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Abstract

We solve the problem of finding the success rate of an optimal side-
channel attack targeting at once the first and the last round of a block
cipher. We relate the results to the properties of the direct and inverse
substitution boxes (when they are bijective), in terms of confusion coeffi-
cients.

1 Introduction
We are interested in the link between the success rate of an attack and the
properties of the targetted substitution box (Sbox). For monovariate attacks,
the problem is solved. We recall how in the next section 1.1. However, for
bivariate attacks, which exploit both the first and the last round of the cipher,
the problem is open. We introduce it in section 1.2, and solve it in section 2.
Conclusions are in section 3.

1.1 Attack success rate for one Sbox
The link between the success rate and the targetted only holds for the optimal
attack. Indeed, when the attack is non-optimal, it is possible that the rela-
tionship between Sbox properties and the success rate is singular due to the
attack singularity. The optimal attack (or maximum likelihood attack) when
the noise is Gaussian consists in the Euclidean distance between measurements
and model.

The success rate can be modeled using a first-order exponent [2, Chap. 11]:
for all attack, including the optimal one, there is a constant SE such that1:

1− SR ≈ exp(−q · SE),

where q is the number of traces for the expected success rate to be equal to SR.
1Quoting definition 7 of [5], we say that a function f(x) has first order exponent ξ(x) if(

ln f(x)
)
/ξ(x)→ 1 as x→ +∞, in which case we write f(x) ≈ exp ξ(x).
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The first-order exponent SE for monovariate attacks takes the following
form [5, Proposition 5]:

SED=1 = min
k 6=k?

κ2
k?,k/2

κ′′k?,k − κ2
k?,k + κk?,k/SNR

, (1)

where κk?,k and κ′′k?,k are two versions of confusion coefficients (which generalize
that of [4]), and SNR is the signal-to-noise ratio.

When the SNR is low, then Eqn. (1) simplifies as:

SED=1 ≈ 1

2
min
k 6=k?

κk?,k · SNR. (2)

The value of the success exponent can be interpreted as follows:

Corollary 1. When the noise is large, the number of traces q to succeed the
attack with success rate SR (say SR = 90 %) is inversely proportional to SE,
namely:

q =
− ln(1− SR)

SE
=

2.30

SE
.

This formula allows the following rule of thumb:

• when the SNR is divided by two, then the number of traces to succeed the
attack is doubled;

• when in presence of dth-order shuffling, then the number of traces to
succeed the attack multiplied by d;

• when first-order masking is applied2, then the number of traces to succeed
the attack is increased from 2.30

SE = 2.30
1
2 mink 6=k? κk?,k·SNR to 2.30

1
2 mink 6=k? κk?,k·SNR2 .

1.2 Problem of attack success rate for two Sboxes
In side-channel analysis on block ciphers, the attacker shall target a part of the
algorithm with two contradictory constraints:

1. it shall be sensitive, i.e., depend on both some controllable data (e.g.,
plaintext and/or ciphertext) and on a part of the key, and

2. it shall be enumerable, i.e., depend on only a management key portion.

This means that the suitable attack points are shallow in the algorithm. That
is, targetted variables shall be close to the plaintext or the ciphertext, where
the diffusion is not complete (otherwise, the attacker needs to guess too large
portions of the key). Notice that the diffusion of the few last rounds is considered

2Notice that the number of traces to succeed the attack decreases only provided the SNR
is strictly smaller than one (which is the case in practice).
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Figure 1: Bi-variate attack setup

with respect to the ciphertext, and not with respect to the plaintext. On the
opposite, the attack will gain efficiency if the targetted value is mixed with the
key through some function which brings confusion, such as an Sbox. Therefore,
in general, the preferred attack points are:

1. after the Sbox in the first round, and

2. before the Sbox in the last round.

This is illustrated on Fig. 1, where the number of rounds is r and there is no
diffusion L in the last round (as for the AES). When the attacker knows both the
plaintext T1 and the ciphertext Tr, obviously, he would gain benefit to conduct
a bivariate attack. The question is now to quantify the gain of the this bivariate
attack, compared to monovariate attacks.

1.3 Notations for the bivariate setting
From now on, we focus on bivariate attacks, targeting the leakage at the first
and last rounds, especially in ciphers for which the substitution box is inversible.
Examples of such ciphers are AES, PRESENT, Add-Rotate-Xor ciphers (ARX,
such as SPECK), etc. Those algorithms have different number of rounds r. In
the sequel, as we are interested only on the first and the last rounds, we neglect
inner rounds, hence fix the value of r to 2. Thus first round is indicated by
index 1, and last round by index 2.

