
Lockable Obfuscation

Rishab Goyal
rgoyal@cs.utexas.edu

Venkata Koppula
kvenkata@cs.utexas.edu

Brent Waters
bwaters@cs.utexas.edu∗

Abstract

In this paper we introduce the notion of lockable obfuscation. In a lockable obfuscation scheme there
exists an obfuscation algorithm Obf that takes as input a security parameter λ, a program P , a message
msg and “lock value” α and outputs an obfuscated program P̃ . One can evaluate the obfuscated program
P̃ on any input x where the output of evaluation is the message msg if P (x) = α and otherwise receives
a rejecting symbol ⊥.

We proceed to provide a construction of lockable obfuscation and prove it secure under the Learning
with Errors (LWE) assumption. Notably, our proof only requires LWE with polynomial hardness and
does not require complexity leveraging.

We follow this by describing multiple applications of lockable obfuscation. First, we show how to
transform any attribute-based encryption (ABE) scheme into one in which the attributes used to encrypt
the message are hidden from any user that is not authorized to decrypt the message. (Such a system
is also know as predicate encryption with one-sided security.) The only previous construction due to
Gorbunov, Vaikuntanathan and Wee is based off of a specific ABE scheme of Boneh et al. By enabling
the transformation of any ABE scheme we can inherent different forms and features of the underlying
scheme such as: multi-authority, adaptive security from polynomial hardness, regular language policies,
etc.

We also show applications of lockable obfuscation to separation and uninstantiability results. We
first show how to create new separation results in circular encryption that were previously based on
indistinguishability obfuscation. This results in new separation results from learning with error including
a public key bit encryption scheme that it IND-CPA secure and not circular secure. The tool of lockable
obfuscation allows these constructions to be almost immediately realized by translation from previous
indistinguishability obfuscation based constructions.

In a similar vein we provide random oracle uninstantiability results of the Fujisaki-Okamoto transfor-
mation (and related transformations) from the lockable obfuscation combined with fully homomorphic
encryption. Again, we take advantage that previous work used indistinguishability obfuscation that
obfuscated programs in a form that could easily be translated to lockable obfuscation.

1 Introduction

The topic of indistinguishability obfuscation has received an tremendous amount of attention from the
cryptographic community over the last several years. Initially, the concept was introduced by Barak et al.
[BGI+01, BGI+12] as an possible alternative to the notion of virtual black box obfuscation which they showed
to be impossible to achieve for some functionalities. However, the concept indistinguishability obfuscation
did not receive much immediate attention since (1) there were no such obfuscation candidates at the time
and (2) the perceived lack of applications due to the fact that it only guaranteed security between two
functionally equivalent circuits.

In 2013, two works in the literature addressed these questions. First, Garg et al. [GGH+13b] provided
the first indistinguishability obfuscation candidate using the Garg, Gentry and Halevi [GGH13a] multilinear

∗Supported by NSF CNS-1228599 and CNS-1414082. DARPA through the U.S. Office of Naval Research under Contract
N00014-11-1-0382, Google Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship, and Packard
Foundation Fellowship.

1

map candidate. Then Sahai and Waters [SW14] introduced the “punctured programming” methodology for
building cryptographic primitives from indistinguishability obfuscation which was used in their work and
several subsequent works to resolve many open problems in cryptography.

When the potential of indistinguishability obfuscation was exposed, attention naturally moved to estab-
lishing security of obfuscation candidates since the original work of Garg et al. [GGH+13b] only provided a
heuristic argument of security. Initial work in this line attempted to prove security under certain multilinear
map models or assumptions [BGK+14, BR14, PST14, GLW14, GLSW15]. However, the security guarantees
delivered from such proofs could only be as strong as the underlying multilinear map candidates [GGH13a,
CLT13, GGH15, CLT15] which have been under a steady stream of cryptanalysis (see e.g. [CLT14, CHL+15,
CGH+15, BGH+15, CLLT16, CLLT17, BWZ14, HJ16, Hal15, CFL+16, MSZ16, CJL16, ADGM16] and
the references therein). To combat this there have been new multilinear map candidates proposed as well
as models meant to capture most existing attacks [BMSZ16, GMM+16]. While these techniques present
progress in defense against currently known cryptanalysis, it is unclear whether they can be connected to
standard assumptions. Another set of works [BV15, AJ15, AJS15, Lin16a, LV16, Lin16b, AS16] have shown
connections between certain types of functional encryption schemes and indistinguishability obfuscation
with results showing that a constant degree multilnear maps combined with a constant depth PRG give
indistinguishability obfuscation.

In this paper we approach the problem of achieving provably secure obfuscation from a different direction.
Our philosophy is to anchor ourselves to the Learning with Errors (LWE) assumption and explore what
applications and forms of obfuscation are achievable. Here we propose and define a new form of obfuscation
that we call lockable obfuscation for which we give a construction that is provably secure under the LWE
assumption. In addition, we show several applications of lockable obfuscation that were only known to this
point under indistinguishability obfuscation.

We begin by informally introducing the notion of lockable obfuscation. A lockable obfuscation scheme
consists of an obfuscation and evalution algorithms. The (randomized) obfuscation algorithm Obf takes as
input a security parameter λ, a program P , a message msg and lock value α and outputs an obfuscated
program P̃ . The evaluation algorithm Eval takes as input an obfuscated program P̃ and an input x. If
P (x) = α then the evaluation algorithm outputs the message msg, where P , msg and α were the program,

message and lock values input to create P̃ . Otherwise, if P (x) 6= α the evaluation algorithm (with high
probability) outputs the ⊥ symbol to indicate rejection.

Intuitively, security states that if the lock value is chosen at random and kept from the attacker, then the
attacker cannot learn anything about the program and message other than their sizes. That is there exist a
simulator Sim such that for all program message pairs P,msg

{Obf(1λ, P,msg, α) : α← {0, 1}m(λ)} ≈c Sim(1λ, 1|P |, 1|msg|).

We show how to construct a lockable obfuscation scheme for any polynomial sized circuit of sufficient
output length from the Learning with Errors assumption. Our construction relies only on the polynomial
hardness of the assumption (i.e. there is no sub-exponential hardness or complexity leveraging involved).
For this reason lockable obfuscation could be a preferred abstraction for building certain primitives even
in a possible future where indistinguishability obfuscation is realizable from the assumption of LWE with
subexponential hardness. The reason we don’t require subexponential hardness of LWE is that the security
of our construction is derived from the hidden lock value α. In particular, our proof of security does
not step through each possible input like many reductions to witness encryption or indistinguishability
obfuscation [GLW14, GLSW15, BV15, AJ15, AJS15]. Also, note that since the lock value is chosen at random
(and independent of the program), therefore lockable obfuscation could also be interpreted as obfuscation
for a family of evasive functions [BBC+14].

We will defer the explanation of our construction and proof to the technical overview of Section 1.1 and
move on to discussing applications.

Hiding Attributes in Attribute-Based Encryption In a (key-policy) Attribute-Based Encryption
(ABE) system [SW05] a user will encrypt a message msg under an attribute string x. A private key, as

2

issued by an authority, will be associated with a boolean function f . When a user holding a secret key for
function f attempts to decrypt a ciphertext he will learn the message if and only if f(x) = 1. Otherwise,
the message remains hidden. While an ABE ciphertext will securely hide a private message, its security
definition provides no guarantees about hiding the attribute string x. This can be problematic in many
practical scenarios. Suppose we use ABE to encrypt email messages and use header metadata such as the
sender, recipients, time and subject as attributes, where access functions are written over these attributes.
In many settings this metadata itself will be very sensitive and disclosing it as part of the ciphertext is
undesirable.

Almost all expressive1 ABE systems built from standard tools2 allow for an attacker to learn the attribute
string associated with a ciphertext. One notable exception is the work of Gorbunov, Vaikuntanathan and
Wee [GVW15] that achieves one-sided security in hiding attributes. In that their construction hides the
attribute string x as long as f(x) = 0 for all functions f that the adversary has a secret key for. This gives a
much improved security picture to before as in our example an attacker will not be able to learn the header
metadata of the emails so long as they are not authorized to decrypt them. We will call such a scheme a
predicate encryption scheme with one-sided security.

The GVW construction was built by adapting the ABE system of Boneh et al. [BGG+14] and required
an intricate knowledge of the original system in order to utilize certain special mathematical properties. The
resulting construction achieves the same functionality of bounded depth circuits as the original as well as
maintains selective security under the Learning with Errors assumption.

In this paper we show how to use lockable obfuscations (sometimes in combination with fully homomor-
phic encryption) to generically transform any ABE scheme into a predicate encryption scheme with one-sided
security with corresponding functionality. An advantage of using a generic transformation is that it can take
advantages of the features or forms of ABE constructions that have been introduced over the last 10+ years.
including key-policy [GPSW06], ciphertext-policy [BSW07], adaptive security (without complexity leverag-
ing) [LOS+10], multi-authority [Cha07, CC09, LW11], and efficient expression of keys as deterministic finite
automata [Wat12, Att14] and circuits [GVW13, BGG+14]. Currently, there is no single ABE construction
from standard tools that simultaneously delivers all such features. The most desirable ABE form can vary
significantly between applications. Our transformations will allow one to inherent the properties of the
underlying ABE scheme and at the same obtain one-sided hiding of the ciphertext attributes.

The technique for hiding attributes is fairly simple. To perform a (key-policy) encryption to attributes
x and message msg the encryption algorithm first chooses a random lock value α. Next it creates a (sub)
ciphertext C which is an encryption of the message α under the attribute string x in the original ABE system.
Now consider the program P which takes as input a secret key and then decrypts C and outputs the result.
The final ciphertext ct is a lockable obfuscation of this program P , under the lock value α and message msg.
Key generation is the same as in the original scheme and decryption is simply using the lockable obfuscation
evaluation algorithm on the ct with the secret key as the input.

Correctness can be observed. Suppose a user has a secret key skf for function f and applies it to a
ciphertext encryption with attributes x where f(x) = 1). The evaluation algorithm will output msg since
P (skf) = α, which is the lock value. On the other hand suppose that the attacker does not have any secret
keys for a function f where f(x) = 1, then by the message hiding security of the underling ABE scheme, he
won’t be able to distinguish an encryption of the lock value α from an encryption of the all 0’s string. Now
that the lock value is hidden, one can take an additional hybrid step to argue that this is indistinguishable
from a simulated obfuscation to erase knowledge of the program P including C and the attribute string x.

The above construction works for any scheme with an apriori bounded size decryption circuit. By
adding a level of indirection one can leverage leveled homomorphic encryption (which is realizable under
LWE [BV11, BGV12]) to upgrade this to any scheme with an apriori decryption circuit depth. Or leverage
fully homomorphic encryption to work without any depth bounds. The details of the transformation are
given in Section 5.

1We note that there are constructions of more limited expressivity such as vector matching [BW07] or inner product test-
ing [KSW08] that achieve such security.

2For the purposes of this discussion we roughly consider number theoretic constructions grounded on RSA, bilinear maps
and (Ring) LWE to be standard tools and those based on multilinear maps or indistinguishability obfuscation not to be.

3

Separation and Uninstantiability Results We now demonstrate the power of lockable obfuscation for
achieving negative results in cryptography by focusing on two families of separation and uninstantiability
results.

In recent years there has been a significant interest on the problem of circular security [CL01, Lau02,
ABHS09] perhaps in large part due to Gentry’s [Gen09] result showing that a leveled homomorphic encryption
scheme that is circular secure implies unbounded fully homomorphic encryption. Roughly, an encryption
system is circular secure if it maintains security in the setting where there are n pairs of public keys and
ciphertexts arranged such that the ith ciphertext encrypts the (i+ 1)th secret key.

There have been several separation results [ABBC10, CGH12, Rot13, KRW15, MO14, BHW15, AP16,
KW16, GKW17a, GKW17b] showing that such security does not come for free. In particular, they show in
different contexts that there exist schemes that are IND-CPA secure, but not circular secure. (We discuss this
prior work in detail in Section 6). A natural dichotomy of these results is between separations achieved using
indistinguishability obfuscation [KRW15, GKW17a] and those built from standard assumptions [ABBC10,
CGH12, BHW15, AP16, KW16, GKW17b] such as assumptions on bilinear groups or LWE.

Separations built on indistinguishability obfuscation have the advantage that they can be developed
relatively rapidly and are also relatively simple as one can build constructions using “normal” programs
without diving into number theory. The disadvantage is that indistinguishability is not currently known
from any standard assumptions. On the flip side, the number theoretic constructions are based on much
more standard assumptions. However, they developing and understanding such solutions is a much more
arduous task.

In Section 6 we show how to translate existing two indistinguishability obfuscation separation results due
to Koppula, Ramchen and Waters [KRW15] and one result due Goyal, Koppula and Waters [GKW17a] to
rely on lockable obfuscation. The translations are extremely straightforward and our resulting solutions are
almost identical with the exception that we use lockable obfuscation. The main insight is that the programs
obfuscated in the above results come in a lockable friendly form. In particular, they perform a sequence of
computations on the input that result in a value s. Then the program tests and reports if PRG(s) = t for a
pseudorandom generator PRG and hardwired value t. Using lockable obfuscation one simply uses s as the
output (which is a possible lock value).

Our translations of these prior works to lockable obfuscation lead to separations that can be built on the
Learning with Errors assumption. Concretely, we obtain new results from LWE that were previously known
only from indistinguishability obfuscation. (1) We show how to build a public key bit encryption scheme
that is not circular secure and (2) we show a separation for unbounded length cycles.

Our second family of negative results relate to a grouping of constructions related to the well known
Fujisaki-Okamoto transformation that achieves chosen ciphertext security in the random oracle model from
any scheme which is IND-CPA secure. Included in this grouping are: the Bellare et al. [BHSV98] trans-
formation from an IND-CPA scheme to an injective trapdoor function, two transformations from IND-CPA
to IND-CCA security due to Fujisaki and Okamoto [FO99a, FO99b] and the deterministic encryption con-
struction of Bellare, Boldyreva and O’Neill [BBO07].

All of the constructions follow a similar paradigm where they encrypt a string x under random coins
determined from H(x). (How the string x is construed varies somewhat between the schemes.) The works
above show that if H is presented as an oracle access to a random function, the transformation results in a
secure scheme under the relevant definition.

We give a random oracle uninstantiability [CGH98] result where using lockable obfuscation there exists
an encryption scheme where for any hash function of up to apriori bounded size the applying the above
transformations will result in an insecure encryption scheme — the message will be easily discovereable. If
we add the assumption of fully homomorphic encryption we can remove the bounded size restriction.

Brzuska, Farshim and Mittelbach [BFM15] achieved these results using indistinguishability obfuscation.3

We realize our results by simply translating the BFM result to move from indistinguishability obfuscation

3Technically, their result with no bounds on the hash function required indistinguishability obfuscation for Turing Machines
with unbounded input. However, this could have been replaced with indistinguishability obfuscation for circuits and fully
homomorphic encryption.

4

to lockable obfuscation. Again, this is possible because the programs obfuscated in the BFM paper follow
the same lockable friendly form.

Indistinguishability Obfuscation for Rejecting Programs For our final application we now consider
a new notion of obfucation that we call indistinguishability obfuscation for rejecting programs and show how
to construct it from lockable obfuscation and witness encryption [GGSW13] for circuit satisfiability.

Obfuscators that meet this notion will be defined over boolean circuits. Like indistinguishability obfus-
cation our obfuscator will take in any (not necessarily rejecting) boolean circuit C in a class and output an
obfuscated program that is functionally equivalent to C. However, the security guarantees given by such
an obfuscator are limited to “rejecting” programs. Informally, they state that no PPT adversary can dis-
tinguish between circuits C0 and C1 so long as for all inputs x C0(x) = C1(x) = 0. In contrast, standard
indistinguishability obfuscation security allows C0, C1 to have arbitrary (both 0 and 1) outputs so long as
they are functionally equivalent.

Our construction is simple and follows along the same conceptual lines as our techniques for building
predicate encryption with one sided security from Attribute-Based Encryption.

1.1 Overview of our Lockable Obfuscation Construction

We will now describe our lockable obfuscation scheme for a family of poly-depth circuits. The construction
is described in details in Section 4. At a high level, our scheme can be divided into three components —
(1) A lockable obfuscation scheme for a family of low-depth circuits and 1-bit messages, (2) a bootstrapping
mechanism to amplify to lockable obfuscation for a family of poly-depth circuits and 1-bit messages, and (3)
extending to lockable obfuscation for a family of poly-depth circuits and multi-bit messages. (Note in our
actual construction, we combine the first two components into one for technical reasons.)

Lockable Obfuscation for Low-Depth Circuits and 1-Bit Messages. The primary ingredients of
our construction are low-depth pseudorandom generators (PRGs), lattice trapdoors [GPV08], telescoping
products/cascading cancellations [KW16, AP16, GGH15] and oblivious sequence transformation [GKW17b].

First, let us recall the notion of permutation branching programs, lattice trapdoors and oblivious sequence
transformation. A permutation branching program of length L and width w can be represented using
w states, 2L permutations σj,b over states for each level j ≤ L, an input-selector function inp(·) which
determines the input read at each level, and an accepting and rejecting state. The program execution starts
at state 1 of level 0. Suppose the branching program reads first input bit (say b) at level 1 (i.e., inp(1) = 1).
Then, the state of the program changes to σ1,b(st). Such a process can be carried out (iteratively) to compute
the final program state at level L. Depending upon the final state, the program either accepts or rejects.

A lattice trapdoor generation algorithm can be used to sample a (uniformly looking) matrix A together
with a trapdoor TA. The trapdoor can be used to compute, for any matrix U, a low norm matrix S such
that A ·S = U.4 As a result, the matrix S can be used to ‘transform’ any matrix Ã ≈ A to another matrix
Ũ ≈ U. Oblivious sequence transformation is a technique that enables sampling a sequence of matrices
B1, . . . ,Bw along with some trapdoor such that for any sequence of matrices U1, . . . ,Uw, one can construct
a short matrix X such that Bi ·X = Ui for all i (and X is oblivious of i).

Moving on to our construction, at a high level the obfuscator starts by first generating a sequence of
permutation branching programs corresponding to the circuit C (where each branching program computes
one output bit), and then encoding the state transition permutations for each level for every branching
program using the technique of oblivious sequence transformation. Let ` be the output length of C. In other
words, for obfuscating circuit C under lock α with message msg, the obfuscator first expresses C as a set
of width 5 permutation branching programs {BP(i)}i of polynomial length L, where for each i ∈ [`] BP(i)

4For ease of exposition, we will use the notation A−1(·) to represent the pre-image operation. In the formal description of
our algorithms later, we use the pre-image sampling algorithm SamplePre.

5

computes the ith output bit of circuit C.5 Without loss of generality, we can assume that all branching
programs have a common input selector function inp(·) such that inp(j) bit of the input is read at level j.
The obfuscation algorithm continues by choosing 5(L+1)` matrices, one matrix for each (level, state) of each

branching program.6 Let B
(i)
j,w be the matrix corresponding to state w ∈ [5] at level j ≤ L for branching

program BP(i), i ∈ [`]. For every i ∈ [`], the matrices {B(i)
j,1, . . . ,B

(i)
j,5} for the first L levels (i.e., all but

top-level matrices) are sampled such that they have a common trapdoor T
(i)
j , i.e. using oblivious sequence

transformation. The top-level matrices, however, are sampled uniformly at random without a trapdoor
subject to the constraint that the top-level matrices corresponding to lock string α sum to a special fixed
matrix depending upon the message msg. More formally, for each i ∈ [`], let q be the LWE modulus, and

acc(i) and rej(i) be the accepting and rejecting states for BP(i), then the obfuscator chooses the matrices

B
(i)

L,acc(i)
,B

(i)

L,rej(i)
such that

∑
i : αi=0

B
(i)

L,rej(i)
+

∑
i : αi=1

B
(i)

L,acc(i)
=

{
0n×m if msg = 0.
√
q ·
[
In ||0n×(m−n)

]
if msg = 1.

For each level j ∈ [L], the obfuscation algorithm also chooses two low-norm matrices S
(0)
j and S

(1)
j (these

are shared across all branching programs), and computes 2` low-norm matrices {C(i,0)
j ,C

(i,1)
j }i,j such that

for every state w ∈ [5], B
(i)
j−1,w ·C

(i,0)
j ≈ S

(0)
j ·B

(i)

j,σ
(i)
j,0(w)

and B
(i)
j−1,w ·C

(i,1)
j ≈ S

(1)
j ·B

(i)

j,σ
(i)
j,1(w)

. That is, the

matrices C
(i,0)
j and C

(i,1)
j represent the state transition from level j − 1 to j when bit 0 or 1 is read at step

j of branching program execution. For each i ∈ [`], j ∈ [L], the C
(i,b)
j matrices can be generated using the

lattice trapdoors T
(i)
j . The obfuscation algorithm outputs these matrices {C(i,0)

j ,C
(i,1)
j }i,j together with the

base-level matrices {B(i)
0,1}i as the final obfuscated program.

At a high level, one could visualize the obfuscated program which consists of the base-level matrices

{B(i)
0,1}i and matrices {C(i,0)

j ,C
(i,1)
j }i,j as “encodings” of the branching program starting states and state

transition permutations, respectively. Therefore, evaluating an obfuscated program on some input x will be
analogous to evaluating the branching programs BP(i) on input x directly. Fix some i ∈ [`]. Suppose the

first input bit x1 is read at level 1. Then evaluation of BP(i) at level 1 would map the state 1 at level 0 to

state σ
(i)
1,x1

at level 1. Analogously, the obfuscation evaluator can compute B
(i)
0,1 · C

(i,x1)
1 ≈ S

(x1)
1 · B(i)

1,σ
(i)
1,x1

.

In general, if the program state at level j − 1 during execution is w, then the evaluator will accumulate the

product of the form Γj−1 · B(i)
j,w, where Γj−1 is a product of j − 1 low-norm matrices. This can be easily

verified as follows. Suppose the next bit read is b, then the new state at level j will be σ
(i)
j,b(w), thus the

new accumulated product during obfuscation evaluation will be Γj−1 ·B(i)
j,w ·C

(i,b)
j ≈ Γj ·B(i)

j+1,σ
(i)
j,b(w)

, where

Γj = Γj−1 · S(b)
j . Therefore, the invariant is maintained. Note that the matrix ΓL will be same for all

branching programs since the low-norm matrices S
(0)
j and S

(1)
j are shared across all branching programs.

Continuing this way, the evaluator can iteratively compute the matrix product at the top. Thus, for each

branching program, the accumulated product at the top will either be ≈ ΓL · B(i)

L,acc(i)
or ≈ ΓL · B(i)

L,rej(i)
,

depending on whether C(x)i = 0 or 1. Let ∆(i) = ΓL · B(i)

L,st(i)
, where st(i) = acc(i) or rej(i) depending on

C(x)i. Finally, the evaluator simply sums the top-level accumulated products (≈∆(i)) and checks whether
the norm of the final summed matrix lies in appropriate range. More concretely, consider the case when

5From Barrington’s Theorem [Bar86], we know that for every NC1 circuits there exists a width 5 permutation branching
program of polynomial length.

6Note that if a branching program has length L, then it has L+ 1 levels.

6

C(x) = α and msg = 0, then
∑
i ∆

(i) = ΓL ·
∑
i B

(i)

L,st(i)
= 0n×m. Since the final top-level matrix sum is

close to
∑
i ∆

(i), thus it will have norm close to 0, and hence the evaluator can simply test this and output
0 as the message.

Similarly we could argue correctness for the cases when msg = 1 or C(x) 6= α. However, our current
proof techniques do not seem sufficient for proving the security of above construction. The reason is that
there is an inherent tension in setting scheme parameters while basing security on LWE. This is discussed
in detail later in Section 4.3. We were able to bypass this problem by obfuscating an “expanded” circuit,
which evaluates a low-depth pairwise independent hash function h and a low-depth pseudorandom generator
PRG with a large enough polynomial stretch (in succession) on the output of circuit C, instead of directly
obfuscating circuit C using the above matrix encoding procedure.

In other words, let Q be the circuit that on input x, outputs PRG(h(C(x))). Observe that if h and PRG
can be computed by low-depth circuits (NC1), then Q also can be computed by an NC1 circuit (since C is
assumed to be a log-depth circuit). Therefore, Q can be expressed by a set of width 5 permutation branching
programs of polynomial length L as well. Additionally, now the matrix component generation procedure will
use β = PRG(h(α)) as the lock instead of α. This modification is sufficient to avoid the tension between
scheme parameters, and also allows us to prove security of our scheme under LWE with only polynomial
hardness. This completes the description of our lockable obfuscation scheme for low-depth circuits and 1-bit
messages.

Bootstrapping Lockable Obfuscation. Let ONC1 be a lockable obfuscator for log-depth circuits. We
will use leveled homomorphic encryption (LHE) with an NC1 decryption circuit to bootstrap ONC1 to an
obfuscator that works for any depth d. The obfuscator gets as input a circuit C of depth d, a string α and
a message msg. It first chooses the LHE secret-evaluation keys and encrypts the circuit C. Let Q be the
circuit which takes as input an LHE ciphertext and decrypts it using the hardwired LHE secret key and
outputs the decrypted string. Note that the circuit Q is a logarithmic depth circuit. The obfuscator outputs
O ← ONC1(Q,α,msg) together with the encryption of C and the LHE evaluation key.

Evaluating on input x. Let Ux(·) be the universal circuit with input x hardwired (that is, it takes a
circuit C as input and outputs C(x)). The evaluation algorithm first homomorphically evaluates the circuit
Ux on the encryption of C. This results in an LHE ciphertext ct, which is an encryption of C(x). It then
evaluates the obfuscation O on input ct, and outputs the resulting string. Using the correctness of O and the
LHE scheme, we can argue that if C(x) = α, then the evaluation outputs msg, and it outputs ⊥ otherwise.

The security proof here is fairly simple. Using the security of the underlying obfuscator ONC1 , we first
switch the obfuscation O to be a simulated obfuscation. Once the obfuscator O is simulated, the obfuscator
no longer needs the LHE secret key. Therefore, we can now replace the LHE encryption of C with encryption
of zeros, thereby erasing all the information about circuit C except its size. Therefore, the final simulator
simply outputs an encryption of zeros, together with a simulated obfuscation, and this is indistinguishable
from the honestly computed obfuscation.

Extending Lockable Obfuscation for 1-Bit Messages to Multi-Bit Messages. We would like point
out that the standard repitition method for extending message space does not work for lockable obfuscation
schemes because the security is only guaranteed when the adversary does not know the lock string α.
However, we observe there are still multiple ways to extend its message space. We briefly discuss two
possible extensions. One option could be to encode a multi-bit message directly in the top-level matrices.

Currently, the top-level matrices are set to sum to 0n×m if msg = 0, otherwise to
√
q ·
[
In ||0n×(m−n)

]
.

However, if we interpret the mesage msg as an integer v <
√
q/2, then we could simply set the sum to be

v · √q ·
[
In ||0n×(m−n)

]
.

The second extension could be carried more generally without exploiting the mathematical structure of
the underlying obfuscation scheme. The high level idea is to again “expand” the circuit C using a pairwise
independent hash function and a pseudorandom generator before obfuscation. Suppose the lock α be a string
of length k. Let β = PRG(h(α)) and |β| = ` · k. To obfuscate circuit C under lock α for an `-bit message

7

msg, the multi-bit obfuscator (for each i < `) independently obfuscates the circuit Q[i] under lock β[i] for
message msgi using the 1-bit obfuscation scheme, where circuit Q[i] denotes the circuit that outputs the
i · k+ 1, . . . , (i+ 1) · k output bits of circuit PRG(h(C(·))) and β[i] = βi·k+1, . . . , β(i+1)·k. The security proof
follows from a simple hybrid argument. This transformation is described later in Appendix C.

This completes the technical overview of our lockable obfuscation scheme.

1.2 More on Related Encoding Works

The idea of using lattice trapdoors for constructing multilinear maps was first seen in the work of Gentry,
Gorbunov and Halevi (GGH) where they proposed a candidate for graph-induced multilinear maps [GGH15].
Their work builds upon the homomorphic encryption scheme of Gentry, Sahai and Waters [GSW13] which
could be considered as the starting point of cascading cancellations technique. In [GGH15], there is a fixed
(directed acyclic) graph G = (V,E), and plaintext messages are associated with edges. Each vertex u has an
associated matrix Au and a secret parameter Tu which is the trapdoor for Au. The plaintext space consists
of matrices, and the encoding of a matrix M along an edge (u, v) is A−1u (M ·Av + noise). Note that given
an encoding of matrix M1 for edge (u, v) and an encoding of matrix M2 for edge (v, w), one can compute
an encoding of M1 ·M2 along path (u, v, w).Informally, their intuition was that given all the encodings it
should be easy to compute an encoding for any path in graph G, however it should remain hard for anyone
to generate encodings over any non-path combination of vertices. Using these multilinear maps, GGH gave
candidate constructions for obfuscation and multipartite key-agreement. However, there were no security
proofs for these candidates, and their key-agreement protocol was later shown to be broken [CLLT16]. In
a later work, Brakerski et al. [BVWW16] gave a construction for obfuscating conjunctions based on an
entropic variant of Ring-LWE. In that work, they observed that if the underlying graph was a straight-line
graph (i.e., an ordered sequence of vertices), then the corresponding GGH multilinear maps provide some
provable security properties.

In a more recent work, Koppula and Waters [KW16] used what they called cascading cancellations tech-
nique for constructing k-circular security separations. Their construction deviates from the GGH/BVWW
paradigm in two crucial aspects. First, their construction involves multiple strands (say `) of length k, instead
of just a single strand. Unlike the previous works, which involved directly comparing two distinct encodings
(or, components) along the same path for equality, they first combined (using matrix multiplications) all the
k components for each different strand, and then summed the ` final components (one for each strand) to
perform an equality check with a fixed value. Second, what is mechanically close to the “plaintext” encoded
values in GGH is viewed here as simply random matrices (and just part of the overall randomness) and not
a value to be encoded. This differs from GGH in which the the elements being encoded were labeled as
“plaintext” values. For instance, the elements that were encoded in the GGH obfuscation candidate were
the state transition matrices of the actual branching program beign obfuscated and thus can reflect some
stronger semantics. Concurrently, Alamati and Peikert [AP16] also provided circular security separations,
that had a cancellation type effect although with a different technical approach.

