
arbitrarily many instances of the same protocol.
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D Proof of Theorem 3

The proof is presented via a simulator (see Figure 11 and Figure 12) whose

task is to overlay the functionality FQ,Q∩APrep so that no environment can distin-

guish whether the adversary is interacting as in ΠR→Q
Feed ◦ F

R,R∩A
Prep , or with the

simulator and FQ,Q∩APrep . Figure 13 shows an outline of what each entity does
during the simulation.

To do this we must show that the view of the environment in each case is
the same. The view of the environment consists of the joint distribution of: the
inputs and outputs of all parties (honest and corrupt), the adversary’s internal
state, and all messages the adversary sent and received.

Since it is used at several points throughout the functionality, we start by
showing that the view of the environment when the simulator interacts with the

functionality FQ,Q∩APrep during the SFeedValue operation is indistinguishable from
its view when instead the real-world adversary is interacting with the composi-
tion ΠR→Q

Feed ◦ F
R,R∩A
Prep .

By this point in the simulation, the adversary has a set of values {vi}i∈R∩A
and an error ∆R

v ; the simulator has the complete set {vi}i∈R as well as the error

∆R
v and the secret value v, since it was emulating the functionality FR,R∩APrep when

these shares were generated.
For this part of the simulation, there are no inputs for the environment to

supply: the environment has already supplied inputs to the adversary and the
honest parties for generating the shares and errors above.

The simulator waits for the adversary to send reshares of his shares of some
shared value 〈v〉R. The simulator then does some sampling in different ways, and
computes {vj}j∈Q∩A and some error ∆Q

v , which it passes on to the functionality

FQ,Q∩APrep . Meanwhile, it also returns to the adversary reshares of honest parties’
inputs to corrupt parties. See Figure 12 for more detail.

The functionality sends uniformly randomly sampled elements {vj}j∈Q\A to
honest parties in Q except those honest parties which receive from only corrupt
parties, which we call effectively corrupt, which instead receive vj computed as
the sum of shares from the adversary, not uniformly randomly sampled elements.

The honest parties (including the effectively corrupt honest parties) output
their shares to the environment. The environment cannot distinguish between
the distributions because in the real world the honest parties’ outputs are also
uniformly random since they received at least one share from one honest party
which was added into their reshare, and the effectively corrupt parties’ outputs
are exactly the sum of corrupt shares, just as the simulator computed for them
to be in the ideal-world simulation.

Finally, observe that the messages the adversary sends and receives are iden-
tically distributed in the real and ideal worlds since the simulator computes
reshares for honest parties exactly as honest parties compute them themselves
in the real world.
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Now we turn to the other procedures. In Initialise, the simulator acts ex-
actly as the protocol would until the MAC is reshared via FeedValue, which
we have just dealt with. However, note that when the simulator sends the call

Initialise to the functionality FQ,Q∩APrep , the functionality samples a global MAC
key which is different from the global MAC key the simulator sampled, α, with
high probability. We argue that this does not change the distribution.

The reason the distribution is the same in both cases is that the honest par-
ties’ shares in Q are uniformly random regardless of the inputs of the adversary,
and the only way for the environment to determine a global MAC key is to
reconstruct a value and its corresponding MAC from the shares of all corrupt
and honest parties. The functionality samples all inputs for the generation of
pre-processing, so the only way for the adversary to obtain the reconstruction of
a share is for it to consider a value the functionality tells it: this is the case in the
Computation phase with DataType = InputPrep input: the adversary is given
r(i) for each corrupt i ∈ R to use as input. If the adversary reshares honestly and
passes this on to the simulator/honest parties, then at the end of the process the
environment can reconstruct the value and the MAC on it. In the real world,
the MAC is some α sampled by the functionality FR,R∩APrep ; in the ideal world, the
simulator runs this functionality internally and also samples some α. However,

the functionality FQ,Q∩APrep samples some β for its global MAC key, which differs
from α with high probability. While the environment can compute the value of
the global MAC key, since in any case it is sampled uniformly, the environment
cannot tell whether it was generated by the simulator emulating FR,R∩APrep or by

the functionality FQ,Q∩APrep .
The procedures Computation, Input Production and Multiplication

Triples are indistinguishable from the protocol if and only if the macro Angle
is. The simulator behaves in the same way as the functionality FR,R∩APrep in the

real-world execution (remember we are in the FR,R∩APrep -hybrid model) for the
macro Angle, and so the indistinguishability in the two worlds of FeedValue,
gives us what we want.
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Proof.