We consider a leakage model:

X = AY? + N,

where:

• X =

(
X1

X2

)
∈ R2 is the leakage at first and last rounds,

• A = diag(α1, α2) =

(
α1 0
0 α2

)
∈ R2×2 is the amplitude of each leakage,
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• Y? =

(
Y ?1
Y ?2

)
∈ R2 is the centered and normalized model at first and last

rounds, for the correct key hypothesis (hence the star),

• N =

(
N1

N2

)
is the noise, assumed bivariate normal. Without loss of gener-

ality, we also assume thatN is centered (otherwise, a simple pre-processing
on X consisting in centering the traces suffices for the hypothesis to be
valid).

Let us consider that Ti and ki are n-bit words. We denote by wH the Hamming
weight, i.e., the number of bits equal to one in a bit string. For instance, the
model can be:

Yi =
2√
n

(
wH(Si(Ti ⊕ ki))−

n

2

)
, (3)

where i = 1 related to the plaintext and i = 2 to the ciphertext, (Ti, ki) are the
text and keys for the considered round (first or last), and (S1, S2) = (S, S−1)
are the direct and inverse substitution boxes. It can be checked that, provided
Ti is uniformly distributed, Yi is a centred and normal random variable, i.e.,

E(Yi) = 0 and Var(Yi) = E(Y 2
i )− (E(Yi))

2 = 1.

Regarding notations, we use Yi (i ∈ {1, 2}) to designate Yi(Ti, ki) (recall Eqn. (3)).
However, when the context is clear, and in order to keep light notations, we drop
the dependence in the text Ti (plaintext when i = 1, ciphertext when i = 2),
and in the key ki. We make the difference between Yi(Ti, ki) and Yi(Ti, k

?
i ),

where ki is any key and k?i is the correct key, by using respectively Yi and Y ?i .

Remark 1 (Regarding the discussion between LL and SG at ULB on 15-16
Sept). We do not need Y1 and Y2 to use the same key. Thus, the conclusions
in the sequel will be very general, in particular, not tied to an Even-Mansour
scheme (where all keys in the schedule are identical).

Regarding the noiseN, it is centered bivariate normal, hence has a covariance

matrix: Σ =

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

)
, with σ1 > 0, σ2 > 0, −1 < ρ < +1. This

matrix is symmetrical, and inversible (given our assumptions, namely we have
neither σ1 = 0, nor σ2 = 0, nor ρ = ±1). The inverse is equal to Σ−1 =

1
1−ρ2

(
σ−2

1 −σ−1
1 σ−1

2 ρ
−σ−1

1 σ−1
2 ρ σ−2

2

)
.

For the rest of the analysis, we also make a couple of (realistic) assumptions:

Assumption 1 (Independence of plaintext, ciphertext, and noise). We ab-
stract the block cipher under attack as a PRF (pseudo-random function), hence
the plaintext and the ciphertext are independent from each other. In particu-
lar, Y1 and Y2 are independent. They are also independent with the noise, as
customarily assumed in side-channel analysis [7, Sec. 4.1].

Remark 2. As will appear in the rest of the developments, the independence
between Y1 and Y2 imply that the correlation between N1 and N2 has an impact
on the results only through the value of ρ.
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2 Solution of the success rate for two Sboxes

2.1 Optimal distinguisher for bivariate attacks
Let us assume that the attacker has measured Q traces (each random variable
is independent for query q and q′ 6= q). The measured traces are denoted by
lower-case, e.g., xq for a side-channel measurement obtained from Xq.

It is shown in [6] that the optimal attack strategy, namely the one which
maximizes the success rate SR is the Maximum Likelihood (ML):

k̂ = argmaxk p(x1≤q≤Q|y1≤q≤Q(k)), (4)

where k =

(
k1

k2

)
is the pair of keys to guess.

