How to (pre-)compute a ladder

Improving the performance of X25519 and X448

Thomaz Oliveira¹, Julio López², Hüseyin Hışıl³, Armando Faz-Hernández², and Francisco Rodríguez-Henríquez¹

¹ Computer Science Department, Cinvestav-IPN thomaz.figueiredo@gmail.com, francisco@cs.cinvestav.mx ² Institute of Computing, University of Campinas jlopez@ic.unicamp.br, armfazh@ic.unicamp.br ³ Yasar University huseyin.hisil@yasar.edu.tr

Abstract. In the RFC 7748 memorandum, the Internet Research Task Force specified a Montgomery-ladder scalar multiplication function based on two recently adopted elliptic curves, "curve25519" and "curve448". The purpose of this function is to support the Diffie-Hellman key exchange algorithm that will be included in the forthcoming version of the Transport Layer Security cryptographic protocol. In this paper, we describe a ladder variant that permits to accelerate the fixed-point multiplication function inherent to the Diffie-Hellman key pair generation phase. Our proposal combines a right-to-left version of the Montgomery ladder along with the pre-computation of constant values directly derived from the base-point and its multiples. To our knowledge, this is the first proposal of a Montgomery ladder procedure for prime elliptic curves that admits the extensive use of pre-computation. In exchange of very modest memory resources and a small extra programming effort, the proposed ladder obtains significant speedups for software implementations. Moreover, our proposal fully complies with the RFC 7748 specification. Our estimates suggest that a full implementation of our pre-computable ladder should outperform state-of-the-art software implementations of the X25519 and X448 functions by a 40% speedup when working in the fixed-point scenario.

1 Introduction

Since the last decades, Elliptic Curve Cryptography (ECC) has been largely used for achieving highly secure and highly efficient cryptographic communication implementations. In particular, ECC has become the prime choice for realizing key exchange and digital signature-verification protocols. However, reports released in 2013 suggested that the National Security Agency (NSA) secretly introduced backdoors to internationally-used encryption standards [36]. Immediately thereafter, new revelations [35] indicated that the same agency had tampered the elliptic curve-based pseudorandom number generator standard Dual_EC_DRBG, which was consequently removed from the SP 800-90A specification by NIST [29,30].

These events prompted, in 2014, that the Transport Layer Security (TLS) working group of the Internet Engineering Task Force requested from the Crypto Forum Research Group (CFRG), recommendations of new elliptic curves to be integrated into the next version of the TLS protocol [37]. The requirements for the selection of such curves were based on [5,34], which advocate for a number of design practices and elliptic curve properties, including rigidity in the curve-generation process and simplicity in the implementation of cryptographic algorithms. After a long and lengthy discussion, two prime elliptic curves, known as Curve25519 and Curve448, were chosen for the 128-bit and 224-bit security levels, respectively (see §3 for more details). The RFC 7748 [25] memorandum describes the implementation details related to this choice, including the curve parameters and the Montgomery ladder-based scalar multiplication algorithms, also referred to as X25519 and X448 functions.

The Montgomery ladder and Montgomery curves were introduced in [27]. Since then, the Montgomery ladder has been carefully studied by many authors, as discussed for example, in the survey by Costello and Smith in [12] (see also [7]). We know now how to use the Montgomery ladder for computing the point multiplication kP, where P is usually selected as a point that belongs to a prime order r subgroup of an elliptic curve, and k is an integer in the [1, r - 1] interval. Nevertheless, arguably the most important application of the Montgomery ladder lies in the Diffie-Hellman shared-secret computation as described in [25].

The classical Montgomery ladder as it was presented in [27], is a left-to-right scalar multiplication procedure that does not admit in a natural way efficient precomputation mechanisms. In an effort to obtain this feature, and in the context of binary elliptic curves, the authors of [31] presented a right-to-left Montgomery ladder that can take advantage of pre-computing multiples of the fixed base point P. Notice that this procedure was previously reported by Joye in [20]. However, the procedure presented in [31] crucially depended on the computation of the point halving operation. Although this primitive can be performed at a low computational cost in binary elliptic curves, in general there are no known procedures to compute it efficiently for elliptic curves defined over odd prime fields. Hence, it appeared that the finding of the right-to-left ladder procedure of [31] was circumscribed to binary elliptic curves, as there was no obvious way to extend it to elliptic curves defined over large prime fields.

Our contributions In this paper, we present an alternative way to compute the key exchange protocol presented in [25]. In short, we propose different X25519 and X448 functions which can take advantage of the fixed-point scenario provided by the Diffie-Hellman key generation phase. This algorithm achieves an estimated performance increase of more than 40% at the price of a small amount of extra memory resources. In addition, it does not intervene with the original RFC specification and it is straightforward to implement, preserving the simplicity feature of the original design.

The remainder of this paper is organized as follows. In §2 we briefly describe the Diffie-Hellman protocol. In §3 we give more details on the CFRG selected elliptic curves. The Montgomery ladder-based scalar multiplication functions X25519 and X448 are analyzed in §4. Our proposal is discussed in §5 and our concluding remarks and future work are presented in §6.

2 The Diffie-Hellman protocol

The Diffie-Hellman key exchange protocol, introduced by Diffie and Hellman in [14], is a method that allows to establish a shared secret between two parties over an insecure channel. Originally proposed for multiplicative groups of integers modulo p, with p a prime number, the scheme was later adapted to additively-written groups of points on elliptic curves by Koblitz and Miller in [21,26]. Commonly known as elliptic curve Diffie-Hellman protocol (ECDH), this variant is concisely described in Algorithm 1.

Algorithm 1 The elliptic curve Diffie-Hellman protocol	
Public parameters: Prime p, curve E/\mathbb{F}_p , point $P = (x, y) \in E(\mathbb{F}_p)$ of or	der r

Phase 1: Key pair generation

1: 2:	Alice Select the private key $d_A \stackrel{\$}{\leftarrow} [1, r-1]$ Compute the public key $Q_A \leftarrow d_A P$	1: 2:	Bob Select the private key $d_B \xleftarrow{\$} [1, r-1]$ Compute the public key $Q_B \leftarrow d_B P$
	Phase 2: Shared	secre	t computation
	Alice		Bob
3:	Send Q_A to Bob	3:	Send Q_B to Alice
4:	Compute $R \leftarrow d_A Q_B$	4:	Compute $R \leftarrow d_B Q_A$
	Final phase: The shared sec	eret is	s the point R x-coordinate

As shown in Algorithm 1, the ECDH protocol is divided into two phases; in the first phase, both parties generate their private and public key pair. The private key d_A (d_B) is an integer chosen uniformly at random from the interval [1, r - 1] while the public key Q_A (Q_B) is the resulting point of the scalar multiplication of d_A (d_B) by the base-point P. In the majority of the proposed elliptic curve-based standards and specifications (e.g. [15,9,28], including [25]), the point P is fixed and its coordinates are explicitly given in the documentation. At the implementation level, this setting is usually called fixed- or known-point scenario.

After computing their respective public/private key pair, each party sends her public key to the other. Next, they perform the point multiplication of the received public key by their own private key. The group properties of $E(\mathbb{F}_p)$ guarantee that

$$R = d_A Q_B = d_A (d_B P) = d_B (d_A P) = d_B Q_A = R.$$

As a result, the parties have access to a common piece of information, represented by the x-coordinate of R, which is only disclosed to themselves. ⁴ Since the public key $Q_B(Q_A)$ is not known a priori by Alice (Bob), the scalar multiplication in the second phase is said to be performed in a variable- or unknown-point scenario.

3 The curves

The [25] memorandum specifies two Montgomery elliptic curves of the form,

$$E_A / \mathbb{F}_p : v^2 = u^3 + Au^2 + u.$$
 (1)

The standard specification for the 128 bits of security level uses the prime $p = 2^{255} - 19$, and the curve parameter is given by A = 486662. This curve is commonly known as Curve25519 and was proposed in 2005 by Bernstein [1]. The point group order is given as $\#E_{486662}(\mathbb{F}_{2^{255}-19}) = h \cdot r \approx 2^{255}$, with h = 8 and

 $r = 2^{252} + 27742317777372353535851937790883648493.$

The order-*r* base-point P = (u, v) is specified as,

$$u_P = 0$$
x9
 $v_P = 0$ x20AE19A1B8A086B4E01EDD2C7748D14C
923D4D7E6D7C61B229E9C5A27ECED3D9.

The recommendation for the 224-bit security level is to use $p = 2^{448} - 2^{224} - 1$ and A = 156326. This curve was originally proposed by Hamburg in the Edwards form as Ed448-Goldilocks [19], but it is referred in [25] as Curve448. The group order $\#E_{156326}(\mathbb{F}_{2^{448}-2^{224}-1}) = h \cdot r \approx 2^{448}$, with h = 4 and,

$$\begin{split} r = & 2^{446} - 1381806680989511535200738674851 \\ & 5426880336692474882178609894547503885. \end{split}$$

For this curve, the base-point P is given by

 $u_P = 0x5$

$v_P = 0x7D235D1295F5B1F66C98AB6E58326FCECBAE5D34F55545D060F75DC2$ 8DF3F6EDB8027E2346430D211312C4B150677AF76FD7223D457B5B1A.

⁴ Here, we are considering an ideal but unrealistic scenario. In practice, an inappropriate choice of the elliptic curve parameters, the prime p, the order r, the implementation of the scalar multiplication algorithm, among many other aspects, could disqualify this statement.

4 The scalar multiplication operation

Let E_A/\mathbb{F}_p be an elliptic curve and P an order-r point in $E_A(\mathbb{F}_p)$. Then, for any n-bit scalar $k = (k_{n-1}, \ldots, k_2, k_1, k_0)_2 \in [1, r-1]$, the scalar multiplication operation is given by,

$$Q = kP = k_{n-1}2^{n-1}P + \dots + k_22^2P + k_12P + k_0P.$$

As presented in §2, the scalar multiplication function is used in the two first ECDH phases; first, to generate the public keys Q_A and Q_B and later, in the second phase, to compute the common point R.

4.1 Left-to-right Montgomery ladder

Initially proposed to improve the performance of integer factorization algorithms, the Montgomery ladder [27] is now largely used in the design of constant-time scalar multiplication implementations. This is because its ladder step structure assures that the same arithmetic operations are executed independently of the scalar bits k_i values. A high-level description of this procedure is presented in Algorithm 2.

Algorithm 2 Left-to-right Montgomery ladder Input: $P = (u_P, v_P) \in E_A(\mathbb{F}_p), k = (k_{n-1} = 1, k_{n-2}, \dots, k_1, k_0)_2$ Output: $u_{Q=kP}$ 1: $R_0 \leftarrow \mathcal{O}; R_1 \leftarrow u_P;$ 2: for i = n - 1 downto 0 do 3: if $k_i = 1$ then 4: $R_0 \leftarrow R_0 + R_1; R_1 \leftarrow 2R_1$ 5: else 6: $R_1 \leftarrow R_0 + R_1; R_0 \leftarrow 2R_0$ 7: end if 8: end for

8: end for 9: return $u_Q \leftarrow R_0$

If the difference between the points R_1 and R_0 is known, it is possible to derive efficient formulas for computing $R_0 + R_1$ that refer only to the *u*-coordinates of the operands, a formula that is sometimes named as differential addition [12]. ⁵ That is the main rationale for Algorithm 2; throughout its execution, the Montgomery ladder maintains the invariant $R_1 - R_0 = P$ by computing at each iteration

$$(R_0, R_1) \leftarrow \begin{cases} (2R_0, 2R_0 + P), & \text{if } k_i = 0\\ (2R_0 + P, 2R_0 + 2P), & \text{if } k_i = 1. \end{cases}$$

⁵ It is also possible to express the *u*-coordinate of the resulting point $R_i = 2R_i$, for $i \in \{0, 1\}$, using only the *u*-coordinate of the operand *P*, an operation known as differential doubling.

In order to avoid expensive field inversions, one can accelerate the scalar multiplication procedure by using projective coordinates, by means of the transformation u = U/Z.

In the context of Algorithm 2, the differential addition formula required in Step 6 can be computed as [12,25],

$$U_{R_1} \leftarrow Z_P((U_{R_1} + Z_{R_1}) \cdot (U_{R_0} - Z_{R_0}) + (U_{R_1} - Z_{R_1}) \cdot (U_{R_0} + Z_{R_0}))^2 \quad (2)$$

$$Z_{R_1} \leftarrow u_P((U_{R_1} + Z_{R_1}) \cdot (U_{R_0} - Z_{R_0}) - (U_{R_1} - Z_{R_1}) \cdot (U_{R_0} + Z_{R_0}))^2.$$

where the standard trick of use $Z_p = 1$, saves one field multiplication. Thus, it can be seen that the computational cost of performing the differential addition formula of Eq. (2) is of $3\mathbf{m} + 2\mathbf{s} + 6\mathbf{a}$.

Similarly, the differential point doubling required in Step 6 of Algorithm 2 can be computed as [12,25],

$$U_{R_0} \leftarrow (U_{R_0} + Z_{R_0})^2 \cdot (U_{R_0} - Z_{R_0})^2$$

$$T \leftarrow (U_{R_0} + Z_{R_0})^2 - (U_{R_0} - Z_{R_0})^2$$

$$Z_{R_0} \leftarrow [a_{24} \cdot T + (U_{R_0} - Z_{R_0})^2] \cdot T,$$
(3)

where $a_{24} = \frac{A+2}{4}$. It can be readily seen that the computational cost of performing the differential doubling formula of Eq. (3) is of $2\mathbf{m} + 1\mathbf{m_{a24}} + 2\mathbf{s} + 4\mathbf{a}$.⁶

A low-level description of the left-to-right ladder on prime elliptic curves in Montgomery form is given in Algorithm 3. ⁷ When computed with the parameters listed in §3, this algorithm is called X25519 (with n = 255) or X448 (with n = 448) [25]. The \oplus notation stands for the exclusive-or logical operator, while the symbols $+, -, \times, ^2$ and $^{-1}$ represent the field \mathbb{F}_p arithmetic operations of addition, subtraction, multiplication, squaring and inversion, respectively.

At each iteration i of Algorithm 3, the conditional swap function (cswap) exchanges the values of the R_0 and R_1 coordinates when the bits k_{i-1} and k_i are different. This function is a countermeasure for potential cache-based attacks [22,23], which could reveal the scalar digits (the private key in Alg. 1) by determining the access order of the points R_0 and R_1 . The cswap function consists only of simple logic operations, so its cost will be disregarded in our estimations. For more details on the implementation of this function see [25,31].

Cost estimations Let \mathbf{m} , \mathbf{m}_{a24} , \mathbf{m}_{uP} , \mathbf{s} , \mathbf{i} and \mathbf{a} represent the cost of a general multiplication, multiplication by the constant (A + 2)/4, multiplication by the *u*-coordinate of the base-point P, squaring, inversion and addition/subtraction over the field \mathbb{F}_p , respectively. Then, the computing cost of the left-to-right Montgomery ladder is

 $n \cdot (4\mathbf{m} + 1\mathbf{m_{a24}} + 1\mathbf{m_{uP}} + 4\mathbf{s} + 8\mathbf{a}) + 1\mathbf{m} + 1\mathbf{i}.$

⁶ were $\mathbf{m_{a24}}$ stands for one multiplication by the constant a_{24} .

 $^{^7}$ The description is closely related to [25, $\S 5].$

Algorithm 3 Low-level left-to-right Montgomery ladder **Input:** $P = (u_P, v_P) \in E_A/\mathbb{F}_p, \ k = (k_{n-1} = 1, k_{n-2}, \dots, k_1, k_0)_2, \ a_{24} = (A+2)/4$ Output: $u_{Q=kP}$ 1: Initialization: $U_{R_0} \leftarrow 1, Z_{R_0} \leftarrow 0, U_{R_1} \leftarrow u_P, Z_{R_1} \leftarrow 1, s \leftarrow 0$ 2: for $i \leftarrow n-1$ downto 0 do # timing-attack countermeasure 3: $s \leftarrow s \oplus k_i$ 4: 5: $U_{R_0}, U_{R_1} \leftarrow \operatorname{cswap}(s, U_{R_0}, U_{R_1})$ $Z_{R_0}, Z_{R_1} \leftarrow \operatorname{cswap}(s, Z_{R_0}, Z_{R_1})$ 6: 7: $s \leftarrow k_i$ 8: # common operations 9: $A \leftarrow U_{R_0} + Z_{R_0}; B \leftarrow U_{R_0} - Z_{R_0}$ 10:# addition 11: $C \leftarrow U_{R_1} + Z_{R_1}; D \leftarrow U_{R_1} - Z_{R_1}$ $C \leftarrow C \times B; \, D \leftarrow D \times A$ 12: $U_{R_1} \leftarrow D + C; U_{R_1} \leftarrow U_{R_1}^2$ $Z_{R_1} \leftarrow D - C; Z_{R_1} \leftarrow Z_{R_1}^2; Z_{R_1} \leftarrow u_P \times Z_{R_1}$ 13:14: # doubling 15: $A \leftarrow A^2; B \leftarrow B^2$ 16:17: $U_{R_0} \leftarrow A \times B$ 18: $A \leftarrow A - B$ $Z_{R_0} \leftarrow a_{24} \times A; Z_{R_0} \leftarrow Z_{R_0} + B; Z_{R_0} \leftarrow Z_{R_0} \times A$ 19:20: end for 21: $U_{R_0}, U_{R_1} \leftarrow \operatorname{cswap}(s, U_{R_0}, U_{R_1})$ 22: $Z_{R_0}, Z_{R_1} \leftarrow \operatorname{cswap}(s, Z_{R_0}, Z_{R_1})$ 23: $Z_{R_0} \leftarrow Z_{R_0}^{-1}$ 24: $u_{R_0} \leftarrow U_{R_0} \times Z_{R_0}$ 25: return $u_Q \leftarrow u_{R_0}$

More specifically, at the 128 bits of security level, the X25519 function costs

 $1021m + 255m_{a24} + 255m_{uP} + 1020s + 2040a + 1i$,

where each operation is performed in the prime field $\mathbb{F}_{2^{255}-19}$. At the 224-bit security level case, the cost for computing the function X448 is

 $1793m + 448m_{a24} + 448m_{uP} + 1792s + 3584a + 1i$,

with the arithmetic operations being carried out in the prime field $\mathbb{F}_{2^{448}-2^{224}-1}$.

5 How to (pre-)compute a ladder

Our proposal for improving the performance of the X25519 and X448 functions focuses in the first phase of the Diffie-Hellman protocol (see Alg. 1). There, the scalar multiplication is performed in the fixed-point setting. More specifically,

the point operand is always the base-point described in the [25] document (see §3 for more details).

One possible solution for taking advantage of this scenario was published in [2], in the context of message signing. In short, the authors pre-compute the points $P_{ij} = i16^{j}P$, for $1 \le i \le 8$ and $0 \le j \le 63$ and represent the Curve25519 in Edwards form to process the scalar multiplication through a windowed variant of the traditional double-and-add method. In addition to the significant amount of required memory space, the main drawback of this approach is that complex cache-attack countermeasures need to be applied during the retrieval of the precomputed points P_{ij} , which go against the principle of implementation simplicity promoted in [5,34].

Thus, instead of designing a timing-protected double-and-add algorithm, we suggest using a slightly modified version of the right-to-left Montgomery ladder presented in [31] as explained in the following subsection.

5.1 Right-to-left Montgomery ladder with pre-computation

Algorithm 4 Right-to-left Montgomery ladder **Input:** $P = (u_P, v_P) \in E_A(\mathbb{F}_p), \ k = (k_{n-1} = 1, k_{n-2}, \dots, k_1, k_0)_2$ Output: $u_{Q=hkP}$ 1: **Pre-computation:** Calculate and store u_{P_i} , where $P_i = 2^i P$, for $0 \le i \le n$ 2: Initialization: Select an order-*h* point $S \in E_A(\mathbb{F}_p)$ 3: $R_0 \leftarrow u_P, R_1 \leftarrow u_S, R_2 \leftarrow u_{P-S}$ 4: for $i \leftarrow 0$ to n - 1 do 5: if $k_i = 1$ then $R_1 \leftarrow R_0 + R_1$ (with $R_2 = R_0 - R_1$) 6: 7: else $R_2 \leftarrow R_0 + R_2 \text{ (with } R_1 = R_0 - R_2 \text{)}$ 8: 9: end if $R_0 \leftarrow u_{P_{i+1}}$ 10:11: end for 12: return $u_Q = hR_1$

The operating principle of Algorithm 4, is to compute Q = kP using the Montgomery differential arithmetic formulas for the point doubling and point addition operations. This is achieved by recording and storing the difference $R_0 - R_1$ in the point R_2 through the whole execution of the procedure. Indeed, in the case that the bit $k_i = 1$, then R_0 is added to the accumulator R_1 (Step 6) and the difference R_2 does not change, since the operation $2R_0 = R_0 + R_0$ is performed in Step 10. On the other hand, if $k_i = 0$, nothing is added to the accumulator R_1 , so it is necessary to increase the difference R_2 by R_0 (Step 8) in order to account for the unconditional doubling performed in Step 10. Notice that at each iteration, the accumulator R_1 is updated in the same fashion as it would be done in a traditional right-to-left double-and-add algorithm. It follows that at the end of the main loop, $R_1 = kP + S$.

The reason why the accumulator R_1 must be initialized with a point $S \notin \langle P \rangle$ is because the differential formulas are not complete on Montgomery curves. Hence, one must prevent the cases where $R_0 = R_1$ or $R_0 = R_2$. One can eliminate S by performing a scalar multiplication by the cofactor h, thus obtaining

$$hR_1 = h \cdot (kP + S) = hkP + hS = hkP.$$

Notice that for Montgomery curves, the cofactor h is as little as four. So this last correction does not represent a computational burden. Furthermore, in § 5.4 we show a trick specially tailored for the X25519 and X448 functions, which eliminates the point S at almost no cost, and that allows us to return the correct $R_1 = kP$ result. Nevertheless, we stress that the points S and P - S can be clearly specified beforehand and therefore, this matter should not bring any complications for the programmer.

Given that the difference between R_0 and R_1 is volatile, at first glance the differential point addition formula computed in Steps 6 and 8 of Algorithm 4, requires an extra field multiplication as compared with Eq. (2) of the classical ladder shown in Algorithm 2. This is basically because R_2 is now represented in full projective coordinates, which means that its Z-coordinate value will be in general different than one.

We discuss in the following how to compute the differential addition formula of Algorithm 4, without incurring in any additional cost as compared with the cost of Eq. (2) of Algorithm 2.

5.2 Montgomery differential addition with precomputation

Let $R_0 = (u_0, v_0)$ and $R_1 = (u_1, v_1)$, be two points of the elliptic curve of Eq.(1).⁸ Then, the point $R_3 = (u_3, v_3)$, such that, $R_3 = R_0 + R_1$, is determined as,

$$(u_3, v_3) = (u_0, v_0) + (u_1, v_1)$$

$$= \left(\frac{u_0 v_1 - v_0 u_1}{u_0 v_1 + v_0 u_1} \cdot \frac{1 - u_0 u_1}{u_0 - u_1}, \frac{u_0 v_1 - v_0 u_1}{u_0 v_1 + v_0 u_1} \cdot \frac{v_0 (u_1^2 - 1) - v_1 (u_0^2 - 1)}{(u_0 - u_1)^2} \right).$$

$$(4)$$

Let us assume that the point $R_2 = (u_2, v_2)$, such that $R_2 = R_0 - R_1$, is known. Then, the addition formulas (4) can be rewritten as the following differential addition formulas,

$$(u_3, v_3) = \left(\frac{1}{u_2} \cdot \frac{(1 - u_0 u_1)^2}{(u_0 - u_1)^2}, \frac{1}{v_2} \cdot \frac{v_0^2 (1 - u_1^2)^2 - v_1^2 (1 - u_0^2)^2}{(u_0 - u_1)^4}\right)$$
(5)

One can perform u-only arithmetic by transforming the above equation to customary projective coordinates as,

⁸ Notice that in general an Montgomery elliptic curve has the form, $Bv^2 = u^3 + Au^2 + u$.

$$(U_3: Z_3) = \left(Z_2(U_0U_1 - Z_0Z_1)^2 : U_2(U_0Z_1 - Z_0U_1)^2\right)$$

= $\left(Z_2((U_1 + Z_1) + \mu(U_1 - Z_1))^2 : U_2((U_1 + Z_1) - \mu(U_1 - Z_1))^2\right)$
(6)

where

$$\mu = \frac{(U_0 + Z_0)}{(U_0 - Z_0)}$$

The per-point- R_0 constant value μ can be precomputed and stored since it only depends on $(U_0: Z_0)$. Computing $(U_3: Z_3)$ in (6) takes only $3\mathbf{m} + 2\mathbf{s} + 4\mathbf{a}$, by reusing $(U_1 + Z_1)$ and $\mu(U_1 - Z_1)$ on both sides. Notice that this exactly matches the computational cost of Eq. (2), which computes the differential addition of the classical Montgomery ladder. In Appendix A, a Magma [8] script verifying Eq.(6) is presented.

The corresponding differential addition formulas for Edwards and Huff forms are described in Appendices B and C, respectively. The formulas give exactly the same performance as the formulas presented for the Montgomery form. Therefore, they are not included in the main body of the text.

5.3 Differential addition formulas in Algorithm 4

In the context of Algorithm 4, the differential addition formula required in Steps 6 and 8 can be computed as,

$$U_{R_3} \leftarrow Z_{R_2}((U_{R_1} + Z_{R_1}) + \mu(U_{R_1} - Z_{R_1}))^2$$

$$Z_{R_3} \leftarrow U_{R_2}((U_{R_1} + Z_{R_1}) - \mu(U_{R_1} - Z_{R_1}))^2,$$
(7)

where,

$$\mu = \frac{u_{R_0} + 1}{u_{R_0} - 1}.$$

Once again, notice that the μ -values can be pre-computed and stored since they only depend on the *u*-coordinates of the points $2^i P$.

