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Abstract

Non-malleable commitments are a fundamental cryptographic tool for preventing against
(concurrent) man-in-the-middle attacks. Since their invention by Dolev, Dwork, and Naor in
1991, the round-complexity of non-malleable commitments has been extensively studied, leading
up to constant-round concurrent non-malleable commitments based only on one-way functions,
and even 3-round concurrent non-malleable commitments based on subexponential one-way
functions, or standard polynomial-time hardness assumptions, such as, DDH and ZAPs.

But constructions of two-round, or non-interactive, non-malleable commitments have so far
remained elusive; the only known construction relied on a strong and non-falsifiable assumption
with a non-malleability flavor. Additionally, a recent result by Pass shows the impossibility of
basing two-round non-malleable commitments on falsifiable assumptions using a polynomial-
time black-box security reduction.

In this work, we show how to overcome this impossibility, using super-polynomial-time
hardness assumptions. Our main result demonstrates the existence of a two-round concurrent
non-malleable commitment based on sub-exponential “standard-type” assumptions—notably,
assuming the existence of the following primitives (all with subexponential security): (1) non-
interactive commitments, (2) ZAPs (i.e., 2-round witness indistinguishable proofs), (3) collision-
resistant hash functions, and (4) a “weak” time-lock puzzle.

Primitives (1),(2),(3) can be based on e.g., the discrete log assumption and the RSA assump-
tion. Time-lock puzzles—puzzles that can be solved by “brute-force” in time 2t, but cannot be
solved significantly faster even using parallel computers—were proposed by Rivest, Shamir, and
Wagner in 1996, and have been quite extensively studied since; the most popular instantiation
relies on the assumption that 2t repeated squarings mod N = pq require “roughly” 2t parallel
time. Our notion of a “weak” time-lock puzzle, requires only that the puzzle cannot be solved
in parallel time 2t

ε

(and thus we only need to rely on the relatively mild assumption that there
are no huge improvements in the parallel complexity of repeated squaring algorithms).

We additionally show that if replacing assumption (2) for a non-interactive witness indis-
tinguishable proof (NIWI), and (3) for a uniform collision-resistant hash function, then a non-
interactive (i.e., one-message) version of our protocol satisfies concurrent non-malleability w.r.t.
uniform attackers. Finally, we show that our two-round (and non-interactive) non-malleable
commitments, in fact, satisfy a even stronger notion of Chosen Commitment Attack (CCA)
security (w.r.t. uniform attackers).
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1 Introduction

Commitment schemes are one of the most fundamental cryptographic building blocks. Often de-
scribed as the “digital” analogue of sealed envelopes, commitment schemes enable a sender to
commit itself to a value while keeping it secret from the receiver. This property is called hiding.
Furthermore, the commitment is binding, and thus in a later stage when the commitment is opened,
it is guaranteed that the “opening” can yield only a single value determined in the committing stage.

For many applications, however, the most basic security guarantees of commitments are not
sufficient. For instance, the basic definition of commitments does not rule out an attack where an
adversary, upon seeing a commitment to a specific value v, is able to commit to a related value
(say, v − 1), even though it does not know the actual value of v. To address this concern, Dolev,
Dwork and Naor (DDN) introduced the concept of non-malleable commitments [DDN00]. Loosely
speaking, a commitment scheme is said to be non-malleable if it is infeasible for an adversary to
“maul” a commitment to a value v into a commitment to a related value ṽ. The notion of a
concurrent non-malleable commitment [DDN00, PR05a] further requires non-malleability to hold
even if the adversary receives many commitments and can itself produce many commitments.

The first non-malleable commitment protocol was constructed in the original work of [DDN00]
in 1991, based on the minimal assumption of one-way functions. The first concurrently secure
construction was provided by Pass and Rosen in 2005 [PR05a]. Since then, a central ques-
tion in the study of non-malleability has been to determine the exact number of communica-
tion rounds needed for achieving (concurrent) non-malleable commitments. Significant progress
has been made over the years [Bar02, PR05a, PR05b, LPV08, LP09, PPV08, PW10, Wee10,
Goy11, LP11, GLOV12]. The current state-of-the-art is that 4-round concurrent non-malleable
commitments can constructed based on one-way functions [COSV16a] and 3-round concurrent
non-malleable commitments can be constructed from subexponentially-secure injective one-way
functions [GRRV14, GPR16, COSV16b] and very recently can be based only on the polynomial
hardness of either DDH or Quadratic-residousity or N th-residuosity [Khu17].

On the Existence of Two-Round or Non-Interactive Non-malleable Commitments.
The situation changes drastically when it comes to two-round or non-interactive (i.e., one-message)
protocols: Pandey, Pass and Vaikuntanathan [PPV08] provided a construction of a non-interactive
non-malleable commitment based on a new non-falsifiable hardness assumption, namely, the exis-
tence of an adaptively-secure injective one-way function—roughly speaking, a one-way function f
that is hard to invert on a random point y = f(x) even if you get access to an inversion oracle
that inverts it on every other point y′ 6= y. This assumption is not falsifiable since the inver-
sion oracle cannot be implemented in “real-life”; additionally, note that the assumption also has
a strong non-malleability flavor—in particular, the assumption would clearly be false if one could
“maul” y = f(x) to e.g., y′ = f(x + 1). As such, this construction gives us little insight into
whether we can obtain two-round “non-malleability” from “pure scratch” (i.e., from “hardness”
alone). Indeed, a recent work by Pass [Pas13] showed that there are some inherent limitations to
reducing 2-round non-malleability from falsifiable assumptions. More precisely, Pass shows that if
there exists a 2-round non-malleable commitment that can be proven secure using a polyomial-time
(or even super-polynomial, but security preserving) black-box reduction R, then the reduction R
can itself break the assumption. In particular, this rules out basing 2-round non-malleability (using
black-box reduction) on falsifiable polynomial-time hardness assumptions.

Towards overcoming this barrier, a recent work by Goyal, Khurana and Sahai [GKS16] presents
a two-message protocol in a stronger “synchronous model” of communication (and achieving only
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a weaker notion of notion of non-malleability “w.r.t. opening”). In this work, we focus on the
standard communication model (and the standard notion of non-malleability) and explore whether
super-polynomial-time hardness assumptions (and using non-security preserving reductions) can
be used to overcome this barrier:

Can we have non-interactive or 2-round non-malleable commitment from
super-polynomial “standard-type” assumptions?

1.1 Our Results

Our main result demonstrates the existence of a two-round concurrent non-malleable commitment
scheme based on sub-exponential “standard-type” assumptions—notably, assuming the existence
of the following primitives (all with subexponential security): (1) non-interactive commitments, (2)
ZAPs (i.e., 2-round witness indistinguishable proofs) [DN00], (3) collision-resistant hash functions,
and (4) a “weak” time-lock puzzle [RSW96].

Primitives (1),(2),(3) are all very commonly used and can be based on e.g., the discrete log
assumption and the RSA assumption. Primitive (4) deserves some more discussion: Time-lock
puzzles—roughly speaking, puzzles that can be solved in “brute-force” in time 2t, but cannot be
solved “significantly faster” even using parallel computers—were proposed by Rivest, Shamir, and
Wagner in 1996 [RSW96] (following May’s work on timed-release cryptography [May93]), and have
since been quite extensively used in the area of timed-release cryptography. A bit more precisely, a
(T (·), B(·))-time-lock puzzle enables a “sender” to efficiently generate a puzzle puzz with a solution
s and a designated “level” of hardness t = t(n) where n is the security parameter, so that: (i)
the puzzle solution can be found in (uniform) time 2t, but (ii) the puzzle solution cannot be
recovered by any B(n)-size attacker with (parallel) running-time (i.e., circuit depth) T = T (t)
(where T (t) << 2t determines the “hardness gap” of the puzzle). Typical applications of time-
lock puzzles only require security against polynomial-size attackers, thus it suffices to let B(·) be
any slightly super-polynomial function; however, they require the hardness gap to be very small—
namely, T = 2δt or even T = δ2t (i.e., the problem is inherently “sequential” and the honest puzzle
solver is essentially optimal, even if you have access to parallel computers). In this work, we will
need security against subexponential-size attackers, but in contrast, only require the existence of
a time-lock puzzle with a relatively “large” hardness gap—we only need the puzzle to be hard to
break for time T = 2n

ε
for some constant 0 < ε < 1.

Theorem 1 (Main Theorem, Informal). Let T and B be two arbitrary subexponential functions.
Assume the existence of non-interactive commitments, a ZAP, a family of collision-resistant hash
functions, all with subexponential-security, and the existence of a (T,B)-time-lock puzzle. Then,
there exists a 2-round concurrent non-malleable commitment.

The original construction of time-lock puzzles due to Rivest, Shamir, and Wagner [RSW96] is
based on the hardness of a very natural strengthening of the factoring problem referred to as the
repeated squaring problem: given a random RSA-modulus N = pq, and a random (or appropriately
chosen) element g, compute

g22t

mod N

Clearly, this can be done using 2t repeated squarings. The RSW assumption is that this task cannot
be significantly sped up, even using parallel resources, unless N can be factored. Given the current
state-of the art, the repeated squaring problem appears to be hard for strongly exponential parallel-
time: T (t) = δ2t (that is, basically, no non-trivial speed-up over repeated squaring is possible);
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indeed, this strong assumption is typically used in the literature on timed-release cryptography (in
fact, several significantly stronger versions of this assumption, where additional leakage is given, are
also typically considered—see e.g., the “generalized Blum-Blum-Shub assumption” of Boneh-Naor
[BN00].)

Since we only need a “weakly”-secure time-lock puzzle where the hardness gap is large, it suffices
for us to make a significantly weaker, subexponential, repeated squaring assumption, that is,

2t repeated squarings (modulo N = pq) cannot be done in parallel-time 2t
ε

More formally:

Assumption 1 (Subexp. Repeated Squaring Assumption, Informal). There exists subexponential
functions T,B and a constant c such that for every function t(·) such that c log n < t(n) < B(n),
the following holds: For every size B(·)-attacker A with (parallel) running-time (i.e,. circuit depth)
T (t(·)), there exists a negligible function µ such that for every n ∈ N, the probability that A,
given g,N where N is a randomly chosen n-bit RSA-modulus, and g is a randomly chosen (or

appropriately fixed) element in Z∗N , can compute g22t

mod N is bounded by µ(n).

We remark that, in our eyes, the subexponential repeated squaring assumption is milder than
most “standard” subexponential assumptions used in the cryptographic literature (such as e.g., the
subexponential DDH assumption, which is a decisional assumption), and has a stronger “win-win”
flavor than most cryptographic assumptions: Repeated squaring is a problem that arises naturally
in the design of algorithms (e.g., any improvement on repeated squaring would yield improved
efficiency for the verification of RSA-based signatures.)

We finally mention that the time-lock puzzle needed for our construction can also be based on the
existence of a parallel-time hard language and indistinguishability obfuscation (with subexponential
security) by the work of Bitansky et al. [BGJ+16].

Towards Non-interactive Non-malleable Commitments. We also address the question of
whether fully non-interactive (i.e., single-message) non-malleable commitments are possible. We
show that if we replace the assumption of the existence of ZAPs (i.e., two-message witness indistin-
guishability) with non-interactive witness indistinguishable proofs (NIWI) [BOV05, GOS06, BP15],
and the existence of families of collision-resistant hash functions for a single, uniform, collision-
resistant hash function [BP04, Rog06], then a slightly modified non-interactive version of our proto-
col satisfies concurrent non-malleability w.r.t. uniform attackers: Basically, the first message of our
two-round protocol only contains the first message of the ZAP, and the index of the hash function,
so by relying on a NIWI and a single hash function (secure against uniform subexponential-time
attackers), the first message can be skipped.

Theorem 2 (Informal). Let T and B be two arbitrary subexponential functions. Assume the
existence of non-interactive commitments, a NIWI, a uniform collision-resistant function, all with
subexponential-security, and the existence of a (T,B)-time-lock puzzle. Then, there exists a one-
message concurrent non-malleable commitment secure w.r.t. uniform polynomial-time adversaries.

We leave open the question of whether we can get a non-interactive non-malleable commitment
w.r.t. also non-uniform attackers.
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Achieving Chosen Commitment Attack Security. Canetti, Lin, and Pass [CLP10, LP12]
strengthened the notion of concurrent non-malleability to security against Chosen Commitment
Attacks (CCA) for commitments, analogous to the extensively studied notion of security against
Chosen-Ciphertext Attacks for encryption schemes. Roughly speaking, a commitment scheme is
said to be CCA-secure if commitments remain hiding even against attackers with access to an
inefficient oracle, called the committed-value oracle, that “breaks” each commitment sent by an
attacker using brute force and returns the (unique) committed value as soon as the commitment
is completed. In particular, CCA-security implies that it is infeasible for an attacker to “maul”
commitments to a set of values into commitments to a set of related values, even with the help
of the committed-value oracle—CCA-security is stronger than concurrent non-malleability. It was
shown in several works [CLP10, LP12, Kiy14, GLP+15] that CCA-secure commitments are useful
for constructing multi-party computation protocols with concurrent and composable security in
the plain model from polynomial-time hardness assumptions. In a recent work [BHP17], they are
further used for constructing round-optimal, 4-round, multi-party computation protocols. We show
that our two-round, and non-interactive, non-malleable commitments. in fact, satisfy the stronger
notion of CCA security.

Theorem 3 (Informal). The two-round non-malleable commitment scheme of Theorem 1 satisfies
CCA-security, and the non-interactive non-malleable commitment scheme of Theorem 2 satisfies
CCA-security w.r.t. uniform polynomial-time adversaries.

A Remark on “Sub-subexponential” Security. Let us finally mention that although for the
simplicity of notation we rely on subexponential hardness assumption, our actual proof reveals that
we only need to rely on “sub-subexponential” hardness assumption for all the primitives we rely
on: namely, we only require security to hold w.r.t. attackers of size (and depth) 2n

1/log logn
(and in

fact, even slightly less).

Why Time-Lock Puzzles? Our Ideas In a Nut Shell. In cryptography, the power, or
resource, of attackers is usually measured by their running-time when represented as Turing ma-
chines, or equivalently by their circuit-size when represented as circuits. Time-lock puzzles, and
more generally timed-release cryptography [May93, DN93, JJ99, Nak12, BN00], on the other hand,
measure the resource of attackers by their parallel running-time or equivalently by their circuit-
depth. Our 2-round non-malleable commitments crucially rely on the synergy between these two
types of resources. The key idea is, instead of measuring the hardness of commitment schemes in a
single “axis” of resource, measure the hardness in two axes, one refers to circuit-size and the other
to circuit-depth. By doing so, we can construct a pair of commitment schemes Com1,Com2 that are
simultaneously harder than the other, in different axes. In particular, Com2 is harder in the axis of
circuit-size, in the sense that Com1 admits an extractor of size S while Com2 is secure against all
circuits of size S; on the other hand, Com1 is harder in the axis of circuit-depth, in the sense that
it admits an extractor of depth D (and some size S) while Com1 is hiding against all circuits with
depth D (and size S). Such a pair of commitment schemes that are mutually harder than each other
already has a weak flavor of non-malleability, which can then be amplified to achieve full-fledged
non-malleability. More precisely, we transform the aforementioned commitment schemes, which are
non-malleable w.r.t. short “tags” to that for much longer “tags” (explained below), while keeping
two rounds. A step in the transformation lifts non-malleability in the stand-alone setting to that
in the concurrent setting.
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1.2 Concurrent and Independent Work

A concurrent and independent, beautiful, work by Khurana and Sahai (KS) [KS17a, KS17b] also
presents a construction of 2-round non-malleable commitments from subexponential “standard-
type” assumptions. The results, however, are incomparable, both in terms of assumptions, and
also in terms of the achieved results (and use significantly different techniques).

In terms of achieved results, our protocols satisfy full concurrent non-malleability, whereas
the KS protocol only satisfies “bounded-concurrent” non-malleability—which is a weaker notion
of concurrent non-malleability where the number of sessions is an a-priori bounded by some pre-
determined polynomial in the security parameter; in particular, the communication complexity of
their protocol grows super linearly with the bound on the number of sessions, and the complexity
assumptions they rely on need to be parametrized by it. Additionally, we also present a fully
non-interactive protocol, whereas their technique appears to be inherently limited to two-round
protocols.

In terms of assumptions, the key difference is that KS does not rely on time-lock puzzles but
rather on the existence of certain 2-round secure two-party computation protocols (with super-
polynomial-time simulation security); they also claim that such protocols can be constructed based
on the subexponential DDH assumption, or the subexponential QR assumption. These assump-
tions are incomparable to the subexponential repeated squaring assumption. While DDH and QR
are clearly more typical assumptions in the literature on cryptographic protocols, as we mentioned
above, the repeated squaring assumption is, in our eyes, perhaps an even more natural computa-
tional problem that has been extensively studied over the years. On a qualitative level, it is also
a search assumption (and thus our construction of non-malleable commitments can be based on
search assumptions), whereas the KS construction (due to the above DDH, or QR, assumption)
relies on “decisional assumptions”.

1.3 Organization

In Section 2, we give a detailed overview of our approach for constructing 2-round non-malleable
commitments. In Section 3, we provide preliminaries and definitions. Section 4 presents a family of
basic commitment schemes that are mutually harder than each other at different axis, we call them
size-robust, depth-robust and size-and-depth robust commitments. Using these basic commitment
schemes, in Section 5, we construct a commitment scheme for short identities that satisfy a weaker
notion of non-malleability that we formalize as non-malleability w.r.t. extraction. In Section 6, we
present a non-malleability strengthening technique that increases the length of identities exponen-
tially, and lifts non-malleability w.r.t. extraction in the stand-alone setting to both non-malleability
w.r.t. extraction and standard non-malleability in the concurrent setting. In Section 7, we con-
struct 2-round non-malleable commitment scheme for n-bit identities, by iteratively applying the
amplification technique in Section 6 to the basic scheme in Section 5. Then in Section 8 we discuss
the robust CCA-security of the 2-round non-malleable commitment scheme described in Section 7.
Finally in Section 9, we show how to remove the first-message in our 2-round non-malleable and
robust-CCA secure commitment from Section 7 when the attackers are restricted to be uniform
Turing machines.

2 Overview

Every statistically binding commitment scheme is hiding against polynomial-sized circuits, while
extractable by some exponential-sized circuit (such an extractor is guaranteed to exist since one
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can always find the committed value by brute force). In this work, we pay special attention to the
gap between the “resources” of attackers and that of extractors. Moreover, we crucially rely on
the synergy between different resources — in particular, circuit-size and circuit-depth, which are
captured by the following two basic types of commitment schemes:

Size-Robust Commitments are parametrized versions of classical commitments: An (S, S′)-
size-robust commitment is hiding against any size-poly(S) attackers, and extractable by some
size-S′ extractor, for an S′ = Sω(1) denoted as S′ >> S. Importantly, the extractor has large
size, but shallow polynomial depth. Such extractors can be implemented using the näıve
brute force strategy of enumerating all possible decommitments, which is a time-consuming
but highly-parallelizable task.

Depth-Robust Commitments are natural analogues of size-robust commitments, but with re-
spect to the resource of circuit-depth. A (D,D′)-depth-robust commitment is hiding against
any depth-poly(D) circuits with size up to a large upper bound B, and extractable by some
size-D′ extractor for a D′ >> D that necessarily has a depth super-polynomially larger than
D. In this work, we consider a subexponential size upper bound B = 2n

ε
for some constant

ε > 0; for simplicity of exposition, we ignore this upper bound in the rest of this overview
(see Section 4 for more detail).

Size-Robust Commitments from Subexponential Injective OWFs. Size-robust commit-
ments can essentially be instantiated using any off-the-shelf commitment schemes that are subex-
ponentially secure, by appropriately scaling the security parameter to control the levels of security
and hardness for extraction. Take the standard non-interactive commitment scheme from any in-
jective one-way function f as an example: A commitment to a bit b is of the form (f(r), h(r)⊕ b),
consisting of the image f(r) of a random string r of length n, and the committed bit b XORed
with the hard-core bit h(r). Assuming that f is subexponentially hard to invert, the commitment
is hiding against all size-2n

ε
circuits for some constant ε > 0, while extractable in size 2n (ignoring

polynomial factors in n) and polynomial depth. By setting the security parameter n to (logS)1/ε,

we immediately obtain a (S, S′)-size robust commitment for S′ = 2logS1/ε
.

Depth-Robust Commitments from Time-Lock Puzzles. Depth-robust commitments are
naturally connected with cryptographic objects that consider parallel-time complexity, which cor-
responds to circuit-depth. When replacing subexponentially-hard one-way functions in the above
construction with time-lock puzzles, we immediately obtain depth-robust commitments:

- To commit to a bit b, generate a puzzle puzz with a random solution s and a designated level of
hardness t, and hide b using the Goldreich-Levin hard-core bit, producing C = (puzz, r, 〈r, s〉⊕
b) as the commitment.

- To decommit, the committer can simply reveal the puzzle solution s together with the random
coins ρ used for generating the puzzle. The receiver verifies that the puzzle is honestly
generated with solution s, and uses s to recover the committed bit b.

Since the time-lock puzzle solution s is hidden against adversaries in parallel-time T (t) (and overall
time B(n)), the commitments are hiding against depth-T (t) adversaries (with size up to B(n)).
Moreover, since the puzzles can be “forcefully” solved in time 2t, the committed values can be
extracted in size 2t. This gives a (T, 2t)-depth-robust commitment.

Next, we show how to compose the basic size-robust and depth-robust commitment schemes to
overcome Pass’s impossibility result on 2-round non-malleable commitments.
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2.1 Towards Overcoming the Impossibility Result

In the literature, there are two formulations of non-malleable commitments, depending on whether
the commitment scheme uses players’ identities or not. The formulation with identities, adopted
in this work, assumes that the players have identities of certain length `, and that the commitment
protocol depends on the identity of the committer, which is also referred to as the tag of the
interaction. Non-malleability ensures that, as long as the tags of the left and right commitments
are different (that is, the man-in-the-middle does not copy the identity of the left committer), no
man-in-the-middle attacker can “maul” a commitment it receives on the left into a commitment
of a related value it gives on the right. This is formalized by requiring that for any two values
v1, v2, the values the man-in-the-middle commits to after receiving left commitments to v1 or v2

are indistinguishable.
The length ` of the tags can be viewed as a quantitative measure of how non-malleable a scheme

is: An `-bit tag non-malleable commitment gives a family of 2` commitment schemes — each with a
hardwired tag — that are “mutually non-malleable” to each other. Therefore, the shorter the tags
are, the easier it is to construct such a family. Full-fledged non-malleable commitments have tags of
length equal to the security parameter ` = n, and hence corresponds to a exponentially sized family.
However, when the number of communication rounds is restricted to 2, Pass [Pas13] showed that
even the weakest non-malleable commitment for just 1-bit tags, corresponding to a size 2 family,
cannot be reduced from falsifiable assumptions, via a polynomial-time black-box reduction.

One-Sided Non-Malleability via Complexity Leveraging. It is well known that one-sided
non-malleability can be achieved easily via complexity leveraging. One-sided non-malleability only
prevents mauling attacks when the tag of the left commitment is “larger than” the tag of the right
commitment 1. In the simple case of 1-bit tags, this requires the commitment for tag 1 (on the left)
to be non-malleable w.r.t. the commitment for tag 0 (on the right), which holds if the tag-1 com-
mitment is “harder” than the tag-0 commitment. For example, if the tag-1 commitment is (S1, S

′
1)-

size-robust while the tag-0 commitment is (S0, S
′
0)-size-robust for some S0 << S′0 << S1 << S′1,

then one can extract the right committed value using a size-S1 extractor, while the left committed
value still remains hidden. Therefore, the right committed value must be (computationally) inde-
pendent of the left. Similarly, we can also achieve one-sided non-malleability using depth-robust
commitments, by using a (D1, D

′
1)-depth robust commitment scheme for tag 1 and a (D0, D

′
0)-depth

robust commitment scheme for tag 0, for some D0 << D′0 << D1 << D′1.
However, simple complexity leveraging is inherently limited to one-sided non-malleability, since

when only one resource is considered, the tag-1 commitment cannot be both harder and easier than
the tag-0 commitment.

Two Resources for (Two-Sided) Non-Malleability. Therefore, our key idea is using two
resources to create two “axes”, such that, the tag-1 commitment and tag-0 commitment are si-
multaneously “harder” than the other, but, with respect to different resources. This is achieved
by combining the basic size-robust and depth-robust commitment schemes in the following simple
way.

Basic 1-bit Tag Non-Malleable Commitment:
For some D0 << D′0 << D1 << D′1 << S0 << S′0 << S1 << S′1,

1The choice that the left tag is smaller than the right tag is not important. One could also require the opposite
that the left tag is larger than the right tag. The limitation is that the design of the commitments depends on this
arbitrary decision.
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Figure 1: (left) A 1-bit tag based commitment scheme: The tag-0 (resp., tag-1) commitment scheme is
hiding for circuits of depth below D0 (resp., D1) OR size below S1 (resp., S0), represented by the solid line
joining D0 (resp., D1) and S1 (resp., S0). The tag-0 (resp., tag-1) commitment scheme admits an extractor
of depth at most D′0 (resp., D′1) and size at most S′1 (resp., S′0). (right) This is a generalization of the 1-bit
tag commitment scheme to log l-bits tags, where for tag-i the commitment scheme is hiding for circuits of
depth below Di OR size below Sl−1−i and exhibits an extractor of depth at most D′i and size at most S′l−1−i.

- a tag-0 commitment to a value v consists of commitments to two random secret shares α, β
of v, such that, v = α+ β, where the first share is committed under a (D0, D

′
0)-depth-robust

commitment scheme and the second under a (S1, S
′
1)-size-robust commitment scheme, and

- a tag-1 commitment to v, on the other hand, uses a (D1, D
′
1)-depth-robust commitment

scheme to commit to the first share and a (S0, S
′
0)-size-robust commitment scheme to commit

to the second share.

Thus, the tag-1 commitment is harder w.r.t. circuit-depth, while the tag-0 commitment is harder
w.r.t. circuit-size. Leveraging this difference, one can extract from a tag-0 commitment (on the
right) without violating the hiding property of a tag-1 commitment (on the left), and vice versa
— leading to two-sided non-malleability. More specifically, the committed values in a tag-0 com-
mitment can be extracted in depth D′0 and size S′1 by extracting both secret shares from the size-
and depth-robust commitments contained in it. Yet, adversaries with such depth and size cannot
break the (D1, D

′
1)-depth-robust commitment contained in a tag-1 commitment; thus, the value

committed to in the tag-1 commitment remains hidden. On the flip side, the committed value in a
tag-1 commitment can be extracted in depth D′1 and size S′0, and, similarly, adversaries with such
depth and size do not violate the hiding of a tag-0 commitment, due to the fact that the size-robust
commitment contained in it is hiding against size-S1 adversaries.

In summary, combining the two types of commitment schemes gives us depth-and-size robust
commitment schemes: A (D ∨ S,D′ ∧ S′)-robust commitment is hiding against circuits with depth
below D or size below S, while extractable by some circuit with depth D′ and size S′, as illustrated
in Figure 1 (left). In this language, a tag-0 commitment is (D0 ∨ S1, D

′
0 ∧ S′1)-robust while a tag-1

commitment is (D1 ∨S0, D
′
1 ∧S′0)-robust. They are mutually non-malleable, because the extractor

for one falls into the class of adversaries that the other is hiding against.

The Subtle Issue of Over-Extraction. The above argument captures our key idea, but is
overly-simplified. It implicitly assumes that the size- and depth-robust commitments are extractable
in the perfect manner: 1) Whenever a commitment is valid, in the sense that there exists an
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accepting decommitment, the extractor outputs exactly the committed value, otherwise, 2) when
the commitment is invalid, it outputs ⊥. Such strong extractability ensures that to show non-
malleability that the right committed value is independent of the left committed value, it suffices
to show that the right extracted value is independent of the left committed value, as argued above.

However, our depth-robust commitments from time-lock puzzles do not satisfy such strong
extractability. 2 In particular, they do not satisfy the second property above: When commitments
are invalid, the extractor can output arbitrary values — this is known as “over-extraction”. Over-
extraction traces back to the fact that only honestly generated time-lock puzzles (i.e., in the domain
of the puzzle generation algorithm) are guaranteed to be solvable in certain time. There is no
guarantee for ill-generated puzzles, and no efficient procedure for deciding whether a puzzle is
honestly generated or not. Observe that this is the case for the time-lock puzzles proposed by

Rivest, Shamir, and Wagner [RSW96], since given a puzzle (s+ g22t

mod N, N) one can extract s
using 2t squaring modular N , but cannot obtain a proof that N is a valid RSA-modulus; this is also
the case for the other puzzle construction [BGJ+16]. As a result, the extractor of our depth-robust
commitments that extracts committed values via solving time-lock puzzles, provides no guarantees
when commitments are invalid.

This means that our basic 1-bit tag commitment scheme is over-extractable, and the argument
above that reasons about the right extracted value fails to establish non-malleability. Nevertheless,
the basic scheme does satisfy a variant of non-malleability that we call non-malleability w.r.t.
extraction, which ensures that the value extracted from the right commitment is independent of
the left committed value.3 When a commitment scheme is perfectly-extractable, this new notion is
equivalent to standard non-malleability (w.r.t. commitment), but with over-extraction, it becomes
incomparable. The issue of over-extraction has appeared in the literature (e.g., [Wee10, Kiy14]),
standard methods for eliminating it requires the committer to additionally prove the validity of the
commitment it sends, using for instance zero-knowledge protocols or cut-and-choose techniques.
However, these methods take more than 2 rounds of interaction, and do not apply here.

2.2 Full-Fledged Non-Malleable Commitments

At this point, we face two challenges towards constructing full-fledged non-malleable commitments:

- Challenge 1: We need to go from non-malleability w.r.t. extraction to non-malleability w.r.t.
commitment in 2 rounds. Resolving this challenge would give a 2-round 1-bit tag non-
malleable commitment scheme.

- Challenge 2: The next challenge is going beyond two tags, towards supporting an exponential
2n number of tags.

