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Abstract

We propose simple generic constructions of indistinguishability obfuscator (IO). Our key tool is exponentially-
efficient indistinguishability obfuscator (XIO), which is the same as IO except that the size of an obfuscated
circuit (or the running-time of an obfuscator) is slightly smaller than that of a brute-force canonicalizer that
outputs the entire truth table of a circuit to be obfuscated. A “compression factor” of XIO indicates how much
XIO compresses the brute-force canonicalizer. In this study, we show that XIO is a powerful enough to achieve
cutting-edge cryptography. In particular, we propose the following constructions:

• A single-key weakly succinct secret-key functional encryption (SKFE) scheme is constructed from XIO
(even with a bad compression factor) and one-way function.

• A single-key weakly succinct public-key functional encryption (PKFE) scheme is constructed from XIO
with a good compression factor and public-key encryption scheme.

• A single-key weakly succinct PKFE scheme is constructed from XIO (even with a bad compression factor)
and identity-based encryption scheme.

It is known that sub-exponentially secure single-key weakly succinct PKFE scheme implies IO and that single-key
weakly succinct (resp. multi-key non-succinct) SKFE implies XIO with a bad (resp. good) compression factor.
Thus, we developed two methods of constructing IO. One uses multi-key SKFE and plain public-key encryption
schemes and the other uses single-key weakly succinct SKFE (or XIO) and identity-based encryption schemes. It
is not known whether single-key weakly succinct SKFE implies IO (if we use fully black-box reduction in a certain
model, it is impossible), but our single-key weakly succinct SKFE scheme gives many interesting by-products.
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1 Introduction
1.1 Background
Indistinguishability obfuscator (IO) converts computer programs into those that hide secret information in the
original programs while preserving their functionalities. An obvious application of IO is protecting software
from reverse engineering. Moreover, IO enables us to achieve many cutting-edge cryptographic tasks that other
standard cryptographic tools do (or can) not achieve such as (collusion-resistant) functional encryption, program
watermarking, and deniable encryption [SW14, GGH+13b, CHN+16].

Many IO constructions have been proposed since the celebrating invention of a candidate IO by Garg, Gentry,
Halevi, Raykova, Sahai, and Waters [GGH+13b]. However, regarding designing secure IO, we are still at the
“embryonic” stage1 and understand little of how to construct secure IO. Roughly speaking, there are two main
methods of constructing IO. One is instantiating IO concretely by using graded encoding schemes [GGH+13b,
BGK+14, BR14, AGIS14, PST14, Zim15, AB15, BMSZ16, GMM+16, Lin16a, LV16, Lin16b, AS16]. A few
candidates of graded encoding schemes have been proposed [GGH13a, CLT13, GGH15]. However, basically
speaking, all are attacked, and most applications that use graded encoding schemes are also insecure [CHL+15,
CGH+15, CFL+16, HJ16, MSZ16, ADGM16, CLLT16, CGH16]. As an exception, a few IO constructions are
still standing [GMM+16, FRS16]2. The other method is using general cryptographic primitives such as functional
encryption, which enables us to generate functional keys that are tied with a certain function f . Given such a
functional key, we can obtain f(x) by decryption of ciphertext Enc(x) where x is a plaintext. Ananth and Jain
[AJ15] and Bitansky and Vaikuntanathan [BV15] show how to construct IO from public-key functional encryption
(PKFE). Bitansky, Nishimaki, Passelégue, and Wichs [BNPW16a] show how to construct IO from secret-key
functional encryption (SKFE) and plain public-key encryption. The main purpose of our study is exploring how to
construct secure IO. We follow the work aimed at constructing IO based on general cryptographic primitives. We
basically focus on IO, SKFE, and PKFE for P/poly in this study.

Size matters. We look closer at the work of Bitansky and Vaikuntanathan [BV15] (or that of Ananth and
Jain [AJ15]). They introduce the notion of succinctness for functional encryption schemes, which means the
encryption-time is independent of the function-size. The succinctness of functional encryption is key to achieve IO.
Precisely speaking, Bitansky and Vaikuntanathan show that a sub-exponentially secure single-key weakly succinct
PKFE implies IO. “Single-key” means only one functional key is issued. We also say q-key when q functional
keys are issued. “Collusion-resistant” means q is an unbounded polynomial. Weak succinctness3 means the size of
the encryption circuit is sγ · poly(λ, n) where λ is a security parameter, s is the size of f that is embedded in a
functional key, n is the length of a plaintext, and γ is a constant such that 0 < γ < 1.