Timing attacks Notice that no side-channel countermeasures are required to retrieve the values $\mu_i = \frac{u_{2iP}+1}{u_{2iP}-1}$ from memory, since they are public and do not have any direct correlation to the sensitive information contained in the scalar k.

Also, the addition performed in Step 8 is not a dummy operation. The correct value of the R_2 coordinates must be maintained in order to perform further additions in Step 6. Moreover, since $k_{n-1} = 1$, a computational fault induced at any iteration of Algorithm 4 would produce a wrong resulting point Q.

5.4 Implementing the pre-computable ladder

Before presenting a low-level description of the known-point scalar multiplication using Algorithm 4, we must examine the point S selection and how to optimize the processing of the scalar k.

Strategies When selecting the private key k (Alg. 1, Step 1), presumably to facilitate the programming effort, the X25519 specification [25] recommends to generate 32 bytes at random as $k = K_0 + K_1 2^8 + \ldots + K_{31} 2^{248}$ with byte-words $K_i \stackrel{\$}{\leftarrow} [0, 255]$, and to perform the following operations:

$$K_0 \leftarrow K_0 \land 248, \qquad K_{31} \leftarrow K_{31} \land 127, \qquad K_{31} \leftarrow K_{31} \lor 64,$$

where the symbols \land and \lor represent the logical conjunction and disjunction operators. For the X448 function, 56 randomly-chosen bytes are required, which are further processed as

$$K_0 \leftarrow K_0 \land 252, \qquad K_{55} \leftarrow K_{55} \lor 128.$$

Those procedures are equivalent to compute, respectively,

$$k'' \stackrel{\$}{\leftarrow} [0, 2^{251} - 1], \qquad k' \leftarrow k'' + 2^{251}, \qquad k \leftarrow 8 \cdot k'$$

and

$$k'' \stackrel{\$}{\leftarrow} [0, 2^{445} - 1], \qquad k' \leftarrow k'' + 2^{445}, \qquad k \leftarrow 4 \cdot k'.$$

Consequently, we decided to process only the bits of k' in the main loop of our function. At the end of the algorithm, as we eliminate the point S from the accumulator by multiplying it by h, we will have the correct resulting point $Q = h \cdot (k'P + S) = kP$. In order to obtain a non-invasive procedure with respect to the RFC specification, we simply start processing the scalar from the $(\log_2 h + 1)$ -th bit of k.

Point S selection In the Curve25519 setting, we could select an order-8 point S. However, because of its elegant u-coordinate, we decided to choose the order-4 point:

$$u_S = 0$$
x1,
 $v_S = 0$ x6BE4F497F9A9C2AFC21FA77AD7F4A6EF635A11C72
84A9363E9A248EF9C884415.

The point P - S is given by:

$$u_{P-S} = 0 x 215132111D8354CB52385F46DCA2B71D440F6A51E$$

B4D1207816B1E0137D48290,
$$v_{P-S} = 0 x 5199331F1F5630BBFA49B1B1B02B207B493D0A63B$$

B4F8F01C011242F9C6E9E7C.

For the Curve448, the order-4 point S is given by:

And the (u, v) coordinates of P - S are:

$$\begin{split} u_{P-S} = & 0 \texttt{xF0FAB725013244423ACF03881AFFEB7BDACDD1031C81B9672954459D} \\ & \texttt{84C1F823F1BD65643ACE1B5123AC33FF1C69BAF8ACB1197DC99D2720}, \\ v_{P-S} = & \texttt{0x45CD0137F88682464AE12E4E2CFCEA7E9360F6FE1E04AE1C5065F397} \\ & \texttt{533F2282EE2643E610A0CC8E9B07D43D47C9658D05E22F0F077395DD}. \end{split}$$

Algorithm Next, in Algorithm 5, we present the low-level details of our approach. Again, the term n represents the bit length of $\#E_A(\mathbb{F}_p) = h \cdot r$ and $q = \log_2 h$.⁹ The pre-computation phase (Step 1) consists of computing and storing the values $\mu_i = \frac{u_{P_i}+1}{u_{P_i}-1}$ for the multiples $P_i = 2^i P$. These n - q field elements are computed a priori from the base-point P and their values are listed in Appendix D for both, Curve25519 and Curve448. Assuming that the architecture is byte-addressable, the memory space required for Curve25519 is approximately $(255 - 3) \cdot 32B \approx 8KB$, while in the Curve448 setting, we need $(448 - 2) \cdot 56B \approx 25KB$.

The conditional swap function is identical to the one used in Algorithm 3. However, in this case the inputs are the coordinates of the accumulator R_1 and the difference point R_2 . Moreover, the *s* variable that controls the swap is set to one, since the Montgomery point additions, in terms of memory location, are always performed as $R_1 \leftarrow R_1 + 2^i P$ throughout the algorithm. Also, given that the most significant bit k_{n-1} is always equal to one, it is unnecessary to include another couple of cswap functions after the main loop. At the end of the algorithm (Steps 16-23), we must perform *q* consecutive point doublings to process the least significant bits of *k* and to eliminate the point *S* from the accumulator R_1 .

Cost estimations The cost of the Algorithm 5 can be estimated as

 $(n-q) \cdot (3m+2s+4a) + q \cdot (2m+1m_{a24}+2s+4a) + 1m + 1i.$

If the Curve25519 is used, then n = 255 and q = 3. As a result, the fixed-point scalar multiplication would cost

$763m + 3m_{a24} + 510s + 1020a + 1i$,

 $^{^9}$ For the sake of simplicity, in the remaining of this paper it will be assumed that h is a small power of two.

Algorithm 5 Low-level right-to-left Montgomery ladder

Input: $P = (u_P, v_P), S = (u_S, v_S), P - S = (u_{P-S}, v_{P-S}) \in E_A / \mathbb{F}_p, a_{24} = (A+2)/4$ $k = (k_{n-1} = 1, k_{n-2}, \dots, k_1, k_0)_2$

Output: $u_{Q=kP}$

- 1: **Pre-computation** Let $P_i = 2^i P$. Compute and store the values $\mu_i = \frac{u_{P_i} + 1}{u_{P_i} 1}$, for $0 \le i \le n q 1$
- 2: Initialization: $U_{R_1} \leftarrow u_S, Z_{R_1} \leftarrow 1, U_{R_2} \leftarrow u_{P-S}, Z_{R_2} \leftarrow 1, s \leftarrow 1$
- 3: for $i \leftarrow 0$ to n q 1 do # timing-attack countermeasure 4: $s \leftarrow s \oplus k_{i+q}$ 5: $U_{R_1}, U_{R_2} \leftarrow \operatorname{cswap}(s, U_{R_1}, U_{R_2})$ 6: 7: $Z_{R_1}, Z_{R_2} \leftarrow \operatorname{cswap}(s, Z_{R_1}, Z_{R_2})$ 8: $s \leftarrow k_{i+q}$ 9: # addition $A \leftarrow U_{R_1} + Z_{R_1}; B \leftarrow U_{R_1} - Z_{R_1}$ 10: 11: $C \leftarrow \mu_i \times B$ $D \leftarrow A + C; D \leftarrow D^2$ 12: $E \leftarrow A - C; E \leftarrow E^2$ 13: $U_{R_1} \leftarrow Z_{R_2} \times D; Z_{R_1} \leftarrow U_{R_2} \times E$ 14: 15: end for 16: for $i \leftarrow 0$ to q - 1 do 17: **#** doubling $A \leftarrow U_{R_1} + Z_{R_1}; A \leftarrow A^2$ $B \leftarrow U_{R_1} - Z_{R_1}; B \leftarrow B^2$ 18:19: $U_{R_1} \leftarrow A \times B$ 20:21: $A \leftarrow A - B$ $Z_{R_1} \leftarrow a_{24} \times A; Z_{R_1} \leftarrow Z_{R_1} + B; Z_{R_1} \leftarrow Z_{R_1} \times A$ 22:23: end for 24: $Z_{R_1} \leftarrow Z_{R_1}^{-1}$ 25: $u_{R_1} \leftarrow U_{R_1} \times Z_{R_1}$ 26: return $u_Q \leftarrow u_{R_1}$

where the arithmetic operations are over $\mathbb{F}_{2^{255}-19}$. In the Curve448 context, n = 448 and q = 2. As a consequence, we have the following cost in terms of $\mathbb{F}_{2^{448}-2^{224}-1}$ -operations:

 $1343m + 2m_{a24} + 896s + 1792a + 1i.$

These results show that, our approach saves more than 25% of general field multiplications. In addition, it completely eliminates the multiplication by u_P^{10} and drastically reduces the number of multiplications by the constant (A+2)/4. In addition, it saves half of the field squarings and half of additions/subtractions.

¹⁰ In fact, given that the difference of the point operands $P_i - R_1$ is variable, the $\mathbf{m}_{\mathbf{uP}}$ operations were changed into two general multiplications and were included in the **m** operation count.

For the programmer, the only extra effort is to organize the pre-computed values in the memory and load them during the main loop execution, since the remaining field and logic operations are very similar to ones presented in Algorithm 3. In the next subsection, we present a comparative based on the arithmetic of state-of-the-art software implementations.

5.5 Comparison

In this part, we present a more concrete analysis of the performance efficiency of Algorithm 5. For this purpose, we measured the field arithmetic cost of different state-of-the-art constant-time software implementations of the Diffie-Hellman protocol on Curve25519 and Curve448. After that, we computed the ratios of $\mathbf{m_{a24}}$, $\mathbf{m_{uP}}$, \mathbf{s} and \mathbf{i} to \mathbf{m} , which are considered the most representative field arithmetic operations for scalar multiplication implementations. As a result, we were able to show the practical savings of our proposal in terms of general field multiplications \mathbf{m} .

Regarding the X25519 implementations, we selected the code from Bernstein et al. [2], which represents the $\mathbb{F}_{2^{255}-19}$ elements in radix-2⁵¹, the AVX2 approach from Faz-Hernández and López [16] and the curve25519-donna library from Langley [24]. ¹¹ For the X448 function, we considered the original implementation of Hamburg in [19]. The source code of [2,19] were downloaded from the eBACS [3] web page, the [16] implementation was shared by its authors via personal communication and the curve25519-donna library was retrieved from its GitHub repository [24].

Every field arithmetic code was compiled with the clang/LLVM compiler version 3.9 with optimization flags -03 -march=haswell -fomit-frame-pointer and further benchmarked in an Intel Core i7-4700MQ 2.40GHz machine (Haswell architecture) with the Hyper Threading and Turbo Boost technologies disabled. The ratios are presented in Table 1.

The cost of the $\mathbf{m_{a24}}$ operation in the Bernstein et al. implementation was estimated as follows. After analyzing the assembly code, we concluded that $\mathbf{m_{a24}}$ takes 10 movq, 5 mov, 5 shr, 5 add, 4 addq, 5 mulq and 1 imulq machine instructions. Next, we added its latencies [17] and, to calculate a "lower bound" of our speed improvements, we applied an aggressive throughput of 0.25. Finally, given that the $\mathbf{m_{uP}}$ is similar to the $\mathbf{m_{a24}}$ operation, we also assumed a similar cost. In Table 2, we present the performance improvements of our proposal in terms of the general field multiplication.

The above comparison suggests that about 36.01 to 44.04% of speed-up can be reached in the first phase of the ECDH protocol by using Algorithm 5. When considering the complete Diffie-Hellman scheme, the improvement ranges from

¹¹ The benchmarking reports in [3] shows that the library of Chou [10] currently holds the speed record on computing the scalar multiplication over Curve25519. However, the author decided to embed the field arithmetic functions into the ladder step, in a single assembly code. Isolating the field operations would be impractical and could alter the author's original intentions.

 Table 1. Ratios of selected arithmetic operations to the general field multiplication in state-of-the-art software implementations

Implementation	Ratios to m				
Implementation	m _{a24}	m _{uP}	s	i	а
Bernstein et al. [2]	0.23^{\dagger}	0.23^{\dagger}	0.76	203.29	< 0.1
Faz-Hernández and López [16]	0.28	0.41	0.96	84.33	< 0.1
Langley [24]	0.60	1.00^{\ddagger}	0.82	192.55	< 0.1
Hamburg [19]	0.24	1.00^{\ddagger}	0.75	405.00	< 0.1

[†] Estimated

^{\ddagger} The general field multiplication (m) is used to implement this operation

 Table 2. A comparative between Montgomery-ladder approaches in the fixed-point scenario

	Estimate		
Implementation	Mont. ladder	Mont. ladder	Diff.
	left-to-right (Alg. 3)	right-to-left (Alg. 5)	
Bernstein et al. [2]	2116.89 m	1354.58 m	-36.01%
Faz-Hernández and López [16]	2260.48m	1337.77 m	-40.82%
Langley [24]	$2457.95\mathbf{m}$	$1375.55\mathbf{m}$	-44.04%
Hamburg [19]	$4097.52\mathbf{m}$	$2420.48\mathbf{m}$	-40.93%

[†] Because of its negligible cost, the field addition/subtraction operation was not included

18.01 to 22.02%. In practice, these estimated savings can be further improved if we take into consideration compiler optimizations and the machine throughput. Moreover, while the field addition/subtraction cost is imperceptible if measured separately, it constitutes a significant part in the whole protocol execution timings.

6 Conclusion

In this work, we presented an alternative way to compute the elliptic curve Diffie-Hellman protocol with Montgomery ladders. Particularly, we focused on the key-generation phase, which can be characterized as a fixed-point scenario. For this phase, we assumed that the relevant multiples of the base-point can be pre-computed off-line, which helps to boost the computation of the scalar multiplication via a right-to-left variant of the Montgomery ladder. As a result we achieved, in the Curve25519 setting, estimated performance improvements that range from 36 to 44% of speed-up, at the price of just 8KB of memory space. Our proposal carefully minimizes coding modifications with respect to the specifications given in the RFC 7748 memorandum.

Currently, we do not have a high-speed software implementation of our approach. However, we provide in Appendix E, a Magma script of our X25519 alternative function, which shows that the generated public keys are in accor-

dance with the test vectors listed in [25, §6.1]. In the near future, we intend to work on software implementations targeting different architectures to evaluate the real optimization speed-ups that can be accomplished by our approach.

We also would like to explore the potential savings that our ladder approach can bring for digital signature protocols and other elliptic-curve based protocols. Finally, building on the work of [32], we would like to explore a Montgomery ladder variant, which can be applied to prime elliptic curves equipped with efficient endomorphisms such as the Four \mathbb{Q} elliptic curve [11]. For that kind of elliptic curves, the ladder variant presented in [32], allows for an important saving in the number of required point doubling operations when working in the fixed-point scenario.

Acknowledgments

We would like to thank Daniel Cervantes for his useful comments and Armando Faz-Hernández for sharing with us insightful comments about the point multiplication software library reported in [16]. We also thank Peter Dettman for benchmarking this proposal in Java [13] and providing useful comments.

References

- D. J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In *Proceedings* of *PKC 2006*, volume 3958 of *LNCS*, pages 207–228. Springer Berlin Heidelberg, 2006.
- D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security signatures. *Journal of Cryptographic Engineering*, 2(2):77–89, 2012.
- D. J. Bernstein and T. Lange. eBACS: ECRYPT Benchmarking of Cryptographic Systems. https://bench.cr.yp.to. Accessed in Mar 2017.
- D. J. Bernstein and T. Lange. Explicit-formulas database. https:// hyperelliptic.org/EFD/g1p/auto-edwards-yzsquared.html. Accessed in May 2017.
- D. J. Bernstein and T. Lange. SafeCurves: choosing safe curves for elliptic-curve cryptography. http://safecurves.cr.yp.to. Accessed in Mar 2017.
- D. J. Bernstein and T. Lange. A complete set of addition laws for incomplete Edwards curves. *Journal of Number Theory*, 131(5):858–872, 2011.
- D. J. Bernstein and T. Lange. Montgomery curves and the montgomery ladder. Cryptology ePrint Archive, Report 2017/293, 2017. http://eprint.iacr.org/ 2017/293.
- W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).
- Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters, 2010. Version 2.0. Standards for Efficient Cryptography. http://www.secg.org/sec2-v2.pdf.
- T. Chou. Sandy2x: New Curve25519 Speed Records. In Proceedings of SAC 2015, pages 145–160. Springer International Publishing, 2016.

- C. Costello and P. Longa. FourQ: Four-Dimensional Decompositions on a Q-curve over the Mersenne Prime. In *Proceedings of ASIACRYPT 2015*, volume 9452 of *LNCS*, pages 214–235. Springer, 2015.
- C. Costello and B. Smith. Montgomery curves and their arithmetic: The case of large characteristic fields. Cryptology ePrint Archive, Report 2017/212, 2017.
- 13. P. Dettman. Comments on "A note on how to (pre-)compute a ladder". Crypto Forum Research Group, April 2017. http://tinyurl.com/1986vyj.
- W. Diffie and M. E. Hellman. New Directions in Cryptography. *IEEE Transactions on Information Theory*, 22(6):644–654, 1976.
- 15. ECC Brainpool. Standard Curves and Curve Generation, 2005. Version 1.0. http://www.ecc-brainpool.org/download/Domain-parameters.pdf.
- A. Faz-Hernández and J. López. Fast Implementation of Curve25519 Using AVX2. In *Proceedings of LATINCRYPT 2015*, pages 329–345. Springer International Publishing, 2015.
- A. Fog. Instruction tables: Lists of instruction latencies, throughputs and microoperation breakdowns for Intel, AMD and VIA CPUs. http://www.agner.org/ optimize/, 2016.
- P. Gaudry and D. Lubicz. The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines. *Finite Fields and Their Applications*, 15(2):246–260, 2009.
- M. Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive, Report 2015/625, 2015. http://eprint.iacr.org/2015/625.
- M. Joye. Highly regular right-to-left algorithms for scalar multiplication. In P. Paillier and I. Verbauwhede, editors, *Cryptographic Hardware and Embedded Systems CHES 2007*, volume 4727 of *Lecture Notes in Computer Science*, pages 135–147. Springer, 2007.
- N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of computation, 48:203– 209, 1987.
- P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In *Proceedings of CRYPTO 99*, volume 1666 of *LNCS*, pages 388–397. Springer Berlin Heidelberg, 1999.
- P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and Other Systems. In *Proceedings of CRYPTO 96*, volume 1109 of *LNCS*, pages 104–113. Springer Berlin Heidelberg, 1996.
- A. Langley. curve25519-donna. https://github.com/agl/curve25519-donna. Accessed in Mar 2017.
- 25. A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security, 2016. Request for Comments. https://tools.ietf.org/html/rfc7748.
- V. S. Miller. Use of elliptic curves in cryptography. In *Proceedings of CRYPTO* 85, volume 218 of *LNCS*, pages 417–426. Springer Berlin Heidelberg, 1986.
- 27. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. *Mathematics of computation*, 48:243–264, 1987.
- National Institute of Standards and Technology. FIPS PUB 186-4: Digital Signature Standard (DSS). Federal Information Processing Standards, 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.
- 29. National Institute of Standards and Technology. NIST Removes Cryptography Algorithm from Random Number Generator Recommendations, 2014. https://www.nist.gov/news-events/news/2014/04/nist-removescryptography-algorithm-random-number-generator-recommendations.

- National Institute of Standards and Technology. Special Publication 800-90A Rev.1: Recommendation for Random Number Generation Using Deterministic Random Bit Generators, 2015. http://nvlpubs.nist.gov/nistpubs/ SpecialPublications/NIST.SP.800-90Ar1.pdf.
- 31. T. Oliveira, D. F. Aranha, J. López, and F. Rodríguez-Henríquez. Fast Point Multiplication Algorithms for Binary Elliptic Curves with and without Precomputation. In *Proceedings of SAC 2014*, volume 8781 of *LNCS*, pages 324–344. Springer Berlin Heidelberg, 2014.
- 32. T. Oliveira, J. López, and F. Rodríguez-Henríquez. The Montgomery ladder on binary elliptic curves. Submitted to Journal of Cryptographic Engineering, 2017.
- 33. N. G. Orhon and H. Hisil. Speeding up huff form of elliptic curves. Cryptology ePrint Archive, Report 2017/320, 2017. http://eprint.iacr.org/2017/320.
- K. Patterson. Formal request from TLS WG to CFRG for new elliptic curves. Crypto Forum Research Group archives, 2015. https://mailarchive.ietf.org/ arch/msg/cfrg/Hvihr_yQhVB_Qdl-mtwTdVbHGiU.
- N. Perlroth. Government Announces Steps to Restore Confidence on Encryption Standards. New York Times, 2013. https://bits.blogs.nytimes.com/2013/ 09/10/government-announces-steps-to-restore-confidence-on-encryptionstandards/.
- N. Perlroth, J. Larson, and S. Shane. N.S.A. Able to Foil Basic Safeguards of Privacy on Web. New York Times, 2013. http://www.nytimes.com/2013/09/06/ us/nsa-foils-much-internet-encryption.html.
- 37. E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3, 2017. Internet-Draft. https://tools.ietf.org/html/draft-ietf-tls-tls13-19.

A Differential addition formulas

In this appendix we present a Magma verification script for the improved differential addition formulas.

```
RF<A,B>:=RationalFunctionField(Rationals(),2); P:=PolynomialRing(RF);
PR<y0,y1,x0,x1>:=PolynomialRing(RF,4);
//(x3,y3):=(x0,y0)+(x1,y1) Source: Explicit Formulas Database (EFD).
x3:=B*(y0-y1)^2/(x0-x1)^2-A-x0-x1;
y3:=(2*x0+x1+A)*(y0-y1)/(x0-x1)-B*(y0-y1)^3/(x0-x1)^3-y0;
//(x2,y2):=(x0,y0)-(x1,y1)
x2:=B*(y0+y1)^2/(x0-x1)^2-A-x0-x1;
y2:=(2*x0+x1+A)*(y0+y1)/(x0-x1)-B*(y0+y1)^3/(x0-x1)^3-y0;
//Proposed alternative formulas.
x3t:=(1-x0*x1)/(x0-x1)*(x0*y1-y0*x1)/(x0*y1+y0*x1);
y3t:=(y0*(x1^2-1)-y1*(x0^2-1))/(x0-x1)^2*(x0*y1-y0*x1)/(x0*y1+y0*x1);
//Differential addition formulas.
x3d:=(1-x0*x1)^2/(x2*(x0-x1)^2);
y3d:=(y0^2*(1-x1^2)^2-y1^2*(1-x0^2)^2)/(y2*(x0-x1)^4);
//Check modulo the quotient relations.
QR<x0,y0,x1,y1>:=RingOfFractions(quo<PR|
   B*y0^2-(x0^3+A*x0^2+x0),B*y1^2-(x1^3+A*x1^2+x1)
>):
QR!(B*y2^2-(x2^3+A*x2^2+x2)); QR!(B*y3^2-(x3^3+A*x3^2+x3));
QR!(x3-x3d); QR!(y3-y3d); QR!(x3-x3t); QR!(y3-y3t);
RF<A,B>:=RationalFunctionField(Rationals(),2); P:=PolynomialRing(RF);
PR<X0,Z0,Y0,T0,X1,Z1,Y1,T1>:=PolynomialRing(RF,8);
//((X2:Z2),(Y2:Z2)):=((X0:Z0),(Y0:Z0))-((X1:Z1),(Y1:Z1))
X2:=(Z0*Z1-X0*X1)*(X0*T0*Y1*Z1+Y0*Z0*X1*T1);
Z2:=(X0*Z1-Z0*X1)*(X0*T0*Y1*Z1-Y0*Z0*X1*T1);
Y2:=(X0*T0*Y1*Z1+Y0*Z0*X1*T1)*(Y0*Z0^2*T1*(X1^2-Z1^2)+T0*(X0^2-Z0^2)*Y1
    *Z1^2):
T2:=(X0*T0*Y1*Z1-Y0*Z0*X1*T1)*T0*T1*(X0*Z1-Z0*X1)^2;
//((X3:Z3),(Y3:Z3)):=((X0:Z0),(Y0:Z0))+((X1:Z1),(Y1:Z1))
X3:=(Z0*Z1-X0*X1)*(X0*T0*Y1*Z1-Y0*Z0*X1*T1);
Z3:=(X0*Z1-Z0*X1)*(X0*T0*Y1*Z1+Y0*Z0*X1*T1);
Y3:=(X0*T0*Y1*Z1-Y0*Z0*X1*T1)*(Y0*Z0^2*T1*(X1^2-Z1^2)-T0*(X0^2-Z0^2)*Y1
    *Z1^2):
T3:=(X0*T0*Y1*Z1+Y0*Z0*X1*T1)*T0*T1*(X0*Z1-Z0*X1)^2;
//Precomputation.
mu:=(X0+Z0)/(X0-Z0);
//Projective differential addition formulas with precomputation.
X3d:=Z2*((X1+Z1)+mu*(X1-Z1))^2;
Z3d:=X2*((X1+Z1)-mu*(X1-Z1))^2;
```

```
//Check modulo the quotient relations.
QR<X0,Z0,Y0,T0,X1,Z1,Y1,T1>:=RingOfFractions(quo<PR|
B*Y0^2*Z0^3-(X0^3*T0^2+A*X0^2*T0^2*Z0+X0*T0^2*Z0^2),
B*Y1^2*Z1^3-(X1^3*T1^2+A*X1^2*T1^2*Z1+X1*T1^2*Z1^2)
>);
QR!(B*Y2^2*Z2^3-(X2^3*T2^2+A*X2^2*T2^2*Z2+X2*T2^2*Z2^2));
QR!(B*Y3^2*Z3^3-(X3^3*T3^2+A*X3^2*T3^2*Z3+X3*T3^2*Z3^2));
QR!(X3/Z3-X3d/Z3d);
```

B Twisted Edwards differential addition with pre-computation

Bernstein and Lange introduced efficient differential addition formulas for Edwards curves in EFD [4] with links to the arithmetic of Kummer lines [18], and with the following note: "The following formulas are the outcome of a discussion in 2009 among Daniel J. Bernstein, David Kohel, and Tanja Lange. The core ideas were published by Pierrick Gaudry in 2006." (2006 Gaudry "Variants of the Montgomery form based on Theta functions").