It is easy to generalize our basic 1-bit tag commitment scheme to handle arbitrary l tags, if
there exists a “ladder” of l commitment schemes with increasing levels of depth-robustness,
and another “ladder” of l schemes with increasing levels of size-robustness. Concretely, the
i’th schemes are respectively (Di, D

′
i)-depth robust and (Si, S

′
i)-size robust, for some

· · · << Di << D′i << · · · << Dl << D′l << S0 << S′0 · · · << Si << S′i << · · · .
2Our size-robust commitments from injective one-way functions do satisfy such strong extractability.
3Our notion of non-malleability w.r.t. extraction can be viewed as a special case of the notion of non-malleability

w.r.t. replacement defined by Goyal [Goy11], in the sense that the replacer in Goyal’s definition is fixed to the over-
extractor of the commitment scheme. The benefit of doing so is that we know exactly the complexity of the extractor,
which is useful in the rest of the construction.
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A commitment with tag i ∈ {0, · · · , l − 1} combines the i’th (Di, D
′
i)-depth-robust scheme

and the (l−i−1)’th (Sl−i−1, S
′
l−i−1)-size-robust scheme to commit to a pair of secret shares of

the committed value. This gives a family of l mutually non-malleable commitment schemes,
as illustrated in Figure 1 (right).

To directly obtain full-fledged non-malleable commitments, we need an exponential number of
levels l = 2n of depth- and size-robustness, which is, however, impossible from the underlying
assumptions. From subexponentially hard injective one-way functions, we can instantiate at
mostO(log n/ log logn) levels of size-robustness, and similarly, from subexponentially parallel-
time hard time-lock puzzles, we can instantiate O(log n/ log logn) levels of depth-robustness.
Therefore, we need to amplify the number of tags.

We address both challenges using the a single transformation.

2-Round Tag Amplification Technique: We present a transformation that converts a 2-round
l-tag commitment scheme that is non-malleable w.r.t. extraction, into a 2-round 2l−1-tag
commitment scheme that is both non-malleable w.r.t. extraction and w.r.t. commitment.
The output protocol can be further transformed to achieve concurrent non-malleability.

With the above transformation, we can now construct full-fledged non-malleable commitment.
Start from our basic scheme for a constant l0 = O(1) number of tags that is non-malleable w.r.t.
extraction; apply the tag-amplification technique iteratively for m = O(log∗ n) times to obtain a
scheme for lm = 2n tags that is both non-malleable w.r.t. extraction and w.r.t. commitment.

Previously, similar tag-amplification techniques were presented by Lin and Pass [LP09] and
Wee [Wee10]. Our transformation follows the same blueprint, but differ at two important aspects.
First, our transformation starts with and preserves non-malleable w.r.t. extractability, which is not
considered in their work. Second, their amplification techniques incur a constant additive overhead
in the round complexity of the protocol, whereas our transformation keeps the number of rounds
invariant at 2. To do so, our amplification step combines ideas from previous works with the
new idea of using our depth-and-size robust commitments to create different 2-round sub-protocols
that are mutually “non-malleable” when executed in parallel, in the sense that the security of one
sub-protocol remains intact even when the security of another is violated by force.

Our 2-Round Tag-Amplification Technique in More Detail. Similar to [LP09, Wee10],
the transformation proceeds in two steps:

- First, amplify the security of a scheme from (one-one) non-malleability w.r.t. extraction
to one-many non-malleability w.r.t. extraction and commitment, which, following a proof
in [LPV08], implies concurrent (or many-many) non-malleability w.r.t. extraction and com-
mitment. (This is why our final protocol can be made concurrently non-malleable.) Here,
one-many and concurrent non-malleability w.r.t. extraction or commitment naturally gen-
eralize standard non-malleability to the setting where the man-in-the-middle concurrently
receives one or many commitments on the left and gives many commitments on the right,
and ensures that the joint distribution of the values extracted from or committed in right
commitments is independent of the value(s) committed in the left.

- Next, apply the “log-n trick” by Dolev, Dwork and Naor [DN00] to amplify the number of
tags supported from l to 2l−1 at the price of losing concurrent security, yielding a protocol
that is (one-one) non-malleable w.r.t. extraction and commitment.
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The main technical challenges lie in the first step. We briefly review the LP approach. At a high-
level, they construct one-many non-malleable commitment following the Fiat-Shamir paradigm:
The receiver starts by setting up a hidden “trapdoor” t. The sender commits to a value v using
an arbitrary (potentially malleable) 2-message commitment scheme, followed by committing to 0n

using a (one-one) non-malleable commitment and proving using many witness-indistinguishable
proofs of knowledge (WIPOK) that either it knows a decommitment to v or it knows a decommit-
ment of the non-malleable commitment to the trapdoor t; the former, called the honest witness, is
used by the honest committer, while the latter, called the fake witness, is used for simulation.

The LP protocol arranges all components — the trapdoor-setup, commitment to v, non-
malleable commitment (for trapdoor), and every WIPOK — sequentially. To compress the protocol
into 2 rounds, we run all components in parallel, and replace multiple WIPOK proofs with a single
2-round ZAP proof.

Unfortunately, arranging all components in parallel renders the proof of one-many non-malleability
in LP invalid. They designed a sequence of hybrids in which different components in the (single)
left interaction are gradually switched from being honestly generated to simulated, while maintain-
ing two invariants regarding the (many) right interactions. First, the soundness condition states
that the man-in-the-middle never commits to a trapdoor in any right interaction. Second, in every
right interaction, there is always a WIPOK that can be rewound to extract the value committed
to in this interaction, without rewinding the left component being changed; the value extracted
must be a valid decommitment since the fake witness does not exist by the soundness invariant —
this establishes strong extractability. The second invariant is true because the LP protocol contains
sufficiently many sequential WIPOKs so that there is always a proof that does not interleave with
the left-component being changed. The first invariant, on the other hand, relies not only on the
non-malleability of the input commitment scheme, but also on its “robustness” to other components
that have a small fixed k number of interactions (such as 2-message commitment and WIPOK).
The robustness captures “non-malleability” w.r.t. other protocols, and is achieved by embedding
more than k rewinding slots in the input commitment scheme.

In our 2-round protocol, we cannot afford to have many rewinding slots for extraction, nor for
establishing non-malleability between different components. Naturally, we resort to our size-and-
depth robust commitments, which can be made mutually non-malleable w.r.t. extraction by setting
the appropriate profiles of size-and-depth robustness. We embed a family of 4 such schemes in
different components of the protocol, and mimic the LP proof in the following (overly-simplified)
manner: In every hybrid, in the left interaction, either a size-and-depth robust commitment or the
non-malleable commitment is changed, while on the right, values are extracted from a different
size-and-depth robust commitment and from the non-malleable commitment.

To show that the left interaction remains indistinguishable despite of extraction, we rely on
the mutual non-malleability of the size-and-depth robust schemes, but also need the non-malleable
commitment and the size-and-depth robust commitments to be mutually non-malleable, which
unfortunately does not hold.

Let us explain. It turns out that our basic non-malleable commitment schemes for short tags,
and all intermediate schemes produced by the tag-amplification technique are only secure against
circuits with both bounded-size and bounded-depth. In contrast, the depth-and-size robust com-
mitments are secure against circuits with either bounded-size or bounded-depth. This qualitative
difference in adversarial circuit classes prevents them from being mutually non-malleable. To get
around this, we instead rely on a “cycle of non-malleability” that consists of the non-malleable
commitment scheme and two depth-and-size robust commitment schemes, satisfying that the first
scheme is non-malleable to the second, the second non-malleable to the third, and the third to the
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first. Such a cycle turns out to be sufficient for our proof to go through.
One final technicality is that in order to create the cycle of non-malleability, the hardness of the

two size-and-depth robust commitments must be set appropriately according to that of the non-
malleable commitment scheme. Furthermore, the non-malleable commitment scheme produced by
the above transformation has weaker security than the input scheme. As a result, to iteratively
apply the tag-amplification technique for O(log∗ n) times, we need O(log∗ n) levels of depth- and
size-robustness. This can be easily instantiated using subexponentially secure non-interactive com-
mitment schemes and time-lock puzzles as stated in Theorem 1. See Section 6 for more details on
our tag amplification and its security proof.

2.3 Extensions

Finally, we briefly mention two extensions. First, our two-round non-malleable commitment scheme
can be made non-interactive, at the price of becoming only concurrent non-malleable against at-
tackers that are uniform Turing machines. Second, we show that our two-round non-malleable
commitment scheme (and its non-interactive version resp.) in fact satisfies the stronger notion of
Chosen Commitment Attack (CCA) security (against uniform Turing machines resp.).

Non-Interactive Non-Malleable Commitments w.r.t. Uniform Attackers. For the first
extension, observe that the only step in our construction that requires 2 rounds is the non-
malleability strengthening step in the tag-amplification technique. (The basic non-malleable scheme
for a constant number of tags are non-interactive and the log-n trick in the tag-amplification tech-
nique is round-preserving.) The non-malleability strengthening step produces 2-round protocols,
where the first message is from the receiver and consists of i) the first message of a 2-round WI
proof, ii) a randomly sampled function from a family of collision resistant hash functions secure
against non-uniform attackers, and iii) the first message of the input (one-one) non-malleable com-
mitment scheme if it has 2 rounds. To remove the first message we can simply replace 2-round
WI proofs with non-interactive WI proofs (NIWIs), and fix a single hash function (instead of a
family). However, since a single hash function can only be collision resistant to attackers that
are uniform Turing machines, the resulting non-interactive commitment scheme is only concurrent
non-malleable against uniform adversaries. See Section 9 for more details.

CCA-secure Commitments. CCA-security strengthens concurrent non-malleability in ways
similar to how Chosen Ciphertext Attack secure encryption strengthens non-malleable encryption.
Roughly speaking, CCA-security requires that no man-in-the-middle attackers can distinguish com-
mitments to different values on the left, even if it has access to a committed-value oracle, which
breaks every commitment the attacker sends on the right, and returns the unique committed value
as soon as the right interaction ends. Our 2-round concurrent non-malleable commitments are in
fact CCA-secure. To see this, it suffices to argue that the non-malleability strengthening step in
the tag-amplification technique produces CCA-secure protocols, as the final 2-round protocol is
produced by this procedure. Recall that to show the concurrent non-malleability of the resulting
2-round protocol, we built a sequence of hybrids, where different components in the left commit-
ment are changed one by one, while the right committed values are extracted by breaking different
components in right commitments. The indistinguishability of neighboring hybrids follows from
the mutual non-malleability of the component being broken on the right, and the component being
changed on the left. We observe that this argument can be easily changed to prove CCA security.
The only modification to the hybrids is simulating the committed-value oracle for the attacker by
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sending it the values extracted from the right commitments. The mutual non-malleability of differ-
ent components still guarantees the indistinguishability of the hybrids, now with committed-value
oracles. There is still some subtleties in the proof; see Section 8 for more details.

3 Preliminaries

3.1 Basic Notation

We denote n as the security parameter. For n ∈ N, by [n] we denote the set {0, . . . , n− 1}. If v is a
binary string then |v| denotes the length of the string and v[i] is the ith bit of v, for 0 ≤ i ≤ |v|−1.
We use || as the string concatenation operator. For any probability distribution D, x← D denotes
sampling an element from the distribution D and assigning it to x. However, for a finite set Q,
x ← Q denotes sampling an element from the set Q uniformly and randomly, and assigning it to
x. We model algorithms as uniform TMs. We use the abbreviation PPT to denote probabilistic-
polynomial time. P/poly is the set of all non-uniform polynomial size circuits. We say that a
function ν : N→ R is negligible, if for every constant c > 0 and for sufficiently large n ∈ N we have
ν(n) < n−c. For functions d, S defined over N, we say that d < S (resp. d ≤ S) if for every n ∈ N,
d(n) < S(n) (resp. d(n) ≤ S(n)). Furthermore, we say that d << S if for every polynomial poly,
poly(d) < S.

3.2 Circuit Classes

We define the following circuit classes which are going to be used throughout this work. For the
following definitions, consider n ∈ N and let d, S and S∗ be some non-decreasing functions defined
on N such that d ≤ S << S∗.

Definition 1 (Depth ∧ size-restricted circuits). C∧d,S is the set of all non-uniform circuits C =
{Cn}n∈N such that there exists a polynomial poly such that for all n ∈ N,

dep(Cn) < poly(d(n))

and size(Cn) < poly(S(n)) ,

where dep(Cn) and size(Cn) denote the depth and the size of the circuit Cn respectively.

Throughout this work, we use S∗ to denote some pre-defined upper bound on the size of any
circuit considered in this work. Furthermore, when we are only concerned with restricting the
depth of the circuits, whose size can be as large as the upperbound poly(S∗) for any polynomial
poly, we simply refer to the circuit class C∧d,S∗ as Cd.

Definition 2 (Depth-restricted circuits). Cd is the set of all non-uniform circuits C = {Cn}n∈N
such that there exists a polynomial poly such that for all n ∈ N,

dep(Cn) < poly(d(n))

and size(Cn) < poly(S∗(n)) .

Furthermore, when we want to only restrict the size of the circuits, allowing for the depth to
be as large as the size, we refer to the circuit class C∧S,S as CS .

Definition 3 (Size-restricted circuits). CS is the set of all non-uniform circuits C = {Cn}n∈N such
that there exists a polynomial poly(·) such that for all n ∈ N,

dep(Cn) ≤ size(Cn) < poly(S∗(n)) .
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Definition 4 (Depth ∨ size-restricted circuits). C∨d,S is the set of all non-uniform circuits C =
{Cn}n∈N such that either C ∈ Cd or C ∈ CS.

Remark 1. The classes of circuits C (namely, Cd, CS, C∨d,S and C∧d,S) considered in this work are
such that S ≥ d >> n, that is, all d and S are super-polynomials. For any circuit C ∈ C, on
composing with a circuit P ∈ P/poly, it is easy to see that the resulting circuit is also in the class
C. Therefore, we say that the circuit class C is closed under composition with P/poly. This fact is
going to be important in the rest of this work.

Below, we define standard cryptographic primitives w.r.t. a general circuit class C, requiring
that any adversary in C has negligible advantage in breaking the security of the primitive. When
C = P/poly, we say that the primitive is computationally secure and when C is the set of non-
uniform circuits whose size is bounded by 2n

ε
for some constant ε < 1, we say that the primitive is

subexponentially secure.

3.3 Indistinguishability and One-wayness

Definition 5 (C-indistinguishability). Two ensembles {An,y}n∈N,y∈Yn and {Bn,y}n∈N,y∈Yn are said
to be C-indistinguishable, if for every non-uniform circuit D = {Dn}n∈N ∈ C, there exists a
negligible function ν(·) such that for every n ∈ N, y ∈ Yn:

|Pr [a← An,y : Dn(y, a) = 1]− Pr [b← Bn,y : Dn(y, b) = 1]| ≤ ν(n) .

Definition 6 (One-way functions). A function f : {0, 1}∗ → {0, 1}∗ is called a C-secure one-way
function if the following hold:

1. There exists a deterministic polynomial-time algorithm that on input s in the domain of f
outputs f(s).

2. For every A = {An}n∈N ∈ C there exists a negligible function ν(·) such that for every n ∈ N,

Pr
[
s← {0, 1}n, s′ ← An(f(s)) : f(s′) = f(s)

]
≤ ν(n) .

In this work, we will use a one-way function that is a permutation which is subexponentially
secure.

3.4 Witness Relation, ZAP and NIWI

Definition 7 (Witness Relation). A witness relation or relation (for short) for a language L ∈ NP
is a binary relation RL that is polynomially bounded, polynomial time recognizable and characterizes
L by L = {x : ∃w s.t. (x,w) ∈ RL}.

We say that w is a witness for the membership of x ∈ L if (x,w) ∈ RL. We will also let RL(x)
denote the set of witnesses for the membership of x ∈ L; that is, RL(x) = {w : (x,w) ∈ RL}.

ZAPs are two-message public coin witness indistinguishable proofs defined as follows.

Definition 8 (ZAP [DN00]). A pair of algorithms (P,V), where P is PPT and V is (deterministic)
polytime, is a C-ZAP for an NP relation RL if it satisfies:
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1. Completeness: There exists a polynomial l(·) such that for every (x,w) ∈ RL,

Pr
[
r ← {0, 1}l(|x|), π ← P(x,w, r) : V(x, π, r) = 1

]
= 1 .

2. Adaptive soundness: There exists a negligible function ν(·) such that for every malicious (po-
tentially unbounded) prover P∗ and every n ∈ N,

Pr
[
r ← {0, 1}l(n), (x, π)← P∗(r) : x ∈ {0, 1}n \ Ln ∧ V(x, π, r) = 1

]
≤ ν(n).

3. C-witness indistinguishability: For any sequence {(xn, w1
n, w

2
n, rn)}n∈N such that for every

n ∈ N, xn ∈ Ln, w1
n, w

2
n ∈ RL(xn) and rn ∈ {0, 1}l(n), the following ensembles are C-

indistinguishable:

{π1 ← P(xn, w
1
n, rn) : (xn, w

1
n, w

2
n, π1, rn)}n∈N ,

{π2 ← P(xn, w
2
n, rn) : (xn, w

1
n, w

2
n, π2, rn)}n∈N .

Throughout this work, we will refer to the first message r of ZAP as aZAP and the second mes-
sage together with the statement (π, x) as bZAP.

Dwork and Naor [DN00] were the first to construct a ZAP from trapdoor permutations. They
also showed that ZAP for L ∈ NP can be based on the weaker assumption of the existence of
NIZKs for L.

Theorem 4. If there exists a C-secure family of trapdoor permutations then there exists a C-ZAP.

Furthermore, Bitansky and Paneth [BP15] construct ZAP based on the existence of indistin-
guishability obfuscation (iO) for a certain family of polysize circuits and one-way functions.

NIWIs are non-interactive witness-indistinguishable proofs.

Definition 9 (NIWI [BOV05]). A pair of algorithms (P,V) where P is PPT and V is (determin-
istic) polytime, is a C-NIWI for an NP relation RL if it satisfies:

1. Completeness: For every (x,w) ∈ RL,

Pr [π ← P(x,w) : V(x, π) = 1] = 1 .

2. Soundness: For every x /∈ L and π ∈ {0, 1}poly(n):

Pr [V(x, π) = 1] = 0 .

3. C-witness indistinguishability: For any sequence {(xn, w1
n, w

2
n)}n∈N such that for every n ∈ N,

xn ∈ Ln, w1
n, w

2
n ∈ RL(xn), the following ensembles are C-indistinguishable:

{π1 ← P(xn, w
1
n) : (xn, w

1
n, w

2
n, π1)}n∈N ,

{π2 ← P(xn, w
2
n) : (xn, w

1
n, w

2
n, π2)}n∈N .
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Dwork and Naor [DN00] showed the existence of a non-uniform non-constructive NIWI which
can be based on their ZAP construction by fixing the first message non-uniformly. Building on
their work, Barak, Ong and Vadhan [BOV05] de-randomize the ZAP verifier in [DN00] to give
the first NIWI construction. They base their de-randomization technique on the existence of a
function in Dtime(2O(n)) with non-deterministic circuit complexity 2Ω(n). The ZAP construction
from [BP15] can also be de-randomized under the same assumption. Furthermore, Groth, Ostrovsky
and Sahai [GOS06] construct a NIWI based on the decisional linear assumption for bilinear groups.

Theorem 5. We base the existence of NIWI on either of the following assumptions:

1. If decisional linear assumption holds for the elliptic curve based bilinear groups in [BF01]
against all circuits in class C then there exists a C-NIWI.

2. If C-secure trapdoor permutations exist and there exists a function in the class Dtime(2O(n))
with non-deterministic circuit complexity 2Ω(n) then there exists a C-NIWI.

3.5 Commitment Schemes

Definition 10 (Commitment scheme). A commitment scheme 〈C,R〉 consists of a pair of inter-
active PPT TMs C and R with the following properties:

1. The commitment scheme has two stages: a commit stage and a reveal stage. In both stages,
C and R receive a security parameter 1n as common input. C additionally receives a private
input v ∈ {0, 1}n that is the string to be committed.

2. The commit stage results in a joint output c, called the commitment, a private output for C, d,
called the decommitment string. Without loss of generality, c can be the full transcript of the
interaction between C and R. Let nc = nc(n) denote the maximal length of the commitment
c for security parameter n.

3. In the reveal stage, committer C sends the pair (v, d) to the receiver R, and R decides to accept
or reject the decommitment (v, d) deterministically according to an efficiently computable
function Open; that is, R accepts iff Open(c, v, d) = 1.

4. If C and R do not deviate from the protocol, then R should accept with probability 1 in the
reveal stage.

Furthermore, we say that a commitment c is valid, if there exists a string v and a decommitment
string d such that Open(c, v, d) = 1.

Next we define the binding and hiding property of a commitment scheme.

Definition 11 (Statistical binding). A commitment scheme 〈C,R〉 is statistically binding if for
any committer C∗ possibly unbounded, there exists a negligible function ν(·) such that C∗ succeeds
in the following game with probability at most ν(n):

On security parameter 1n, C∗ first interacts with R in the commit stage to produce a commitment
c. Then C∗ outputs two decommitments (v0, d0) and (v1, d1), and succeeds if v0, v1 ∈ {0, 1}n, v0 6= v1

and R accepts both as decommitments of c.
Furthermore, a commitment scheme is perfectly binding if the probability that C∗ succeeds in

the above game is 0.
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We define the value of any commitment through a function val, that takes as input an arbitrary
commitment c and outputs v if c is valid and there exists exactly one value v such that Open(c, v, ·) =
1, otherwise it outputs a ⊥. Note that such a function val may not be efficiently computable.

Definition 12 (C-hiding). A commitment scheme 〈C,R〉 is C-hiding if for every non-uniform
circuit A = {An}n∈N ∈ C, there exists a negligible function ν(·) such that A succeeds in the following
game with probability at most ν(n) away from 1

2 :
For security parameter 1n, An outputs a pair of values v0, v1 ∈ {0, 1}n. C on input vb, where

b is a randomly chosen bit, interacts with An to produce a commitment of vb. An outputs a bit b′

and wins the game if b′ = b.

Additionally, we consider commitment schemes that are “tag-based”.

Definition 13 (Tag-based commitment scheme). A commitment scheme 〈C,R〉 is a tag-based
scheme with t(n)-bit identities if, in addition to the security parameter 1n, the committer and
receiver also receive a “tag” – a.k.a. identity–id of length t(n) as common input.

When the length t(n) of identities is n, we refer to 〈C,R〉 as a tag-based commitment scheme.

Definition 14 (Over-extractable commitment scheme). A statistically binding commitment scheme
〈C,R〉 is over-extractable w.r.t. extractor oE = {oEn}n∈N if there exists a negligible function ν(·)
such that ∀n ∈ N, ∀c ∈ {0, 1}nc,

Pr
[
v′ ← oEn(c) : c is valid ∧ val(c) 6= v′

]
≤ ν(n) ,

where nc is the maximal length of the commitment generated by 〈C,R〉 with security parameter n.
Furthermore, we say 〈C,R〉 is (d, S)-over-extractable if the extractor oE belongs to the circuit class
C∧d,S.

Remark 2. Note that the extractor oE must successfully extract the correct value for any valid
commitment (i.e., for which there exists a decommitment), even if the valid commitment is generated
by a malicious committer.

In the rest of the paper whenever we say a commitment scheme, we mean a statistically (per-
fectly) binding commitment scheme.

The man-in-the-middle (MIM) execution: Let 〈C,R〉 be a tag-based commitment scheme.
Consider a non-uniform circuit family A = {An}n∈N. For security parameter n, An participates
in m-left and m-right interactions4. In the left interactions, An interacts with C and receives
commitments to values v1, . . . , vm ∈ {0, 1}n, using identities id1, id2, . . . , idm of its choice. In the
right interactions An interacts with R attempting to commit to related values ṽ1, . . . , ṽm, using
identities ĩd1, ĩd2, . . . , ĩdm of its choice. We define the values ṽi committed on the right as ṽi = val(c̃i)
where c̃i is the commitment in the ith right interaction. Recall that val(c) = ⊥, if c is not valid or
that it can be opened to more than one value. Otherwise, val(c) equals the unique value v it can
be opened to. Furthermore, if for any right interaction i, ĩdi = idj for some j, we set ṽi = ⊥.

We define two different flavours of non-malleability. First we recall the standard notion of
non-malleability – a.k.a non-malleability w.r.t. commitment, for (tag-based) commitment schemes.
Then, we introduce a new notion called non-malleability w.r.t. extraction for over-extractable com-
mitment schemes.

4In standard definitions of non-malleability [DDN00, LPV08], the man-in-the-middle adversary is also given some
auxiliary information z. In this work, we consider non-malleability against non-uniform circuits, which can be thought
of as having z hard-wired in them. This is why we ignore z in our definitions.
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Non-malleability w.r.t. commitment. Consider a MIM execution withA. Let mimA
〈C,R〉(v1, . . . , vm)

denote the random variable that describes the values ṽ1, . . . , ṽm that A commits to on the right
and the view of A in MIMA

〈C,R〉(v1, . . . , vm).

Definition 15 (Non-malleability). A tag-based commitment scheme 〈C,R〉 is said to be concur-
rent C-non-malleable if for every circuit family A = {An}n∈N ∈ C participating in m = poly(n)
concurrent interactions, the following ensembles are computationally indistinguishable:{

mimA
〈C,R〉(v

(1)
1 , . . . , v(1)

m )
}
n∈N,v(1)

1 ,...,v
(1)
m ∈{0,1}n,v

(2)
1 ,...,v

(2)
m ∈{0,1}n

,{
mimA

〈C,R〉(v
(2)
1 , . . . , v(2)

m )
}
n∈N,v(1)

1 ,...,v
(1)
m ∈{0,1}n,v

(2)
1 ,...,v

(2)
m ∈{0,1}n

.

Non-malleability w.r.t. extraction. Let 〈C,R〉 be a tag-based commitment scheme which is
over-extractable w.r.t. extractor oE . We say that 〈C,R〉 is non-malleable w.r.t. extraction if the
distributions of the random variable emim defined below are indistinguishable in any two MIM
executions with different values committed on the left. Recall that mim describes the view of A and
the values ṽi that A commits to on the right. However, the random variable emimA

〈C,R〉(v1, . . . , vm),

instead, describes the view of A and the values ṽi
′ which are obtained by running the extractor oE

on input c̃i (the ith right commitment); that is, ṽi
′ ← oEn(c̃i). Note that, if for any right interaction

i, ˜idi = idj , for some j, then we set ṽi
′ = ⊥.

Definition 16 (Non-malleability w.r.t. extraction). A tag-based commitment scheme 〈C,R〉 is said
to be concurrent C-non-malleable w.r.t. extraction by oE if the following hold:

1. 〈C,R〉 is over-extractable by oE.

2. For every circuit A = {An}n∈N ∈ C participating in m = poly(n) concurrent interactions, the
following ensembles are computationally indistinguishable:{

emimA
〈C,R〉(v

(1)
1 , . . . , v(1)

m )
}
n∈N,v(1)

1 ,...,v
(1)
m ∈{0,1}n,v

(2)
1 ,...,v

(2)
m ∈{0,1}n

,{
emimA

〈C,R〉(v
(2)
1 , . . . , v(2)

m )
}
n∈N,v(1)

1 ,...,v
(1)
m ∈{0,1}n,v

(2)
1 ,...,v

(2)
m ∈{0,1}n

.

At first glance, it may seem that the new notion — non-malleability w.r.t. extraction, is no
more interesting than the standard notion of non-malleability (w.r.t. commitment). After all,
an extractor that agrees with the function val establishes that the two notions are equivalent.
Most constructions of non-malleable commitment schemes in the literature, in fact, establish non-
malleability by building such an extractor in their security proofs. In this work, however, we
consider extractors that may not always agree with val and have some over-extraction.

Over-extractability guarantees that for valid commitments, the extractor extracts out the com-
mitted value with overwhelming probability. However, given an invalid commitment, the value
extracted by the extractor can be arbitrary. This inept behaviour of the extractor, on invalid com-
mitments, is what makes the two notions incomparable (in general). For instance, there might exist
an adversary A, depending on the value committed on the left, may choose to send invalid tran-
scripts on the right with different probabilities. Such an A certainly breaks the non-malleability of
the scheme (w.r.t commitment) but depending on the extractor, A may not violate non-malleability
w.r.t. extraction because the extracted values may still be indistinguishable. Furthermore, there
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might exist an adversary that irrespective of the value on the left always sends invalid commit-
ments on the right. Such an A does not break the non-malleability w.r.t. commitment. But A may
violate non-malleability w.r.t. extraction by establishing a co-relation between the value committed
on the left and the value that will be over-extracted by the extractor on the right. Hence, the two
notions are incomparable. However, if one sets up the decommitment condition (which defines the
random variable mim) appropriately then we show that it is possible to base non-malleability w.r.t.
commitment on non-malleability w.r.t. extraction. We believe this reduction as one of the main
contributions of this work.

We also consider relaxed versions of both non-malleability and non-malleability w.r.t. extraction:
one-one, one-many and many-one secure commitment schemes. In one-one (a.k.a. standalone), we
consider an adversary A that participates in one left and one right interaction; in one-many A
participates in one left and many right; and in many-one, A participates in many left and one right
interaction.

3.6 Time-Lock Puzzles

Definition 17 (Time-lock puzzles [BGJ+16]). A (T,B)-time-lock (TL) puzzle is a tuple (Gen,Sol)
satisfying the following requirements:

1. Syntax:

- Z ← Gen(1n, 1t, s) is a probabilistic algorithm that takes as input a security parameter
n, a solution s ∈ {0, 1}n and a difficulty parameter t and outputs a puzzle Z.

- s ← Sol(Z) is a deterministic algorithm that takes as input a puzzle Z and outputs a
solution s.

2. Completeness: For every security parameter n, difficulty parameter t, solution s ∈ {0, 1}n and
puzzle Z in the support of Gen(1n, 1t, s), Sol(Z) outputs s.

3. Efficiency:

- Z ← Gen(1n, 1t, s) is a poly-time algorithm, that is, it runs in time poly(t, n).

- s← Sol(Z) runs in time poly(2t) for Z in the support of Gen(1n, 1t, ·).