Following the k-circular separations, Goyal, Koppula and Waters [GKW17b] further advanced the existing
techniques for constructing bit-circular security separations. One of their most important contributions was
an alternative mechanism to encode and hide (branching) programs using lattice trapdoors. To this end,
they introduced a novel technique which they call oblivious sequence transformation. This is a significant
departure from prior works as previously most works generated the matrix components (or encodings)
independently, however it was essential in their construction that the components be jointly generated. At
a high level, they provided new techniques to encode and hide a permutation between a sequence of nodes.
Informally, they gave a mechanism to encode a permutation between nodes u1, . . . , u5 and w1, . . . , w5 such
that given a node ui one could obliviously go to its corresponding node wj . Another important aspect
of their work was to encode a log-depth Pseudo Random Generator (PRG) using the oblivious sequence
transformation technique such that the PRG could be publicly evaluated and if the output of computation
is some fixed (but unknown) value, then it could be efficiently tested. This seems to be one of the most
important technical aspect of their work since in order to prove security from the LWE assumption as well

8

as guarantee efficient testing, encoding a log-depth PRG with a large polynomial stretch is essential. We
finally remark that Canetti and Chen [CC17] recently used the LWE assumption to achieve 1-collusion secure
constrained PRFs for NC1 with constraint hiding. Their construction involves a single strand like BVWW
and their embedding of a branching program follows the GGH style of putting branching programs into the
encoded plaintext values much more closely.

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. We will use lowercase bold letters for vectors
(e.g. v) and uppercase bold letters for matrices (e.g. A). For any integer q ≥ 2, we let Zq denote the ring of
integers modulo q. We represent Zq as integers in the range (−q/2, q/2]. For a vector v, we let ‖v‖ denote
its `2 norm and ‖v‖∞ denote its infinity norm. Similarly, for matrices ‖·‖ and ‖·‖∞ denote their `2 and
infinity norms (respectively).

We denote the set of all positive integers upto n as [n] := {1, . . . , n}. For any finite set S, x← S denotes
a uniformly random element x from the set S. Similarly, for any distribution D, x← D denotes an element
x drawn from distribution D. The distribution Dn is used to represent a distribution over vectors of n
components, where each component is drawn independently from the distribution D. Two distributions D1

and D2, parameterized by security parameter λ, are said to be computationally indistinguishable, represented
by D1 ≈c D2, if for all PPT adversaries A, |Pr[1 ← A(x) : x ← D1] - Pr[1 ← A(x) : x ← D2]| ≤ negl(λ).
For a family of distributions χ = {χ(λ)}λ over the integers, and integers bounds B = {B(λ)}λ, we say that
χ is B-bounded if Pr[|x| ≤ B(λ) : x← χ(λ)] = 1.
This section closely follows [GKW17b].

Min-Entropy and Randomness Extraction. The min-entropy of a random variable X is defined as

H∞(X)
def
= − log2(maxx Pr[X = x]). Let SD(X,Y) denote the statistical distance between two random

variables X and Y . Below we state the Leftover Hash Lemma (LHL) from [HILL99, DRS04, DORS08].

Theorem 2.1. Let H = {h : X → Y }h∈H be a universal hash family, then for any random variable W
taking values in X, the following holds

SD ((h, h(W)) , (h, UY)) ≤ 1

2

√
2−H∞(W) · |Y | .

We will use the following corollary, which follows from the Leftover Hash Lemma.

Corollary 2.1. Let ` > m · n log2 q + ω(log n) and q a prime. Let R be an k × m matrix chosen as per
distribution R, where k = k(n) is polynomial in n and H∞ (R) = `. Let A and B be matrices chosen
uniformly in Zn×kq and Zn×mq , respectively. Then the statistical distance between the following distributions
is negligible in n.

{(A,A ·R)} ≈s {(A,B)}

Proof. The proof of above corollary follows directly from the Leftover Hash Lemma. Note that for a prime
q the family of hash functions hA : Zk×mq → Zn×mq for A ∈ Zn×kq defined by hA(X) = A ·X is universal.
Therefore, if R has sufficient min-entropy, i.e. ` > m · n log2 q + ω(log n), then the Leftover Hash Lemma
states that statistical distance between the distributions (A,A ·R) and (A,B) is at most 2−ω(logn) which
is negligible in n as desired.

2.1 Lattice Preliminaries

An m-dimensional lattice L is a discrete additive subgroup of Rm. Given positive integers n,m, q and a
matrix A ∈ Zn×mq , we let Λ⊥q (A) denote the lattice {x ∈ Zm : A · x = 0 mod q}. For u ∈ Znq , we let
Λu
q (A) denote the coset {x ∈ Zm : A · x = u mod q}.

9

Discrete Gaussians. Let σ be any positive real number. The Gaussian distribution Dσ with parameter
σ is defined by the probability distribution function ρσ(x) = exp(−π ‖x‖2 /σ2). For any set L ⊂ Rm, define
ρσ(L) =

∑
x∈L ρσ(x). The discrete Gaussian distribution DL,σ over L with parameter σ is defined by the

probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L) for all x ∈ L.
The following lemma (Lemma 4.4 of [MR07], [GPV08]) shows that if the parameter σ of a discrete Gaus-

sian distribution is small, then any vector drawn from this distribution will be short (with high probability).

Lemma 2.1. Let m,n, q be positive integers with m > n, q ≥ 2. Let A ∈ Zn×mq be a matrix of dimensions

n×m, σ = Ω̃(n) and L = Λ⊥q (A). Then

Pr[‖x‖ >
√
m · σ : x← DL,σ] ≤ negl(n).

Truncated Discrete Gaussians. The truncated discrete Gaussian distribution over Zm with parameter
σ, denoted by D̃Zm,σ, is same as the discrete Gaussian distribution Dσ except it outputs 0 whenever the `∞
norm exceeds

√
m · σ. Note that, by definition, D̃Zm,σ is

√
m · σ-bounded. Also, note that D̃Zm,σ ≈s DZm,σ.

Learning with Errors (LWE). The Learning with Errors (LWE) problem was introduced by Regev
[Reg05]. The LWE problem has four parameters: the dimension of the lattice n, the number of samples m,
the modulus q and the error distribution χ = χ(n).

Assumption 1 (Learning with Errors). Let n, m and q be positive integers and χ a noise distribution
over Zq. The Learning with Errors assumption (n,m, q, χ)-LWE, parameterized by n,m, q, χ, states that the
following distributions are computationally indistinguishable:{

(A, s> ·A + e>) :
A← Zn×mq ,
s← Znq , e← χm

}
≈c
{

(A,u>) :
A← Zn×mq ,
u← Zmq

}
Under a quantum reduction, Regev [Reg05] showed that for certain noise distributions, LWE is as hard

as worst case lattice problems such as the decisional approximate shortest vector problem (GapSVP) and
approximate shortest independent vectors problem (SIVP). Later works [Pei09, BLP+13] showed classical
reductions from LWE to GapSVPγ .

These works show that for B-bounded discretized Gaussian error distributions χ, solving (n,m, q, χ)-LWE
is as hard as approximating GapSVPγ and SIVPγ to a factor of Õ(n · q/B). Given the current state of art in

lattice algorithms, GapSVPγ and SIVPγ are believed to be hard for γ = Õ(2n
ε

) (for fixed ε ∈ (0, 1/2)), and
therefore (n,m, q, χ)-LWE is believed to be hard for B-bounded discretized Gaussian error distributions χ
with B = 2−n

ε · q · poly(n).

LWE with Short Secrets. In this work, we will be using a variant of the LWE problem called LWE with
Short Secrets. In this variant, introduced by Applebaum et al. [ACPS09], the secret vector is also chosen
from the noise distribution χ. They showed that this variant is as hard as LWE for sufficiently large number
of samples m.

Assumption 2 (LWE with Short Secrets). Let n, m and q be positive integers and χ a noise distribution
on Z. The LWE with Short Secrets assumption (n,m, q, χ)-LWE-ss, parameterized by n,m, q, χ, states that
the following distributions are computationally indistinguishable 7:{

(A,S ·A + E) :
A← Zn×mq ,
S← χn×n,E← χn×m

}
≈c
{

(A,U) :
A← Zn×mq ,
U← Zn×mq

}
.

7Applebaum et al. showed that {(A, s> · A + e) : A ← Zn×mq , s ← χn, e ← χm} ≈c {(A,u) : A ← Zn×mq ,u ← Zmq },
assuming LWE is hard. However, by a simple hybrid argument, we can replace vectors s, e,u with matrices S,E,U of appropriate
dimensions.

10

Lattices with Trapdoors. Lattices with trapdoors are lattices that are statistically indistinguishable
from randomly chosen lattices, but have certain ‘trapdoors’ that allow efficient solutions to hard lattice
problems.

Definition 2.1 ([Ajt99, GPV08]). A trapdoor lattice sampler consists of algorithms TrapGen and SamplePre
with the following syntax and properties:

• TrapGen(1n, 1m, q)→ (A, TA): The lattice generation algorithm is a randomized algorithm that takes
as input the matrix dimensions n,m, modulus q, and outputs a matrix A ∈ Zn×mq together with a
trapdoor TA.

• SamplePre(A, TA,u, σ) → s: The presampling algorithm takes as input a matrix A, trapdoor TA, a
vector u ∈ Znq and a parameter σ ∈ R (which determines the length of the output vectors). It outputs
a vector s ∈ Zmq .

These algorithms must satisfy the following properties:

1. Correct Presampling: For all vectors u, parameters σ, (A, TA) ← TrapGen(1n, 1m, q), and s ←
SamplePre(A, TA,u, σ), A · s = u and ‖s‖∞ ≤

√
m · σ.

2. Well Distributedness of Matrix: The following distributions are statistically indistinguishable:

{A : (A, TA)← TrapGen(1n, 1m, q)} ≈s {A : A← Zn×mq }.

3. Well Distributedness of Preimage: For all (A, TA) ← TrapGen(1n, 1m, q), if σ = ω(
√
n · log q · logm),

then the following distributions are statistically indistinguishable:

{s : u← Znq , s← SamplePre(A, TA,u, σ)} ≈s DZm,σ.

These properties are satisfied by the gadget-based trapdoor lattice sampler of [MP12] for parameters m
such that m = Ω(n · log q).

2.2 Branching Programs

Branching programs are a model of computation used to capture space-bounded computations [BDFP86,
Bar86]. In this work, we will be using a restricted notion called permutation branching programs.

Definition 2.2 (Permutation Branching Program). A permutation branching program of length L, width
w and input space {0, 1}n consists of a sequence of 2L permutations σi,b : [w]→ [w] for 1 ≤ i ≤ L, b ∈ {0, 1},
an input selection function inp : [L] → [n], an accepting state acc ∈ [w] and a rejection state rej ∈ [w].
The starting state st0 is set to be 1 without loss of generality. The branching program evaluation on input
x ∈ {0, 1}n proceeds as follows:

• For i = 1 to L,

– Let pos = inp(i) and b = xpos. Compute sti = σi,b(sti−1).

• If stL = acc, output 1. If stL = rej, output 0, else output ⊥.

In a remarkable result, Barrington [Bar86] showed that any circuit of depth d can be simulated by a
permutation branching program of width 5 and length 4d.

Theorem 2.2 ([Bar86]). For any boolean circuit C with input space {0, 1}n and depth d, there exists a
permutation branching program BP of width 5 and length 4d such that for all inputs x ∈ {0, 1}n, C(x) =
BP(x).

11

This permutation property will be useful for proving security of our main construction in Section 4. We
will also require that the permutation branching program has a fixed input-selector function inp. In our
construction, we will have multiple branching programs, and all of them must read the same input bit at
any level i ≤ L.

Definition 2.3. A permutation branching program with input space {0, 1}n is said to have a fixed input-
selector inp(·) if for all i ≤ L, inp(i) = i mod n.

Any permutation branching program of length L and input space {0, 1}n can be easily transformed to
a fixed input-selector branching program of length n · L. In this work, we only require that all branching
programs share the same input selector function inp(·). The input selector which satisfies inp(i) = i mod n
is just one possibility, and we stick with it for simplicity. We will use the following corollary, which follows
from Theorem 2.2.

Corollary 2.2. For any boolean circuit C with input space {0, 1}n and depth d, there exists a fixed-input
selector permutation branching program BP of width 5 and length n · 4d such that for all inputs x ∈ {0, 1}n,
C(x) = BP(x).

2.3 Public Key Encryption

A public key encryption (PKE) scheme E for message spaces M = {Mλ}λ consists of the following
polynomial-time algorithms.

• Setup(1λ) → (pk, sk). The setup algorithm takes as input the security parameter λ, and outputs a
public-secret key pair (pk, sk).

• Enc(pk,m ∈ Mλ) → ct. The encryption algorithm takes as input a public key pk and a message m,
and outputs a ciphertext ct.

• Dec(sk, ct) → m. The decryption algorithm takes as input a secret key sk and a ciphertext ct, and
outputs a message m.

Correctness. A PKE scheme E for message spaces M is said to be correct if for all λ, m ∈ Mλ and
(pk, sk)← Setup(1λ), we have that Dec(sk,Enc(pk,m)) = m.

Security. The standard security notion for PKE schemes is IND-CPA security. Formally, it is defined as
follows.

Definition 2.4. A public key encryption scheme E = (Setup,Enc,Dec) is IND-CPA secure if for every
stateful PPT adversary A, there exists a negligible functions negl(·), such that for all λ ∈ N, the following
holds: ∣∣∣∣Pr

[
A(ct) = b

∣∣ (pk, sk)← Setup(1λ); b← {0, 1}
(m0,m1)← A(pk); ct← Enc(pk,mb)

]
− 1

2

∣∣∣∣ ≤ negl(λ).

2.4 Homomorphic Encryption

Homomorphic encryption [RAD78, Gen09] is a powerful extension of public key encryption that allows one
to evaluate functions on ciphertexts. Homomorphic encryption schemes can be classified as either leveled or
fully homomorphic encryption schemes. A leveled homomorphic encryption (LHE) scheme allows bounded
depth computation over the ciphertexts. The setup algorithm takes as input a ‘level bound’ ` together
with the security parameter, and outputs a public-secret key pair. Given an ciphertext ct corresponding
to message m, one can use the evaluation algorithm to evaluate a bounded depth circuit C on ct, and the
resulting ciphertext ct′, when decrypted using the secret key, outputs C(m) if the depth of C is less than `.
Fully homomorphic encryption, on the other hand, allows for arbitrary computation on the ciphertext.

12

2.4.1 Leveled Homomorphic Encryption

A secret key leveled homomorphic encryption schemeHE with message space {0, 1} consists of four algorithms
Setup,Enc,Dec,Eval with the following syntax:

1. Setup(1λ, 1`)→ (sk, ek) The setup algorithm takes as input the security parameter λ, bound on circuit
depth ` and outputs a secret key sk and evaluation key ek.

2. Enc(sk,m ∈ {0, 1}) → ct The encryption algorithm takes as input a secret key sk, message m ∈ {0, 1}
and outputs a ciphertext ct.

3. Eval(ek, C ∈ C`, ct)→ ct′ The evaluation algorithm takes as input an evaluation key ek, a circuit C ∈ C`,
a ciphertext ct and outputs a ciphertext ct′.

4. Dec(sk, ct)→ x The decryption algorithm takes as input a secret key sk and ciphertext ct and outputs
x ∈ {0, 1} ∪ {⊥}.

We will now define some properties of leveled homomorphic encryption schemes. Let HE be any homo-
morphic encryption scheme with message space {0, 1}. First, we have the correctness property, which states
that the decryption of a homomorphic evaluation on a ciphertext must be equal to the evaluation on the
underlying message.

Definition 2.5 (Correctness). The scheme HE is said to be (perfectly) correct if for all security parameter
λ, circuit-depth bound `, (sk, ek)← Setup(1λ, 1`), circuit C ∈ C` and message m ∈ {0, 1},

Dec(sk,Eval(ek, C,Enc(sk,m))) = C(m).

Next, we have the compactness property which requires that the size of the output of an evaluation on
a ciphertext must not depend upon the evaluation circuit. In particular, we require that there exists one
decryption circuit such that this circuit can decrypt any bounded-depth evaluations on ciphertexts.

Definition 2.6 (Compactness). A homomorphic encryption scheme HE is said to be compact if for all λ,
` there is a decryption circuit CDec

λ,` such that for all (sk, ek) ← Setup(1λ, 1`), m ∈ {0, 1}, C ∈ C`, CDec
λ,` (sk,

Eval(ek, C, Enc(sk,m))) = C(m).

Finally, we require that the depth of the decryption circuit is bounded by a logarithmic function in the
security parameter λ.

Definition 2.7. A compact homomorphic encryption scheme HE is said to have log-depth decryption circuit
if for all λ, `, depth(CDec

λ,`) = O(log λ).

For security, we require that the underlying scheme is IND-CPA secure.

Definition 2.8 (Security). A homomorphic encryption scheme HE is secure if Γ = (Setup,Enc,Dec) is
IND-CPA secure (Definition 2.4).

Starting with the work of Gentry [Gen09], there has been a long line of interesting works seeking to
improve the efficiency/security of homomorphic encryption schemes. Today, we have LHE schemes [BV11,
BGV12, GSW13] with log-depth decryption circuits that can be proven secure under the Learning with
Errors assumption.

2.4.2 Fully Homomorphic Encryption

Fully homomorphic encryption is a stronger notion of homomorphic encryption where the evaluator can
perform unbounded computations on the ciphertext. As a result, the algorithm does not need to take the
depth bound as input.

A secret key fully homomorphic encryption scheme HE with message space {0, 1} consists of four algo-
rithms Setup,Enc,Dec,Eval with the following syntax:

13

1. Setup(1λ)→ (sk, ek) The setup algorithm takes as input the security parameter λ and outputs a secret
key sk and evaluation key ek.

2. Enc(sk,m ∈ {0, 1}) → ct The encryption algorithm takes as input a secret key sk, message m ∈ {0, 1}
and outputs a ciphertext ct.

3. Eval(ek, C, ct) → ct′ The evaluation algorithm takes as input an evaluation key ek, a circuit C, a
ciphertext ct and outputs a ciphertext ct′.

4. Dec(sk, ct)→ x The decryption algorithm takes as input a secret key sk and ciphertext ct and outputs
x ∈ {0, 1} ∪ {⊥}.

Definition 2.9 (Correctness). The scheme HE is said to be (perfectly) correct if for all security parameter
λ, (sk, ek)← Setup(1λ, 1`), circuit C and message m ∈ {0, 1},

Dec(sk,Eval(ek, C,Enc(sk,m))) = C(m).

The security and compactness requirement is same as that for leveled homomorphic encryption.

2.5 Pairwise Independent Hash Functions

Definition 2.10. Let H be a family of hash functions where each h ∈ H has domain {0, 1}` and co-domain
{0, 1}`H . The family H is said to be a pairwise independent hash function family if for all x, y ∈ {0, 1}` and
a, b ∈ {0, 1}`H s.t. x 6= y,

Pr
h←H

[h(x) = a ∧ h(y) = b] =
1

(2`H)
2 .

A simple family of pairwise independent hash functions is the following set of functions:

{hA,b(x) = Ax + b : A ∈ Z`H×`2 ,b ∈ Z`H2 }.

This family can be implemented using log-depth circuits.

2.6 NC1 Pseudorandom Generators with Polynomial Stretch

In this work, we require polynomial stretch pseudorandom generators which can be implemented by polyno-
mial length branching programs.

Definition 2.11. Let `, `PRG be polynomials. A circuit class PRG`,`PRG,d = {PRGλ}λ where PRGλ :
{0, 1}`(λ) → {0, 1}`PRG(λ), is said to be a pseudorandom generator if for all λ,

{PRGλ(s) : s← {0, 1}`(λ)} ≈c {0, 1}`PRG(λ).

Using PRFs in NC1, we can show that there exist PRGs of logarithmic depth which can achieve any
polynomial stretch. Low depth PRFs, in turn, can be constructed from the Learning with Errors assumption.

Theorem 2.3 (PRFs in NC1 [BPR12]). For some σ > 0, suitable universal constant C > 0, modulus p ≥ 2,
any m = poly(n), let χ = DZ,σ and q ≥ p · k(Cσ

√
n)k · nω(1), assuming hardness of (n,m, q, χ)-LWE, there

exists a function family PRF consisting of functions from {0, 1}k to Zm×np that satisfies pseudorandomness

property and the entire function can be computed in TC0 ⊆ NC1.

From Theorems 2.2 and 2.3, the following corollary is immediate.

Corollary 2.3. There exists a polynomial p such that for any polynomial `PRG, there exists a family of
pseudorandom generators {PRGλ} where PRGλ : {0, 1}`(λ) → {0, 1}`PRG(λ), and for all i ∈ [`PRG(λ)], the
ith bit of PRGλ can be computed by a branching program of length p(λ). This family of pseudorandom
generators can be proven secure assuming hardness of (n,m, q, χ)-LWE with parameters as in Theorem 2.3.

14

3 Lockable Obfuscation

In this section, we define the notion of lockable obfuscation, and discuss how it is related to other cryp-
tographic primitives. An lockable obfuscator takes as input a program P , a message msg, and a ‘lock’ α.
It outputs an obfuscated program P̃ which has the same domain as the program P . The program P̃ , on
input x, outputs the message msg if P (x) = α. If not, then with overwhelming probability, it will output

⊥. For security, we require that for all programs P and messages msg, P̃ for a uniformly random α can be
efficiently simulated given only the sizes of P and msg. We will now present the syntax, correctness and
security definition.

Let n,m, d be polynomials, and Cn,m,d(λ) be the class of depth d(λ) circuits with n(λ) bit input and
m(λ) bit output. A lockable obfuscator for Cn,m,d consists of algorithms Obf and Eval with the following
syntax. Let M be the message space.

• Obf(1λ, P,msg, α)→ P̃ . The obfuscation algorithm is a randomized algorithm that takes as input the
security parameter λ, a program P ∈ Cn,m,d, message msg ∈ M and ‘lock string’ α ∈ {0, 1}m(λ). It

outputs a program P̃ .

• Eval(P̃ , x)→ y ∈ M∪ {⊥}. The evaluator is a deterministic algorithm that takes as input a program

P̃ and a string x ∈ {0, 1}n(λ). It outputs y ∈M∪ {⊥}.

3.1 Correctness

For correctness, we require that if P (x) = α, then the obfuscated program P̃ ← Obf(1λ, P,msg, α), evaluated

on input x, outputs msg, and if P (x) 6= α, then P̃ outputs ⊥ on input x. Here, we give three correctness
definitions, which differ in the case where P (x) 6= α.

Definition 3.1 (Perfect Correctness). An lockable obfuscation scheme is said to be perfectly correct if it
satisfies the following properties:

1. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d and messages msg ∈ M, if
P (x) = α, then

Eval(Obf(1λ, P,msg, α)), x) = msg.

2. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d and messages msg ∈ M, if
P (x) 6= α, then

Eval(Obf(1λ, P,msg, α)), x) = ⊥ .

Definition 3.2 (Statistical Correctness). An lockable obfuscation scheme is said to be statistically correct
if it satisfies the following properties:

1. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d and messages msg ∈ M, if
P (x) = α, then

Eval(Obf(1λ, P,msg, α)), x) = msg.

2. For all security parameters λ, programs P ∈ Cn,m,d, α ∈ {0, 1}m(λ) and msg ∈M,

Pr[∃ x s.t. P (x) 6= α and Eval(Obf(1λ, P,msg, α), x) = msg] ≤ negl(λ)

where the probability is taken over the random coins used during obfuscation.

Definition 3.3 (Semi-statistical Correctness). An lockable obfuscation scheme is said to be semi-statistical cor-
rect if it satisfies the following properties:

1. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d and messages msg ∈ M, if
P (x) = α, then

Eval(Obf(1λ, P,msg, α)), x) = msg.

15

2. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d, α ∈ {0, 1}m(λ) such that
P (x) 6= α and msg ∈M,

Pr[Eval(Obf(1λ, P,msg, α), x) = msg] ≤ negl(λ)

where the probability is taken over the random coins used during obfuscation.

Looking ahead, our construction satisfies the semi-statistical correctness condition, and will be sufficient
for our applications.

3.2 Security

Definition 3.4. An lockable obfuscation scheme (Obf,Eval) is said to be secure if there exists a PPT
simulator Sim such that for all security parameters λ, programs P ∈ Cn,m,d and messages msg ∈M,

{Obf(1λ, P,msg, α) : α← {0, 1}m(λ)} ≈c Sim(1λ, 1|P |, 1|msg|).

4 Our Construction

In this section, we present our lockable obfuscation scheme. For any polynomials `in, `out, d such that
`out = ω(log λ), we construct a lockable obfuscation scheme O = (Obf,Eval) for the circuit class C`in,`out,d.
The message space for our construction will be {0, 1}, although one can trivially extend it to {0, 1}`(λ) for
any polynomial `. More details are provided in Appendix C.

The tools required for our construction are as follows:

- A compact leveled homomorphic bit encryption scheme (LHE.Setup, LHE.Enc, LHE.Eval, LHE.Dec) with
decryption circuit of depth dDec(λ) and ciphertexts of length `ct(λ).

- A pairwise independent hash family H : {0, 1}`out(λ) → {0, 1}`H(λ) which can be implemented by a
circuit of logarithmic depth dH(λ).

- A pseudorandom generator PRG : {0, 1}`H(λ) → {0, 1}`PRG(λ) of depth dPRG(λ).

For notational convenience, let `in = `in(λ), `out = `out(λ), `H = `H(λ), `PRG = `PRG(λ), dDec = dDec(λ),
dH = dH(λ), dPRG = dPRG(λ) and d = d(λ).

Fix any ε < 1/2. Let χ be a B-bounded discrete Gaussian distribution with parameter σ such that
B =

√
m · σ. Let n,m, `, σ, q,Bd be parameters with the following constraints:

- n = poly(λ) and q ≤ 2n
ε

(for LWE security)

- `H = ω(log λ) (for PRG security)

- `out − `H = ω(log λ) (for strong extraction)

- m = Ω(n · log q) (for SamplePre)

- σ = ω(
√
n · log q · logm) (for Preimage Well Distributedness)

- `PRG = n ·m · log q + ω(log n) (for applying Leftover Hash Lemma)

- `PRG − `H = ω(log λ) (for correctness of scheme)

- Bd = `PRG · L · (m2 · σ)L < q1/4 (for correctness of scheme)
(where L = `out · `ct · 4dDec+dH+dPRG)

First, note that it is important that L = λc for some constant c and Bd = `PRG ·L · (m ·σ)L < q1/4. This
crucially relies on the fact that the LHE scheme is compact (so that `ct is bounded by a polynomial) and
that the LHE decryption, hash function evaluation and PRG computation can be performed by a log depth
circuit (i.e, have poly length branching programs). The constant c depends on the LHE scheme, pairwise
independent hash function and PRG.

One possible setting of parameters is as follows: n = λ4c/ε, m = n1+ε, q = 2n
ε

, σ = n, `PRG = n2ε+2 and
`H = `out/2.

We will now describe the obfuscation and evaluation algorithms.

16

• Obf(1λ, P,msg, α): The obfuscation algorithm takes as input a program P ∈ C`in,`out,d, message msg ∈
{0, 1} and α ∈ {0, 1}`out . The obfuscator proceeds as follows:

1. First, it chooses the LHE key pair as (lhe.sk, lhe.ek)← LHE.Setup(1λ, 1d log d).8

2. Next, it encrypts the program P . It sets ct← LHE.Enc(lhe.sk, P).9

3. It then chooses a pairwise independent hash function h← H. Let β = PRG(h(α)).

4. Next, consider the following circuit Q which takes as input `out · `ct bits of input and outputs
`PRG bits. Q takes as input `out LHE ciphertexts {cti}i≤`out , has LHE secret key lhe.sk hardwired
and computes the following — (1) it decrypts each input ciphertext cti (in parallel) to get string
x of length `out bits, (2) it sequentially applies the hash function and PRG on x and outputs
PRG(h(x)). Concretely, Q(ct1, . . . , ct`out) = PRG

(
h
(
LHE.Dec(lhe.sk, ct1) || · · · || LHE.Dec(lhe.sk,

ct`out)
))

.

For i ≤ `PRG, we use BP(i) to denote the fixed-input selector permutation branching program
that outputs the ith bit of output of circuit Q. Note that Q has depth dtot = dDec + dH + dPRG.
By Corollary 2.2, we know that each branching program BP(i) has length L = `out · `ct · 4dtot and
width 5.

5. Finally, the obfuscator creates matrix components which enable the evaluator to compute msg if
it has an input strings (ciphertexts) ct1, . . . , ct`out such that Q(ct1, . . . , ct`out) = β. Concretely,
it runs the (randomized) routine Comp-Gen (defined in Figure 1). This routine takes as input

the circuit Q in the form of `PRG branching programs {BP(i)}i, string β and message msg. Let({
B

(i)
0,1

}
i
,
{

C
(i,0)
j ,C

(i,1)
j

}
i,j

)
← Comp-Gen({BP(i)}i, β,msg).

6. The final obfuscated program consists of the LHE evaluation key ek = lhe.ek, LHE ciphertexts ct,

together with the components

({
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j)

}
i,j

)
.

• Eval(P̃ , x): The evaluation algorithm takes as input P̃ =

(
ek, ct,

{
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j)

}
i,j

)
and

input x ∈ {0, 1}`in . It performs the following steps.

1. The evaluator first constructs a universal circuit Ux(·) with x hardwired as input. This universal
circuit takes a circuit C as input and outputs Ux(C) = C(x). Using the universal circuit of Cook
and Hoover [CH85], it follows that Ux(·) has depth O(d).

2. Next, it performs homomorphic evaluation on ct using circuit Ux(·). It computes c̃t = LHE.Eval(ek,
Ux(·), ct). Note that `ct · `out denotes the length of c̃t (as a bitstring), and let c̃ti denote the ith

bit of c̃t.