Not only the encryption-time of functional encryption but also the size of obfuscated circuits (or the running
time of the obfuscator) is also an important measure. Lin, Pass, Seth, and Telang [LPST16] introduced the notion
of exponentially-efficient indistinguishability obfuscator (XIO), which is a weaker variant of IO. XIO is almost the
same as IO, but the size of the obfuscated circuits is poly(λ, |C|) · 2γn where λ is a security parameter, C is a circuit
to be obfuscated, n is the length of input for C, and a compression factor γ is some value such that 0 < γ < 1.
They prove that if we assume that there exists XIO for circuits and the learning with errors (LWE) problem is hard,
then there exists IO. Moreover, if the running time of the obfuscator is poly(λ, |C|) · 2γn, then we say it is strong
XIO (SXIO) [LPST16, BNPW16a]. Bitanskyet al. show that SXIO and public-key encryption imply IO. Thus,
(S)XIO is useful enough to achieve IO. In this study, we discuss more applications of SXIO. In particular, we
discuss significantly simple generic constructions of IO and weakly succinct functional encryption by using SXIO.

1.2 Our Results
We propose simple generic constructions of single-key weakly succinct functional encryption by using SXIO. More
specifically, we prove the following theorems:

1We borrow this term from the talk by Amit Sahai at MIT, “State of the IO: Where we stand in the quest for secure obfuscation”
http://toc.csail.mit.edu/node/981

2Martin Albrecht and Alex Davidson maintain the status of graded encoding schemes and IO constructions at http://malb.io/are-graded-
encoding-schemes-broken-yet.html.

3In some papers, the term weak “compactness” is used for this property, but we use the term by Bitansky and Vaikuntanathan [BV15] in this
study.
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Main theorem 1 (informal): A single-key weakly succinct SKFE is implied by one-way function and SXIO with
a compression factor that is only slightly smaller than 1.

Main theorem 2 (informal): A single-key weakly succinct PKFE is implied by public-key encryption and SXIO
with a sufficiently small compression factor.

Main theorem 3 (informal): A single-key weakly succinct PKFE is implied by identity-based encryption and
SXIO with a compression factor that is only slightly smaller than 1.

We highlight that all these theorems incur only polynomial security loss. These main theorems imply many new
facts. Before we explain the implications of the first theorem, we explain the second and third ones since they are
related to IO.

Implication of second and third theorems. When the second or third theorems are combined with the result by
Bitansky and Vaikuntanathan, which proves that sub-exponentially secure single-key weakly succinct PKFE implies
IO [BV15], we obtain two new constructions of IO. One is based on public-key encryption and collusion-resistant
(non-succinct) SKFE since collusion-resistant (non-succinct) SKFE implies SXIO with an arbitrarily small constant
compression factor (security loss is only polynomial) [BNPW16a]. The other is based on identity-based encryption
and single-key weakly succinct SKFE since single-key weakly succinct SKFE implies SXIO with a compression
factor that is slightly smaller than 1 [BNPW16a]. Regarding the second theorem, Bitanskyet al. already proved
the same theorem. However, our single-key weakly succinct PKFE scheme is significantly simpler than that of
Bitanskyet al. [BNPW16a] and easy to understand since we do not need a complicated tool, called decomposable
garbled circuit [BNPW16a]. See the discussion in the next paragraph for details. The third theorem is new since it
is not known whether single-key weakly succinct SKFE implies collusion-resistant SKFE (though it is known that
single-key weakly succinct PKFE implies collusion-resistant PKFE with polynomial security loss [GS16, LM16]).
As well as one-way function and public-key encryption, identity-based encryption is also a standard cryptographic
primitive since there are many instantiations of identity-based encryption based on widely believed number theoretic
assumptions and lattice assumptions. Thus, all one needs is to slightly compress the brute-force canonicalizer that
outputs an entire truth table of a circuit to be obfuscated to construct IO (or single-key weakly succinct PKFE).