This appendix adapts the same formulas to the present setup, with the same assumptions that $r^2 = d$ and $ry^2 = Y/T$. The letter 'T' is used for $(Y_i : T_i)$ in order to produce a simple verification script that uses the embedding of E in $\mathbb{P}^1 \times \mathbb{P}^1$, see [6]. The numbering in the subscripts are also modified to match the formatting of this paper. The formulas then read:

$$(Y_3:T_3) = \left(T_2((T_1 - Y_1) - \epsilon(T_1 + Y_1))^2 : Y_2((T_1 - Y_1) + \epsilon(T_1 + Y_1))^2\right)$$
(8)

where

$$\epsilon = \frac{(1-r)(T_0+Y_0)}{(1+r)(T_0-Y_0)}.$$

Computing $(Y_3 : T_3)$ in (8) takes only $3\mathbf{M}+2\mathbf{S}+4\mathbf{a}$, assuming that ϵ is precomputed. The following Magma [8] script verifies the differential addition formulas.

```
RF<a,d>:=RationalFunctionField(Rationals(),2);
P:=PolynomialRing(RF); K<r>:=quo<P|P.1^2-d/a>;
PR<X0,Z0,Y0,T0,X1,Z1,Y1,T1>:=PolynomialRing(K,8);
//((X2:Z2),(Y2:Z2)):=((X0:Z0),(Y0:Z0))-((X1:Z1),(Y1:Z1))
X2:=X0*Y1*T0*Z1-Y0*X1*Z0*T1; Z2:=Z0*T1*T0*Z1-d*X0*X1*Y0*Y1;
Y2:=Y0*Y1*Z0*Z1+a*X0*X1*T0*T1; T2:=Z0*T1*T0*Z1+d*X0*X1*Y0*Y1;
//((X3:Z3),(Y3:Z3)):=((X0:Z0),(Y0:Z0))+((X1:Z1),(Y1:Z1))
X3:=X0*Y1*T0*Z1+Y0*X1*Z0*T1; Z3:=Z0*T1*T0*Z1+d*X0*X1*Y0*Y1;
Y3:=Y0*Y1*Z0*Z1-a*X0*X1*T0*T1; T3:=Z0*T1*T0*Z1-d*X0*X1*Y0*Y1;
//Assumed input coordinates.
rYY0:=r*Y0^2; TT0:=T0^2; rYY1:=r*Y1^2; TT1:=T1^2; rYY2:=r*Y2^2; TT2:=T2
    ^2;
//Precomputation.
epsilon:=(1-r)/(1+r)*(TT0+rYY0)/(TT0-rYY0);
//Projective differential addition formulas with precomputation.
rYY3:= TT2*((TT1-rYY1)-epsilon*(TT1+rYY1))^2;
TT3:=rYY2*((TT1-rYY1)+epsilon*(TT1+rYY1))^2;
//Check modulo the quotient relations.
QR<X0,Z0,Y0,T0,X1,Z1,Y1,T1>:=RingOfFractions(quo<PR|
```

a*X0^2*T0^2+Y0^2*Z0^2-Z0^2*T0^2-d*X0^2*Y0^2, a*X1^2*T1^2+Y1^2*Z1^2-Z1^2*T1^2-d*X1^2*Y1^2 >); QR!(a*X3^2*T3^2+Y3^2*Z3^2-Z3^2*T3^2-d*X3^2*Y3^2); QR!(r*Y3^2/T3^2-rYY3/TT3);

C Extended Huff differential addition with pre-computation

The affine addition formulas for the extended Huff curve $H:y(1+ax^2)=cx(1+dy^2)$ are given in [33] as

$$(x_3, y_3) = (x_0, y_0) + (x_1, y_1) = \left(\frac{(x_0 + x_1)(1 - dy_0 y_1)}{(1 - ax_0 x_1)(1 + dy_0 y_1)}, \frac{(1 - ax_0 x_1)(y_0 + y_1)}{(1 + ax_0 x_1)(1 - dy_0 y_1)} \right)$$
(9)

Assuming that we have $(x_2, y_2) = (x_0, y_0) - (x_1, y_1)$, the affine addition formulas (9) can be rewritten as the following differential addition formulas

$$\left(x_3, y_3\right) = \left(\frac{1}{x_2} \cdot \frac{x_0^2 - x_1^2}{1 - a^2 x_0^2 x_1^2}, \frac{1}{y_2} \cdot \frac{y_0^2 - y_1^2}{1 - d^2 y_0^2 y_1^2}\right)$$
(10)

As in [33], we use

,

$$\mathcal{H} = \left\{ \left((X:Z), (Y:T) \right) \in \mathbb{P}^1 \times \mathbb{P}^1 : YT(Z^2 + aX^2) = cXZ(T^2 + dY^2) \right\},\$$

the embedding of H into $\mathbb{P}^1 \times \mathbb{P}^1$, for efficiency purposes. The affine differential addition formulas in (10) translates to the projective differential addition formulas (11), as follows:

$$\begin{pmatrix} (X_3:Z_3), (Y_3:T_3) \end{pmatrix} := \begin{pmatrix} (X_0:Z_0), (Y_0:T_0) \end{pmatrix} + \begin{pmatrix} (X_1:Z_1), (Y_1:T_1) \end{pmatrix} \\ = \begin{pmatrix} (Z_2(X_0^2 Z_1^2 - Z_0^2 X_1^2) : X_2(Z_0^2 Z_1^2 - a^2 X_0^2 X_1^2) \end{pmatrix}, \\ \begin{pmatrix} T_2(Y_0^2 T_1^2 - T_0^2 Y_1^2) : Y_2(T_0^2 T_1^2 - d^2 Y_0^2 Y_1^2) \end{pmatrix} \end{pmatrix} \\ = \begin{pmatrix} (Z_2(Z_1^2 - \kappa X_1^2) : X_2(\kappa Z_1^2 - a^2 X_1^2)), \\ \begin{pmatrix} T_2(T_1^2 - \lambda Y_1^2) : Y_2(\lambda T_1^2 - d^2 Y_1^2) \end{pmatrix} \end{pmatrix}$$
(11)

where $\kappa = Z_0^2/X_0^2$, $\lambda = T_0^2/Y_0^2$, $((X_2 : Z_2), (Y_2 : T_2)) = ((X_0 : Z_0), (Y_0 : T_0)) - ((X_1 : Z_1), (Y_1 : T_1))$, $X_0 \neq 0$, and $Y_0 \neq 0$. Computing $(X_3 : Z_3)$ in (11) takes only $4\mathbf{M}+2\mathbf{S}+1\mathbf{D}+2\mathbf{a}$, assuming that κ is precomputed. Analogus comments apply independently to $(Y_3 : T_3)$, assuming that λ is precomputed.

A better operation count can be achieved if $a = \pm 1$:

$$(X_3: Z_3) = \left(\left(Z_2 (X_0^2 Z_1^2 - Z_0^2 X_1^2) : X_2 (Z_0^2 Z_1^2 - X_0^2 X_1^2) \right) \right)$$

= $\left(Z_2 \left((X_1^2 - Z_1^2) - \kappa' (X_1^2 + Z_1^2) \right) : X_2 \left((X_1^2 - Z_1^2) + \kappa' (X_1^2 + Z_1^2) \right) \right)$
(12)

where

$$\kappa' = \frac{(X_0^2 - Z_0^2)}{(X_0^2 + Z_0^2)}.$$

Computing $(X_3 : Z_3)$ now takes only $3\mathbf{M}+2\mathbf{S}+4\mathbf{a}$, assuming that κ' is precomputed. Analogus comments apply independently to $(Y_3 : T_3)$, assuming that $d = \pm 1$ and $\lambda' = (Y_0^2 - T_0^2)/(Y_0^2 + T_0^2)$ is precomputed. The following Magma [8] script verifies the proposed differential addition formulas.

RF<a,c,d>:=RationalFunctionField(Rationals(),3); P:=PolynomialRing(RF); PR<X0,Z0,Y0,T0,X1,Z1,Y1,T1>:=PolynomialRing(RF,8);

```
//((X2:Z2), (Y2:Z2)):=((X0:Z0), (Y0:Z0))-((X1:Z1), (Y1:Z1))
X2:=(X0*Z1-Z0*X1)*(T0*T1+d*Y0*Y1); Z2:=(Z0*Z1+a*X0*X1)*(T0*T1-d*Y0*Y1);
Y2:=(Z0*Z1+a*X0*X1)*(Y0*T1-T0*Y1); T2:=(Z0*Z1-a*X0*X1)*(T0*T1+d*Y0*Y1);
//((X3:Z3), (Y3:Z3)):=((X0:Z0), (Y0:Z0))+((X1:Z1), (Y1:Z1))
X3:=(X0*Z1+Z0*X1)*(T0*T1-d*Y0*Y1); Z3:=(Z0*Z1-a*X0*X1)*(T0*T1+d*Y0*Y1);
Y3:=(Z0*Z1-a*X0*X1)*(Y0*T1+T0*Y1); T3:=(Z0*Z1+a*X0*X1)*(T0*T1-d*Y0*Y1);
```

//Projective differential addition formulas without precomputation.
X3d:=Z2*(X0^2*Z1^2-Z0^2*X1^2); Z3d:=X2*(Z0^2*Z1^2-a^2*X0^2*X1^2);
Y3d:=T2*(Y0^2*T1^2-T0^2*Y1^2); T3d:=Y2*(T0^2*T1^2-d^2*Y0^2*Y1^2);

```
//Check modulo the quotient relations.
QR<X0,Z0,Y0,T0,X1,Z1,Y1,T1>:=RingOfFractions(quo<PR|
Y0*T0*(Z0^2+a*X0^2)-c*X0*Z0*(T0^2+d*Y0^2),
Y1*T1*(Z1^2+a*X1^2)-c*X1*Z1*(T1^2+d*Y1^2)
>);
QR!(Y2*T2*(Z2^2+a*X2^2)-c*X2*Z2*(T2^2+d*Y2^2));
```

```
QR!(Y3*T3*(Z3^2+a*X3^2)-c*X3*Z3*(T3^2+d*Y3^2));
QR!(X3/Z3-X3d/Z3d);
QR!(Y3/T3-Y3d/T3d);
```

RF<c,d>:=RationalFunctionField(Rationals(),2); P:=PolynomialRing(RF); PR<X0,Z0,Y0,T0,X1,Z1,Y1,T1>:=PolynomialRing(RF,8);

```
//Assumption.
a:=1;
```

```
//((X2:Z2),(Y2:Z2)):=((X0:Z0),(Y0:Z0))-((X1:Z1),(Y1:Z1))
X2:=(X0*Z1-Z0*X1)*(T0*T1+d*Y0*Y1); Z2:=(Z0*Z1+X0*X1)*(T0*T1-d*Y0*Y1);
Y2:=(Z0*Z1+X0*X1)*(Y0*T1-T0*Y1); T2:=(Z0*Z1-X0*X1)*(T0*T1+d*Y0*Y1);
//((X3:Z3),(Y3:Z3)):=((X0:Z0),(Y0:Z0))+((X1:Z1),(Y1:Z1))
X3:=(X0*Z1+Z0*X1)*(T0*T1-d*Y0*Y1); Z3:=(Z0*Z1-X0*X1)*(T0*T1+d*Y0*Y1);
Y3:=(Z0*Z1-X0*X1)*(Y0*T1+T0*Y1); T3:=(Z0*Z1+X0*X1)*(T0*T1-d*Y0*Y1);
```

//Precomputation.
kappadash:=(X0^2-Z0^2)/(X0^2+Z0^2);

```
//Projective differential addition formulas with precomputation.
X3d:=Z2*((X1^2-Z1^2)-kappadash*(X1^2+Z1^2));
Z3d:=X2*((X1^2-Z1^2)+kappadash*(X1^2+Z1^2));
```

```
//Check modulo the quotient relations.
QR<X0,Z0,Y0,T0,X1,Z1,Y1,T1>:=RingOfFractions(quo<PR|
Y0*T0*(Z0^2+X0^2)-c*X0*Z0*(T0^2+d*Y0^2),
Y1*T1*(Z1^2+X1^2)-c*X1*Z1*(T1^2+d*Y1^2)
>);
QR!(Y2*T2*(Z2^2+X2^2)-c*X2*Z2*(T2^2+d*Y2^2));
QR!(Y3*T3*(Z3^2+X3^2)-c*X3*Z3*(T3^2+d*Y3^2));
QR!(X3/Z3-X3d/Z3d);
```

D Pre-computed constants

Tables 3 and 4 list the pre-computed values $\mu_i = \frac{u_{P_i}+1}{u_{P_i}-1}$ related to the multiples $P_i = 2^i P$ for the functions X25519 and X448, respectively.

D.1 X25519

Table 3. Pre-computed μ_i -values related to multiple points $2^i P \in E_{486662}(\mathbb{F}_{2^{255}-19})$, for $0 \le i \le 251$

i	μ_i -value
0	0x5FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
1	0x5142B2CF4B2488F4D5A9A5B075A5950F82EBEB2B4F566A346B8220F416AAFE96
2	0x4B5ACA80E36011A42A58D9183B56D0F489CF7820A0F99C416AAEBC750069680C
3	0x306912D0F42A9B4A1E45BB03FF67BC34F4A2E616E1642FD7329132348C29745D
4	0x174E251A68D5F222AA512FE82ABAB5CE04F50E13DFEEC82FFF886507E6AF7154
5	0xC59888A51E0482E379EEC98B4E86EAA1743E3370A2C02C5CF96700D82028898
6	0x2938218DA274F972C1C20D06231F7614ACAEF0D58E9FDC84FBCBF1D699B5D189
7	0x69C1627C690913A996FCC9EF4015C56BCC541C22387AC9C2F6AF49BEFF1D7F18
8	0x1AD7A7C829B37A79095E4B1A8EA2A229FDB8C4F29E087DE97A86FD2F4733DB0E
9	0x3DF7B4C84980ACBB19CA31BF2BB42F7467BEDDA6CCED2051342D89CAD17EA0C0
10	0x3D867C6EF247E668C215CDA00164F6D8B91E440366E3AB85A8C6444DC80AD883
11	0x7529D871B0675DDFA0FD9B95CC9F4F71FD2C4748EE0E5528C7DD582BCC3E658C
12	0x75E7FC8E9E4986032DCE6CCD4A7C3B621233011B91F3DA82B8F568B42D3CBD78
13	$0x 6 \texttt{EBE0DBB8C83B56AC249C1A72981E29BF1A8CA1F29FF7A452F4F13F1FCD0B6 \texttt{EC}}{}$
14	$0x2F0 \pm EF79A2C \pm 9289 \\ BDC41F68B59C979A65A2D \\ CD5BF93935F7114FA8D170 \\ BB2222$
15	0x3780AA4BEDFABB80F294B0C19CFEAC0D2930BC09EC49632242ECBF0C083C37CE
16	0x41B883C7621052F80CE931732DBFE15AE7CB4BEB2E5722C556C17D3E7CEAD929
17	0x1D45BF82322225AAC936E03CB4A9B2122936BE086EB1E351DBF75CA0C3D25350
18	0x20FFDB5A4D839581C5D73FBA6832B1FCE212201C304C9A72E81AB1036A024CC5
19	0x5166408EEE85FF499D4935467CAAF22E6C2B25CA8B164475A283D367BE5D0FAD
20	0x6A621892D5B0AB335259729241159B1CB3E433C67EF35CEF3C67BAA2FAB4E361
21	0x61AB3443F05C44BFEAA17B7762281DD1532AA10E1208923F20B74A387555CDCB
22	0x295A407A01A7858023758739F630A257131C6C1017E3CF7F257A6C422324DEF8
23	0x7D10C8E81B2B47002AFCFC92731BF83D19D775450C52FA5DF8C443246D5DA8D9
24	0x3196D36173E629755412EFB3CB7ED4BB993748867CA63957C8E0271F70BAA20B
25	0x256DBF2D04ECEC2A34CD942E11AF3CB47CC8CD2B395C848DE5BCAD141C7DFFC
26	0x5F1A87BB8C85B19B47F12E8F4E72C79FCAD4DD83C0850D10875AB7E94B0E667F
27	0x23A05A2F7D2C56272ADE09FE5CF77AEE12C7CE55188790657AE9D0B6437F51B8
28	0x183ABADD1013984574B4C4CEAB102F64F77498DD8AD0852D5908E128F17C169A
29	0x2701E635EE204514BE2F8F0CF8FC40D1D5C5EF9599386705B165BA8DAA92AAAC
30	0x60D9944CF708A3FA5B894FFF0B3F060EF223868764A8C1CE629FA80020156514
31	0x79B958150D0208CB6F7709594C7A07E1EBF16A633EE2CE63AEEA001A1C7A201F
32	0x131384427B3AAEECD88768E4904032D8E3A34EDFF3FDC84D24B55E5301D410E7
33	0x2FE2A94AD8A7FF93B8A2B5B250634FFD14DC4739ADB4C5298405E51286234F14
34	0x743629BDE8FB777EA4B561D6CF3D63052843CE40F0BB9918EC5C57EFE843FADD
35	0x1FC223E28DC88730A401760B882C797AED981828B101A651343EDD46BBAF738F

 Table 3. Continued from previous page

i	μ_i -value
36	0x23F7EED4437A687C91CCAC3D09E9239CB637F78F052C6FA448604E91FC0FBA0E
37	0x2959894FCAD81DF5FDBF177988BBC58629D641B63189D4A75173B1118D9BD800
38	0x40D158894A05DEE824E20B0134F92CFB4148995AB26992B9AEBC8EF3B4BBC899
39	0x2A608BD8945524D73DC0BF95AB8FFF5F26BAC77873187A7946B00B1185AF76F6
40	0x26218D7BC9D876B98E98A4F383BD11B27C4BC21C0388439C26449588BD446302
41	0x7DDE05734AFEB1FA5C217736FA2793743C2D29A86FB6606FE3081542997C178A
42	0x394FAF38DA245530E6053BF89595BF7AE4F7803E1980649C3BF10E3906D42BAB
43	0x48F222A81D3D6CF772670CE330AF596FFBC778E9CC6A113C7A8EFB58896928F4
44	0x7F89AE31DA8A7417BC21165C1FA14835A20ECC7213B5595F01FCE410D72CAA7
45	0x705EDB91A65333B6A5A5590A96D3A904D43E330FC631629305D2C2B4C6830FF9
46	0x621C0DA3DE544A6D8F4B71CEEDC4A40B3240CFCA9E0AAF5D048EE15E0BB9A5F7
47	0x2667FCFA7EC836358A72EB524F276394CE8375B010C9144592872836A08C4091
48	0x3780CEF5425DC89C25DD9AFA9F86FF34061B47FEEE7079A57F4C173345E8752A
49	0x321A967634FD9F22C78C5F1C5FA24B503E1EF379AC575ADA1A46035A513BB4E9
50	0x6D9284169B3B8484C189218075E914363DCA84D64C506FD0946707B8826E27FA
51	0x26EC449FBAC9FBC43EC7C86FA783EF4733EEC9A30C4F9B753A67E840383F2DDF
52	0x5A238AA0A5EFDCDD3E23B0D306FC121C81168CC762A3478C5C0F38CBA09B9E7D
53	0x5CA9938EC25BEBF988FBEA0B0ADCF99A36F8C77F7C8832B51BA26121C4EA43FF
54	0xF5034E49B9AF46619346A65D3224A081DBC4797C2CD893BD5436A5E51FCCDA0
55	0x2A75381EB6026946FB2FABC6A7341679E58B08FA867A4D88F23C3967A1E0B96E
56	0x25ABBBD8A660A4C47CF7036761E9338866B1F6C681F2B6DCC80A3BE4C19420AC
57	0x3EA988F75301A441F826842130F5AD28684950FC4A3CFFA991EA12BA14FD5198
58	0x75952B8C054E5CC7444D6D77B44599951746EB4A0530C3F3C978109A695F8C6F
59	0x//FEA4/D81A5D/1FD01469DF811D644B66C346202F264/D8A3/03F/915F4D6AA
60 C1	UX4B80BE3E9AFC3FECB6E91A28E8009BD66EEEB4B9CE2F881AC5E9529EF5/CA381
01 69	UX7654699F122D400EA920BDD7BAFFB24D1B4AF6B45369A49D7E3773C526AED265
02 62	0X01B00049320F/12CBEA430E1DBD005D5E0B0/4CE2952ED5EEF40C6E14FA94BC6
64	0x445DC4/50C1/F//0252529/5522DEF4DD00520D/D4D1R2D0R465F/505C6DDD1
04 65	0x4ADDE007C05DAF931EFEDEFDC055DD54ED0FE02175EA059FDD0454177C0955C
66 66	
67	0x49E507E17C2041E120599D050FD2D045A05D20D22C550DD07DE7D9D05E1R651
68	0x5005256173469D2CCC33FE0673ED26E3CBC1FE4465245EBEB284D1E39BE629641C
69	0x445B652DC916694FBD44CB805831C46FD9FC19527C87451F41F407444F18FC41
70	0x790A2D94437CF586A1823AAFE04C314A1EDC282DE11B9964CE92A3A7F2172315
71	0x2F7A89891BA319FEBF70903B204F51698922A5672284527671C447FB93F6E009
72	0x3E88363C14E9355B5253EC44E4323CD1ED9A4ED4427BDCF402A08EB577E2140C
73	0x3EE141579555C7AB2030BD12C93FC2A21AE0391610A23390AA66C14277110B8C
74	0x5682250F329F93D0674F1288F8E112173CCDD88607F17EFE9214DE3A6D6E7D41
75	0x47069B48ABA16B65930B1B5BFCC4E836E4CF86F1014DEBF6CF00B136D2E396E
76	0x221B1085368BDDB5CDFA50F54E00D01DB24DB91A97D0FB9E0D4CE4AB69B20793
77	0x61EFA662CBBE3D42EEE8A903E0663F0953C56563BD122F93E7E59468B1E3D8D2
78	0x29275B5D41D29B275DEADACEC9F049739BF80AD51435F2312CF8DDDDDE6EAB2A
79	0xA63BF2F1673BBC7CAE80DD9A1C420FDB9AAB96B054905A7CFDE0F0895EBF14F
80	0x6F3F7722C8F192F8CAC8351560D52517672A81E804822FAD092F6E11958FBC8C
81	0x68E122157B743D69894D1D855AE523592C7557A438FF9F0DF8BA90CCC2E894B7