3. The evaluator then obliviously evaluates the `PRG branching programs on input c̃t using the
matrix components. It calls the component evaluation algorithm Comp-Eval (defined in Figure

2). Let y = Comp-Eval

(
c̃t,

({
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j)

}
i,j

))
. The evaluator outputs y.

4.1 Correctness

We will prove that the lockable obfuscation scheme described above satisfies the semi-statistical correctness
property (see Definition 3.3). To prove this, we need to prove that if P (x) = α, then the evaluation algorithm
always outputs the message, and if P (x) 6= α, then with high probability, it outputs ⊥.

8We set the LHE depth bound to be d log d, where the extra log factor is to account for the constant blowup involved in
using a universal circuit. In particular, we can set the LHE depth bound to be c · d where c is some fixed constant depending
on the universal circuit.

9Note that LHE scheme supports bit encryption. Therefore, to encrypt P , a multi-bit message, the FHE.Enc algorithm will
be run independently on each bit of P . However, for notational convenience throughout this section we overload the notation
and use FHE.Enc and FHE.Dec algorithms to encrypt and decrypt multi-bit messages respectively.

17

Comp-Gen

Input: {BP(i)}i, β ∈ {0, 1}`PRG , msg ∈ {0, 1}
Output: Components

({
B

(i)
0,1

}
i
, {(C(i,0)

level ,C
(i,1)
level)}i≤`PRG,level≤L

)
.

(a) Let BP(i) =

({
σ
(i)
j,b : [5]→ [5]

}
j∈[L],b∈{0,1}

, acc(i) ∈ [5], rej(i) ∈ [5]

)
for all i ≤ `PRG.

(b) First, it chooses a matrix for each state of each branching program. Recall, there are `PRG branching
programs, and each branching program has L levels, and each level has 5 states. For each i ≤ `PRG,
j ∈ [0, L − 1], it chooses a matrix of dimensions 5n ×m along with its trapdoors (independently) as

(B
(i)
j , T

(i)
j)← TrapGen(15n, 1m, q). The matrix B

(i)
j can be parsed as follows

B
(i)
j =

B

(i)
j,1

...

B
(i)
j,5

where matrices B

(i)
j,k ∈ Zn×mq for k ≤ 5. The matrix B

(i)
j,k corresponds to state k at level j of branching

program BP(i).

(c) For the top level, it chooses top level matrices B
(i)
L,k for each i ≤ `PRG, k ≤ 5, uniformly at random,

subject to the following constraint:∑
i : βi=0

B
(i)

L,rej(i)
+

∑
i : βi=1

B
(i)

L,acc(i)
= 0n×m if msg = 0.

∑
i : βi=0

B
(i)

L,rej(i)
+

∑
i : βi=1

B
(i)

L,acc(i)
=
√
q ·
[
In ||0n×(m−n)

]
if msg = 1.

(d) Next, it generates the components for each level. For each level level ∈ [1, L], do the following:

i. Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG. If either S

(0)
level or

S
(1)
level has determinant zero, then set it to be In.

ii. For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·). More formally, for i ≤ `PRG, set

D
(i,b)
level =

B

(i)

level,σ
(i)
level,b

(1)

...

B
(i)

level,σ
(i)
level,b

(5)

 .
iii. Set M

(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

iv. Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

(e) Output
({

B
(i)
0,1

}
i
, {(C(i,0)

level ,C
(i,1)
level)}i≤`PRG,level≤L

)
.

Figure 1: Routine Comp-Gen

First, we will prove the following lemma about the Comp-Gen and Comp-Eval routines. Intuitively,
this lemma states that for all fixed input branching programs {BP(i)}i, strings β and messages msg, if

BP(i)(z) = βi for all i ≤ `PRG, then the component evaluator outputs msg.

Lemma 4.1. For any set of branching programs {BP(i)}i≤`PRG , string β ∈ {0, 1}`PRG , message msg ∈ {0, 1}
and input z,

1. if BP(i)(z) = βi for all i ≤ `PRG, then Comp-Eval(z,Comp-Gen({BP(i)}i, β,msg)) = msg.

18

Comp-Eval

Input: Input string z, Components
({

B
(i)
0,1

}
i
, {(C(i,0)

level ,C
(i,1)
level)}i≤`PRG,level≤L

)
.

Output: y ∈ {0, 1,⊥}.

(a) For each i ∈ [1, `PRG], do the following

i. Set M(i) = B
(i)
0,1.

ii. For j = 1 to L, do the following

- If zinp(j) = 0, set M(i) = M(i) ·C(i,0)
j . Else, set M(i) = M(i) ·C(i,1)

j .

(b) Compute M =
∑
iM

(i). Let M =
[
M(1) ||M(2)

]
where M(1) ∈ Zn×nq (i.e. a square matrix). Next,

do the following

- If ‖M‖∞ ≤ Bd, output 0.

- Otherwise, if
∥∥∥M(2)

∥∥∥
∞
≤ Bd and ‖M‖∞ ∈

[√
q − Bd, (

√
q + 1) · Bd

]
, output 1.

- Else output ⊥.

Figure 2: Routine Comp-Eval

2. if BP(i)(z) 6= βi for some i ≤ `PRG, then

Pr[Comp-Eval(z,Comp-Gen({BP(i)}i, β,msg)) = ⊥] ≥ 1− negl(λ).

Proof. The proof of this lemma will be similar to the proof of correctness of the testing algorithm in
[GKW17b, Section 4.2].

Recall that the component generation algorithm chooses matrices B
(i)
j for each i ≤ `PRG, j ≤ L, S

(0)
j ,S

(1)
j

for each j ≤ L and E
(i,0)
j ,E

(i,1)
j for each i ≤ `PRG, j ≤ L. Note that the S

(b)
j and E

(i,b)
j matrices have l∞

norm bounded by σ ·m since they are chosen from truncated Gaussian distribution with parameter σ.
We start by introducing some notations for this proof.

• st
(i)
j : the state of BP(i) after j steps when evaluated on z

• Sj = S
(zinp(j))

j , E
(i)
j = E

(i,zinp(j))

j , C
(i)
j = C

(i,zinp(j))

j for all j ≤ L

• Γj∗ =
∏j∗

j=1 Sj for all j∗ ≤ L

• ∆
(i)
j∗ = B

(i)
0,1 ·

(∏j∗

j=1 C
(i)
j

)
, ∆̃

(i)

j∗ = Γj∗ ·B(i)

j∗,st
(i)

j∗
, Err

(i)
j∗ = ∆

(i)
j∗ − ∆̃

(i)

j∗ for all j∗ ≤ L

Observe that the Comp-Eval algorithm computes matrix M =
∑`PRG

i=1 ∆
(i)
L . First, we show that for all

i ≤ `PRG, j∗ ≤ L, Err
(i)
j∗ is small and bounded. This would help us in arguing that matrices

∑`PRG

i=1 ∆
(i)
L

and
∑`PRG

i=1 ∆̃
(i)

L are very close to each other.

Now, since we already know that
∑`PRG

i=1 ∆̃
(i)

L is close to all zeros matrix if msg = 0 and is close to
√
q ·
[
ΓL ||0n×(m−n)

]
if msg = 1, therefore combining this with the fact that Err

(i)
j∗ is small and bounded,

we can conclude by arguing that matrix M will have appropriately bounded entries dependending on the
value of msg.

First, we show that Err
(i)
j∗ is bounded.

Claim 4.1. ∀ i ∈ {1, . . . , `PRG} , j∗ ∈ {1, . . . , L} ,
∥∥∥Err

(i)
j∗

∥∥∥
∞
≤ j∗ ·

(
m2 · σ

)j∗
.

Proof. The above claim is proven by induction over j∗, and all arguments hold irrespective of the value of i.
Therefore, for simplicity of notation, we will drop the dependence on i.

19

Base case (j∗ = 1). We know that ∆1 = B0,1 ·C1 = S1 ·B1,st1 + E1,st1 where E1,st1 is a submatrix of E1.
Thus, we could write the following

‖Err1‖∞ =
∥∥∥∆1 − ∆̃1

∥∥∥
∞

= ‖E1,st1‖∞ ≤ m · σ < m2 · σ.

This completes the proof of base case. For the induction step, we assume that the above lemma holds
for j∗ − 1, and show that it holds for j∗ as well.

Induction Step. We know that ∆j∗ = ∆j∗−1 ·Cj∗ . Also, ∆j∗−1 = ∆̃j∗−1 + Errj∗−1. So, we could write
the following

∆j∗ = ∆̃j∗−1 ·Cj∗ + Errj∗−1 ·Cj∗

= Γj∗−1 ·
(
Bj∗−1,stj∗−1

·Cj∗
)

+ Errj∗−1 ·Cj∗

= Γj∗−1 ·
(
Sj∗ ·Bj∗,stj∗ + Ej∗,stj∗−1

)
+ Errj∗−1 ·Cj∗

= ∆̃j∗ + Γj∗−1 ·Ej∗,stj∗−1
+ Errj∗−1 ·Cj∗

Here, Ej∗,stj∗−1
is an n×m submatrix of Ej∗ . Finally, we can bound Errj∗ as follows

‖Errj∗‖∞ =
∥∥∥∆j∗ − ∆̃j∗

∥∥∥
∞

=
∥∥Γj∗−1 ·Ej∗,stj∗−1

+ Errj∗−1 ·Cj∗
∥∥
∞

≤
∥∥Γj∗−1 ·Ej∗,stj∗−1

∥∥
∞ + ‖Errj∗−1 ·Cj∗‖∞

≤
(
n2 · σ

)j∗−1 ·m · σ + (j∗ − 1) · (m2 · σ)j
∗−1 ·m2 · σ ≤ j∗ · (m2 · σ)j

∗

This completes the proof of above claim.

The remaining proof of the lemma will have two parts, the first part dealing with the case when BP(i)(z) =

βi for all i, and the second one dealing with when BP(i)(z) 6= βi for some i.

Recall that the Comp-Eval algorithm computes matrix M =
∑`PRG

i=1 ∆
(i)
L . Let M̃ =

∑`PRG

i=1 ∆̃
(i)

L and

Err =
∑`PRG

i=1 Err
(i)
L . Also, we parse these matrices as M =

[
M(1) ||M(2)

]
, M̃ =

[
M̃

(1)
|| M̃

(2)
]

and Err =[
Err(1) ||Err(2)

]
, where M(1), M̃

(1)
and Err(1) are n× n (square) matrices.

First, note that M = M̃ + Err. Also, using Claim 4.1, we can write that

‖Err‖∞ =

∥∥∥∥∥
`PRG∑
i=1

(
∆

(i)
L − ∆̃

(i)

L

)∥∥∥∥∥
∞

≤
`PRG∑
i=1

∥∥∥∥∆(i)
L − ∆̃

(i)

L

∥∥∥∥
∞
≤ `PRG · L ·

(
m2 · σ

)L
= Bd.

Next, consider the following scenarios.

Part 1: BP(i)(z) = βi for all i ≤ `PRG. First, recall that the top level matrices always satisfy the following
constraints during honest obfuscation:

∑
i : βi=0

B
(i)

L,rej(i)
+

∑
i : βi=1

B
(i)

L,acc(i)
=

{
0n×m if msg = 0
√
q ·
[
In ||0n×(m−n)

]
if msg = 1.

Since BP(i)(z) = βi for all i ≤ `PRG, we can alternatively write it as

`PRG∑
i=1

B
(i)

L,st
(i)
L

=

{
0n×m if msg = 0
√
q ·
[
In ||0n×(m−n)

]
if msg = 1.

20

Note that

M̃ =

`PRG∑
i=1

∆̃
(i)

L =

`PRG∑
i=1

ΓL ·B(i)

L,st
(i)
L

= ΓL ·
`PRG∑
i=1

B
(i)

L,st
(i)
L

=

{
0n×m if msg = 0
√
q ·
[
ΓL ||0n×(m−n)

]
if msg = 1.

Next, we consider the following two cases dependending upon the message being obfuscated — (1) msg = 0,
(2) msg = 1.

Case 1 (msg = 0). We already know that ‖Err‖∞ ≤ Bd. Now since in this case M̃ = 0n×m, we can say
that

‖M‖∞ =
∥∥∥M̃ + Err

∥∥∥
∞

= ‖Err‖∞ ≤ Bd.

Thus, matrix M (computed during evaluation) always satisfies the condition that ‖M‖∞ ≤ Bd if msg = 0.

Case 2 (msg = 1). First, note that during obfuscation we sample secret matrices S
(b)
level (for each level and

bit b) such that they are short and always invertible. Therefore, matrix ΓL (which is product of L seret
matrices) is also invertible. Thus, we can write that

‖ΓL‖∞ ≥ 1, ‖ΓL‖∞ =

∥∥∥∥∥∥
L∏
j=1

Sj

∥∥∥∥∥∥
∞

≤ nL
L∏
j=1

‖Sj‖∞ ≤ (m2 · σ)L < Bd.

The lower bound of 1 follows from the fact that ΓL is non-singular (and integral) matrix, and upper bound

follows from the fact that matrices S
(b)
level are sampled from bounded Gaussian distribution.

Since msg = 1, we know that M̃
(1)

=
√
q ·ΓL and M̃

(2)
= 0n×(m−n). Using all these facts, we can show that

if msg = 1, then the checks during component evaluation always succeed. More formally, first we show that
M(2) is a short matrix. ∥∥∥M(2)

∥∥∥
∞

=

∥∥∥∥M̃(2)
+ Err(2)

∥∥∥∥
∞

=
∥∥∥Err(2)∥∥∥

∞
≤ ‖Err‖∞ ≤ Bd.

Next, we show that matrix M(1) has large entries. In other words, matrix M has high l∞ norm. Concretely,

‖M‖∞ =
∥∥∥M̃ + Err

∥∥∥
∞
≤
∥∥∥M̃∥∥∥

∞
+ ‖Err‖∞ =

∥∥∥∥M̃(1)
∥∥∥∥
∞

+ ‖Err‖∞ = ‖√q · ΓL‖∞ + ‖Err‖∞ ≤
√
q · Bd + Bd.

‖M‖∞ =
∥∥∥M̃ + Err

∥∥∥
∞
≥
∥∥∥M̃∥∥∥

∞
− ‖Err‖∞ ≥

∥∥∥∥M̃(1)
∥∥∥∥
∞
− ‖Err‖∞ = ‖√q · ΓL‖∞ − ‖Err‖∞ ≥

√
q − Bd.

Therefore, ‖M‖∞ ∈
[√
q − Bd, (

√
q + 1) · Bd

]
. Thus, if msg = 1 then the evaluation always outputs 1.

Part 2: BP(i)(z) 6= βi for some i ≤ `PRG. Let k be the first such index. Then B
(k)

L,st
(k)
L

is a uniformly ran-

dom n×m matrix, independent of the other top level matrices. As a result,
∑`PRG

i=1 B
(i)

L,st
(i)
L

is a uniformly ran-

dom matrix. As we noted before ΓL is an invertible matrix, therefore M̃ =
∑`PRG

i=1 ∆̃
(i)

L = ΓL ·
∑`PRG

i=1 B
(i)

L,st
(i)
L

is a uniformly random matrix. This also implies that sub-matrices M̃
(1)

and M̃
(2)

are random matrices as
well.

Therefore, with all but negligible probability, both ‖M‖∞ as well as
∥∥∥M(2)

∥∥∥
∞

will not be small (i.e., less

than Bd). Thus, in this scenario, the evaluator will output ⊥ (with all but negligible probability).
This concludes the proof of Lemma 4.1.

21

Using the above lemma, we can now argue the correctness of our scheme. First, we need to show
correctness for the case when P (x) = α.

Claim 4.2. For all security parameters λ, inputs x ∈ {0, 1}`in , programs P ∈ C`in,`out,d and messages
msg ∈ {0, 1}, if P (x) = α, then

Eval(Obf(1λ, P,msg, α)), x) = msg.

Proof. First, the obfuscator encrypts the program P using an LHE secret key lhe.sk, and sets ct← LHE.Enc(lhe.sk, P).
The evaluator evaluates the LHE ciphertext on universal circuit Ux(·), which results in an evaluated cipher-
text c̃t. Now, by the correctness of the LHE scheme, decryption of c̃t using lhe.sk outputs α. Therefore,
PRG(h(LHE.Dec(lhe.sk, c̃t))) = β.10 Then, using Lemma 4.1, we can argue that Comp-Eval outputs msg,
and thus Eval outputs msg.

Claim 4.3. For all security parameters λ, inputs x ∈ {0, 1}`in , programs P ∈ C`in,`out,d, α ∈ {0, 1}`out such
that P (x) 6= α and msg ∈ {0, 1},

Pr[Eval(Obf(1λ, P,msg, α), x) = ⊥] ≥ 1− negl(λ)

where the probability is taken over the random coins used during obfuscation.

Proof. Fix any security parameter λ, program P , α, x such that P (x) 6= α and message msg. Let us now
consider the events Error : Eval(Obf(1λ, P , msg, α), x) 6= ⊥ and Bad : PRG(h(P (x))) = PRG(h(α)). Clearly,
Pr[Error] ≤ Pr[Error | Bad] + Pr[Bad]. We will prove that both terms Pr[Bad] and Pr[Error | Bad] are both
negligible in the security parameter.

Pr[Error | Bad] : Since we are conditioning on Bad, it follows that PRG(h(P (x))) 6= PRG(h(α)), and note
that this probability is only over the coins chosen during Comp-Gen and Comp-Eval. Let ct be the LHE
encryption of P , and c̃t = LHE.Eval(ek, Ux(·), ct). As described in the construction, let Q be the program
that, on input a LHE ciphertext, first decrypts it using sk, then computes PRG(h(y)) (where y is the

decrypted string). Let BP(i) denote the branching program computing the ith output bit of Q. Using the
correctness of LHE decryption, it follows that Q(c̃t) = PRG(h(P (x))) 6= PRG(h(α)), and therefore there

exists some i ≤ `PRG such that BP(i)(c̃t) 6= βi (recall β = PRG(h(α))). As a result, using Lemma 4.1, we

can conclude that for all msg ∈ {0, 1}, Pr[Comp-Eval(c̃t,Comp-Gen({BP(i)}i, β,msg)) 6= ⊥] ≤ negl(λ).

Pr[Bad] : For any y ∈ {0, 1}`PRG , let PRG−1(y) = {z ∈ {0, 1}`H s.t. PRG(z) = y}. Using the PRG
security, we can argue that, for any y ∈ {0, 1}`PRG , |PRG−1(y)|/2`H ≤ negl(λ). Suppose, on the contrary,
there exists some y∗ such that PRG−1(y∗)/2`H = ε, where ε is non-negligible, then we can construct a PPT
adversary that can break the PRG security with advantage ε2 − negl(λ). Concretely, the adversary receives
a challenge string t. It chooses a uniformly random string s ← {0, 1}`H and checks if PRG(s) = t. If so, it
outputs that t is a pseudorandom string, else it guesses randomly. Clearly, the advantage of this attacker is
at least ε2 − 2−(`PRG−`H), where 2−(`PRG−`H) loss is in the case when the challenge string t lies in the image
space of PRG. Since, `PRG − `H = ω(log λ). Therefore, if PRG is secure then for every y ∈ {0, 1}`PRG ,
|PRG−1(y)|

2`H
≤ negl(λ).

Let φγ = PRG−1(PRG(γ)). Now we consider the probability Pr[Bad], where the probability is over the

10As before, we are overloading the notation and using LHE.Dec to decrypt multiple ciphertexts.

22

choice of h← H.

Pr[Bad] = Pr[PRG(h(P (x))) = PRG(h(α))]

=
∑

γ∈{0,1}`H

Pr [h(α) = γ ∧ h(P (x)) ∈ φγ]

=
∑

γ∈{0,1}`H

∑
δ∈φγ

Pr [h(α) = γ ∧ h(P (x)) = δ]

≤
∑

γ∈{0,1}`H

∑
δ∈φγ

1

(2`H)
2 =

∑
γ∈{0,1}`H

|φγ |
(2`H)

2

≤ max
γ

|φγ |
2`H
≤ negl(λ).

Therefore, Pr[Error] is bounded by a negligible function in λ. This concludes the proof.

4.2 Security

We will now prove the scheme secure as per Definition 3.4. For proving security, we will first need to define
a PPT simulator. The simulator Sim gets as input the security parameter λ and size of program 1|P |, and
it must output a simulated program.

We emphasize that our proof will use a polynomial number of hybrids and each (computational) re-
duction will only rely on a primitive being secure against poly-time attackers. Thus we avoid making any
subexponential hardness assumptions.

4.2.1 Simulator Sim

The simulator first chooses the parameters n,m, q, σ, `PRG as in the original scheme. Next, it chooses LHE
secret/evaluation keys. It computes (sk, ek) ← LHE.Setup(1λ, 1d log d) (note that the depth d of the circuit
class is fixed for the scheme). It then computes an encryption of 0|P |. Let ct ← LHE.Enc(sk,0|P |). Finally,

the simulator chooses `PRG matrices B
(i)
0,1 ← Zn×mq and low norm matrices {(C(i,0)

j ,C
(i,1)
j)}i,j for i ≤ `PRG,

j ≤ L where C
(i,b)
j ← χm×m. The obfuscation consists of the LHE evaluation key ek, ciphertext ct, together

with the components

({
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j)

}
i,j

)
.

To prove security, we will define a sequence of hybrids, and show that the hybrids are computationally
indistinguishable. The first hybrid corresponds to the case when the challenger outputs an obfuscation of
the program, while the final hybrid corresponds to one where the challenger outputs an obfuscation of an
‘all-reject’ program. At a high level, our aim is to replace the LHE encryption of the program P with an
encryption of all-zeroes string, and to remove the message msg from the matrix components. To achieve
this, we will first replace the matrix components with random low-norm matrices. This switch ensures that
the matrix components contain no information about the msg or the LHE secret key. We can then switch
the encryption of P with encryption of all-zeroes string.

4.2.2 Sequence of Hybrid Games

Fix any program P , message msg ∈ {0, 1}.

23

Game 0: This corresponds to the original security game.

1. The challenger first chooses the LWE parameters n, m, q, σ, χ and `PRG. Recall L denotes the length
of the branching programs.

2. It chooses (sk, ek)← LHE.Setup(1λ, 1d log d) and sets ct← LHE.Enc(sk, P).
3. Next, it chooses a uniformly random string α ← {0, 1}`out , hash function h ← H and sets β =

PRG(h(α)).
4. Next, consider the following program Q. It takes as input an LHE ciphertext ct, has sk hardwired and

does the following: it decrypts the input ciphertext ct to get string x and outputs PRG(h(x)). For

i ≤ `PRG(λ), let BP(i) denote the branching program that outputs the ith bit of PRG(h(x)).

5. It chooses `PRG uniformly random matrices B
(i)
L of dimensions 5n×m, such that the following constraint

is satisfied (recall B
(i)
L,1 represents the first n rows of B

(i)
L , B

(i)
L,2 represents the next n rows of B

(i)
L , etc)

∑
i : βi=0

B
(i)

L,rej(i)
+

∑
i : βi=1

B
(i)

L,acc(i)
=

{
0 if msg = 0.
√
q ·
[
In ||0n×(m−n)

]
if msg = 1.

6. For i = 1 to `PRG and j = 0 to L− 1, it chooses (B
(i)
j , T

(i)
j)← TrapGen(15n, 1m, q).

7. Next, it generates the components for each level. For each i ∈ [1, `PRG] and each level level ∈ [1, L], do
the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG. If either S

(0)
level or

S
(1)
level has determinant zero, then set it to be In.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

(c) Set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

8. The final obfuscated program consists of the LHE evaluation key ek, LHE encryption ct, together with

the components

({
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j)

}
i,j

)
.

Game 1: In this experiment, the challenger replaces h(α) with a uniformly random string α′. Also, it

chooses the matrices S
(0)
level,S

(1)
level without checking if their determinant is non-zero.

3. Next, it chooses a hash function h ← H, a uniformly random string α′ ← {0, 1}`H and sets β =
PRG(α′).

7. Next, it generates the components for each level. For each level level ∈ [1, L], do the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

(c) Set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

Game 2: In this experiment, the challenger replaces the pseudorandom string β = PRG(α′) with a truly
random string.

3. Next, it chooses a hash function h← H, a uniformly random string β ← {0, 1}`PRG .

24

Game 3: In this experiment, the challenger chooses the top level matrices uniformly at random.

5. It chooses `PRG uniformly random matrices B
(i)
L of dimensions 5n×m, without any constraints.

We will now define 4L+1 intermediate game Game (4, j∗, 0),Game (4, j∗, 1),Game (4, j∗, 2),Game (4, j∗, 3)
for j∗ ∈ {0, 1, . . . , L− 1} and Game (4, L, 0). The experiment Game (4, 0, 0) will be same as Game 3.

Game (4, j∗, 0): In this experiment, the challenger chooses the top j∗+1 matrices B
(i)
j uniformly at random

(without a trapdoor). Also, the top j∗ C
(i,b)
j matrices, for j > L − j∗, are chosen randomly from the noise

distribution χm×m.

6. For i = 1 to `PRG and j = 0 to L− 1,

• if j < L− j∗ it chooses (B
(i)
j , T

(i)
j)← TrapGen(15n, 1m, q).

• if j ≥ L− j∗, it chooses B
(i)
j uniformly at random from Z5n×m

q .

7. Next, it generates the components for each level. For each level level ∈ [1, L− j∗], do the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

(c) Set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

For all level > L− j∗, i ≤ `PRG and b ∈ {0, 1} choose C
(i,b)
level ← χm×m.

Game (4, j∗, 1): In this experiment, the challenger chooses M
(i,0)
level uniformly at random for level = L − j∗

(M
(i,1)
level is same as before).

7. Next, it generates the components for each level. For each level level ∈ [1, L− j∗], do the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

(c) If level = L− j∗, choose M
(i,0)
level ← Z5n×m

q and M
(i,1)
level same as previous hybrid.

Else set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

For all level > L− j∗, i ≤ `PRG and b ∈ {0, 1} choose C
(i,b)
level ← χm×m.

Game (4, j∗, 2): In this experiment, the challenger chooses M
(i,b)
level uniformly at random for level = L − j∗

and b ∈ {0, 1}.

7. Next, it generates the components for each level. For each level level ∈ [1, L− j∗], do the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

25

(c) If level = L− j∗, choose M
(i,b)
level ← Z5n×m

q .

Else set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

For all level > L− j∗, i ≤ `PRG and b ∈ {0, 1} choose C
(i,b)
level ← χm×m.

Game (4, j∗, 3): In this experiment, the challenger chooses C
(i,b)
L−j∗ from the noise distribution.

7. Next, it generates the components for each level. For each level level ∈ [1, L− j∗], do the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

(c) Set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) If level = L− j∗, then choose C
(i,b)
L−j∗ ← χm×m for b ∈ {0, 1}.

Else compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

For all level > L− j∗, i ≤ `PRG and b ∈ {0, 1} choose C
(i,b)
level ← χm×m.

Game 5: In this experiment, the challenger computes an encryption of 0|P | instead of an encryption of P .
Note that the LHE secret key sk is not required at any other step in this experiment. This corresponds to
the ideal world.

2. It chooses (sk, ek)← LHE.Setup(1λ, 1d log d) and sets ct← LHE.Enc(sk,0|P |).

4.2.3 Analysis

We will now show that the above hybrid experiments are computationally indistinguishable. For any adver-
sary A, let pAi denote the probability that the adversary outputs 1 in Game i.

Claim 4.4. For any adversary A, |pA0 − pA1 | ≤ negl(λ).

Proof. The proof of this claim relies on the fact that a pairwise independent hash function (with appropriate
domain and co-domain) is a strong extractor. There are two differences between these two experiments.
First, in one case, the challenger chooses h ← H, α ← {0, 1}`out and sets β = PRG(h(α)), while in the
other case, the challenger chooses h ← H, α′ ← {0, 1}`out and sets β = PRG(α′). Secondly, in Game 0, the

challenger ensures that the matrices S
(0)
level,S

(1)
level are full-rank, while in Game 1, it chooses these matrices from

χ without the rank check. Note that any n × n matrix sampled from χ is full rank with all but negligible
probability. Therefore, this switch is indistinguishable. We will now show that switching h(α) to a uniformly
random string is also statistically indistinguishable.

Suppose there exists an adversary A such that |pA0 − pA1 | = ε. We can construct a reduction algorithm
B that can break the strong extraction property of H with probability ε. The reduction algorithm receives
(h, γ) from the strong extractor challenger. It chooses LHE keys (sk, ek)← LHE.Setup(1λ, 1d log d), computes
an encryption of P as ct← LHE.Enc(sk, P) and sets β = PRG(γ). Next, it defines the program Q which takes
as input an LHE ciphertext, and has sk hardwired. Q first decrypts the input ciphertext to compute y, then
computes PRG(h(y)). Let {BP(i)}i be the branching progams corresponding to Q. The reduction algorithm

computes the components using Comp-Gen({BP(i)}i, β,msg), which is identical in both experiments. It sends
the components, together with ek and ct, and the adversary outputs a bit b′. If b′ = 1, the reduction algorithm
guesses that γ is an evaluation of the hash function. The reduction algorithm has advantage |pA0 − pA1 | = ε
in the strong extractor experiment.

26

Claim 4.5. Assuming the security of PRG, for any PPT adversary A, |pA1 − pA2 | ≤ negl(λ).

Proof. We describe a reduction algorithm B which plays the indistinguishability based game with PRG
challenger. B first chooses (sk, ek) ← LHE.Setup(1λ, 1d log d) and ct ← LHE.Enc(sk, P). It then receives β
from the PRG challenger. Next, it defines the program Q which takes as input an LHE ciphertext, and has
sk hardwired. Q first decrypts the input ciphertext to compute y, then computes PRG(h(y)). Let {BP(i)}i
be the branching progams corresponding to Q. The reduction algorithm computes the components using
Comp-Gen({BP(i)}i, β,msg), which is identical in both experiments. It sends the components, together with
ek and ct, and the adversary outputs a bit b′. If b′ = 1, the reduction algorithm guesses that β is an
evaluation of the hash function.