Differences from construction by Bitanskyet al. As we explain above, our second theorem is the same as that
of Bitanskyet al. [BNPW16a]. We summarize differences between their single-key weakly succinct PKFE scheme
and ours in Table 1. Decomposable garbled circuit is an extension of Yao’s garbled circuit [Yao86] proposed by
Bitanskyet al. [BNPW16a]. Decomposable garbled circuit incurs 2O(d) security loss where d is the depth of
circuits [BNPW16a].

Second theorem: Our second theorem does not require decomposable garbled circuit and avoids 2O(d) security
loss. On the other hand, Bitansky et al’s requires decomposable garbled circuit to directly achieve weak
succinctness. Our unified design strategy significantly simplifies a construction of single-key weakly succinct
PKFE based on SXIO. In fact, our second theorem uses decomposable randomized encoding [IK00, AIK06],
but decomposable randomized encoding is a simple tool and does not incur 2O(d) security loss.4 This
fact gives us an advantage over the construction of Bitanskyet al. as follows. As we explain above, there
are transformations from a single-key weakly succinct PKFE scheme to a collusion-resistant one with
polynomial security loss [GS16, LM16]. Thus, if we construct a single-key weakly succinct PKFE scheme
from collusion-resistant SKFE and public-key encryption schemes with polynomial security loss, we can
obtain a collusion-resistant PKFE scheme with polynomial security loss from the same ingredients. However,
the construction of Bitanskyet al. need a weak pseudo-random function (PRF) in NC1 to do that due to
2O(d) security loss [BNPW16a, Section 5.3]. Such a PRF exists under the decisional Diffie-Hellman or LWE
assumption. Ours does not need a weak PRF in NC1.

Third theorem: Our third theorem is new since it uses a single-keyweakly succinct SKFE scheme, while Bitansky et
al’s uses a collusion-resistant non-succinct SKFE scheme. We can say that we relax the requirements on
functional encryption to achieve IO since it is not known whether a single-key (weakly) succinct SKFE

4See Section 2.5 for more details on the difference between decomposable garbled circuit and decomposable randomized encoding.
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scheme implies a collusion-resistant non-succinct SKFE scheme5 though the opposite is known [AJS15].
Of course, regarding additional assumptions (public-key encryption and identity-based encryption), the
existence of identity-based encryption is a stronger assumption than that of public-key encryption. However,
identity-based encryption is a standard cryptographic primitive and the assumption is reasonably mild since
many instantiations of identity-based encryption are known (we omit references since there are too many).
Readers who are familiar with the construction of Bitanskyet al. might think the third theorem is easily
obtained from the single-key weakly succinct PKFE scheme by Bitanskyet al. [BNPW16a], which actually
uses an identity-based encryption scheme constructed from SXIO and public-key encryption as a building
block.6 This is not the case because their construction uses an SXIO three times in a nested manner to
construct their single-key weakly succinct PKFE scheme. They construct a single-key weakly succinct
PKFE scheme for Boolean functions by using SXIO and identity-based encryption and transform it into a
single-key weakly succinct PKFE scheme for non-Boolean functions by using SXIO again. This is because
their construction must use decomposable garbled circuit for Boolean circuits to achieve weak succinctness
(if we use decomposable garbled circuit for Boolean circuits in parallel to achieve a multi-bit output, then
weak succinctness can not be achieved). Even if we replace their identity-based encryption scheme based
on SXIO and public-key encryption with an assumption that there exists identity-based encryption, their
construction still requires the use of SXIO two times in a nested manner. Thus, SXIO based on single-key
weakly succinct SKFE does not work in their construction.

ingredients for IO compression factor SXIO is based on
[BNPW16a] PKE, dGC, γ-SXIO sufficiently small collusion-resistant SKFE
2nd thm. PKE, dRE, γ-SXIO sufficiently small collusion-resistant SKFE
3rd thm. IBE, GC, dRE, γ̃-SXIO slightly smaller than 1 1-key weakly succinct SKFE