 Table 3. Continued from previous page

82 0x3C66A115246DC5B22121154710C0A2CE3F2CDECD95798DB9D87E5570CFB919F3 83 0x6144735D946A4B1E9610C2EFD4078B67BA7143C36A280B16CBEDC562294ECB72 84 0x149DFD3C039E8876F93CB1000E10413C0211D88C2041D81B556F111ED75B3350 85 0x34FCE5E4379B60F5938906DBDD5BE863972050BBE3CD2C32600BBDF17197581 86 0x34FCE5E4379B60F5938906DBDD5BE863972050BBE3CD2C32600BBDF17197581 87 0x3EBAD76FB814D25F33DCABEDD2E131D3828DABC53441DF6575A8A4CD42D14D02 80 0x1F768AEAD23299945ADB16E76CEFCF25D12F7AA51690F5AD4906F566F70E10F 90 0x23B20656DE55E3EF5EFA966DE2A701D61B19B286E372CA73F2EC4094AEAEB5F 90 0x23B20565DE55E3EF5EFA966DE2A701D61B19D226E272C874FE301CA5279D58557 91 0x2A52FE223F2BFF56653220BA9DCF1D6707B2D4CE272C874FE301CA5279D58557 92 0x7B3052CB86A6EC6657B85E9C82D37445BBC7AC20FFB075948624EFB37CD8663D 93 0x185F8C2529781B0AAF4F6D052E1B003A2CB68043D28EDCA03482F0AD252E91E 94 0x4CC48BDDC297BCE563EC36E357F4C3A9407B2416853E9D6AA11DE5BD80CE0D6 95 0x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16667058E37A2FC1A52FFB8730E 96 0xA502D4CE4FFF0E0BA1039F9BD56019900EB12F4C384C05B019228468F5DE5D58 100 0x402A72AB454CC60D986314844006B14C6824BB51536493CA3D9DC7FEA15537 99 0x4502D4CE4FFF0E0BA1039F9BD56019900EB12F4
83 0x6144735D946A4B1E9610C2EFD4078B67BA7143C36A280B16CBEDC562294ECB72 84 0x149DFD3C039E8876F93CB1000E10413C0211DB8C2041D81B536F111ED75B3350 9x5FAFDA1A2E4B0835DAFDE43B1F13E0338866E15E93C837976D479DDE46B63155B 9x34FCE5E43F9B860F5938906DBD5E863972050BBE3CD2C23600BBDF17197581 87 0x34FCE5E43F9B860F5938906DBD5E863972050BBE3CD2C23600BBDF17197581 87 0x3EBAD76FB814D25F33DCABEDD2E131D3828DABC53441DF6575A8A4CD42D14D02 9x1F768AEAD23299945ADB16E76CEFCP25D12F7AA51690F5AD4906F566F70E10F 89 0x4C3BFF2EA6F66C23CE1C0B80D4EF486A3CD30628EC3AAFFD2B6CC77B6248FEBD 90 0x23B20565DE55E3EF5EEFA966DE2A701D61B19B286E372CA73F2EC4094AEAEB5F 91 0x2A52FE23F2BFF56A52C2B8A9DCF1b6707B2D4CE27C2874FE301CA5279D58557 92 0x7B3052CB86A6C6657B85E9C82D37445B8C7A2C0FFBD75948624EFB37CD8663D 93 0x1B578C2529781B0AAF4F6D052E1B003A2CB68043D28EDCA03482F0AD252E91E 94 0x4CC4B8DD0E297E0E563EC36E357F4C3A9407B2416853E9D6AA1DE5BB00CE0D6 95 0x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16E67058E37A2FC1A52FFB8730E 96 0x8A53CBC968A8089210227F1D69EC345693B3AF74E970FBA8C1606F663F4EA7 97 0x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537 90 0x6B11012E51D03344094BB6430E4B14C6824BB51536493CA3D99C7FEA15537 90
84 0x149DFD3C039E8876F93CB1000E10413C0211DB8C2041D81B536F111ED75B3350 85 0x5FAFDA1A2E4B0B35DAFDE43B1F13E038B66E15E93C837976D479DDE46B63155B 87 0x34FCE5E43F9B860F5938906DBDD5BE863972050BBE3CD2C23600BBDF17197581 87 0x3EBAD76FB814D25F33DCABEDD2E131D3828DABC53441DF6575A8A4CD42D14D02 80 0x1F768AEAD23299945ADB16E76CEFCF25D12F7AA51690F5AD4906F566F70E10F 90 0x4C3BFF2EA6F66C32C1C0B80D4EF486A3CD30628EC3AFFD2B6CC77B6248FEBD 90 0x23B20565DE55E3EF5EEFA966DE2A701D61B19B286E372CA73F2EC4094AEAEB5F 91 0x2A52FEE23F2BFF56A532CD8A9DCF1D6707B2D4CE27C2874FE301CA5279D58557 92 0x7E3052CB86A6EC6657B85E9C82D37445BBC7AC20FFBD75948624EFB37C0B663D 93 0x185F8C2529781B0AAF4F6D052E1B003A2CB68043D28EDCA03482F0AD255E91E 94 0x4C4B8DD0E297BCE563EC36E357F4C3A9407B2416853E9D6AA1DE5BB80CE0D6 95 0x72F4A0C4A0B9F09910F9A366CDD74EE11811F16E67058E37A2PC1A52FFB8730E 96 0x8A53CBC968A80892102E7F1D69EC345693B3AF74E970FBA8C16C06F663F4EA7 97 0x40D2A72AB454CC60B9886314844006B14C6324BB51536493CA3D9DC7FEA15537 90 0x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38CC505019228468F50E5D58 90 0x66A11D12EE51D03344094BE6330EA07149F246810265C4118726741897 90 0x460214E4FF00EBA1039F9DD56019900EB12F4C38C05B01
85 0x5FAFDA1A2E4B0B35DAFDE43B1F13E038B66E15E93C837976D479DDE46B63155B 86 0x34FCE5E43F9B860F5938906DBDD5BE863972050BBE3CD2C23600BBDF17197581 87 0x3EBAD76FB814D25F33DCABEDD2E131D328DABC53441DF6575A844CD42D14D02 88 0x1F768AEAD23299945ADB16E76CEFCF25D12F7AA51690F5AD4906F566F70E10F 89 0x4763BF72EA6F66C23CE1C0B80D4EF486A3CD30628EC3AAFFD2B6C77F6248FEBD 90 0x23B20565DE553EF5EEFA966DE2A701D61B19B286E372CA73F2EC4094AEAEB5F 91 0x2A52FE2372BFF56A532CD8A9DCF1D6707B2D4CE27C2874FE301CA5279D58557 92 0x7B3052CB86A6EC6657B85E9C82D37445BBC7AC20FFBD75948624EFB37CD8663D 93 0x185F8C2529781B0AAF4F6D052E1B003A2CB68043D28EDCA03482F0AD2525E91E 94 0x4CC4B8DD0E297BCE563EC36E357F4C3A9407B2416853E9D6AA41DE5BB80CD0D6 95 0x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16E67058E37A2FC1A52FFB8730E 96 0x4502A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537 97 0x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537 98 0x6E110D12EE51D03344094BB64330EA91B9D648DEBDA6575936A1B712570975 90 0x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38CC05B019228468F5DE5D58 100 0x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C189 101 0x705B3AB41355B444A497962066E604311256C
86 0x34FCE5E43F9B860F5938906DBDD5BE863972050BBE3CD2C23600BBDF17197581 87 0x3EBAD76FB814D25F33DCABEDD2E131D3828DABC53441DF6575A8A4CD42D14D02 88 0x1F768AEAD23299945ADB16E76CEFCF25D12F7AA51690F5AD4906F566F70E10F 89 0x4C3BFF2EA6F66C23CE1C0880D4EF486A3CD30628EC3AAFFD2B6CC77B6248FEBD 90 0x23B20565DE55E3F5EEFA966DE2A701D61B19B286E372CA73F2EC4094AEAEB5F 91 0x2A52FE23F2BFF56A532CD8A9DCF1D6707B2D4CE27C2874FE301CA5279D58557 92 0x7B3052CB86A6EC6657B85E9C82D37445BBC7AC20FFBD75948624EFB37CD8663D 93 0x185F8C2529781B0AAF4F6D052E1B003A2CB68043D28EDCA03482F0AD2525E91E 94 0x4CC448BDD0E297BCE563EC36E357F4C3A9407B2416853E9D6AA41DE5BB80CE0D6 95 0x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16E67058E37A2FC1A52FFB8730E 96 0x8A53CBC968A80892102E7F1D69EC345693B3AF74E970FBA8C16C06F663F4EA7 97 0x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537 90 0x4502D4C24FFF0E0BA1039F9DD56019900EB12F4C38Cc05D619228468F5DE5D58 100 0x705B3AAB41355B44A497962066E04311256C7419F2F6B14DF2A398CFB1A76B 101 0x705B3AAB41355B44A497962065F5A8800076BD622DDF0DB365EF536D797B1D8 103 0x9963437D36F1DA3B1F0B0B8ADC98676FDA4149DBAE5AE2392745C855780B5F 104 0x25F3CE26604249F6736D86C87CE8FCCCCB5F6
87 0x3EBAD76FB814D25F33DCABEDD2E131D3828DABC53441DF6575A8A4CD42D14D02 88 0x1F768AEAD23299945ADB16E76CEFCF25D12F7AA51690F5AD4906F566F70E10F 90 0x4C3BFF2EA6F66C23CE1C0B80D4EF486A3CD30628EC3AAFFD2B6CC77B6248FEBD 90 0x23B20565DE55E3EF5EEFA966DE2A701D61B19B286E372CA73F2EC4094AEAEB5F 91 0x2A52FE223F2BFF56A532CD8A9DCF1D6707B2D4CE27C2874FE301CA5279D58557 92 0x7B3052CB86A6EC6657B85E9C82D37445BBC7AC20FFB75948624EFB37CD8663D 93 0x185F8C2529781B0AAF4F6D052E1B003A2CB68043D28EDCA03482F0AD2525E91E 94 0x4CC48BDD0E297BCE563EC36E357F4C3A9407B2416853E9D6AA11DE5D80CED06 95 0x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16E67058E37A2FC1A52FFB8730E 96 0x8A53CBC968A80892102E7F1D69EC345693B3AF74E970FBA8C16C06F663F4EA7 97 0x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537 98 0x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38CC0B019228468F5DE5D58 101 0x705B3AAB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B 102 0x3777AA05C8E4CA4D3BBF33B0E0575A880076BD622DDF0D8365EF536D797B1D8 103 0x9963437D36F1DA3B1F0B00B8ADC9867CFDA4149DBAE5AE2392745C85578D8557 104 0x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CED7E824E90A5DC3853 105 0x1A39A3661206E5E5B5FBF5D03B973F9B62
88 0x1F768AEAD23299945ADB16E76CEFCF25D12F7AA51690F5AD4906F566F70E10F 89 0x4C3BFF2EA6F66C23CE1C0B80D4EF486A3CD30628EC3AAFFD2B6CC77B6248FEBD 90 0x23B20565DE55E3EF5EEFA966DE2A701D61B19B286E372CA73F2EC4094AEAEB5F 91 0x2A52FEE23F2BFF56A532CD8A9DCF1D6707B2D4CE27C2874FE301CA5279D58557 92 0x7B3052CB86A6EC6657B8E9C82D37445BBC7AC20FFBD75948624EFB37CD8663D 93 0x185F8C2529781B0AAF4F6D052E1B003A2CB68043D28EDCA03482F0AD252E91E 94 0x4CC4B8DD0E297BCE563EC36E357F4C3A9407B2416853E9D6AA41DE5BD80CE0D6 95 0x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16E67058E37A2FC1A52FFB8730E 96 0x8A53CBC968A80892102E7F1D69EC345693B3AF74E970FBA8C16C06F663F4EA7 97 0x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537 98 0x6BA1012EE51D03344094BB64330EA91B9D64BDEDA6575936A1B712570975 99 0x4502D4CE4FFF0E0BA1039F9D56019900EB12F4C38CC05B019228468F5DE5D58 100 0x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C189 101 0x705B3AAB41355B444A497962066E604311256C71419F2F6B14DF2A398CFB1A76B 102 0x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D8 103 0x9963437D36F1DA3B1F0B008BADC98676FDA4149DBAE5AE2392745C85578DE5F 104 0x625F3CE26604249F6736D86C87CE8FCCCCB5F
89 0x4C3BFF2EA6F66C23CE1C0B80D4EF486A3CD30628EC3AAFFD2B6CC77B6248FEBD 90 0x23B20565DE55E3EF5EEFA966DE2A701D61B19B286E372CA73F2EC4094AEAEB5F 91 0x2A52FEE23F2BFF56A532CD8A9DCF1D6707B2D4CE27C2874FE301CA5279D58557 92 0x7B3052CB86A6EC6657B85E9C82D37445BBC7AC20FFBD75948624EFB37CD8663D 93 0x185F8C2529781B0AAF4F6D052E1B003A2CB68043D28EDCA03482F0AD2525E91E 94 0x4CC4R8DD0E297ECE563EC36E357F4C3A9407B2416853E9D6AA41DE5BB80CE0D6 95 0x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16E67058E37A2FC1A52FFB8730E 96 0xBA53CBC968A80892102E7F1D69EC345693B3AF74E970FBA8C16C06F663F4EA7 97 0x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537 98 0x6BA10D12EE51D03344094B64330EA91B9D648DEEDA6575936A1B712570975 90 0x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C388CC05B019228468F5D5E5B5 100 0x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C189 101 0x705B3AAB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B 102 0x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D8 103 0x9963437D36F1DA3B1F0B00B8AD298676FDA4149DBAE5AE2392745C85578DE5F 104 0x452F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC3853 105 0x1A3A3DA36612065E85FBF5D03B973F9
90 0x23B20565DE55E3EF5EEFA966DE2A701D61B19B286E372CA73F2EC4094AEAEB5F 91 0x2A52FEE23F2BFF56A532CD8A9DCF1D6707B2D4CE27C2874FE301CA5279D58557 92 0x7B3052CB86A6EC6657B85E9C82D37445BBC7AC20FFBD75948624EFB37CD8663D 93 0x185F8C2529781B0AAF4F6D052E1B003A2CB68043D28EDCA03482F0AD2525E91E 94 0x4CC4B8DD0E297BCE563EC36E357F4C3A9407B2416853E9D6AA41DE5BD80CE0D6 95 0x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16E67058E37A2FC1A52FFB8730E 96 0x8A53CBC968A80892102E7F1D69EC345693B3AF74E970FBA8C16C06F663F4EA7 97 0x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537 98 0x6BA10D12EE51D03344094BB64330EA91B9D648DEBDA6575936A1B712570975 99 0x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38C05B019228468F5DE5D58 100 0x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C189 101 0x7705B3AB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B 102 0x3777AA05C8E4CAAD3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D8 103 0x9963437D36F1DA3B1F0B00B8AD298676FDA4149DBAE5AE2392745C85578DE5F 104 0x25573CE26604249F6736D86C87CE8FCCC26B5F6641F135CBD7E824E90A5DC3853 105 0x1A39A3661206E5EB5FF5D03B973F9B62065ABD43C2B74FD5C6D5251183264 106 0x13A3DA3661206E5EB5FF5D03B973F9B62
91 0x2A52FEE23F2BFF56A532CD8A9DCF1D6707B2D4CE27C2874FE301CA5279D58557 92 0x7B3052CB86A6EC6657B85E9C82D37445BBC7AC20FFBD75948624EFB37CD8663D 93 0x185F8C2529781B0AAF4F6D052E1B003A2CB68043D28EDCA03482F0AD2525E91E 94 0x4CC4B8DD0E297BCE563EC36E357F4C3A9407B2416853E9D6AA41DE5BD80CE0D6 95 0x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16E67058E37A2FC1A52FFB8730E 96 0xBA53CBC968A80892102E7F1D69EC345693B3AF74E970FBA8C16C06F663F4EA7 97 0x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537 98 0x6BA10D12EE51D03344094BB64330EA91B9D648DEBDA6575936A1B712570975 99 0x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38CC05B019228468F5DE5D58 100 0x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C189 101 0x705B3AAB41355B444A497962066E604311256C74192F6B14DF2A398CFB1A76B 102 0x3777AA05C84CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D8 103 0x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C855780B5F 104 0x625F3CE26604249F6736D86C87CE8FCCCB5F6641F135CBD7E824E90A5DC3853 105 0x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F 106 0x13A3DA3661206E5EB5FBF5D03B973F9B62065ABD43C2B74FD5C6D53251183264 107 0x7BA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E55
92 0x7B3052CB86A6EC6657B85E9C82D37445BBC7AC20FFBD75948624EFB37CD8663D 93 0x185F8C2529781B0AAF4F6D052E1B003A2CB68043D28EDCA03482F0AD2525E91E 94 0x4CC4B8DD0E297BCE563EC36E357F4C3A9407B2416853E9D6AA41DE5BD80CE0D6 95 0x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16E67058E37A2FC1A52FFB8730E 96 0xBA53CBC968A80892102E7F1D69EC345693B3AF74E970FBA8C16C06F663F4EA7 97 0x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537 98 0x6BA10D12EE51D03344094BB64330EA91B9D648DEBDA6575936A1B712570975 99 0x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38CC05B019228468F5DE5D58 100 0x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C189 101 0x705B3AAB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B 102 0x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D8 103 0x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C85578DB5F 104 0x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC3853 105 0x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F 106 0x13A3DA3661206E5EB5FBF5D03B973F9B62065ABD43C2B74FD5C6D53251183264 107 0x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E5 108 0x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D <t< td=""></t<>
93 0x185F8C2529781B0AAF4F6D052E1B003A2CB68043D28EDCA03482F0AD2525E91E 94 0x4CC4B8DD0E297BCE563EC36E357F4C3A9407B2416853E9D6AA41DE5BD80CE0D6 95 0x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16E67058E37A2FC1A52FFB8730E 96 0xBA53CBC968A80892102E7F1D69EC345693B3AF74E970FBA8C16C06F663F4EA7 97 0x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537 98 0x6BA10D12EE51D03344094BB64330EA91B9D648DEBDA6575936A1B712570975 99 0x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38CC05B019228468F5DE5D58 100 0x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEE2054106837C189 101 0x705B3AAB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B 102 0x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D8 103 0x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C85578DB5F 104 0x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC3853 105 0x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F 106 0x13A3DA3661206E5EB5FBF5D03B973F9B62065ABD43C2B74FD5C6D53251183264 107 0x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E5 108 0x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D 109 0x48014F600C5FBE8EB3321BD16DD8
94 0x4CC4B8DD0E297BCE563EC36E357F4C3A9407B2416853E9D6AA41DE5BD80CE0D6 95 0x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16E67058E37A2FC1A52FFB8730E 96 0xBA53CBC968A80892102E7F1D69EC345693B3AF74E970FBA8C16C06F663F4EA7 97 0x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537 98 0x6BA10D12EE51D03344094BB64330EA91B9D648DEEDA6575936A1B712570975 99 0x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38CC05B019228468F5DE5D58 100 0x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C189 101 0x705B3AAB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B 102 0x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D8 103 0x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C85578DB5F 104 0x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC3853 105 0x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F 106 0x13A3DA3661206E5EB5FBF5D03B973F9B62065ABD43C2B74FD5C6D53251183264 107 0x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E5 108 0x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D 109 0x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E 110 0x48C14F600C5FBE8EB3321BD16DD
950x72F4A0C4A0B9F09910F9A366CDDF4EE11811F16E67058E37A2FC1A52FFB8730E960xBA53CBC968A80892102E7F1D69EC345693B3AF74E970FBA8C16C06F663F4EA7970x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537980x6BA10D12EE51D03344094BB64330EA91B9D648DEBDA6575936A1B712570975990x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38CC05B019228468F5DE5D581000x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C1891010x705B3AAB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B1020x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D81030x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C85578DB5F1040x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC38531050x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F1060x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x48C14F600C5FBE8EB3321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x2288C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
960xBA53CBC968A80892102E7F1D69EC345693B3AF74E970FBA8C16C06F663F4EA7970x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537980x6BA10D12EE51D03344094BB64330EA91B9D648DEBDA6575936A1B712570975990x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38CC05B019228468F5DE5D581000x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C1891010x705B3AAB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B1020x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D81030x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C85578DB5F1040x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC38531050x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F1060x13A3DA3661206E5EB5FB5D03B973F9B62065ABD43C2B74FD5C6D532511832641070x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205DPE9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A1110x48C14F600C5FBE8EB3321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x2228C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
970x40D2A72AB454CC60B9886314844006B14C6824BB51536493CA3D9DC7FEA15537980x6BA10D12EE51D03344094BB64330EA91B9D648DEBDA6575936A1B712570975990x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38CC05B019228468F5DE5D581000x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C1891010x705B3AAB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B1020x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D81030x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C85578DB5F1040x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC38531050x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F1060x13A3DA3661206E5EB5FBF5D03B973F9B62065ABD43C2B74FD5C6D532511832641070x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A1110x48C14F600C5FBE8EB3321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x2228C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
980x6BA10D12EE51D03344094BB64330EA91B9D648DEBDA6575936A1B712570975990x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38CC05B019228468F5DE5D581000x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C1891010x705B3AAB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B1020x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D81030x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C85578DB5F1040x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC38531050x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F1060x13A3DA3661206E5EB5FBF5D03B973F9B62065ABD43C2B74FD5C6D532511832641070x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x48C14F600C5FBE8EB3321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x2228C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
990x4502D4CE4FFF0E0BA1039F9DD56019900EB12F4C38CC05B019228468F5DE5D581000x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C1891010x705B3AAB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B1020x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D81030x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C85578DB5F1040x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC38531050x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F1060x13A3DA3661206E5EB5FBF5D03B973F9B62065ABD43C2B74FD5C6D532511832641070x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A1110x48C14F600C5FBE8EB3321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
1000x6E15C6114B502EF040727064C416D74FD0F6544C6DD3B93CEB2054106837C1891010x705B3AAB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B1020x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D81030x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C85578DB5F1040x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC38531050x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F1060x13A3DA3661206E5EB5FBF5D03B973F9B62065ABD43C2B74FD5C6D532511832641070x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x470E9DBC88D5164AB0032C34B20DC06D72A0FFACC6F3A553A5379730B0F6C05A1110x48C14F600C5FBE8EB321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
1010x705B3AAB41355B444A497962066E604311256C7419F2F6B14DF2A398CFB1A76B1020x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D81030x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C85578DB5F1040x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC38531050x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F1060x13A3DA3661206E5EB5FB55D03B973F9B62065ABD43C2B74FD5C6D532511832641070x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A1110x48C14F600C5FBE8EB321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
1020x3777AA05C8E4CA4D3BBF33B0E0575A8800076BD622DDF0DB365EF536D797B1D81030x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C85578DB5F1040x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC38531050x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F1060x13A3DA3661206E5EB5FB5D03B973F9B62065ABD43C2B74FD5C6D532511832641070x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A1110x48C14F600C5FBE8EB321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
1030x9963437D36F1DA3B1F0B00B8ADC98676FDA4149DBAE5AE2392745C85578DB5F1040x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC38531050x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F1060x13A3DA3661206E5EB5FBF5D03B973F9B62065ABD43C2B74FD5C6D532511832641070x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A1110x48C14F600C5FBE8EB321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
1040x625F3CE26604249F6736D86C87CE8FCCCCB5F6641F135CBD7E824E90A5DC38531050x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F1060x13A3DA3661206E5E85FBF5D03B973F9B62065ABD43C2B74FD5C6D532511832641070x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A1110x48C14F600C5FBE8EB321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
1050x1A394360C7E23AC335292E9C764B63050C05E70A2E351469AF8AC8059502F63F1060x13A3DA3661206E5EB5FBF5D03B973F9B62065ABD43C2B74FD5C6D532511832641070x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A1110x48C14F600C5FBE8EB3321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
1060x13A3DA3661206E5EB5FBF5D03B973F9B62065ABD43C2B74FD5C6D532511832641070x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A1110x48C14F600C5FBE8EB3321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
1070x7FBA1F495C8379872088CE1570033C6818E30912205016C5C6BD5837725D94E51080x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D1090x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E1100x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A1110x48C14F600C5FBE8EB3321BD16DD80B43B65466711F6C81A2B19CF10CA237C0471120x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C8031130x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D1140x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
108 0x6691FF72C878E33CE4F9B49AD2FAB3511735157B34023FC55A8C7423F2F9079D 109 0x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E 110 0x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A 111 0x48C14F600C5FBE8EB3321BD16DD80B43B65466711F6C81A2B19CF10CA237C047 112 0x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C803 113 0x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D 114 0x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
109 0x49B92B9D975C743EB86205D9E9E5BDAF8DD4BF1D8956CF4122C2ADEDC5EFF3E 110 0x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A 111 0x48C14F600C5FBE8EB3321BD16DD80B43B65466711F6C81A2B19CF10CA237C047 112 0x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C803 113 0x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D 114 0x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
110 0x470E9DBC88D5164AB0032C34B20DCD6D72A0FFACC6F3A553A5379730B0F6C05A 111 0x48C14F600C5FBE8EB3321BD16DD80B43B65466711F6C81A2B19CF10CA237C047 112 0x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C803 113 0x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D 114 0x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
111 0x48C14F600C5FBE8EB3321BD16DD80B43B65466711F6C81A2B19CF10CA237C047 112 0x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C803 113 0x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D 114 0x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
112 0x31602627C3C9BC10D45F19B0B3128395B66E3904A4FA7DA666451C264AA6C803 113 0x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D 114 0x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
113 0x566D4FC14730C50900F52E3F67280294EB20C46756C717F73120DC4832E4E10D 114 0x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
114 0x22E8C3843F69CEA7216730FBA68D6095C1E926DC7159547A7E3A5D40FD837206
115 0x///3C12F89F1F3F35534C26AD6BA2365B6E4350E84D1581633D0/4E8930E4B2B
116 0x3A81907FA093C291508E862F121692FC5B9897A81999CE568CBA404DA57962AA
117 UX32A5C1D5CB09A44C5B9D151C9F1F4E8910D8CC10673FC5030DDED0FF4725A510
118 UX25E496C722422236EEE595CE8A9DF2E55F85EE7CC1B485DB1E0AA442E90541FB
119 UXE878A01A0855450E4880E11D761E35234E75A7ED2A433885EDF3046CD0FE5E9
120 UX67A9958011E417949EA37A487AE80D672B4D1843C7DF899ABA493C77E021BB04
120 0x100000001000070000000000000000000000
121 0x101 20052002002005050000005050550001 R00501 26012004002
126 0x1100101111010010010001000100100000000
127 0x2CFE53DEA02E39E897B6D92E39BB786832B4E9701FBE3FFA72691BA8B3E1E615

 Table 3. Continued from previous page

i	μ_i -value
128	0x269BB0360A84F8A097134556A9832D0627FF66C910E29831687392CD85CD52B0
129	0x5CD6ABC198A9D9E07AEE91E8C6EFA4723734A48C9B597D1B706E55457643F85C
130	0x7215C371746BA8C8904659BB686E3772D8C6EB893402E1380E04DE06CB3CE41A
131	0x5C847085619A26B9266FD5809208F2949514B7516394F2C5FD12A97EEAE4A2D9
132	0x63B3D2D69E5E9E110BB47692D3BE4673C905B934A2ED25452985410FED694EA
133	0x117C554FC4F45B7C2B1641917B307614EFB6C4AE10F41891472726EEDDA57DEB
134	0x1015E87487D225EAD7E803F4171B282701DBD82050017939C07CF3118F9D8812
135	0x6B1640FA6E37524A0B94D43D1C9CF45750DB91C294A7BE2DC58DE3FED23ACC4D
136	0x4B38395F3FFDFBCFB8C46F760777A296200B1C59FA4D3151692F346C5FDA0D09
137	0x50FDF64E9CDA043287AD8F263B78B98260D50582BEC8ABA618D25E00BE54D671
138	0x15473C9BF03101C70EEBBA9242D9DE71EF1E9B0EF2A3133B90F567AAC578DCF0
139	0x7CF931C1FF733F0B2DA0B9615348BA1FB678E7666E6F078E7C77E8AE56B78095
140	0x35D90C991143BB4CC13AEEA5F91CB2C0E9708CF42B87D73226B357F50A0A366C
141	0x1FBD9ED379561F243875A8C473B38C31659E58451972D25147C1C404A9A0D9DC
142	0x6135FA4954B72F2772E73B5D8C4045957EF8DFE3CD2A2DCA11FABC6FD41EC28D
143	0x5E9BF806CA477EEBBE3350ED5AC3F9293F55698C1F095D88CCFC32A2DE24B69C
144	0x6632A1EDE5623506D1AFCFB35A6393F15376F63565E1F9F4E9CE8FB63C309F68
145	0x5D588B60A38CA72A66305A1249ECC3C756CB3281DF04CB1F0B7D6C390C2DED4C
146	0x1AAF1AF517C36731EC219C48FBD2160486EEB44B3C8A3EECA6ECBF78E8E5F42D
147	0x76CFA1CE1124F26B8027F51FFBFF94A6208280622B1E2ADBC306A2836769BDE7
148	0x253B7F082128A274DBBC207F531561AF377C4D58F8C29C318EB00562422ABB6
149	0x356F97E13EFAE57652D17436309D42534860E1ABD64628A93D1F091CB62C17E0
150	0x1D34AE93032885B80C776128BED92C983E6B45BB1DD878CCD351E11AA150535B
151	0xF81A0290654124A66124C6F97BDA770985348C33C9CE6CE4BA0488CA85BA4C3
152	0x52A148199FAEF26BFF08D03F93D8C20A811009FD18AF9A2D9ED09CA6569B86FD
153	0x7AA1F15A1C0D549C0D987F041A359704205801873961A703E03F9DC2D8D1B73
154	0xA4556E9E13D95A2808A7A6399897B596D0A024F934E4239DFD46CE08CD27224
155	0x77DB28D63940F7215DA643CB4BF300359B0E8548FE7751B8D21A991FE9C13045
156	0x340D053E216E4CB59EC3E7787D1DCF745229419AE8C411EBFC5EEB614ADC9011
157	0xCF1C37134273A4C140A69245CA575EDC0FAEC2871A10A94CAC7AF39B48DF2B4
158	0x7D9A62742EEB657DA1E806BDAACBE74F57EAEE7CCB4930B0C8EE306AC224B8A5
159	0x58654FEF9D2E0412E6B9F383EF0D7105885CCA1FDDB36E2E9EB6B6EF546C4830
160	0x30684DEA602F408D497D723F802E88E1942DE5DF9B31816EA905C4FFBE0E8E26
161	0x28C3C9CF53B98981B30B8E049D77CA15AEFB6E6F5B151DC421E5A278A3E6CB34
162	UX4A/F11464EB5642F/468C/423A5432580D31/CA89/0222/428/FB/21556CDD2A
163	0x604003575F39F5EB24C515ECF87C1A88D865986EA92129A1A237A4774D193AA6
104	UX/4FCD9104/E21901026DF551DBB856202B98CEDE465E4B/84/B9F1895/0A9B2/
100	0X0/FE5456BE612DBE5FF1CBBE5AF6CF440CB00/4E4/8519F015E2A90A25C1BFA5
167	VX402F144F1F01VU4E41737567F000E67765004F62F32203767U130F64F840F0580
168	0x1E95D0F1F0910F01DCD1F455D049507C5D0AE1929E70C990F0210201D47F0254
160	
170	0x273B24FF3B367D75130334C001F6669788B4C0D38CD48194600A2F8DD7DC6947
171	0x4B34E7D103DEE548D1726FDFC8B23D472815144494DF49D5C6F8F66431B3R04
172	0x74621888FEE66574ACC63CA34B8EC145FE5C5CF186E3C61CC6256F19CF4B9D7F
173	0x694283A9DCA7502ED6A50EB5EC2647BEF0BF8E3263A962E956F409645290A1F