Note that when the PRG challenger sends a pseudorandom string β = PRG(α′) for a uniformly random
α′, then B exactly simulates the view of Game 1 for A. Otherwise if the PRG challenger outputs a uniformly
random string, then B exactly simulates the view of Game 2. Therefore, if |pA1 − pA2 | is non-negligible, then
PRG is not a secure pseudorandom generator.

Claim 4.6. For any adversary A, |pA2 − pA3 | ≤ negl(λ).

Proof. This step is information theoretic, and uses the Leftover Hash Lemma (matrix version, Corollary 2.1).

Note that the difference between Game 2 and 3 is the way top level matrices B
(i)
L are sampled during the

component generation phase. In Game 2, matrix B
(`PRG)

L,st
`PRG
L

is chosen as

B
(`PRG)

L,st
(`PRG)

L

=

−
(∑

i≤`PRG−1 : βi=0 B
(i)

L,rej(i)
+
∑
i≤`PRG−1 : βi=1 B

(i)

L,acc(i)

)
if msg = 0

−
(∑

i≤`PRG−1 : βi=0 B
(i)

L,rej(i)
+
∑
i≤`PRG−1 : βi=1 B

(i)

L,acc(i)

)
+
√
q ·
[
In ||0n×(m−n)

]
if msg = 1

where st
(`PRG)
L is acc(`PRG) if β`PRG

= 1, and rej(`PRG) otherwise. It can be equivalently written as follows

B
(`PRG)

L,st
(`PRG)

L

= −A ·R, A =
[
B

(1)

L,rej(1)
||B(1)

L,acc(1)
|| . . . ||B(`PRG−1)

L,rej(`PRG−1) ||B
(`PRG−1)
L,acc(`PRG−1)

]
where R = u ⊗ Im ∈ Z2m(`PRG−1)×m

q , u = (u1, . . . , u2`PRG−2)> ∈ {0, 1}2`PRG−2 and for all i ≤ `PRG − 1,
u2i = βi and u2i−1 = 1 − βi. That is, matrix R consists of 2`PRG − 2 submatrices where if βi = 1,
then its 2ith submatrix is identity and (2i − 1)th submatrix is zero, otherwise it is the opposite. Let R
denote the distribution of matrix R as described above with β drawn uniformly from {0, 1}`PRG . Note that
H∞(R) = `PRG − 1 (min-entropy of R), and `PRG > m · n log2 q + ω(log n). Therefore, it follows (from
Corollary 2.1) that {(

A,B
(`PRG)

L,st
(`PRG)

L

= −A ·R
)

: A← Zn×2m(`PRG−1)
q ,R← R

}
≈s{(

A,B
(`PRG)

L,st
(`PRG)

L

)
: A← Zn×2m(`PRG−1)

q ,B
(`PRG)

L,st
(`PRG)

L

← Zn×mq

}
Thus, |pA2 − pA3 | is negligible in the security parameter for all adversaries A.

Claim 4.7. For all j∗ ∈ [1, L], for all A, |pA(4,j∗−1,3) − p
A
(4,j∗,0)| ≤ negl(λ).

Proof. This proof relies on the Matrix Well Distributedness property of TrapGen (see Definition 2.1). The

only difference in Game (4, j∗ − 1, 3) and Game (4, j∗, 0) is the choice of {B(i)
L−j∗}. In Game (4, j∗ − 1, 3),

{B(i)
L−j∗} is chosen with a trapdoor for all i ≤ `PRG. In Game (4, j∗, 0), these matrices are chosen uniformly

27

at random. Note that in both the experiments, the trapdoors corresponding to B
(i)
L−j∗ are not used, since the

matrix components {C(i,b)
L−j∗+1}i,b are chosen from the noise distribution χ. As a result, using the Matrix Well

Distributedness property of TrapGen, we can argue that these two games are statistically indistinguishable,
and therefore |pA(4,j∗−1,3) − p

A
(4,j∗,0)| ≤ negl(λ).

Claim 4.8. Assuming the LWE with short secrets assumption (Assumption 2) For all j∗ ∈ [0, L− 1], for all
PPT adversaries A, |pA(4,j∗,0) − p

A
(4,j∗,1)| ≤ negl(λ)

Proof. In Game (4, j∗, 0), the challenger computes M
(i,0)
L−j∗ as

(
I5 ⊗ S

(0)
L−j∗

)
·D(i,0)

L−j∗+E
(i,0)
L−j∗ . In Game (4, j∗, 1),

this matrix is chosen uniformly at random. We will use the LWE assumption (short secrets version) to prove
that these two hybrids are indistinguishable.

Suppose there exists a PPT adversary A that can distinguish between these two games with advantage ε.
Then we can consruct a reduction algorithm B that can break the LWE-ss assumption. First, B receives as
LWE-ss challenge two matrices (F,G) of dimensions n× 5`PRG ·m. It partitions F into `PRG submatrices of

dimensions n× 5m as [F(1) || . . . ||F(`PRG)]. Further, each matrix F(i) is parsed into 5 matrices of dimensions

n×m as [F
(i)
1 || . . . ||F

(i)
5]. Similarly, the matrix G is partitioned into {G(i)

k }i≤`PRG,k≤5.
The reduction algorithm chooses the LHE keys and computes the ciphertext as in the two games. Next,

it needs to choose the matrix components. First, it chooses the top j∗− 1 matrices {B(i)
j }i≤`PRG,j>L−j∗ uni-

formly at random, and the top j∗−1 components {(C(i,0)
j ,C

(i,1)
j)}i≤`PRG,j>L−j∗ from the noise distribution.

It then sets B
(i)
L−j∗,k = F

(i)
k for all i ≤ `PRG, k ≤ 5.

The reduction algorithm then uses G
(i)
k to define M

(i,0)
L−j∗ as follows:

M
(i,0)
L−j∗ =

G

(i)

σ
(i)

L−j∗,0(1)

...

G
(i)

σ
(i)

L−j∗,0(5)

 .

The matrix M
(i,1)
L−j∗ is computed identically in both the games. Using B

(i)
L−j∗ , the reduction algorithm

can compute M
(i,1)
L−j∗ . Finally, it computes C

(i,b)
L−j∗ for all i ≤ `PRG, b ∈ {0, 1}.

The remaining components are computed identically in both games, and the reduction algorithm can
perfectly simulate them. Finally, it sends all the components, together with the LHE evaluation key and
ciphertext. The adversary sends a bit b′. If b′ = 1, the reduction algorithm guesses that G = S · F + E for
some matrices S,E drawn from the noise distribution. If b′ = 0, then the reduction algorithm guesses that
G is random.

If G is an LWE sample, then B simulates Game (4, j∗, 0), else it simulates Game (4, j∗, 1). The advantage
of B is pA(4,j∗,0) − p

A
(4,j∗,1).

Claim 4.9. Assuming the LWE with short secrets assumption (Assumption 2) For all j∗ ∈ [0, L− 1], for all
PPT adversaries A, |pA(4,j∗,1) − p

A
(4,j∗,2)| ≤ negl(λ)

Proof. In Game (4, j∗, 1), the challenger computes M
(i,1)
L−j∗ as

(
I5 ⊗ S

(1)
L−j∗

)
·D(i,1)

L−j∗+E
(i,1)
L−j∗ . In Game (4, j∗, 2),

this matrix is chosen uniformly at random. This proof is identical to the previous proof.

Claim 4.10. For all j∗ ∈ [0, L− 1], for all A, |pA(4,j∗,2) − p
A
(4,j∗,3)| ≤ negl(λ).

Proof. The proof of this claim relies on the preimage well-distributedness property of lattice trapdoor sampler
(TrapGen,SamplePre) (Definition 2.1). Note that the only difference between these two games is with regard

28

to C
(i,b)
L−j∗ . In Game (4, j∗, 2) these matrices are computed using the SamplePre algorithm. In Game (4, j∗, 3),

they’re chosen from the noise distribution χ. Since M
(i,b)
L−j∗ is chosen uniformly at random, we can use the

preimage well-distributedness property to argue that the two games are statistically indistinguishable.

Claim 4.11. Assuming the LHE scheme is IND-CPA secure, for all PPT adversariesA, |pA4,L,0−pA5 | ≤ negl(λ).

Proof. The only difference between pA4,L,0 and pA5 is that the LHE ciphertext is an encryption of P in one

case, and an encryption of 0|P | in the other. Note that in both games, the LHE secret key is only used
for computing the ciphertext (it is not used by the branching programs BP(i)). Suppose there exists an
adversary A that can distinguish between these two games. Then we can construct a reduction algorithm B
that breaks the IND-CPA security of the LHE scheme.

The reduction algorithms sends P,0|P | to the LHE challenger. It receives an evaluation key ek and

a ciphertext ct. It then chooses the matrix components B
(i)
0 uniformly at random, and the components

{C(i,b)
j }i,j,b from the noise distribution. Finally, it sends ek, ct and the matrix components to the adversary.

The adversary sends a bit b′. If b′ = 1, then the reduction algorithm guesses that ct is an encryption of
P , else it guesses that ct is an encryption of 0|P |. Note that the advantage of B in the IND-CPA game is
|pA(4,L,0) − p

A
5 |.

4.3 On the Need for a Pseudo Random Generator

An interesting question is whether the application of a Pseudo Random Generator is actually necessary
for the security of our construction. A natural alternative construction would be to use the same overall
structure with the modification that the circuit Q computes Q(ct1, . . . , ct`out) = LHE.Dec(lhe.sk, ct1) || · · · ||
LHE.Dec(lhe.sk, ct`out). In particular, Q just performs an LHE decryption and does not compute a pairwise
independent hash and pseudo random generator to the result. In this case we set β = α instead of β =
PRG(h(α)).

While we do not rule out that such a construction might work, there appear to be some inherent tensions
in setting parameters to prove such a system secure. Let’s return to the proof of the scheme as it is. A

critical proof step is to move from Game 2 to Game 3 where in Game 2 it chooses the B
(i)

L,acc(i)
,B

(i)

L,rej(i)
values

such that ∑
i : βi=0

B
(i)

L,rej(i)
+

∑
i : βi=1

B
(i)

L,acc(i)
=

{
0n×m if msg = 0.
√
q ·
[
In ||0n×(m−n)

]
if msg = 1.

Whereas in Game 3 all are chosen uniformly at random. By our choice of parameters we have that `PRG �
n ·m · log q. Therefore, with high probability, there will be many strings w such that

∑
i : wi=0 B

(i)
L,wi

= 0.
It follows that (in the case where the message bit is 0) programming the matrices so that on a random β∑
i : βi=0 B

(i)
L,βi

= 0 is statistically close to just choosing them uniformly at random.
Now if we instead use the alternative construction we have that there are `out pairs of matrices instead

at the last level instead of `PRG. In our construction `out < `in since the input HE ciphertext must be big
enough to encrypt α. And `in < log q due to the noise accumulation in our construction. So we have that
`out � log q and the statistical argument we used earlier for going from Game 2 to Game 3 no longer holds.
We might instead consider a computational argument for moving between these games where the LWE
assumption with binary secrets is a natural candidate. Unfortunately, known conversions [BLP+13, MP13]
between standard LWE and binary LWE require the LWE challenge vector to increase by a factor of log q
which would again violate our parameter constraints.

Another interesting question is whether the pairwise independent hash function could be removed from
our construction where the circuit Q would go straight from decrypting the HE ciphertext to evaluating
a pseudorandom generator. Currently, the pairwise indepdent hash function is in place to assure semi-
statistical correctness of Definition 3.3. Consider a pseudorandom generator PRG that always ignored its
first input bit. Furthermore consider a program P , input x, lock value α such that P (x) = α̃, where α̃ is a

29

bitstring that equals α at all bit positions except the first. Then the triple P , input x, lock value α would
violate semi-statistical correctness under the construction where the pairwise independent hash function is
removed.

At the same time if we were to use an injective pseudo random generator such issues are not a factor
and the construction will actually achieve statistical correctness of Definition 3.2. We show this formally in
Appendix D.

5 Predicate Encryption: Achieving 1-Sided Security

Below we first give a formal description of our transformation for the case of a key-policy ABE (KP-ABE)
system where the decryption algorithms are of a bounded depth and size. In Appendix E we show a
slight generalization of the first transformation where we add a level of indirection using fully homomorphic
encryption to remove the depth and size constraints. We follow (in this section) by enumerating different
forms of Attribute-Based Encryption and informally discussing how our transformation could be adapted to
each case. We finally sketch a derivative application where we can encrypt to an arbitrarily formed public
key and hide from everyone except the receiver which public key we encrypted to.

5.1 Key-Policy ABE with Bounded Decryption Depth and Size

In this section, we construct a PE scheme which achieves 1-sided security from any KP-ABE scheme and
a lockable obfuscator. Our construction inherits the attribute space and predicate class of the underlying
KP-ABE scheme.

Outline. The central idea is to hide the ciphertext inside an obfuscated circuit. During encryption, instead
of encrypting the message m (using the underlying encryption algorithm), the encryptor chooses a lock value
α for obfuscation and encrypts the lock value α under the input attribute x to get ciphertext ctα. Next,
it obfuscates (under the same lock value α) the decryption circuit of the underlying ABE scheme with the

ciphertext ctα (encrypting lock value) hardwired. Now, output of this obfuscated circuit P̃ would be set

to be the actual message m and the obfuscated circuit P̃ will be the final ciphertext. Observe that given
any valid secret key skC (such that C(x) = 1), one could simply evaluate the obfuscated circuit using the
secret key and its output would guaranteed to be message m by correctness of the underlying decryption and
evaluation algorithms. At a high level, this hides the attribute x because if the adversary can not decrypt
the ciphertext ctα containing the lock value α (i.e, it does not know the secret key for the corresponding
attribute), then it has not no information about the lock value α. Therefore, by the obfuscation security, we

can guarantee that the circuit P̃ (i.e., challenge ciphertext) could be simulated instead. Below we describe
our construction PE = (Setup,Enc,KeyGen,Dec) for attribute spaces {Xλ}λ, predicate classes {Cλ}λ and
1-bit messages.

Construction. Let ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) be a key-policy attribute based
encryption scheme for set of attribute spaces {Xλ}λ, predicate classes {Cλ}λ and message spaces {Mλ}λ
with decryption circuit of depth d(λ) and secret key space {0, 1}`(λ). Also, let O = (Obf,Eval) be a lockable
obfuscator for circuit class C`,k,d (i.e., the class of depth d(λ) circuits with `(λ) bit input and k(λ) bit
output). For simplicity, assume that Mλ = {0, 1}k(λ). Below we describe our construction. For notational
convenience, let ` = `(λ), k = k(λ) and d = d(λ).

• Setup(1λ,Xλ, Cλ)→ (pp,msk). The setup algorithm runs ABE.Setup to generate public parameters and
master secret key as (pp,msk)← ABE.Setup(1λ,Xλ, Cλ, 1k).

• Enc(pp, x,m) → ct. The encryption algorithm chooses a random string α ← {0, 1}k and encrypts it
as ctα ← ABE.Enc(pp, x, α). Next, it obfuscates the decryption circuit with message m and lock α as

P̃ ← Obf(1λ,ABE.Dec(·, ctα),m, α). Finally, it outputs the ciphertext as ct = P̃ .

30

• KeyGen(msk, C)→ skC . The key generation algorithm runs ABE.KeyGen to generate the secret key as
skC ← ABE.KeyGen(msk, C).

• Dec(skC , ct) → m or ⊥ . Let ct = P̃ . The decryption algorithm evaluates the obfuscated program on

input skC , and outputs Eval(P̃ , skC).

Remark 5.1 (Preservation of Algorithms and Retroactive Application). We would like to point out that
the above transformation preserves the original ABE setup and key generation algorithms as well as the
private key structure. This could allow some flexibility in encryption. If the user encrypting data feels that
hiding the attributes is important, he can apply our transformation. If not, he can default to the original
scheme. Also, it allows for one-sided predicate encryption to be retroactively applied to an ABE scheme
that has already published its public parameters and distributed its keys. Of course, only newly generated
ciphertexts generated with using the transformation would have the attributes hidden.

Correctness. For all λ ∈ N, message m ∈ {0, 1}, attribute x ∈ Xλ, public parameters and master se-
cret key (pp,msk) ← ABE.Setup(1λ,Xλ, Cλ,Mλ), the ciphertext corresponding to message m under at-

tribute x in our scheme is an obfuscated circuit P̃ , where α ← {0, 1}k, ctα ← ABE.Enc(pp, x, α) and

P̃ ← Obf(1λ,ABE.Dec(·, ctα),m, α).
For any predicate C ∈ Cλ, the corresponding secret key in our scheme is simply skC ← ABE.KeyGen(msk, C).

Consider the following two cases:

1. C(x) = 1 : We know that if C(x) = 1, then with all but negligible probability ABE.Dec(skC , ctα) = α.
This follows from correctness of the ABE scheme. Next, using correctness of obfuscation, we can con-
clude that Eval(P̃ , skC) = m as ABE.Dec(skC , ctα) = α. Therefore, if C(x) = 1, then Pr[Dec(skC , ct =

P̃) = m] ≥ 1− negl(λ).

2. C(x) = 0 : Similarly, we know that if C(x) = 0, then with all but negligible probability ABE.Dec(skC , ctα) =

⊥. Also by correctness of obfuscation, we can conclude that if ABE.Dec(skC , ctα) 6= α, then Pr[Eval(P̃ , skC) =
⊥] ≥ 1 − negl(λ). Since ⊥ 6= α, therefore combining these two facts we know that if C(x) = 0, then

Pr[Dec(skC , ct = P̃) = ⊥] ≥ 1− negl′(λ) for some negligible function negl′(·).

Therefore, PE satisfies the predicate encryption correctness condition.

Security. We will now show that the scheme described above achieves 1-sided security as per Definition A.2.
Formally, we prove the following.

Theorem 5.1. If ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) is a fully secure attribute based
encryption for set of attribute spaces {Xλ}λ, predicate classes {Cλ}λ and message spaces {Mλ}λ satisfying
Definition A.1, and O = (Obf,Eval) is a lockable obfuscator for 1-bit messages and circuit class {C`,k,d}λ
satisfying Definition 3.4, then PE is a secure predicate encryption scheme satisfying 1-sided security as per
Definition A.2 for 1-bit messages and same attribute space and predicate class as the ABE scheme.

Our proof proceeds via a sequence of hybrid games. Each game is played between the challenger and
attacker A. Let A be any PPT adversary that wins the 1-sided security game with non-negligible advantage.
We argue that such an adversary must break security of at least one underlying primitive. The first game
corresponds to the 1-sided security game as described in Definition A.2. In the final game, the challenge
ciphertext is simulated and does not contain any information about the challenge messages.

We will first define the sequence of hybrid games, and then show that they are computationally indistin-
guishable.

31

Game 1: In this game, the challenge ciphertext ct is honestly generated, i.e. by first choosing a uni-
formly random lock α, then encrypting it under attribute x to get ciphertext ctα and finally obfuscating the
decryption circuit with lock α and message mb.

1. Setup Phase. The challenger sets up by generating public parameters and master secret key as
(pp,msk)← ABE.Setup(1λ,Xλ, Cλ, 1k). It sends pp to A.

2. Pre-Challenge Query Phase. A queries the challenger on polynomially many predicate circuits Ci
to receive the corresponding secret keys as skCi ← ABE.KeyGen(msk, Ci).

3. Challenge. Next, A sends the challenge messages and attributes ((m0, x0), (m1, x1)) to the challenger
such that Ci(x0) = Ci(x1) = 0 for all queried predicates. The challenger chooses a random bit
b ← {0, 1} and a uniformly random lock string α ← {0, 1}k. It computes ciphertext ct as ct ←
ABE.Enc(pp, xb, α). It also generates obfuscated program P̃ as P̃ ← Obf(1λ,ABE.Dec(·, ct),mb, α),

and sends P̃ to A.

4. Post-Challenge Query Phase. A queries the challenger on polynomially many predicate circuits
Ci as before. The challenger handles these as in pre-challenge query phase.

5. Guess. A outputs it guess b′ and wins if b = b′.

Game 2: This is same as Game 1, except the challenger computes ciphertext ct as an encryption of an all
zero string instead of α.

3. Challenge. Next, A sends the challenge messages and attributes ((m0, x0), (m1, x1)) to the challenger
such that Ci(x0) = Ci(x1) = 0 for all queried predicates. The challenger chooses a random bit
b ← {0, 1} and a uniformly random lock string α ← {0, 1}k. It computes ciphertext ct as ct ←
ABE.Enc(pp, xb, 0

k). It also generates obfuscated program P̃ as P̃ ← Obf(1λ,ABE.Dec(·, ct),mb, α),

and sends P̃ to A.

Game 3: This is same as Game 2, except the challenger does not choose the lock α anymore and it simulates
the obfuscated program P̃ instead of generating it honestly as an obfuscation of the ABE decryption circuit.

3. Challenge. Next, A sends the challenge messages and attributes ((m0, x0), (m1, x1)) to the challenger
such that Ci(x0) = Ci(x1) = 0 for all queried predicates. The challenger chooses a random bit

b ← {0, 1}. It generates obfuscated program P̃ as P̃ ← O.Sim(1λ, 1s, 1) (where s = |ABE.Dec(·, ct)|),
and sends P̃ to A.

Let AdviA = |Pr[b′ = b]− 1/2| denote the advantage of adversary A in guessing the bit b in Game i. First,
note that Adv3A = 0. In other words, A’s advantage in Game 3 is 0. This is because the challenge ciphertext

P̃ does not contain any information about bit b.
To complete the proof, we establish via a sequence of lemmas that no PPT adversary A can distinguish

between each adjacent game with non-negligible probability. We show via a sequence of lemmas that |AdviA−
Advi+1

A | is negligible for all i = 1, 2. Below we discuss our lemmas in detail.

Lemma 5.1. If ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) is a fully secure attribute based en-
cryption, then for all PPT adversaries A, |Adv1A − Adv2A| is negligible in the security parameter λ.

Proof. Suppose there exists an adversary A such that |Adv1A − Adv2A| is non-negligible. We construct an
algorithm B that can distinguish encryptions of lock α and an all zeros string, therefore break security of
the ABE scheme.

The ABE challenger generates a key pair (pp,msk) and sends pp to B. B simply forwards the public
parameters pp to adversary A. A queries the reduction algorithm B on polynomially many predicates Ci
for corresponding secret keys. B forwards each predicate query Ci to the ABE challenger and receives back

32

secret key skCi , which it then sends to A as its response. Next, A sends the challenge message-attribute pairs
((m0, x0), (m1, x1)) to B such that Ci(x0) = Ci(x1) = 0 for all queried predicates. B chooses a random string
α← {0, 1}k and bit b← {0, 1}, and sends t0 = α and t1 = 0k as its challenge messages and xb as the challenge
attribute to the ABE challenger. The ABE challenger chooses a random bit β ← {0, 1}, computes the
challenge ciphertext ct∗ ← ABE.Enc(pp, xb, tβ) and sends ct∗ to B. After receiving ct∗ from the challenger, B
runs Step 3 as in Game 1. That is, B generates obfuscated program P̃ as P̃ ← Obf(1λ,ABE.Dec(·, ct∗),mb, α),

and sends P̃ to A. Next, A makes more key queries and B answers them as before by forwarding those to
ABE challenger. Finally, A outputs its guess b′. If b = b′, then B sends 0 as its guess (i.e., α was encrypted),
otherwise it sends 1 as its guess (i.e., 0k was encrypted) to the ABE challenger.

Note that if the ABE challenger encrypted α (i.e., β = 0), then B perfectly simulates Game 1 for adversary
A. Otherwise it simulates Game 2 for A. As a result, if |Adv1A − Adv2A| is non-negligible, then B breaks the
ABE scheme’s security with non-negligible advantage.

Lemma 5.2. IfO = (Obf,Eval) is a secure lockable obfuscator, then for all PPT adversariesA, |Adv2A−Adv
3
A|

is negligible in the security parameter λ.

Proof. Suppose there exists an adversary A such that |Adv2A − Adv3A| is non-negligible. We construct an
algorithm B that can distinguish an obfuscation of the ABE decryption circuit with a random lock from a
simulated obfuscated program, therefore break security of the obfuscation scheme.
B samples an ABE key pair (pp,msk) and sends pp to adversary A. A queries the reduction algorithm B

on polynomially many predicates Ci for corresponding secret keys. B answers each query with secret key skCi ,
with skCi ← ABE.KeyGen(msk, Ci). Next, A sends the challenge message-attribute pairs ((m0, x0), (m1, x1))
to B such that Ci(x0) = Ci(x1) = 0 for all queried predicates. B chooses a random bit b ← {0, 1} and
computes ciphertext ct as ct ← ABE.Enc(pp, xb, 0

k). B sends the ABE.Dec(·, ct) circuit along with message

mb to the obfuscation challenger, and receives an obfuscated program P̃ . B finally sends P̃ to A as the
challenge ciphertext. Next, A makes more key queries and B answers them as before. Finally, A outputs
its guess b′. If b = b′, then B sends 0 as its guess (i.e., ABE decryption circuit was obfuscated), otherwise it

sends 1 as its guess (i.e., program P̃ was simulated) as its guess to the obfuscation challenger.
Note that if the obfuscation challenger obfuscated ABE.Dec(·, ct) for some lock α, then B perfectly

simulates Game 2 for adversary A. Otherwise it simulates Game 3 for A. As a result, if |Adv2A − Adv3A| is
non-negligible, then B breaks the obfuscation scheme’s security with non-negligible advantage.

5.2 Generalizing to Other Types

We now briefly discuss other forms of Attribute-Based Encryption and informally describe how our trans-
formation could be adapted to them.

Key-Policy ABE with Unbounded Decryption Depth. The above construction above applies to
ABE systems where there is a system wide bound on the depth of the decryption circuit and bounded key
size. This can account for both for ABE schemes where there is already such a bound in place such as circuit
ABE schemes from LWE or be applied to ABE schemes where no such bound is in place, but one is created
for purposes of the transformation. The advantage of this is that the only added assumption is the Learning
with Error from lockable obfuscation.

However, in many cases we will want to use systems that don’t have such a bound. For example, most
key-policy ABE systems that support keys as arbitrary boolean formulas could have decryption circuits of
arbitrary depth. Note that bilinear group ABE systems are the only ones that currently support dual system
encryption and adaptive security using only polynomial-hardness assumptions [Wat09, LW10, LOS+10].

To accommodate this we modify the transformation by adding an extra FHE layer as follows. The
encryption algorithm starts as before by choosing a random lock value α and encrypting the lock value
under attribute string x using ABE encryption algorithm. However, it next creates a fresh FHE public-
private key pair and encrypts the ABE ciphertext under the FHE public key. Next, it creates a lockable

33

obfuscation that is created with lock value α, the message we want to encrypt and a program that takes as
input an FHE ciphertext and decrypts using the FHE secret key. The ciphertext consists of the FHE public
key, ciphertext and (lockable) obfuscated program. To decrypt simply use the fully homomorphic decryption
algorithm to decrypt the ABE ciphertext inside the FHE ciphertext and then submit the resulting ciphertext
as input to the obfuscated program.

The security argument is almost the same as before. In the first step ABE security is used to change the
ciphertext encrypting α to encrypt the all 0’s string. Next the obfuscated program is changed to a simulated
program which looses knowledge of the FHE secret key. Then we can finally change the FHE ciphertext
encrypting the ABE ciphertext to encrypt the all 0’s string. The transformation is provided in Appendix E.

Such a technique will be applicable to many forms of key-policy Attribute-Based encryption including
those that use dual system encryption for adaptive security [Wat09, LOS+10], ABE for boolean formu-
las [GPSW06] and ABE for deterministic finite automata [Wat12, Att14].

Unbounded Size, but Bounded Depth. An in-between variant of our first transformation and the
methods described above would be to accommodate ABE systems that inherently have decryption circuits
that have bounded depth, but not bounded size. A prototypical example is an ABE for circuits scheme
from LWE [GVW13, BGG+14]. In this case we can do the same construction as above, except use a leveled
homomorphic encryption scheme where the level is chosen to match the maximum ABE circuit decryption
depth. The advantage of this approach is that realizations of leveled homomorphic encryption are known
from the LWE assumption [BV11, BGV12].

Ciphertext Policy Attribute-Based Encryption. An alternate form of Attribute-Based Encryption
is ciphertext-policy ABE. In this setting the semantics associated with the keys and ciphertexts get flipped.
Here a function f is associated with a ciphertext and an attribute string x with a private key. A user
with a private key for x should be able to decrypt a ciphertext associated with f if and only if f(x) = 1.
In the setting of one-sided predicate encryption we want to hide the function descriptor f associated with
the ciphertext from all those users who cannot decrypt it. Using universal circuits (or formulas) one can
build [GJPS08] a ciphertext policy-ABE schemes from key-policy ABE scheme, however, this only works for
circuits of aprori bounded size.

Using a variant of our approach from Section 5.1 we can handle all ABE schemes that have ciphertexts of
bounded size. If we add a layer of fully homomorphic encryption the bounded size restriction goes away and
we can handle additional schemes including those that are in the multi-authority setting [Cha07, CC09, LW11]
or have ciphertext functions associated with deterministic finitie automatas [Wat12, Att14].

5.3 Encrypting to a Hidden Public Key

Our final application of this section is that using lockable encryption one can create a ciphertext that
encrypts to a public key, but hides the identity of the public key from anyone who does not have the secret
key. Such functionality was considered previously, see for example [WFS03, BBDP01] and the references
therein. However, in previous cases the hiding would only be among all public keys that shared some common
parameter such as all using the same elliptic curve group. Suppose instead that we wanted to encrypt in a
way that it is not clear whether it was to someone with a 4096 bit RSA key, a 2048 bit RSA key or using an
ECC key.

To do this the encryption algorithm first creates a ciphertext ct that encrypts a randomly chosen lock
value α using encryption under the recipients public key cryptosystem. Then the encryption algorithm
creates a program P that takes as input a decryption circuit description and applies it to the ciphertext
ct. The final ciphertext is a lockable obfuscation of this program P under the lock α and the message to
be transmitted. The decryption circuit description and program size should be padded to a include all
decryption circuits of a chosen class. To attempt to decrypt such a ciphertext, one must first translate their
secret key and decryption algorithm into a decryption circuit and then input this circuit description into the
obfuscated program.