Simulator SQ,APrep

The simulator begins by first setting the set of corrupt parties to be the corrupt
parties in R with the corrupt parties in Q, augmented to include all parties in Q
which receive from only corrupt parties in R.

Initialise:
1. The simulator accepts (Initialise, q) from all parties in R ∩ A, and then some

error ∆R
α and shares αi for all i ∈ R ∩ A from the adversary. The simulator

runs an internal copy of Initialise from FR,APrep, passing on the adversary’s input,
and thereby determines a global MAC key α and a set of shares αi for honest
parties, i ∈ R \A. More explicitly,
(a) The simulator samples α← Fq to be the global MAC key.
(b) The simulator samples at random αi for each i ∈ R\A subject to

∑
i∈R αi =

α+∆R
α , using the error and shares from the adversary.

The simulator stores the global MAC key α, the shares for all parties, and the
error, for later use.

2. The next part to simulate is the sending of the MAC key from R to Q via
the protocol: the simulator receives the call FeedValue(α) from the adversary
to copy across the secret-shared MAC key α, at which point they perform the
subroutine SFeedValue in Figure 12.

3. Finally, the simulator passes the shares αj with j ∈ Q∩A along with the error
∆Q
α computed in SFeedValue to the functionality FQPrep. The simulator receives

back the same shares it sent to the functionality (corresponding to corrupt
parties’ shares), but the “honest” parties in Q who receive shares from only
corrupt parties in R receive a share αj which is not uniformly random, but
instead is the sum of reshares from corrupt parties.

Computation: On input DataGen from the adversary, it executes the data gener-
ation procedures as in the functionality, with calls to Angle dealt with as the macro
below describes.

Macro: Angle(x).
1. Emulating the macro in the functionality FR,APrep, the simulator accepts

({xi, γ(x)i}i∈A∩R,∆R
x ,∆

R
γ ) from the adversary.

2. The simulator samples at random {xi, γ(x)i}i∈A∩R subject to
∑
i∈R xi = x +

∆R
x and

∑
i∈R γ(x)i = α ·x+∆R

γ , just as the functionality does. The simulator
stores the shares and errors for later use.

3. Now the simulator receives the command FeedShare(〈x〉R) from the adversary
for 〈x〉R = ((xi)i∈R, (γ(x)i)i∈R) in the pre-processed data, so the simulator runs
SFeedValue on x and γ(x) in turn.

4. Finally, the simulator takes the input values and MACs corresponding to the
corrupt parties’ inputs and the errors returned by SFeedValue and sends these
as the adversary’s input to the functionality FQ,APrep.

DataGen
Input Production: On input DataType = InputPrep, the simulator runs as in the
functionality, where the call to Angle is dealt with as above.
Multiplication Triples: On input DataType = Triples, the simulator runs as in
the functionality, where the call to Angle is dealt with as above.

Figure 11. Simulator SQ,APrep
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Simulator SQ,Q∩APrep cont’d

SFeedValue: On input a secret-shared value v (which could be a shared value or its
shared MAC, or the global MAC key):
1. The simulator retrieves the shares vi for all i ∈ R which it stored when it

generated them or was sent them by the adversary during the call to Angle
of the Input Production procedure. It also retrieves the error given by the
adversary, ∆R

v .
2. For each i ∈ R, the simulator does the following:

(a) If i is honest, the simulator samples {vji }j∈Qi subject to
∑
j∈Qi

vji = vi and

sends {vji }j∈Qi∩A to the adversary. (These sampled shares are reshares
of honest parties to possibly a mix of corrupt and honest parties.) The
simulator sets ∆i

v = 0.
(b) If i is corrupt and sends to at least one corrupt party, the simulator receives

a set {vji }j∈Qi\A of reshares of the corrupt party to honest parties. The
simulator does not know and cannot compute the reshares sent to corrupt
parties, so it instead samples dummy reshares {vji }j∈Qi∩A for these values,
subject to

∑
j∈Qi

vji = vi, and sets ∆i
v = 0.

(c) If i is corrupt and only sends to honest parties, the simulator receives a
set {vji }j∈Qi\A and determines the error introduced by the adversary by

setting ∆i
v := vi −

∑
j∈Qi

vji . (The simulator can compute this since it is

sent vji for all j ∈ Qi by the adversary.)
3. Now the simulator computes vj =

∑
i∈Rj

vji for each j ∈ Q and stores these

values, and also computes the error ∆Q
v = ∆R

v +
∑
i∈R∆

i
v and stores this value.

Figure 12. Simulator SQ,Q∩APrep cont’d
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Fig. 13. Rough overview of messages and internal working of simulation
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