 Table 3. Continued from previous page

i	μ_i -value
174	0x63005E2C19B7D63A4F002AEE13397EAB42B7C8EA09FC5353769B963643A2DCD1
175	0xB696063A1AA89EEACE09390C537C5E1966C7F6DB12A99B7CA6736DA63023BEA
176	0x1A5FB4C3E18F9D97A6A5A93D5B717F71432A9F9F938C8BE8EBB03E97288C56E5
177	0xA10263C8AC27B588DAFE4D867C46A20EE202A43FC02C4A01C94E7AD1C60CDCE
178	0x6F151B6D9BBB1E91CE8472ACC212C71A856AF87BBE9277C5D0DEA9DFE4432A4A
179	0x1F81B702D2770C4237AE66A6FD4609CC7D211CB7FBF8FAEC26776C527CEED56A
180	0x29571073C9A2D41EC964F8EB17BEB4F8E1DD89FE29744E9D2FB0B057EAC58392
181	0x78CD6EC4199A01FA33EB2D75FCFD3C62DF6369B65B22830A948A18981C0E254
182	0x7F69EA9008689FC268C4E8338431C97832142B78E2C74C524A584A41AD900D2F
183	0x4DE71B7454CC29D28CD7D5FA25359E94FD78072D04A832FD52F2C81E46A38265
184	0x44E6BE345122803C81004B71E33CC1910AAD37DFDBC09C3A42EB60AD1EDA6AC9
185	0x21EDB518DE701AEE49C8C4281AF60C29F5D57C32150DB00803FE8388BA1920DB
186	0x5EC3AD712B92835824DD5248CE520A83A4460D99C166D7B87FB63E418F06DC99
187	0x498194C0FC620ABB12BC8D6915783712A4F64A77D82570E315022A5FBD17930F
188	0x56307860B2E20989E4D5C81AB24A5484785C6BD9193E21F038A2D9D255686C82
189	0x59F2F014979983EF1E60C24598C71FFF22F1834643350131429D55F78B4D74C4
190	0x2CEAFD4E5390CDE7B346E15274491C3B3E22A854D636A18E46A47D56EB494A44
191	0x61A24FE0E56192C4CBDAB89085D304C34B9074BB50818E23BA8A8538BE0D6675
192	0x2D668E097F3C9766E6B4153ACAFCDD69DD7D8C35A567E4CACB7615E6DB525BCB
193	0x90D52BEB7C3F7AEFBC83606492FD1E55D9F4E527CD4B967A57E7E265CE55EF0
194	0 x7EF04287126F15CCA1C49548E2C555041F266A2599DA44C009B9515A1E7B4D7C
195	0x1FD96EA6BF5CF788884D6236A5DF32918B4AB9EEC4E0277BFED1659DBD30EF15
196	0x7C22D676DBAD85D89FE113BF285A2CD561D849507E6052C142A161981F190D9A
197	0x5895319213D9BF64CD40A9C2B09001504C05B2ECE996F5A582E770ED2BFBD27D
198	0x537C659CCFA32D62CCE30BAA48205BF0B50C491258E2188CE7CC5D703FEA2E08
199	0x725F71C40B51957504D29B8E56A8D1B0FE9BED1FA4D6ACA437B6623A98CFC088
200	0x585F1974034D6C17883ADA83A6A1652C8367B14469DDC18B28C7F89CD0339CE6
201	0x3E035C9DF0954635D88C9DA6B4C0526AE63B4863E7C3521789CFB266F1B19188
202	0x2D8C2CC811E7F6904B5C999B151D671CDD684532E4CFF40DDD9D5412FB45DE9D
203	0x2C018DC527356B3033979624F0E917BEA464C5DF464AAF407F54BE1D90055D40
204	0x747201618D08E5A94EC42C4EF9B59F173FF3D96691652D3A5415024E330B3D4
205	0x59810BC09A02F7EB9C4DD40051E227FF66415F2FCFA661194D6CA48ACA411C53
206	0x5E8CE0A71E9D112F32025C9B93B359EA441C5AB99FFEF68E2A7EB171B3DC101D
207	0x18C8DF11A83103BA345EAD5E972D091ED271BA752F095D55BFCCCB92429503FD
208	0x6E42E400C5808E0DB8CAC52D56C52E0BC5D1F4CB6660E37E90CD949A9AED0F4C
209	0X51F27F054C09351B189DC8C9D683A51D0C4F1F0BE39ECDCAA3B46966EEAEFD23
210	0x54/DC829A206D/3DC8CCF/9E555CB8E858/EA95BB3DF1C964C48/CCD2A320682
211	0x228F4660E2486E1D28535B6F91463B4DE96D54732000D4C6B822A6CD80C39B06
212	0x4322E1A/535CD2BB/9952A008221E/388CD8330045EBCA6E98/99538DE8D3ABF
215	VX3EU302UVAE3F / 200UUVE2UF4U320VF4U2U10E4U84F3F5EU/B114U11819U1801U
214	UX43DDF0UUDFF3UUU3F23F(1U3430BU2U2(UU3U30U2(4U1AFBUU402B18B8B2B4EE
210 916	0x42D0000730C0/9013E0074C004233173B0/14DR6F03D3563B0AD1/0/A039E9DF
$210 \\ 217$	0x03x03x00x21 ±E30xr010243x4r0013121608303200r1r000103011rE3190100478300 0x0463D48803805371DF4C04F0131446083032FC30F7F1F40047843F4320731C0
211 918	
210	0x498043196014204849896853D7470844254D50688FF595944328680761F451F48
1 <u>1</u> 10	0. 100000 1000 10000000 A 00 1000001 10000 A 020000 OIE401EAD

 Table 3. Continued from previous page

i	μ_i -value
220	0x538B4CD66A5D4EDA05C90B4D43ADD0D78A5318DB7100FE969565B9E12F552C42
221	0x25FFFAF6C2ED141908A36EB5FD4B9550592C9AF26F618045F4E94FC3E89F039F
222	0x5129CECCEB64B773DDEB34A061615D99EEECBFB4B1D5476B34434459CC79D354
223	0x715F42B546F06A97D2E2FCE306BEDAD5772F9C7CF14C0B3BEE43215894993520
224	0x487C02354EDD9041680BD77C73EDAD2E0DA17115A49741A9434ECDCEDA5B5F1A
225	0x7F650B73176C444DF3A68BD48A2A5A056A32AA3E857E302B8EFEFF3A70ED9C4
226	0x1CA941E7AC9FF5C456D90319C9F9496479E053C18B09FB36E38B9B1626E0CCB1
227	0x3391F78264D5AD8695DFDA14CABB437D8488CF3282B3330549C4DF29162FA0BB
228	0x27FEDAFAA54BB592E9834262D13921EDD58A58D73259A946729AE06AE2B5095D
229	0x78CEB3EF3F6DD938802C8ECD5D7513FD5F025742499EE260A99DC5B829AD48BB
230	0x5064B164EC1AB4C89436D11A0537CFE77B9EDB44828CDDA3C342F44F8A135D94
231	0x5344467A481130441B930D7BDFA1BB341F31EA3ED90D25FC7020ECCFD37EB2FC
232	0x2A77A55284DD40D82348698AC8FC4F00E385DC1A50114CC870073170F25E6DFB
233	0x785768EC9300BDAF1428D01E33BF1ED3C235DF96DDDFD6E4FE06AFE0C98C6CE4
234	0x4804A82227A557BC645B426F3D1D58AC61BDB8BFE5CE8B809702E57A91DEB63B
235	0x4172F257D4DE63E2C39C9EC3F9E1C29368D6501A4B3A69358E57048AB44D2601
236	0x16F649228FDFD51F2C34BB6090B7D90D040D3017418F2391D368B450330C6401
237	0x313034806C7FFD0F594AAA68E77A36CDE28CCF91CDC11E72BEA6818E2B928EF5
238	0x56F68341D797B21C26CCFF352B37EC719A3B464018E95128A9D27AC2249BD65
239	0x7046C76D4DAE743BD3E7222C6EAF5A60FABDBCB6553AFE155E79D6757EFD2327
240	0x3ED8E9800B218E8EC103053A302BDCBB19992518574E1496660BE872B18D4A55
241	0x6065510FE2D0FE3498A35FBE391A7793EFE9FB684633C0837B0B9239FA75E03E
242	0x526028809372DE352C43ECEA0107C1DDB4584548DA87E52755CB668548ABAD0C
243	0x5FF20E3482B29AB613F6B105B5CF709B5BEE1A4D017E98DB3415C56AF9213B1F
244	0x250386B124FFC207899FC38FC4B5C515FC7D73CA3A70E2060AA29C75CC2E6C90
245	0x46B23975EB018FC716694FC58F06D6C19913149DD6DE60CE54EA28D5AE3D2B56
246	0x7FA20801A0806968ABEEE5B52FBD3ADB5D92475A8F7253DE470A6A0FB4B7B4E2
247	0x4B065A251D3A2DD20FB4CD8DF212744EB3E840C12F4660C376F3FAF19F7714D2
248	0x3147C0E50E5F6422A2DD242EB09AF7596ADF39DF882C9CB15CEBDE383D77CD4A
249	0x4BDEE0C45061F8BAE640CE4D13E5DA08F8D13479C33FC962164CA5101D1350DB
250	0x2DFFB2AB1D70710E58942F6BB2A1C00B5514D7B6437FD98AD7C46DC1A4EDB1C9
251	0x2FBBA1CD0126E8C980697F95E2937E3A8EBCBA8B7806167CCDFCF2FC18B6D68

D.2 X448

Table 4. Pre-computed μ_i -values related to multiple points $2^i P \in E_{156326}(\mathbb{F}_{2^{448}-2^{224}-1})$, for $0 \le i \le 445$

i	μ_i -value
0	0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0	000000000000000000000000000000000000000
1	0x289DED68857A5E30EBB712BCE84346051D99E5E7FCD7DCD2948F8EEEFFD75A06
	00968505A7A501AE3A811ABA3408956CE924A6860DAAFA37
2	0xE8C3D58719E2C57618E1E49266F480A4233926EEA48FD46C76A38091AE1B1ABF
2	C1611B9A46403C9EF71E2A5A76A4E73680624A322B087DF1
3	0x39F9D871F2C563B041A9973CA99EFDBD897BFFF422DDCB61C2F98AD74409F640
0	7D4CE09266E2AD5DFFCD3B2BDFBED3650D893F207F0C9FB
4	0xAA586154CC43DF406809EA883E5FCDEA160F66EA17F487EBD8A157DA8EC0FBA9
т	44F0D0EF4D18ABFA671C214C37CECBE0A6842C81F797354C
5	0xB91E4BBE2685992A9D345859AFE86E4D14D109C127156DE9BF025DF585765283
0	9608DD9325CB29E6B35EDD018549D13FA737635ED759E78D
6	0x6701BE70B8F0788642EDB79318FDAD881F2E8D29E0EE88074A2E83C5099EB1D1
0	8716C522F4FB61BDC63C938F0185DF8E820D5618E294CE8D
7	0x1E4FCB85845F554B35CB3DEE0CAF6C30A3BF9A5963EED63730B6430A96DE831D
•	6ABF7CA7D2D7AEA316688030DB2BBB27DA2335C7942D62DF
8	0xC7EB67FE64EAEC6181E3F0BF93D72446E84A06EFADF41AD0EC6B3CEEC3674349
-	A54336CD94B767DEF00A47FBEBF170C1870DA9A48968049D
9	0x5ABBEB7A4CE7AEC8E49692DB6516C057ABA6893F4EAB543831DA7DA7437293B4
	A47501A6C9DB789404C3CFA18F4B4684FE9BFD2CCF794595
10	Ux1DA0AB47683D56F8D36C8D096063E83076FD42430D38935ABCFC837E09D17108
	156592A/59C9E5/4F5EBA15522CA2120186AE09/C386FEBE
11	UX609C84662AE4BDAC9439F3//8166A65B1E94B5/52C006592E8C/EA11F64264/B
	98CDDF1939091AB198E18F4FFCE669E3388F88ACB11C5038
12	
13	0340B1EDD3E408DEDD44DC46B466C66E43E0E0044B4B04E2
	334051EDD51400000D440CR00R00C00FR5F05034RDR00R72 0 $_{2}$ 058D00013D107EBD7EEC7DC06CDECD2EB5A0E718CDD542021117E10E15A706AF
14	0560°ED0001051011551E10150005005005150551110055051100550511005542521111115115815081
	0x4B8F0CD2CF607FF316455B101667D501FF4741F386BDC4FC9F7FF08605794978
15	7B1AF64575EE1619A3B7E1479C136DD1F7F284AFAE72763B
	0x34823BCF1F22AC41F23337889C8BC06B09E57DB74A6BF5625F779A2A6DB73AA8
16	BF98984D430E68E04A9B7744B748B9681491740F4A99074A
17	0x632B706460B9505D788618F6F60FE4782960B3FCEE1930D99D5B2A207373194D
	BB53D26ED930FBB9DE9BBE4A42196B1DADC2E324278C300
10	0x17FBFAB5331115915717035454EFD130389361419259177C62F7FB48ED37AE2B
18	7786F7054A6AE7A240D8DCC98F425C539F5D9C2FDF34F544
10	0x5D1A794E4EE8F6B4F04552DDB65940AF330CA44E2682B0DF87079EB47883EEE0
19	B1C0E3029AEECCB7F7191889A8296ACE9472F19CB4D4BB29
20	0xCC2C936F379647A6641D63D49E16D2E5C97A29AFF48D06992522DA3A11EB5CE5
	9AE78CB060FDDD86571CF02B5BAB1FBCB1754F6B4C4D3327

 Table 4. Continued from previous page

i	μ_i -value
21	0xDE2CE732B569B245426964E8FF76730639FC854E9370785DF91EADC97233D571
	2655A0BAA7C44EBC8CB4C754766385235891F275867494C1
22	0x11E7E84EA5CCFB8C33E6961B4F3FC8B39302C2DCEC18E2B700701AD65C17B0DB
	DF11F592ADDB07929CE375242EEE603A0EE9324933D816DE
23	0x981E66C180F83B2C08373E8E29733A5B102B220B03C29DDE062BFB9F9B9D082C
	B2505438A2F98EF877AE1D029A4E1A6A7C0DDFF852747A05
0.4	0x2CC87481B851636C41E9D3B28355C2F5F5B3A26AB6B6C9ADC24B766BD6606F53
24	40AF5B844A0CF1FE92E7D687060CC081412B8C63CD3ED6D8
05	0xED8B716980708E992D8746807D544B4CC2051838AC92B4F81C1D660190879ED5
25	6D2880963311B6400C7528622DC96A2CA858B007EE1CAFB2
00	0xA9547972BF92BF1231500F77380677391BEDFD07B107292FF4E7C23677789C1D
26	CBA03AC78FB3307E7997A6465ADA420FFF8E7536716BA737
07	0x5F703510ADFF5F9273CD596D8E6B7633631CB2806D5422ECB7C4CA6FAE51AC85
27	D38854AB12F6120C6E4ABC946D64FDED2D46801A6B464DBD
00	0x75E649151C7618785EA69A356565AB07C0D33BBDA14AE8D5ECEDAE2992B8E6FC
28	C3B3427AB0FE0B2EE80C5A6569F0D929FA634304C8DE84B3
20	0xE752E722969244D9BA9F76963FE86FBB3F0D5E6575962238BDF8E7053C144BC0
29	F029C05D989F27AA9D6A94A85D833A646811B8C3A992B345
20	0x1CB1E939830626C74705E81B9CD8A6ACCB4683081FCB6489835036117C526DE7
30	3E7AA2C308724600A09D4F7D678713F4DC7DDF479095A3F4
91	0x6B40E6B930122804B02094C97F101A854B45C18885A60DF75F224603840E2827
51	A99BAC1624688BF5A2524F4F959685F1A39C30BF42C8E811
39	0x7E15A4BCA7A636F4664EF244432AB319BC22081F2E60CD39809B9D61EB62F579
02	2E9C0F7A26D953CC3AD530291C9BFD768D81DB42B6571BAC
33	0x28A44C0F23163CBE96BE6EAF7D59D8FD3D25781E94DE8A2CE4E1D891F8554490
00	063499C54EDE0F82E68D6084A076EE1673C378FFDE8A90C1
34	0xE2EE32134BD4603379379C4075F625C4CD50B7AE9E268BDC23D4F5F515235096
-	F13BB371FC0EA47F51AA9C500D5AB88924F4B603573511BA
35	0xE93BE8D103787F0264FA2B48BA89A0A391BA2BF5874EDAA32C4615542E82CF6F
	9C5CD9B673F4B20354165A1E4C5870EAB32368F05956B843
36	0x871D3C28BCA0B73B7FD27B527125946FCFE6380EA70442FF2400F604E37C75C2
	48096D158EA8/FA68A6A288/FF443A10/E9240CD4/1A415
37	0xC83B4DA32110391F5BBEDE/4E2F//DD3413935F4344FD031995596//DB/1//F6
	7545A080A59686A8BFD89775D4BD3D889DF2F16F52D70E26
38	0X2084BB69F7B5D68E123D30A21504D6C52DA2281E0DAD4086FCF32B55AA0B7A39
	AD288165E865176F13D077A42896E86A189BAFB2452A0004
39	UX29998C83DCDF3BFAAC968/9188520F22D/8/52395C643D960DBA44FA/CA521FD
	FFALE4FB/0B50B5/A9/0C5/95150C01EE98081FB2C///AD/
40	
41	
	0x41FCFD4834C91D952828413D4FBC9CFC3441204F66C2301CF0F40C676F8C276F
42	7F54280DDF95RF48674F2D24054D596F71F8465F96F40C070E0070E
	0x5DFD06055755CDFF46DF7F7FR40C47DF3764C544143438R443F4406F55760
43	A451D80111F23F1CB927C7700562162EBR6799002FD9D28F2
	A 1012001111 201 1022101 100002102EDD01 3002ED302DE2

 Table 4. Continued from previous page

i	μ_i -value
4.4	0x59643F1547032036989DE8E64A6FE8F2B3C3DEDCDA9087469AD126C7E987D3C6
44	205810DAE2BBF248EC9CDA87F835570C9ABE7B2C2ECF322F
45	0xBAC02C503F3C87CBF7AD4E855617187F4F309401102EC22878793250D2624211
	8A407738416A818F0ACC175E6E3A1BF43FAA97670A4971D4
46	0xEE0F7D700AC9A3F6B39AE6F1A8521AB0298A9D1B55659C4CAE447362C1C0DD60
	24A5555B34479DCD6959327A5295D47A385B578E658E30BC
477	0xD1FD92232C2EEF832B1C83C203B1293612AAA7A101E4EF609799BC577BC47936
47	D45367C5DF24B5B70BB7BD923F68DC7F1BEB00FA8EE5D377
10	0xBEC4CD6207AB216A0D8B49B9E5085FEAA69923F04AD57D3E8B907B33DE43E386
48	BCA9E37169F6493352F1CE444D0858EE76188AFA5903EF94
40	0xAEDC2D512C8FFE660372592CAB26100EC65605B2AE28E7B0EB4DDCBEAF88E68D
49	9C34B166299CDCD1D683627148B2F80C7C9E4EFA1470BF61
50	0xEB361183393DFC9A2181624BAB2BC1B9DA4E1AB84DB23D5C48DC06D1FB6908B0
00	EC520786ACFEC2473CB149DBD9E222A6F10B655C8BF163DC
E 1	0x719F9A2BB206CA42945ADC6F36A364BBF7A00D94CA338E4B6DEAA99681F8F1E3
51	42D998A3D34AA06C63F65E98C53527D7C35460F9EF17F394
50	0xF55877F11E4E33734EDE2A784D119509F4091616823662FED496C7C3C65C420A
52	1EB2044F2E88DE052AFE3A7B67A8ADAA33615DF1FA6DBEC
53	0x41361F686E3EB9427B4E45CD60908A1114933D788201F9B64F7F4A22372AD150
00	AA63E3027E40D30AEF464AB8815ACFA7964DC048B00FA1B3
54	0xCCC9DBD96EC2A08313C6156D36A1FCD6D5ABA8E64E731F9828604E853FEB297F
01	AD64EC5817DBF00855F49A1A594A7B70299E93794F0E7313
55	0xEFEFAB86C76FA344F4AE6ADBC522F429696279E5F23DA2F324656C78081A9178
	92442838C06EEF3FEEB80DB5D068B3193ECF99DCA352D8FF
56	0xF56119B0FECD6E9F7D242468F140222BC309F57B28E9A4CF84C9E8943B7102C0
	D17605FB3BD0E23A82882013FFCAF5FBDED0175D099A54BF
57	0x148606312B49E952403FE66DF3AED9C90586CE1256498002B4F5561D77B51FDB
	690691BC2C1E012B0D0EEAEDA4455292747B6B95B35163E8
58	UX9118815E6CB61CADC8840C582A8A9243A345A3F1925E6224805B9AD77A5A7E91
	/ 3DEB6FA4603F/C88E/D2CA41BE8991CA511DFFFD23B09F5
59	UX9A204F34253849DC367DCF0AD0807538D2A2E23FE3EC711EDD7A7433F2CA2298
60	UXE44B204CFBCCC2AFD304EB2F974E52DFF2934D9ACAC9F2A6917490C5F494B00F
	r5/2E01502590r01DR9040DDUR5E4Er0245D5D4r0D040E2D
61	03C840PF38007P8303F8F/1563F0PB3DD0070780DF80F13
	0x7/D01DDB/B/E/AF75/313EC10575203B63BE08C7723575E12DB307E216/2668B
62	A1D9C2B172966480225B788056DCD332930994F58209FC7F
	0xF94D0035A964E730BE933334E5C42C3F4E68E12821F14D1CC9A05F146ED1966AF
63	86AFF49B0F9176491F98FF41674F4D4B153F595DE6745C36
	0x9511992988D2D84E4A612C9938F6D0079DCB6AD1870A8FE56BF562B237BA1057
64	2FDC5649F27EE3FBA94A85059CAF766BA3FA7CE3B71EC11F
65	0xAAA8980422EC3C8E85DF70C4AC91F89A21BC122336B63978600F455CEAC5C5C0
	8C5A4E182C684140DE9C329523626593464CA7D6D6D5DC6F
cc	0x25BE77B500330D3BA74209C07081E8258459E1BB10EBC9F6CA342EC1A73EEE8A
00	458C48A5B05FFCD9334814041CF8D43EFAC56C4B5B1052CC