4. (T,B)-hardness: (Gen,Sol) is a (T,B)-hard TL puzzle if there exists a constant c such that
for every c log n < t(n) < B(n) and every adversary A = {An}n∈N where,

dep(An) ≤ T (t) ; size(An) ≤ B(n) ,

there exists a negligible function ν, such that for every n ∈ N,

Pr
[
s← {0, 1}n; Z ← Gen(1n, 1t(n), s); s′ ← An(Z) : s′ = s

]
≤ ν(n) .

The first candidate construction of TL puzzles was proposed by Rivest, Shamir and Wag-
ner [RSW96] and is based on the “inherently sequential” nature of exponentiation modulo an RSA
integer. Twenty years after their proposal, there still does not exist a (parallelizable) strategy that
can solve the puzzle (of difficulty parameter t) in parallel-time T (t) which is significantly less than
2t. Apart from the variants of RSW puzzles [BN00, GMPY11], the only other construction of TL
puzzles was given by Bitansky et al. [BGJ+16] based on succinct randomized encodings for Turing
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machines (which in turn can be built from indistinguishability obfuscation and one-way functions)
and the existence of non-parallelizing languages. These previous works have considered puzzles with
strong parameters, that is, puzzles that are parallel-time hard for exponential T = 2δt ([BGJ+16])
and even strongly exponential T = δ2t ([BN00, GMPY11]).

However, for our task of constructing 2-round non-malleable commitments, much weaker TL
puzzles are sufficient, that is, puzzles that remain hard for only subexponential T = 2t

δ
parallel-

time. More precisely, we need a (T (t) = 2t
δ
, B(n) = 2n

ε
)-TL puzzle for some 0 < ε, δ < 1. We here

recall the RSW TL puzzles RSW = (Gen, Sol) as a candidate.

- Algorithm Gen(1n, 1t, s):

1. Select an n-bit RSA modulous N = pq.

2. Compute the mask y = g22t

mod N for some element g ∈ Z∗N . Note that since the

factorization of N is known, Gen can first compute the exponent e = 22t mod φ(N) and
then efficiently compute the mask y = ge mod N .

3. Mask the solution s with y, that is, z = (s+ y) mod N .

4. Return the tuple Z = (z,N) as the puzzle.

- Solver Sol(Z = (z,N)):

1. By 2t repeated squarings, compute y = g22t

mod N .

2. Output (z − y) mod N as the solution.

As discussed in [RSW96], the element g above can either be a fixed element such as 2, or sampled
at random.

Next, we discuss that the RSW = (Gen, Sol) is a TL puzzle in the sense of Definition 17. It is
easy to see that for security parameter n and difficulty parameter t, Gen runs in time poly(t, n)
and Sol runs in time poly(2t). Futhermore, we base the (T,B)-hardness of the RSW puzzle on the
subexponential repeated squaring assumption as stated in Assumption 1. Informally, it says that
for some subexponential functions T and B, and any function t such that c log n ≤ t(n) ≤ B(n),

B(n)-sized adversaries with depth T (t) cannot compute g22t

mod N . We define the assumption
more formally below.

Assumption 1 (Subexponential Repeated Squaring Assumption). There exists subexponential
functions T,B and a constant c such that for every function t(·) such that c log n < t(n) < B(n),
the following holds: For every adversary A = {An}n∈N such that

dep(An) ≤ T (t(n)); size(An) ≤ B(n) ,

there exists a negligible function µ such that for every n ∈ N, 5

Pr
[
N ← RSA(n); g ← Z∗N ; y ← An(g,N) : y = g22t

mod N
]
≤ µ(n) ,

where RSA(n) is the set of all n-bit RSA moduli.

5g can also be fixed appropriately instead of sampling it randomly.
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Then from the discussion presented in Section 1 it follows that if the subexponential repeated
squaring assumption holds, then the RSW puzzle as defined above is a (T,B)-hard TL puzzle for
some subexponential functions T and B.

Lemma 1. If the subexponential repeated squaring assumption holds, then there exists subexponen-
tial functions T and B, such that, RSW = (Gen, Sol) is a (T,B)-hard TL puzzle.

3.7 Collision-resistant Hash Functions

Definition 18. A family of non-uniform collision-resistant hash functions (CRH) {Dλ}λ∈N is a
family of distributions such that for every H ∈ Dλ, H : {0, 1}n(λ) → {0, 1}λ such that λ < n(λ)
satisfying,

1. Efficient Computation: There exists a poly-time TM M such that for every λ ∈ N, H ∈ Dλ

and x ∈ {0, 1}n(λ), M(H,x) = H(x).

2. S(λ)-Collision-resistance: For every S-sized family of circuits {Aλ}λ∈N there exists a negligible
function ν such that for every λ ∈ N,

Pr [H ← Dλ, (x1, x2)← A(H) : x1 6= x2 ∧H(x1) = H(x2)] ≤ ν(λ) (1)

Moreover, a family of uniform collision resistant hash function (CRH) is as defined above, except
that i) the distribution Dλ always outputs a single function Hλ, and ii) S(λ)-collision resistence
only holds against attackers that are S(λ)-time uniform Turing machines. We denote such a family
as {Hλ}λ∈N.

In this work, we will use subexp-secure, uniform or non-uniform, collision-resistant hash func-
tions. For λ ∈ N and H ∈ Dλ, a collision can be found by a uniform Turing machine in time 2λ/2

with high probability and in time 2λ with probability 1. Furthermore, it is hard for a 2λ-sized
circuit (or a 2λ-time uniform Turing machine) to find collisons for any hash function H ′ ∈ D

λ
1
ε

(or

for Hn in the uniform case).

4 Basic Commitment Schemes

In this section we construct three basic over-extractable commitment schemes, each one of them
enjoys hiding against different circuit classes. Firstly, we construct a depth-robust commitment
scheme which is (S′, S′)-over-extractable and hiding against any circuit whose depth is sufficiently
smaller than S′. Next, we construct a size-robust commitment scheme which is hiding against any
circuit whose size is at most poly(S) but there exists an extractor of polynomial depth and size larger
than S. Finally, we construct a commitment scheme which is hiding against both depth-restricted
and size-restricted circuits.

4.1 Depth-robust Over-extractable Commitment Scheme from a TL-puzzle

For some subexponential functions T and B, assume the existence of a (T,B)-TL puzzle (Gen,Sol).
For any difficulty parameter c log n < t(n) < B(n), these puzzles are solvable in time poly(2t) but
hard for B(n)-sized circuits having depth at most poly(T (t)). 6 Furthermore, consider a difficulty

6The definition of TL puzzles presented in Definition 17 defines hardness against circuits with depth at most T but
for ease of description we assume hardness for poly(T ) depth. This is without loss of generality for subexponential

T = 2t
δ′

, that is, hardness against 2t
δ′

implies hardness against poly(2t
δ

) for any δ < δ′ < 1.
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parameter t(n) that admits the following hierarchy of non-decreasing functions, n << d = T (t) <<
S′ = 2t << S∗ << B. Using the (T,B)-TL puzzles, we construct a commitment scheme which
is over-extractable in time poly(S′) and is hiding against any circuit in Cd (hence the name depth-
robust commitment scheme). We refer to the commitment scheme as (EComd,EOpend) which is
described below. 7

On input a security parameter 1n, the honest committer C runs the algorithm EComd described
below to commit to a value v ∈ {0, 1}n. After the commit stage, the honest receiver R decides
whether to accept the commitment by running the function EOpend as described in the reveal stage.

- Commit stage - Algorithm EComd:

1. On input security parameter 1n and value v ∈ {0, 1}n, for every 0 ≤ i ≤ n−1, the honest
committer C samples random strings si, ri ∈ {0, 1}n and computes the commitment ci
to v[i], the ith bit of v, as follows,

ci = (Zi = Gen(1n, 1t(n), si ; r), ri, 〈ri · si〉 ⊕ v[i]) ,

where r is the random tape used by Gen and t is the difficulty parameter such that
d = T (t).

2. C sends the vector c = {ci}0≤i≤n−1 to R as the commitment and keeps (v, {si}0≤i≤n−1, r)
as the decommitment.

- Reveal stage - Function EOpend:
On receiving (v, {si}0≤i≤n−1, r) from C, R computes the function EOpend which returns 1 if
ci = (Gen(1n, 1t, si ; r), ri, 〈ri · si〉 ⊕ v[i]) for every 0 ≤ i ≤ n− 1. Otherwise, outputs 0.

Furthermore, the extractor oEd of the scheme proceeds as follows:

- Extraction - Extractor oEd:
On receiving any commitment c = {ci = (Zi, ri, zi)}0≤i≤n−1, the extractor oEd computes the
solution si of Zi by running Sol(Zi). Then, oEd extracts bit v[i] committed in ci by computing
v[i] = zi ⊕ 〈ri · si〉. oEd returns the string v[0]|| . . . ||v[n− 1] as its output.

Theorem 6. Assuming the existence of (T,B)-TL puzzle (Gen,Sol), an appropriate diffculty param-
eter t(n) and non-decreasing functions n << d = T (t) << S′ = 2t << S∗ << B, (EComd,EOpend)
is a non-interactive, perfectly binding, Cd-hiding, (S′, S′)-over-extractable commitment scheme w.r.t.
extractor oEd.

Proof. We discuss each of the properties in the following:

- Efficiency: For any n ∈ N, difficulty parameter t which is upper-bounded by some polynomial
and 0 ≤ i ≤ n−1, EComd runs Gen to sample puzzles Zi’s and rest of computation (i.e., sampling
n-bit strings, computing inner-product) takes poly(n) time. In fact for difficulty parameter t(n),
Gen runs in time poly(t, n) which is upper-bounded by some poly(n) as t is upper-bounded by a
polynomial. Hence, EComd runs in time poly(n) for each 0 ≤ i ≤ n − 1. Therefore, EComd is
efficient.

7From now on, for notational convenience, we represent a non-interactive commitment scheme by the tuple of
commit and open algorithms; that is (ECom,EOpen), instead of a pair of interactive TMs C and R.
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- Perfect binding: Note that the TL-puzzle as defined is injective, that is, given a honestly generated
puzzle Z there exists only one solution s to this puzzle. Assume towards a contradiction, there
exists a puzzle Z that has two solution s0 6= s1, that is, Z lies in the support of both Gen(·, ·, s0)
and Gen(·, ·, s1). Then, the deterministic algorithm Sol on input Z outputs s. If s = s0, then
this contradicts the correctness of Sol w.r.t. puzzles in the support of Gen(·, ·, s1) and vice-versa.
Therefore, given a puzzle Z (arbitrarily generated), there exists at most one solution. This
then implies that the puzzles Zi in the commitment c lie in the support of at most one string
si. Therefore, for every commitment c there exists at most one sequence {si}i∈[n] that will
make R accept the commitment c. It is easy to see that this implies the perfect binding of
(EComd,EOpend).

- Over-extractable: First, the extractor oEd belongs to the class C∧S′,S′ since Sol runs in time

poly(S′) = poly(2t) and the rest of the computation takes poly(n) time. Furthermore, since
oEd always solves the puzzle Zi’s correctly, it always extracts the correct unique committed value.
Therefore, (EComd,EOpend) is (S′, S′)-over-extractable.

- Hiding: By the definition of (T,B)-hardness of the TL puzzle, for difficulty parameter t, the
distribution,

{s← {0, 1}n, Z ← Gen(1n, 1t, s) : (s, Z)} , (2)

is unpredictable for any adversary A = {An}n∈N where dep(An) ≤ poly(T (t)) and size(An) ≤
poly(S∗) < B. In our construction of (EComd,EOpend), we sample the TL puzzles with difficulty
t such that T (t) = d. Therefore, for any circuit in the class Cd, the above distribution is unpre-
dictable. We refer to such a distribution as Cd-unpredictable. Then, by a standard argument
about the hardcoreness of the Goldreich Levin bit [GL89] extracted from an Cd-unpredictable
distribution, we can conclude that the bit 〈si · ri〉 is hardcore for circuits in the class Cd. This
implies that (EComd,EOpend) is Cd-hiding.

4.2 Size-robust Over-extractable Commitment Scheme from OWPs

For a non-decreasing function S(n) (<< S∗(n)), assume that there exists a OWP f that is hard to
invert for any poly(S)-sized circuit (for any polynomial poly(·)), but there exists a non-decreasing
function S′′(n) (S << S′′ << S∗) such that a circuit of poly(n) depth and S′′ size can invert
it. Such a OWP f can be instantiated from a subexponentially secure OWP by setting the input
length appropriately. More concretely, consider a subexponentially secure OWP that is hard for
circuits of size poly(2k

ε
) (for any polynomial poly() and some 0 < ε < 1). For any S, we can design

the required f which is hard to invert for poly(S)-sized circuits by setting k = (logS)1/ε, thereby
achieving security against circuits of size poly(2k

ε
) = poly(2(logS)). Furthermore, there exists a

circuit which can invert (with probability 1) by enumerating all the 2k pre-images. Such a circuit

has size S′′ = poly(2k) = poly(2(logS)1/ε
) >> S and polynomial depth.

Using such a OWP f , we construct a commitment scheme (EComS ,EOpenS) which is hiding
against circuits of size poly(S) (hence the name size-robust commitment scheme) and (poly(n), S′′)-
over-extractable. (EComS ,EOpenS) is simply the non-interactive commitment scheme based on
OWP where the hard-core predicate is the Golreich-Levin bit [GL89]. For completeness, we describe
the scheme below.

- Commit stage - Algorithm EComS :
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1. On input security parameter 1n and value v ∈ {0, 1}n, for every 0 ≤ i ≤ n − 1, the
honest committer C samples random strings si and ri in the domain of f and computes
the commitment ci to v[i], the ith bit of v, as follows,

ci = (f(si), ri, 〈ri · si〉 ⊕ v[i]) .

2. C sends the vector c = {ci}0≤i≤n−1 to R as the commitment and keeps (v, {si}0≤i≤n−1)
as the decommitment.

- Reveal stage - Function EOpenS :
On receiving (v, {si}0≤i≤n−1) from C, R computes the function EOpenS which returns 1 if
ci = (f(si), ri, 〈ri · si〉 ⊕ v[i]) for every 0 ≤ i ≤ n− 1. Otherwise, outputs 0.

The extractor oES for the scheme proceeds as follows:

- Extraction - Extractor oES :
On receiving any commitment c = {ci = (yi, ri, zi)}0≤i≤n−1, the extractor oES computes the
pre-image si of yi under f (by assumption, f can be inverted using a circuit of polynomial
depth and S′′ size). oES extracts bit v[i] committed in ci by computing v[i] = zi ⊕ 〈ri · si〉.
oES returns the string v[0]|| . . . ||v[n− 1] as its output.

Theorem 7. If f is a CS-secure OWP which is invertible by a circuit in C∧poly,S′′ for some S′′ >>
S then (EComS ,EOpenS) is a non-interactive, perfectly binding, CS-hiding and (poly, S′′)-over-
extractable commitment scheme w.r.t. extractor oES.

Proof. We discuss all the properties in the following:

- Binding and Hiding: The proof of perfect binding follows from the injectivity of f and proof
of CS-hiding follows from the hard-coreness of the Goldreich-Levin bit with OWP being CS-
secure (hence the scheme is CS-hiding).

- Over-extractable: First, the extractor oES belongs to the class C∧poly,S′′ since f can be inverted
by a circuit in C∧poly,S′′ and the rest of the computation takes poly(n) time. Furthermore,
since oES always inverts the OWP images yi’s correctly, it always extracts the correct unique
committed value. Therefore, (EComS ,EOpenS) is (poly, S′′)-over-extractable.

4.3 Strong Over-extractable Commitment Scheme

For non-decreasing functions,

n << d(n) << S′(n), S(n) << S′′(n) << S∗(n) << 2n
ε
,

we construct a non-interactive perfectly binding commitment (EComd,S ,EOpend,S) which is C∨d,S-
hiding and (S′, S′′)-over-extractable w.r.t an extractor oEd,S . Note that, unlike the commitment
schemes described in Sections 4.1 and 4.2 which were either hiding against depth-restricted circuits
Cd or hiding against size-restricted circuits CS , (EComd,S ,EOpend,S) enjoys a stronger security prop-
erty of being hiding against circuits in both depth-restricted and size-restricted circuit classes (i.e.,
C∨d,S). We describe the construction of the scheme (EComd,S ,EOpend,S) for an honest committer C
and an honest receiver R below. The idea is to commit to a random 2-out-of-2 secret share of the
value v using each of the schemes described in Sections 4.1 and 4.2.
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- Commit stage - Algorithm EComd,S :

1. On input security parameter 1n and value v ∈ {0, 1}n, C samples a random n-bit string
r0.

2. C computes a commitment c1 to r0 using EComd. Let d1 be the corresponding decom-
mitment string.

3. C computes a commitment c2 to v ⊕ r0 using EComS . Let d2 be the corresponding
decommitment string.

4. C sends (c1, c2) as the commitment c to R and keeps the decommitment (v, r0, d1, d2)
private.

- Reveal stage - Function EOpend,S :

On receiving the decommitment (v, r0, d1, d2), R accepts it if both EOpend and EOpenS accept
the corresponding decommitments; that is,

EOpend(c1, r0, d1) = 1 ∧ EOpenS(c2, v ⊕ r0, d2) = 1 .

Otherwise, R rejects.

The extractor oEd,S of the scheme proceeds as follows:

- Extraction - Extractor oEd,S :

The extractor oEd,S on input c = (c1, c2) runs the extractors oEd and oES with inputs c1 and
c2, obtaining outputs r′0 and r′1 respectively. If either r′0 or r′1 is ⊥ then oEd,S outputs ⊥.
Otherwise, oEd,S outputs r′0 ⊕ r′1.

Theorem 8. (EComd,S ,EOpend,S) is a non-interactive, perfectly binding, C∨d,S-hiding and (S′, S′′)-
over-extractable commitment scheme w.r.t. extractor oEd,S.

Proof. We discuss each of the properties in the following:

- Perfect binding: The perfect binding follows from the perfect binding of EComd and EComS .

- Over-extractable: A valid commitment c = (c1, c2) is such that both c1 and c2 are valid com-
mitments for EComd and EComS respectively. Since EComd and EComS are over-extractable
w.r.t. extractors oEd and oES respectively, oEd,S which runs oEd(c1) and oES(c2) extracts
out the unique committed values and hence outputs val(c) with over-whelming probability.
Furthermore, oEd ∈ C∧S′,S′ and oES ∈ C∧poly,S′′ implies that oEd,S belongs to the circuit class
C∧S′,S′′ .

- Hiding: Assume towards a contradiction that there exists a non-uniform circuit family A =
{An}n∈N ∈ C∨d,S , and for some polynomial p(·) and infinitely many n ∈ N, a pair of values
v0, v1 ∈ {0, 1}n,

Pr [b← {0, 1}, c← EComd,S(1n, vb) : b = An(c)] ≥ 1

2
+

1

p(n)
. (3)

Using A, we construct a non-uniform circuit family B = {Bn}n∈N that breaks the hiding of
either EComd or EComS depending on the depth and size of A. Since A ∈ C∨d,S , it could either
be that A ∈ Cd or A ∈ CS . We will consider the two cases separately below.
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Case 1 - A ∈ CS : In this case, we construct a B that violates the hiding of EComS as follows:
Bn with v0 and v1 hard-wired in it, samples a random n-bit string r0 and computes a com-
mitment c1 to string r0 using EComd. It sends (v0 ⊕ r0) and (v1 ⊕ r0) as challenges in the
hiding game of EComS and receives a commitment c2 to (vb ⊕ r0), for a randomly chosen bit
b. Finally, Bn sends the tuple (c1, c2) as the commitment to An and forwards the output of
An as its output. B perfectly simulates the hiding game of EComd,S for A while itself partic-
ipating in the hiding game of EComS and hence succeeds with probability at least 1

2 + 1
p(n) .

Furthermore, since B incurs only polynomial blow-up in size over A (while simulating the
game for A), we have B ∈ CS . Therefore, B ∈ CS succeeds in the hiding game of EComS with
non-negligible probability away from 1

2 , which is a contradiction.

Case 2 - A ∈ Cd: The proof for Case 2 is similar to Case 1 but here we, instead, construct
B ∈ Cd which succeeds in the hiding game of EComd with non-negligible probability away
from 1

2 . The only difference from the previous case is that B commits to r0 using the scheme
EComS and forwards (v0⊕ r0) and (v1⊕ r0) as challenges in the hiding game of EComd. Since
the marginal distribution of both random shares of v (i.e., r and v ⊕ r for a random r) are
identical, B still perfectly simulates the hiding game of EComd,S for A.

5 Non-malleable Commitment Scheme w.r.t. Extraction for Short
Identities

For l which is a power of 2, assume that we have the following hierarchy of non-decreasing functions
on N,

n << d0 << d1 << . . . << dl−1 << dl <<

S0 << S1 << . . . << Sl−1 << Sl << S∗ << 2n
ε
,

(4)

such that for every 0 ≤ id ≤ l − 1,

- there exists a depth-robust commitment scheme (EComdid ,EOpendid) that is Cdid-hiding and
(did+1, did+1)-over-extractable w.r.t. an extractor oEdid .

- there exists a size-robust commitment scheme (EComSid
,EOpenSid

) that is CSid
-hiding and

(poly(n), Sid+1)-over-extractable w.r.t. an extractor oESid
.

By Section 4.3, we can construct a family of l commitments {(EComid,EOpenid)}id such that for
every 0 ≤ id ≤ l − 1,

(EComid,EOpenid) = (EComdid,Sl−id−1
,EOpendid,Sl−id−1

) ,

and by Theorem 8 we have that (EComid,EOpenid) is a non-interactive, perfectly binding, C∨did,Sl−id−1
-

hiding and (did+1, Sl−id)-over-extractable commitment scheme w.r.t. an extractor oEid (described in
Section 4.3). We use this family of l commitment schemes to construct a tag-based commitment
scheme (ENMCom,ENMOpen) for identities of length log l-bits which is one-one non-malleable w.r.t.
extraction by an extractor oENM. We describe the scheme (ENMCom,ENMOpen) and the extractor
oENM below.

- Commit stage - Algorithm ENMCom:
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1. On input security parameter 1n, identity 0 ≤ id ≤ l − 1 and a value v ∈ {0, 1}n, C
computes a commitment c to v using EComid. Let d be the corresponding decommitment
string.

2. C sends the commitment c to R and keeps the decommitment (v, d) private.

- Reveal stage - Function ENMOpen:
On receiving the decommitment (v, d) and identity id, R computes ENMOpen(id, c, v, d) which
returns 1 if EOpenid(c, v, d) returns 1. Otherwise, returns 0.

The extractor oENM proceeds as follows,

- Extraction - Extractor oENM:
The extractor oENM on input c and identity id outputs the value extracted by oEid from c.

Remark 3. We want ENMCom and ENMOpen to be computable by uniform TMs. This mandates
that {EComid}0≤id≤l−1 and {EOpenid}0≤id≤l−1 be uniformly and efficiently computable; that is, there
must exist uniform PPT TMs Mcom and Mopen that on input id can compute EComid and EOpenid
respectively. If l = O(1) then one can simply hard-code all the algorithms {EComid}0≤id≤l−1 and
{EOpenid}0≤id≤l−1 in Mcom and Mopen respectively. As will see later, l = O(1) is sufficient for
constructing non-malleable commitment scheme for n-bit identities. When l = ω(1) the hard-coding
approach, in fact, does not work. Nevertheless, we note that the algorithms EComid and EOpenid
described in Section 4.3 are still efficiently and uniformly computable. Since, this case does not
occur in our construction, we omit details here.

Theorem 9. (ENMCom,ENMOpen) is a non-interactive, perfectly binding, C∧d0,S0
-hiding, (dl, Sl)-

over-extractable tag-based commitment scheme for identities of length log l. Furthermore,
(ENMCom,ENMOpen) is one-one C∧d0,S0

-non-malleable w.r.t. extraction by extractor oENM.

We note that both hiding and non-malleability hold only against circuits in the restrictive class
C∧d0,S0

; that is, circuits A whose depth and size are bounded by poly(d0) and poly(S0) respectively,
even though the building blocks EComid’s have the stronger security of being hiding against circuits
in C∨did,Sl−id−1

⊃ C∧d0,S0
; that is, circuits A which are either restricted in their depths or their size but

not both.

Proof. The perfect binding follows readily from the perfect binding of each of the EComid’s. We
discuss over-extractability and non-malleability in the following:

- Over-extractable: A valid commitment c with identity id is a valid commitment for EComid.
Therefore, the extractor oENM which runs oEid on c extracts the correct unique commit-
ted value due to the over-extractability of EComid w.r.t. oEid. Furthermore, EComid’s are
(did+1, Sl−id)-over-extractable and hence the depth of oEid is at most poly(did+1) and size of
oEid is at most poly(Sl−id). Therefore, oENM (which runs oEid) is a circuit with depth bounded
by poly(dl) and size bounded by poly(Sl) (see Inequality (4)). Hence, (ENMCom,ENMOpen)
is (dl, Sl)-over-extractable.

- Non-malleability and Hiding: The proof of hiding follows from the proof of non-malleability
(described below). For proving one-one non-malleability w.r.t. extraction by oENM, let us
assume for contradiction that there exists a non-uniform attacker A = {An}n∈N ∈ C∧d0,S0

,
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a non-uniform distinguisher D = {Dn}n∈N ∈ P/poly, and a polynomial p(·), such that, for
infinitely many n ∈ N there exists v0, v1 ∈ {0, 1}n such that∣∣∣Pr[Dn(emimAn

ENMCom(v0)) = 1]− Pr[Dn(emimAn
ENMCom(v1)) = 1]

∣∣∣ ≥ 1/p(n). (5)

Let id and ĩd be the identities chosen by A in the left and right interactions respectively. Note
that since the only message A receives in the execution is the left commitment and identity for
the left interaction needs to be chosen before that, we can assume that the left side identity
id is fixed.

Using A and D, we will construct a non-uniform circuit B = {Bn}n∈N ∈ C∨did,Sl−id−1
that breaks

the hiding of EComid with advantage at least 1
p(n) . More concretely, B internally runs A and

acts as an honest committer in the left interaction with A while as an honest receiver in the
right interaction. In the hiding game of EComid, B sends (v0, v1) as challenges and receives a
commitment c to vb, for a randomly chosen bit b. B forwards c to A as the commitment in
the left interaction. A sends a commitment c̃ to the honest right receiver (simulated by B).
Then, B runs the extractor oEĩd on c̃ obtaining an extracted value ṽ′. Depending on the value
of b, the over-extracted value ṽ′ along with the view of A is identical to emimA

ENMCom(vb). B
runs the distinguisher D with inputs ṽ′ and the view of A. Finally, B returns the output of
D as its output.

By our hypothesis, B succeeds in breaking the hiding of EComid with advantage at least 1
p(n) .

Now to arrive at a contradiction it remains to show that B ∈ C∨did,Sl−id−1
. B runs the extractor

oEĩd ∈ C
∧
did+1,Sl−ĩd

and A ∈ C∧d0,S0
, while the rest of the simulation takes poly(n) time. Therefore

the depth of B is such that,

dep(B) = dep(A) + dep(oEĩd) + poly(n)

≤ poly(d0) + poly(dĩd+1) + poly(n) < poly(dĩd+1) .
(6)

Similarly, the size of B is such that,

size(B) = size(A) + size(oEĩd) + poly(n)

≤ poly(S0) + poly(Sl−ĩd) + poly(n)

< poly(Sl−ĩd) << S∗ .

(7)

We consider two cases for the identities id and ĩd as follows: 8

Case 1 - id > ĩd: In this case, did ≥ dĩd+1, we have that dep(B) < poly(did) for some polynomial
poly(·). Therefore, B ∈ Cdid and hence B ∈ C∨did,Sl−id−1

.

Case 2 - id < ĩd: In this case, Sl−ĩd ≤ Sl−id−1 and we have that size(B) < poly(Sl−id−1) for
some polynomial poly(·). Therefore B ∈ C∨did,Sl−id−1

.

Thus, irrespective of the identity ĩd chosen by A for the right interaction, we can construct
B ∈ C∨did,Sl−id−1

which breaks hiding of EComid with non-negligible advantage, which is a
contradiction.

8Note that the case id = ĩd is not invalid execution and hence not considered.
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Remark 4. In the above proof, the reduction B which bases the one-one non-malleability w.r.t.
extraction on the hiding of EComid, runs both A and the extractor oEĩd of the commitment scheme
EComĩd. Therefore, B has depth at most dep(A) + poly(dĩd+1) and has size at most size(A) +
poly(Sl−ĩd) respectively. To reach a contradiction, one must argue that the reduction B belongs to
C∨did,Sl−id

. In other words, either dep(A) + poly(dĩd+1) is at most poly(did) or size(A) + poly(Sl−ĩd)

is at most poly(Sl−id−1). Since A chooses both id and ĩd, this can only hold if dep(A) and size(A)
are both small; that is, o(d1) and o(S1) respectively. As a result, we only show non-malleability of
(ENMCom,ENMOpen) against weak adversaries whose depth and size both are bounded by poly(d0) =
o(d1) and poly(S0) = o(S1) respectively.

Remark 5. Furthermore, we note that even though (ENMCom,ENMOpen) is non-malleable w.r.t.
extraction, we cannot prove that it is non-malleable (w.r.t. commitment). This is because the
underlying commitment schemes EComid’s are only over-extractable. Over-extractability guarantees
that for a valid commitment, the value extracted by the extractor is indeed the value committed
(except with negligible probability). However, when a commitment is invalid, the extracted value can
be arbitrary – hence the name over-extractable. Therefore, there might exist an adversary A that
depending on the value committed on the left sends invalid commitments with different probabilities
on the right. Such an adversary clearly violates the non-malleability (w.r.t. commitment) but may
not violate non-malleability w.r.t. extraction. This is because the over-extracted values may still be
indistinguishable. Hence, we cannot base non-malleability (w.r.t. commitment) on non-malleability
w.r.t. extraction of (ENMCom,ENMOpen).

6 Strengthening Non-malleability

The scheme (ENMCom,ENMOpen) described in Section 5 is only stand-alone (one-one) non-malleable
w.r.t. extraction. However, our final goal is to construct a scheme that is concurrent non-malleable
(w.r.t. commitment). In this section, we describe a transformation that transforms any 2-round
commitment scheme 〈C,R〉 which is one-one non-malleable w.r.t. extraction into a 2-round com-
mitment scheme 〈Ĉ, R̂〉 which is concurrent non-malleable w.r.t. extraction as well as concurrent
non-malleable (w.r.t. commitment), while preserving the length of the identities. Below, we first
describe a bare-bone protocol that has two main problems; we discuss how to resolve them, which
naturally leads to our transformation.