34

6 Separating IND-CPA security and Circular Security

A group of n public keys and ciphertexts is said to form a key cycle [CL01] if the ith ciphertext encrypts the
(i + 1)th secret key. A system is said to be n-circular secure if key cycles of length n are indistinguishable
from the case where the ciphertexts consists of encryptions to the all zeros message. Achieving circular
security is very desirable in some cases. For instance, a leveled homoromorphic encryption scheme that
is circular secure implies the existence of a fully homomorphic encryption scheme via Gentry’s [Gen09]
bootstrapping technique. As long as the levels of the homomorphic decryption circuit fit within the levels
given by evaluation.

There have been several recent works that have shown that circular security, unfortunately, does not
come for free. In particular, there exists IND-CPA schemes (in various contexts) that are not circular secure.
Achieving such results initially depended on the existence of indistinguishability obfuscation. Subsequent
works showed how in some scenarios one could make the desirable trade of assuming learning with errors
instead of indistinguishability obfuscation. However, each of these constructions required the introduction of
specialized LWE oriented techniques. Here we show that these separation results can instead be achieved by
lockable obfuscation. The insight is simply that the original results used iO on programs that were “lockable
obfuscation compatible” to begin with. So all we need to do is make very minor tweaks to the programs and
then essentially copy the results. (We work things out fully below for completeness.)

The benefits are two fold. First, we are able to achieve some separation results that were not previously
known under standard assumptions. And second, the solutions provided via lockable obfuscation are sim-
pler to describe and understand in comparison to direct number theoretic constructions. Of course, direct
constructions will likely be more practically efficient, although the importance of this is not clear in the
setting of separation results. We now overview our three solutions along with the preceding work in each
case. We present our results using the language of cycle testers as introduced by Bishop, Hohenberger and
Waters [BHW15].

Cycle testers of length n. Acar et al. [ABBC10] using the SXDH assumption in bilinear groups pro-
vided an IND-CPA scheme that was not two circular secure. Subsequently, Koppula, Ramchen and Wa-
ters [KRW15] showed separation results for any n cycle length assuming indistinguishability obfuscation.
(Concurrently, Marcedone and Orlandi [MO14] did this from VBB.) After these works Bishop, Hohenberger
and Waters [BHW15] gave a cycle tester under the LWE assumption for n = 2. Finally, Koppula and
Waters [KW16] and Alamati and Peikert [AP16] gave cycle testers for any a priori bounded length under
the learning with errors and ring learning with errors problem.11 Below we will provide a translation of the
KRW n cycle testers.

Cycle tester for bit encryption schemes. The above separation results do not apply for when the
underlying encryption scheme encrypts single bit messages. Rothblum [Rot13] first showed a separation
for bit encryption cycles of length one using a high degree and non-noisy multilinear multilinear paper.
Koppula, Ramchen and Waters [KRW15] (in a different solution from above) showed the separation using
indistinguishability obfuscation. Very recently, Goyal, Koppula and Waters [GKW17b] gave a bit encryption
cycle tester secure under the Learning with Errors assumption. Their cycle tester, however, only worked
for secret key encryption while the others were public key. Below we provide a translation of the KRW bit
encryption cycle tester.

Cycle testers of unbounded length. Returning to the case of encryption schemes with multi-bit mes-
sages Goyal, Koppula and Waters [GKW17a] recently provided a cycle tester that had no apriori bound
on cycle length. Their solution requires both indistinguishability obfuscation and leveled (bootstrappable)
homomorphic encryption. We show how we can swap out indistinguishability obfuscation for lockable ob-
fuscation.

11In their ring LWE solution Alamati and Peikert [AP16] built testers for any cycle length that could depend on the security
parameter. In their LWE solution the cycle length had to be constant.

35

Program Psk

Constants: Secret key sk.
Inputs: Ciphertexts ct1, . . . , ctn.

1. Let sk1 = sk. For i = 1 to n:

(a) Decrypt cti as (sk(i mod n)+1, α(i mod n)+1) = Dec(ski, cti).

2. If any decryption step fails, output ⊥. Otherwise, output α1.

Figure 3: n-Cycle Tester

6.1 Separating IND-CPA Security from n-Circular Security

In this section, we construct a key cycle tester Γ = (Setup,KeyGen, Enc,Test) from any public key encryption
scheme and a lockable obfuscator.

Let E = (Setup, Enc, Dec) be a public key encryption scheme for message space {0, 1}2k(λ) with decryption
circuit of depth d(λ), secret key space {0, 1}k(λ) and ciphertext space {0, 1}`(λ). Also, let O = (Obf,Eval)
be a lockable obfuscator for 1-bit messages and circuit class Cn·`,k,n·d (i.e., the class of depth n · d(λ) circuits
with n ·`(λ) bit input and k(λ) bit output). Below we describe our construction. For notational convenience,
let k = k(λ).

• Setup(1λ, 1n) : The setup algorithm outputs public parameters as pp = (λ, n).

• KeyGen(pp) : Let pp = (λ, n). The key generation algorithm runs Setup to obtain a public-secret key
pair as (pk, sk)← Setup(1λ). It also chooses a string α uniformly at random as α← {0, 1}k.

Next, consider the program Psk described in Figure 3. It obfuscates program Psk with message 1 and

lock α as P̃ ← Obf(1λ,Psk, 1, α). Finally, it outputs the key pair as pk = (pk, P̃), sk = (sk, α).

• Enc(pk,m) : Let pk = (pk, P̃). The encryption algorithm computes ciphertext as ct← Enc(pk,m).

• Test(pk, ct) : Let pk = (pk1, . . . , pkn) and pk1 = (pk1, P̃1). The testing algorithm evaluates the

obfuscated program P̃1 on input ct as b = Eval(P̃1, ct). If b = ⊥, it outputs 0. Otherwise, it outputs b.

• Dec(sk, ct) : Let sk = (sk, α). The decryption algorithm outputs Dec(sk, ct).12

Correctness. For all λ, n ∈ N, public-secret key pairs (pki, ski) ← Setup(1λ) and strings αi ← {0, 1}k
(for i ≤ n), a key cycle of length n consists of a sequence of n ciphertexts ct = (ct1, . . . , ctn), where each

ciphertext cti is computed as cti ← Enc
(
pki, (sk(i mod n)+1, α(i mod n)+1)

)
. Also, the program P̃1 (which is

part of public key pk1) is computed as P̃1 ← Obf(1λ,Psk1
, 1, α1).

Let c̃t = (c̃t1, . . . , c̃tn) be encryption of zero strings, where each ciphertext c̃ti is computed as c̃ti ←
Enc(pki, 0

2k). For correctness of Test algorithm, we want to argue that it’s advantage in distinguishing a
sequence of encryptions of secret keys from encryptions of zeros is non-negligible.

First, note that Psk1
(ct) = α1 (by construction). Therefore, by correctness of obfuscation Eval(P̃1, ct) = 1.

Similarly, Psk1
(c̃t) 6= α1 (with all but negligible probability) as α1 is chosen uniformly at random and Psk1

is independent of string α1. This suggests that Pr[Eval(P̃1, c̃t) = ⊥] ≥ 1− negl(λ).
Therefore, we can conclude that Γ satisfies cycle tester correctness condition as it can distinguish key

cycles and all zero encryption with non-negligible probability.

12We would like to point out that cycle tester framework does not contain a decryption algorithm. However, since it is
naturally available in our scheme, therefore we also specify it.

36

Security. We will now show that the scheme described above achieves IND-CPA security as per Defini-
tion 2.4. Formally, we prove the following.

Theorem 6.1. If E = (Setup, Enc, Dec) is an IND-CPA secure public key encryption scheme for message
space {0, 1}2k(λ), secret key space {0, 1}k(λ) and ciphertext space {0, 1}`(λ) satisfying Definition 2.4, and
O = (Obf,Eval) is a lockable obfuscator for 1-bit messages and circuit class Cn·`,k,d satisfying Definition 3.4,
then Γ is a secure cycle tester scheme satisfying IND-CPA security as per Definition 2.4.

Proof. Our proof proceeds via a sequence of hybrid games. Let A be any PPT adversary that wins the
IND-CPA security game against Γ with non-negligible advantage. We argue that such an adversary must
break security of at least one underlying primitive.

We will first define the sequence of hybrid games, and then show that they are computationally indistin-
guishable.

Game 1: This game is the original IND-CPA security game described in Definition 2.4.

1. The challenger generates a public-secret key pair as (pk, sk) ← Setup(1λ). It uniformly samples α ←
{0, 1}k, and computes the obfuscation of program Psk (described in Figure 3) as P̃ ← Obf(1λ,Psk, 1, α).

It sends the public key pk = (pk, P̃) to A.

2. A receives pk from the challenger, and computes messages m0,m1. It sends (m0,m1) as its challenge
messages to the challenger.

3. The challenger chooses bit b← {0, 1}, computes ct∗ ← Enc(pk,mb), and sends ct∗ to A.

4. A receives challenge ciphertext ct∗ from the challenger, and outputs its guess b′.

5. A wins if it guesses correctly, that is if b = b′.

Game 2: This game is same as Game 1, except the challenger does not choose the lock α anymore and it
simulates the obfuscated program P̃ instead of generating it honestly as an obfuscation of program Psk.

1. The challenger generates a public-secret key pair as (pk, sk)← Setup(1λ). It computes the obfuscated

program P̃ as P̃ ← O.Sim(1λ, 1s, 1), where s = |Psk|. It sends the public key pk = (pk, P̃) to A.

We now establish via a sequence of lemmas that the adversary’s advantage between Game 1 and 2 is
negligible. Let AdviA = |Pr[b′ = b]− 1/2| denote the advantage of adversary A in guessing the bit b in Game
i. We show via a sequence of lemmas that |Adv1A − Adv2A| and Adv2A are negligible. Below we discuss our
lemmas in detail.

Lemma 6.1. IfO = (Obf,Eval) is a secure lockable obfuscator, then for all PPT adversariesA, |Adv1A−Adv
2
A|

is negligible in the security parameter λ.

Proof. Suppose there exists an adversary A such that |Adv1A − Adv2A| is non-negligible. We construct an
algorithm B that can distinguish an obfuscation of program Psk with a random lock from a simulated
obfuscated program, therefore break security of the obfuscation scheme.
B runs step 1 as in Game 1, except it does not compute obfuscated program P̃ . Concretely, B chooses a

key pair (pk, sk)← Setup(1λ). B sends the program Psk along with message 1 to the obfuscation challenger,

and receives an obfuscated program P̃ . It sets the public key as pk = (pk, P̃) and sends pk to A. It executes

steps 2-5 as in Game 1. If the attacker wins (i.e. b′ = b), then B guesses ‘0’ to indicate that P̃ was an
obfuscation of Psk; otherwise, it guesses ‘1’ to indicate that it was simulated.

Note that if the obfuscation challenger obfuscated Psk for some lock α, then B perfectly simulates Game

1 for adversary A. Otherwise it simulates Game 2 for A. As a result, if |Adv1A − Adv2A| is non-negligible,
then B breaks the obfuscation scheme’s security with non-negligible advantage.

37

Program BPsk

Constants: Secret key sk.
Inputs: Ciphertexts ct1, . . . , ctn.

1. For i = 1 to k:

(a) Decrypt cti+`1 as αi = Dec(sk, cti+`1).

2. If any decryption step fails, output ⊥. Otherwise, output α = α1 || · · · ||αk.

Figure 4: Bit Encryption 1-Cycle Tester

Lemma 6.2. If E = (Setup, Enc, Dec) is an IND-CPA secure public key encryption scheme, then for all
PPT adversaries A, Adv2A is negligible in the security parameter λ.

Proof. Suppose there exists an adversary A such that Adv2A is non-negligible. We construct an algorithm B
that can break security of the PKE scheme E.
B receives public key pk from E challenger. It runs step 1 as described in Game 2 with the exception

that it uses pk generated by E challenger instead of running the setup algorithm. During challenge phase, B
forwards the challenge messages (m0,m1) it receives from A to E challenger as its challenge messages and
receives ct∗ as the challenge ciphertext, which it then forwards to A. Finally, B outputs the same guess as
A.

We observe that if A wins (i.e. b′ = b), then B also wins because it exactly simulates the view of Game 2
for A. Therefore if Adv2A is non-negligible, B must also have non-negligible advantage against E challenger.

6.2 Separating IND-CPA Security from 1-Circular Security for Bit Encryption

In this section, we construct a key cycle tester Γ = (Setup,KeyGen, Enc,Test) for 1-bit messages from any
public key bit encryption scheme and a lockable obfuscator.

Let E = (Setup, Enc, Dec) be a public key bit encryption scheme with secret key space {0, 1}`1(λ),
ciphertext space {0, 1}`2(λ) and decryption circuit of depth d(λ). Also, let O = (Obf,Eval) be a lockable
obfuscator for 1-bit messages and circuit class C(`1+k)·`2,k,d (i.e., the class of depth d(λ) circuits with (`1(λ)+
k(λ)) ·`2(λ) bit input and k(λ) bit output). Below we describe our construction. For notational convenience,
let k = k(λ), `1 = `1(λ), `2 = `2(λ) and n = k(λ) + `1(λ).

• Setup(1λ) : The setup algorithm runs Setup to obtain a public-secret key pair as (pk, sk)← Setup(1λ).
It also chooses a string α uniformly at random as α← {0, 1}k.

Next, consider the program BPsk described in Figure 4. It obfuscates program BPsk with message 1

and lock α as P̃ ← Obf(1λ,BPsk, 1, α). Finally, it outputs the key pair as pk = (pk, P̃), sk = (sk, α).

• Enc(pk,m) : Let pk = (pk, P̃). The encryption algorithm computes ciphertext as ct← Enc(pk,m).

• Test(pk, ct) : Let pk = (pk, P̃). The testing algorithm evaluates the obfuscated program P̃ on input ct

as b = Eval(P̃ , ct). If b = ⊥, it outputs 0. Otherwise, it outputs b.

• Dec(sk, ct) : Let sk = (sk, α). The decryption algorithm outputs Dec(sk, ct).

38

Correctness. For every λ, public-secret key pair (pk, sk) ← Setup(1λ) and string α ← {0, 1}k, a key
cycle consists of a sequence of n ciphertexts ct = (ct1, . . . , ctn), where each ciphertext cti is computed as

cti ← Enc
(
pk, ski

)
, sk = (skt, α) and ski is ith bit of sk. Also, the program P̃ (which is part of public key

pk) is computed as P̃ ← Obf(1λ,BPsk, 1, α).

Let c̃t = (c̃t1, . . . , c̃tn) be encryptions of zero, where each ciphertext c̃ti is computed as c̃ti ← Enc(pk, 0).
For correctness of Test algorithm, we want to argue that it’s advantage in distinguishing a sequence of
encryptions of secret key bits from encryptions of zeros is non-negligible.

First, note that BPsk(ct) = α and BPsk(c̃t) = 0k (by construction). Therefore, by correctness of obfus-

cation Eval(P̃ , ct) = 1. Also, BPsk(c̃t) 6= α (with all but negligible probability) as α is chosen uniformly at

random. This suggests that Pr[Eval(P̃ , c̃t) = ⊥] ≥ 1− negl(λ).
Therefore, we can conclude that Γ satisfies bit encryption cycle tester correctness condition as it can

distinguish a key cycle and all zero encryption with non-negligible probability.

Security. We will now show that the scheme described above achieves IND-CPA security as per Defini-
tion 2.4. Formally, we prove the following.

Theorem 6.2. If E = (Setup, Enc, Dec) is an IND-CPA secure public key bit encryption scheme with
secret key space {0, 1}`1(λ) and ciphertext space {0, 1}`2(λ) satisfying Definition 2.4, and O = (Obf,Eval) is
a lockable obfuscator for 1-bit messages and circuit class C(`1+k)·`2,k,d satisfying Definition 3.4, then Γ is a
secure bit encryption cycle tester scheme satisfying IND-CPA security as per Definition 2.4.

Proof. Our proof proceeds via a sequence of hybrid games. Let A be any PPT adversary that wins the
IND-CPA security game against Γ with non-negligible advantage. We argue that such an adversary must
break security of at least one underlying primitive.

The proof of this theorem is identical to proof of Theorem 6.1. Therefore, we only sketch the sequence
of hybrid games.

Game 1: This game is the original IND-CPA security game described in Definition 2.4.

1. The challenger generates a public-secret key pair as (pk, sk) ← Setup(1λ). It uniformly samples α ←
{0, 1}k, and computes the obfuscation of program BPsk (described in Figure 4) as P̃ ← Obf(1λ,BPsk, 1, α).

It sends the public key pk = (pk, P̃) to A.

2. Next, the challenger chooses bit b← {0, 1}, computes ct∗ ← Enc(pk, b), and sends ct∗ to A.

3. A receives challenge ciphertext ct∗ from the challenger, and outputs its guess b′. A wins if it guesses
correctly, that is if b = b′.

Game 2: This game is same as Game 1, except the challenger does not choose the lock α anymore and it
simulates the obfuscated program P̃ instead of generating it honestly as an obfuscation of program BPsk.

1. The challenger generates a public-secret key pair as (pk, sk)← Setup(1λ). It computes the obfuscated

program P̃ as P̃ ← O.Sim(1λ, 1s, 1), where s = |BPsk|. It sends the public key pk = (pk, P̃) to A.

6.3 Creating an Unbounded Public Key Cycle Tester

In this section, we construct a cycle tester Γ = (Setup,KeyGen, Enc,Test) for unbounded length key cycles
from any bootstrappable (leveled) homomorphic encryption scheme and a lockable obfuscator.

Let LHE = (LHE.Setup, LHE.Enc, LHE.Eval, LHE.Dec) be a bootstrappable homomorphic bit encryption
scheme for message space {0, 1}`(λ) with decryption circuit of depth d(λ), ciphertexts of length `ct(λ) and

39

Program UPlhe.sk

Constants: Secret key lhe.sk.
Inputs: Ciphertext ct.

1. Decrypt ct as (sk′, α) = LHE.Dec(lhe.sk, ct). Output α.

Figure 5: Tester for Unbounded Length Key Cycles

secret keys of length s(λ). Also, let O = (Obf,Eval) be a lockable obfuscator for 1-bit messages and circuit
class C`ct,k,d (i.e., the class of depth d(λ) circuits with `ct(λ) bit input and k(λ) bit output). Below we
describe our construction. For notational convenience, let k = k(λ), s = s(λ), d = d(λ), `ct = `ct(λ) and
` = `(λ).

• Setup(1λ) : The setup algorithm runs LHE.Setup to obtain a public-secret key pair as (lhe.pk, lhe.sk, lhe.ek)←
LHE.Setup(1λ, 1d). It also chooses a string α uniformly at random as α← {0, 1}k.

Next, consider the program UPlhe.sk described in Figure 5. It obfuscates program UPlhe.sk with message 1
and lock α as P̃ ← Obf(1λ,UPlhe.sk, 1, α). Finally, it outputs the key pair as pk = (lhe.pk, lhe.ek, P̃), sk =
(lhe.sk, α).

• Enc(pk,m) : Let pk = (lhe.pk, lhe.ek, P̃). The encryption algorithm computes ciphertext as ct ←
LHE.Enc(lhe.pk,m).

• Test(1n,pk, ct) : Let pk = (pk1, . . . , pkn), ct = (ct1, . . . , ctn) and pki = (lhe.pki, lhe.eki, P̃i) (for all
i ≤ n). Also, let circuit Cct be a circuit which takes as input s + k bits and decrypts ciphertext ct
using the first s bits of the input, i.e. Cct(x || y) = LHE.Dec(x, ct) where x ∈ {0, 1}s, y ∈ {0, 1}k. The
tester algorithm runs as follows.

First, it sets ct′n = ctn. For i = n−1 to i = 1, it computes ciphertexts ct′i as ct′i = LHE.Eval(lhe.eki, Cct′i+1
, cti).

Next, it evaluates the obfuscated program P̃1 on input ct′1 as b = Eval(P̃1, ct
′
1). Finally, it outputs b.

• Dec(sk, ct) : Let sk = (lhe.sk, α). The decryption algorithm outputs LHE.Dec(lhe.sk, ct).

Correctness. For all λ, n ∈ N, LHE key pairs (lhe.pki, lhe.ski, lhe.eki) ← LHE.Setup(1λ, 1d) and strings
αi ← {0, 1}k (for i ≤ n), a key cycle of length n consists of a sequence of n ciphertexts ct = (ct1, . . . , ctn),
where each ciphertext cti is computed as cti ← Enc

(
lhe.pki, (lhe.sk(i mod n)+1, α(i mod n)+1)

)
. Also, the

program P̃1 (which is part of public key pk1) is computed as P̃1 ← Obf(1λ,UPlhe.sk1 , 1, α1).
Let c̃t = (c̃t1, . . . , c̃tn) be encryption of zero strings, where each ciphertext c̃ti is computed as c̃ti ←

Enc(pki, 0
s+k). For correctness of Test algorithm, we want to argue that it’s advantage in distinguishing a

sequence of encryptions of secret keys from encryptions of zeros is non-negligible.
First, note that LHE.Dec(lhe.skn, ctn) = (sk1, α1). Therefore, ct′n−1 = LHE.Eval(lhe.ekn−1, Cct′n , ctn−1) is

an encryption of (sk1, α1) under key lhe.pkn−1, where ct′n = ctn. Therefore, the top-down iterative LHE
evaluation during testing would finally result in ciphertext ct′1 that will be an encryption of (sk1, α1) under
key lhe.pk1. We could prove this by an inductive argument over cycle length n. The base case n = 1 follows
directly from the construction. The inductive hypothesis would be that the test algorithm successfully
reduces a length k key cycle to a length 1 key cycle. The induction step can be proven by first reducing a
length k key cycle to a length k − 1 key cycle (which follows from the correctness of the LHE scheme) and

then applying the hypothesis. Finally, the test algorithm evaluates the obfuscated program P̃1 on ct′1 which is

encryption of (sk1, α1) under key lhe.pk1. Therefore, by correctness of obfuscation scheme Eval(P̃1, ct
′
1) = 1.

In other words, we can claim that the test algorithm always outputs 1 in this case (i.e., with probability 1).

Similarly, UPlhe.sk1(c̃t
′
1) 6= α1 (with all but negligible probability) as α1 is chosen uniformly at random and

neither UPlhe.sk1 nor any of the ciphertexts cti depends on the string α1. This suggests that Pr[Eval(P̃1, c̃t
′
1) =

⊥] ≥ 1− negl(λ).

40

Therefore, we can conclude that Γ satisfies cycle tester correctness condition as it can distinguish key
cycles and all zero encryption with non-negligible probability.

The IND-CPA proof of this scheme is identical to the proof of Theorem 6.1.

7 Uninstantiability of the Fujisaki-Okamoto and Related Trans-
formations

We now move to our second set of separation results where we use lockable obfuscation to show random
oracle uninstantiability [CGH98] for a certain family of transformations. These include: the Bellare et
al. [BHSV98] transformation from an IND-CPA scheme to an injective trapdoor function, the well known
Fujisaki-Okamoto [FO99a, FO99b] transformations from IND-CPA and the deterministic encryption con-
struction of Bellare, Boldyreva and O’Neill [BBO07].

All of the constructions follow a similar paradigm where they encrypt a string x under random coins
determined from H(x). (How the string x is construed varies somewhat between the schemes.) The works
above show that if H is presented as an oracle access to a random function, the transformation results in a
secure scheme under the relevant definition.

An important question is what can be said about the security of these transformations when H is in-
stantiated by a concrete hash function. Assuming indistinguishability obfuscation Brzuska, Farshim and
Mittelbach [BFM15] provide negative results on the instantiability of these transformations. In particular
assuming iO for circuits they provide encryption schemes that are IND-CPA secure, but where the transfor-
mation is insecure when instantiated with any hash function up to an apriori bounded size. Furthermore, if
one assumes iO for Turing Machines with unbouded input, the result holds for hash functions of any size.13

The main idea of BFM is to create an encryption scheme that includes an obfuscated program which can be
used to break security when the description of H is known.

Here we show that such results can be achieved from lockable obfuscation and thus the Learning with
Errors assumption. More specifically, the uninstantiability results for apriori size bounded hash functions
follows from lockable obfuscation and the unrestricted results follow from lockable obfuacation combined
with fully homomorphic encryption. The main insight into the result is simply that the program breaking in
BFM falls within a pattern that matches lockable obfuscation. Once this connection is made the technical
argument follows readily. In addition, we again see that for iO programs that match the pattern of lockable
obfuscation, fully homomorphic encryption can serve to give the “Turing Machine version” of such programs.

Below we give a proof of uninstantiability for an IND-CPA encryption scheme for the second Fujisaki-
Okamoto [FO99b] transformation. We do so in the unrestricted size case using lockable obfuscation along
with fully homomorphic encryption. We believe uninstantiability results for the other schemes mentioned
above follow in a very similar manner.

7.1 The Fujisaki-Okamoto Transformation

The Fujisaki-Okamoto (FO) transformation is a technique to convert an IND-CPA secure public key encryp-
tion scheme into an IND-CCA secure public key encryption scheme.14 The transformation relies on a public
key encryption scheme, a symmetric encryption scheme and two hash functions (which are modeled as two
independent random oracles).

Let PKE = (PKE.Setup, PKE.Enc, PKE.Dec) be a public key encryption scheme, SKE = (SKE.Setup,
SKE.Enc, SKE.Dec) be a (deterministic) symmetric encryption scheme, and H1, H2 be two hash functions.
As per FO transformation, an encryption of message m under randomness r is computed as

PKE.Enc(pke.pk, r;H1(m || r)),SKE.Enc(ske.sk = H2(r),m).

13We note that constructing Turing Machine iO for unbounded length inputs from standard iO remains an open problem.
14The FO transformation only requires the starting PKE scheme to satisfy one-way security, which is a slightly weaker notion

than IND-CPA.

41

More formally, the FO transformed scheme FOH,H̃PKE,SKE = (Setup,Enc,Dec) is described as follows.

• Setup(1λ) → (pk, sk). It chooses two hash functions H1, H2 as H1 ← Hλ, H2 ← H̃λ. It also samples a
public-secret key pair (pke.pk, pke.sk) for PKE scheme as (pke.pk, pke.sk)← PKE.Setup(1λ). It outputs
the public-secret keys as pk = (pke.pk, H1, H2) and sk = (pke.pk, H1, H2, pke.sk).

• Enc(pk,m; r)→ ct. Let pk = (pke.pk, H1, H2). It computes ciphertext ct1, ct2 as ct1 = PKE.Enc(pke.pk, r;H1(m || r))
and ct2 = SKE.Enc(H2(r),m). It outputs the ciphertext as ct = (ct1, ct2).

• Dec(sk, ct) → m or ⊥ . Let sk = (pke.pk, H1, H2, pke.sk) and ct = (ct1, ct2). It decrypts ct1 as r =
PKE.Dec(pke.sk, ct1). Next, it decrypts ct2 as m = SKE.Dec(H2(r), ct2). Finally, it checks if ct1 =
PKE.Enc(pke.pk, r;H1(m || r)). If the check succeeds it outputs m, otherwise it outputs ⊥.

In this work, we show that FO transform is uninstantiable in the standard model. Concretely, we prove
the following.

Theorem 7.1. If FHE = (FHE.Setup,FHE.Enc,FHE.Dec,FHE.Eval) is a fully homomorphic encryption
scheme satisfying Definition 2.4, and O = (Obf,Eval) is a lockable obfuscator for circuit class {C`·˜̀,`,d}λ
satisfying Definition 3.4, then there exists a public key encryption scheme PKE = (PKE.Setup, PKE.Enc,

PKE.Dec) such that for every hash function family H = {Hλ}λ and H̃ =
{
H̃λ
}
λ
, symmetric key encryption

scheme SKE = (SKE.Setup, SKE.Enc, SKE.Dec), the corresponding FO transformed scheme FOH,H̃PKE,SKE is not

secure.15

We prove the above theorem by constructing such a public key encryption scheme PKE = (Setup,Enc,Dec).
Consider a public key encryption scheme PKE = (PKE.Setup, PKE.Enc, PKE.Dec) for `-bit messages, a fully
homomorphic encryption scheme FHE = (FHE.Setup,FHE.Enc,FHE.Dec,FHE.Eval) for 1-bit messages with

decryption circuit of depth d(λ) and ciphertext space {0, 1}˜̀(λ), and a lockable obfuscator scheme for `-bit
messages. Below we describe our construction. For ease of exposition, assume that the FHE setup, FHE
encryption, PKE encryption and lockable obfuscator also take ` bits of randomness as inputs.

• Setup(1λ)→ (pk, sk). It generates a PKE key pair as (pk, sk)← PKE.Setup(1λ), and sets public-secret
key pair as (pk, sk) = (pk, sk).

• Enc(pk,m; r) → ct. Let pk = pk and r = r0 || r1 || r2 || r3 || r4, where each ri is ` bits long. It samples
an FHE key pair (fhe.pk, fhe.sk, fhe.ek) = FHE.Setup(1λ; r0) and computes ciphertext ct1 as ct1 =
PKE.Enc(pk,m; r1). It encrypts message m under FHE public key as ct2 = FHE.Enc(fhe.pk,m; r2).16

It also obfuscates program Pfhe.sk with messagem, lock r4 and randomness r3 as P̃ = Obf(1λ,Pfhe.sk,m, r4; r3).

Finally, it outputs the ciphertext as ct = (fhe.ek, ct1, ct2, P̃).

• Dec(sk, ct)→ m. Let ct = (fhe.ek, ct1, ct2, P̃). It decrypts ct1 as m = PKE.Dec(sk, ct1) and outputs m.

First, we prove that the above scheme is IND-CPA secure.

Theorem 7.2. If FHE = (FHE.Setup,FHE.Enc,FHE.Dec,FHE.Eval) is a fully homomorphic encryption
scheme satisfying Definition 2.4, O = (Obf,Eval) is a lockable obfuscator for circuit class {C`·˜̀,`,d}λ sat-

isfying Definition 3.4, and PKE = (PKE.Setup, PKE.Enc, PKE.Dec) is a public key encryption scheme for
`-bit messages satisfying Definition 2.4, then the scheme PKE = (Setup,Enc,Dec) is IND-CPA secure.