 Table 4. Continued from previous page

i	μ_i -value
07	0xBCEF05A28AA4B87D81213E4AF60336997700E9E884022ABA29DF0854685FE447
67	95D6806AA2DE553D1BD6CA096A59A9AF91CAE5EF7DBC1FCD
CO	0x7BE1534A733FD958DA7FF8B1036AD897FBD723A56708BBE7121E319736374A5D
08	A4D314A04C4BC0959BF2BA70518DA18A4383B7D9665F597C
69	0x85186295B574AC35AE2AF9AC77DBB1DBDCD4F9448980AA6805839CEBE74DEB03
	47BFFECA328B589C092D097D4C3E23F7ED5E566C78988355
70	0x5120B1314D360D53C44F7650F4601A15EEF236AEB3467BC7B189B056983FCAF4
70	5187C568A0EB2E715927A69C9C311266D157E6D7107E82AB
	0xDC6E71981A509A0DE9DDB8481BACBDBEF2E2E4027C94262429E24DD93D370AB1
11	33A4AFF46C193CAF4363B6C65FE0A5C56F02E55E1B8C1DF7
70	0x8579757C1187452494A798AD8AF24C5F3F673BDD65DA9513CD676BE122FC9788
72	4FAB239892A3527652DEF3B83EF87DA6FE6C2866B3B1409F
79	0xE5EA2BE481229D906C416CD15CAC8772B04F9EAE6DC014F818B385365271C0F7
13	4F0139E5DE12393AB387BF6598A4C996725744A93BF9BF70
74	0xC9AAEB7B475BAF48D21649C91B547418217F6653FE170A5EC9E6B3C4030B73EC
14	5AE934C75531D945E9D0F1327B7296B5396A49D9651AEAFC
75	0x7BFAF2D971706F87B23AF166CC32BC5A6DED7937F70E38CD45866D15FB45A963
75	8DD32C8D7D1D1D5AB01D02AF88834E34219E77875AF50447
76	0x82C5649A70B6AD046B18C2C0910C77C47A8FE1F3E076E32E9D637F532491FCBD
70	3F6D002EEDAEEF7A13FD80543066BEC832ECE44061DC0768
77	0x99F8FB4C1CF9D14401A2A994CF10C06D3665C14F80A3BA077AD10955C4010447
11	0A24C67F70621CC13AD29CE038DA4FB5065BFC9ED813EA7F
78	0xBBE015434EB1A79A3976718804C04774816096509CB975BFE26556BB9ECBA761
10	511AA4F452AFA593D261B9C6C1522EEEBBB95B43EE6BB96C
79	0xE125710886AD627A9007FC4039BEF3EBC57D6845CF79B5B87FBF1C6AB4CFB3B7
	5BD926B8286E8ECF1A063BEBE373AD40820F17F9BBE2CEBB
80	0xE05FE39E06285AEA680A42958A12FE893C2EE423050DEA4D71443F39EAC508F2
	E35A5208E93D80EA416AB2C21BF9769597A14EC1EFAC469B
81	0x42E6EFC1C7013B313080CF7B6F519972D4765390820258BD7867945500167A1D
	A45DBB7D24C4F087EAB3C8BEED1BC51C06B9E79B986C6100
82	0x5B88F8CF3C2EFD83DF9A9E6B70AE4FAB84FD004B2DD3185866AE15F95A18692C
	536ABCB3B8EA29E2EFE53E43B068C0992412C6794BAF35E2
83	0xFB23F08A1285D1960072F2D52954618DF0AF579913BC2AB1C32DFBF9069FA800
	001848AED44C78221B8A73B6E70BA1C964DFCD13853190A4
84	0x426BDB2DD14D23868D14D822C2EBDF75F9145CD8D19174B79F73BF2DAE3E17D3
	9D3926350D4AC4E6AFF5F41AD193A5EE9B087592D9D8C769
85	0xFDDD/4C430880C58954ABB0EF43/2058/F0A2B482F6DD13AB988/96549/3A69E
	4D13469E286D34E28BA1E3E33ACCAE78062BBA71F8C6DA8C
86	UX5/3//89D69F5C9A6F46B565E9991/0158141129445483/9F2CC4FFEF9BEEE5/1
	F500004050EB05DE90AB4A5E710EE509EDA5A92D694E150D
87	UXEASFC1AF/5505D0E/1A4019E3690F00B044D020AB4/FE/600E005F5103635023
	0300000340//0507/05070540700390/050743/25/25/5173
88	0531100C0071D1D070E0D00D144038R93DF269BAAA/F1E1EDD4406496/B49093
	200110000011010010F2D03D1480100C28020030D18030UE
89	CV3CJ7CPD720740E0NHL91E74E9E33H0991ABC3DE1/011191L9309C3C3(8LF133CB
	0100210001010010002010101100000004102000075801520

 Table 4. Continued from previous page

i	μ_i -value
0.0	0x54B6CFD047119B1F74E1D3F0D3F30AE281B8121A9C24D6E66C4F2D54EB27C215
90	8186218CA276651071258D339E576628D20C2A8591E41B42
01	0x1B8F3BAA1CCE47FD3A1DE4B172EDE163096686A79D50D604987F44E283EB6FD9
91	7A1D88BE55A5B5618770EAC7B386E8B0C0AE2DD410A24526
92	0x68CAF74382E5CD49F8D3B9B8A99133C51B1C5A8A7608F8C4CC79A1A71BF8F223
	BB7AC6A9B34822AE9010973561EA38B72EE09CC2B64A3CF4
93	0xD9EAB6B225DC45C2B65773F8D50D38378FD5BA64734491ECF18FB9C2ED8A0B23
	6DBEAB47F7A74A38BB82A9FFCA9C0E7C566457FE44AEBA38
	0x77BB8825A5641DA8431BF8C30726E3FE5BB0ACD74D8E2D69E4A8F454ABD4AAE1
94	E49E192FE56D6B2D2C372C34CC651A701DE6CC4D401AE9BF
05	0xFB1D4F8EE50BBF08CE8880DE9E646CB668326B7D8D86DA1D5D752AF50D2F6DB3
95	114404DDA02C14D3CCD17B3CB5485811F4180479A06ECD92
00	0xC39E16B58F2AA6B232C0E2D4B8AEC18A48BCB66E43A62C40B09087ED297013B1
90	34467AD7DEDE48FF956781A596D3D57C668D377FBF85E8AF
07	0xC029E8B0A72A2EDF1216742602ABD36E07DE14947B5DDF1B3825A2BBBB546C59
91	6A7E7AFCA357FBA03E8794FEB8A811C1962CEF74D6D24DFF
00	0x7C8308AE27C355120B2BA04EC4241DE05F304349019F97841F2155D2E600F31C
90	6329273BB0B30A39CFE611C539833B04E02345BAD30B386A
00	0x10C6975638A4DF65E91E13A485CBB57D5B8AD9BC84512C7C1082EF687135C30E
33	0671D4541A48765E24D300D5F0287B7ADECFDF5A9B71A5D
100	0xA7BB5F9790A0ADAB39746E3D9D7D092C20B8E5668562E15DF5944900B4BE273D
100	9DA6F984BE7652863C40BBF956CF961045FC3D71A02D538F
101	0xF1B7B9F7BF932F650C62C76A7316F6A45CB90441968514000B56296F0C074D58
	9B64474F549E006DB9FC495B283DEAA87A83461608992DDB
102	0xD8CC64A9A55DFCB7B7C27A7984A7F357A02EE47E13E5CC001FAF92116BA0E1B4
	504CAD451B0C898A9F5FCBC53FBF149408CBD23246B36DEB
103	0xD47E27B79AEF95421AC57B4CFBDF628C28479EB1F05D757A85796D001D2822ED
	A1DB45B9FF58EB7FD9D59488FA873FFD383E78348B1204A9
104	UXECABDA480327B1D781A1D216EE7D69B68058804397621E97EA411F78B8AC7DF7
	8FF96D4F80CBA7907826E462FE0AB72A9C7966A117C0D5CA
105	
106	0X29D03C30D99D0D10DF42391C1D400D14D4F34921D4C4F01ADCD510F01E0D3FDC
	0+200F6F0B014030F14C4DF0FCF71502012484606130FF00C282D0F34F6DFD8D0F
107	5R20010100145001145001140401910110520124040001351155020200104100150000
	0xF809599FF27795B7F1415C2F332CD865439DD885166D5D7480DD05D63099FC92
108	6EEDEBCEDEC5EB005B589F3C4155E3E8CCE529435E9425D8
	0x9D73BC619D05BCEDF1005B0D3BC2B895AE0BF9A2B3620B815799D009B55B7D1C
109	3418426DFCF9F5C0B866BF4FDD9915D417E560CD8003A000
	0x5DD8DF9E2015DC6052F8E2033B45AF9E1877F617D5D8B492AD345BCB8AA1CCD5
110	39A7A36E74D1E04DC0887FB3AB54A82A89C6E985E529DBD4
	0xD6FC16905873C78F8776C03456C82921BEA33337E7FCDB8C0AAED8F84074FF594
111	7854287004AE43DA027DDAC27EBA1E1EF56C8E151AACC102
110	0x325CB5129020686DE58D00B455BF0591FF6C0DF07B16E94BD38602095D701946
112	D4C26FA4BEFD2C86EC61C6C489A847F60C25913ADFE13FB8

 Table 4. Continued from previous page

i	μ_i -value
110	0x47C58815E49D7CC0EF47EE07534905F1F4D861442B75D03B56F1ADFDA0C38F23
113	68DABFB7AB7FA226D2363B9E3C4B5FCF5C1CBA8751C84580
114	0xEB0B6DCFB59BE109CAF41B0CA15F96333130596E6BF099E0746A738514D857E8
	209B67E98D50CB99B0CF75D36EA6D24CFED8D3B98009B52D
115	0x4E810B78570BD419F751DF44AC3D325DAD166DD950FBC9BC0375A3778D736C97
	505E7651A9508664D2333FFEC04F824F43103EACA950DE1A
116	0xA7344FB510A585AD5E5CFD4EEE2D83B33AFD5E35C1622FC8C8A98DBFA90E74D3
	A20B6C2E0D5044DE1601988F6AFADA1FB31D62556CF12432
115	0x9FDC1C64DA7E8360D9FD1F137C2D4D2EAA4BF5D3CB1E64744F1776D78890D6CF
117	654B72E92865891862B4B90C88DC83CFCDC22C54E66F58D1
110	0xD538C903A617F3CB80EA8DF95E5DA65FA178B804686CFE1EF4CD8F8FF8F771D8
118	FFF0258DE722F2EA959544CAF1AC1FC9155A30C11BACEFAD
110	0x9C106A5D48CFE96A38E0B261BAD71FEA1DFF1D1723B534FA6B8F6CBAC7D9F33E
119	7F4A54232DE439199F9C59804E04A317BFAAE538C3311479
190	0x94B1CA311B2C90B1974545738BDCAC0D907C9BD132893A5FE2AF4AACD31651C8
120	2E740BBE9A81F4631DDEA825445237ACFD343C3F1C13BBC8
191	0xCF64D48606C30E5935FFBD17D042E83989C5C5F6C253556783E079F021C1EC0D
121	886444EB3E94D642DB767EB414D4E4F37E95A51410DD2807
199	0xB1AE248C0274C64602015D125450BF0288BD6E4D539EEE346C79969C4BAA0DB3
122	06AC9A6DCCBE6615B5ABB3979AD76E103196E29B57DBA891
193	0x9F9691844734994FFFCD8A76E0A7C8B8D2F7FCA31E1833105D3345F64F4BD266
120	943B02436FC46473A5DCA44F6A7936A58A339C7DACEA22F5
124	0xC8CC8C78C3B0740B8D27353D3FCC0D9BA80FA2C676E162F2FF790B87FFEDC125
	B53DB8CD5A56B3334256D0DE35D2D680E2ACBC4A483B488A
125	0xE96C842147456FC30C4418AFA9DE86A5EB43086B1794BF93DF75B7D0C1899147
-	F83D5A1864BA6F8E8FE5764A619B3CFDFB84249A80C9AFC
126	0x24F0D1F3E4BEAC12A4515E4F8FF674DCF8F89F57E61F393723E0EEA29659995B
	28E0B1BA/DFB10613AE0490/4049B5D4CE19DB44BCEC66DF
127	0xACF6DFD8B9EF18C3A4297BC115B69861E7ACEAA890F457E131CB50F4181A8B96
	C24FB1AEFF908161C7579D96CDC3288A4ED69FDF5F9A3E1E
128	UXDC4BACCF65C0449CE9FC59D857E9294C9292387FEB398793DCF17EA08F48A615
	2EDU245327EEF9AA307ABBUE8B3848EE31FECAB4F160A80A
129	0X09D/06F0540600A/BA5111E5C510B0B/AD3A0651B21BBD99/5DB23/EBF5CC52/
	C1B9293/C1234F5C16E2914B200540554/C02F808F3/D0A5
130	0EC4C00DD047D7E41E447D05C4FD3E449E43591EDE4D905D79D54AD020174EADF
	0+5120014024E22661000006467244E4042000E040E22004E507
131	178850495967090FF860F4F200F6200F824F009D5D60F7700D6D572D0179FD1170F
	$0 \times 68602900B0DC65B6F24C8358D66FFF9F4705985777C367581FC40B67B4F413252$
132	43D54D112F509D50C29065F633B97F58F476507D0FF9258D
	0xE8EF4EC18C147F029F9946E5C0B4B8E041CF51DE42A0CB0B367062E095B79BC4
133	39D035730031C007F00EE0E4DDE4732594517D5634B0CEE8
	0x12A0221E1590A557EEC75C9DDF009FCA07B56355E9650940B830622F09E3027C
134	97C8E9B97B0CCC2A55C79A4A772800CAC8188BBE0A570110
	0x29D88D18F30754E6ECCCC1DF92CA7150162AF0EAE50669DDE230B14C427CCF39
135	C7E1BFB332BC2343916E6D3BCEA86B4312D8B927EFC92D71

 Table 4. Continued from previous page

i	μ_i -value
100	0xF92AFDD783A307E66A88C367F41C5F11D1E4D7643908196E06C77C6F08BD66AC
136	DF452D1C0CAD1181ADC97DB61217C6B0675E2EFA8F485198
107	0xDDEC2BA25CDA0026A72A423F893E8B766B984290AFFE8222C5E3FF944D1E05F3
137	B4F7BB222040C502B8146BB4B05820AA8B43FFDFD9EBED87
138	0x43A2599D4D1FE63B4235E73E36B50B2DB16318139ED1FD36706574956DE62C79
	973D8B473F5AAFE76173503ECB25E788A7D0B8460D16215C
139	0xB962A92A7D0F3AD0283632280F957BC152EE981E98BED48771876C076A9B5FA1
	73B549B7570AF84EFBB370C0311F9E1C05F8E09E247C0C8C
140	0x2F541B5654A631E8F3F42E64976F17A573EDF5CF327A7A4A48CAFE8017195D23
140	FB2798A5214B71FF72FBDDE429F62E0BCAC34F97718E697
1 / 1	0x7052570A6EC5BE1F61BC7565590A5B8F17587E764C7A63BF98128B96E0E28959
141	32D01CB4C7D06DD46C0FCFB269814DC5026447E10BC58572
149	0x3264AA975ECFF0BD7A5CB541725F97FE4DC08DE418FAB3801292478A29323123
142	688AB4C5A40C76D25D80CCAB8307669C256C0262BB771C92
149	0x1010895DDD8E4CDD2EDB7CDA58DA197609B5818432B4D34C3454B32B235D7FEE
140	D2755BD4B64301FB5CE3EC62324E0BC6A97E757AC1753F35
144	0x742347163FCCB926FA1684962DD5B138C06BC31175CBD7DA1FF7A62D1DB6B39A
111	D28FD577699F77F04CA45234338FEF24DFA89237086A2557
145	0x1FA2BA2A005AE459AE19248760C0483E8F27FEF32ACEAD1775CE19F9F717DD47
110	4E365F976A4CC4B7FA9DE6CA50637D1CFAA539DD1C2A619B
146	0xDA286DF22B7EEE57D8A9B7C23A9D02EF19D7605E77BAD2066BE8FF946EFC2EF1
	473BCF36185529344BBB020E6A470F397C2C6E9F60428826
147	0xAF65C7D7EE3B5AA949EDD7DC53FF94032949270E9B23A340B730EC10A1DB7CD9
	50998785921738867965550EEE70742F45E223981192D9DF
148	UXB0F4D1A708EFBDA8DC4B1540E54B58DB208D0C2DC18E3F14642A3CADAE566561
	753AE815D6D2D9C6A0BF2992CB527B0032BE0CEE03BEBDA0
149	UX3B38D035DA141CCD09251404860618F0CB79BA87B51C993C132CB92ED42FC06E
150	0XDEF9D10AA/D10A00CDA5CD1AD1D5AADEADE020054/51AD295995F5F0E044/400
	3512000575005230220275823030507124057555427830415 0************************************
151	6F20002CB4FF74702FCF5BD4F04480CFB8496D74C4852FCF
	0x451F9295943FD85495D3FF3D707044D3C8F5B364B32F47D9684FFF1D405FBF4D
152	EEE6DED1403E655489EBA27E5954300B9E243022D4E3DEA6
	0xD9482B59906BE574EA9F6A58F4AB97145A147F0FD3881554F2D07A31215A15DB
153	6FAE80DF410845469EAEC842661B1EE06F78A5969D1D8022
	0x33A0FB667603DC6F96B9727F1B1B85A3A4DF700AE65C1E5EBEAE7BDBCCE66E7F
154	EF48EBC1601A82DC72F6AD24D598467CB08CC250F5042412
1 5 5	0xC850D791F83DAE4E9E1140963EDD223C17EB2A4EA68D700D8C135C047533BE3A
155	1ABAA8B6C3CFA8B4ADD1483D7624A5BBCA865868BCBB4037
150	0xED8073F6343B779E6CDFBF2ED2F36C7A74477F511CD633EC7D694C9FA91B47B7
190	3ED7B52146A4DC9949495BF49F9B7F1873E400CF19DECAD8
157	0x437093B2B137500F9E49F43716E606A815066866851CD2AACEAE659C7A1D7B08
	CD76594EB6D3515A247B5167B0527F03F4E483C2C316FB16
158	0x5AF97CDCFA5E21B043FE2B264DC7B0144525DACA7D9E41B951342D7BB9CBC5AB
	AE23E6ABFDC32E96192A5C5F61EC097BD635C88DE5163A18

 Table 4. Continued from previous page

i	μ_i -value
150	0xC1349A9148A1DE9CD02F479CF5EEA5D48143FA3BFCF6E53CDC12646EB2A71AF6
159	3E759BFD3AC5A6BCC6F150BB55D241F60D1CCDF51742AD94
100	0x5A06934CF07E173020EE1E52E870F5165A94CC598DAD49A7243A393CCC1F93A0
100	23CAA05C5F7A61CD15358FB60A2B4F84FB4E98C988B31B37
161	0xF959AF1D2DDFA295A5BCCA5E354F3E6EBF15D656CD3C8606B8107A4E95B6FB52
	FF01DADE0E6C79C5F6D2D919FC2A39223A32B43ED73BBA81
100	0x1AC2C2698CEF282FC2858A4FE67D6DF74C813CC18F7C5EB05D864BBE555AD22B
162	0DA807E13081F2B23EBFB4BE2E4E6BF509DD7FC9FAE2E569
1.00	0x29B3F98D96A12FF496BF867B25DDB66E5303BA5994163C6F808020BEF6001D43
163	10FCCE92619B15ECD12EAF1646FE40A19F2FF7C21E0EE4D9
101	0x52F739FD6D4C09667AB2FE6195D301C7CBBDECDE02351BE77F1DD2E8755C2B1F
164	8182B20DD4A5680372AB6A4A1688531863D2ABCE6E60043B
	0x454B72DE58B03829A3AF76A807307B0C767B4808F93451CD9DBF169E56F0658D
165	A0381307B6C4D0BE113146111C8011C5FEC15235F85FC142
100	0xB3E3C7626CECCDE9C7715FE86589860DA41D47C6ADE70C6B244E7FE05647F89E
166	4C12AF0CE9EF2209647485C5ED35C8371ADF9FB4C0A716D4
	0x4299FA467DA2DE9DFE3D7DD48DDE00157AFD7CC14AD23DE177AAEB567BAFF0ED
167	D3DA24B42167EBEEB1C26531595057B6D3F1815E386EAB5
1.00	0x73A2A0F3CAC6EA5FBCBBB447BFCAC14EE53A3AAF1F3582BCE31ECE3EB65C2338
168	EB24EB7BF10ABE7308D26D479B022581701EE54E9CE65316
1.00	0xA4347881B09353EC3D63E18FB726D31A8774B1E6DD0D073B975D1199FA480574
169	D84FCB0480A9CE9EFEA51EBAA5E4A52E43B6C7E44E7AA4EF
150	0xFDEA4B556D184C821B6D89CAC1966A5AE104480F93EB71C17F2832D81200B830
170	3665DF4856B1AD773742AA6F48163766658B0E9D58D4E7E1
1.771	0xAA1F67CE2FF262354B9071B2CDA3D8A1A90F03D4F1DD2AF3A3A9BDB7E3A885A4
171	54F9EF2B2303BD026912C76166D48818156FBEB1B4531A62
170	0xA22DAB501641732BD930F19D8131CC23A150D530AE2207CB80C34284252E8739
172	9A396FF9BF4FD9F18537C9EE7E4C973A9437877E43CD1E9E
179	0xED87E22C8616D0E5A183DBE0FCCB0E33601FDEB9808A6515814242CCA4A7C0FE
179	C18CDEB814C50A737D9F6EB793042BE814BFB94EA14F69A4
174	0xF08C327DE00886B9145A652941B63911E730722AB3D2A059B7014DF677C828EB
174	33839970BCBB06B2E3C64519E7ABDB1E6D4C0DF66BEBC07A
175	0x22A726E31C2528FD14890483E58B2AC308D39E23CA18156470BFA3F1C75321D9
175	0719150023878E3B82E1D7C375C9B30F45F527059E30115C
176	0x698BB63C258E6D656C53772D2A760B426B5F04D19E087A4E8313B23AE675E920
170	17E0724E6F123D510D33BDF91B3C8A8E09EA94996075D4DC
177	0xEA86771FF8CFC3AFA89C3E122A656E19BABD99E93061863B8BE97A2A837F4C1B
111	F2B1E0CFE3E9CF539DC4CBA3388A14C94C8F6CDCD02849B9
178	0xF1693E089B8523D64AC4CF2AC27204902301145535648D01C256D6500C817474
170	F6BEB60FAF0BC39DBF039F27AFB0BF659A2F754FFE7DE30
170	0x91AC5527E94CA1F852569D216C7BD4F5CEB1F092615135252455DF9C21B05A11
179	77F0EB0DEF333CA1AD629D053346BAC2A8A32FB240BA0984
180	0xAFAD54D7B1D2FD5489D6868AE645BDD163D197374C7B9182A97EB0806F6D5783
	448C087468E2DA8BCC5C04B6CB8B1F3D827DFA0AD2303E03
181	0x2A1C06409885BD0CEC6AD1F39F9AB42AC84FEBB6BFDECFAE78EA6C13E5B59CF7
	3136D761F762765C600268E6B3BF584287F9639F4962338B

 Table 4. Continued from previous page

ı	μ_i -value
182	0x125A1D17FB94B0300E1E93798C1947F0C6592208683D4593ACBCFDCB12E48FAE
	546F23AB09CC5B969624CF761697E8035654AED581E73B74
183	0x54C343381BE8067A83E5E93BAA0FBA08DA0F820CD22F69CF72C07D88FC19B99F
	0A13D4F464C140551BA3EBE1344D23693744FF851840FF85
184	0xAD57594F6AD99DF059D0F62AA222CF985CF0B9AB5DF1D8F731E871F6A906B6D9
	0BCA9637B8D37E68FECC71A8F97C6C22C5EE28E66EB3AA14
185	0xF995564013F339535F85109F09F02E973F3FDB591C01EDEAB7B960AA16CFA133
	9C85F9C7B67186F308DE0FF96262A2494D232E4C383D2BD7
100	0xB2EBFC81C56A3936064F0E49248172BA556C13F4082FFCC651212D32B671F452
100	6D5FA19E8DB530A716094CBFA01D20D4AC8E781FC6DAE3B4
197	0xA391F75D139ABF05BFDB149EE356A2BD2CBCF4E8E098D9A5E29C2B64D61A243D
107	134BF5160594FD4634FD0530C969C940E8B9B4EA6CC88D7D
100	0xB2073E566F1F24E5C5A2F3385098A40DC282BC13CE99446EE55F746F01723625
100	AA06839AF8670438C6A295711315A60F40052615F327CB8B
180	0xA1D1D0148952478AA9FD260BE82066647EF74BD4451617E2814DA8940B135707
109	04B3FF6B54EE1F5AE88BE889025707110BD7B10760320FBD
100	0x7BD422BAE4E0CA3C34B2CE207ACBF15102641AAEA1FC1F4FBA1A8423BF7CC69C
190	05D15D3D54C592C343BE5C55C1222416048F474420E603DC
101	0x27CEFD01B12F16D4B2550AC0E75B47ADAA71FBB50C6BC172969A25D2B60B6348
191	B9F3524B8D9CC7F0614D6FBCAB200C79F0AE61DED7CAFDCA
109	0xD7A07F9FBEF8A4690C6D9F716D447446EC92A4C732CB47A953912D99CDB98BCA
192	E6518DA0E0BBED421F817BC436C3374A49C60957AB4B1164
103	0x5DA1CE4EAA810851547FB9E41C44573214C8A84E6E2EB1E591E4F62CC61E067A
100	920B64834B412A982BD64A20746E387F5D3FA5C891B6335F
194	0xC99A317AFE24E23F7261E484DB45386427B7E6E0BB7F0EB979A254BB399FAE3C
101	7ABD697FFBA60628077E08795641007352B1B57C5E9BD55C
195	0x52E0CF7D6441EB352AE823DE7A051075976C8FEF0FBF3C3775A861922AC01A83
100	E84675BC2D63A30B588B3B827B3C78795BE59624EEA4D2A1
196	0x6AE6D67BCFE0C491E3CCCA024EDA8B0F2AB5FC4E9BE182FD5100E8B985AB1138
100	DC01CE9FC92CA88C8EFEB9D8459809E18C24F3AE9349D04A
197	0x7CA84CEADC428E437AED1635010FD2CFCDEBE49E8EADD073575EB881FC2130B7
	12BE59CE2D9BC34C31D705C861E0E0042E520CE3AAD711FE
198	0xD5FDB193374922056604835681D8BB6B52F39F84B2EA1C82129DC59C6983B2C8
	E4C136CA8259B8C103D07F6CC43C193EDD76E50B76CC2637
199	0x749CA1BB5972FEF068765BC60BDA79D67E2DFB6879A1E3D3222D9A43F8942031
	0EDB42293D9E51D87C522B0A4637BA19785DE6BE03BF96AF
200	0x92F5BA03F2C89B825B58E1C6D6E52BA2D38E36BF4D859AB06A83549112C11F5A
	40A5EF7F9A53C3AC5BDC1332C546AB82CFDAF0BDC5ECD90A
201	0xA4F7A91507D2E055B58EBDFC6951D9767A6476307D598BC9B0ADD8774BD13E0F
-01	5E75F8D6D7D2005CE7F4F0F8785B3A8656C0B4E7DE7E21FB
202	0xF765CC2F2BED9B1E8017F01E396BEE964338836BF462505F1ADB3ABFD2CA1AAB
	0D74348A7307FACC4831AAA24F8228E9CDDD153C2B2F2DAA
203	UXB19260B819E7B58A196B08D07718554A229E58F6548C146AB42753D66E7664A6
	9C953200A4D38211C43954DE4C8A17347EEBD10D9C23B303
204	Ux4DAA7411D38AE1173518E220693CA84BB3BC6A272CCCACB3CD1F3B39D6D02D8B
	C293C74656AB64B3F9C2B50A6470F65BD47F67DE12F3EC66