6.1 A Bare-Bone Protocol and Challenges

As discussed in the overview in Section 2, our construction of 〈Ĉ, R̂〉 is inspired by the non-
malleability amplification technique in [LP09]. As a starting point, their technique suggests the
following bare-bone protocol:

A Bare-Bone Protocol 〈Ĉ, R̂〉. The receiver sends a puzzle puzz, together with the first message
aNM of 〈C,R〉 and the first message aZAP of ZAP. The committer computes a commitment c1
to v using a non-interactive commitment scheme Com, sends the second message bNM of 〈C,R〉
committing to a random string r1, and the second message bZAP of ZAP proving that either i)
c1 commits to v or ii) (aNM, bNM) commits to a solution s of the puzzle puzz (which is efficiently
verifiable).
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Ĉ R̂puzz, aNM, aZAP

Com(v), bNM, bZAP

As discussed before, to show the security of such a bare-bone protocol, ideally, we would like
different components — puzz, 〈C,R〉, Com, and ZAP — to be mutually non-malleable. Informally
speaking, we say that a primitive P is more secure than a primitive Q, denoted as P � Q, if the
security of P holds even when security of Q is broken by force; P and Q are mutually non-malleable
if P ≺� Q. The ideal configuration is illustrated in Figure 2 (i). Towards realizing as many
constraints in the ideal configuration as possible, the first idea is using three size-and-depth robust
commitment schemes ECom1,ECom4,ECom3

9 to implement Com and puzz, and augment ZAP so
that they become mutually non-malleable. But, we run into problems with respect to the input
non-malleable commitment 〈C,R〉.
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≺ �

≺
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≺
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(i) Ideal Configuration (ii) Assume NIWI (iii) Assume CRH

Figure 2: The relation between different primitives. (i): The ideal configuration where all primitives are
mutually non-malleable to each other; however, it cannot be instantiated. (ii) A sufficient configuration; it
can be instantiated assuming NIWI. (iii): A sufficient configuration, which can be instantiated assuming
collision resistant hash functions or one-way permutations. (The dashed line is by transitivity.)

Challenge 1: 〈C,R〉 is only secure against adversaries which have both bounded depth AND
bounded size. (Technically, it is secure against C∧dNM,SNM

, for some dNM and SNM; this is the
case for the basic schemes constructed in Section 5, as well as the schemes produced by the
transformation in this section.) This type of AND security means either a primitive P is more
secure than 〈C,R〉 or less, but cannot be mutually non-malleable. Though through a more
careful analysis, we can remove some constraints w.r.t. the non-malleable commitment, it still
requires 〈C,R〉 ≺� puzz, in order to show the security of the bare-bone protocol.

Challenge 2: In addition, constructing a puzzle from size-and-depth robust commitment ECom4

is not straightforward. If we naively use puzz = ECom4(s) as a puzzle, a malicious man-
in-the-middle can send an invalid commitment, which has no solution; this would make the
security proof stuck. To prevent this, one straightforward approach is asking the receiver to
send two puzzles and prove using NIWI that at least one of them is well-formed. However,
this requires relying the existence of NIWI.

9The indexes are as such in order to match the protocol description later.
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To resolve Challenge 1, we modify the bare bone protocol using an additional size-and-robust
commitment ECom2. The key idea is creating a “buffer” between 〈C,R〉 and puzz, by setting the
following relation: ECom2 � 〈C,R〉, 〈C,R〉 � puzz, and ECom2 ≺� puzz, as illustrated in Figure 2
(ii). Note that now the non-malleable commitment does not need to satisfy mutual non-malleability
with either ECom2 or puzz. On the other hand, the mutual non-malleability of ECom2 and puzz
helps the security proof to go through.

However, to fulfill the relation ECom2 ≺� puzz, it seems necessary to instantiate puzz using
a size-and-depth robust commitment scheme, which however would involve using NIWI. To avoid
this, we would like to set puzz to be, for example, a randomly chosen collision resistant hash
(CRH) function h, or a randomly chosen image y = f(s) of a one-way permutation (OWP), whose
corresponding solutions are respectively a collision of h and a preimage of y. These puzzles have
the advantage that their validity are efficiently verifiable and hence NIWI can be disposed. But, a
problem with using, say, h as the puzzle is that, it cannot be mutually non-malleable with ECom2.
To resolve this, we use a h � ECom2, and to compensate for the fact that h 6≺ ECom2, we use
non-uniformity in the proof as follows: When reducing to the security of ECom2, the reduction
instead of finding a collision of h by force, receives a collision as a non-uniform advice. This can be
done since the puzzle h is sent in the first message completely before the ECom2 commitment.

Unfortunately, instantiating the puzzles using CRH or OWP creates another problem: Given
that 〈C,R〉 � puzz = h and h � ECom2, it actually implies that 〈C,R〉 � ECom2. This transitivity
holds because the h is only secure against attackers with bounded size. (If h were replaced with
another size-and-depth robust commitment ECom′, then transitivity does not hold in general.) But
this means 〈C,R〉 needs to be mutually non-malleable with ECom2 again. To solve this problem, we
again use the idea of creating “buffers”. More specifically, we set the following relation: ECom4 �
〈C,R〉, 〈C,R〉 � puzz, puzz � ECom2, and ECom2 ≺� ECom4, as illustrated in Figure 2 (iii). Now
transitivity implies that 〈C,R〉 � ECom2, but 〈C,R〉 no longer need to be simultanously weaker
than ECom2, and only needs to be weaker than the new “buffer” ECom4. Moreover, the mutual
non-malleability between ECom2 and ECom4 helps the proof to go through.

6.2 Building Blocks

Our transformation will make use of the following building blocks. We note that the parameters
associated with these building blocks are set so as to satisfy the above discussed relations as in
Figure 2 (iii).

For some hierarchy of non-decreasing functions on N satisfying,

n << d4 << d3 << d1 << d2 << S2 << S1 << SCRH <<

S′CRH << SNM << S′NM << S3 << S4 << S′4 << S∗ ,
(8)

the transformation relies on the following building blocks,

1. 〈C,R〉 is a 2-round, tag-based commitment scheme for t(n)-bit identities that is (S′NM, S
′
NM)-

over-extractable by extractor oENM. Furthermore, 〈C,R〉 is one-one C∧SNM,SNM
-non-malleable

w.r.t. extraction by oENM. 10

2. (ECom1,EOpen1) is a perfectly binding commitment scheme which is C∨d1,S1
-hiding and (d2, SCRH)-

over-extractable w.r.t. extractor oE1.

10The non-interactive scheme (ENMCom,ENMOpen) of Section 5 can be viewed as a 2-round scheme 〈C,R〉 where
the first round message from R is the null string.

31



3. (ECom2,EOpen2) is a perfectly binding commitment scheme which is C∨d2,S2
-hiding and (S2, S1)-

over-extractable w.r.t. extractor oE2.

4. (ECom3,EOpen3) is a perfectly binding commitment scheme which is C∨d3,S3
-hiding and (d1, S4)-

over-extractable w.r.t. extractor oE3.

5. (ECom4,ECom4) is a perfectly binding commitment scheme which is C∨d4,S4
-hiding and (d3, S

′
4)-

over-extractable w.r.t. extractor oE4.

6. ZAP is a 2-round CS∗-witness-indistinguishable proof.

7. H = {Dn}n∈N is a family of non-uniform CSCRH
-collision resistant hash functions such that

there exists a circuit in CS′CRH which finds collisions for H with probability 1.

6.3 Commitment Scheme 〈Ĉ, R̂〉

Using building blocks described in the previous subsection, we now describe our construction of
a 2-round, tag-based commitment scheme 〈Ĉ, R̂〉 for t(n)-bit identities that is (d2, SCRH)-over-

extractable w.r.t. an extractor ôENM, and show that it is both concurrent C∧d4,d4
-non-malleable

w.r.t. extraction by ôENM and concurrent C∧d4,d4
-non-malleable (w.r.t. commitment).

The committer Ĉ and the receiver R̂ receive the security parameter 1n and identity id ∈ {0, 1}t(n)

as common input. Furthermore, Ĉ gets a private input v ∈ {0, 1}n which is the value to be
committed.

- Commit stage - First round:

1. R̂ samples a hash function h from H (using Dn).

2. R̂ samples the first message aZAP of ZAP.

3. R̂ generates the first message aNM of 〈C,R〉 using the honest receiver R with identity id.

4. R̂ sends (h, aZAP, aNM) as the first round message to Ĉ.

- Commit stage - Second round:

1. (a) Ĉ computes a commitment c1 to the value v using ECom1. Let d1 be the corre-
sponding decommitment string.

(b) Ĉ computes a commitment c3 to the decommitment (v, d1) of c1 using ECom3.

2. (a) Ĉ computes a commitment c2 to a random string r1 using ECom2.

(b) Given aNM, Ĉ computes the second message bNM of 〈C,R〉 using the honest com-
mitter C with identity id to commit to a random string r2.

(c) Ĉ computes a commitment c4 to a random string r3 using ECom4.

3. Given aZAP, Ĉ computes the second message bZAP of ZAP to prove the following OR-
statement:

(a) either there exists a string v̄ such that c1 is a commitment to v̄ and c3 commits to
a decommitment of c1.

(b) or there exists a string s̄ = (x1, x2) such that c2 is a commitment to s̄ and c4
commits to a decommitment of c2 and (aNM, bNM) commit to a decommitment of c4
and h(x1) = h(x2).
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Ĉ proves the statement (a) by using a decommitment of c3 to (v, d1) — decommitment
of c1 to v — as the witness.

4. Ĉ sends (c1, c2, c3, c4, bNM, bZAP) as the second message to R̂ and keeps the decommit-
ment (v, d1) private.

- Reveal stage:

On receiving (v, d1) from Ĉ, R̂ accepts the decommitment if the ZAP proof is accepting and
if EOpen1(c1, v, d1) = 1. Otherwise, it rejects.

We refer to the entire transcript of the interaction as the commitment c. Moreover, we say
that an interaction (with transcript c) is accepting if the ZAP proof contained in the commitment
c is accepting. According to the reveal stage, the value of a commitment c, val(c) is the value
committed under c1 (contained in c) if c is accepting. Otherwise, val(c) is ⊥.

Next, we describe the extractor ôENM of the scheme below.

- Extraction - Extractor ôENM:

On receiving a commitment c and identity id, ôENM first verifies the ZAP proof and outputs
⊥ if the proof is not accepting. Otherwise, it runs the extractor oE1 on c1 and outputs the
extracted value v′.

Theorem 10. 〈Ĉ, R̂〉 is a 2-round, perfectly binding, C∧d4,d4
-hiding, (d2, SCRH)-over-extractable com-

mitment scheme for identities of length t(n).

Proof. The perfectly binding property follows from that of the non-interactive commitment scheme
(ECom1,EOpen1). The proof of hiding will follow from the proof of Theorem 11, which we present
later.

- Over-extractability: A valid commitment c to a value v, from the definition of reveal stage of

〈Ĉ, R̂〉, is such that the ZAP proof contained in c is accepting and c1 (contained in c) is a valid

commitment to v using ECom1. In this case, the extractor ôENM runs oE1 on c1, which by the
over-extractability of ECom1 w.r.t. oE1, outputs v with overwhelming probability. Thus, ôENM

extracts v with overwhelming probability. Moreover, ôENM belongs to the class C∧d2,SCRH
, since

oE1 ∈ C∧d2,SCRH
and the rest of computation by ôENM takes poly(n) time. Hence, the scheme

〈Ĉ, R̂〉 is (d2, SCRH)-over-extractable.

Next, we establish the non-malleability of the scheme 〈Ĉ, R̂〉.

Theorem 11. 〈Ĉ, R̂〉 is concurrent C∧d4,d4
-non-malleable w.r.t. extraction by extractor ôENM.

Theorem 12. 〈Ĉ, R̂〉 is concurrent C∧d4,d4
-non-malleable (w.r.t. commitment).

In order to prove concurrent non-malleability w.r.t. commitment, Lin, Pass and Venkitasub-
ramaniam [LPV08] showed that it is sufficient to prove non-malleability against adversaries par-
ticipating in one left interaction and many right interactions. We refer to such an adversary as a
one-many adversary. More precisely, they presented a reduction that, given an adversary A and
a distinguisher D that break concurrent non-malleability, builds a one-many adversary Ã and a
distinguisher D̃ that violate one-many non-malleability. Their reduction blows up the size and
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the depth of the adversary Ã and the distinguisher D̃ (over A and D respectively) by a poly(n)
factor and thereby incurs a polynomial loss in security. We claim that the same reduction applies
to the new notion of non-malleability w.r.t. extraction, therefore establishing that one-many non-
malleability w.r.t. extraction implies concurrent non-malleability w.r.t. extraction. Moreover, we
consider non-malleability (w.r.t. commitment and extraction) against circuit classes C which are
closed under composition with P/poly, hence their reduction preserves security in terms of the cir-
cuit class against which (concurrent and one-many) non-malleability is considered — a C-one-many
non-malleable commitment scheme is C-concurrent non-malleable. We omit a formal proof here
but for completeness state the extended version of their theorem below.

Theorem 13 (one-many to concurrent [LPV08]). Let 〈Ĉ, R̂〉 be a commitment scheme and C be a
class of circuits that is closed under composition with P/poly.

1. If 〈Ĉ, R̂〉 is C-one-many non-malleable then it is also C-concurrent non-malleable.

2. If 〈Ĉ, R̂〉 is C-one-many non-malleable w.r.t. extraction (by an extractor ôENM) then it is also

C-concurrent non-malleable w.r.t. extraction (by ôENM).

Proof of Theorem 11,12. Let us consider a fixed family of circuits A = {An}n∈N belonging to
the class C∧d4,d4

which participates in one left interaction and m = poly(n) right interactions, and
any fixed sequences of values {v0}n∈N and {v1}n∈N. By Theorem 13, to show Theorems 11, 12, it
suffices to prove the the following indistinguishabilty:{

emimA
〈Ĉ,R̂〉(v0)

}
n
≈c
{
emimA

〈Ĉ,R̂〉(v1)
}
n

(9){
mimA

〈Ĉ,R̂〉(v0)
}
n
≈c
{
mimA

〈Ĉ,R̂〉(v1)
}
n

(10)

We prove the above indistinguishability via a sequence of hybrids {Hj(v)}0≤j≤6 for v ∈ {v0, v1},
where H0(v) is identical to an honest man-in-the-middle execution with A where it receives a
commitment to v in the left interaction, and Hj(v) for each 1 ≤ j ≤ 6 runs a man-in-the-middle
execution with A where the left interaction is gradually simulated. For notational convenience,
we use x to denote a random variable in the left interaction, and x̃i the corresponding random
variable in the i’th right interaction. For instance, h denote the hash function sent by A in the left
interaction, while h̃i denotes that sent by the honest receiver in the i’th right interaction. Moreover,
for each hybrid Hj(v), we denote by mimA

Hj
(v) (and respectively, emimA

Hj
(v)) the random variables

that describe the view of A and the values {ṽi}i∈[m] committed to in (or respectively{ṽ′i}i∈[m]

extracted from) the right interactions. Again, for every right interaction i, if the interaction is not
accepting or its identity ĩdi equals to the left identity id, then ṽ′i = ṽi = ⊥; we say that a right
intearction is successful if this case does not happen.

To show indistinguishability as described in Equation (10) and (9), we prove in Lemma 2 that
the view of A and the values extracted from right interactions are indistinguishable in neighboring
hybrids Hj(v) and Hj+1(v) for the same v, and statistically close in H6(v1) and H5(v0) — this
establishes Equation (9). Furthermore, we show that in every hybrid Hj(v), values extracted from
right interactions are actually identical to the actual values committed in right interactions, except
with negligible probability. This shows that the emim and mim random variables are statistically
close (as stated in Lemma 3) and hence establishes Equation (10).
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Lemma 2. For v ∈ {v0, v1} and 0 ≤ j ≤ 5, the following are computationally indistinguishable,

emimA
Hj (v) ; emimA

Hj+1
(v) ,

and emimA
H0

(v) = emimA
〈Ĉ,R̂〉(v) and emimA

H6
(v) ≈s emimA

H5
(v0).

Lemma 3. For v ∈ {v0, v1} and 0 ≤ j ≤ 6, the following are statistically close,

emimA
Hj (v) ; mimA

Hj (v).

Towards proving the above two lemmas, we will maintain a soundness invariant throughout all
hybrids. Recall that the protocol requires a committer to prove using ZAP that one of the following
two statements is true; we refer to the first the honest statement and the second the fake statement.

The honest statement: either it has committed to v in c1 (of ECom1) and to a decommitment
(v, d1) of c1 in c3 (of ECom3),

The fake statement: or it has committed to a collision s = (x1, x2) of the hash function h in
c2 (of ECom2), to a decommitment (s, d2) of c2 in c4 (of ECom4), and to a decommitment
((s, d2), d4) of c4 in (aNM, bNM) (of 〈C,R, 〉).

No-fake-witness Invariant. We say that A commits to a fake witness in a right interaction i,
if the value committed to by A in the non-malleable commitment (ãNMi, b̃NMi) is a decommitment
((s̃i, d̃2i), d̃4i) of c̃4i satisfying that s̃i is a collision of h̃i, (s̃i, d̃2i) is a decommitment of ˜c2i, and
((s̃i, d̃2i), d̃4i) is a decommitment of ˜c4i.

Invariant 1 (No-fake-witness invariant). In Hj(v), the probability that there exists a right inter-
action i that is successful and A commits to a fake witness in it is negligible.

We show below that this invariant holds in all hybrids. The reason that we maintain Invariant 1
is that it enforces the man-in-the-middle attacker to always prove the honest statement in every
successful right interaction. When this is the case, we show that the values extracted from the right
interactions are identical to the values committed to in the right interactions except from negligible
probability. Formally,

Claim 1. In every hybrid Hj(v), if Invariant 1 holds, then emimA
Hj

(v) and mimA
Hj

(v) are statistically
close.

Proof. It suffices to argue that in Hj(v), in every right interaction i, the values ṽ′i extracted from
this right interaction is identical to the value ṽi committed in this right interaction, except with
negligible probability. Note that if a right interaction i is not successful, then ṽ′i = ṽi = ⊥.

Otherwise, if a right interaction i is successful, by the definition of the extractor ôENM of 〈Ĉ, R̂〉,
the extracted value ṽ′i is the value extracted by oE1 from the ECom1 commitment c̃1i. Under
Invariant 1, A does not commit to a fake witness in this (successful) interaction (and hence the
fake statement is false). Thus, by the soundness of ZAP, the honest statement must hold that c̃3i
commits to a valid decommitment of c̃1i which implies that c̃1i is a valid commitment. In this
case, by the over-extractability of ECom1 w.r.t. oE1, the value ṽ′i extracted from c̃1i is exactly the
committed value ṽi except with negligible probability. That is, ṽ′i and ṽi are identical except with
negligible probability.

Therefore, under Invariant 1, the random variable emimA
Hj

(v) is identical to mimA
Hj

(v), except
with negligible probability.
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Thus, showing Lemma 3 boils down to establishing Invariant 1. Towards this goal we further
observe that Invariant 1 follows from the following invariant which will be easier to prove. Instead
of reasoning about A committing to a fake witness, we keep the invariant that the value extracted
from (ãNMi, b̃NMi) is NOT a fake witness.

Invariant 2. In Hj(v), the probability that there exists a right interaction i that is successful and the

value extracted from the non-malleable commitment (ãNMi, b̃NMi) in this session is a fake witness
is negligible.

Claim 2. In every hybrid Hj(v), if Invariant 2 holds, then Invariant 1 also holds.

Proof. For every right interaction k, consider two cases:

- If the non-malleable commitment (ãNMk, b̃NMk) in this right interaction is valid, by the over-
extractability property of 〈C,R〉 w.r.t. extractor oENM the value extracted from it is exactly
equal to the value committed, except with negligible probability. Therefore, if the value ex-
tracted is not a fake witness, neither is the value committed, except with negligible probability.

- If the non-malleable commitment (ãNMk, b̃NMk) is not valid, the value committed is ⊥ and
cannot be a fake witness.

Hence, Invariant 2 implies Invariant 1.

Combining the above two claims, we have,

Lemma 4. For v ∈ {v0, v1} and 0 ≤ j ≤ 6, if Invariant 2 holds in hybrid Hj(v) then emimA
Hj

(v)

and mimA
Hj

(v) are statistically close.

Therefore, to show Theorem 11 and Theorem 12, it boils down to prove Lemma 2 and that
Invariant 2 holds in all hybrids. Next, we describe our hybrids {Hj(v)}0≤j≤6 and show that Lemma 2
and Invariant 2 indeed hold.

Hybrid H0(v) : HybridH0(v) emulates an honest MIM execution with A by honestly committing
the value v on the left and simulating honest receivers on the right. Therefore,

emimA
H0

(v) = emimA
〈Ĉ,R̂〉(v) .

Next, we show that Invariant 2 holds in H0(v). In fact we show that the value extracted from
the ECom2 commitment c̃2k in any right interaction k is not a collision of the hash function
h̃k, which implies Invariant 2. At a high level this readily follows from the fact that the
collision-resistance of the hash function is more secure than ECom2, h � ECom2 (see Figure 2
(iii)). This is because if in some right interaction k, the attack commits to a collision of h̃k
using ECom2, then we can construct a non-uniform circuit that violates the collision-resistance
of h̃k by extracting from c̃2k.

Claim 3. For v ∈ {v0, v1} and for every right interaction i in H0(v), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Proof. We show that in H0(v) the probability that there exists a right interaction k that is
successful and the value extracted from c̃2k is a collision of the hash function h̃k in this right
interaction — refer to this event bad — is negligible. Then, the claim follows, since whenever
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the value extracted from the non-malleable commitment in a successful right interaction k is
a fake witness, event bad must occur.

Now suppose for contradiction that there exists a polynomial p such that for infinitely many
n ∈ N there exists v ∈ {v0, v1} such that bad occurs with probability 1/p(n) in H0(v).
Then, using A, we construct a non-uniform circuit B = {Bn}n∈N ∈ CSCRH

that outputs a
collision for a hash function sampled from honestly from H (using Dn) with probability at
least 1/p(n). More concretely, B with v and k hard-wired in it, on receiving an honestly
sampled hash function h∗, emulates H0(v) for A except for the kth right interaction. In the
kth right interaction, B honestly computes the first message ãNMk of 〈C,R〉 and the first
message ãZAPk of ZAP (as in H0(v)) and sends the tuple (h̃k = h∗, ãZAPk, ãNMk) as its first
round message to A. On receiving the second round message from A in the kth interaction,
B runs the extractor oE2 on c̃2k and returns the extracted value as its output (irrespective of
whether the right interaction k is successful or not). Note that B perfectly emulates H0(v)
for A as the distribution of hash function received by B is identical to the distribution of the
hash function sent by the honest receiver R̂ of 〈Ĉ, R̂〉. Then by our hypothesis, the extracted
value is a collision of the function h̃k = h∗ with probability at least 1/p(n).

Furthermore, we argue that B belongs to the circuit class CSCRH
: B internally runs A and oE2,

and the rest of computation performed by B for emulating H0(v) takes poly(n) time. Since
oE2 ∈ C∧S2,S1

and A ∈ C∧d4,d4
we have,

size(B) = size(A) + size(oE2) + poly(n)

≤ poly(d4) + poly(S1)

< poly(SCRH) (since, SCRH >> d4, S1 from Equation (8))

Therefore, B belongs to the class CSCRH
which contradicts collision-resistance of H.

Hybrid H1(v) : Hybrid H1(v) proceeds identically to H0(v) except that the ECom2 commitment
c2 sent to A in the left interaction is generated differently. In H0(v), c2 is a commitment to a
random string r1 whereas in H1(v) c2 is a commitment to a collision s of the hash function h
(received as non-uniform advice). The rest of the execution is simulated identically to H0(v).
We note that only difference between hybrids H0(v) and H1(v) is the commitment c2 which
in H0(v) commits to a random string r1 and in H1(v) commits to a collision s of the hash
function h.

First, we show that Invariant 2 holds in H1(v). In fact we show that the value extracted from
the ECom4 commitment c̃4k in any right interaction k is not a decommitment of c̃2k to a
collision of the hash function h̃k, which implies Invariant 2. At a high level this follows from
the fact that ECom2 is more secure than ECom4, ECom2 � ECom4 (see Figure 2 (iii)), and
the trick that the reduction can receive a collision of h as a non-uniform advice. Suppose not
that in H1(v), the value extracted from c̃4k in some right interaction k satisfies the condition
above with 1/poly(n) probability. By Claim 3, this happens with only negligible probability
in H0(v). Then we can construct a non-uniform circuit that violates the hiding of ECom2 by
extracting from c̃4k.

Claim 4. For v ∈ {v0, v1} and for every right interaction i in H1(v), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Proof. We show that in H1(v) the probability that there exists a right interaction k that is
successful and the value extracted from c̃4k is a decommitment of c̃2k to a collision of the
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hash function h̃k in this right interaction — refer to this event bad — is negligible. Then,
the claim follows, since whenever the value extracted from the non-malleable commitment
in a successful right interaction k is a fake witness, event bad must occur. Towards showing
this, first observe that by Claim 3 and the same argument, in H0(v), the probability that bad
occurs is negligible.

Now suppose for contradiction that there exists a polynomial p such that for infinitely many
n ∈ N there exists v ∈ {v0, v1} such that bad occurs with probability 1/p(n) in H1(v).
Consider the set Γ of prefixes of transcripts up to the point where the first message in the left
interaction is sent. By a standard averaging argument, there must exist a 1/2p(n) fraction
of prefixes ρ in Γ, such that, conditioned on ρ occurring in H1(v), the probability that bad
occurs is at least 1/2p(n). Therefore, there exist at least a 1/3p(n) fraction of prefixes ρ in
Γ, such that, conditioned on ρ occurring in both H0(v) and H1(v), the probability that bad
occurs jumps from negligible to 1/2p(n). Fix one such prefix ρ; let h be the hash function
contained in the first message in the left interaction in ρ and s = (x1, x2) be a collision of h.
Then, using A, the prefix ρ and its collision s, we construct a non-uniform circuit B ∈ C∨d2,S2

that violates the hiding of (ECom2,EOpen2) with advantage at least 1/3p(n).

The circuit B with v, k, ρ, and s hard-wired in it, participates in the hiding game of
(ECom2,EOpen2) and internally emulates an execution of H1(v) with A as follows: 11

- Step 1: Feed A with messages in ρ; let (h, aZAP, aNM) be the left first message.

- Step 2: It samples a random string r1, and in the hiding game of (ECom2,EOpen2) it
sends r1 and s = (x1, x2) as challenges and receives a commitment c∗ to either r1 or s.

- Step 3: B generates the second message of the left interaction identically to H1(v) except
that it embeds c∗ as the ECom2 commitment in the message. That is, B computes
(c1, c3, c4, bNM) as in H1(v) (and H0(v)) and then computes the second message of ZAP
(bZAP) by setting c2 = c∗. It then sends (c1, c2, c3, c4, bNM, bZAP) as second round message
in the left interaction to A.

- Step 4: Once, B receives the second round message in the kth right interaction, if
the interaction is not successful then B outputs a random bit. Otherwise, it runs the
extractor oE4 on c̃4k and outputs 1 iff the extracted value is a decommitment of c̃2k to
a collision of the hash function h̃k in right interaction k.

It is easy to see that if B receives a commitment to the random string r1, then it perfectly
emulates H0(v) conditioned on ρ occurring for A and if it receives a commitment to the
solution s which is a collision of h then it perfectly emulates H1(v) conditioned on ρ occurring
for A. As argued before, the probability that bad occurs jumps from negligible to 1/2p(n).
Therefore, B has advantage at least 1/3p(n) in violating the hiding of (ECom2,EOpen2).

Moreover, we show that B ∈ C∨d2,S2
: B internally runs A ∈ C∧d4,d4

, oE4 ∈ C∧d3,S′4
, and the rest

of the computation done by B takes poly(n) time. Thus, we have,

dep(B) ≤ dep(A) + dep(oE4) + poly(n)

≤ poly(d4) + poly(d3)

< poly(d2) (since, d2 >> d4, d3 from Equation (8))

11For right interactions, B sends the first-round message by running the honest receiver R̂.
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and size(B) = poly(S′4) < poly(S∗). Therefore, B belongs to the circuit class Cd2 (resp.,
B ∈ C∨d2,S2

) which contradicts the C∨d2,S2
-hiding of the scheme (ECom2,EOpen2). Hence, the

claim holds.

Next we show that emimA
H0

(v) and emimA
H1

(v) are indistinguishable, that is, view of A and
the values extracted from ECom1 commitments in every successful right interaction is indis-
tinguishable in H0(v) and H1(v). This essentially follows from the same proof as Claim 4,
but now relying on the fact that ECom2 is more secure than ECom1, ECom2 � ECom1 (see
Figure 2 (iii)),

Claim 5. For v ∈ {v0, v1}, the following are indistinguishable,

emimA
H0

(v); emimA
H1

(v) .

Proof. Let us assume for contradiction that there exists a polynomial p and a distinguisher
D ∈ P/poly such that for infinitely many n ∈ N there exists v ∈ {v0, v1} such that D
distinguishes emimA

H0
(v) from emimA

H1
(v) with probability 1

p(n) .

Now, consider the set Γ of prefixes of transcripts up to the point where the first message in
the left interaction is sent. By a standard averaging argument, there must exist a 1/2p(n)
fraction of prefixes ρ in Γ, such that, conditioned on ρ occurring in both H0(v) and H1(v),
the probability that D distinguishes the distributions is at least 1/2p(n). Fix one such prefix
ρ; let h be the hash function contained in the first message in the left interaction in ρ and
s = (x1, x2) be a collision of h. Then, using A, the prefix ρ and its collision s, we construct
a non-uniform circuit B ∈ C∨d2,S2

that violates the hiding of (ECom2,EOpen2) with advantage
at least 1/3p(n).