Proof. Our proof proceeds via a sequence of hybrid games. Let A be any PPT adversary that wins the
IND-CPA security game against PKE with non-negligible advantage. We argue that such an adversary must
break security of at least one underlying primitive.

We will first define the sequence of hybrid games, and then show that they are computationally indistin-
guishable.

15The FO transformed scheme FOH,H̃PKE,SKE does not even achieve IND-CPA security.
16Note that FHE scheme is a bit encryption scheme, therefore it encrypts one bit at a time. However, we overload the

notation and use FHE.Enc to encrypt multi-bit messages as well. So, ct2 is a sequence of ` FHE ciphertexts.

42

Program Pfhe.sk

Constants: Secret key fhe.sk.
Inputs: Ciphertexts ct1, . . . , ct`.

1. Decrypt cti as αi = FHE.Dec(fhe.sk, cti).

2. If any decryption step fails, output ⊥. Otherwise, output α1 || · · · ||α`.
Figure 6: FO

Game 1: This game is the original IND-CPA security game described in Definition 2.4.

1. The challenger generates a public-secret key pair as (pk, sk)← PKE.Setup(1λ). It sends the public key
pk = pk to A.

2. A receives pk from the challenger, and computes messages m0,m1. It sends (m0,m1) as its challenge
messages to the challenger.

3. The challenger chooses bit b← {0, 1}. It samples an FHE key pair (fhe.pk, fhe.sk, fhe.ek)← FHE.Setup(1λ)
and computes ciphertexts ct1, ct2 as ct1 ← PKE.Enc(pk,mb), ct2 ← FHE.Enc(fhe.pk,mb). It chooses a

random ` bit string r and obfuscates program Pfhe.sk with messagem and lock r as P̃ ← Obf(1λ,Pfhe.sk,mb, r).

Finally, it outputs the ciphertext as ct = (fhe.ek, ct1, ct2, P̃). Finally, it sends ct to A.

4. A receives challenge ciphertext ct from the challenger, and outputs its guess b′.

5. A wins if it guesses correctly, that is if b = b′.

Game 2: This game is same as Game 1, except the challenger does not choose the lock r anymore and it
simulates the obfuscated program P̃ instead of generating it honestly.

1. The challenger chooses bit b← {0, 1}. It samples an FHE key pair (fhe.pk, fhe.sk, fhe.ek)← FHE.Setup(1λ)
and computes ciphertexts ct1, ct2 as ct1 ← PKE.Enc(pk,mb), ct2 ← FHE.Enc(fhe.pk,mb). It computes

the obfuscated program P̃ as P̃ ← O.Sim(1λ, 1s, 1`), where s = |Pfhe.sk|. Finally, it outputs the cipher-

text as ct = (fhe.ek, ct1, ct2, P̃). Finally, it sends ct to A.

Game 3: This game is same as Game 2, except the challenger computes ct2 as encryption of all zeros
string.

1. The challenger chooses bit b← {0, 1}. It samples an FHE key pair (fhe.pk, fhe.sk, fhe.ek)← FHE.Setup(1λ)
and computes ciphertexts ct1, ct2 as ct1 ← PKE.Enc(pk,mb), ct2 ← FHE.Enc(fhe.pk, 0`). It computes

the obfuscated program P̃ as P̃ ← O.Sim(1λ, 1s, 1`), where s = |Pfhe.sk|. Finally, it outputs the cipher-

text as ct = (fhe.ek, ct1, ct2, P̃). Finally, it sends ct to A.

We now establish via a sequence of claims that the adversary’s advantage between any two consecutive
games is negligible. Let AdviA = |Pr[b′ = b]− 1/2| denote the advantage of adversary A in guessing the bit b
in Game i. We show via a sequence of lemmas that |AdviA − Advi+1

A | (for i = 1, 2) and Adv3A are negligible.
Below we discuss our lemmas in detail.

Lemma 7.1. IfO = (Obf,Eval) is a secure lockable obfuscator, then for all PPT adversariesA, |Adv1A−Adv
2
A|

is negligible in the security parameter λ.

Proof. Suppose there exists an adversary A such that |Adv1A − Adv2A| is non-negligible. We construct an
algorithm B that can distinguish an obfuscation of program Pfhe.sk with a random lock from a simulated
obfuscated program, therefore break security of the obfuscation scheme.

43

B runs step 1 as in Game 1, i.e. it samples a PKE public-secret key pair (pk, sk) and sends pk to A. Next,
it receives two challenge messages (m0,m1) from A. B chooses a FHE key pair (fhe.pk, fhe.sk, fhe.ek) ←
FHE.Setup(1λ) and random bit b. B sends the program Pfhe.sk along with message mb to the obfuscation

challenger, and receives an obfuscated program P̃ . It encrypts message mb as ct1 ← PKE.Enc(pk,mb), ct2 ←
FHE.Enc(fhe.pk,mb). Finally, it sends the challenge ciphertext ct = (fhe.ek, ct1, ct2, P̃) to A. Next, B receives

A’s guess b′. If the attacker wins (i.e. b′ = b), then B guesses ‘0’ to indicate that P̃ was an obfuscation of
Pfhe.sk; otherwise, it guesses ‘1’ to indicate that it was simulated.

Note that if the obfuscation challenger obfuscated Pfhe.sk for some lock r, then B perfectly simulates Game
1 for adversary A. Otherwise it simulates Game 2 for A. As a result, if |Adv1A − Adv2A| is non-negligible,
then B breaks the obfuscation scheme’s security with non-negligible advantage.

Lemma 7.2. If FHE = (FHE.Setup,FHE.Enc,FHE.Dec,FHE.Eval) is a fully homomorphic encryption scheme,
then for all PPT adversaries A, |Adv2A − Adv3A| is negligible in the security parameter λ.

Proof. Suppose there exists an adversary A such that |Adv2A − Adv3A| is non-negligible. We construct an
algorithm B that can distinguish encryption of message mb and an all zeros string, therefore break security
of the FHE scheme.
B receives an FHE key pair (fhe.pk, fhe.ek) from the challenger. B runs step 1 as in Game 1, i.e. it

samples a PKE public-secret key pair (pk, sk) and sends pk to A. Next, it receives two challenge messages

(m0,m1) from A. B computes the obfuscated program P̃ as P̃ ← O.Sim(1λ, 1s, 1`), where s = |Pfhe.sk|. It
chooses a random bit b and encrypts message mb as ct1 ← PKE.Enc(pk,mb). It sends (mb, 0

`) to the FHE
challenger as its challenge messages. B receives ct∗ from the challenger and sets ct2 = ct∗. Finally, it sends
the challenge ciphertext ct = (fhe.ek, ct1, ct2, P̃) to A. Next, B receives A’s guess b′. If the attacker wins
(i.e. b′ = b), then B sends 0 as its guess (i.e., mb was encrypted), otherwise it sends 1 (i.e., 0` was encrypted)
as its guess to the FHE challenger.

Note that if the FHE challenger encrypted mb, then B perfectly simulates Game 2 for adversary A.
Otherwise it simulates Game 3 for A. Therefore, if |Adv2A−Adv3A| is non-negligible, then B breaks the FHE
scheme’s security with non-negligible advantage.

Lemma 7.3. If PKE = (PKE.Setup, PKE.Enc, PKE.Dec) is an IND-CPA secure public key encryption scheme,
then for all PPT adversaries A, Adv3A is negligible in the security parameter λ.

Proof. Suppose there exists an adversary A such that Adv3A is non-negligible. We construct an algorithm B
that can break security of the PKE scheme PKE.
B receives public key pk from the PKE challenger. It sends pk to A. Next, it receives two challenge

messages (m0,m1) from A. B chooses a FHE key pair (fhe.pk, fhe.sk, fhe.ek)← FHE.Setup(1λ). It computes

the obfuscated program P̃ as P̃ ← O.Sim(1λ, 1s, 1`), where s = |Pfhe.sk|. It also computes ciphertext ct2 as
ct2 ← FHE.Enc(fhe.pk, 0`). It sends (m0,m1) to the PKE challenger as its challenge messages. B receives

ct∗ from the challenger and sets ct1 = ct∗. Finally, it sends the challenge ciphertext ct = (fhe.ek, ct1, ct2, P̃)
to A. Next, B receives A’s guess b′. Finally, B outputs the same guess as A.

We observe that if A wins (i.e. b′ = b), then B also wins because it exactly simulates the view of Game 3
for A. Therefore if Adv3A is non-negligible, B must also have non-negligible advantage against PKE challenger.

This concludes the proof of IND-CPA security of PKE.

44

Uninstantiability of FO Transformation. Now, we show that for every hash function family H =

{Hλ}λ and H̃ =
{
H̃λ
}
λ
, symmetric key encryption scheme SKE = (SKE.Setup, SKE.Enc, SKE.Dec), the FO

transformed scheme FOH,H̃PKE,SKE is not IND-CPA secure. Below we describe an attacker A.

1. The challenger chooses two hash functions H1, H2 as H1 ← Hλ, H2 ← H̃λ. It samples a public-secret
key pair (pk, sk) for PKE scheme PKE as (pk, sk) ← PKE.Setup(1λ). It sends the public key pk and
hash function descriptions H1, H2 to adversary A.

2. A chooses two `-bit messages m0,m1(6= m0) uniformly at random and sends them as its challenge
messages.

3. The challenger chooses a random bit b and an `-bit string s ← {0, 1}`. It computes r = H1(mb || s).
Let r = r0 || r1 || r2 || r3 || r4, whereeach ri is ` bits long.

It samples an FHE key pair (fhe.pk, fhe.sk, fhe.ek) = FHE.Setup(1λ; r0) and computes ciphertext ct1 as
ct1 = PKE.Enc(pk, s; r1). It also encrypts s under FHE public key as ct2 = FHE.Enc(fhe.pk, s; r2). It

obfuscates program Pfhe.sk with message s, lock r4 and randomness r3 as P̃ = Obf(1λ,Pfhe.sk, s, r4; r3).

This corresponds to the PKE part of the ciphertext, i.e. ctPKE = (fhe.ek, ct1, ct2, P̃).

Next, it encrypts message mb using SKE scheme as ctSKE = SKE.Enc(H2(s),mb). Finally, it sends
ct = (ctPKE, ctSKE) as the challenge ciphertext to A.

4. A receives the ciphertext ct = ((fhe.ek, ct1, ct2, P̃), ctSKE) from the challenger. It first homomorphically
evaluates the hash function H2 on ct2 and then decrypts the resulting string to decrypt ciphertext ctSKE.
Concretely, it computes ct′ = FHE.Eval(fhe.ek,SKE.Dec(H2(·), ctSKE), ct2). Next, it homomorphically
evaluates hash function H1 on ct′, ct2 as c̃t = FHE.Eval(fhe.ek, H1(·), (ct′, ct2)). Let c̃t = c̃t1, . . . , c̃t5`.

It evaluates program P̃ on ciphertexts c̃t4`+1, . . . , c̃t5` as t = Eval(P̃ , (c̃t4`+1, . . . , c̃t5`)). It decrypts
ciphertext ctSKE as m = SKE.Dec(H2(t), ctSKE). If m = m0 or m = m1, then it guesses accordingly.
Otherwise, it guesses randomly.

We claim that A always guesses b correctly. In other words, A wins with non-negligible advantage.
First, note that (by correctness of FHE evaluation) ciphertext ct′ encrypts challenge message mb as H2(s) is
the SKE secret key used for encrypting mb. Similarly, ciphertext c̃t is an encryption of string r = H1(mb || s).
Therefore, ciphertexts c̃t4`+1, . . . , c̃t5` are encryptions of each bit of r4. Since Pfhe.sk(c̃t4`+1, . . . , c̃t5`) = r4.

thus, by correctness of obfuscation, we know that Eval(P̃ , (c̃t4`+1, . . . , c̃t5`)) = s. In other words, t = s.
Finally, by correctness of SKE scheme, we can conclude that SKE.Dec(H2(t), ctSKE) = mb. Therefore, A
always guesses correctly.

We would like to point out that A learns the challenge message completely, therefore we could also prove

that scheme FOH,H̃PKE,SKE is not even one-way secure.

8 Indistinguishability Obfuscation for Rejecting Programs

We now consider a new notition of obfucation that we call indistinguishability obfuscation for rejecting pro-
grams and show how to construct it from lockable obfuscation and witness encryption for circuit satisfiability.

Obfuscators that meet this notion will be defined over boolean circuits. Like indistinguishability obfus-
cation our obfuscator will take in any (not necessarily rejecting) boolean circuit C in a class and output an
obfuscated program that is functionally equivalent to C. However, the security guarantees given by such
an obfuscator are limited to “rejecting” programs. Informally, they state that no PPT adversary can dis-
tinguish between circuits C0 and C1 as long as for all inputs x C0(x) = C1(x) = 0. In contrast, standard
indistinguishability obfuscation security allows C0, C1 to have arbitrary (both 0 and 1) outputs as long as
they are functionally equivalent.

45

Our construction is simple and follows along the same conceptual lines as our techniques for attribute
hiding from Section 5. Recall, that in a witness encryption scheme for circuit satisfiability the encryption
operation will take as input a circuit description C as well as a message msg. The message will be computa-
tionally hidden as long as there is no satisfying assignment to C. I.e. for all x we have C(x) = 0. However,
there is nothing in the definition of witness encryption that guarantees the hiding of the description of the
circuit C itself.

To obfuscate a circuit C one first chooses a random lock value α and creates a witness encryption of the
message α under circuit C to get a (sub) ciphertext ct. Then we can create a lockable obfuscation of the
following program. The program on input x will first check if C(x) = 0, and if so it outputs 0`out . Otherwise,
it runs the witness encryption decryption algorithm with x as the witness that C is satisfiable. It is easy to
veryify correctness. On any input x where C(x) = 0 the lockable program will reject and we can output 0.
On the other hand if C(x) = 1 the internal decryption will result in the lock value α and a message will be
output. The security argument follows readily and is given below.

While the idea of indistinguishability for rejecting programs might at first seem limiting for creating
applications, it is important to remember that the actual obfuscator can be correctly used on programs that
are not necessarily rejecting. The restriction on rejecting programs is needed only in proof steps that invoke
the security of the obfuscator and other outside primitives might be used to make other proof steps work.
For example, Garg et al. [GGSW13] show how to use witness encryption and unique signatures to give an
Identity-Based Encryption scheme. But one where the identity one encrypts to is revealed. If we replace
the witness encryption scheme, with an indistinguishability obfuscator for rejecting programs, we get an
anonoymous IBE scheme [ABC+05]. 17

8.1 Defining Indistinguishability Obfuscation for Rejecting Programs

We will now define the notion of rejecting indistinguishability obfuscator (riO). The syntax and correctness
properties are similar to that of standard indistinguishability obfuscation. The obfuscator is a compiler
which takes as input a circuit, and outputs an obfuscated progam which has identical functionality as the
input program. For security, we require that if two circuits reject all inputs, then their obfuscations are
computationally indistinguishable.

Syntax Let {Cλ}λ be a circuit family, where each circuit in Cλ has domain Dλ and co-domain Rλ. A
rejecting indistinguishability obfuscator consists of a compiler riO.Obf and an evaluator riO.Eval with the
following syntax.

• riO.Obf(1λ, C) : The obfuscator takes as input a security parameter λ and a circuit C ∈ Cλ. It outputs
an obfuscated program C̃.

• riO.Eval(C̃, x) : The evaluation algorithm takes as input an obfuscated program C̃ and an input x ∈ Dλ.
It output y ∈ Rλ ∪ {⊥}.

Correctness Here, we will be considering perfect correctness, which requires that the obfuscated program
has identical functionality as the input program. Formally, an obfuscator riO = (riO.Obf, riO.Eval) is said to
be correct if for all security parameters λ, circuits C ∈ Cλ and inputs x ∈ Dλ,

Pr[riO.Eval
(
riO.Obf

(
1λ, C

)
, x
)

= C(x)] ≥ 1− negl(λ).

Security We will now define the security notion for rejecting indistinguishability obfuscator . This notion
guarantees that if two programs reject all inputs, then their obfuscations are computationally indistinguish-
able.

17This resulting construction (perhaps not so surprisingly) is actually very close to what one get if one first constructed an
IBE scheme from witness encryption using [GGSW13] and then applied our techniques from Section 5 to hide the identity. If
one uses obfuscation for rejecting programs roles these two parts into one.

46

Definition 8.1. An obfuscation scheme riO = (riO.Obf, riO.Eval) is said to be a secure rejecting indis-
tinguishability obfuscator if for all security parameters λ and circuits C0, C1 ∈ Cλ, if |C0| = |C1| and
C0(x) = C1(x) = 0 for all inputs x ∈ Dλ, then riO(1λ, C0) ≈c riO(1λ, C1).

8.2 Witness Encryption

In this section, we will define the notion of witness encryption, first introduced by [GGSW13]. A witness
encryption scheme for an NP language L consists of an encryption algorithm and a decryption algorithm.
Using the encryption algorithm, one can encrypt any message for an NP statement x to compute a ciphertext
ct. If there exists a witness w proving that x ∈ L, then one can use w to decrypt the ciphertext ct. The
security guarantee states that if x /∈ L, then encryption of message m0 for statement x is indistinguishable
from encryption of message m1 for statement x. We will now give a formal description of the syntax,
correctness and security requirements.

Syntax Let L be an NP language with witness relation R(·, ·) (that is, x ∈ L iff there exists a witness w
such that R(x,w) = 1). Let n = n(|x|) be a polynomial denoting the length of witness for statement x. A
witness encryption scheme WE for language L and message space M consists of the following algorithms.

• WE.Enc(1λ, x,m): The encryption algorithm takes as input security parameter λ, statement x and
message m ∈M, and outputs a ciphertext ct.

• WE.Dec(ct, w): The decryption algorithm takes as input a ciphertext ct, witness w and outputs y ∈
M∪ {⊥}.

Correctness For simplicity, we will define perfect correctness.

Definition 8.2. A witness encryption scheme (WE.Enc,WE.Dec) for language L and message space M is
said to be (perfectly) correct if, for all security parameters λ, statements x ∈ L, witnesses w s.t. R(x,w) = 1
and messages m ∈M,

WE.Dec(WE.Enc(1λ, x,m), w) = m.

Security We will be using the adaptive soundness security definition from the work of Bellare and Hoang [BH15].

Definition 8.3. A witness encryption scheme WE = (WE.Enc,WE.Dec) for language L and message space
M is said to be secure if for all security parameters λ, PPT adversaries A = (A0,A1),

Pr

[
x /∈ L ∧ A1(ct, st) = b :

(x,m0,m1, st)← A0(1λ)
b← {0, 1}, ct←WE.Enc(1λ, x,mb)

]
≤ 1

2
+ negl(λ).

8.3 Construction of Rejecting Indistinguishability Obfuscator from Witness En-
crytion

We will show how to construct rejecting indistinguishability obfuscator from witness encryption and lockable
obfuscation. Let C = {Cλ}λ be a family of circuits, where each circuit in Cλ has depth d(λ), takes n(λ) bit
inputs, outputs a single bit. First, we need to define an NP relation for our witness encryption scheme. The
NP language for our witness encryption scheme will be CIRCUIT-SAT = {C ∈ C : ∃ w s.t. C(w) = 1}. The
set of witnesses for any C ∈ CIRCUIT-SAT is {w : C(w) = 1}. The tools required for constructing riO for
C are as follows:

- A witness encryption scheme WE = (WE.Enc,WE.Dec) with message space {0, 1}`out for NP relation
CIRCUIT-SAT. Let `ct denote the size of the ciphertext. Further, we will assume a canonical family of
circuits {CλWE.Dec}λ where CλWE.Dec(ct, w) = WE.Dec(ct, w). The circuit CλWE.Dec has depth dWE.Dec(λ),
takes `ct(λ) + n(λ) bit inputs, and outputs `out(λ) bits.

47

Program Qct,C

Constants: Ciphertext ct, circuit C.
Inputs: String w ∈ {0, 1}n.

1. If C(w) = 0, output 0`out .

2. Else output WE.Dec(ct, w).

Figure 7: Program Qct,C

- An lockable obfuscation scheme (Obf,Eval) with message space {0, 1} for circuit class Cn,`out,d+dWE.Dec
.

We will now describe the obfuscation and evaluation algorithms.

• riO.Obf(1λ, C): The obfuscation algorithm first chooses a uniformly random string α ← {0, 1}`out .
Next, it computes a WE ciphertext ct ← WE.Enc(1λ, C, α).18 Let Qct,C(·) be the circuit defined in

Figure 7. The obfuscator then computes an lockable obfuscation C̃ ← Obf(1λ, Qct,C , 1, α). The final

obfuscation is C̃.

• riO.Eval(C̃, x): The evaluation algorithm first computes y = Eval(C̃, x). If y = 1, the riO evaluator
outputs 1, else it outputs 0.

Correctness We need to show that the obfuscated program has identical functionality as the original
(input) program. Fix any security parameter λ, circuit C ∈ Cλ and input x ∈ {0, 1}n. Let α be the random
string chosen during obfuscation, ct←WE.Enc(1λ, C, α) and C̃ ← Obf(1λ, 1, α).

If C(x) = 0, then Qct,C(x) = 0`out . As a result, Eval(C̃, x) = ⊥ with all but negligible probability over the
coins chosen during lockable obfuscation (assuming the semi-statistical correctness of lockable obfuscation
scheme). Hence, riO.Eval(C̃, x) = 0 with all but negligible probability.

If C(x) = 1, then Qct,C(w) = α (assuming perfect correctness of the witness encryption scheme), and

hence riO.Eval(C̃, x) = Eval(C̃, x) = 1 (assuming correctness of lockable obfuscation scheme).

8.3.1 Security

We will prove security by defining a sequence of computationally indistinguishable hybrids, and finally
showing that in the last hybrid, the adversary has zero advantage. At a high level, our proof works as follows.
Recall that the adversary must output two programs that reject all inputs. As a result, if we encrypt a string
α to either of these programs using the witness encryption scheme, then α is computationally hidden. Hence,
we can replace α with the all-zeroes string. Having done this, we can now use the security of our lockable
obfuscation scheme to simulate the obfuscated program.

We will now formally define the hybrid experiments.

Hybrid H0 : This corresponds to the real experiment.

1. The challenger receives as input two circuits C0, C1 such that both circuits output 0 on all inputs.

2. The challenger chooses a uniformly random string α← {0, 1}`out and b← {0, 1}.

3. It then computes ct←WE.Enc(1λ, Cb, α).

4. Finally, it computes C̃ ← Obf(1λ, Qct,Cb , 1, α) and sends C̃ to the adversary. The adversary outputs a
bit b′ and wins if b = b′.

18By circuit C, we represent the statement that ∃ w such that C(w) = 1.

48

Hybrid H1 : This hybrid is similar to the previous one, except that the challenger encrypts 0`out instead
of α.

3. It then computes ct←WE.Enc(1λ, Cb, 0
`out).

Hybrid H2 : In this hybrid experiment, the challenger uses the simulator for the lockable obfuscation
scheme to output the final obfuscation. Let Sim be the simulator for the lockable obfuscation scheme. Let
s = |Qct,C0

| = |Qct,C1
|.

4. Finally, it computes C̃ ← Sim(1λ, 1s) and sends C̃ to the adversary. The adversary outputs a bit b′

and wins if b = b′.

Let AdviA denote the advantage of adversary A in hybrid Hi.

Claim 8.1. Assuming the witness encryption scheme WE is secure, for any PPT adversary A, |Adv0A −
Adv1A| ≤ negl(λ).

Proof. Suppose, on the contrary, there exists a PPT adversary A such that |Adv0A −Adv1A| = ε. We will use
A to construct a reduction algorithm B that breaks the security of WE. The reduction algorithm chooses
a string α ← {0, 1}`out , b ← {0, 1} and sends Cb, α, 0

`out to the witness encryption challenger. It receives a
ciphertext ct. It then computes C̃ ← Obf(1λ, Qct,C , 1, α) and sends C̃ to the adversary. The adversary sends
its guess b′. If b = b′, the reduction algorithm guesses that α was encrypted, else it guesses that 0`out was
encrypted.

Claim 8.2. Assuming the security of lockable obfuscation scheme, for any PPT adversary A, |Adv1A −
Adv2A| ≤ negl(λ).

Proof. Suppose, on the contrary, there exists a PPT adversary A such that |Adv0A −Adv1A| = ε. We will use
A to construct a reduction algorithm B that breaks the security of the lockable obfuscation scheme.

The reduction algorithm first chooses b ← {0, 1} and computes an encryption of 0`out for Cb; that is, it
computes ct ← WE.Enc(1λ, Cb, 0

`out). It then sends circuit Qct,Cb and message 1 to the lockable obfuscator

challenger, and receives an obfuscated program C̃ which it forwards to A. If A guesses correctly, then B
guesses that C̃ is an honestly computed obfuscation, else it guesses that C̃ is simulated.

Claim 8.3. For any adversary A, |Adv2A| = 0.

Proof. This follows directly from the definition of hybrid H2. Note that the challenger only requires the size
of Qct,Cb , and this is independent of b since |C0| = |C1|. As a result, the final obfuscated program C̃ contains
no information about the bit b.

References

[ABBC10] Tolga Acar, Mira Belenkiy, Mihir Bellare, and David Cash. Cryptographic agility and its relation
to circular encryption. In EUROCRYPT ’10, volume 6110 of LNCS, pages 403–422. Springer,
2010.

[ABC+05] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited:
Consistency properties, relation to anonymous ibe, and extensions. In Annual International
Cryptology Conference, 2005.

49

[ABHS09] Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness and completeness
of formal encryption: The cases of key cycles and partial information leakage. Journal of
Computer Security, 17(5):737–797, 2009.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In CRYPTO, pages 595–618,
2009.

[ADGM16] Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis of indistin-
guishability obfuscations of circuits over ggh13. Cryptology ePrint Archive, Report 2016/1003,
2016.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-
tional encryption. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages 308–326,
2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness generically: Indis-
tinguishability obfuscation from non-compact functional encryption. IACR Cryptology ePrint
Archive, 2015.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In Automata, Languages
and Programming, 26th International Colloquium, ICALP’99, Prague, Czech Republic, July
11-15, 1999, Proceedings, pages 1–9, 1999.

[AP16] Navid Alamati and Chris Peikert. Three’s compromised too: Circular insecurity for any cycle
length from (ring-)lwe. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II,
pages 659–680, 2016.

[AS16] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In EUROCRYPT, 2016.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework,
fully secure functional encryption for regular languages, and more. In Advances in Cryptology -
EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 557–
577, 2014.

[Bar86] D A Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages in nc1. In Proceedings of the eighteenth annual ACM symposium on Theory of com-
puting, STOC ’86, 1986.

[BBC+14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.
Obfuscation for evasive functions. In Theory of Cryptography Conference, 2014.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in
public-key encryption. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 566–582. Springer, 2001.

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam ONeill. Deterministic and efficiently searchable
encryption. In Annual International Cryptology Conference, 2007.

[BDFP86] Allan Borodin, Danny Dolev, Faith E. Fich, and Wolfgang J. Paul. Bounds for width two
branching programs. SIAM J. Comput., 15(2):549–560, 1986.

50

[BFM15] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Random-oracle uninstantiability from
indistinguishability obfuscation. In Theory of Cryptography - 12th Theory of Cryptography
Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, 2015.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arith-
metic circuit ABE and compact garbled circuits. In Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 533–556, 2014.

[BGH+15] Zvika Brakerski, Craig Gentry, Shai Halevi, Tancrède Lepoint, Amit Sahai, and Mehdi Tibouchi.
Cryptanalysis of the quadratic zero-testing of GGH. IACR Cryptology ePrint Archive, 2015.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. In Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, 2014.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic en-
cryption without bootstrapping. In ITCS, 2012.

[BH15] Mihir Bellare and Viet Tung Hoang. Adaptive witness encryption and asymmetric password-
based cryptography. In Public-Key Cryptography - PKC 2015 - 18th IACR International Con-
ference on Practice and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March
30 - April 1, 2015, Proceedings, pages 308–331, 2015.

[BHSV98] Mihir Bellare, Shai Halevi, Amit Sahai, and Salil Vadhan. Many-to-one trapdoor functions
and their relation to public-key cryptosystems. In Annual International Cryptology Conference,
1998.

[BHW15] Allison Bishop, Susan Hohenberger, and Brent Waters. New circular security counterexamples
from decision linear and learning with errors. In Advances in Cryptology - ASIACRYPT 2015
- 21st International Conference on the Theory and Application of Cryptology and Information
Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part II, pages
776–800, 2015.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 575–584, 2013.

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing obfus-
cation: New mathematical tools, and the case of evasive circuits. In Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, 2016.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices.
In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings, pages 719–737, 2012.

51

[BR14] Zvika Brakerski and Guy N Rothblum. Virtual black-box obfuscation for all circuits via generic
graded encoding. In Theory of Cryptography Conference, 2014.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) lwe. In FOCS, pages 97–106, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional en-
cryption. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pages 171–190, 2015.

[BVWW16] Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Obfuscating con-
junctions under entropic ring lwe. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, 2016.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In
Proceedings of the 4th conference on Theory of cryptography, TCC’07, pages 535–554, Berlin,
Heidelberg, 2007. Springer-Verlag.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps against zeroizing
attacks. Cryptology ePrint Archive, Report 2014/930, 2014.

[CC09] Melissa Chase and Sherman S. M. Chow. Improving privacy and security in multi-authority
attribute-based encryption. In ACM Conference on Computer and Communications Security,
pages 121–130, 2009.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for nc1 from lwe. In EURO-
CRYPT, 2017.

[CFL+16] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and Hansol Ryu. Crypt-
analysis of the new clt multilinear map over the integers. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, 2016.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited
(preliminary version). In STOC, pages 209–218, 1998.