 Table 4. Continued from previous page

i	μ_i -value
205	0x69CAD7DB5A824BB191E95D6305B9770684DF52F74596CA17998FD6E5FE786A4B
	EB5B587FE500D74D7551FDA6DB1B321F7DD0F5FD7E16C496
206	0xFED4215F2D97FA4A43D9B260DEA7C498436396712E3032EE5DC7BB85627ECB68
	FAB2D63D6D8EFF9897359BF121F3CA119FBDEA873838D302
207	0xC5E51AECE40C31BD740AF77BEFBF3A826D30BAC5ADFFAF96D711B9077C02CD0E
	D942C80C215600C3CF1DDE40BA56ABC7C378B5070729203B
208	0x2D4CD912C5FED66692C50EF33033C639888EEF19A60843C4476191B2BD5A0A21
	BB8D68A824A8485349B2A8DB9FCBF7BC85EFBF121628F2CC
209	0x8E328DC47CC40B581AB8846F074F5DC356287B98394531F152F51105324DFE51
	78BAD3507E24926AAC557BAE383539F1654E5A9CBF073430
210	0xA6E63B122EC79586E0130170BE701CB0D65DEC72FE0BA137F7C907D40C3879C6
210	79F90112B1CEA48D24C01D5A2AB62CFAF69D2BC5CE98AF7E
211	0xE15522CF79F764AD0230086808EB0CA10E89E37F76CEFE2F60F35A133F5BC888
	AB8823FCCD1ACC0B247053AA0DB443808567B14E0678224
212	0xEDEDFF428FF276A9035A1F71FB5053493050F407521A940BCE73458F9E9A4631
	326E1571BE64BB6AC31DEF07A45B07B3A676019A2CE1495E
213	0x51EA03CDDA8167BAD54080A1F1857051564A72D916C246E443D7DD58B9309531
	A088FCCD615064AD8CFFD103CBFAA247B4A2EE1C91DB08ED
214	0x4822A95C8B3CA23CAA6C65A678BC897A04F2475B7005AF2FD1CE1E9E1C12553A
	F/C100DE0350E55C21/BE83D6FFF1E185/2613/EFF05042
215	0x1BF820A602A320AC0BFBA85A/4E4D0/D90/5166434/8F1425FAA63F1F009F6AB
	9002E8C88FFD1D43787738839DD0CED4945AE3602F8F8C7E
216	0X9453444503AFE70B70FB95D53B2D3949AF3A97D0079E0050DD093555D921B2F
	5/05/05/050045A0/5/0741F100222516/52545500124F00
217	33E403P41E313ADECDQ31D46EQE1427583BBD37500ED30
	0xD820Q3515754B32015113653875F321F61464D2D61733D8F2F74C4Q4330288D0
218	7306CB94C7DD19DFE99577A35EF5DF09050C1BC155BF1A6B
	0xB76446052C905AAD98C6A401C886F64E57A9B298170A4DB219694A982674E965
219	27E20AD8A7BD237153F82A75B029301A99FB0C7DABF456B7
	0x7941EF0E24181D231398A375674A897B6199D66C096D13025B69B49B8CF94267
220	BF26FB78FA7404B0A3E3E7E8A8D5F79E158C1CF8FCDF917B
	0xA215764B230D88E5B0CBF9C5D7F82493EE2D3672E154CCF6AEE0BC613F8A0C35
221	3B7F660007E91B8735A3E9DB30BD0B3C761EBFCB08AB3386
000	0x70E7D309ECF9F09D85249673305ED1C558C39E000A01C6B4AE351460BB720100
222	496F4A943A0A6DA9024EC0E21585151B3724066DD583DB37
000	0x82C3412D6A7145801477A0B023A03CC0D64EA9C27437CC9A2CB18D5ABC0D8DC8
223	DD5EA1096FA931A672F12CCD0AEB45A2D6BD71E98796BDF3
994	0x4F4CCF17AB58637A313CB270FAC12FA60C4378F43E050BCC9E20E546C1C96925
224	7E447AEFDFC3D600BAF8D9CB88089C12A90CC13E8AEC4437
225	0xFAC9346ACF07D8F83EBF0F0C428A0E389078B82FC3E88B8BEB4208AA0091A779
	C453EA26AA37AB1F11C311F1DD7079A90AEC8B755931082B
226	0x7C6EFE63EC3A941AAED8F43BF78A3083FB0E54BA52FFB26A611DAB72D8579F39
	B4C94DF98DF18A193992B53ADE2A9A9FCCA6C5234D76E011
227	0x28A7ED0BF613231DA84E9DF60AA17F1DAACEAB7B5A4733B30471D07D760FE566
	2B44485830D40F63C4555D5896114A06AD2BF44558E70DC

 Table 4. Continued from previous page

i	μ_i -value
220	0x16D3F57FD145CA0EA3430D0AD216432739480C2491DA6E03FE77AAB48E5B5538
228	C385AF1F7BEA03222B6FE63B2AB32A79FEA25D2189B351B9
229	0x76C9E2531CD5D29DD178D623C2109FFC781A9F8115E058D953DF4E58DE857E10
	3BF8D54DD1C7589BABFE66D8062B505B789306F8389B323D
230	0xF32899D288FDD2EA4A00DAE702D17B6033F488F360C8F7CE1AF814B6A894342B
	7AEC65703BDA4607C8A326CB98A6A1AF154B18717B381E98
231	0x8CAEF7A8B3C36C5594D7E603CA332F8C9796FA483839CB95FDFD3064EA712B01
	A8442A8E8C6A263B21F3FF776BBE6BB43B8BEBC2261D2428
020	0x65CF2DCE102DCC7267880EEAE269AD70F848926B757D2102042FE4EBCFBFB937
232	8CD66DA7EF74699B627CD6067120C5AEB8F774EBB48A62EA
022	0x8F37E968565B4398D940F5B67761E67CC0935AD24F9E011A63EF94A059068B0F
200	A5692751B688867B94CAA9CC8AC4974965C55CE56457F349
<u>93</u> 4	0x3BE0A77BE599A15AE56B41E85AD5DBE1973EE204231BA987CC4A84C21F3661BA
204	493D3D0D6CA01E7BA7B24D8BFDE86D071089391B05D287EE
235	0xA63289A084712DAA93033E81235C5F31E7E72FE62B9B5451CED5C006471DD8D0
200	2AA5B40C8CD0EE10A5885F11AFE46AC541777F77DD6AA3EA
236	0xDA24FFE2D3635C85AC6D99C2CD32E52CAFF9B11FB815DF9384DDC75AC6792E82
-00	4090CA28D16C05542E18D2AE37FB57CAEC7D934E9213A355
237	0xB0F6B288DD0A5B554427E22E6AB9EE60454BD5E9E64051C565C11628AAFC5F89
	5645D76B2792A3DB727500959ECB9E5A002E5CC65FD8D2D
238	0xB17CC048AE95B8697A4CB59964EA1E5096D23A3ECB65FF291F4E09728C5F7F10
	7D32E68BEEF5021B60EAF9100F1B659B3B843710598CB22D
239	0xB13C57C20F638D1A93529589A3984573628E441A83359BEA54E5CF9266A5EA58
	4DF2DDE41FB54DFD0F130DDC17D17612CB90F3EA3E4F7CCD
240	UXEEU//C4BC3CF14DDC/58D244613583BE6E4DB20C/6B0F832A222F9F6998909DF
	0F0C4E920A4893EE0281752E0AE55614A252F6B751DFB472
241	UX22664FBE9E7BE473DDF89E22E0D96CB940162C9AE5E7F7900C2CFD82D4A27674
	0950FG1/298F125A586/9201284C019/80282EA/C8EE0388
242	UX95F0F508BEBE9B779C20F4D680DEF231889F50C4EF4BAD2BC30FE1FF4B298159
243	UX8FB4CBC700A7832DE004C4C07D324670C04B9A0D35FC92FFFC966B39DF214E2C
244	
245	
	002F3D10D200E9139D1AE1000F2AFA21E101DER0002DDFEE
246	FF9468CCC79B363D4D467D486B75F8B1F7044478D56F6615
247	F54F17C479268449FD1B36D42D2FB182D02173BDCFCBC54B
	LSAE170479200AA9ED1530D42D2ED102D021730D0F05003AD
248	5505D9C447276D04C83F29210F0BF8492080F5961F643667
	0xB1C31B65684695D8EE15A35697CDFC6E1B8E8128EEB8007EF401EDEB4E24027B
249	F64764AEC2EC620D8DBF989D3A72C9617F9E967826D9E92
	0x80DCFD31B9B00110A9B32EC7A68BAF700587263A486851795B2BC40FE63478C9
250	F5A65416952935886685DD6503AEA15B4445468BEF5C94D6

 Table 4. Continued from previous page

i	μ_i -value
051	0xC47F0F5263C4F812CD2F1164D7727EE78F4F986598ED5113E57E9863F8511CB4
201	46E99D2A07F473B06DE52A2760978A640504A375D6ADF225
252	0xC02EBED3670E304CC216146D34B6D1E4A0A9F03DD97D687B380FF6BD5F6C15F8
	E45495FFB16D67709693F049733183259A658AC76385D95C
253	0x95E2C7088A37EAAB187097B1810AC3A8F9A48B6077C472F93F8EF696E45D9F3F
	6C25E094294282DCB6C58BF6F2C1EA9303AECD14C8526B06
254	0x82D7F98550FA773F7836C387F13B0CFB5F6328A2E4ACA2DBC567FF056FCD569B
	E644D7521C8765951E95E65B7A1A502DAD8272765FD94994
055	0x18F043A1B1DB311FE0762045B6B4D6413794522B5278BEB28AD43DD9751359AD
255	51D4EA18E50F7CC1E985C89F7EBCCDFD6ACBED2DD8E0C064
050	0x82DD5855160235179916B2D8B0EF368D6AF5BAEE89141B498AB6837B6532B13B
256	E600E6EF9306F0B180CBA417922EC3E5683E6EDDA9A4A974
057	0x5335A0EDDC8903C146B8EC2808BF045317A630565732D04D29487731207BD0FA
257	9F0EB9D964F84295D2FD599E8430FA3EC5BB4236F4E89536
050	0xC93F06C08E90599AC7FA3D524466898F158C4DCEE3E75918E5505EEFBE292186
298	551463452EA31A61FD5AD90DEA7523C8685FBAC5D89E7FC5
950	0xB85A1F3DF61D1D0880EB5404EB97F126DB9BB54FA3778D0B9967C881EE08F311
259	F465B80BD971FAC24D270447FDCEE3D59F8C1D5016D9048E
960	0x82F1572E245B3E8372CFC84BFF7B96B670BA4DE6978816E483EE3D4D469DE073
200	B4108764797E64FB95A24E273C60FD9E0DAD5CB9EE9D9CB7
961	0xE73FD6448B08C528B6B73D3D7F95D4F5B4AF45D29E2A518A4F20036F68E84003
201	AE57B1C0EF5A4361F8AD15EB9D6E54F0C7BB444F51407130
262	0xA8CE6461AE8F4930C638E151E3C6B2B0D459ED042D4C975DE0355F1946557CC4
202	5AE58D350F23AFD448838A6A21440118F86320CB670452A9
263	0xF3B5AAE7D0426E692A202D03C963CAF847189B4ADD61776403691FE12834107D
200	ACA1CE48C826AF8FB1CF26F3EB7F5BE727B9DFD33C83649B
264	0xC59E5C15DC4FABF7518CF4CD854FE11823DC3C4FAA912F659A5B2E52941CC42D
	10047EC3344F0766C64395DD6FA530D835E33E0F570C31EA
265	0x8745628C9BE6C7D800CFEA992F51938A057DD07C075FA3D82601378770344A90
	50174A16C6BE9B58E97957A21FE7FE7D042F82E717235754
266	0x56EE478C48702C2B9F3967C32E68905525083835B9F15EFEE62B431B27FD9701
	79BDA7FFABA7C2991E1A90E65B630DE0772930E76629FDC3
267	0x655511AB8D1C9E3AC7D95F40605E420C0100DBCA4505494A6E1A58342E7B83B1
	3F60F3152CF53F6ABA47F40EFE079B390AFD42E6B57032F7
268	UXUEF C2AEE31BF / 0DF 80685F E4EE8C04F 0E228300044008F / / 3E / FA8E2602D0A23
	2/A23505159E109859500D3BFEA20D/5908934AA0DB/408/
269	UX5A405A77A8D1UE2F9F76D0660F4F046001A762DF0D040F000
	(04D0A92EDA122F05E0D000545940991A(C5B50D9A0F292
270	02811D08060DE4134C5AE41FC53643F66B1970F9F2B525D61DA67D20473DC2C966
271	UXCUCUDDSEDF D9DCAD IUF AAZAU9DADSF 01A07 0DCA7 F ZDAZF 055F 5F E9CD5ECE7 94EC
272	VYFLL2N2YFUTCTOF37L4L0150F0120014D34D77CF130FL742PLF04L32328342P2
	V3011 11 133AF UD040D003F 0A333311 0F 0403DA40V034D0D 0m/F00DF40407635A064440046007F3D2C10F30406DFF304D3C1443F6D14D3F7F00
273	
	CODTINATEDOCOODOLOTC322A020W1LOOBLEASE2082LBDC

 Table 4. Continued from previous page

i	μ_i -value
074	0xF9F457492C5F711C7CA3805299FE0CDF23749AC109CD99CCB5BA903A764966FB
274	7658D210F9E08632A7A5CE0674C5AA1678302A4A847993B1
075	0x635CED05B2EF6B8DF7A215929554FCED069AD61DF0E2BC572F9E7AA64610C244
210	473E9F0AAD1507BFA0AE901AA208BCE3CFED9825E652BF6D
276	0x360CDCBD907AF0E96D6D789007BB018CA0B0B3A92AB6E3A6D7E38E09559B3E4D
	93CA26F8D752E57473076281E6277E0248E1F83A3A270BBC
077	0x552906CAC7DD273909C3C06AD444476EBF91087C5F24DD63C0D5FBE2CC507FB2
211	2BC3A542BDF7A7E462FB80224747270CD85300400F12207F
278	0xF36A655CADFDC9A4DA2F61A10F7C79C4E3E4A641D2D5C324E6DCE9896420F97D
210	B00F03DB1FE88FE5DC51755B66ABC9E9040FF3D2B0582876
279	0xCC8B150460263946E9492F95D8B545191AC2A06A236D994C79CDF13AF8F511A9
210	44F36E965564889EADAB2D5FB2D217D5CFEA593B7A72ABD5
280	0xF9CC852E16CEE6CB57A18CB7ADAB99503743FD75EB1F4635F4E54F344CB081E3
-00	E1C6D439416CDFC0329634A6448A85E5AB91024154F00C66
281	0x350F0C43A47A4B8B1F2E87E7BB3F9BA7042BE3ADF195F49B9732DA540C97995F
	02B35609FE4E3DA6C9698FBB2D48CE3E1D2E17A29E3FD163
282	0xEB1950A9DF9881D22F92791BF076742A27C6ED38785AEBBC4AB4B91988188580
	93E72ED6F7B1028B8FCA7B356CC04E1FF1D0C1A12CE0DC05
283	UX333E49AF1952U193E16342UFA726AE67C858A3646E828244D255AU257BAC243A
	A92CEF3/05/F59E0C0E09DFC6CB3A2F8B4B6813A11B4E/B5
284	UXU1B11405850034F2/E020D228E9805FCDF/9A0FF1AA/849D0C5//D0B28/4F413
	05F5554F5D74C54E7D4CE2900002249DBFDF5FAF00E00505
285	15D817E1B3B04D5223B48BC00EBCD04C6888BC5CD006R40FF64A22467DC4F0330B04
	0x808CFF66496B1D7204331F5724F28104FC6DB4F0546FD4FF2264434BC654FFC8
286	34411411C946D914B58159C4587D173B43160F124649B6B
	0xE7BE54DDEB12844B87DADB3C391C773B81DE2EE13161CBC3E4A1E550FA2776DC
287	2C4780D6431F423AAC945FD93AC07832C8B8B49A9F5CA916
	0x177B12558AFBDE8A8AA9CDF2BDB789E4AB8B3A81BFD2BDF8018EA19751457FBE
288	F1B9C7D9439C019C8E9FE4A52B2134A68C137E3D2173CBBF
000	0x1635DA76B3826E502A845C26F5527EA1076CC4792E7B8CEEEC3F22EE1B779E08
289	90E256427146918825360DB18415D81C523151E64D58951B
200	0xEC7D72DE9E871FE767C5FDB1C86306571CBAEA2C4F089B64CE15551832D14587
290	958FEC757952DCE144B30F9865E8AECAB28A7DC087996F0A
901	0x92FE4CEA32E1AA6A0ECE9BDED8196B12CEE9CFEC6F2AEC1F5A992C5059FF0F85
291	B2EB89D3B222EADAF2FC1009C58C0BAC96E846C22C4D8B36
202	0x4C9CAE1965FE439F6B7D7CD156887FF21B05423DBEA49A726D2C7F593F53E034
292	229AD5005E2BD5A4313D2BAB0B42C1D1AB0B03265370175F
203	0x7B43EB90E9D21D57EC6DD9659B1BE6792049DBA25C3DBCFDE81DC12B78E17A6B
230	3860CAC2ABF2095D376ACCE59441573C3BF2F2FCA9207CF3
204	0xA3AA5E979E43289A57FC1E1BD85839DEAA1BEB5031C4DE9A0461BA52F7233D29
201	01D96E2A59E5387CE4D1E53A9A2D7DE783B81018192E8B2A
295	0xF8886F7C71B1FFD7CBDCDFB8C186C59367AEBA5F442ABEF7AB156BDAF571A98C
200	2B735E2AFCFE1C6E599A4EB1A78C3EC7406B9939C4740A97
296	0xBE2C10F408DC2DC6460B0076ACA902DEA8D5DA2F015B3D3BC9672A788E970CAF
	4976702AAA3777B40C57D6BF7194DFFE56AC1624BFB1893F

 Table 4. Continued from previous page

i	μ_i -value
207	0x6087BD24D3937246F20E05E7B506F9269F8278EF09E0FA6ED4765222ACE90AE2
297	9D8377862D0E654E73203ABE10FCAE63543ED5C691F907CB
000	0x613A910CE9ACABE41FAFF38F4C2C479EAF28289F5121D631DCEA6668B6469E6D
298	BC897C39A2889F442617D669D62DBE8C7380606C7B845514
299	0x1B9D5611A9D7A614C1F641236266637F0EADE4E1D72D2C351FEFB087B240FD4D
	07BF7F740017714EFC112C7F11C5E642CEB1C3E94B5537B0
300	0xE2F230FF68592CE4D177C4A097BC618B00353FDF52D21FDB2AB834591BC8AE41
	B28D046BBB6EE2A0F28F4901EDEE5F785DC91B4F18428202
0.01	0x234E34CAD5EBB7E8E537464F4B91AD906F4E235B4CB333F3CDF7CA7ED9158AEA
301	030B876921F5B3610BF268AE6CECA0DAEDD0AE55DBB10879
000	0xDF991507D656E6E83575EA73652BE12CD40CA01BEC30E94F2027DF067DD53F7D
302	55D5BDC5F75C7F46BAE0C23FD0495E368056AC70FDDD0209
000	0x96AD2BB6DB12E9BB5C368A4F80CF00962779CC57C61E56125A75FD9D16AE5342
303	A498ECFD425A409CCA4EDC86DF587C0016CF8C63D0B7104E
804	0xD6524AE4BE562B45AF2879960D060C66E56FF4ABC7B9EE433214E3F511865F10
304	004A4DA44E271BD5ADC8D68B9F6A601B089402C6FD1F3292
205	0xFBB6076597B68B4BF4806C2B9C72CC55691713C42334608E755FC693196BCAE6
305	3808B2F56C89B6CD2983D10AA030C60F2582CA60EF691615
200	0xA282885E21B71D698D123D4CF17EF75901065DC9639339B0897FCDB85C2F0408
300	8452791D1C15E3CE7435E79382DFFB25E5A367A628749901
207	0xC7CD21A56088A00C8F4A7B9A747851399A1E2B6F688CC040D3FAA0632D382632
307	729DD68037E58923480EDE6E515C8D8ECF9D0D419AAF698E
308	0x3C744BE226FEC7797C5F7426BA112397E65ABDA3EC0F677876129AB6D807EE15
308	44C7622AB95068629C42D2093F25D094C6A89BF14737F3A
300	0x57F4FAE273916912F86FA49614168D58BC3CE710D28A254A9A90A9622F2546D9
000	F451425387D4EA24D8B178391F4932A5E03EC5A3419023A5
310	0x89BCA1C0B40CAB745383089F28C3955E4BF75B37CF451C900CCB4BBF9C334662
0-0	693E8FD1CE0AB800B03013C2EA096301A63897DC963F4551
311	0x2F2E55DD54DCF2FAE971F2C9FBFAE8B324A57D3CEADD25ADA6778BABE73B2389
	083009CAB1D0F8F4464D3512EE65207A172160651551B106
312	0x5643BB84C70F7F3239C880BA19E489A29D1E543ECC762A885CB4999B330B3258
	ABCE6DDE2CCA518C9F2A611F53F11862EACF8652FB96967F
313	0x275D38C4F08BBA171F12E09959C4DBCADB426B977A5070FB3219C52B5DCD2389
	5215F18031EDFC9802DDE0617E2B70284F78A0A942B4079B
314	0x3/F12844B1BE819C/39456FBD/8A8536BB15/0B55EB2DDA3D8CF38C348809DC4
	CD0/D5D244EFE/4D24D/6E3656A0/63661045BF62BDC1D29
315	0xF5CE0DF971BC5E0FC8A304F5945A9E28213BDE72CEC4261283BABDB0F369B2CC
316	UXBCC4/EED910923D3/5052866D0/2E0/80AA2/9CE0CC5BF/295D/CE2AF56C96D1
	55F036E39AA7F45A0A939E03D6662BD9E640E4P485009793
317	UXA5FFEF29E16377C837470F066CAFF495DAB3E87D44961ABE240F18D24D5C2093
318	
319	
	9LE73LDAC974CY00RBTA50L43CED9L9C1LD15L4R9LALRCL0

 Table 4. Continued from previous page

i	μ_i -value
200	0xC2D1D92526AE025D45E919EFF04108741BADD32DDA4E4920BE514B5C49A093D0
320	233BADAD0F40708124A1DFAD8CB584BB831EBA7CD6BC1786
0.01	0x9782DBEFC1EA61E053059350C17C3B84B949835D715F0BB71B45B12515BD6908
321	88B7D67270365DAFF22652A0B3754CD0B34DF883B23E8148
	0xE073CB3F19BCADA5FD006B7DD18A2C59287AA97F60564A2415BF6C28605444AB
322	9B8E3EFD7B3AD7AEB6A9BCF3EF37FFEF7A238A4D3AC3D500
000	0x148537A47F04F950B6815013C70FFD21E79C66F96A10843CF054EA264DEC38F0
323	E2FD5DE4889029BF002D5C5AED9E9DC29CF52B4D06669ECF
324	0xC88D164423D538864E7183091753461E3AAD15A5B60E9577E497A3F92C3ECE21
	043D175AAB8F8E9A8AE04D1B1AB90C98320C39A8C74987DB
	0x648501A22210DCE2016CEBA0EF8FFCEDF07C6AD4B8142E4C0B204A6955CB11D8
325	81CE9463B93DEB9E4D6A7CF4F3F2126CB7C0C3BB08995E05
	0xD0A079216EC16ECABD8BA1BF43DC2FB440263E695F74E875BAB0EF1E363F03BC
326	10234AF529444F27DBCB6C996588677DA625C655279CE158
	0x28691F9DDB1F06EDB827F117F22E05B645B36AEACCB9708D41D28911C96EC5C0
327	D1BAFB791CDAF2B1971D7BCE5866D2747D6E6E222D4A9378
	0xB27EA247EE69B83E6BA936F7A757CDCB188ECF643D70BE4FC2EAC1C6FE76BA8C
328	4A64BDC59C5C03D32E2DED7C601CE1AC8D3092E111A81293
200	0xB9ACB65CE1865596B11DFDF5BC9D7B5D69AEA8340FC392804DD6A228DF3BAF8B
329	6C1D2E87FF38D6AFF985360B6259AF82F7AFCDEDF53AAF96
990	0xB74078AA4ADDF453D2F7B70FE54E8B75E719EA2261A0ECF927DF1FC641926865
330	7764448516FC7A3B77A8090E98203FDA6333A87D28379E50
991	0x9BE1AF5DB9046F83E897DAFBB28F91E55A982AAA5EA46929112ACED675D97884
331	39D45E308490EA3DB162226E7D6578E6DAC3B6BA79E389D4
ววก	0xCA998862A94062DD7372C188B049A362BAC814B0429D719B373A6036F5252D60
332	E615EDCB383392361FF4135535D365DF8983C49C48E1E48B
222	0x86D00182FC192BC61FCB0F1EA0BAC1F60D4B29E658F2054B2462D93799E7F3CD
555	1238E43E6616310622540BAC8D4DB4E3C6452F46DAEA7B47
334	0x28DBEAFAA92B4879E1622E9467F9560EE8B8D2B230B9260DD2D1EC894000A4B5
004	005D6066ED762E5D9086BB7952E8EF61B418A8FB2077AEA2
335	0x231B92F076D979AC6F5D9204AE7EE505BFCEDF30DB27FAFBD34B2E8AB5BC17DB
000	FF86D009B82048C1F97A169B404A24418EF27BD43B0F135
336	0x3CC6366F2C2CF2362BD819B3019B629B9775D3D3F3EB5E63395385DF23035D6C
000	618FE9CD93ACB106F17D368CD3A81A0EA61D7E61C54A54F9
337	0xFCD42C72447E54EB105A0537FF7175E3BE8F5BBDE77E8B8D4DBAFFDE1BBF5029
001	51CEC6DCE1BB2E5AE5C1AFC1EE9A4602BFF8B0B610437405
338	0x3F69235925C950FE48AB1DDA35A03EE961BCC7A7E80790C32E923D29B9C38403
000	B8DF31ADA7C3DCBDC197A68D7FADA0502DA19008B21C1203
339	0xCA1270928D650083791920434E32391266F93B76DF253F20696EB1E6011E8D01
000	421979396ACDC3602AD9D65B2AD6776894F916BAB918E
340	0x8C33626FAB890B55441A2685FF41FC18C2128D7A9C2F0F02A6F79D422E03546E
	91ED61439325A226D1C3903CD9F985EED1A4CB332621BB1F
341	0x96237A2F633F958A25F2153B4BA655076A2AB495F35D26F4BF215B29D370E204
	C7E7C3ACFB93E771D562E03E24A637F235818764705D3CE0
342	0xA376B8AC30F13788BEC2855B667001267CD22BDF842B62FEC7332BFD09E33464
	3C2F390EF0F853B9DA99FF84EE2302F7675EB3A713D93D0D