The circuit B is similar in spirit to the circuit described in the proof of Claim 4. B with v, k,
ρ, and s hard-wired in it, participates in the hiding game of (ECom2,EOpen2) and internally
emulates an execution of H1(v) with A as follows:

- Steps 1,2 and 3 are identical to the hiding circuit described in Claim 4.

- Step 4: After A terminates, for every successful right interaction i, B runs the extractor
oE1 on c̃1i to obtain values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 5: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if B receives a commitment to the random string r1, then it perfectly
emulates H0(v) conditioned on ρ occurring for A and if it receives a commitment to the
solution s which is a collision of h then it perfectly emulates H1(v) conditioned on ρ occurring
for A. Moreover, for every successful interaction i, B sets ṽ′i to the value extracted by oE1

from c̃1i and for every unsuccessful interaction, it sets ṽ′i = ⊥. Therefore, the input to D (by
B) is identical to emimA

H0
(v) in the former case and it is identical to emimA

H1
(v) in the latter

case. Since D distinguishes the distributions with probability 1/2p(n), B wins the hiding
game with advantage at least 1/3p(n).
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Next, we argue that B ∈ C∨d2,S2
: Apart from running A, B runs oE1 on at most m = poly(n)

commitments c̃1i, and the rest of the computation takes polynomial time (includes running
D). Since, A ∈ C∧d4,d4

and oE1 ∈ C∧d2,SCRH
, we have,

dep(B) = dep(A) +m · dep(oE1) + poly(n)

≤ poly(d4) + poly(n) · poly(d2)

< poly(d2) (since, d2 >> d4 from Equation (8))

and size(B) = poly(SCRH) < poly(S∗). Therefore, B belongs to the circuit class Cd2 (resp., B ∈
C∨d2,S2

) which contradicts the C∨d2,S2
-hiding of (ECom2,EOpen2). Hence, the claim holds.

Hybrid H2(v): Hybrid H2(v) proceeds identically to H1(v) except that the ECom4 commitment
c4 sent to A in the left interaction is generated differently. In H1(v), c4 is a commitment to a
random string r3 whereas in H2(v) c4 is a commitment to a decommitment of c2 to a collision
s of the hash function h. More precisely, H2(v) first finds a collision s for the function h and
then commits to s using ECom2 under c2. Then it commits to the decommitment of c2 under
c4. The rest of the execution is simulated identically to H1(v). We note that only difference
between hybrids H1(v) and H2(v) is the commitment c4 which in H1(v) commits to a random
string r3 and in H2(v) commits to a decommitment of c2 to a collision s of h.

First, we show that Invariant 2 holds in H2(v). At a high level this follows from the fact
that ECom4 is more secure than 〈C,R〉, ECom4 � 〈C,R〉 (see Figure 2 (iii)). Suppose that
Invariant 2 does not hold in H2(v). This means that the value extracted from the non-
malleable commitment in some right session k is a fake witness with probability 1/poly(n) in
H2(v), but negligible in H1(v) by Claim 4. Then, we can construct a non-uniform circuit B
that violates the hiding of ECom4 by extracting from the non-malleable commitment. One
sight difference from the proof of Claim 4 is that since ECom4 is also more secure than h,
ECom4 � h (see Figure 2 (iii)), the reduction B can afford to find collision of h internally,
instead of receiving it as a non-uniform advice.

Claim 6. For v ∈ {v0, v1} and for every right interaction i in H2(v), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Proof. Let us assume for contradiction that there exists a polynomial p such that for infinitely
many n ∈ N there exists v ∈ {v0, v1} and a right interaction k such that k is successful and
the value extracted from (ãNMk, b̃NMk), is a fake witness with probability at least 1/p(n).
Then, using A we construct a non-uniform circuit B ∈ C∨d4,S4

that violates the hiding of
(ECom4,EOpen4) with advantage at least 1/2p(n).

The circuitB with v and k hard-wired in it, participates in the hiding game of (ECom4,EOpen4)
and internally emulates an execution of H2(v) with A as follows:

- Step 1: On receiving the first message (h, aZAP, aNM) from A, B obtains a collision s for
the hash function h via brute-force.

- Step 2: It computes commitment c2 to the collision s. Let d2 be the corresponding
decommitment string.

- Step 3: It samples a random string r3, and in the hiding game of (ECom4,EOpen4) it
sends r3 and (s, d2) (decommitment of c2 to s) as challenges and receives a commitment
c∗ to either r3 or (s, d2).
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- Step 4: B generates the second message of the left interaction identically to H2(v) except
that it embeds c∗ as the ECom4 commitment in the message. That is, B computes
(c1, c3, bNM) as in H2(v) (and H1(v)) and then computes the second message of ZAP
(bZAP) by setting c4 = c∗. It then sends (c1, c2, c3, c4, bNM, bZAP) as second round message
in the left interaction to A.

- Step 5: Once, B receives the second round message in the kth right interaction, if
the interaction is not successful then B outputs a random bit. Otherwise, it runs the
extractor oENM on (ãNMk, b̃NMk) and outputs 1 iff the extracted value is a fake witness
(i.e., B outputs 1 iff the extracted value is a decommitment of c̃4k to a decommitment
of c̃2k to a collision s̃k of h̃k).

It is easy to see that if B receives a commitment to the random string r3, then it perfectly
emulates H1(v) for A and if it receives a commitment to the decommitment of c2 to a collision
s of h then it perfectly emulates H2(v) for A. By Claim 4, in the former case, the extracted
value is a fake witness with only negligible probability. Therefore, B outputs 1 with negligible
probability. In the latter case, by our assumption that the right interaction k is successful and
the value extracted is a fake witness with probability 1/p(n); B outputs 1 with probability
at least 1/p(n). Therefore, B has advantage at least 1/2p(n) in violating the hiding of
(ECom4,EOpen4).

Moreover, we show that B ∈ C∨d4,S4
: B internally runs A ∈ C∧d4,d4

, oENM ∈ C∧S′NM,S′NM
, finds a

collision for h using a circuit in CS′CRH the rest of the computation done by B takes poly(n)
time. Thus, we have,

size(B) = size(A) + size(oENM) + poly(S′CRH) + poly(n)

≤ poly(d4) + poly(S′NM) + poly(S′CRH)

< poly(S4) (since, S4 >> S′NM, S
′
CRH, d4 from Equation (8))

Therefore, B belongs to the circuit class CS4 (resp., B ∈ C∨d4,S4
) which contradicts the C∨d4,S4

-
hiding of (ECom4,EOpen4). Hence, the claim holds.

Next we show that emimA
H1

(v) and emimA
H2

(v) are indistinguishable, that is, view of A and
the values extracted from ECom1 commitments in every successful right interactions is in-
distinguishable in H1(v) and H2(v). The proof is essentially the same as that for Claim 6,
except it now relies on the fact that ECom4 � ECom1 (and ECom4 � h; see Figure 2 (iii)).

Claim 7. For v ∈ {v0, v1}, the following are indistinguishable,

emimA
H1

(v); emimA
H2

(v) .

Proof. Let us assume for contradiction that there exists a polynomial p and a distinguisher
D ∈ P/poly such that for infinitely many n ∈ N there exists v ∈ {v0, v1} such that D
distinguishes emimA

H1
(v) from emimA

H2
(v) with probability 1

p(n) . Then using A and D, we

construct a non-uniform circuit B ∈ C∨d4,S4
that violates the hiding of (ECom4,EOpen4) with

non-negligible advantage 1
p(n) . B is similar in spirit to the circuit described in the proof of

Claim 6.

B with v and k hard-wired in it, participates in the hiding game of ECom4 and internally
emulates an execution of H2(v) with A as follows:
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- Steps 1,2, 3 and 4 are identical to the hiding circuit described in Claim 4.

- Step 5: After A terminates, for every successful right interaction i, B runs the extractor
oE1 on c̃1i to obtain values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if B receives a commitment to the random string r3, then it perfectly
emulates H1(v) for A and if it receives a commitment to the decommitment of c2 to a collision
s of h then it perfectly emulates H2(v) for A. Moreover, for every successful interaction i, B
sets ṽ′i to the value extracted by oE1 from c̃1i and for every unsuccessful interaction, it sets
ṽ′i = ⊥. Therefore, the input to D (by B) is identical to emimA

H1
(v) in the former case and

it is identical to emimA
H2

(v) in the latter case. Since D distinguishes the distributions with
probability 1/p(n), B wins the hiding game with advantage at least 1/p(n).

Next, we argue that B ∈ C∨d4,S4
: Apart from running A and finding a collision for h, B

runs oE1 on at most m = poly(n) commitments c̃1i, and the rest of the computation takes
polynomial time (includes running D). Since, A ∈ C∧d4,d4

, oE1 ∈ C∧d2,SCRH
and a collision for h

can be found by a circuit in CS′CRH , we have,

size(B) = size(A) +m · size(oE1) + poly(S′CRH) + poly(n)

≤ poly(d4) + poly(n) · poly(SCRH) + poly(S′CRH)

< poly(S4) (since, S4 >> SCRH, S
′
CRH, d4 from Equation (8))

Therefore, B belongs to the circuit class CS4 (resp., B ∈ C∨d4,S4
) which contradicts the C∨d4,S4

-
hiding of (ECom4,EOpen4). Hence, the claim holds.

Hybrid H3(v) : Hybrid H3(v) proceeds identically to H2(v) except that the second message
bNM of 〈C,R〉 sent to A in the left interaction is generated differently. In H2(v), bNM is such
that (aNM, bNM) commits to a random string r2 whereas in H3(v) bNM is such that (aNM, bNM)
commit to a decommitment of c4 to a decommitment of c2 to a collision s of the hash
function h. More precisely, H3(v) generates a commitment c2 to the collision s (obtained
by brute-force search). Let d2 be the corresponding decommitment string. Then, H3(v)
computes the commitment c4 to the decommitment (s, d2) of c2. Let d4 be the corresponding
decommitment string. Then, given aNM, H3(v) computes the second message bNM to commit
to ((s, d2), d4). The rest of the execution is simulated identically to H2(v). We note that only
difference between hybrids H2(v) and H3(v) is the second message bNM which is such that in
H1(v) (aNM, bNM) commits to a random string r2 whereas in H2(v) (aNM, bNM) commits to
((s, d2), d4).

First, we show that Invariant 2 holds in H3(v). At a high-level, this follows from the one-one
non-malleability w.r.t. extraction of 〈C,R〉. Suppose that Invariant 2 does not hold in H3(v)
then there exists a right interaction k such that the probability that it is successful and the
value extracted the non-malleable commitment contained in this session is a fake witness
is 1/poly(n) in H3(v) and is negligible in H2(v) (by Claim 6). This violates the one-one
non-malleability w.r.t. extraction of 〈C,R〉 as we formally show below.

Claim 8. For v ∈ {v0, v1} and for every right interaction i in H3(v), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.
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Proof. Let us assume for contradiction that there exists a polynomial p such that for infinitely
many n ∈ N there exists v ∈ {v0, v1} and a right interaction k such that k is successful and the

value ((s̃′k, d̃2
′
k), d̃4

′
k), extracted from (ãNMk, b̃NMk), is a fake witness with probability at least

1/p(n). Then, using A we construct a non-uniform circuit ANM ∈ C∧SNM,SNM
, that participates

in one left interaction with C and one right interaction with R, and a distinguisher DNM that
violate the one-one non-malleability of 〈C,R〉 with advantage at least 1/2p(n). We detail the
circuits ANM and DNM below.

The circuit ANM with v and k hard-wired in it, participates in one left interaction with C and
one right interaction with R and internally emulates an execution of H3(v) with A as follows:

- Step 1: ANM waits for A to select identities for the left interaction with C and the kth
right interaction with R. Let id and ĩdk be the respective identities.

- Step 2: ANM selects identity idl = id for its left interaction and identity idr = ĩdk
for its right interaction r. On receiving the first-round message aNMr from R, ANM

samples a hash function h̃k and the first message of ZAP, ãZAPk. It sends the tuple
(h̃k, ãNMk = aNMr, ãZAPk) as the first-round message to A in the kth right interaction.

- Step 3: On receiving the first message (h, aZAP, aNM) from A, ANM obtains a collision s
for h via brute-force search.

- Step 4: ANM computes commitments (c1, c2, c3, c4) as in H3(v). Let d2 be the decom-
mitment string of the commitment c2, which commits to the collison s. Furthermore,
let d4 be the decommitment string of c4 which commits to a decommitment of c2.

- Step 5: ANM samples a random string r2 and sends aNMl = aNM as the first message to C
along with the values r2 and ((s, d2), d4) as challenges and receives the second message
bNMl such that (aNMl, bNMl) either commit to r2 or ((s, d2), d4).

- Step 6: ANM computes the second message of ZAP (bZAP) by setting bNM = bNMl. Then,
it sends (c1, c2, c3, c4, bNM, bZAP) as the second round message to A in the left interaction.

- Step 7: On receiving the second message (c̃1k, c̃2k, c̃3k, c̃4k, b̃NMk, b̃ZAPk) from A in the
kth right interaction, B forwards bNMr = b̃NMk as the second message to R.

The distinguisherDNM with input the view ofANM and the value v′r, extracted from (aNMr, bNMr)
by oENM, runs as follows:

- DNM reconstructs the entire transcript of the kth right interaction of ANM with A from
the view.

- If the ZAP proof (ãZAPk, b̃ZAPk) in the kth interaction is not accepting then DNM outputs
a random bit.

- Otherwise, DNM outputs 1 iff the extracted value v′r is such that it is a decommitment
of c̃4k to a decommitment of c̃2k to a collision of the hash function h̃k.

It is easy to see that if ANM receives bNMl such that (aNMl, bNMl) commit to a random string
r2 then it perfectly emulates H2(v) for A and if bNMl is such that (aNMl, bNMl) commit
to ((s, d2), d4) then it perfectly emulates H3(v) for A. By Claim 6, in the former case,
the extracted value v′r is a fake witness with only negligible probability. Therefore, DNM

outputs 1 with negligible probability. In the latter case, by our assumption that the right
interaction k is successful and the value extracted is a fake witness with probability 1/p(n);
DNM outputs 1 with probability at least 1/p(n). Therefore, DNM has advantage at least
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1/2p(n) in distinguishing the two cases. Therefore, ANM and DNM break the one-one non-
malleability w.r.t. extraction of 〈C,R〉.
Moreover, we argue that ANM ∈ C∧SNM,SNM

and DNM ∈ P/poly: Firstly, it is easy to see that
DNM ∈ P/poly as all the computation done by DNM only takes polynomial time.

Next, for ANM: ANM internally runs A ∈ C∧d4,d4
, finds a collision for h using a circuit in

CS′CRH and the rest of the computation done by ANM takes poly(n) time. Therefore, the size
size(ANM) of ANM satisfies the following,

size(ANM) = size(A) + poly(S′CRH) + poly(n)

≤ poly(d4) + poly(S′CRH)

< poly(SNM) (since, SNM >> d4, S
′
CRH from Equation (8))

(11)

Therefore, ANM belongs to the circuit class C∧SNM,SNM
which contradicts the C∧SNM,SNM

-one-one
non-malleability w.r.t. extraction of 〈C,R〉. Hence, the claim holds.

Remark 6. Note that in the above reduction to one-one non-malleability w.r.t. extraction,
we allow ANM to send the challenge values r2 and ((s, d2), d4) along with the first message
aNM. The committer C is expected to commit to either r2 or ((s, d2), d4). Note that the
challenges r2 and ((s, d2), d4) could depend on the right interaction whereas for the notions
of non-malleability used in this work, the value committed on the left is independent of the
right interaction and fixed before the MIM execution begins. Therefore, the adversary ANM

is stronger than the adversaries considered in the non-malleability definitions. However, this
gap can be bridged by one of the following,

1. Defining non-malleability w.r.t. adversaries that can adaptively sample the challenge
values analogous to choosing the identities. We note that all the commitment schemes
defined in this work actually satisfy this stronger notion of non-malleability.

2. Adopting the approach taken by [COSV16b] in our context: Instead of committing to the
decommitment ((s, d2), d4) of c4 under the non-malleable commitment (aNM, bNM), we
instead commit to a random share s0 of the decommitment ((s, d2), d4) under (aNM, bNM)
and send the other share s1 in the clear to the receiver. Furthermore, the ZAP now proves
that either c3 commits to a decommitment of c1 or that s1 xored with the value committed
under (aNM, bNM) is a decommitment of c4 to a decommitment of c2 to a collision s. This
allows the challenge messages to be fixed before the execution. We omit details here.

Next we show that emimA
H2

(v) and emimA
H3

(v) are indistinguishable, that is, view of A and
the values extracted from ECom1 commitments in every successful right interactions is in-
distinguishable in H2(v) and H3(v). This follows from the fact that 〈C,R〉 is more secure
than ECom1, 〈C,R〉 � ECom1 (see Figure 2 (iii)). Therefore, if the distribution of values
extracted from the ECom1 commitments in the right interactions are distinguishable in H2(b)
and H3(b), one can construct reduction that violates the hiding of 〈C,R〉 by extracting from
the ECom1 commitments on the right.

Claim 9. For v ∈ {v0, v1}, the following are indistinguishable,

emimA
H2

(v); emimA
H3

(v) .
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Proof. Let us assume for contradiction that there exists v ∈ {v0, v1}, a distinguisher D ∈
P/poly and a polynomial p such that D distinguishes emimA

H2
(v) from emimA

H3
(v) with prob-

ability 1
p(n) . Then using A and D, we construct a non-uniform circuit B ∈ C∧SNM,SNM

that

violates the hiding of 〈C,R〉 with non-negligible advantage 1
p(n) . B is similar in spirit to the

circuit ANM described in the proof of Claim 8.

B with v and k hard-wired in it, participates in the hiding game of 〈C,R〉 and internally
emulates an execution of H3(v) with A as follows:

- Step 1: On receiving the first message (h, aZAP, aNM) from A, B obtains a collision s for
the hash function h via brute-force.

- Step 2: B computes commitments (c1, c2, c3, c4) as in H3(v). Let d2 be the decommit-
ment string of the commitment c2, which commits to the collision s. Furthermore, let
d4 be the decommitment string of the commitment c4 to the decommitment c2.

- Step 3: B samples a random string r2 and sends aNM as the first message to C along
with the values r2 and ((s, d2), d4) as challenges and receives the second message bNM

such that (aNM, bNM) either commit to r2 or ((s, d2), d4).

- Step 4: B computes the ZAP proof and sends (c1, c2, c3, c4, bNM, bZAP) as the second
round message to A in the left interaction.

- Step 5: After A terminates, for every successful right interaction i, B runs the extractor
oE1 on c̃1i to extract values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if second message bNM received by B is such that (aNM, bNM) commit
to a random string r2, then B is perfectly emulating H2(v) for A and if bNM is such that
(aNM, bNM) commits to ((s, d2), d4), then it perfectly emulating H3(v) for A. Moreover, for
every successful interaction i, B sets ṽ′i to the value extracted by oE1 from c̃1i and for every
unsuccessful interaction B sets ṽ′i = ⊥. Therefore, the input to D (by B) is identical to
emimA

H2
(v) in the former case and it is identical to emimA

H3
(v) in the latter case. Since D dis-

tinguishes the distributions with probability 1/p(n), B wins the hiding game with advantage
at least 1/p(n).

Next, we argue that B ∈ C∧SNM,SNM
: Apart from running A and using a circuit in CS′CRH to

find the collision s, B runs oE1 on at most m = poly(n) commitments c̃1i, and the rest
of the computation takes polynomial time (including running D). Since, A ∈ C∧d4,d4

and
oE1 ∈ C∧d2,SCRH

, the size size(ANM) of ANM satisfies the following,

size(ANM) = size(A) +m · size(oE1) + poly(S′CRH) + poly(n)

≤ poly(d4) + poly(n) · poly(SCRH) + poly(S′CRH)

< poly(SNM) (since, SNM >> d4, SCRH, S
′
CRH from Equation (8))

(12)

Therefore, B belongs to the circuit class C∧SNM,SNM
which contradicts C∧SNM,SNM

-hiding of 〈C,R〉.
Hence, the claim holds.

Hybrid H4(v): Hybrid H4(v) proceeds identically to H3(v) except that the second message bZAP
of ZAP sent to A in the left interaction is generated differently. In H3(v), bZAP is computed by
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proving that c3 commits to a decommitment (v, d1) of c1 whereas in H4(v) bZAP is computed
by proving that (aNM, bNM) commits to ((s, d2), d4) which is a decommitment of c4 to a
decommitment (s, d2) of c2 to the collision s of the hash function h. We note that only
difference between hybrids H3(v) and H4(v) is the second message bZAP, or more precisely
the witness used to compute the second message bZAP. In H3(v), the witness used is the
decommitment of c3 to (v, d1) whereas in H4(v) the witness is a decommitment of (aNM, bNM)
to ((s, d2), d4).

First, we show that Invariant 2 holds in H4(v). At a high-level, this follows from the witness
indistinguishability of ZAP, which holds against subexp-sized attackers. Since 〈C,R〉 can be
broken in the time that ZAP is secure against, changing the ZAP proof on the left should
not change the distribution of values extracted from the right non-malleable commitments.
Therefore by Claim 8 that these values are not fake witnesses in H3(v), the same holds in
H4(v).

Claim 10. For v ∈ {v0, v1} and for every right interaction i in H4(v), the probability that i
is successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Proof. Let us assume for contradiction that there exists a polynomial p such that for infinitely
many n ∈ N there exists v ∈ {v0, v1} and a right interaction k such that k is successful and the
value extracted from (ãNMk, b̃NMk), is a fake witness with probability at least 1/p(n). Then,
using A we construct a non-uniform circuit B ∈ CS∗ that violates the CS∗-WI of ZAP with
advantage at least 1/2p(n).

The circuit B with v and k hard-wired in it, participates in the WI game of ZAP and internally
emulates an execution of H4(v) with A as follows:

- Step 1: On receiving the first message (h, aZAP, aNM) from A, B obtains a collision s to
the hash function h.

- Step 2: B computes commitments (c1, c2, c3, c4, bNM) (as in H4(v)). Let d1 be the
decommitment string of the commitment c1, which commits to the value v, d4 be the
decommitment of c4 which commits to (s, d2) where d2 is the decommitment string of
the commitment c2, which commits to the collison s. Furthermore, let d3 and d be the
decommitments of c3 and (aNM, bNM).

- Step 3: B sends aZAP as the first message in the WI game of ZAP with the statement
x = (h, c1, c2, c3, c4, aNM, bNM) and witnesses w0 = (v, d1, d3) and w1 = (((s, d2), d4), d).
B receives the second message bZAP of ZAP that is either computed by using the witness
w0 or w1.

- Step 4: B sends (c1, c2, c3, c4, bNM, bZAP) as the second message to A on the left.

- Step 5: Once, B receives the second round message in the kth right interaction, if
the interaction is not successful then B outputs a random bit. Otherwise, it runs the
extractor oENM on (ãNMk, b̃NMk) and outputs 1 iff the extracted value is a fake witness.

It is easy to see that if the second message bZAP of ZAP is computed using the witness
w0 = (v, d1, d3) then B perfectly emulates H3(v) for A and if the second message bZAP of
ZAP is computed using the witness w1 = (((s, d2), d4), d) then B perfectly emulates H4(v) for
A. By Claim 8, in the former case, the extracted value is a fake witness with only negligible
probability. Therefore, B outputs 1 with negligible probability. In the latter case, by our
assumption that k is successful and the value extracted is a fake witness with probability
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1/p(n); B outputs 1 with probability at least 1/p(n). Therefore, B has advantage at least
1/2p(n) in violating the WI of ZAP.

Moreover, we show that B ∈ CS∗ : B internally runs A ∈ C∧d4,d4
, oENM ∈ C∧S′NM,S′NM , obtains a

collision for h by using a circuit in CS′CRH and the rest of the computation done by B takes
poly(n) time. Thus, we have,

size(B) = size(A) + poly(S′CRH) + size(oENM) + poly(n)

≤ poly(d4) + poly(S′CRH) + poly(S′NM)

< poly(S∗) (since, S∗ >> d4, S
′
CRH, S

′
NM from Equation (8))

Therefore, B belongs to the circuit class CS∗ which contradicts the CS∗-witness-indistinguishability
of ZAP. Hence, the claim holds.

Next we show that emimA
H3

(v) and emimA
H4

(v) are indistinguishable, that is, view of A and
the values extracted from ECom1 commitments in every successful right interactions is indis-
tinguishable in H3(v) and H4(v). This follows from essentially the same proof of Claim 8,
except that now we use the fact that ZAP is more secure than ECom1.

Claim 11. For v ∈ {v0, v1}, the following are indistinguishable,

emimA
H3

(v); emimA
H4

(v) .

Proof. Let us assume for contradiction that there exists a polynomial p and a distinguisher
D such that for infinitely many n ∈ N there exists v ∈ {v0, v1} such that D distinguishes
emimA

H3
(v) from emimA

H4
(v) with probability 1

p(n) . Then using A and D, we construct a non-

uniform circuit B ∈ CS∗ that violates the CS∗-WI of ZAP with advantage at least 1/p(n). B
is similar in spirit to the circuit described in the proof of Claim 10.

B with v and k hard-wired in it, participates in the WI game of ZAP and internally emulates
an execution of H4(v) with A as follows:

- Steps 1,2,3 and 4 are identical to the circuit described in Claim 10.

- Step 5: After A terminates, for every successful right interaction i, B runs the extractor
oE1 on c̃1i to extract values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if the second message bZAP of ZAP is computed using the witness
w0 = (v, d1, d3) then B perfectly emulates H3(v) for A and if the second message bZAP of
ZAP is computed using the witness w1 = (((s, d2), d4), d) then B perfectly emulates H4(v) for
A. Moreover, for every successful interaction i, B sets ṽ′i to the value extracted by oE1 from
c̃1i and for every unsuccessful interaction, it sets ṽ′i = ⊥. Therefore, the input to D (by B) is
identical to emimA

H3
(v) in the former case and it is identical to emimA

H4
(v) in the latter case.

Since D distinguishes the distributions with probability 1/p(n), B wins the hiding game with
advantage at least 1/p(n).
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Next, we argue that B ∈ CS∗ : Apart from running A and finding a collision for h, B runs oE1

on at most m = poly(n) commitments c̃1i, and the rest of the computation takes polynomial
time (includes running D). Since, A ∈ C∧d4,d4

and oE1 ∈ C∧d2,SCRH
, we have,

size(B) = size(A) + poly(S′CRH) +m · size(oE1) + poly(n)

≤ poly(d4) + poly(S′CRH) + poly(n) · poly(SCRH)

< poly(S∗) (since, S∗ >> d4, SCRH, S
′
CRH from Equation (8))

Therefore, B belongs to the circuit class CS∗ which contradicts the CS∗-WI of ZAP. Hence,
the claim holds.

Hybrid H5(v) : Hybrid H5(v) proceeds identically to H4(v) except that the ECom3 commitment
c3 sent to A in the left interaction is generated differently. In H4(v) c3 is committing to the
decommitment (v, d1) of c1 whereas in H5(v) c3 is committing to 0l where l is the length of
the decommitment of c1. More precisely, H5(v) computes (c1, c2, c4, bNM) identical to H4(v).
Then, H5(v) computes the ECom3 commitment c3 to commit to 0l. The rest of the execution
is simulated identically to H4(v). We note that only difference between hybrids H4(v) and
H5(v) is the ECom3 commitment c3 which in H4(v) commits to the decommitment of c1 (to
the value v) whereas in H5(v) c3 commits to 0l.

First, we show that Invariant 2 holds in H5(v). This follows from the fact that ECom3 �
〈C,R〉, (see Figure 2 (iii)). Suppose that Invariant 2 does not hold in H5(v) but holds in
H4(v) by Claim 10, then there exists a right interaction k such that the probability that it is
successful and the value extracted from the non-malleable commitment in it is a fake witness
jumps from negligible in H4(v) to 1/poly(n) in H5(v). Then, we can construct a reduction
that violates the hiding of ECom3 by extracting from the non-malleable commitment in the
kth right interaction.

Claim 12. For v ∈ {v0, v1} and for every right interaction i in H5(v), the probability that i
is successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Proof. Let us assume for contradiction that there a polynomial p such that for infinitely many
n ∈ N there exists v ∈ {v0, v1} and a right interaction k such that k is successful and the value
extracted from (ãNMk, b̃NMk), is a fake witness with probability at least 1/p(n). Then, using
A we construct a non-uniform circuit B ∈ C∨d3,S3

that violates the hiding of (ECom3,EOpen3)
with advantage at least 1/2p(n).

The circuitB with v and k hard-wired in it, participates in the hiding game of (ECom3,EOpen3)
and internally emulates an execution of H5(v) with A as follows:

- Step 1: On receiving the first message (h, aZAP, aNM) from A, B obtains a collison s to
the hash function h.

- Step 2: It computes (c1, c2, c4, bNM) as in H5(v). Let d1 be the decommitment string of
the commitment c1.

- Step 3: In the hiding game of (ECom3,EOpen3), B sends (v, d1) and 0l as challenges and
receives a commitment c∗ to either (v, d1) or 0l.

- Step 4: B generates the second message of ZAP (bZAP) by setting c3 = c∗. It then sends
(c1, c2, c3, c4, bNM, bZAP) as second round message in the left interaction to A.
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- Step 5: Once, B receives the second round message in the kth right interaction, if
the interaction is not successful then B outputs a random bit. Otherwise, it runs the
extractor oENM on (ãNMk, b̃NMk) and outputs 1 iff the extracted value is a fake witness.

It is easy to see that if B receives a commitment to (v, d1), then it perfectly emulates H4(v) for
A and if it receives a commitment to 0l then it perfectly emulates H5(v) for A. By Claim 10,
in the former case, the extracted value is a fake witness with only negligible probability.
Therefore, B outputs 1 with negligible probability. In the latter case, by our assumption that
the right interaction k is successful and the value extracted is a fake witness with probability
1/p(n); B outputs 1 with probability at least 1/p(n). Therefore, B has advantage at least
1/2p(n) in violating the hiding of ECom3.