[CGH12] David Cash, Matthew Green, and Susan Hohenberger. New definitions and separations for
circular security. In Public Key Cryptography - PKC, pages 540–557, 2012.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji, Eric
Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level zeroes:
New MMAP attacks and their limitations. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I, 2015.

[CH85] Stephen A. Cook and H. James Hoover. A depth-universal circuit. SIAM Journal on Computing,
14(4):833–839, 1985.

[Cha07] Melissa Chase. Multi-authority attribute based encryption. In TCC, pages 515–534, 2007.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Crypt-
analysis of the multilinear map over the integers. In Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 3–12, 2015.

52

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for ntru problems and
cryptanalysis of the ggh multilinear map without a low-level encoding of zero. LMS Journal of
Computation and Mathematics, 2016.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. IACR Cryptology ePrint Archive, 2001:19,
2001.

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanalysis
of GGH15 multilinear maps. In Advances in Cryptology - CRYPTO 2016 - 36th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part II, 2016.

[CLLT17] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Zeroizing
attacks on indistinguishability obfuscation over CLT13. In Public-Key Cryptography - PKC
2017 - 20th IACR International Conference on Practice and Theory in Public-Key Cryptography,
Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part I, 2017.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over
the integers. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 476–493, 2013.

[CLT14] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Cryptanalysis of two candidate
fixes of multilinear maps over the integers. Cryptology ePrint Archive, Report 2014/975, 2014.

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear maps over the
integers. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, 2015.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139,
2008.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. In Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 523–540, 2004.

[FO99a] Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of public-key encryption at
minimum cost. In International Workshop on Public Key Cryptography, pages 53–68. Springer,
1999.

[FO99b] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In CRYPTO ’99, volume 1666 of LNCS, pages 537–554. Springer, 1999.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indstinguishability obfuscation and functional encryption for all circuits. In FOCS,
2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices.
In TCC, 2015.

53

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its appli-
cations. In STOC, 2013.

[GJPS08] Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded ciphertext policy at-
tribute based encryption. In Automata, Languages and Programming, 35th International Collo-
quium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic,
Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations,
2008.

[GKW17a] Rishab Goyal, Venkata Koppula, and Brent Waters. Separating IND-CPA and circular security
for unbounded length key cycles. In Public-Key Cryptography - PKC 2017 - 20th IACR In-
ternational Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, The
Netherlands, March 28-31, 2017, Proceedings, Part I, 2017.

[GKW17b] Rishab Goyal, Venkata Koppula, and Brent Waters. Separating semantic and circular security
for symmetric-key bit encryption from the learning with errors assumption. In EUROCRYPT,
2017.

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistinguishability obfus-
cation from the multilinear subgroup elimination assumption. In IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 151–170, 2015.

[GLW14] Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from instance inde-
pendent assumptions. In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 426–443,
2014.

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and Mark
Zhandry. Secure obfuscation in a weak multilinear map model. In Theory of Cryptography
Conference, pages 241–268. Springer, 2016.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on
Computer and communications security, CCS ’06, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197–206, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits
from lwe. In Annual Cryptology Conference, 2015.

[Hal15] Shai Halevi. Graded encoding, variations on a scheme. Cryptology ePrint Archive, Report
2015/866, 2015.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of ggh map. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, 2016.

54

[KRW15] Venkata Koppula, Kim Ramchen, and Brent Waters. Separations in circular security for arbi-
trary length key cycles. In Theory of Cryptography Conference (TCC), 2015.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Proceedings of the theory and applications of
cryptographic techniques 27th annual international conference on Advances in cryptology, EU-
ROCRYPT’08, 2008.

[KW16] Venkata Koppula and Brent Waters. Circular security counterexamples for arbitrary length
cycles from LWE. In CRYPTO, 2016.

[Lau02] Peeter Laud. Encryption cycles and two views of cryptography. In NORDSEC 2002 - Proceedings
of the 7th Nordic Workshop on Secure IT Systems (Karlstad University Studies 2002:31, pages
85–100, 2002.

[Lin16a] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
2016.

[Lin16b] Huijia Lin. Indistinguishability obfuscation from ddh on 5-linear maps and locality-5 prgs.
Cryptology ePrint Archive, Report 2016/1096, 2016.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In EUROCRYPT, pages 62–91, 2010.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like assump-
tions on constant-degree graded encodings. In Foundations of Computer Science (FOCS), 2016
IEEE 57th Annual Symposium on, 2016.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In Theory of Cryptography, 7th Theory of Cryptography
Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, pages 455–479,
2010.

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In EURO-
CRYPT, pages 568–588, 2011.

[MO14] Antonio Marcedone and Claudio Orlandi. Obfuscation ⇒ (IND-CPA security !⇒ circular se-
curity). In Security and Cryptography for Networks - 9th International Conference, SCN 2014,
Amalfi, Italy, September 3-5, 2014. Proceedings, pages 77–90, 2014.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings, pages 700–718, 2012.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters. In
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, pages 21–39, 2013.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput., 37(1):267–302, April 2007.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over ggh13. In Annual Cryptology Conference, 2016.

55

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 333–342, 2009.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In International Cryptology Conference, 2014.

[RAD78] Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks and privacy homo-
morphisms. In Foundations of Secure Computation, pages 169–180, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93, 2005.

[Rot13] Ron Rothblum. On the circular security of bit-encryption. In Theory of Cryptography - 10th
Theory of Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings,
pages 579–598, 2013.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–
473, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31
- June 03, 2014, pages 475–484, 2014.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple as-
sumptions. In CRYPTO, pages 619–636, 2009.

[Wat12] Brent Waters. Functional encryption for regular languages. In CRYPTO, 2012.

[WFS03] Brent R Waters, Edward W Felten, and Amit Sahai. Receiver anonymity via incomparable
public keys. In Proceedings of the 10th ACM conference on Computer and communications
security, 2003.

56

A Background: Attribute-Based Encryption and Predicate En-
cryption

A.1 Key-Policy Attribute Based Encryption

A key-policy attribute based encryption (KP-ABE) scheme ABE , for set of attribute spaces X = {Xλ}λ,
predicate classes C = {Cλ}λ and message spaces M = {Mλ}λ, consists of four polytime algorithms
(Setup,Enc,KeyGen,Dec) with the following syntax:

• Setup(1λ,Xλ, Cλ,Mλ) → (pp,msk). The setup algorithm takes as input the security parameter λ and
a description of attribute space Xλ, predicate class Cλ and message spaceMλ, and outputs the public
parameters pp and the master secret key msk.

• Enc(pp, x,m)→ ct. The encryption algorithm takes as input public parameters pp, an attribute x ∈ Xλ
and a message m ∈Mλ. It outputs a ciphertext ct.

• KeyGen(msk, C) → skC . The key generation algorithm takes as input master secret key msk and a
predicate C ∈ Cλ. It outputs a secret key skC .

• Dec(skC , ct)→ m or ⊥. The decryption algorithm takes as input a secret key skC and a ciphertext ct.
It outputs either a message m ∈Mλ or a special symbol ⊥.

Correctness. A key-policy attribute based encryption scheme is said to be correct if for all λ ∈ N,
(pp,msk) ← Setup(1λ,Xλ, Cλ,Mλ), for all x ∈ Xλ, C ∈ Cλ, m ∈ Mλ, skC ← KeyGen(msk, C), ct ←
Enc(pp, x,m), the following holds

C(x) = 1⇒ Pr [Dec(skC , ct) = m] ≥ 1− negl1(λ),

C(x) = 0⇒ Pr [Dec(skC , ct) = ⊥] ≥ 1− negl2(λ),

where negl1(·),negl2(·) are negligible functions, and the probabilities are taken over the random coins used
during key generation and encryption procedures.

Security. The standard notion of security for a KP-ABE scheme is that of full or adaptive security. It is
formally defined as follows.

Definition A.1. A key-policy attribute based encryption scheme ABE = (Setup,Enc,KeyGen,Dec) is said
to be fully secure if for every stateful PPT adversary A, there exists a negligible function negl(·), such that
the following holds:∣∣∣∣∣∣Pr

AKeyGen(msk,·)(ct) = b :
(pp,msk)← Setup(1λ,Xλ, Cλ,Mλ)
((m0,m1), x)← AKeyGen(msk,·)(pp)
b← {0, 1}; ct← Enc(pp, x,mb)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ)

where every predicate query C, made by adversary A to the KeyGen(msk, ·) oracle, must satisfy the condition
that C(x) = 0.

A.2 Predicate Encryption

A predicate encryption (PE) scheme PE , for set of attribute spaces X = {Xλ}λ, predicate classes C = {Cλ}λ
and message spacesM = {Mλ}λ, consists of four polytime algorithms (Setup,Enc,KeyGen,Dec). They have
the same syntax and correctness condition as that of a KP-ABE scheme.

The standard notion of security for a PE scheme is that of full attribute hiding (or 2-sided security). A
weaker notion of security is of 1-sided security which is captured by the following indistinguishability based
definition.

57

Definition A.2 (1-Sided Security). A predicate encryption scheme PE = (Setup,Enc,KeyGen,Dec) is said
to be 1-sided secure if for every stateful PPT adversary A, there exists a negligible function negl(·), such
that the following holds:∣∣∣∣∣∣Pr

AKeyGen(msk,·)(ct) = b :
(pp,msk)← Setup(1λ,Xλ, Cλ,Mλ)

((m0, x0), (m1, x1))← AKeyGen(msk,·)(pp)
b← {0, 1}; ct← Enc(pp, xb,mb)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ)

where every predicate query C, made by adversary A to the KeyGen(msk, ·) oracle, must satisfy the condition
that C(x0) = C(x1) = 0.

The notion of 1-sided security for PE schemes could alternatively be captured by a simulation based
definition. The following definition was used by Gorbunov, Vaikuntanathan and Wee [GVW15]. Later in
Appendix F, we show that if a PE scheme satisfies Definition A.2, then it also satisfies Definition A.3.

Definition A.3 (SIM-1-Sided Security). A predicate encryption scheme PE = (Setup,Enc,KeyGen,Dec) is
said to be SIM-1-sided secure if there exists a simulator Sim such that for every stateful PPT adversary A,
the following holds: AKeyGen(msk,·)(ct) :

(pp,msk)← Setup(1λ,Xλ, Cλ,Mλ)
(m,x)← AKeyGen(msk,·)(pp)

ct← Enc(pp, x,m)

≈cAKeyGen(msk,·)(ct) :

(pp,msk)← Setup(1λ,Xλ, Cλ,Mλ)
(m,x)← AKeyGen(msk,·)(pp)
ct← Sim(1λ, pp, 1|x|, 1|m|)

where every predicate query C, made by adversary A to the KeyGen(msk, ·) oracle, must satisfy the condition
that C(x) = 0.

B Background: Cycle Testers

B.1 Public Key k-Cycle Tester

In a recent work, Bishop, Hohenberger and Waters [BHW15] introduced a generic framework for creating
circular security counterexamples. In this cycle tester framework, there are four algorithms - Setup, KeyGen,
Encrypt and Test. The setup algorithm takes as input the security parameter λ and cycle length parameter
k outputs the public parameters. The key generation algorithm uses the public parameters to output a
public-secret key pair. The encryption algorithm takes a public key and message as input, and outputs a
ciphertext. Finally, the testing algorithm takes as input k public keys and k ciphertexts, and outputs 1 if
the k ciphertexts form a key cycle, else it outputs 0. Note that in this framework, there is no decryption
algorithm. The security requirement is identical to the IND-CPA security game. The following description is
taken from [BHW15].

Definition B.1 (k-Cycle Tester). A cycle tester Γ = (Setup,KeyGen,Enc,Test) for message space M and
secret key space {0, 1}s is a tuple of algorithms (where s = s(λ)) specified as follows:

• Setup(1λ, 1k) → pp. The setup algorithm takes as input the security parameter λ and the length of
cycle k. It outputs the public parameters pp.

• KeyGen(pp) → (pk, sk). The key generation algorithm takes as input the public parameters pp and
outputs a public key pk and secret key sk ∈ {0, 1}s.

58

• Enc(pk,m ∈M)→ ct. The encryption algorithm takes as input a public key pk and a message m ∈M
and outputs a ciphertext ct.

• Test(pk, ct) → {0, 1}. On input pk = (pk1, . . . , pkk) and ct = (ct1, . . . , ctk), the testing algorithm
outputs a bit in {0, 1}.

The algorithms must satisfy the following properties.

1. (Testing Correctness) There exists a polynomial p(·) such that for all security parameters λ, for all
cycle lengths k, the Test algorithm’s advantage (given by the following expression) is at least 1/p(λ).∣∣∣∣Pr

[
1← Test(pk, ct) :

pp← Setup(1λ, 1k); (pki, ski)← KeyGen(pp)
cti ← Enc(pki, sk(i mod k)+1)

]
−Pr

[
1← Test(pk, ct) :

pp← Setup(1λ, 1k); (pki, ski)← KeyGen(pp)
cti ← Enc(pki, 0

s)

] ∣∣∣∣
2. (IND-CPA Security) Let Π = (Setup,KeyGen,Enc, ·) be an encryption scheme with empty decryption

algorithm. The scheme Π must satisfy the IND-CPA security definition (Definition 2.4).

B.2 Public Key Bit Encryption 1-Cycle Tester

The BHW framework does not directly work for generating circular security separations for bit-encryption.
In a recent work, Goyal, Koppula and Waters [GKW17b] provide a bit-encryption cycle tester framework for
symmetric-key bit encryption along the lines of BHW framework. Below we extend their framework in the
public key setting.

Definition B.2. (Bit Encryption 1-Cycle Tester) A cycle tester Γ = (Setup,Enc,Test) for message space
{0, 1} and secret key space {0, 1}s is a tuple of algorithms (where s = s(λ)) specified as follows:

• Setup(1λ) → (pk, sk). The setup algorithm takes as input the security parameter λ, and outputs a
public-secret key pair (pk, sk).

• Enc(pk,m ∈ {0, 1}) → ct. The encryption algorithm takes as input a public key pk and a message
m ∈ {0, 1}, and outputs a ciphertext ct.

• Test(pk, ct) → {0, 1}. The testing algorithm takes as input a public key pk and a sequence of s
ciphertexts ct = (ct1, . . . , cts), and outputs a bit in {0, 1}.

The algorithms must satisfy the following properties.

1. (Testing Correctness) There exists a polynomial p(·) such that for all security parameters λ, the Test
algorithm’s advantage (given by the following expression) is at least 1/p(λ).∣∣∣∣Pr

[
1← Test(pk, ct) :

(pk, sk)← Setup(1λ)
cti ← Enc(pki, ski)

]
−Pr

[
1← Test(pk, ct) :

(pk, sk)← Setup(1λ)
cti ← Enc(pki, 0)

] ∣∣∣∣
2. (IND-CPA Security) Let Π = (Setup,Enc, ·) be an encryption scheme with empty decryption algorithm.

The scheme Π must satisfy the IND-CPA security definition (Definition 2.4).

59

B.3 Public Key Cycle Tester for Unbounded Length Cycles

The BHW framework does not give circular security separations for unbounded length key cycles since
the Setup algorithm in their framework takes as input the length of cycle k. Below we extend the BHW
framework for unbounded length key cycles.

Definition B.3 (Unbounded Length Cycle Tester). A cycle tester Γ = (Setup,Enc,Test) for message space
M and secret key space {0, 1}s is a tuple of algorithms (where s = s(λ)) specified as follows:

• Setup(1λ) → (pk, sk). The setup algorithm takes as input the security parameter λ and outputs a
public key pk and secret key sk ∈ {0, 1}s.

• Enc(pk,m ∈M)→ ct. The encryption algorithm takes as input a public key pk and a message m ∈M
and outputs a ciphertext ct.

• Test(1k,pk, ct) → {0, 1}. On input the key cycle length k, public keys pk = (pk1, . . . , pkk) and secret
keys ct = (ct1, . . . , ctk), the testing algorithm outputs a bit in {0, 1}.

The algorithms must satisfy the following properties.

1. (Testing Correctness) There exists a polynomial p(·) such that for all security parameters λ, all cycle
lengths k, the Test algorithm’s advantage (given by the following expression) is at least 1/p(λ).∣∣∣∣Pr

[
1← Test(1k,pk, ct) :

(pki, ski)← Setup(1λ)
cti ← Enc(pki, sk(i mod k)+1)

]
−Pr

[
1← Test(1k,pk, ct) :

(pki, ski)← Setup(1λ)
cti ← Enc(pki, 0

s)

] ∣∣∣∣
2. (IND-CPA Security) Let Π = (Setup,Enc, ·) be an encryption scheme with empty decryption algorithm.

The scheme Π must satisfy the IND-CPA security definition (Definition 2.4).

C Lockable Obfuscators: Extending the Message Space

In this section, we show that a lockable obfuscation scheme with message space {0, 1} can be extended to a
lockable obfuscation scheme with message space {0, 1}l for any polynomial l.

Let (Obf,Eval) be a lockable obfuscation scheme with message space {0, 1}. We will also require the
following tools for this transformation:

- A pairwise independent hash function family H with domain {0, 1}`out and co-domain {0, 1}`H

- A pseudorandom generator PRG : {0, 1}`H → {0, 1}l·λ

Consider the following lockable obfuscation scheme (Obf ′,Eval′) for circuit class C`in,`out,d and message space
{0, 1}l.

• Obf ′(1λ, P,msg, α): Let msgi denote the ith bit of msg for i ≤ l, and s[i,j] be substring of s consisting

starting with the ith bit of s and ending with the jth bit.

The obfuscation algorithm first chooses a hash function h. Let Qi be a circuit that takes as input
x ∈ {0, 1}`in and outputs PRG(h(P (x)))[(i−1)·λ+1,i·λ].

The obfuscation algorithm computes P̃i ← Obf(1λ, Qi,msgi,PRG(h(α))[(i−1)·λ+1,i·λ]) for each i ≤ l.

The final obfuscated program is
(
P̃1, . . . , P̃l

)
.

• Eval′
((
P̃1, . . . , P̃l

)
, x
)

: The evaluation algorithm computes yi = Eval(P̃i, x) for each i ≤ l. If any

yi =⊥, it outputs ⊥. Else, it outputs (y1, . . . , yl).

60

Correctness. We will show that the above scheme satisfies the semi-statistical correctness definition
if the underlying scheme also satisfies the semi-statistical correctness notion. Fix any security param-
eter λ, program P , string α, input x and message msg. If P (x) = α, then it follows directly that
Eval′

(
Obf ′

(
1λ, P,msg, α

)
, x
)

= msg.
If P (x) 6= α, then we need to show that with high probability (over the coins of obfuscation), the

evaluation algorithm outputs ⊥. Let β = PRG(h(α)), and let βi = β[(i−1)·λ+1,i·λ] for simplicity of notation.
Fix any i ∈ [l], and let Badi denote the event that PRG(h(P (x)))[(i−1)·λ+1,i·λ] = βi, and let Ei be the event

that Eval(P̃i, x) 6=⊥. Using the pairwise independence property, we can argue that Pr[Badi] ≤ 2−`H , and
using the underlying obfuscator’s semi-statistical correctness, we get that Pr[Ei | Badi] ≤ negl(λ). This
implies Pr[Ei] ≤ negl(λ), and hence with overwhelming probability, the evaluation algorithm outputs ⊥.

Security. Security follows from a hybrid argument. The simulator will run the underlying scheme’s sim-
ulator l times. To prove that this is indistinguishable from the honestly computed obfuscation, we define
l+ 2 intermediate hybrid obfuscations. In the first hybrid, we switch h(α) to be a uniformly random string.
This follows from the Leftover Hash Lemma. Next, we switch PRG(h(α)) to a uniformly random l · λ bit
string. This follows from the security of PRG. At this point, each of the locks for each of the l calls to Obf
are independent and uniformly random strings. We can now simulate each of them independently. In the
(i + 2)th one, the challenger simulates the first i obfuscations, and honestly computes the remaining l − i
obfuscations. The (i + 1)th and (i + 2)th hybrids are computationally indistinguishable due to security of
the underlying obfuscation scheme.

D Lockable Obfuscation with Statistical Correctness

In this section, we show how to construct lockable obfuscation with statistical correctness. The construction
and proofs will be very similar to the corresponding parts from Section 4. In order to achieve this stronger
notion of correctness, we will require low depth injective pseudorandom generators. Currently, we do not
know how to instantiate such PRGs from the LWE assumption.

For any polynomials `in, `out, d such that `out = Ω(λ), we construct an lockable obfuscation scheme
(Obf,Eval) with statistical correctness for the circuit class C`in,`out,d. The messge space for our construction
will be {0, 1}. The tools required for this construction are as follows:

- A compact leveled homomorphic bit encryption scheme (LHE.Setup, LHE.Enc, LHE.Eval, LHE.Dec) with
decryption circuit of depth dDec(λ) and ciphertexts of length `ct(λ).

- An injective pseudorandom generator PRG : {0, 1}`out(λ) → {0, 1}`PRG(λ) of depth dPRG(λ).

Fix any ε < 1/2. Let χ be a B-bounded discrete Gaussian distribution with parameter σ such that
B =

√
m · σ. Let n,m, `, σ, q,Bd be parameters with the following constraints:

- n = poly(λ) and q ≤ 2n
ε

(for LWE security)

- `out = ω(log λ) (for PRG security)

- m = Ω(n · log q) (for SamplePre)

- σ = ω(
√
n · log q · logm) (for Preimage Well Distributedness)

- `PRG = n ·m · log q + ω(log n) (for applying Leftover Hash Lemma)

- Bd = `PRG · L · (m2 · σ)L < q1/4 (for correctness of scheme)
(where L = `out · `ct · 4dDec+dPRG)

As before, it is important that L = λc for some constant c and Bd = `PRG · L · (m2 · σ)L < q1/4. The
constant c depends on the LHE scheme and PRG.

We will now describe the obfuscation and evaluation algorithms.

• Obf(1λ, P,msg, α): The obfuscation algorithm takes as input a program P ∈ C`in,`out,d, message msg ∈
{0, 1} and α ∈ {0, 1}`out . The obfuscator proceeds as follows:

61

1. First, it chooses the LHE key pair as (lhe.sk, lhe.ek)← LHE.Setup(1λ, 1d log d).

2. Next, it encrypts the program P . It sets ct← LHE.Enc(lhe.sk, P).

3. Let β = PRG(α).

4. Next, consider the following circuit Q which takes as input `out ·`ct bits of input and outputs `PRG

bits. Q takes as input `out LHE ciphertexts {cti}i≤`out , has LHE secret key lhe.sk hardwired and
computes the following — (1) it decrypts each input ciphertext cti (in parallel) to get string x of
length `out bits, (2) it applies the PRG on x and outputs PRG(x). Concretely, Q(ct1, . . . , ct`out) =
PRG (LHE.Dec(lhe.sk, ct1) || · · · || LHE.Dec(lhe.sk, ct`out)).
For i ≤ `PRG, we use BP(i) to denote the fixed-input selector permutation branching program
that outputs the ith bit of output of circuit Q. Note that Q has depth at most dtot = dDec +dPRG.
By Corollary 2.2, we know that each branching program BP(i) has length L = `out · `ct · 4dtot and
width 5.

5. Finally, the obfuscator creates matrix components which enable the evaluator to compute msg if
it has an input strings (ciphertexts) ct1, . . . , ct`out such that Q(ct1, . . . , ct`out) = β. Concretely,
it runs the (randomized) routine Comp-Gen (defined in Figure 1). This routine takes as input

the circuit Q in the form of `PRG branching programs {BP(i)}i, string β and message msg. Let({
B

(i)
0,1

}
i
,
{

C
(i,0)
j ,C

(i,1)
j

}
i,j

)
← Comp-Gen({BP(i)}i, β,msg).

6. The final obfuscated program consists of the LHE evaluation key ek = lhe.ek, LHE ciphertexts ct,

together with the components

({
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j)

}
i,j

)
.

• Eval(P̃ , x): The evaluation algorithm takes as input P̃ =

(
ek, ct,

{
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j)

}
i,j

)
and

input x ∈ {0, 1}`in . It performs the following steps.

1. The evaluator first constructs a universal circuit Ux(·) with x hardwired as input. This universal
circuit takes a circuit C as input and outputs Ux(C) = C(x). Using the universal circuit of Cook
and Hoover [CH85], it follows that Ux(·) has depth O(d).

2. Next, it performs homomorphic evaluation on ct using circuit Ux(·). It computes c̃t = LHE.Eval(ek, Ux(·), ct).
Note that `ct · `out denotes the length of c̃t (as a bitstring), and let c̃ti denote the ith bit of c̃t.

3. The evaluator then obliviously evaluates the `PRG branching programs on input c̃t using the
matrix components. It calls the component evaluation algorithm Comp-Eval (defined in Figure

2). Let y = Comp-Eval

(
c̃t,

({
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j)

}
i,j

))
. The evaluator outputs y.

D.1 Correctness

We will prove that the lockable obfuscation scheme described above satisfies the statistical correctness prop-
erty (see Definition 3.2). First, let us recall the following lemma (a weaker version of this lemma was proven
in Section 4.1).

Lemma D.1. For any set of branching programs {BP(i)}i≤`PRG
, string β ∈ {0, 1}`PRG , message msg ∈ {0, 1}

and input z,

1. if BP(i)(z) = βi for all i ≤ `PRG, then Comp-Eval(z,Comp-Gen({BP(i)}i, β,msg)) = msg.

2. if BP(i)(z) 6= βi for some i ≤ `PRG, then

Pr[Comp-Eval(z,Comp-Gen({BP(i)}i, β,msg)) = ⊥] ≥ 1− negl(λ)/2`in .

62

This lemma is identical to Lemma 4.1, except that if BP(i)(z) 6= βi for some i ≤ `PRG, then the probability
of error needs to be bounded by negl(λ)/2`in instead of just negl(λ). This is required for our union bound
argument. The proof of this lemma is same as that of Lemma 4.1, and the final bound of negl(λ)/2`in holds
if we ensure that (Bd/q)(m−n)·n < 2−2`in .

Using the above lemma, we can now argue the correctness of our scheme. First, we need to show
correctness for the case when P (x) = α.

Claim D.1. For all security parameters λ, inputs x ∈ {0, 1}`in , programs P ∈ C`in,`out,d and messages
msg ∈ {0, 1}, if P (x) = α, then

Eval(Obf(1λ, P,msg, α)), x) = msg.

Proof. First, the obfuscator encrypts the program P using an LHE secret key lhe.sk, and sets ct← LHE.Enc(lhe.sk, P).
The evaluator evaluates the LHE ciphertext on universal circuit Ux(·), which results in an evaluated cipher-
text c̃t. Now, by the correctness of the LHE scheme, decryption of c̃t using lhe.sk outputs α. Therefore,
PRG(LHE.Dec(lhe.sk, c̃t)) = β. Then, using Lemma 4.1, we can argue that Comp-Eval outputs msg, and
thus Eval outputs msg.

Claim D.2. For all security parameters λ, programs P ∈ Cn,m,d(λ), α ∈ {0, 1}m(λ) and msg ∈M,

Pr[∃ x s.t. P (x) 6= α and Eval(Obf(1λ, P,msg, α), x) = msg] ≤ negl(λ)

where the probability is taken over the random coins used during obfuscation.

Proof. Fix any security parameter λ, program P , α, x such that P (x) 6= α and message msg. Let us now
consider the events

Error : ∃ x s.t. P (x) 6= α and Eval(Obf(1λ, P,msg, α), x) 6= ⊥

Errorx : Eval(Obf(1λ, P,msg, α), x) 6= ⊥

Clearly, Pr[Error] ≤
∑
x:P (x)6=α Pr[Errorx]. Therefore, it suffices to show that Pr[Errorx] is at most negl(λ)/2`in .

First, note that for all x ∈ {0, 1}`in , if P (x) 6= α, then PRG(P (x)) 6= PRG(α). This follows from
the injectiveness of PRG. Fix any input x such that P (x) 6= α, LHE keys (lhe.sk, lhe.ek) and ciphertext
ct ← LHE.Enc(lhe.sk, P). Let c̃t = LHE.Eval(ek, Ux(·), ct) and Q be the program that, on input a LHE

ciphertext, first decrypts it using sk, then computes PRG(y) (where y is the decrypted string). Let BP(i)

denote the branching program computing the ith output bit of Q. Using the correctness of LHE decryption,
it follows that Q(c̃t) = PRG(P (x)) 6= β,19 and therefore there exists some i ≤ `PRG such that BP(i)(c̃t) 6= βi.

Now, Pr[Errorx] = Pr[Comp-Eval
(
c̃t,Comp-Gen

(
{BP(i)}i, β,msg

))
]. Using Lemma D.1, we can conclude

that for all msg ∈ {0, 1}, this probability is at most negl(λ)/2`in . Hence, Pr[Error] ≤ negl(λ).

D.2 Security

We will now prove the scheme secure as per Definition 3.4. This proof is very similar to the one in Section 4.2.
The only difference here is that we do not require a pairwise independent hash function.

D.2.1 Simulator Sim

The simulator first chooses the parameters n,m, q, σ, `PRG as in the original scheme. Next, it chooses LHE
secret/evaluation keys. It computes (sk, ek) ← LHE.Setup(1λ, 1d log d) (note that the depth d of the circuit
class is fixed for the scheme). It then computes an encryption of 0|P |. Let ct ← LHE.Enc(sk,0|P |). Finally,

19Recall β = PRG(α)

63

the simulator chooses `PRG matrices B
(i)
0,1 ← Zn×mq and low norm matrices {(C(i,0)

j ,C
(i,1)
j)}i,j for i ≤ `PRG,

j ≤ L where C
(i,b)
j ← χm×m. The obfuscation consists of the LHE evaluation key ek, ciphertext ct, together

with the components

({
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j)

}
i,j

)
.

To prove security, we will define a sequence of hybrids. The proofs showing indistinguishability of hybrid
experiments are identical to the ones in Section 4.2.

D.2.2 Sequence of Hybrid Games

Fix any program P , message msg ∈ {0, 1}.

Game 0: This corresponds to the original security game.

1. The challenger first chooses the LWE parameters n, m, q, σ, χ and `PRG. Recall L denotes the length
of the branching programs.