As already shown in [1], the optimal key guess of Eqn. (4) can also be
rewritten in terms of a quadratic form:

Lemma 1 (Optimal distinguisher when the noise is normal [1, Theorem 2]).
We have:

k̂ = argmink

Q∑
q=1

(xq −Ayq)
T

Σ−1 (xq −Ayq) . (5)

Proof. In Eqn. (4), the argument to maximize is:

p(x1≤q≤Q|y1≤q≤Q(k))

=

Q∏
q=1

p(X = xq|Y = yq(k))

=

Q∏
q=1

pN(xq −Ayq(k))

=

Q∏
q=1

(2π)−1 det Σ−
1
2 exp−1

2
(xq −Ayq(k))

T
Σ−1(xq −Ayq(k))

= (2π)−Q det Σ−
Q
2 exp−1

2

Q∑
q=1

(xq −Ayq(k))
T

Σ−1(xq −Ayq(k)).

This value is maximum when −
∑Q
q=1 (xq −Ayq(k))

T
Σ−1(xq−Ayq(k)) is max-

imum because the exponential function is increasing.

2.2 Success exponent for bivariate attacks
Since the optimal distinguisher is additive (See Eqn. (5)), the success exponent
takes the following value [5, Eqn. (44) of Corollary 1]:

SED=2 = min
k6=k?

1
2

(E(∆D))2

Var(∆D) − 1
, (6)
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where:

• D is the distinguisher, namely (X−AY(k))
T

Σ−1(X −AY(k)) (as iden-
tified from Eqn. (5)3),

• ∆D = D(k?)−D(k).

Let us denote
∆Y = Y(k?)−Y(k).

As in Eqn. (45) of Definition 8 and Eqn. (63) of Definition 10, we denote the
confusion coefficients (for i ∈ {1, 2}):

κi,k?i ,ki = E
(

∆Yi
2

)2

= E
(
Yi(k

?
i )− Yi(ki)

2

)2

,

κ′′i,k?i ,ki = E
(

∆Yi
2

)4

= E
(
Yi(k

?
i )− Yi(ki)

2

)4

.

Notice that κi,k?i ,ki and (κ′′i,k?i ,ki
− κ2

i,k?i ,ki
) are respectively the expectation and

the variance of ∆Yi

2 .
As Y1 and Y2 are independent, we have:

E (∆Yi∆Yj) =

{
4κi,k?i ,ki if i = j,

0 otherwise.
(7)

Theorem 1. The success exponent for the optimal bivariate attack is:

SED=2 = min
k 6=k?

\

1
2

( ∑
i∈{1,2}

α2
i

σ2
i

κi,k?
i ,ki

)2

∑
i∈{1,2}

α4
i

σ4
i

(
κ′′i,k?

i ,ki
− κ2

i,k?
i ,ki

)
+ (1 + ρ2)

∑
i∈{1,2}

α2
i

σ2
i

κi,k?
i ,ki

+ 4ρ2
∏

i∈{1,2}

α2
i

σ2
i

κi,k?
i ,ki

. (8)

Proof. We have:

∆D = −(A∆Y)
T

Σ−1 (A∆Y)− 2NTΣ−1A∆Y, (9)

(∆D)2 = (A∆Y)
T

Σ−1 (A∆Y) (A∆Y)
T

Σ−1 (A∆Y) (10)

+ 4NTΣ−1 (A∆Y) (A∆Y)
T

Σ−1N (11)

+ 4NTΣ−1 (A∆Y) (A∆Y)
T

Σ−1 (A∆Y) . (12)

3Indeed, by the law of large numbers, 1
Q

(xq −Ayq(k))TΣ−1 (xq −Ayq(k)) −→
E
(

(X−AY(k))TΣ−1(X−AY(k))
)
when Q −→ +∞.
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Regarding ∆D (Eqn. (9)), one can compute:

∆D = −(A∆Y)
T

Σ−1 (A∆Y)

=
−1

1− ρ2

(
α1∆Y1 α2∆Y2

)( σ−2
1 −σ−1

1 σ−1
2 ρ

−σ−1
1 σ−1

2 ρ σ−2
2

)(
α1∆Y1

α2∆Y2

)
=
−1

1− ρ2

(
α2

1

σ2
1

∆Y 2
1 − 2

α1α2

σ1σ2
ρ∆Y1∆Y2 +

α2
2

σ2
2

∆Y 2
2

)
.

Hence, by applying Eqn. (7), we have:

E(∆D) =
−4

1− ρ2

(
α2

1

σ2
1

κ1,k?1 ,k1
+
α2

2

σ2
2

κ2,k?2 ,k2

)
.

Regarding (∆D)2, we focus on terms (10) and (11), since the cross-product
term (12) has an expectation equal to 0 (since the expression is a multiple of N
which is centered).