 Table 4. Continued from previous page

i	μ_i -value
0.40	0x756540491DCFDB393D61C898ED18DAB54408786000F40FD0178908E4DF4A5392
343	74CCC46DC68798AA8CB86FEF11D69D6243BDE43555F0016E
	0x4A05ACB21DCAED7CCB3BF994144EC559377BA3B3FFE2FD05278724865AF9C568
344	D35DA526CCE6FB438B22BE575B491620FD95D2065FAE108E
~	0xB4E374BFCBC54F516DB42B3E82812D145B2B84F482595160F227D08A1EEEDAD5
345	8D7B5D841EBB2F1D86F543E1EE2992411EFEBF89EB81D1F4
0.10	0x4918161108E9E5583001344C36E5CBBFAE082FCB62339B17590D49D61E910542
346	857E466B491F938482F0EEEAAB96005CA815F04B3222F19
- - -	0xD161102522767991A38BBAB12128C63272D341CD87E4DFA4ED6BBB39FAC5240D
347	EFAFB1D2FBD09C2A85185A03985662BC79BB9CD981D72A5F
	0xD02C6E8A78D23E32CC6CF0923D8230DE0CDE49584A4C322150BBF83FEED45EE3
348	9A91030381052B486B7D56773C33F12222DDEBDD9732B573
	0x8795BF2F6D0924DD5E45EC902C62B7FE93003FA88A074D58C63A481D739FD9EC
349	E7926302BC208612BD816C0A148DDE9A88574C10BA1F7F0
	0x5FA681BD81873D443FA3BFC79D96179C9B8C72371FC803C012F190F7975CD36B
350	85ACE2BAAE740E3E2FC2E844E5A09B54102C94D143818934
	0x18092A63122795241465BD8C13B9F02A1726C5FD0FED14D4A8F056FB244AEB04
351	2E9A5D3BEAF867AA7B3B1153C4A65BF558765B826278FFE4
	0x8AB3C2B4CD1C59AE1F5EADE89363B7B8BE5EB1FB9D5973995A4C80DFDEB762B5
352	A96E1B61096207634A7917E0A5396A49F2966A00E0E75CE1
	0x38D515FA35B3782E7629D19DDC272D62FF4274783FD34DFA4B0125FD0B38A59E
353	855210914D5B9677F7A723BB5F4012B37E639C704CA15378
	0xE862D73E25A3522EEC72AC12AA3306B60826668F61D6B3342AE98CE686E40841
354	A47330B21854A4272DAD25C982E838020DF15EF0CE43C78B
055	0x35BAB824ABAB716D8F7059FF2F870012F667115B31035221A22754C51897AE83
355	A166F05EDC5924E9D8CF007855C4D94AEC84CC40C889BBC4
250	0xAF96969E5C3D1795AF7F265C203080640502ECFABA68264EDC7BEBC9276C592E
350	25A13899FC9901D1342FD0C022452BE3C2E9960614A74369
957	0x9D899D1034CBAEF9A94D0F5C7024E01307DDA2907F00E6C579AC558E78271505
597	52BD3904F66C04B8D43EA891440B6D9BDE98E2322921BAA6
950	0x98FD943BE3E2AA3F827E7582F96E36BA89EC2B21595E459381C5B21952930334
200	09F23AFF48755EEE8231C78D286499EDCF1D96C49FB3E012
250	0x8E40088EE9FB5B3D4F71C39FE7C8519D0675517E9F31E7DFC540F42261F383CA
209	3A28B5423E132B0F660AA1A95AC3D7942815FB613175DB7C
360	0xEDB18A270BDF073EB1A9F9914C8B744CF86F56B69D6B5199F0D3692F8F50DEFF
300	CFAA194B70E782059B9F3D5A897CF6687393255D50AD31F7
261	0xADB56AE726DB2231C8A33147EFACECD3E4953760544B84E27534AE57DDAAF804
301	5FD5B78730197EC725AD5300EB8A15439B44E4D248D967FB
369	0xBCC02A569E9DE5DF746E07477E4E846B4923F7BE7FE941F5808331784DC766B3
502	6CF5667BFFBE22F21FFA6F995142ACD11A3C72E4955C0944
363	0xD122DC6185E2D0F189CF688454FBBDAB6DFFA69E87DB6DE6E26B7B7D9FE7CF67
	63DA23090B9540C3C9AC9FFBBEC4D0B3DF83FA7C8C8010AC
364	0xE7CA63A290FA805C2BA8C70FC725F93859317E52038D8E308CB89DC26280116B
	F9791675869E5187C08A00A321EB43437201636A8CFB48A8
365	0x2BC14757BCEC53C6A623367DAA7FC25C8746B4DC6849FB2597115E2636E7B838
000	CCD5B7729139F34A2B7502FF074650C50F7D1020D9B55DF1

 Table 4. Continued from previous page

i	μ_i -value
900	0x48E6C1D7305649FB0B942DB92F3C982D78C7903F331A16682506681EB6CC7045
366	BE3D621F306C762417A0E067FA09191E788F0BDA957D5D25
367	0x936AACCAD27929CBE885911D13DF846BCF58D1844E5A834813E7E95ED3DE5FD2
	8F818D6EF23FCF27312EAEAFFA98841F500BFC678EE0D17A
960	0x65C96228EC75E752EFB5603A3F2C0FD8DF65766226A19576AB188D6E0B1E1E71
368	57CD8B5C4E02B40DE74E873301E4C4AE16F889661CE8253
369	0xB4BEA1C62CE0B60191325B896D080A35E8EC0EDC4E416B3FF7AAE28F241E7F54
	D220711DF7382336DBF211F0D2D3F6D3159D24BF3EBF7E98
370	0xD5DAF4AEC3848A7BCE5DA93F69452FF4A7F70F7A35CF4C3C0A78BB9006C98D64
	CA373493EF2FAC4682D2ED9EB3482C87438A68DC1C1EF229
971	0xB50FF08DC3F07034EC933190480F6EBF89006176C650760A32A3CA8CC0EC69F2
571	7A85BE1A0E51953DC0CE6A6A5F180A5CD9067B054395BACA
279	0xAA760CC4A14CB969A3769D6D6FC09CFE62CA9BD77B6A5A8FF9AD8DF9F9B7791E
512	0D5BEE04B36DD7AE153C9A1EB8ACC9F68AEDF19918E223BE
373	0xD9C9A81B9881E368BD7DBC4FB83F1A1DC5D82E1924F6D4CE58C47C8F8F0DDE2E
	D5AF00CF1F73752C490CA5F2D3B1A2A997CD70453FFE061C
374	0xA5A89CFD1689D2CD9707B20CE09C9F596EF91014A9DFA2EA5FEE707B72CE9CD9
	B9F8CA978CCBCC8062C15E7138B98DD0E7E4386C24789539
375	UXA1E22C361636074B160867998934039CC7BA079C0A9A19C5F9E18EC3182EF702
	00280908118/CAC4/E32F/C9E9089985E2DA38/C59F1015A
376	UX240A00B25BFD97DDEA754BD501A54CF140E81EA4D7879DD88118050CFD9A9F00
377	048587F4664750D828F840FF051515937FF4D31873FF1172
	0xBAC745E9CD9E0871DD643A25A687C67D2953D5A824C547E28B1E3D43822AB197
378	492F1B6C54F6CA2A90D1E406393EE5E8B8FD6AFC3117D4D5
	0xA73CD1ADE402CEF752BB376A4B84607EC6984F4CEA4D91F74981DB3CC7616868
379	42364A4E49D371E31EC03E71369EE3E631048D7A136D7237
200	0x3A70C297727A3B3CC3C13112C107A8422726B900F5C398E979D24FA00EB8C3EA
380	5D3644513808555F98ED3B7329ACA9E50CF1E808F82D0651
281	0x1019FA21527837DFDEB736CAFCFF2339F01D9D5C002A9E95199804DF14EADA9F
301	53AF299766F5F23A6D13E2AECD453CC7872FA9BC32BAB2F4
389	0x59831415A0D65676C2009ED1D09174379FEC489A5A54294B1DF0691A356C0A15
002	4280B83B46C8BCD7609DD4743485669BF7F2216274732050
383	0x4DAE519EF2227F003C1947E4DA3EFE9DE0925C364F9DF220287E65079814DAE1
000	D759464B4692A9E29F4B6A06568C1E6F1DBD07232022F8C2
384	0x21B0E9D04CC671AB219128A1633FEBB37CDD1F55BB2BED44C8BDEE1F0AEEFFE9
	E8BC7A57B467240ABDF6F1FBA6215ED8CCCCADB6101B8CBE
385	0xB59F955EFB6E5D6D511C6198C509E5D9F1F357BA032B9AEA8BD7DD7EEBDF7C2E
	067283A84341789B161AEDE414F6F9FD7BA489EE2B77C9AD
386	UXDU4E6EB329216D15148AB94C3B4EE26AC3504F26F78D8F52A4021054AE8C7F48
	001U3R0041008195308308488F10U3U110425ER5951EE223
387	
	D0x0V0FEDD1EDX20DF40FEX310537505660D7097057052024040 0x0E2011E36010E3E407EE2710537505660D7097057052024040
388	VX3F001E20013E3E431FF0113331303000010019F3ED3404340EF2D0DB3F204203
	LALOOUGAROUADD TO TAN TO ODT OF TEO 40000000 A3

 Table 4. Continued from previous page

i	μ_i -value
389	0xB002D58DCD6FF2CAC5F418B30C50863956CF0DE88029133D31987BF41AEAF1CE
	B32B07D80AFE39A95CC447A926E560D08EB528B0AA9A16F8
200	0xC93043ED75F04145A2407A24EC122C1D6734D717E5CBC2413E29C4663B04E509
390	A63637B7AA769373465BB99D41D62442E46A1A6DAC3F39BF
391	0xD7D803C16B0130FC7352DE2F4D4567653D47C6B544F31FC0FA2BF0A1DFD31B71
	080434B4A737EF1B0DF29542D7B2A4DDBC0254AD5B47F680
302	0xA6102D891A04C7CB223C6077C31F97EF6E6A12676C5776EC1AD82992329F509F
392	F8F8632A891E365D742471CBFC5834E53E0F17013E55671C
393	0x8F9A7422CFDB7AC324358B347ABDEE7F523DFF1423145F438D6F3A5313667A6E
	582AF8E7FB0D86E7DB1C6B70D1AB835D653CD91626A9F512
394	0xCBB0EA8B9F683C9361A3D25BA68E1C470D2AEA7F3FEA7BDC0961B625CC8C701A
	78509A88944ED7B94F05D4801DBF0BEE787D4E39E5FC20DB
395	0xFB86B53B79BA2DB73B946CE6E82AB08DDBDD1EF812C57ACC82B93D9E1D3B44E3
	40DCCBCDAADC43414551F787ACE4E03A2C4C8BAE190254FF
396	0x93CDC4CE4CE81FFABB47EB8797B210A0F3FF1D0547CF88FFE65252435626A86A
	81CE0F414E1ED8946A6EA616ACB786902B85CD6CDD138882
397	0x1C54236F2D09633EA27930835A40C8EC990F4AC3C528C60151ED537674250744
	EF861837ECF93A72654A129C7D290B59B37929898DF511F4
398	0xF24F8142A8826DAB8A21FC87DB3289A0CD615A3082E15B55F5C35365E7A759BD
	0BE764C10FF5C27AA0FD50857E2E8366877E77301C3B6F5C
399	0x2AAB9/3F28ECA18BBABA1/F53B4BD2F8DD/FCFCA4E6AE1324/ABFDAC4/240CFF
	B/2515FE/40146D5/B04D15AA1/15DBABF9656F61888EBB3
400	0X9F30005BBA386C19625822EF4047D672B56FDB237E9CAB887B9A918D6D4CA062
	41C3B23C1B7473C94AUC39C87D044D24F204B3C03EC93631
401	
	9ED39D004AD3229AE4CD17E3F39313E4DEDFAEE39D3D0D003
402	7FCR03883F45207943210036CR4315F9D076F65C6B47FD3F
	$0 \times 3F22012D042FB9094F424D11F3F424B5CF2FDFF8C3CF54D3318564B5F70B4402$
403	F7F575645CFCF284894433C53011008937287F6223444F8F
	0×4 D0949025729FF944CC7FFD2BF72D6B5F9D0CF44B701BD35C4CB9FC2B65781FF
404	C6B97D4CE1A2FAB71590B23DFDBA2488BAB5FD507DFB1641
	0x8F84333F4299476F39D6152A646BA3086B55C8FAED385AE1074E0C3E54A98256
405	6E623003678A05C7B61867B037A8D98C0BAF6BBF1B78A527
	0xB7CF10A103D2CF6CC89384263E66943A27C1C96E8B2F356092AE5039FF8CF97E
406	C621673413D2CEB0FEC3DA1EC4E1103A72C5A40E812945BC
40-	0x7E5CFE739CFFA62DACA6A5E524400F5B47385577AC14BF985A0929D7FCCEB483
407	3472CF718BE0E2D9F975B2340D078188441773C5F619DA64
400	0x95C53612CC00A26ABF9CC38E0965B3CE832C37E087A3059C27595BECADF1EEF1
408	7A46BE9A0BB5D9AC507216D9F838CCAF938CBCB268CC331E
400	0xF01BEE4E06B3606F103C9947CF88A7BE313E8B54CE012792F9EF97A43E13EE81
409	E1E43C6226E0A3B2AC5354082B6B5B232FEB3C9C14021136
410	0x35C8A36A8E2AF13FEEAD9B1F4C428637E93330E193150F73EC81C46507395169
	796E6316EFC282F0A8655FFA091CA3FE73F6E622CF664959
111	0xE9C3347045696AA3D5D379C833CFDA1476468B14850E8938BF78A913ABB99F31
411	40EBAA2FE7E1EBF4CDDC3AAB6AE406B2788E9CD2DDF1491E

 Table 4. Continued from previous page

i	μ_i -value
412	0x67BCDF7F49CF7289C8A04CB9E270A73C38D8EEA1381804CA56506972E9605518
	6DBE32E6F822004A42CCBE3AFBE06BC8F4E9CC24E978E75E
419	0xDD9CCF67FCC6EDC721BE507C7100FE2A2FA5AF5DCE653751F617FE7032F6C3DD
413	ED7B31CF61244DAF740C9C26B63199A8E336B2BD0BCB171D
414	0xB7280CCF14A3C735AEC17A35B6CEADF2728E620E9BFAC92A070431263F6A2952
	0A57F0B6F76D9C99CADE4C3587620BEBD801B1D0BBF83E26
415	0xCEC856746A30BBA4241FBFCAF292923D9B3803DAA1FD4D6C01D5F5B27E71D9C9
	AD4EB138414ECC7A5B7A33AF99375DCF9724D2203A32F1A6
416	0xDD246D4EE5CD3DA4C5C7C8311299430BC705ADF1918A7303B234E7EFC1A3CF0E
	E381A6EBF45D07E9A6AAC755F3EBF6BE8579B1C3C9EDF427
417	0x7AD2CDBF1FCF7FE793737815C6861253A397D77693B49E82106E0240CB980FF1
	398E83D477CDE6A3576BEDEB119D1AB5AC75452C95D05461
110	0x96F1BC9DFEF6D18366E65E3D293FEF7749C9EE27F8E0803A39EFA627EB250413
410	F9923D1B64BD246376C1564169C3E13A49CAFF69D5DC21C2
410	0x24E3385B78F76CC96C0DAA465EDD809FCCA26F7C0CF999608E297B53A3E41E17
419	37D7F0E4A72CCE668ADC2D62528C29C7F963F33C2699C66B
490	0x46B40D49641104883BA72A21F06FE9682E6102C267A23F4D3BCD500C077226C5
420	B71E5A0915CDDBEDD89B1F3BDF9682AB7672E1082F6A754B
491	0xF7D4A532E0BDB8BE4C86BB09B1A3307A0EC835AA7F064B7EE8CB9AFECB515236
721	36BCB03A4FF0BC7CB07E6EF30A45CB17F09F5A2BC5F38563
422	0x292183C704FF8058A5736A6BD19363B2D933A7C2619C217237308C63B20EB1DC
122	0E7E96C7507C98E982F251B16D2B0FD52CB2224E6837507D
423	0x87943E6E1C7674DDF91C4DBA41F9F492BFDFE3A49E1CD1434EA88DC97808CFFF
	716890283BCB9B28B6A9E6B390E8176BC958C93999BC0429
424	0xECE649540C6E5096D8BEE4DE0FABC32A319A9C2E558E53E47C713046F19C22F1
	65F2A6EF4DDB5DD88AF28CBCB9AA196B4DC587FBD7C5DAE4
425	0xF32C0C28C993FCF3ECD16207D8F4643D6CC0C53635454EDB4EACFE6FCD7BAF74
	BAUEF 181F 0A49D4564913175866F ACAEC2DDADDAA55A1D3C
426	UXC4136809417D002EE7F02D4401952026730607C93990405BB51035B2DAD3AF50
427	0XF2639B551910B2980D23DD9109D6A215EB681B678C1A6E00177664F2862FC5D6
	8FBE5B9B2B197DA417EC2E573C316109CA364FC9CF7838BE
428	UX03BEUC077707B0750U225770A7B12B937157F41AB53F3CEUC00A9C50237A9170
	3B0D1AB3AA12B014300903A074FB376041FA3A2AEA931F31
429	0X0/F/0ZD010039BEC/3D01B39/3/95585/1469DCFD9C6FC9A4FEFAD1E0C352DAE
	2A1A7A095F040R02999R000002D4R00R00150550520E9D07
430	0X25200A40ADAC0707F5A75052E509157155604050777A00A0094552C1D5FDF50F
	200E39209C0B02501E2D192202D952B027040C921420752
431	0XDDA34D32047CEFA0300330ADA034A3E00439A0FFD2E512C530E5419344E42C5C
	15F1ED02E0F05922CA/010542DED540D2DD50/1A26400DA
432	0X917D70F000CD951DAEE00E0E11CFAD550D090F25DDA72120910200959F1D0551
	0xF9631F1F7444CDRFF02RBCCF04F01R52R8CFFF2260F904FRR64364C41FF44F36
433	4C88991F87434FF44F503586F86554902C9D1480D05C19D4504041EE44E30
	0xCB66FB824ED569734D694D8551B4FC1441479191934F5D489BC05F2B8542BBB8
434	0C06935F759F6078221ADDDB0EFDDB1BA931B6B294953FE1

 Table 4. Continued from previous page

ı	μ_i -value
435	0x877BEFAED8B5B4896F0E142F5B6FE869196FEA8102EFF569D4365D256F7F4C48
	822C41DAB442B72AD603244F764F41FDAB6E74C451C7BE7C
436	0x12D4CD008282F3664E220B875668A36EEAFE54DB1FA02108DBE2D10A1150941E
	196E18767610AA0043BFF75EDC6FC1379001E0C98BA091E9
437	0xA2EE7213ABE1603769C7CB039FFA9A0759C358242036419A6AFD9C92B447F16D
	2EA782906F5E4167DE65351BC7DCC018F8E04C6477248E25
438	0x325B1F730AA00D1CEE639DF1CFDD1B57C249C98364C91BD3ED5B0501EE8C8A34
	6B83F36BDFDAE8210627D40683171DF61A378ECB13FB7874
420	0xDC9825BF94786F39DA7D545A5007D930D9DC80DA75C64DF6A3A87271C76FF7FF
439	3BA8CB2CDE2280BC8844ACDDE923395A99EBF56AC01ECE29
440	0x2A53F4945A42F3BB857D3BE7611536E119C855A7DA70B5D43CDE83700430947D
	EFAEDB57FE4FFFD8379B9C16C7160A7372110FFB44622601
441	0x36E15965BB060DBE20264548E461885B3F4454548BAF645AFB661F3AA44AFA6D
	0FC82594CE8DF57D99988D35ED50CEC07723E1830BA66014
442	0xB29ACE8138F93EEFC8E377DCE679C7A710B94C028C7AB491EA6430B0115D69BB
	AB7E0144B7EC9E6B6F4437317559249E1B11EEE3A3CE98B7
443	0x6EA17BF89F18CE6959BC1193353320F961BB16BF6E5CBDCD49DFBFB2DB90FF92
	C10800F0C79204ED245F195C6B933A89E1AFB410D0761291
444	0x7B5C2EC3A449966C008AAD4DD31A767F75252EB78D1402EC8CAE5968A18837A6
	E2E5909A1A89BF3E110B7BC956DE4DA1D299E6F8ADAFF4A1
445	0xDD0260321B81E3A34E7CB684F509982CBAC9A0FC4B10C817E10FC664D84D9D50
	F433701A109A262B4085B08889C3E363B11401A8DAF75326

E Magma code

For the sake of illustration, we present in the following script an implementation in Magma of the X25519 function based on Algorithm 5.

```
/* X25519: fixed-point scenario */
clear;
/* field */
Fp := GF(2^{255} - 19);
/* curve */
E := EllipticCurve([Fp | 0, 486662, 0, 1, 0]);
h := 8;
a24 := 121666;
/* base-point */
P := E! [9,
   147816194475895447910205935684099868872646061346164752 \setminus
   88964881837755586237401];
/* point S of order 4 */
S := E![1, 48802004052532134862652268456126542835229456083994414\
    501085850622543968879637];
/* P - S */
D := E![0x215132111D8354CB52385F46DCA2B71D440F6A51EB4D1207816\
    B1E0137D48290,
    0x5199331F1F5630BBFA49B1B1B02B207B493D0A63BB4F8F01C0\
    11242F9C6E9E7C];
/* pre-computation of the constants (u_{Pi} + 1)/(u_{Pi} - 1) */
M := []; aux := P;
for i:=0 to 251 do
   m := (aux[1]+1)/(aux[1]-1);
   Append(~M, m);
   aux := 2*aux;
end for;
/* X25519 */
function X25519(uP, uS, uPS, M, k, a24)
   /* init */
   K := IntegerToSequence(k, 2);
   U1 := uS; Z1 := 1;
   U2 := uPS; Z2 := 1;
   s := 1;
```

```
/* main */
   for i:=1 to 252 \text{ do}
       /* timing-attack countermeasure simulation */
       s := (s + K[i+3]) mod 2;
       TU := s*U1 + (1-s)*U2; U1 := s*U2 + (1-s)*U1; U2 := TU;
       TZ := s*Z1 + (1-s)*Z2; Z1 := s*Z2 + (1-s)*Z1; Z2 := TZ;
       s := K[i+3];
       /* addition */
       A := U1 + Z1; B := U1 - Z1;
       C := M[i] * B;
       D := A + C; D := D^2;
       E := A - C; E := E^{2};
       U1 := Z2*D; Z1 := U2*E;
   end for;
   for i:=1 to 3 do
       /* doubling */
       A := U1 + Z1; A := A^2;
       B := U1 - Z1; B := B^2;
       U1 := A * B;
       A := A - B;
       Z1 := a24*A; Z1 := Z1 + B; Z1 := Z1 * A;
   end for;
   /* projective to affine */
   Z1 := Z1^-1;
   u1 := U1 * Z1;
   /* end */
   return u1;
end function;
/* Diffie-Hellman: key pair generation phase */
/* Alice (dA) and Bob (dB) private keys according to Sec. 6.2 of
    RFC7748
  after the preprocessing described in Sec. 5 \ast/
dA_RFC := 0x6A2CB91DA5FB77B12A99C0EB872F4CDF4566B25172C1163\
        C7DA518730A6D0770;
dB_RFC := 0x6BE088FF278B2F1CFDB6182629B13B6FE60E80838B7FE17\
         94B8A4A627E08AB58;
/* Alice (QA) and Bob (QB) public keys according to Sec. 6.2 of RFC7748
     */
QA_RFC := 0x6A4E9BAA8EA9A4EBF41A38260D3ABF0D5AF73EB4DC7D8B7\
         454A7308909F02085;
QB_RFC := 0x4F2B886F147EFCAD4D67785BC843833F3735E4ECC2615BD\
```

```
3B4C17D7B7DDB9EDE;
/* alice */
QA := X25519(P[1], S[1], D[1], M, dA_RFC, a24);
print "chk (QA == QA_RFC)?", QA eq QA_RFC;
/* bob */
QB := X25519(P[1], S[1], D[1], M, dB_RFC, a24);
print "chk (QB == QB_RFC)?", QB eq QB_RFC;
```