Next, we argue that B ∈ C∨d3,S3
: B internally runs A ∈ C∧d4,d4

, oENM ∈ C∧S′NM,S
′
NM

, obtains a

collision for h using a circuit in CS′CRH and the rest of the computation done by B takes poly(n)
time. Thus, we have,

size(B) = size(A) + size(oENM) + poly(S′CRH) + poly(n)

≤ poly(d4) + poly(S′NM) + poly(S′CRH)

< poly(S3) (since, S3 >> d4, S
′
NM, S

′
CRH from Equation (8))

Therefore, B belongs to the circuit class CS3 (resp., B ∈ C∨d3,S3
) which contradicts the C∨d3,S3

-
hiding of (ECom3,EOpen3). Hence, the claim holds.

Next we show that emimA
H4

(v) and emimA
H5

(v) are indistinguishable, that is, view of A and
the values extracted from ECom1 commitments in every successful right interactions is in-
distinguishable in H4(v) and H5(v). This follows from the same proof as that of Claim 12,
except that now it relies on the fact that ECom3 � ECom1.

Claim 13. For v ∈ {v0, v1}, the following are indistinguishable,

emimA
H4

(v); emimA
H5

(v) .

Proof. Let us assume for contradiction that there exists a polynomial p and a distinguisher
D ∈ P/poly such that for infinitely many n ∈ N there exists v ∈ {v0, v1}, such that D
distinguishes emimA

H4
(v) from emimA

H5
(v) with probability 1

p(n) . Then using A and D, we

construct a non-uniform circuit B ∈ C∨d3,S3
that violates the hiding of (ECom3,EOpen3) with

non-negligible advantage 1
p(n) . B is similar in spirit to the circuit described in the proof of

Claim 10.

B with v and k hard-wired in it, participates in the hiding game of the scheme (ECom3,EOpen3)
and internally emulates an execution of H5(v) with A as follows:

- Steps 1-4 are identical to the hiding circuit described in Claim 12.

- Step 5: After A terminates, for every successful right interaction i, B runs the extractor
oE1 on c̃1i to extract values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.
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It is easy to see that if B receives a commitment to (v, d1), then it perfectly emulates H4(v)
for A and if it receives a commitment to 0l then it perfectly emulates H5(v) for A. Moreover,
B for every successful interaction i, sets ṽ′i to the value extracted by oE1 from c̃1i and for
every unsuccessful interaction, it sets ṽ′i = ⊥. Therefore, the input to D (by B) is identical to
emimA

H4
(v) in the former case and it is identical to emimA

H5
(v) in the latter case. Since D dis-

tinguishes the distributions with probability 1/p(n), B wins the hiding game with advantage
at least 1/p(n).

Next, we argue that B ∈ C∨d3,S3
: Apart from running A and finding a collision for h using

a circuit in CS′CRH , B runs oE1 on at most m = poly(n) commitments c̃1i, and the rest of
the computation takes polynomial time (includes running D). Since, A ∈ C∧d4,d4

and oE1 ∈
C∧d2,SCRH

, we have,

size(B) = size(A) +m · size(oE1) + poly(S′CRH) + poly(n)

≤ poly(d4) + poly(n) · poly(SCRH) + poly(S′CRH)

< poly(S3) (since, S3 >> SCRH, d4, S
′
CRH from Equation (8))

Therefore, B belongs to the circuit class CS3 (resp., B ∈ C∨d3,S3
) which contradicts the C∨d3,S3

-
hiding of (ECom3,EOpen3). Hence, the claim holds.

Hybrid H6(v) : Hybrid H6(v) proceeds identically to H5(v) except that the ECom1 commitment
c1 sent to A in the left interaction is generated differently. In H5(v), c1 is committing to the
value v whereas in H6(v) c1 is committing to the value (fixed) v0 instead. The rest of the
execution is simulated identically to H5(v). We note that the only difference between hybrids
H5(v) and H6(v) is the ECom1 commitment c1 which in H5(v) commits to v but in H6(v) c1
commits to v0.

First, note that H6(v) is in fact identical to H5(v0). Therefore by Claim 12 that Invariant 2
holds in H5(v0), we directly have that it holds also in H6(v).

Claim 14. For v ∈ {v0, v1} and for every right interaction i in H6(v), the probability that i
is successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Next we show that emimA
H5

(v) and emimA
H6

(v) are indistinguishable. This follows from the
fact that ECom1 is more secure than ECom3, ECom1 � ECom3 (see Figure 2 (iii)), and
the fact that Invariant 2 holds in both H5(v) and H6(v). The latter ensures that in every
successful right interaction k, the attacker must prove the honest statement using ZAP that
˜c3k is valid committing to a valid decommitment of ˜c1k in that right interaction. Therefore,

in every successful right interaction k, the value extracted from ˜c3k and c̃1k are identical.
This implies that if the emim random variables are distinguishable in H5(v) and H6(v), the
values extracted from the right ECom3 commitments are also distinguishable. Then, we can
construct a reduction that violates the hiding of ECom1 by extracting from the right ECom3

commitments.

Claim 15. For v ∈ {v0, v1}, the following are indistinguishable,

emimA
H5

(v); emimA
H6

(v) .
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Proof. Let us assume for contradiction that there exists a polynomial p and a distinguisher
D ∈ P/poly such that for infinitely many n ∈ N there exists v ∈ {v0, v1} such that D
distinguishes emimA

H0
(v) from emimA

H1
(v) with probability 1

p(n) .

Now, consider the set Γ of prefixes of transcripts up to the point where the first message in
the left interaction is sent. By a standard averaging argument, there must exist a 1/2p(n)
fraction of prefixes ρ in Γ, such that, conditioned on ρ occurring in both H5(v) and H6(v),
the probability that D distinguishes the distributions is at least 1/2p(n). Fix one such prefix
ρ; let h be the hash function contained in the first message in the left interaction in ρ and
s = (x1, x2) be a collision of h. Then, using A, the prefix ρ and its collision s, we construct a
non-uniform circuit B ∈ Cd1 that violates the hiding of (ECom1,EOpen1) with advantage at
least 1/3p(n).

B with v, k, ρ, and s hard-wired in it, participates in the hiding game of (ECom1,EOpen1)
and internally emulates an execution of H6(v) with A as follows:

- Step 1: Feed A with messages in ρ; let (h, aZAP, aNM) be the left first message.

- Step 2: B sends v and v0 as challenges in the hiding game of the scheme (ECom1,EOpen1)
and receives a commitment c∗ to either v or v0.

- Step 3: B generates the second message of the left interaction identically to H6(v) except
that it embeds c∗ as the ECom1 commitment in the message. That is, B computes
(c2, c3, c4, bNM) as in H6(v) (using the collision s received as non-uniform advice) and
then computes the second message of ZAP (bZAP) by setting c1 = c∗. It then sends
(c1, c2, c3, c4, bNM, bZAP) as second round message in the left interaction to A.

- Step 4: After A terminates, for every successful right interaction i, B runs the extractor

oE3 on c̃3i to extract values (ṽ′i, d̃1
′
i). For every unsuccessful right interaction i, B sets

ṽ′i = ⊥.

- Step 4: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if B receives a commitment to v, then it perfectly emulates H5(v)
conditioned on ρ occurring for A and if it receives a commitment to v0 then it perfectly
emulates H6(v) conditioned on ρ occurring for A. Moreover, for every successful interaction
i, B sets ṽ′i to the value extracted by oE3 from c̃3i and for every unsuccessful interaction, it
sets ṽ′i = ⊥. We claim that the input to D (by B) is identical to emimA

H5
(v) in the former

case and it is identical to emimA
H6

(v) in the latter case; the proof of claim is presented shortly.
Since D distinguishes the distributions with probability 1/2p(n), B wins the hiding game
with advantage at least 1/3p(n).

Next, we argue that B ∈ Cd1 : Apart from running A, B runs oE3 on at most m = poly(n)
commitments c̃3i, and the rest of the computation takes polynomial time (includes running
D). Since, A ∈ C∧d4,d4

and oE3 ∈ C∧d1,S4
,

dep(B) = dep(A) +m · dep(oE3) + poly(n)

≤ poly(d4) + poly(n) · poly(d1)

< poly(d1) (since, d1 >> d4 from Equation (8))

Furthermore, size(B) < poly(S∗). Therefore, B belongs to the circuit class Cd1 (resp., B ∈
C∨d1,S1

) which contradicts the C∨d1,S1
-hiding of (ECom1,EOpen1).
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It remains to show that the input to D is identical to emimA
H5

(v) (resp., emimA
H6

(v)), even

though B uses values extracted by running oE3 on c̃3i as input to D, instead of running oE1

on c̃1i.

For every successful right interaction i, B runs oE3 on c̃3i to obtain (ṽ′i, d̃1
′
i). We claim that the

value ṽ′i is identical to the value extracted by oE1 from c̃1i, except with negligible probability.
Since i is successful, by Claim 14 we know that with over-whelming probability A does not
commit to a fake witness in right interaction i. Then by the soundness of ZAP, A must have
proved that the commitments c̃1i and c̃3i are valid and c̃3i commits to a decommitment of c̃1i.

Therefore, by the over-extractability of (ECom3,EOpen3) the value (ṽ′i, d̃1
′
i) extracted from

c̃3i is identical to val(c̃3i) with over-whelming probability, where val(c̃3i) is a decommitment

of c̃1i — (ṽi, d̃1i). Next, due to the over-extractability of ECom1, the value extracted by oE1

from c̃1i is identical to val(c̃1i) = ṽi. Therefore, the value ṽi obtained by B is identical to
the value that oE1 extracts from c̃1i. This is now sufficient to conclude that the input to D
is identical to emimA

H5
(v) (resp., emimA

H6
(v)) when B receives a commitment to v (resp., v0),

except with negligible probability. Hence the claim holds.

This concludes the proof of Theorem 11 and Theorem 12.

6.4 Amplifying Length of Identities

Given a tag-based commitment scheme 〈Ĉ, R̂〉 for t(n)-bit identities which is concurrent non-
malleable w.r.t. commitment, Dolev, Dwork and Naor [DDN00] construct a tag-based commitment
scheme 〈C̃, R̃〉 for exponentially larger identities, namely identities of length 2t(n)−1-bits. In their
work [DDN00], they show that their transformation results in a commitment scheme that can ac-
comodate significantly larger length of identities but degrades concurrent non-malleability w.r.t.
commitment to stand-alone non-malleability w.r.t. commitment. Furthermore, their reduction also
incurs a polynomial security loss.

The commitment schemes considered in this work are non-malleable w.r.t. extraction and we
claim that their transformation also works for such schemes. That is, we show that if 〈Ĉ, R̂〉
is concurrent non-malleable w.r.t. extraction then commitment scheme 〈C̃, R̃〉 is standalone non-
malleable w.r.t. extraction. The key idea towards amplifying the length of identities is embedding
a 2t(n)−1-bit identity into 2t(n)−1 number of t(n)-bit identities — we, thereby, refer to this idea as
the “log-n” trick. The protocol from [DDN00] is based on the log-n trick and is described below.

The committer C̃ and receiver R̃ receive the security parameter 1n and identity id ∈ {0, 1}t′(n)

as common input where t′(n) = 2t(n)−1. Furthermore, C̃ gets a private input v ∈ {0, 1}n which is
the value to be committed.

- Commit stage:

1. To commit to a value v ∈ {0, 1}n, C̃ chooses t′ random shares r0, r1, . . . , rt′−1 ∈ {0, 1}n
such that v = r0 ⊕ r1 ⊕ . . .⊕ rt′−1.

2. For each 0 ≤ i ≤ t′ − 1, C̃ and R̃ run 〈Ĉ, R̂〉 to commit to ri (in parallel) using identity
(i, id[i]) where id[i] is the ith bit of id. Let di be the corresponding decommitment string.

Let ci be the transcript of 〈Ĉ, R̂〉 committing to ri with identity (i, id[i]). Then we denote by
c = {ci}i∈[t′] the entire transcript of the interaction.
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- Reveal stage:

On receiving the decommitment (v, {ri}i, {di}), R̃ verifies that

1. For each i ∈ [t′], ci is a commitment to ri using 〈Ĉ, R̂〉 and identity (i, id[i]).

2. v = r0 ⊕ r1 ⊕ . . .⊕ rt′−1.

R̃ accepts the decommitment iff the above conditions hold.

Furthermore, let us assume that 〈Ĉ, R̂〉 is over-extractable w.r.t. extractor ôENM then we con-

struct an extractor õENM for 〈C̃, R̃〉 as follows,

- Extraction - Algorithm õENM:

On receiving id ∈ {0, 1}t′ and commitment c = {ci}i∈[t′], õENM runs ôENM on each ci obtaining

output r′i. If any of the r′i is ⊥ then õENM outputs a ⊥. Otherwise, it outputs v′ = r′0 ⊕ r′1 ⊕
. . .⊕ r′l−1 as the extracted value.

Theorem 14 (Log-n trick [DDN00]). Let t be such that t′(n) = 2t(n)−1 is a polynomial. Let 〈Ĉ, R̂〉
be a commitment scheme and C be a class of circuits that is closed under composition with P/poly.

1. If 〈Ĉ, R̂〉 is a tag based statistically binding commitment scheme for t(n)-bit identities then
〈C̃, R̃〉 is a tag based statistically binding commitment scheme for identities of length t′(n) =
2t(n)−1 bits.

2. If 〈Ĉ, R̂〉 is concurrent C-non-malleable w.r.t. commitment then 〈C̃, R̃〉 is one-one C-non-
malleable w.r.t. commitment.

3. If 〈Ĉ, R̂〉 is (d, S)-over-extractable by ôENM then 〈C̃, R̃〉 is (d, S)-over-extractable by õENM.

Furthermore, if 〈Ĉ, R̂〉 is concurrent C-non-malleable w.r.t. extraction by ôENM then 〈C̃, R̃〉
is standalone C-non-malleable w.r.t. extraction by õENM.

Proof. We prove each of the above in the following:

- Statistically binding and tag lengths: The statistical binding of 〈C̃, R̃〉 follows from the sta-
tistical binding of 〈Ĉ, R̂〉. Furthermore, 〈C̃, R̃〉 as defined above accomodates identities of
length t′ = 2t(n)−1-bits.

- Non-malleability w.r.t. commitment: This is proven in [DDN00].

- Non-malleability w.r.t. extraction: This follows syntactically from the same proof for non-
malleability w.r.t. commitment presented in [DDN00].

- Over-extractability: A valid commitment c = {ci}i∈[t′] is such that every ci is a valid commit-

ment for 〈Ĉ, R̂〉. Due to the over-extractability of 〈Ĉ, R̂〉 w.r.t. ôENM, for every i ∈ [t′], the

extractor õENM extracts the correct value r′i except with negligible probability ν(n). There-

fore, õENM extracts the correct value from c except with probability at most t′ · ν(n). Since,

t′ is a polynomial, õENM fails with negligible probability. Moreover, õENM runs ôENM on t′

commitments and rest of the computation takes poly(n) time. Therefore, if ôENM ∈ C∧d,S then

so does õENM. Therefore, 〈C̃, R̃〉 is (d, S)-over-extractable w.r.t. õENM.
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7 Concurrent Non-malleable Commitment for n-bit Identities

In this section, we describe the construction of a concurrent non-malleable commitment scheme
〈C∗, R∗〉 that can accomodate n-bit identities which then concludes the proof of Theorem 1. The
idea is to start with the basic commitment scheme from Section 5 that is one-one non-malleable
w.r.t. extraction for short identities say t(n)-bits. Then apply the non-malleability strengthening
technique described in Section 6.3 followed by the log-n trick [DDN00] described in Section 6.4
repeatedly until the length of the identities reaches n-bits. The resulting commitment scheme is the
commitment scheme 〈C∗, R∗〉. We detail the construction of 〈C∗, R∗〉 more formally in Section 7.1.
Then provide instantiations in Section 7.2 and finally discuss the efficiency of the scheme 〈C∗, R∗〉
in Section 7.3.

7.1 Commitment Scheme 〈C∗, R∗〉

We formally describe the construction of 〈C∗, R∗〉 that is concurrent non-malleable w.r.t. commit-
ment (and extraction) for n-bit identities. As mentioned above we initially start with a commitment
scheme 〈C0, R0〉 for t(n)-bit identities and apply the non-malleability strengthening and log-n trick
repeatedly, for say r(n) times, until we reach identities of length n-bits.

- Initial Scheme 〈C0, R0〉:
The initial scheme 〈C0, R0〉 is the basic scheme (ENMCom,ENMOpen) that is one-one non-
malleable w.r.t. extraction for identities of length id0(n) = t(n)-bits. Furthermore, let 〈C0, R0〉
be non-malleable against circuits of depth at most poly(S0) and size at most poly(S0) and
extractable by an extractor of depth at most poly(S′0) and size at most poly(S′0). 12

- Identity Amplification Step for r(n) Times:

Next, we repeatedly apply the following two steps r(n) times. Let 〈Cj−1, Rj−1〉 be the com-
mitment scheme at the end of the j − 1-th iteration for j ∈ {1, . . . , r(n)}. We describe
below the j-th iteration below. Let 〈Cj−1, Rj−1〉 be one-one non-malleable w.r.t. commit-
ment (and extraction) for identities of length idj−1(n)-bits. Furthermore, let 〈Cj−1, Rj−1〉 be
non-malleable against circuits of depth at most poly(Sj−1) and size at most poly(Sj−1) and
extractable by an extractor of depth at most poly(S′j−1) and size at most poly(S′j−1).

1. Non-malleability Strengthening Technique:
First, using an appropriate hierarchy of functions as described in Equation (8), we apply
the non-malleability strengthening technique to 〈Cj−1, Rj−1〉 to boost the one-one non-
malleability to concurrent non-malleability. The resulting scheme 〈Ĉj , R̂j〉, therefore,
is concurrent non-malleable w.r.t. commitment (and extraction) for identities of length
idj−1(n)-bits.

2. Log-n Trick:

Second, we apply the log-n trick to the concurrent non-malleable scheme 〈Ĉj , R̂j〉 to
construct a one-one non-malleable commitment 〈Cj , Rj〉 for identities of length idj(n)

such that idj(n) = 2id
j−1(n)−1.

12Note that the initial scheme as presented in Section 5 is non-malleable against circuits of depth at most poly(d0)
and size at most poly(S0) where d0 << S0. However, the above still implies that it is still non-malleable against
circuits of depth at most poly(d0) and size at most poly(d0).
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- Final Scheme 〈C∗, R∗〉:
The commitment scheme 〈Cr(n), Rr(n)〉 constructed at the end of r(n) iterations is one-one
non-malleable for identities of length idr(n). We apply the non-malleability strengthening
technique one more time to 〈Cr(n), Rr(n)〉 to boost the one-one non-malleability to concurrent
non-malleability. The resulting scheme is 〈C∗, R∗〉 which is concurrent non-malleable for
identities of length idr(n)(n)-bits.

Note that we begin we identities of length id0 = t(n) and identities in successive iterations
satisfy the following,

idj(n) = 2id
j−1(n)−1 .

Then it is easy to see that for idr(n)(n) ≥ n, we need to apply the identity amplification step
r(n) = O(log∗ n− log∗ t(n)) times.

7.2 Instantiations

The initial scheme constructed in Section 5 and the identity amplification step described in Sec-
tions 6.3,6.4 require a family of depth-robust and size-robust commitment schemes, and a family of
non-uniform collision resistant hash functions which are based on some hierarchy of non-decreasing
functions. Below we detail the size of this hierarchy required for constructing 〈C∗, R∗〉 from the
initial scheme 〈C0, R0〉 for t(n)-bit identities and r(n) iterations of the identity amplification step.
Then we give instantiations of this hierarchy firstly from sub-exponential security and then from
the strictly weaker sub-subexponential security.

Initial Scheme 〈C0, R0〉. We start with the basic scheme (ENMCom,ENMOpen) for t(n)-bit
identities. As described in Section 5, the construction of the scheme (ENMCom,ENMOpen) for
t(n)-bit identities requires a family of 2t(n) size-robust and depth-robust commitment schemes
w.r.t. the following hierarchy of non-decreasing functions,

n << d0 << d1 << . . . << dl−1 << dl << S0 << S1 << . . . << Sl−1 << Sl ,

where l = 2t(n) such that for every i ∈ {0, 1}t(n),

- there exists a depth-robust commitment scheme (EComdi ,EOpendi) that is Cdi-hiding and
(di+1, di+1)-over-extractable w.r.t. an extractor oEdi .

- there exists a size-robust commitment scheme (EComSi ,EOpenSi) that is CSi-hiding and
(poly(n), Si+1)-over-extractable w.r.t. an extractor oESi .

Therefore, to construct the initial commitment scheme we need a hierarchy of 2(l+1) = 2(2t(n) +1)
non-decreasing functions.

Identity Amplification Step. Consider the j + 1-th iteration of the identity amplification step
described in the construction of 〈C∗, R∗〉. In the j+1-th iteration, we are applying the strengthening
technique to the commitment scheme 〈Cj , Rj〉 which is C∧

Sj ,Sj
-non-malleable and extractable by a

circuit of size at most poly(S′j). The strengthening technique requries a family of four depth-robust
13 and four size-robust commitment schemes. Furthermore, it also requires a family of non-uniform

13Note that the transformation actually requires four depth-and-size robust commitment schemes but as described
in Section 4.3 depth-and-size robust commitment scheme can be constructed from a single depth-robust and a size-
robust commitment scheme.
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collision-resistant hash functions w.r.t. the following hierarchy of non-decreasing functions,

n << dj4 << dj3 << dj1 << dj2 << Sj2 << Sj1 << SjCRH <<

S′jCRH << Sj << S′j << Sj3 << Sj4 << S′j4 << S∗ ,

such that,

- (ECom1,EOpen1) is a perfectly binding commitment scheme which is C∨
dj1,S

j
1

-hiding and (dj2, S
j
CRH)-

over-extractable w.r.t. extractor oE1.

- (ECom2,EOpen2) is a perfectly binding commitment scheme which is C∨
dj2,S

j
2

-hiding and (Sj2, S
j
1)-

over-extractable w.r.t. extractor oE2.

- (ECom3,EOpen3) is a perfectly binding commitment scheme which is C∨
dj3,S

j
3

-hiding and (dj2, S
′j
4 )-

over-extractable w.r.t. extractor oE3.

- (ECom4,ECom4) is a perfectly binding commitment scheme which is C∨
dj4,S

j
4

-hiding and (dj3, S
′j
4 )-

over-extractable w.r.t. extractor oE4.

- H = {Dn}n∈N is a C
SjCRH

-collision-resistant family of hash functions such that a collision can

be found by a circuit in C
S′jCRH

.

Furthermore, we apply the log-n trick to the resulting commitment scheme. Note that the log-n
trick does not rely on any additional tools. Therefore, in an iteration of the identity amplification
step, we need four depth-robust13, four size-robust commitment schemes and a hash function fam-
ily. In other words, we need an additional at most eleven non-decreasing functions per iteration.
Therefore, over r(n) iterations, we will need a hierarchy of 11r(n) + 11 functions. 14

Therefore, to construct the commitment scheme 〈C∗, R∗〉 from 〈C0, R0〉 for t(n)-bit identities,
we need a hierarchy of L = 2t(n)+1 +11r(n)+13 non-decreasing functions, where r(n) = O(log∗ n−
log∗ t(n)). Furthermore, L is minimized when t(n) = O(1), implying r(n) = O(log∗ n) and L =
O(log∗ n). Next, we show two approaches to instantiate a hierarchy of L = O(log∗ n) non-decreasing
functions, one from sub-exponential security and another from sub-subexponential security.

Instantiation from Sub-exponential Security. As mentioned above, we need to instantiate
a hierarchy of L non-decreasing functions for constructing 〈C∗, R∗〉. Let the required hierarchy be
the following,

p1 << p2 << . . . << pL . (13)

Let F(λ) be some non-decreasing function defined on N. First we will instantiate the hierarchy
based on the existence of 2F(λ)-secure OWPs, TL puzzles and collision-resistant hash functions.
Then provide concrete parameters for the special case of sub-exponential security, that is, for
F = λε for some ε < 1.

We instantiate the above hierarchy from 2F(λ)-security by varying the security parameter λ.
Consider the following sequence of security parameters relationships between whom is discussed
shortly,

n0 , n1 , . . . , nL .

14The additional eleven functions is due an extra application of the non-malleability strengthening to boost the
non-malleability of 〈Cr(n), Rr(n)〉.
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We set the i-th level in the hierarchy pi where i ∈ {1, . . . , L},

pi = 2F(ni) .

We expect the functions in the hierarchy to satisfy certain constraints in order for us to be
able to instantiate the required depth-robust and size-robust commitment schemes from them. We
enlist the properties below.

1. Since we expect all our primitives to be secure against any poly-sized circuit, we require that
the first security parameter n0 be such that 2F(n0) ≥ 2ω(logn) that is,

F(n0) = ω(log n) ,

n0 = F−1(ω(log n)) .

2. For any i, we need to be able to instantiate the following primitives,

(a) (pi, pi+1)-depth-robust commitment scheme: We instantiate such a scheme from TL puz-
zles by sampling puzzles with security parameter ni.

(b) (pi, pi+1)-size-robust commitment scheme: We instantiate such a scheme from OWPs by
instantiating the OWP with security parameter ni.

(c) (pi, pi+1)-collision-resistant hash function family: A (pi, pi+1)-collision-resistant hash func-
tion family is a family of hash functions that is Cpi-collision resistant and for which there
exists a circuit in Cpi+1 that finds collisions with probability 1. We instantiate such a
family by setting the security parameter for H as ni, where H is a family of non-uniform
2F(n)-collision-resistant hash functions.

Therefore, in each of the above three cases, we require that the following relation hold between
pi and pi+1.

poly(pi) = poly(2F(ni)) < 2ni ≤ pi+1 = 2F(ni+1) .

The above constraint implies the following relation between the security parameters of adja-
cent levels.

ni+1 = F−1(ni) =
(
F−1

)i+1
(n0) =

(
F−1

)i+2
(ω(log n)) .

Therefore the ith security parameter ni is,

ni =
(
F−1

)i+1
(ω(log n)) .

3. Finally we require that the last security parameter nL be upper-bounded by some poly(n),

nL =
(
F−1

)L+1
(ω(log n)) ≤ poly(n) . (14)

Now let us consider the case of sub-exponential security, that is, let F = λε for some ε < 1.
Since F is non-decreasing it is invertible and F−1(y) = y1/ε . For the last security level nL to be
polynomially bounded, we require that,

(ω(log n))(1/ε)L+1

≤ poly(n) .

It is easy to see that from subexponential security, we can derive L = Θ(log log n) levels. Recall
that to construct 〈C∗, R∗〉 we need O(log∗ n) levels in the hierarchy, hence the above hierarchy finds
an instantiation from subexponential security.
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However, for our transformation, we require only L = O(log∗ n) levels which is significantly less
than Θ(log log n) levels that can be extracted from sub-exponential security. Hence, there is hope
to instantiate the hierarchy from weaker than sub-exponential security. In fact, such a hierarchy
can, indeed, be instantiated from strictly weaker security — sub-subexponential security — which
we show below.

Instantiation from Sub-subexponential Security. First we define the notion of sub-subexponential
security and then provide an instantiation of the hierarchy. Informally, a 2F(λ)-secure primitive is
sub-subexponential -secure if

F(λ) ∈ λo(1) .

A candidate for F for sub-subexponential security is the following,

F(λ) = λ
1
X (λ) ,

where X (λ) = ω(1) be some non-decreasing function on N.
We ask how large (if at all) such an X (λ) = ω(1) can be so that we can still instantiate the

above hierarchy. The only point of concern is bounding the security parameter nL of the last level,

that is, we ask how large X (λ) be such that for F(λ) = λ
1
X (λ) and L = O(log∗ n) the following

holds,

nL =
(
F−1

)L
(ω(log n)) ≤ poly(n) .

However the above closed form is hard to analyse so we restrict the right hand side to be n
instead of a generic poly(n), that is, (

F−1
)L

(ω(log n)) ≤ n (15)

Applying F on both sides we get,(
F−1

)L−1
(ω(log n)) ≤ F(n) , (16)

Let n′ = F(n) = n
1
X (n) < n. We have,

F(n′) =
(
n′
) 1
X (n′) = (F(n))

1
X (n′) .

Since X is a non-decreasing function we have,

F(n′) = (F(n))
1

X (n′) > (F(n))
1
X (n) ,

(17)

Applying again F on both sides of Equation (16),(
F−1

)L−2
(ω(log n)) ≤ F(n′) , (18)

Therefore by Equation (17) we know that as long as the following holds, Equation (18) holds.(
F−1

)L−2
(ω(log n)) ≤ F(n)

1
X (n) = n

1
X (n)

2

.

After repeatedly applying F , it is easy to see that as long as the following holds, Equation (15)
holds.

ω(log n) ≤ n
1

X (n)L .
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Furthermore, the if the following holds then the above Equation holds,

X (n)L ≤ log n

ω(log log n)

X (n) ≤
(

log n

ω(log log n)

) 1
O(log∗ n)

Finally, as long as the following holds for some c > 0 then Equation (15) holds.

X (n) ≤ (logc n)
1

O(log∗ n)

X (n) ≤ (log n)
1

Θ(log∗ n) (19)

For X (n) = log log n, it is easy to see that Equation (19) holds and hence Equation (15) holds.

Therefore we can instantiate the above hierarchy from 2n
1

log logn
-secure OWPs, TL puzzles and

CRHs which is strictly weaker than assuming 2n
ε
-security.

7.3 Efficiency of 〈C∗, R∗〉

As described in Section 7.1, to construct the scheme 〈C∗, R∗〉 we apply the identity amplification
step — non-malleability strengthening technique followed by the log-n trick — O(log∗ n) times.
Suppose that the identity amplification step incurrs a polynomial overhead, that is, on input a
scheme with computational complexity τ(n), it outputs a scheme with computational complexity
p(τ(n)) for some fixed polynomial p. Applying this step for a super-constant number of times leads
to a scheme 〈C∗, R∗〉 with super-polynomial computational complexity.

Unfortunately, our non-malleability strengthening technique presented in Section 6 indeed in-
currs polynomial overhead. Recall that on input a non-malleable commitment 〈C,R〉, the technique
produces an output scheme 〈Ĉ, R̂〉 which uses ZAP to prove a statement that involves verifying the
decommitment to a commitment of 〈C,R〉. Therefore, if the decommiment function Open(c, v, d) of
〈C,R〉 has complexity τOpen(n), the output scheme has complexity at least pZAP(τOpen(n)), where
pZAP is the polynomial overhead induced by ZAP.