The term (10) rewrites as:

(A∆Y)
T

Σ−1 (A∆Y) (A∆Y)
T

Σ−1 (A∆Y)

=
1

(1− ρ2)2

(
α2

1

σ2
1

∆Y 2
1 +

α2
2

σ2
2

∆Y 2
2 − 2ρ

α1α2

σ1σ2
∆Y1∆Y2

)2

.

By taking the expectation, one gets:

E((A∆Y)
T

Σ−1 (A∆Y) (A∆Y)
T

Σ−1 (A∆Y))

=
16

(1− ρ2)2

(
α4

1

σ4
1

κ′′1,k?1 ,k1 +
α4

2

σ4
2

κ′′2,k?2 ,k2 + 2
α2

1α
2
2

σ2
1σ

2
2

κ1,k?1 ,k1
κ2,k?2 ,k2

(1 + 2ρ2)

)
.

Besides, the term (11) rewrites as:

4NTΣ−1 (A∆Y) (A∆Y)
T

Σ−1 (A∆Y)

=
4

(1− ρ2)2

(
N2

1

σ2
1

(
α2

1

σ2
1

∆Y 2
1 + ρ2α

2
2

σ2
2

∆Y 2
2 − 2ρ

α1α2

σ1σ2
∆Y1∆Y2

)
+

N1N2

σ1σ2

(
−ρ
(
α2

1

σ2
1

∆Y 2
1 +

α2
2

σ2
2

∆Y 2
2

)
+ (1 + ρ2)

α1α2

σ1σ2
∆Y1∆Y2

)
+

N2
2

σ2
2

(
ρ2α

2
1

σ2
1

∆Y 2
1 +

α2
2

σ2
2

∆Y 2
2 − 2ρ

α1α2

σ1σ2
∆Y1∆Y2

))
.

Therefore:

E(4NTΣ−1 (A∆Y) (A∆Y)
T

Σ−1 (A∆Y))

=
16

(1− ρ2)2

(
α2

1

σ2
1

κ1,k?1 ,k1
+
α2

2

σ2
2

κ2,k?2 ,k2

)
.
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Eventually,

1
2 (E(∆D))2

E(∆D2)− (E(∆D))2
=

1
2

 ∑
i∈{1,2}

α2
i

σ2
i

κi,k?i ,ki

2

∑
i∈{1,2}

α4
i

σ4
i

(
κ′′i,k?i ,ki − κ

2
i,k?i ,ki

)
+ (1 + ρ2)

∑
i∈{1,2}

α2
i

σ2
i

κi,k?i ,ki + 4ρ2
∏

i∈{1,2}

α2
i

σ2
i

κi,k?i ,ki

,

and SED=2 is the minimum of this expression over all k 6= k?.

Corollary 2. When the noise is large, that is when SNRi = α2
i /σ

2
i � 1 (for

i ∈ {1, 2}), the success exponent for the optimal bivariate attack simplifies to:

SED=2 ≈ 1

2(1 + ρ2)
min
k1 6=k?1

α2
1

σ2
1

κ1,k?1 ,k1
+

1

2(1 + ρ2)
min
k2 6=k?2

α2
2

σ2
2

κ2,k?2 ,k2

=
1

1 + ρ2

(
SED=1

1 + SED=1
2

)
. (13)

In this expression, the symbol “≈” means an equivalence O(SNR2
i ) in Bachmann-

Landau notation.

Proof. The Taylor expansion of Eqn. (8) when SNRi −→ 0 yields:

SED=2 ≈ min
k6=k?

1

2(1 + ρ2)

(
α2

1

σ2
1

κ1,k?1 ,k1
+
α2

2

σ2
2

κ2,k?2 ,k2

)
.

As there is no cross-coupling term between the leakage at sample 1 and 2, the
minimization can be carried out independently over k1 and k2. Hence the result,
which is indeed equal to 1/(1 + ρ2) multiplied by the sum of success exponents
for the univariate optimal distinguisher (recall Eqn. (2)) at samples 1 and 2.

The approximate expression of SED=2 (Eqn. (13)) depends in the substitu-
tion boxes only in the sum of the confusion coefficients at each end of the cipher,
weighted by the signal-to-noise ratio at these ends.

Remark 3 (Regaring the study of substitution boxes properties). The criteria
to make substitution boxes resistant against bivariate side-channel attacks which
exploit both the first and the last rounds is thus the following: the algorithm is
all the more secure as the (weighted) sum of the (minimum value over all keys
except the correct one of) confusion coefficients at each end is small.