2. It chooses (sk, ek)← LHE.Setup(1λ, 1d log d) and sets ct← LHE.Enc(sk, P).
3. Next, it chooses a uniformly random string α← {0, 1}`out and sets β = PRG(α).
4. Next, consider the following program Q. It takes as input an LHE ciphertext ct, has sk hardwired

and does the following: it decrypts the input ciphertext ct to get string y and outputs PRG(y). For

i ≤ `PRG(λ), let BP(i) denote the branching program that outputs the ith bit of PRG(y).

5. It chooses `PRG uniformly random matrices B
(i)
L of dimensions 5 · n × m, such that the following

constraint is satisfied (recall B
(i)
L,1 represents the first n rows of B

(i)
L , B

(i)
L,2 represents the next n rows

of B
(i)
L , etc)

∑
i : βi=0

B
(i)

L,rej(i)
+

∑
i : βi=1

B
(i)

L,acc(i)
=

{
0 if msg = 0.
√
q ·
[
In ||0n×(m−n)

]
if msg = 1.

6. For i = 1 to `PRG and j = 0 to L− 1, it chooses (B
(i)
j , T

(i)
j)← TrapGen(15·n, 1m, q).

7. Next, it generates the components for each level. For each level level ∈ [1, L], do the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG. If either S

(0)
level or

S
(1)
level has determinant zero, then set it to be In.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

(c) Set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

8. The final obfuscated program consists of the LHE evaluation key ek, LHE encryption ct, together with

the components

({
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j)

}
i,j

)
.

Game 1: In this experiment, the challenger chooses the matrices S
(0)
level,S

(1)
level without checking if their deter-

minant is non-zero.

7. Next, it generates the components for each level. For each level level ∈ [1, L], do the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG.

64

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

(c) Set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

Game 2: In this experiment, the challenger replaces the pseudorandom string β = PRG(α) with a truly
random string.

3. Next, it chooses a uniformly random string α← {0, 1}`out and β ← {0, 1}`PRG .

Game 3: In this experiment, the challenger chooses the top level matrices uniformly at random.

5. It chooses `PRG uniformly random matrices B
(i)
L of dimensions 5 · n×m, without any constraints.

We will now define 4L+1 intermediate game Game (4, j∗, 0),Game (4, j∗, 1),Game (4, j∗, 2),Game (4, j∗, 3)
for j∗ ∈ [0, L− 1] and Game (4, L, 0). The Game (4, 0, 0) will correspond to Game 3.

Game (4, j∗, 0): In this experiment, the challenger chooses the top j∗ level matrices B
(i)
j uniformly at

random (without a trapdoor). Also, the top level C
(i,b)
j matrices, for j > L− j∗, are chosen randomly from

the noise distribution χ.

6. For i = 1 to `PRG and j = 0 to L− 1,

• if j < L− j∗ it chooses (B
(i)
j , T

(i)
j)← TrapGen(15·n, 1m, q).

• if j ≥ L− j∗, it chooses B
(i)
j uniformly at random from Z5·n×m

q .

7. Next, it generates the components for each level. For each level level ∈ [1, L− j∗], do the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

(c) Set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

For all level > L− j∗, i ≤ `PRG and b ∈ {0, 1} choose C
(i,b)
level ← χm×m.

Game (4, j∗, 1): In this experiment, the challenger chooses M
(i,0)
level uniformly at random for level = L − j∗

(M
(i,1)
level is same as before).

7. Next, it generates the components for each level. For each level level ∈ [1, L− j∗], do the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

(c) If level = L− j∗, choose M
(i,0)
level ← Z5·n×m

q and M
(i,1)
level same as previous hybrid.

Else set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

For all level > L− j∗, i ≤ `PRG and b ∈ {0, 1} choose C
(i,b)
level ← χm×m.

65

Game (4, j∗, 2): In this experiment, the challenger chooses M
(i,b)
level uniformly at random for level = L − j∗

and b ∈ {0, 1}.

7. Next, it generates the components for each level. For each level level ∈ [1, L− j∗], do the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

(c) If level = L− j∗, choose M
(i,b)
level ← Z5·n×m

q .

Else set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

For all level > L− j∗, i ≤ `PRG and b ∈ {0, 1} choose C
(i,b)
level ← χm×m.

Game (4, j∗, 3): In this experiment, the challenger chooses C
(i,b)
L−j∗ from the noise distribution.

7. Next, it generates the components for each level. For each level level ∈ [1, L− j∗], do the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

(c) Set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) If level = L− j∗, then choose C
(i,b)
L−j∗ ← χm×m for b ∈ {0, 1}.

Else compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level)

For all level > L− j∗, i ≤ `PRG and b ∈ {0, 1} choose C
(i,b)
level ← χm×m.

Game 5: In this experiment, the challenger computes an encryption of 0|P | instead of an encryption of P .
Note that the LHE secret key sk is not required at any other step in this experiment. This corresponds to
the ideal world.

2. It chooses (sk, ek)← LHE.Setup(1λ, 1d log d) and sets ct← LHE.Enc(sk, P).

E Predicate Encryption: Key-Policy ABE with Unbounded De-
cryption Depth

In this section, we construct a predicate encryption (PE) scheme which achieves 1-sided security from any
key-policy attribute based encryption (KP-ABE) scheme, a fully homomorphic encryption (FHE) and a
lockable obfuscator. Our construction inherits the attribute space and predicate class of the underlying
KP-ABE scheme.

Outline. The main idea is to double encrypt the message m, i.e. first encrypt the message using the
KP-ABE scheme (under attribute x) to get ciphertext ctx, and then encrypt ctx using the FHE scheme to
compute the final ciphertext ct. At a high level, since the ciphertext ctx is encrypted as well, therefore the
attribute x is hidden from the adversary. However, to decrypt such a ciphertext, one would require the FHE
secret key. Now if the FHE secret key is released in the clear then we could not hope to use FHE security
to claim attribute hiding.

66

To solve this problem, instead of giving the FHE secret key in the clear, we obfuscate the decryption
circuit of the FHE scheme with the secret key hardwired in it. Such an obfuscated circuit would take as
input an FHE ciphertext, decrypt it inside (using the hardwired secret key) and check against the lock value.
Note that we have not yet specified the lock and message used during obfuscation. If we simply use the
message m as the lock value, then we do not know how to prove security since the obfuscator guarantees
security only if the lock is chosen at random. Therefore, instead of double encrypting the message m, we
double encrypt a randomly chosen lock value α (first under attribute x, then using FHE). And, the message
m is set as the output of obfuscated program, i.e. obfuscator is run with lock α and message m. The final
ciphertext is set as ct (i.e, the double encryption of lock α) and P̃ (i.e., the obfuscation of decryption circuit).
The key generation proceeds identically to that of the underlying ABE scheme. Now decryption proceeds
in two phases. First, the inner ciphertext ctx (inside ciphertext ct) is homomorphically decrypted using an
ABE secret key skC for some predicate C. Second, the homomorphically evaluated ciphertext (say ct′) is

fed to the obfuscated program P̃ and output of the program evaluation is simply the output of decryption
procedure.

Observe that if skC is a valid secret key (such that C(x) = 1), then ct′ would be an FHE encryption of
lock α (by correctness of KP-ABE decryption), and output of the obfuscated program with ct′ as input would
be message m by correctness of the FHE decryption and program evaluation. At a high level, this provides
weak attribute hiding because if the adversary can not decrypt the ciphertext containing the lock (i.e, it
does not know the secret key for the corresponding attribute), then it has not no information about the
lock value. Therefore, by the obfuscation security, we can guarantee that the challenge ciphertext could be
simulated instead. Below we describe our construction PE = (Setup,Enc,KeyGen,Dec) for attribute spaces
{Xλ}λ, predicate classes {Cλ}λ and 1-bit messages.

Let ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) be a key-policy attribute based encryption
scheme for set of attribute spaces {Xλ}λ, predicate classes {Cλ}λ and message spaces {{0, 1}k(λ)}λ, and
FHE = (FHE.Setup,FHE.Enc,FHE.Dec,FHE.Eval) be a fully homomorphic encryption scheme for 1-bit mes-
sages with decryption circuit of depth d(λ) and ciphertexts of length n(λ), and O = (Obf,Eval) be a lockable
obfuscator for circuit class Cn·k,k,d (i.e., the class of depth d(λ) circuits with n(λ) · k(λ) bit input and k(λ)
bit output). The construction follows. For notational convenience, let k = k(λ), n = n(λ) and d = d(λ).

• Setup(1λ,Xλ, Cλ) → (pp,msk). The setup algorithm runs ABE.Setup to generate public parameters
and master secret key as (abe.pp, abe.msk) ← ABE.Setup(1λ,Xλ, Cλ, 1k). It sets pp = abe.pp and
msk = abe.msk.

• Enc(pp, x,m) → ct. The encryption algorithm chooses a random message α ← {0, 1}k and computes
ctα ← ABE.Enc(pp, x, α). Next, it generates an FHE key pair (fhe.pk, fhe.sk, fhe.ek) ← FHE.Setup(1λ)
and encrypts ctα as ctouter ← FHE.Enc(fhe.pk, ctα).20 It also obfuscates the FHE decryption circuit

(with fhe.sk hardwired) with message m and lock α as P̃ ← Obf(1λ,FHE.Dec(fhe.sk, ·),m, α).

Finally, it outputs the ciphertext as ct = (fhe.pk, fhe.ek, ctouter, P̃).

• KeyGen(msk, C)→ skC . The key generation algorithm runs ABE.KeyGen to generate the secret key as
abe.skC ← ABE.KeyGen(msk, C), and outputs skC = abe.skC .

• Dec(skC , ct) → m or ⊥ . Let ct = (fhe.pk, fhe.ek, ctouter, P̃). The decryption algorithm evaluates the
ABE decryption on ctouter as ctinner = FHE.Eval(fhe.ek,ABE.Dec(skC , ·), ctouter). Next, it evaluates the

obfuscated program on input ctinner, and outputs Eval(P̃ , ctinner).

Correctness. For all λ ∈ N, messagem ∈ {0, 1}, attribute x ∈ Xλ, public parameters and master secret key
(abe.pp, abe.msk) ← ABE.Setup(1λ,Xλ, Cλ, 1k), the ciphertext corresponding to message m under attribute

20Note that FHE scheme supports bit encryption. Therefore, to encrypt ctα, which is a multi-bit message, the FHE.Enc
algorithm will be run independently on each bit of ctα. However, for notational convenience throughout this section we
overload the notation and use FHE.Enc and FHE.Dec algorithms to encrypt and decrypt multi-bit messages respectively.

67

x in our scheme is of the form ct = (fhe.pk, fhe.ek, ctouter, P̃), where (fhe.pk, fhe.sk, fhe.ek)← FHE.Setup(1λ),

α← {0, 1}k, ctα ← ABE.Enc(abe.pp, x, α), ctouter ← FHE.Enc(fhe.pk, ctα) and P̃ ← Obf(1λ,FHE.Dec(fhe.sk, ·),m, α).
For any predicate C ∈ Cλ, the corresponding secret key in our scheme is simply abe.skC ← ABE.KeyGen(abe.msk, C).

Let ctinner = FHE.Eval(fhe.ek,ABE.Dec(abe.skC , ·), ctouter). Consider the following two cases:

1. C(x) = 1 : We know that if C(x) = 1, then with all but negligible probability ABE.Dec(abe.skC , ctα) =
α. Therefore, ctinner is an FHE encryption of lock α. Or in other words, w.h.p. FHE.Dec(fhe.sk, ctinner) =
α. This follows from correctness of the ABE and FHE schemes.

Next, by correctness of obfuscation, we can conclude that Eval(P̃ , ctinner) = m. Therefore, if C(x) = 1,
then Pr[Dec(skC = abe.skC , ct) = m] ≥ 1− negl(λ).

2. C(x) = 0 : Similarly, we know that if C(x) = 0, then with all but negligible probability ABE.Dec(abe.skC , ctα) =
⊥. Therefore, w.h.p. FHE.Dec(fhe.sk, ctinner) =⊥. This follows from correctness of the ABE and FHE
schemes.

Also by correctness of obfuscation, we can conclude that if FHE.Dec(fhe.sk, ctinner) 6= α, then Pr[Eval(P̃ , ctinner) =
⊥] ≥ 1 − negl(λ). Since ⊥ 6= α, therefore combining these two facts we know that if C(x) = 0, then
Pr[Dec(skC = abe.skC , ct) = ⊥] ≥ 1− negl′(λ) for some negligible function negl′(·).

Therefore, PE satisfies the predicate encryption correctness condition.

Security. We will now show that the scheme described above achieves 1-sided security as per Definition A.2.
Formally, we prove the following.

Theorem E.1. If ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) is a fully secure attribute based
encryption for set of attribute spaces {Xλ}λ, predicate classes {Cλ}λ and message spaces {{0, 1}k(λ)}λ satis-
fying Definition A.1, and FHE = (FHE.Setup,FHE.Enc,FHE.Dec,FHE.Eval) is a fully homomorphic encryption
scheme satisfying Definition 2.4, and O = (Obf,Eval) is a lockable obfuscator for 1-bit messages and circuit
class {Cn,k,poly}λ satisfying Definition 3.4, then PE is a secure predicate encryption scheme satisfying 1-sided
security as per Definition A.3 for 1-bit messages and same attribute space and predicate class as the ABE
scheme.

Our proof proceeds via a sequence of hybrid games. Each game is played between the challenger and
attacker A. Let A be any PPT adversary that wins the 1-sided security game with non-negligible advantage.
We argue that such an adversary must break security of at least one underlying primitive. The first game
corresponds to the 1-sided security game as described in Definition A.2. In the final game, the challenge
ciphertext is simulated and does not contain any information about the challenge messages.

We will first define the sequence of hybrid games, and then show that they are computationally indistin-
guishable.

Game 1: In this game, the challenge ciphertext ct is honestly generated, i.e. first a uniformly random
lock α is chosen along with FHE keys (fhe.pk, fhe.sk, fhe.ek). Next, it is encrypted under attribute x to get
ciphertext ctinner. Additionally, it encrypts ctinner under fhe.pk. Finally, the challenger obfuscates the FHE
decryption circuit with secret key fhe.sk hardwired for lock α and challenge message m.

1. Setup Phase. The challenger sets up by generating public parameters and master secret key as
(abe.pp, abe.msk)← ABE.Setup(1λ,Xλ, Cλ, 1k). It sends abe.pp to A.

2. Pre-Challenge Query Phase. A queries the challenger on polynomially many predicate circuits Ci
to receive the corresponding secret keys as skCi ← ABE.KeyGen(abe.msk, Ci).

3. Challenge. Next, A sends the challenge messages and attributes ((m0, x0), (m1, x1)) to the chal-
lenger such that Ci(x0) = Ci(x1) = 0 for all queried predicates. The challenger chooses a random bit
b← {0, 1}, a uniformly random lock string α← {0, 1}k, and an FHE key pair (fhe.pk, fhe.sk, fhe.ek)←

68

FHE.Setup(1λ). It computes ciphertexts ctinner, ctouter as ctinner ← ABE.Enc(abe.pp, xb, α) and ctouter ←
FHE.Enc(fhe.pk, ctinner). It also computes obfuscated program P̃ as P̃ ← Obf(1λ,FHE.Dec(fhe.sk, ·),mb, α),

and sends (fhe.pk, fhe.ek, ctouter, P̃) to A.

4. Post-Challenge Query Phase. A queries the challenger on polynomially many predicate circuits
Ci as before. The challenger handles these as in pre-challenge query phase.

5. Guess. A outputs it guess b′ and wins if b = b′.

Game 2: This is same as Game 1, except the challenger computes ciphertext ctinner as an encryption of an
all zero string instead of α.

3. Challenge. Next, A sends the challenge messages and attributes ((m0, x0), (m1, x1)) to the chal-
lenger such that Ci(x0) = Ci(x1) = 0 for all queried predicates. The challenger chooses a random bit
b← {0, 1}, a uniformly random lock string α← {0, 1}k, and an FHE key pair (fhe.pk, fhe.sk, fhe.ek)←
FHE.Setup(1λ). It computes ciphertexts ctinner, ctouter as ctinner ← ABE.Enc(abe.pp, xb, 0

k) and ctouter ←
FHE.Enc(fhe.pk, ctinner). It also computes obfuscated program P̃ as P̃ ← Obf(1λ,FHE.Dec(fhe.sk, ·),mb, α),

and sends (fhe.pk, fhe.ek, ctouter, P̃) to A.

Game 3: This is same as Game 2, except the challenger does not choose the lock α anymore and it simulates
the obfuscated program P̃ instead of generating it honestly as an obfuscation of the FHE decryption circuit.

3. Challenge. Next, A sends the challenge messages and attributes ((m0, x0), (m1, x1)) to the chal-
lenger such that Ci(x0) = Ci(x1) = 0 for all queried predicates. The challenger chooses a random
bit b ← {0, 1} and an FHE key pair (fhe.pk, fhe.sk, fhe.ek) ← FHE.Setup(1λ). It computes cipher-
texts ctinner, ctouter as ctinner ← ABE.Enc(abe.pp, xb, 0

k) and ctouter ← FHE.Enc(fhe.pk, ctinner). It also

computes obfuscated program P̃ as P̃ ← O.Sim(1λ, 1s, 1) (where s = |FHE.Dec(fhe.sk, ·)|), and sends

(fhe.pk, fhe.ek, ctouter, P̃) to A.

Game 4: This is same as Game 3, except the challenger computes ciphertext ctouter as an encryption of
an all zero string instead of ctinner.

3. Challenge. Next, A sends the challenge messages and attributes ((m0, x0), (m1, x1)) to the challenger
such that Ci(x0) = Ci(x1) = 0 for all queried predicates. The challenger chooses a random bit
b ← {0, 1} and an FHE key pair (fhe.pk, fhe.sk, fhe.ek) ← FHE.Setup(1λ). It computes ciphertexts
ctouter as ctouter ← FHE.Enc(fhe.pk, 0`), where ` be the length of ABE ciphertexts. It also computes

obfuscated program P̃ as P̃ ← O.Sim(1λ, 1s, 1), and sends (fhe.pk, fhe.ek, ctouter, P̃) to A.

Let AdviA = |Pr[b′ = b]− 1/2| denote the advantage of adversary A in guessing the bit b in Game i. First,
note that Adv4A = 0. In other words, A’s advantage in Game 4 is 0. This is because the challenge ciphertext

(fhe.pk, fhe.ek, ctouter, P̃) does not contain any information about bit b.
To complete the proof, we establish via a sequence of lemmas that no PPT adversary A can distinguish

between each adjacent game with non-negligible probability. We show via a sequence of lemmas that |AdviA−
Advi+1

A | is negligible for all i = 1, 2, 3. Below we discuss our lemmas in detail.

Lemma E.1. If ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) is a fully secure attribute based en-
cryption, then for all PPT adversaries A, |Adv1A − Adv2A| is negligible in the security parameter λ.

Proof. Suppose there exists an adversary A such that |Adv1A − Adv2A| is non-negligible. We construct an
algorithm B that can distinguish encryptions of lock α and an all zeros string, therefore break security of
the ABE scheme.

The ABE challenger generates a key pair (abe.pp, abe.sk) and sends abe.pp to B. B simply forwards
the public parameters abe.pp to adversary A. A queries the reduction algorithm B on polynomially many

69

predicates Ci for corresponding secret keys. B forwards each predicate query Ci to the ABE challenger and
receives back secret key skCi , which it then sends to A as its response. Next, A sends the challenge message-
attribute pairs ((m0, x0), (m1, x1)) to B such that Ci(x0) = Ci(x1) = 0 for all queried predicates. B chooses
a random string α← {0, 1}k and bit b← {0, 1}, and sends t0 = α and t1 = 0k as its challenge messages and
xb as the challenge attribute to the ABE challenger. The ABE challenger chooses a random bit β ← {0, 1},
computes the challenge ciphertext ct∗ ← ABE.Enc(abe.pp, xb, tβ) and sends ct∗ to B. After receiving ct∗ from
the challenger, B runs Step 3 as in Game 1. That is, B chooses an FHE key pair (fhe.pk, fhe.sk, fhe.ek) ←
FHE.Setup(1λ) and computes ciphertext ctouter as ctouter ← FHE.Enc(fhe.pk, ct∗). It also computes obfuscated

program P̃ as P̃ ← Obf(1λ,FHE.Dec(fhe.sk, ·),mb, α), and sends (fhe.pk, fhe.ek, ctouter, P̃) to A. Next, A
makes more key queries and B answers them as before by forwarding those to ABE challenger. Finally, A
outputs its guess b′. If b = b′, then B sends 0 as its guess (i.e., α was encrypted), otherwise it sends 1 as its
guess (i.e., 0k was encrypted) to the ABE challenger.

Note that if the ABE challenger encrypted α (i.e., β = 0), then B perfectly simulates Game 1 for adversary
A. Otherwise it simulates Game 2 for A. As a result, if |Adv1A − Adv2A| is non-negligible, then B breaks the
ABE scheme’s security with non-negligible advantage.

Lemma E.2. If O = (Obf,Eval) is a secure lockable obfuscator, then for all PPT adversaries A, |Adv2A −
Adv3A| is negligible in the security parameter λ.

Proof. Suppose there exists an adversary A such that |Adv2A − Adv3A| is non-negligible. We construct an
algorithm B that can distinguish an obfuscation of the FHE decryption circuit with a random lock from a
simulated obfuscated program, therefore break security of the obfuscation scheme.
B samples an ABE key pair (abe.pp, abe.sk) and sends abe.pp to adversary A. A queries the reduction

algorithm B on polynomially many predicates Ci for corresponding secret keys. B answers each query with
secret key skCi , with skCi ← ABE.KeyGen(abe.msk, Ci). Next, A sends the challenge message-attribute pairs
((m0, x0), (m1, x1)) to B such that Ci(x0) = Ci(x1) = 0 for all queried predicates. B chooses a random bit b←
{0, 1} and an FHE key pair (fhe.pk, fhe.sk, fhe.ek)← FHE.Setup(1λ), and computes ciphertext ctinner, ctouter as
ctinner ← ABE.Enc(abe.pp, xb, 0

k) and ctouter ← FHE.Enc(fhe.pk, ctinner). B sends the FHE.Dec(fhe.sk, ·) circuit

along with message mb to the obfuscation challenger, and receives an obfuscated program P̃ . B finally sends
(fhe.pk, fhe.ek, ctouter, P̃) to A as the challenge ciphertext. Next, A makes more key queries and B answers
them as before. Finally, A outputs its guess b′. If b = b′, then B sends 0 as its guess (i.e., FHE decryption

circuit was obfuscated), otherwise it sends 1 as its guess (i.e., program P̃ was simulated) as its guess to the
obfuscation challenger.

Note that if the obfuscation challenger obfuscated FHE.Dec(fhe.sk, ·) for some lock α, then B perfectly
simulates Game 2 for adversary A. Otherwise it simulates Game 3 for A. As a result, if |Adv2A − Adv3A| is
non-negligible, then B breaks the obfuscation scheme’s security with non-negligible advantage.

Lemma E.3. If FHE = (FHE.Setup,FHE.Enc,FHE.Dec,FHE.Eval) is a fully homomorphic encryption scheme,
then for all PPT adversaries A, |Adv3A − Adv4A| is negligible in the security parameter λ.

Proof. Suppose there exists an adversary A such that |Adv3A − Adv4A| is non-negligible. We construct an
algorithm B that can distinguish encryptions of ciphertext ctinner and an all zeros string, therefore break
security of the FHE scheme.

The FHE challenger generates a key pair (fhe.pk, fhe.sk, fhe.ek) and sends fhe.pk, fhe.ek to B. B samples
an ABE key pair (abe.pp, abe.sk) and sends abe.pp to adversary A. A queries the reduction algorithm
B on polynomially many predicates Ci for corresponding secret keys. B answers each query with secret
key skCi , with skCi ← ABE.KeyGen(abe.msk, Ci). Next, A sends the challenge message-attribute pairs
((m0, x0), (m1, x1)) to B such that Ci(x0) = Ci(x1) = 0 for all queried predicates. B chooses a random
bit b ← {0, 1} and computes ciphertext ctinner as ctinner ← ABE.Enc(abe.pp, xb, 0

k), and sends t0 = ctinner
and t1 = 0` as its challenge messages to the FHE challenger. The FHE challenger chooses a random
bit β ← {0, 1}, computes the challenge ciphertext ct∗ ← FHE.Enc(fhe.pk, tβ) and sends ct∗ to B. After

receiving ct∗ from the challenger, B computes obfuscated program P̃ as P̃ ← O.Sim(1λ, 1s, 1), and sends

70

(fhe.pk, fhe.ek, ct∗, P̃) to A. Next, A makes more key queries and B answers them as before. Finally, A
outputs its guess b′. If b = b′, then B sends 0 as its guess (i.e., ctinner was encrypted), otherwise it sends 1
(i.e., 0` was encrypted) as its guess to the FHE challenger.

Note that if the FHE challenger encrypted ctinner (i.e., β = 0), then B perfectly simulates Game 3 for
adversary A. Otherwise it simulates Game 4 for A. Therefore, if |Adv3A − Adv4A| is non-negligible, then B
breaks the FHE scheme’s security with non-negligible advantage.

F Predicate Encryption: SIM-1-Sided Security

In this section, we transform a PE scheme from one which achieves 1-sided security to another scheme that
achieves SIM-1-sided security. The transformation inherits the message space of the underlying PE scheme.
However, the attribute space and predicate class are slightly smaller than original.

Let PE = (PE.Setup,PE.Enc,PE.KeyGen,PE.Dec) be a predicate encryption scheme for set of attribute
spaces {Xλ}λ, predicate classes {Cλ}λ and message spaces {Mλ}λ. Below we describe our construction.

For each boolean predicate C : {0, 1}n → {0, 1}, we use C̃ to denote the boolean predicate on n+ 1 bits

such that C̃(x) = 1 iff x1 = 1 ∧ C(x2 || · · · ||xn+1), where xi is ith bit of x. In other words, C̃ evaluates to 1
iff the first input bit is 1 and predicate C outputs 1 on remaining bits as input. Similarly, for a predicate
class Cλ, we use C̃λ to denote the predicate class that contains predicate C̃ for each predicate C ∈ Cλ.

• Setup(1λ, 1`, Cλ,Mλ) → (pp,msk). The setup algorithm runs PE.Setup to generate public parameters

and master secret key as (pp,msk)← PE.Setup(1λ, 1`+1, C̃λ,Mλ).

• Enc(pp, x,m)→ ct. The encryption algorithm computes ciphertext ct as ct← PE.Enc(pp, 1 ||x,m).

• KeyGen(msk, C) → skC . The key generation algorithm runs PE.KeyGen to generate the secret key as

skC ← PE.KeyGen(msk, C̃).

• Dec(skC , ct)→ m. The decryption algorithm runs PE.Dec and outputs m = PE.Dec(skC , ct).

Correctness. The correctness of above scheme follows directly from the correctness of underlying PE
scheme.

Security. We will now show that the scheme described above achieves 1-sided security as per Definition A.2.
Formally, we prove the following.

Theorem F.1. If PE = (PE.Setup,PE.Enc,PE.KeyGen,PE.Dec) is a secure predicate encryption scheme
satisfying 1-sided security as per Definition A.2 for set of attribute spaces

{
{0, 1}`(λ)+1

}
λ
, predicate classes{

C̃λ
}
λ

and message spaces {Mλ}λ satisfying Definition A.2, then PE is a secure predicate encryption scheme

satisfying SIM-1-sided security as per Definition A.3 for set of attribute spaces
{
{0, 1}`(λ)

}
λ
, predicate classes

{Cλ}λ and message spaces {Mλ}λ.

We start by sketching the simulator Sim. Let A be any real world adversary. On input the security
parameter λ, public parameters pp, attribute length `+ 1, the simulator runs as follows.

• Sim encrypts all 0’s string as the message under the all 0’s string as an attribute. Concretely, it outputs
ct = PE.Enc(pp, 0|m|, 0`+1).

Let p1A denote the probability that adversary A outputs 1 in the 1-sided security game as described in
Definition A.2 and p2A denote the probability that adversary A outputs 1 in simulated execution (i.e., when
the challenge ciphertext is simulated). We show that |p1A − p2A| is negligible.

71

Lemma F.1. If PE = (PE.Setup,PE.Enc,PE.KeyGen,PE.Dec) is a secure predicate encryption scheme sat-
isfying 1-sided security, then for all PPT adversaries A, |p1A − p2A| is negligible in the security parameter
λ.

Proof. Suppose there exists an adversary A such that |p1A−p2A| is non-negligible. We construct an algorithm
B that can distinguish encryptions of challenge message m under attribute x and an all zeros string under
all zeros attribute string, therefore break 1-sided security of the PE scheme.

The PE challenger generates a key pair (pp,msk) and sends pp to B. B simply forwards the public
parameters pp to adversary A. A queries the reduction algorithm B on polynomially many predicates Ci for
corresponding secret keys. B queries predicate C̃i to the PE challenger and receives back secret key skCi ,
which it then sends to A as its response. Next, A sends the challenge message-attribute pair (m,x) to B such
that Ci(x) = 0 for all queried predicates. B sends ((m, 1 ||x), (0|m|, 0`+1)) as its challenge message-attribute
pairs to the PE challenger. The PE challenger chooses a random bit b ← {0, 1}, computes the challenge
ciphertext ct ← PE.Enc(pp, xb,mb) (where x0 = x,m0 = m,x1 = 0`+1,m1 = 0|m|), and sends ct to B. B
forwards ct as the challenge ciphertext to A. Next, A makes more key queries and B answers them as before
by forwarding those to the PE challenger. Finally, A outputs a bit b′ and B outputs b′ as its guess to the
PE challenger.

We would like to point out that all the predicate queries made by A can be forwarded to the PE challenger
because by definition C̃(0`+1) = 0 for all predicates C. Also, note that if the PE challenger encryptedm under
attribute x (i.e., b = 0), then B perfectly simulates the 1-sided security game for adversary A. Otherwise it
simulates the challenge ciphertext for A. As a result, if |p1A − p2A| is non-negligible, then B breaks the PE
scheme’s security with non-negligible advantage.

72