We show below that a simple modification can fix the problem. (We chose to present the
strengthening technique in simpler terms earlier for ease of exposition.) Towards this, we introduce
a new property called open-decomposability for commtiment schemes. We say that a scheme 〈C,R〉
is g-open-decomposable, if it is the case that, its decommitment function Open(c, v, d) that can be
decomposed into two functions of the following form:

- a “public” function PubOpen(c) that can be verified without the decommitment (v, d), and

- a “private” function PrivOpen(c∗, v, d) that depends on the decommitment and only a small
part c∗ = π(c) of the commitment c, and takes polynomial time g(n).

Open accepts if and only if both PubOpen and PrivOpen accepts. Consider applying the non-
malleability strengthening technique on such a g-open-decomposable commitment scheme. Instead
of using ZAP to verify whether Open accepts, it is equivalent to verify whether PubOpen accepts in
the clear (outside ZAP) and only verifies whether PrivOpen accepts using ZAP. This simple change
reduces the overhead induced by the ZAP proof from pZAP(τOpen(n)) to pZAP(g(n)). Our key
observation is that the initial non-malleable schemes, as well as all intermediate schemes produced
throughout the iterations, are all open-decomposable w.r.t. small polynomials. Based on this
observation and careful analysis, we can show that the complexity of the final scheme is polynomially
bounded.
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Open-decomposability. We now formally define the notion of open-decomposability.

Definition 19 (g-open-decomposability). Let g be a polynomial. We say that a commitment
scheme 〈C,R〉 is g-open-decomposable if there exist efficiently computable functions PubOpen,
PrivOpen, and π, such that,

for all n ∈ Z, and c ∈ {0, 1}m(n), v ∈ {0, 1}n and d ∈ {0, 1}l(n),

Open(c, v, d) = 1 ⇐⇒ PubOpen(c) = 1

∧ PrivOpen(c∗ = π(c), v, d) = 1 ,

where PrivOpen runs in time g(n).

Above, m(n) and l(n) are respectively the maximal lengths of commitments and decommitments
generated using 〈C,R〉 with security parameter n.

Using the above notion, we next describe the modified non-malleability strengthening technique
and log-n trick. We analyze the open-decomposability property of the schemes produced by itera-
tively applying these two transformations to the initial schemes constructed in Section 5, and show
that the growth of the complexity of these schemes is polynomially bounded.

More specifically, let g be a sufficiently large polynomial that, in particular, is larger than
the complexity of all depth-and-size robust commtiment schemes, ECom’s, used for constructing
the initial schemes and in the transformations. By the analysis in Section 7.2, all the ECom’s
used have polynomial complexity. This implies that the initial non-malleable commitment schemes
(consisting of invokation of two ECom schemes) does satisfy g-open-decomposability (by simply
setting PubOpen to the constant function outputting 1 and PrivOpen = Open itself). Then, we
show that the non-malleability stengthening technique always outputs a scheme that is g-open-
decomposable, and on input such a scheme, the log-n trick produces a scheme that is h(n)-open-
decomposable for h(n) = ng(n).

Modification to the strengthening technique described in Section 6.3. Let 〈C,R〉 be one-
one non-malleable w.r.t. extraction and satisfy h-open-decomposable w.r.t. (PubOpen,PrivOpen, π).
We describe the changes (highlighted in red) to the non-malleability strengthening technique.

- Commit stage - First round: Same as before.

- Commit stage - Second round: Steps 1, 2 and 4 are same as before.

3. Given aZAP, Ĉ computes the second message bZAP of ZAP to prove the following OR-
statement:

(a) either there exists a string v̄ such that c1 is a commitment to v̄ and c3 commits to
a decommitment of c1.

(b) or there exists a string s̄ = (x1, x2), such that,

– h(x1) = h(x2),

– c2 is a commitment to s̄,

– c4 commits to a decommitment of c2,

– PrivOpen accepts (c∗, d4, v4) for c∗ = π(aNM, bNM), and (d4, v4) is a valid de-
commtiment to c4.
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Ĉ proves the statement (a) by using a decommitment of c3 to (v, d1) — decommitment
of c1 to v — as the witness.

Denote by (âNM, b̂NM) the produced commitment.

- Reveal stage - Function Ôpen(((âNM, b̂NM)), d1, v):

Parse (âNM, b̂NM) and let (aZAP, bZAP), (aNM, bNM), and c1 be the ZAP proof, the commitment
of 〈C,R〉, and the ECom1 commtiment contained in it. Accept if and only if the following
functions both accept.

– ̂PubOpen(âNM, b̂NM) accepts iff the ZAP proof (aZAP, bZAP) is accpeting and that
PubOpen((aNM, bNM)) = 1.

– π̂(âNM, b̂NM) = c1 and ̂PrivOpen(c1, v, d1) accepts iff EOpen1(c1, v, d1) = 1.

The scheme 〈Ĉ, R̂〉 is open-decomposable w.r.t. ( ̂PubOpen, ̂PrivOpen, π̂). Since ̂PrivOpen only
checks the decommitment of the ECom1 commitment, its runtime is bounded by g(n). Therefore,
〈Ĉ, R̂〉 satisfies g(n)-open-decomposability. On the other hand, since PrivOpen has complexity
h(n), the ZAP proof incurrs an additive poly(n, g(n), h(n)) overhead. Thus, if the computational
complexity of 〈C,R〉 is cc(n), the computational complexity ĉc(n) of 〈Ĉ, R̂〉 is:

ĉc(n) = cc(n) + poly(n, g(n), h(n))

Modification to log-n trick described in Section 6.4. Let 〈Ĉ, R̂〉 be concurrent non-malleable
(w.r.t. commitment and extraction) for l(n)-bit identities, and be g(n)-open-decomposable w.r.t.

( ̂PubOpen, ̂PrivOpen, π̂). The log-n trick results in a commitment scheme 〈C̃, R̃〉 which is one-one
non-malleable (w.r.t. commitment and extraction) for identities of length l′(n) = 2l(n)−1 < n. We

show that 〈C̃, R̃〉 is h(n)-open-decomposable w.r.t. ( ˜PubOpen, ˜PrivOpen, π̃) described below.

- Commit stage: Same as before.

Let ãNM, b̃NM be the produced commitment, which contains l′ commitments of 〈Ĉ, R̂〉, denoted

as
{
âiNM, b̂

i
NM

}
i∈[l′]

.

- Reveal stage - Function Õpen(((ãNM, b̃NM)), d, v): Accept if and only if the following functions
both accept.

– ˜PubOpen accepts iff for every i, ̂PubOpen(âiNM, b̂
i
NM) accepts.

– π̃(ãNM, b̃NM) =
{
c∗i = π̂(âiNM, b̂

i
NM)

}
i

and ˜PrivOpen accepts iff for every i, ̂PrivOpen ac-

cpets c∗i w.r.t. d, v.

Note that the running time of ˜PrivOpen is at most l′(n) · g(n) ≤ h(n), and hence 〈C̃, R̃〉 is
h(n)-open-decomposable. Furthermore, if the computational complexity of 〈Ĉ, R̂〉 is ĉc(n), the
computational complexity of 〈C̃, R̃〉 is bounded by l′(n)ĉc(n).

61



Putting Pieces Together. Every iteration, say the j’th iteration, starts with a commitment
scheme 〈Cj , Rj〉 that is h(n)-open-decomposable (the inital schemes are g-open-decomposable).
Applying the non-malleability strengthening technique produces a scheme 〈Ĉj , R̂j〉 that is is g(n)-
open-decomposable. Following that, the log-n trick produces a scheme 〈Cj+1, Rj+1〉 that is h(n)-
open-decomposable for h(n) = ng(n). Furthermore, Let cc(j) denote the computational complexity
of the scheme 〈Cj , Rj〉. Then we have:

cc(j + 1) = idj+1(n) (cc(j) + poly(n, g(n), h(n)))

= idj+1(n)
(
idj(n)(cc(j − 1) + poly(n)) + poly(n)

)
≤ idj+1(n)idj(n)cc(j − 1) + idj+1(n)idj(n)poly(n) + idj+1(n)poly(n)

≤ idj+1(n)idj(n)cc(j − 1) + 2idj+1(n)idj(n)poly(n)

≤
∏

1≤k≤j+1

idk(n)cc(0) + (j + 1)

 ∏
1≤k≤j+1

idk(n)

 poly(n)

Since the total number of iterations is O(log∗ n) and the lengths of identities grow exponentially
fast, we have that the running time of the final scheme 〈C∗, R∗〉 is upper-bounded by a polynomial.

8 Two-round Robust CCA-secure Commitment

In this section we consider a stronger notion of security for commitments – security against adaptive
chosen commitment attacks (CCA-security). CCA-security for commitment schemes was defined
in [CLP10, LP12] and is analogous to the extensively studied notion of security under chosen-
ciphertext attacks for encryption schemes. Roughly speaking, a tag based commitment scheme
is CCA-secure if the value committed using an tag id remains hidden even if the receiver has
access to an oracle that “breaks” any commitment using any tag id′ 6= id, and returns the (unique)
value committed inside the commitment. We call such an oracle the committed-value oracle. CCA-
security can be viewed as a natural strengthening of concurrent non-malleability – roughly speaking,
a commitment scheme is concurrently non-malleable if it is CCA-secure with respect to restricted
classes of adversaries that only make a single parallel (non-adaptive) query to the oracle after
completing all interactions with the honest committer.

In this section, we show that the 2-round concurrent non-malleable commitment scheme de-
scribed in Section 7 is in fact also CCA-secure. Recall that the 2-round scheme is constructed by
iteratively applying the amplification transformation in Section 6 to the basic schemes for short
identities in Section 5. The basic schemes for short identities are only one-one non-malleable which
is amplified to concurrent non-malleability for n-bit identities by a two-step amplification proce-
dure: first by applying the 2-round strengthening technique in Section 6.3 which strengthens the
one-one non-malleability to concurrent non-malleability while preserving the length of identities;
then applying the DDN log n trick (Section 6.4) to increase the length of identities while loos-
ing concurrent non-malleability. The above two-step amplification step is iteratively applied for
O(log∗ n) times resulting in a scheme for n-bit identities but is only one-one non-malleable. To re-
store concurrent non-malleability the 2-round strengthening technique is applied once more. Since
the strengthening technique is the final step in the construction, to show that the resulting scheme
〈C∗, R∗〉 is also CCA-secure, it is sufficient to show that the strengthening technique described in
Section 6.3 produces a CCA-secure commitment scheme.

Below we first formally define the notion of CCA-secure commitments and then detail a proof
that the strengthening technique of Section 6.3 produces a scheme that is CCA-secure.
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8.1 CCA-secure Commitment w.r.t. Committed-Value Oracle

Committed-value Oracle. Let 〈C,R〉 be a tag-based perfectly binding commitment scheme
with t(n)-bit identities. Consider a non-uniform circuit family A = {A}n∈N. A committed-value
oracle O of 〈C,R〉 acts as follows in interaction with A: For security parameter n, it participates
with A in m-interactions acting as a honest receiver, using identities of length t(n) which are
adaptively chosen by A. At the end of each interaction, O returns the unique value committed in
the interaction if it exists, otherwise it returns ⊥. More precisely, O at the end of an interaction
say with transcript c, computes the function val on c and returns val(c) to A. Recall that val(c)
equals the (unique) value committed in c when c is a valid commitment, else val(c) is ⊥.

A tag-based commitment scheme 〈C,R〉 is CCA-secure w.r.t. committed-value oracle, if the
hiding property of the commitment scheme holds even with respect to adversaries that have access
to the committed-value oracle O. More precisely, let AO denote the adversary A having access to
the committed-value oracle O. Consider the following probabilistic experiment IND(1n, b), where
b ∈ {0, 1}: For security parameter n, AO adaptively choses a pair of challenge values (v0, v1) ∈
{0, 1}n – the values to be committed to – and an identity id of length t(n), and interacts with
the honest committer C to receive a commitment to vb using identity id. Finally, the experiment
outputs the output y of AO where y is replaced with ⊥ if A queries the oracle O on a commitment
using an identity which is same as the identity id of the commitment it receives. We will denote
the output of the above experiment by INDA〈C,R〉(1

n, b).

Definition 20 (CCA-secure Commitments [LP12]). Let 〈C,R〉 be a tag-based commitment scheme
for t(n)-bit identities, and C a class of circuits. We say that 〈C,R〉 is C-CCA-secure w.r.t. the
committed-value oracle, if for every circuit family A = {An}n∈N ∈ C participating in m = poly(n)
interactions with the oracle, the following ensembles are computationally indistinguishable:{

INDA〈C,R〉(1
n, 0)

}
n∈N

,{
INDA〈C,R〉(1

n, 1)
}
n∈N

.
(20)

As stated before and observed in [CLP10, LP12], CCA-security can be viewed as a natural
strengthening of concurrent non-malleability. The proof is standard and is omitted but for com-
pleteness we state the theorem below.

Theorem 15. Let 〈C,R〉 be a commitment scheme and C be a class of circuits that is closed under
composition with P/poly. Then if 〈C,R〉 is C-CCA-secure w.r.t. the committed-value oracle then
it is C-concurrent non-malleable w.r.t. commitment.

8.2 k-Robustness w.r.t. Committed-value Oracle

In the literature, CCA-security is usually used together with another property – robustness which
captures security against a man-in-the-middle adversary that participates in an arbitrary left inter-
action with a limited number of rounds, while having access to the committed-value oracle. Roughly
speaking, 〈C,R〉 is k-robust if the joint outputs of every k-round interaction, with an adversary
having access to O, can be simulated without the oracle. In other words, having access to the
oracle does not help the adversary in participating in any k-round protocol much.

Definition 21 (Robustness). Let 〈C,R〉 be a tag based commitment scheme with t(n)-bit identities,
and C and C′ two classes of circuits. We say that 〈C,R〉 is (C, C′, k)-robust w.r.t. the committed-
value oracle, if there exists a simulator S ∈ C′, such that, for every adversary A ∈ C that participates
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with O in m = poly(n) interactions and for every B ∈ C that participates in a k-round interaction
the following two ensembles are computationally indistinguishable,

{outputB,AO [B(y), AO(z)(1n, x)]}n∈N,x,y,z∈({0,1}poly(()n))3

{outputB,SA [B(y), SA(z)(1n, x)]}n∈N,x,y,z∈({0,1}poly(()n))3 ,
(21)

where outputB,AO [B(y), AO(z)(1n, x)] denote the joint outputs of A and B in an interaction between
them, on common input x ∈ {0, 1}∗ and private inputs z to A and y to B respectively, with uniformly
and independently chosen random inputs to each machine.

8.3 Proof of Robust CCA-security of 〈Ĉ, R̂〉

The commitment scheme 〈Ĉ, R̂〉 is a result of applying the strengthening technique described in
Section 6.3 to a 2-round over-extractable C∧SNM,SNM

one-one non-malleable (w.r.t. extraction) com-
mitment scheme 〈C,R〉. The strengthening technique additionally relies on other basic building
blocks described in Section 6.2. It was shown in Theorems 10,12,11 that 〈Ĉ, R̂〉 is over-extractable

w.r.t. extractor ôENM and is C∧d4,d4
concurrent non-malleable w.r.t. extraction and commitment.

Next, we will show that 〈Ĉ, R̂〉 is also C∧d4,d4
-CCA-secure and (C∧d4,d4

, C∧d2,SCRH
, κ)-robust for any

polynomial κ.

Theorem 16. 〈Ĉ, R̂〉 is C∧d4,d4
-CCA-secure and is (C∧d4,d4

, C∧d2,SCRH
, κ(n))-robust w.r.t. committed-

value oracle.

The proof of Theorem 16 consists of two parts: in Section 8.3.1 we first show that 〈Ĉ, R̂〉 is
CCA-secure and in Section 8.3.2 we show that it is also robust.

8.3.1 Proof of CCA-security

Let us consider a fixed family of circuits A = {A}n∈N belonging to the circuit class C∧d4,d4
that

in the CCA-experiment IND(1n, b) interacts with a honest receiver C and has oracle access to the
committed-value oracle to which it makes m = poly(n) number of queries. For convenience, we
will refer to A’s interaction with C as the left interaction and its interactions with O as right
interactions. Then, to prove CCA-security, we need to show that

{INDA〈Ĉ,R̂〉(1
n, 0)}n∈N ≈c {INDA〈Ĉ,R̂〉(1

n, 1)}n∈N . (22)

Proof Overview. At a very high level: the above indistinguishability follows from similar proof
as that of one-many non-malleability in Section 6.3. The proof goes through similar hybrids {Hj}j
as that for proving non-malleabilty in the proof of Theorems 11 and 12, with the following slight
modification. In the definition of non-malleability, the man-in-the-middle A interacts with the hon-
est receivers on the right, whereas in that for CCA security, A interacts with the committed-value
oracle O on the right, who additionally returns the value val committed in every right interaction
as soon as it ends. Therefore, in the hybrids for proving CCA-security, we need to simulate O for
A. To do so, we rely on the over-extractability of 〈Ĉ, R̂〉 by an extractor ôENM, and simulate the
committed-value oracle for A using the following extracted-value oracle — OE works identically to
the committed-value oracle except that at the end of an interaction, it runs ôENM to extract a value
from the commitment and returns it to A.

With the modified hybrids, to show CCA-security, we need to establish that i) OE indeed sim-
ulates the committed-value oracle correctly, and ii) the indistinguishability of the hybrids remains.
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For i), recall that the over-extractability of 〈Ĉ, R̂〉 only guarantees that the value OE extracts is

the correct committed value when a commitment is valid, otherwise, ôENM might return an ar-
bitrary value, instead of ⊥. To show that the latter does not happen, (similar to the proof of
non-malleability in Theorem 11 and 12,) we maintain throughout all hybrids a “no-fake-witness”

invariant, which would guarantee that ôENM indeed returns ⊥ when a right commitment is invalid,
except with negligible probability. Hence, OE perfectly simulates the committed-value oracle with
overwhelming probability.

Next, to show ii) the indistinguishability of the hybrids, recall that the extractor ôENM on a
commitment c works as follows: It returns ⊥ if the ZAP proof (in c) is not accepting, and otherwise,

it return the value v′ extracted from c1 using the extractor oE1 of ECom1 — the complexity of ôENM

is roughly the same as that of ECom1. Observe that running ECom1, and hence ôENM, in the hybrids
does not hurt the security of any other components, namely, CRH, 〈C,R〉 and EComi’s for i > 1,
since ECom1 ≺ CRH, 〈C,R〉,ECom2,ECom4,ECom3, as depicted in Figure 2 (iii). Therefore, if the
indistinguishability of a pair of neighboring hybrids reduces to the security of components other
than ECom1, this indistinguishability remains intact even when running ôENM inside. This is the
case for all but the last two hybrids, whose indistinguishability reduces to the hiding of ECom1 itself.
To show their indistinguishability, (again similar to the proof of non-malleability,) we simulate ôENM

by extracting from c3 using the extractor oE3 for ECom3, and rely on the hiding of ECom1 against
oE3. This concludes the overview of the proof of CCA-security. Next, we provide a more formal
analysis.

Formal Proof. We consider a sequence of hybrids {Gj(b)}j∈[7] for b ∈ {0, 1} whereG0(b) emulates
an execution which is identical to the CCA-experiment IND(1n, b) with A except A is given access
to an extraction oracle OE instead of the committed-value oracle; and Gj(b) for every 1 ≤ j ≤ 6
runs an execution with A where the left interaction is gradually simulated. As before, for notational
convenience, we use x to denote a random variable in the left interaction, and x̃i the corresponding
random variable in the i’th right interaction. Moreover, by INDAGj (1

n, b) we will denote the output
of the hybrid Gj(b). Then to show indistinguishability as described in Equation (22), we prove
in Lemma 5 that the output of the neighbouring hybrids Gj(b) and Gj+1(b) are indistinguishable
for the same b. Furthermore, we show the output is statistically close in G6(1) and G5(0) and the
output of G0(b) is also statistically close to INDA〈Ĉ,R̂〉(b)

15 ,this then establishes Equation (22).

Lemma 5. For b ∈ {0, 1} and 0 ≤ j ≤ 5, the following are computationally indistinguishable,

INDAGj (b) ; INDAGj+1
(b) ,

and INDAG0
(b) ≈s INDA〈Ĉ,R̂〉(b) and INDAG6

(b) ≈s INDAG5
(0).

Towards proving the above lemma, we will also maintain the following “no-fake-witness” invari-
ant.

Invariant 3 (No-fake-witness invariant). In Gj(b), the probability that there exists a right interac-
tion i that is accepting and A commits to a fake witness in it is negligible.

Showing the no-fake-witness invariant in every hybrid enforces A to prove the honest statement
in every accepting right interaction k. That is, for every accepting right interaction k, A proves
that the underlying commitment c̃1k is valid. Then, due to the over-extraction property of the

15We ignore the security parameter for notational convenience.
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extractor oE1, it follows that A in its interaction with the extracted-value oracle in fact receives
the value actually committed inside the right commitment c̃k. Therefore A’s interaction with the
extracted-value oracle is identical to its interaction with the committed-value oracle, except with
negligible probability. This fact with come in handy to show Lemma 5.

In Fact, as in the proof of Theorems 11 and 12, we maintain the following, easier to prove,
invariant which from an argument similar to the one made in the proof of Claim 2, implies Invari-
ant 3.

Invariant 4. In Gj(b), the probability that there exists a right interaction i that is accepting and the

value extracted from the non-malleable commitment (ãNMi, b̃NMi) in this session is a fake witness
is negligible.

Therefore to establish the proof of CCA-security, we will prove Lemma 5 and show that Invari-
ant 4 holds in all hybrids. Next, we formally describe our hybrids and show that Lemma 5 and
Invariant 4 indeed hold. At this point we would like to reiterate that the hybrid descriptions Gjs
are very similar to hybrids Hjs from Section 6.3 and hence the proofs of indistinguishability of out-
puts of neighbouring hybrids Gj(b) and Gj+1(b), and that of Invariant 4 are similar in spirit to the
corresponding indistinguishability and Invariant claims in Section 6.3. Therefore, for brevity while
describing the proofs of Claims in this Section, we will refer to the proofs of Claims in Section 6.3.

Hybrid G0(b) : Hybrid G0(b) emulates an execution of the CCA-experiment IND(b) with A,
except that A for its right interactions interacts with the extracted-value oracle OE instead
of the committed-value oracle.

First, we show that Invariant 4 holds in G0(b). In Fact, as in Claim 3, we show that the value
extracted from the ECom2 commitment c̃2k in any right interaction k is not a collision of
the hash function h̃k where A interacts with OE for its right interactions. This then implies
Invariant 4 holds. At a high level this readily follows from the fact that the collision-resistance
of the hash function is more secure than both ECom2 and ECom1, h � ECom2,ECom1 (see
Figure 2 (iii)). This is because if in some right interaction k, A commits to a collision of
h̃k using ECom2, then we can construct a non-uniform circuit B′ that violates the collision-
resistance of h̃k by extracting from c̃2k. More precisely, B′ behaves identically to the adversary
B in the proof of Claim 3 except that for all its m = poly(n) right interactions with A, B′

internally simulates the oracle OE by running the extractor oE1 whereas B just acts as a
honest receiver. Therefore, the size of B′ blows up by an additive factor of m · size(oE1)
over the size of B. Since size of B is at most poly(SCRH) and the size of oE1 is also at most
poly(SCRH), we have that B′ also has size at most poly(SCRH), that is,

size(B′) ≤ size(B) +m · size(oE1)

≤ size(A) + size(oE2) + poly(n) +m · size(oE1)

≤ poly(d4) + poly(S1) + poly(SCRH)

< poly(SCRH) (since, SCRH >> S1, d4 from Equation (8)).

Therefore, B ∈ CSCRH
and then due to the CSCRH

-collision-resistance of H we have that Invari-
ant 4 holds in G0(b) as formalized in the following claim,

Claim 16. For b ∈ {0, 1} and for every right interaction i in G0(b), the probability that i is
accepting and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

66



Next, given that Claim 16 holds, we show that the output of hybrid G0(b) is statistically close
to the CCA-experiment IND(b) for any b ∈ {0, 1}.

Claim 17. For b ∈ {0, 1}, the following holds

INDAG0
(b) ≈s INDA〈Ĉ,R̂〉(b) .

Note that due to Claim 16, we know that A in each of its (accepting) right interactions,
with the oracle OE , does not commit to a fake witness, except with negligible probability.
Then by the soundness of ZAP, in every accepting right interaction k, A proves that the
underlying commitment c̃1k is well-formed. Therefore by the over-extractability of ECom1

w.r.t. oE1, we know that the extracted value oracle OE (implemented using oE1) in fact
returns val(c̃1k) = val(c̃k). For interactions k that are not accepting, both val and OE
return ⊥. Therefore for every right interaction k, the values returned by the extracted-value
oracle OE agree with val(ck), the values returned by the committed-value oracle O except
with negligible probability. Therefore, interaction of A with the extracted-value oracle OE is
statistically close to its interaction with the committed-value oracle O implying Claim 17.

Hybrid G1(b) : Hybrid G1(b) proceeds identically to G0(b) except that the ECom2 commitment
c2 sent to A in the left interaction is generated differently. In G0(b), c2 is a commitment to a
random string r1 whereas in G1(b) c2 is a commitment to a collision s of the hash function h
(received as non-uniform advice). The rest of the execution is simulated identically to G0(b).
We note that only difference between hybrids G0(b) and G1(b) is the commitment c2 which
in G0(b) commits to a random string r1 and in G1(b) commits to a collision s of the hash
function h.

First, we show that Invariant 4 holds in G1(b). In Fact, as in Claim 4 we show that the value
extracted from the ECom4 commitment c̃4k in any right interaction k is not a decommitment
of c̃2k to a collision of the hash function h̃k even when A interacts with OE . This then implies
that Invariant 4 holds. At a high level this follows from the fact that ECom2 is more secure
than both ECom4 and ECom1, ECom2 � ECom4,ECom1 (see Figure 2 (iii)), and the trick
that the reduction can receive a collision of h as a non-uniform advice. Suppose not that in
G1(b), the value extracted from c̃4k in some right interaction k satisfies the condition above
with 1/poly(n) probability. By Claim 16, this happens with only negligible probability in
G0(b). Then we can construct a non-uniform circuit B′ that violates the hiding of ECom2 by
extracting from c̃4k. More precisely, B′ behaves identically to the adversary B in the proof of
Claim 4 except that for all right interactions with A, B′ internally simulates the oracle OE by
running oE1. This blows up the depth and size of B′ by an additive of poly(d2) and poly(SCRH)
factor over the depth and size of B respectively. But depth of B is at most poly(d2), therefore
the depth of B is also poly(d2), that is,

dep(B′) ≤ dep(B) +m · dep(oE1)

≤ dep(A) + dep(oE4) + poly(n) +m · dep(oE1)

≤ poly(d4) + poly(d3) + poly(d2)

< poly(d2) (since, d2 >> d4, d3 from Equation (8)),

and since size(B) ≤ poly(S′4) >> d2 we have that size(B′) = poly(S′4) < poly(S∗) as S′4 >>
SCRH (see Equation (8)). Therefore circuit B′ ∈ Cd2 and then due to the C∨d2,S2

-hiding of
ECom2 we have that Invariant 4 holds in G1(b) formalized in the following claim,
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Claim 18. For b ∈ {0, 1} and for every right interaction i in G1(b), the probability that i is
accepting and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Next we show that the output of G0(b) is indistinguishable from the output of G1(b), that is,
INDAG0

(b) and INDAG1
(b) are indistinguishable. This essentially follows from the same proof as

Claim 18, and relying on the fact that ECom2 is more secure than ECom1, ECom2 � ECom1

(see Figure 2 (iii)). That is, as in Claim 18, we build an adversary B′ that violates the hiding
of ECom2 where B′ works identically to the adversary B in the proof of Claim 5 except Step
4 and 5. The adversary B (in Claim 5) waits for A to terminate and then in its Step 4 runs
oE1 to obtain ṽi

′ for every successful right interaction i and sets ṽi
′ = ⊥ for every unsuccessful

right interaction i. Then in Step 5, B runs the distinguisher D on the view of A and right
extracted values ṽi

′ and returns the output of D. However, here in the CCA case, A expects
to receive the extracted values and that too as soon as a right interaction ends. Therefore, B′

runs the extractor oE1 to obtain ṽi
′ as soon as the i-th interaction ends and returns ṽi

′ to A
if i is an accepting right interaction. Otherwise, it returns ⊥. Then it runs the distinguisher
D on the output y of A which is carefully replaced with ⊥ if any of A’s right interactions
uses the same identity as its left interaction. 16 Note that this change in the code of B′

does not blow up its size significantly (over B). Since size of B is at most poly(S2), we have
that size(B′) is at most poly(S2). Then the C∨d2,S2

-hiding of ECom2 implies that the output of
G0(b) and G1(b) are indistinguishable as formalized in the following claim,

Claim 19. For b ∈ {0, 1}, the following are indistinguishable,

INDAG0
(b); INDAG1

(b) .

Hybrid G2(b): Hybrid G2(b) proceeds identically to G1(b) except that the ECom4 commitment
c4 sent to A in the left interaction is generated differently. In G1(b), c4 is a commitment to a
random string r3 whereas in G2(b) c4 is a commitment to a decommitment of c2 to a collision
s of the hash function h. More precisely, G2(b) first finds a collision s for the function h and
then commits to s using ECom2 under c2. Then it commits to the decommitment of c2 under
c4. The rest of the execution is simulated identically to G1(b). We note that only difference
between hybrids G1(b) and G2(b) is the commitment c4 which in G1(b) commits to a random
string r3 and in G2(b) commits to a decommitment of c2 to a collision s of h.