That is, the designer of substitution box S (as in [3] for monovariate attacks)
in a bivariate case, searches S, a bijection Fn2 → Fn2 , along with its inverse S−1

such that

min
k6=k?

(
α2

1

σ2
1

κ1,k?1 ,k1
+
α2

2

σ2
2

κ2,k?2 ,k2

)
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is minimized. Notice that this objective is independent from the correlation
coefficient ρ of the noise between the two substitution box calls.

We also see that the expression (13) is maximum when ρ = 0, i.e., when the
noise at samples 1 and 2 is independent. In this case, we have that the success
exponent of the bivariate attack is the sum of the success exponents for the two
univariate attacks at each end of the cipher.

The worst case is when ρ = ±1, in which case the success exponent of the
bivariate attack is the average of the success exponents for the two univariate
attacks at each end of the cipher.

2.3 Number of traces to recover the key(s)
Using Proposition 1, we can relate these results to the number of traces to
extract the keys k?1 and k?2 . In this section 2.3, we assume that the noise is
large, e.g., we rely on the simplified formula of Corollary 2.

We first need a simple lemma:

Lemma 2. Let a, b > 0. Then, we have:

1
1
a + 1

b

≤ a+ b

4
,

with equality if and only if a = b.

Proof. The inverse function is convex on ]0,+∞[, hence ∀a, b > 0,∀t ∈ [0, 1],
it holds that 1

t·a+(1−t)·b ≤ t · 1
a + (1 − t) · 1

b , with equality if and only if a = b.
Apply the formula with t = 1/2.

Now, let us introduce those notations:

• qD=1
1 : number of traces to recover the key in a monovariate attack on the
first round,

• qD=1
2 : idem, but on the last round, and

• qD=2: number of traces to recover the pair of keys in a bivariate attacks
on first and last rounds.

These three quantities depend on the success rate of the attack. For the sake of
comparison, we assume they apply to the same success rate SR.

We can now state the important result regarding the attack data complexity:

Theorem 2. When the keys to recover are the same, and when the noise is
large,

qD=2 ≤ 1 + ρ2

4

(
qD=1
1 + qD=1

2

)
.

Moreover, this inequality is tight, as it is an equality when qD=1
1 = qD=1

2 .
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Proof. Let SR ∈]0, 1[ a given success rate. We have:

qD=2 =
− ln(1− SR)

SED=2
(by corollary 1)

=
− ln(1− SR)

1
(1+ρ2) (SED=1

1 + SED=1
2 )

(by corollary 2)

=
1 + ρ2

1
qD=1
1

+ 1
qD=1
2

(by definition of qD=1
i , for i ∈ {1, 2})

≤ 1 + ρ2

4

(
qD=1
1 + qD=1

2

)
(by lemma 2),

with equality if and only if qD=1
1 = qD=1

2 .

Remarkably, theorem 2 holds irrespective of the targetted success rate. More-
over, it also holds whatever the intrinsic properties of the substitution box.

We can now interpret theorem 2.

Same keys. When the keys k?1 and k?2 are dependent, then the success rate
is the same in the monovariate and bivariate cases (there is only one key to
recover). In the extreme case where the keys to guess are the same (as in Even-
Mansour case, where there is no key scheduling), then qD=1

1 + qD=1
2 is twice

the number of traces to guess the key (assuming equal SNR at first and last
round). Then, theorem 2 states that a bivariate attack is always faster than
two monovariate attacks. Numerically, the gain of the bivariate attack over the
twain monovariate attacks is:

• none (1 times faster) when (|ρ| = 1), and

• 2 times faster when (|ρ| = 0).

There is no gain when the two attack points (first and last rounds) convey the
same information (the same key is to be guessed) and have the same noise (or
opposite), which is sensible: there is thus no diversity.

Independent keys. In this case, the demonstration of Theorem 2 would not
hold, since the success rate to recover two keys SRD=2 is not comparable to the
success rate to recover one single key SRD=1

i , for i ∈ {1, 2}. In fact, one would
have SRD=2 = SRD=1

1 × SRD=1
2 , which makes formal derivations complex.

3 Conclusions
We analyse bivariate side-channel attacks targeting at once plaintext and cipher-
text, thereby improving the attack success rate. We establish the probability of
success for such attack, and relate it to the direct (first round) and inverse (last
round) substitution boxes properties.
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