First, we show that Invariant 4 holds in G2(b). At a high level this follows from the fact that
ECom4 is more secure than both 〈C,R〉 and ECom1, ECom4 � 〈C,R〉,ECom1 (see Figure 2
(iii)). Suppose that Invariant 4 does not hold in G2(b). This means that the value extracted
from the non-malleable commitment in some right session k is a fake witness with probability
1/poly(n) in G2(b), but negligible in G1(b) by Claim 18. Then, we can construct a non-
uniform circuit B′ that violates the hiding of ECom4 by extracting from the non-malleable
commitment. More precisely, B′ behaves identically to the adversary B in the proof of
Claim 6 except that for right interactions B′ simulates the oracle OE internally by running
oE1 which blows up the size of B′ by an additive poly(SCRH) factor over the size of B. But
since size(B) ≤ poly(S4) >> SCRH, we have that the size of B′ is also at most poly(S4), that

16B′ running D on the output of A as opposed to B running D on the view of A and all the extracted values ṽi
′

is a syntactic change required to be consistent with the IND experiment. This change will be in all successive claims
that relate the indistinguishability of the outputs of neighbouring hybrids and we will avoid specifying it explicitly
from now on.
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is,

size(B′) ≤ size(B) +m · size(oE1)

≤ size(A) + size(oENM) + poly(n) +m · size(oE1)

≤ poly(d4) + poly(S′NM) + poly(SCRH)

< poly(S4) (since, S4 >> d4, SCRH, S
′
NM from Equation (8)).

Therefore, B′ ∈ CS4 and then due to the C∨d4,S4
-hiding of ECom4 we have that Invariant 4

holds in G2(b) as formalized in the following claim,

Claim 20. For b ∈ {0, 1} and for every right interaction i in G2(b), the probability that i is
accepting and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Next we show that INDAG1
(b) and INDAG2

(b) are indistinguishable. The proof is essentially the
same as that for Claim 20. That is, as in Claim 20, we build an adversary B′ that violates
the hiding of ECom4 where B′ works identically to the adversary B in the proof of Claim 7
except a slight difference. Here, B′ to simulate the oracle OE runs the extractor oE1 to obtain
ṽi
′ as soon as the i-th interaction ends unlike B which runs the extractor oE1 after all the

right interactions end. This change in the code of B′ does not blow up its size significantly
(over B) and therefore size(B′) (like B) is at most poly(S4). Then the C∨d4,S4

-hiding of ECom4

implies that the output of G1(b) and G2(b) are indistinguishable.

Claim 21. For b ∈ {0, 1}, the following are indistinguishable,

INDAG1
(b); INDAG2

(b) .

Hybrid G3(b) : Hybrid G3(b) proceeds identically to G2(b) except that the second message
bNM of 〈C,R〉 sent to A in the left interaction is generated differently. In G2(b), bNM is such
that (aNM, bNM) commits to a random string r2 whereas in G3(b) bNM is such that (aNM, bNM)
commit to a decommitment of c4 to a decommitment of c2 to a collision s of the hash
function h. More precisely, G3(b) generates a commitment c2 to the collision s (obtained
by brute-force search). Let d2 be the corresponding decommitment string. Then, G3(b)
computes the commitment c4 to the decommitment (s, d2) of c2. Let d4 be the corresponding
decommitment string. Then, given aNM, G3(b) computes the second message bNM to commit
to ((s, d2), d4). The rest of the execution is simulated identically to G2(b). We note that only
difference between hybrids G2(b) and G3(b) is the second message bNM which is such that in
G2(b) (aNM, bNM) commits to a random string r2 whereas in G3(b) (aNM, bNM) commits to
((s, d2), d4).

First, we show that Invariant 4 holds in G3(b). At a high-level, this follows from the one-one
non-malleability w.r.t. extraction of 〈C,R〉. Suppose that Invariant 4 does not hold in G3(b)
then there exists a right interaction k such that the probability that it is accepting and the
value extracted the non-malleable commitment contained in this interaction is a fake witness
is 1/poly(n) in G3(b) and is negligible in G2(b) (by Claim 20). This violates the one-one
non-malleability w.r.t. extraction of 〈C,R〉. More precisely, we construct a pair (A′NM, D

′
NM)

that contradict the one-one non-malleability w.r.t. extraction of 〈C,R〉 where A′NM behaves
identically to the one-one adversary ANM described in the proof of Claim 8 except that for
all m right interactions A′NM internally simulates the oracle OE by running the extractor oE1.
And the distinguisher D′NM behaves identically to the DNM from proof of Claim 8. Since,
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the size of oE1 is at most poly(SCRH), the size of circuit A′NM blows up by only an additive
poly(SCRH) factor over the size of ANM. Since size(ANM) ≤ poly(SNM) >> SCRH, we have that
size of A′NM is also at most poly(SNM), that is,

size(A′NM) ≤ size(ANM) +m · size(oE1)

≤ size(A) + poly(S′CRH) + poly(n) +m · size(oE1)

≤ poly(d4) + poly(S′CRH) + poly(SCRH)

< poly(SNM) (since, SNM >> d4, SCRH, S
′
CRH from Equation (8)).

Therefore A′NM ∈ CSNM
and then due to the C∧SNM,SNM

-one-one non-malleability of 〈C,R〉 we
have that Invariant 4 holds in G3(b) as formalized in the following claim,

Claim 22. For b ∈ {0, 1} and for every right interaction i in G3(b), the probability that i is
accepting and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Next we show that INDAG2
(b) and INDAG3

(b) are indistinguishable. This follows from the fact
that 〈C,R〉 is more secure than ECom1, 〈C,R〉 � ECom1 (see Figure 2 (iii)). Therefore, if the
distribution of output values of hybrids G3(b) and G2(b) are distinguishable, one can build
an adversary B′ that violates the hiding of 〈C,R〉. More precisely, B′ works identically to
the adversary B in the proof of Claim 9 except a slight difference. Here, B′ to simulate the
oracle OE runs the extractor oE1 to obtain ṽi

′ as soon as the i-th interaction ends unlike B
which runs the extractor oE1 after all the right interactions end. This change in the code of
B′ does not blow up its size significantly (over B) and therefore size(B′) (like B) is at most
poly(SNM). Then the CSNM

-hiding of 〈C,R〉 implies that the output of G2(b) and G3(b) are
indistinguishable.

Claim 23. For b ∈ {0, 1}, the following are indistinguishable,

INDAG2
(b); INDAG3

(b) .

Hybrid G4(b): Hybrid G4(b) proceeds identically to G3(b) except that the second message bZAP
of ZAP sent to A in the left interaction is generated differently. In G3(b), bZAP is computed by
proving that c3 commits to a decommitment (vb, d1) of c1 whereas in G4(b) bZAP is computed
by proving that (aNM, bNM) commits to ((s, d2), d4) which is a decommitment of c4 to a
decommitment (s, d2) of c2 to the collision s of the hash function h. We note that only
difference between hybrids G3(b) and G4(b) is the second message bZAP, or more precisely
the witness used to compute the second message bZAP. In G3(b), the witness used is the
decommitment of c3 to (vb, d1) whereas in G4(b) the witness is a decommitment of (aNM, bNM)
to ((s, d2), d4).

First, we show that Invariant 4 holds in G4(b). At a high-level, this follows from the witness
indistinguishability of ZAP, which holds against subexp-sized attackers. Since 〈C,R〉 and
ECom1 can be broken in the time that ZAP is secure against, changing the ZAP proof on
the left should not change the distribution of values extracted from the right non-malleable
commitments even when A is given access to OE . Therefore by Claim 22 that these values
are not fake witnesses in G3(b), the same holds in G4(b). More precisely, we construct a
non-uniform circuit B′ that violates the witness-indistinguishability of ZAP where B′ works
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identically to the adversary B in the proof of Claim 10 except that for right interactions
B′ simulates the oracle OE internally by running oE1, which blows up the size of B′ by an
additive poly(SCRH) factor over the size of B. But since size(B) ≤ poly(S∗) >> SCRH we have
that size of circuit B′ is also at most poly(S∗), that is,

size(B′) ≤ size(B) +m · size(oE1)

≤ size(A) + poly(S′CRH) + size(oENM) + poly(SCRH)

≤ poly(d4) + poly(S′CRH) + poly(S′NM) + poly(SCRH)

< poly(S∗) (since, S∗ >> d4, S
′
CRH, S

′
NM, SCRH from Equation (8)).

Therefore B′ ∈ CS∗ and then due to the CS∗-WI of ZAP we have that Invariant 4 holds in
G4(b) as formalized in the following claim,

Claim 24. For b ∈ {0, 1} and for every right interaction i in G4(b), the probability that i is
accepting and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Next we show that INDAG3
(b) and INDAG4

(b) are indistinguishable. This follows from essentially
the same proof of Claim 24. That is, as in Claim 24, we build an adversary B′ that violates
the WI of ZAP where B′ works identically to the adversary B in the proof of Claim 11 except
a slight difference. Here, B′ to simulate the oracle OE runs the extractor oE1 to obtain ṽi

′

as soon as the i-th interaction ends unlike B which runs the extractor oE1 after all the right
interactions end. This change in the code of B′ does not blow up its size significantly (over
B) and therefore size(B′) (like B) is at most poly(S∗). Then the CS∗-WI of ZAP implies that
the output of G3(b) and G4(b) are indistinguishable.

Claim 25. For b ∈ {0, 1}, the following are indistinguishable,

INDAG3
(b); INDAG4

(b) .

Hybrid G5(b) : Hybrid G5(b) proceeds identically to G4(b) except that the ECom3 commitment
c3 sent to A in the left interaction is generated differently. In G4(b) c3 is committing to the
decommitment (vb, d1) of c1 whereas in G5(b) c3 is committing to 0l where l is the length of
the decommitment of c1. More precisely, G5(b) computes (c1, c2, c4, bNM) identical to G4(b).
Then, G5(b) computes the ECom3 commitment c3 to commit to 0l. The rest of the execution
is simulated identically to G4(b). We note that only difference between hybrids G4(b) and
G5(b) is the ECom3 commitment c3 which in G4(b) commits to the decommitment of c1 (to
the value vb) whereas in G5(b) c3 commits to 0l.

First, we show that Invariant 4 holds in G5(b). This follows from the fact that ECom3 �
〈C,R〉,ECom1, (see Figure 2 (iii)). Suppose that Invariant 4 does not hold in G5(b) but
holds in G4(b) by Claim 24, then there exists a right interaction k such that the probability
that it is accepting and the value extracted from the non-malleable commitment in it is a
fake witness jumps from negligible in G4(b) to 1/poly(n) in G5(b). Then, we can construct
a non-uniform adversary B′ that violates the hiding of ECom3 by extracting from the non-
malleable commitment in the kth right interaction. More precisely, B′ behaves identically to
the adversary B in the proof of Claim 12 except that for right interactions B′ simulates the
oracle OE internally by running oE1, which blows up the size of B′ by an additive poly(SCRH)
factor over the size of B. Since size(B) ≤ poly(S3) >> SCRH, we have that size of circuit B′
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is also at most poly(SCRH), that is,

size(B′) ≤ size(B) +m · size(oE1)

≤ size(A) + size(oENM) + poly(S′CRH) + poly(SCRH)

≤ poly(d4) + poly(S′NM) + poly(S′CRH) + poly(SCRH)

< poly(S3) (since, S3 >> SCRH, d4, S
′
NM, S

′
CRH from Equation (8)).

Therefore, B′ ∈ CS3 and then due to the C∨d3,S3
-hiding of ECom3 we have that Invariant 4

holds in G5(b) as formalized in the following claim,

Claim 26. For b ∈ {0, 1} and for every right interaction i in G5(b), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Next we show that INDAG4
(b) and INDAG5

(b) are indistinguishable. This follows from the same
proof as that of Claim 26, except that now it relies on the fact that ECom3 � ECom1. That
is, as in Claim 26, we build an adversary B′ that violates the hiding of ECom3 where B′ works
identically to the adversary B in the proof of Claim 13 except a slight difference. Here, B′

to simulate the oracle OE runs the extractor oE1 to obtain ṽi
′ as soon as the i-th interaction

ends unlike B which runs the extractor oE1 after all the right interactions end. This change
in the code of B′ does not blow up its size significantly (over B) and therefore size(B′) (like
B) is at most poly(S3). Then the CS3-hiding of ECom3 implies that the output of G4(b) and
G5(b) are indistinguishable.

Claim 27. For b ∈ {0, 1}, the following are indistinguishable,

INDAG4
(b); INDAG5

(b) .

Hybrid G′5(b) : We will consider an intermediate hybrid G′5(b) which is identical to G5(b) except
the implementation of the extracted-value oracle. Here, the extracted-value oracle behaves
as before except that for an accepting right interaction i, the extractor oE3 is run on the

underlying c̃3i commitment to extract the value (ṽi
′, d̃1i

′
) and the value ṽi

′ is returned.

Given that Claim 26 holds, A in each of its (accepting) interaction with the oracle OE does not
commit to the fake witness, except with negligible probability. Therefore, by the soundness of
ZAP, in every accepting right interaction k, A proves that the underlying commitments c̃1k
and c̃3k are well-formed and c̃3k commits to a decommitment of c̃1k . Then due to the over-

extractability of ECom3 w.r.t. oE3 we know that the value (ṽk
′, d̃1k

′
) extracted by oE3 is in

fact the decommitment of c̃1k which implies that ṽk
′ is in fact the value committed inside ˜c1k.

Since the commitment ˜c1k is also well-formed (as described above), the over-extractability
of ECom1 w.r.t. oE1 implies that the value extracted from ˜c1k is also equal to val ˜c1k except
with negligible probabilty. Therefore, the value ṽk

′ (extracted by oE3) is equal to the value
extracted by oE1 in every right interaction which implies that the view of A in hybrids G5(b)
and G′5(b) remains identical except with negligible probability. Therefore the following follow,

Claim 28. For b ∈ {0, 1} and for every right interaction i in G′5(b), the probability that i is

accepting and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Claim 29. For b ∈ {0, 1}, the following holds,

INDAG5
(b) ≈s INDAG′5(b) .
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Hybrid G′6(b) : Hybrid G′6(b) proceeds identically to G′5(b) except that the ECom1 commitment
c1 sent to A in the left interaction is generated differently. In G′5(b), c1 is committing to the
value vb whereas in G′6(b) c1 is committing to the value v0 instead. The rest of the execution
is simulated identically to G′5(b). We note that the only difference between hybrids G′5(b) and
G′6(b) is the ECom1 commitment c1 which in G′5(b) commits to vb but in G′6(b) c1 commits
to v0.

First, note that G′6(b) is in fact identical to G′5(0). Then by Claim 28 that Invariant 4 holds
in G′5(0), we directly have that it holds also in G′6(b), that is,

Claim 30. For b ∈ {0, 1} and for every right interaction i in G′6(b), the probability that i is

accepting and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Furthermore due to Claim 29, for b ∈ {0, 1} the following holds,

INDAG′6
(b) ≈s INDAG5

(0) . (23)

Next we show that INDAG′5
(b) and INDAG′6

(b) are indistinguishable. This follows from the fact

that ECom1 is more secure than ECom3, ECom1 � ECom3 (see Figure 2 (iii)). More precisely
we construct an adversary B′ that violates the hiding of ECom1 where B′ works identically
to the adversary B in the proof of Claim 15 except a slight difference. Here, B′ to simulate
the extracted-value oracle runs the extractor oE3 to obtain ṽi

′ as soon as the i-th interaction
ends unlike B which runs the extractor oE3 after all the right interactions end. This change
in the code of B′ does not blow up its size and depth significantly (over B) and therefore B′

(like B) falls in the class C∨d1,S1
. Then the C∨d1,S1

-hiding of ECom1 implies that the output of
G′5(b) and G′6(b) are indistinguishable.

Claim 31. For b ∈ {0, 1}, the following are indistinguishable,

INDAG′5
(b); INDAG′6

(b) .

Hybrid G6(b) : Finally, we consider the hybrid G6(b) which is identical to G′6(b) except the
implementation of the extracted-value oracle. Here, the extracted-value oracle as in G5(b) is
implemented by running the extractor oE1 on the underlying c̃1i commitment.

Since Claim 30 holds, then by the same argument as given in the case of G5 and G′5, it follows
that the view of A remains identical across hybrids G′6(b) and G6(b) except with negligible
probability. Then the following follow,

Claim 32. For b ∈ {0, 1} and for every right interaction i in G6(b), the probability that i is
accepting and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Claim 33. For b ∈ {0, 1}, the following are indistinguishable,

INDAG′6
(b); INDAG6

(b) .

Then, combining Claims 29, 31 and 33, we have that,
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Claim 34. For b ∈ {0, 1}, the following hold,

INDAG5
(b) ≈ INDAG6

(b) ,

Furthermore, combining Equation (23) and Claim 33, we have that INDAG5
(0) ≈s INDAG6(b), which

concludes the proof of CCA-security.

8.3.2 Proof of Robustness

To show that 〈Ĉ, R̂〉 is (C∧d4,d4
, C∧d2,SCRH

, κ(n))-robust, we need to show that for every k ≤ κ(n) there
exists a simulator S ∈ C∧d2,SCRH

such that for any A ∈ C∧d4,d4
and for any B ∈ C∧d4,d4

that participates
in a k-round interaction, interaction between B and A where A has access to the committed value
oracle O is indistinguishable from that between B and S. In other words, S is able to simulate
the committed value oracle O for A when its interacting with an arbitrary B. The construction
of the simulator S is very similar to the hybrid G0(b) as described in the proof of CCA-security
in Section 8.3.1. More precisely, given k and a circuit A ∈ C∧d4,d4

, S externally interacts with an
arbitrary k-round circuit B and internally simulates an execution between B and A by forwarding
messages from B to A. For the right interactions, S internally simulates the extracted value oracle
OE for A as described in Section 8.3.1.

To conclude the proof of robustness we need to show two things: (1) S ∈ C∧d2,SCRH
and (2) S

indeed is able to simulate the committed-value oracle O for A. First, it is easy to see that S runs
A ∈ C∧d4,d4

and simulates the extracted-value oracle OE for poly(m) right interactions. As OE can
be simulated by a circuit in C∧d2,SCRH

we have that S ∈ C∧d2,SCRH
. Second, by an argument simular to

the one made in the Proof of Claim 16 one can show that due to collision resistance of H A does
not commit to a fake witness in any of its right interactions. Then, as in Claim 17 we can conclude
that the view of A with the committed-value oracle is statistically close to the view of A with the
extracted-value oracle (as simulated by S). This then concludes the proof of robustness and the
proof of Theorem 16.

On the robustness of the scheme 〈C∗, R∗〉. We claim that the final commitment scheme
〈C∗, R∗〉 is (P/poly, C′, κ(n))-robust w.r.t the committed-value oracle where C′ is the set of all
non-uniform circuits whose size is upperbounded by poly(2(logn)c) for a sufficiently large constant
c. In other words, 〈C∗, R∗〉 is robust w.r.t. quasi-polynomial time simulation. Recall that the
commitment 〈C∗, R∗〉 is constructed by repeatedly applying the transformations presented in Sec-
tions 6.3 and 6.4 relying on a L = O(log∗ n) hierarchy p1 << . . . << pL of non-decreasing functions
as discussed in Section 7.2 where each level pi = 2n

ε
i for an appropriate security parameter ni.

Furthermore recall that the final step in the construction of 〈C∗, R∗〉 is applying the strengthening
technique which relies on a hierarchy of functions as described in Equation (8). For this last step
the corresponding functions d4, . . . , d2, . . . , SCRH are instantiated from the first few functions in the
hierarchy namely p1, . . . , p4, . . . , p7. Setting nis as discussed in Section 7.2 will ensure that d2 and
SCRH are both than poly(2(logn)c)17 for some sufficiently large constant c. Hence, the simulator for
〈C∗, R∗〉 belongs to the class C′ as described above.

17Setting n0 to, say, (logn)2 in Section 7.2.
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9 Non-interactive Non-Malleable and CCA-secure Commitment
against Uniform Adversaries

In this section, we show that when restricting attention to uniform attackers, the first message
in our 2-round concurrent non-malleable commitment scheme constructed in Section 7 can be
removed (Theorem 2). Recall that these 2-round protocols are obtained by iteratively applying
the amplification transformation in Section 6 to the basic schemes for short identities in Section 5.
While the basic schemes are in fact non-interactive, the amplification technique, however, produces
schemes with 2 rounds. Our amplification technique involves two steps: Applying the DDN log n
trick, which is actually round preserving, and the security strengthening step that lifts one-one
non-malleability w.r.t. extraction to concurrent non-malleability w.r.t. extraction and commitment,
while preserving the length of identities. In the security strengthening step, the output scheme has
two rounds, where the first message is sent by the receiver and contains the index of a randomly
sampled function h from a family of non-uniform CRHFs, the first message of a ZAP proof, and
the first message of the input non-malleable commitment scheme (if there is any). Therefore, to
remove the first message, our idea is to simply replace h for a fixed uniform CRHF, and replace
ZAP with a NIWI, so that the transformation when applied to a non-interactive input commitment
scheme, produces a non-interactive output scheme. The only drawback is that with the use of
uniform CRHF, the output scheme is only secure against uniform adversaries. We also show that
the output scheme of the modified strengthening technique also satisfies stronger notions of CCA-
security and robustness when adversaries are restricted to be uniform Turning machines.

Below, we first adapt the notions of non-malleability w.r.t. extraction and commitment, and
robust CCA-security to the setting of uniform attackers, and then describe the new amplification
step.

9.1 Non-malleability against Uniform Adversaries

Non-malleability w.r.t. commitment (or w.r.t. extraction) against uniform attackers are defined
identically to that against non-uniform attackers as in Definition 15 (or Definition 16 resp.) in
Section 3.5, except from one difference in the man-in-the-middle execution. Recall that in the non-
uniform case, the man-in-the-middle attacker A receives in the left interactions commitments to
arbitrary values v1, · · · , vm, and non-malleability requires the view of A and the values committed in
(or extracted from) the right interactions to be indistinguishable, no matter A receives commitments
to one set of arbitrary values v0

1, · · · , v0
m or another v1

1, · · · , v1
m.

In the uniform case, letting a uniform attacker A′ receive commitments to arbitrary values is
similar to giving it non-uniform advices. Therefore, we modify the man-in-the-middle execution to
let the attacker choose the challenge messages (v0

i , v
1
i ) it wishes to receive commitments to in the

i’th left commitment before that interaction starts. Moreover, every man-in-the-middle execution is
parameterized with a bit b ∈ {0, 1}, and commits to {vbi} in left interactions — let uMIMA

〈C,R〉(1
n, b)

denote such an execution. We further denote by umimA
〈C,R〉(1

n, b) (or uemimA
〈C,R〉(1

n, b) resp.) the

random variable describing the view of A together with the values committed in (or extracted from
resp.) the right interactions.

Definition 22 (Non-malleability). A tag-based commitment scheme 〈C,R〉 is said to be concurrent
T -non-malleable against uniform attackers if for every poly(T )-time uniform Turing machine A
participating in m = poly(n) concurrent interactions, the following ensembles are computationally
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indistinguishable: {
umimA

〈C,R〉(1
n, 0)

}
n∈N

,{
umimA

〈C,R〉(1
n, 1)

}
n∈N

.

Moreover, it is said to be concurrent T -non-malleable w.r.t. extraction against uniform attackers,
if the above indistinguishability holds for uemimA

〈C,R〉(1
n, 0) and uemimA

〈C,R〉(1
n, 1).

9.2 Robust CCA-security against Uniform Adversaries

Next we define the notions of CCA-security and Robustness against uniform advesaries. The
definition are identical to the non-uniform case as defined in Definitions 20 and 21 except that A
in the CCA definition is a uniform Turing machine and all A, B and S in the robustness definition
are uniform Turing machines. For completness we define them below.

Definition 23. We say that 〈C,R〉 is T -CCA-secure w.r.t. the committed-value oracle against
uniform attackers if Equation (20) holds for all poly(T )-time uniform Turing machines A that
participate in m = poly(n) queries to the oracle O.

Definition 24. We say that 〈C,R〉 is (T, T ′, k)-robust w.r.t. the committed-value oracle against
uniform attackers if there exists poly(T ′)-time uniform Turing machine S such that Equation (21)
holds for all poly(T )-time uniform Turning machines A and B which participates in a k-round
interaction.

9.3 1-Message Security Strengthening Technique

We now present our one-message transformation for security strengthening. For some hierarchy of
non-decreasing functions on N satisfying,

n << d4 << d3 << d1 << d2 << S2 << S1 << SCRH <<

S′CRH << SNM << S′NM << S3 << S4 << S′4 << S∗ ,
(24)

the transformation relies on the following building blocks:

1. (oNICom, oNIOpen) is a non-interactive, tag-based commitment scheme for t(n)-bit identities
that is S′NM-over-extractable by extractor oENI. Furthermore, 〈C,R〉 is one-one SNM-non-
malleable w.r.t. extraction by oENI against uniform adversaries.

2. {(EComi,EOpeni)}1≤i≤4 are identical to that in Section 6.3.

3. NIWI is a non-interactive CS∗-witness-indistinguishable proof.

4. H = {Hn}n is a SCRH-uniform-collision resistant hash function such that there exists a
poly(S′CRH)-time TM which finds collisions for H with probability 1.

Using the above mentioned building blocks, the transformation produces the scheme (cNICom, cNIOpen)
which is non-interactive, tag-based commitment scheme for t(n)-bit identities that is SCRH-over-

extractable w.r.t. an extractor ôENI. Furthermore, (cNICom, cNIOpen) is both concurrent d4-non-

malleable w.r.t. extraction by ôENI and concurrent d4-non-malleable (w.r.t. commitment) against
uniform attackers.
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The committer Ĉ and the receiver R̂ receive the security parameter 1n and identity id ∈ {0, 1}t(n)

as common input. Furthermore, Ĉ gets a private input v ∈ {0, 1}n which is the value to be
committed.

- Commit stage:

1. Ĉ computes a commitment c1 to the value v using ECom1. Let d1 be the corresponding
decommitment string.

2. Ĉ computes a commitment c3 to the decommitment (v, d1) of c1 using ECom3.

3. Ĉ computes a commitment c2 to a random string r1 using ECom2.

4. Ĉ computes a commitment cNM to a random string r3 using oNICom using identity id.

5. Ĉ computes a commitment c4 to a random string r3 using ECom4.

6. Ĉ computes the NIWI proof π to prove the following OR-statement:

(a) either there exists a string v̄ such that c1 is a commitment to v̄ and c3 commits to
a decommitment of c1.

(b) or there exists a string s̄ = (x1, x2) such that c2 is a commitment to s̄, c4 commits
to a decommitment of c2, cNM commits to a decommitment of c4 and Hn(x1) =
Hn(x2).

Ĉ proves the statement (a) by using a decommitment of c3 to (v, d1) — decommitment
of c1 to v — as the witness.

7. Ĉ sends (c1, c2, c3, c4, cNM, π) as commitment to R̂ and keeps the decommitment (v, d1)
private.

- Reveal stage:

On receiving (v, d1) from Ĉ, R̂ accepts the decommitment if the NIWI proof is accepting and
if EOpen1(c1, v, d1) = 1. Otherwise, it rejects.

- Extraction - Extractor ôENI:
On receiving a commitment c and identity id, ôENI first verifies the NIWI proof and outputs
⊥ if the proof is not accepting. Otherwise, it runs the extractor oE1 on c1 and outputs the
extracted value v′.

Theorem 17. 〈Ĉ, R̂〉 is a non-interactive, (d2, SCRH) over-extractable, perfectly binding commit-
ment scheme for identities of length t(n). Furthermore, it is concurrent d4-non-malleable (w.r.t.

commitment) and non-malleable w.r.t. extraction by extractor ôENM against uniform adversaries.

It is easy to see that 〈Ĉ, R̂〉 is perfectly binding and (d2, SCRH)-over-extractable. The non-
malleability properties follow syntactically from the same proof as that of Theorem 11 and 12
w.r.t. the 2-round security strengthening technique in Section 6.3. The only slight difference is
that when reducing to the collision resistance of the hash function, and the non-malleability w.r.t.
extraction of the input commitment scheme, we need to ensure that the reduction is a uniform
Turing machine, which can be done easily. More specifically, in Section 6.3,

- we rely on the collision resistance of hash functions in order to show that Invariant 2 holds
in hybrid H0(v) (Claim 3), and
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- we rely on the non-malleability w.r.t. extraction of the input commitment scheme in order
to show that Invariant 2 holds in H3(v) (Claim 8) and that the emim random variable is
indistinguishable in H2(v) and H3(v) (Claim 9).

We now observe that the reductions presented in the proof of Claim 3, 8 and 9 can be made uniform.
First, these reductions run internally 1) the adversary, 2) the extractors for different commitment
schemes, 3) possibly a strategy for finding collisions (for the second bullet point), and some other
computations, all of which can be implemented using uniform Turing machines. Furthermore, these
reductions have two values hardwired in — the value v committed to in the left and the index k of
a “special” right interaction. When adapting to the uniform setting, since the attacker chooses the
two challenge messages v0, v1 to be committed to in the left interaction, the reduction only need to
have a single bit b hardwired in. Furthermore, since there are only a polynomial number of right
interactions, instead of hard-wiring k, the reduction can simply guess k at random, at the cost of
losing a factor of k in its advantage. Therefore, by essentially the same proof, we can show the
same in the uniform setting. We hence omit the complete proof.

Robust CCA-security. We next show that the commitment scheme 〈Ĉ, R̂〉 is also robust-CCA
secure against uniform adversaries.

Theorem 18. 〈Ĉ, R̂〉 is d4-CCA-secure and (d4, SCRH, κ(n))-robust w.r.t. committed value oracle
against uniform adversaries.

The proof of d4-CCA security is identical to the proof of the CCA-security w.r.t. the 2-round
strengthening technique as described in Section 8.3.1, except a slight difference. The difference is
similar as in the above proof of non-malleability against uniform adversaries, that is, to deal with
the uniform collision resistance of hash function (Claim 16) and uniform one-one non-malleability
w.r.t. extraction of the input commitment scheme (Claim 22 and 23). As observed earlier, we need
to ensure that the reductions are uniform Turning machines which can be easily done as described
above. The proof of (d4, SCRH, κ(n))-robustness also follows from the proof of robustness described
in Section 8.3.2 except that the simulator S also needs to be a uniform Turing machine which
also by the same argument can be made uniform. Therefore, by essentially the same proof as of
Theorem 16, we can show that 〈Ĉ, R̂〉 is robust-CCA secure and hence omit a full proof.
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