Table 1: Difference between the construction by Bitanskyet al. and ours. PKE, IBE, GC, dGC, and dRE denote public-key
encryption, identity-based encryption, garbled circuit, decomposable garbled circuit, and decomposable randomized encoding,
respectively. Let γ-SXIO denote SXIO with compression factor γ. Our second theorem is the same as that of Bitanskyet al. ,
but our single-key weakly succinct PKFE scheme and proof are significantly simpler than those of Bitanskyet al. One notable
feature of our second theorem is that it avoids 2O(d) security loss since we do not rely on decomposable garbled circuit. Third
theorem is new. It is known that (decomposable) garbled circuit and randomized encoding are implied by one-way function.

Regarding difference from construction by Komargodski and Segev [KS17]. Komargodski and Segev con-
struct an IO for circuits with inputs of poly-logarithmic length and sub-polynomial size from a quasi-polynomially
secure and collusion-resistant SKFE scheme for P/poly [KS17]. They also construct a PKFE scheme for circuits
with inputs of poly-logarithmic length and sub-polynomial size from a quasi-polynomially secure and collusion-
resistant SKFE scheme for P/poly and sub-exponentially secure one-way function. We highlight two differences
between their and ours.

Supported circuits: The IO and PKFE scheme by Komargodski and Segev support circuits with inputs of poly-
logarithmic length and sub-polynomial size while ours supports any polynomial size circuits (i.e., P/poly).
Moreover, as we explained in the paragraph on the difference from Bitansky et al’s constructions, we
obtain a collusion-resistant succinct PKFE scheme for P/poly from collusion-resistant SKFE for P/poly and
public-key encryption with only polynomial security loss. Thus, their construction does not imply our second
theorem.

Underlying assumptions: They assume collusion-resistant SKFE scheme as their starting point while we assume
single-key weakly succinct SKFE scheme for the first and third theorems. Thus, their construction does
not imply our first and third theorems. Moreover, they need sub-exponentially secure one-way function for
their PKFE scheme while ours need polynomially secure plain public-key encryption. Thus, again, their
construction does not imply our second theorem.

5In fact, in a concurrent study, it is proved that a single-key weakly succinct SKFE scheme implies a collusion-resistant SKFE scheme [Ano17].
However, our third theorem has an advantage over that of the concurrent study. Our single-key weakly succinct PKFE scheme from identity-based
encryption and SXIO uses less intermediate tools, is simple, and can avoid 2O(d) security loss, while the concurrent study’s scheme cannot
since it still relies on the construction by Bitanskyet al. to achieve single-key weakly succinct PKFE (in turn IO).

6Note that our requirements on an identity-based encryption scheme is the same as theirs on their identity-based encryption scheme.
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Implication of first theorem. The first theorem does not imply IO since how to construct IO without public-key
primitives is not known [BNPW16a]. In fact, it it impossible to construct IO from only SKFE via fully black-box
reductions in a certain model [AS15]. However, we can obtain interesting by-products from the first theorem.

By-product 1: We show that single-key weakly succinct SKFE is equivalent to one-way function and SXIO
since it is known that such SKFE implies SXIO with a compression factor that is only slightly smaller than
1 [BNPW16b].

By-product 2: We show that if there exists single-key weakly-selective secure SKFE (see Definition 2.14) that is
weakly succinct, there exists single-key selectively secure SKFE that is weakly succinct since it is known that
we can construct γ̃-SXIO such that 0 < γ̃ < 1 from single-key weakly-selective secure SKFE that is weakly
succinct [BNPW16b].

By-product 3: We show that if there exists one-way function and γ̃-SXIOwhere γ̃ is a constant such that 0 < γ̃ < 1,
then there exists γ-SXIO where γ is an arbitrarily small constant such that 0 < γ < 1. This is obtained
with our first theorem and the following facts. Single-key weakly succinct SKFE implies collusion-resistant
SKFE [Ano17]. Collusion-resistant SKFE implies γ-SXIO [BNPW16a]. That is, we can decrease the
compression factor to an arbitrarily small constant by using the power of one-way function.

By-product 4: We show that constant-arity multi-input functional encryption (MIFE)7 [GGG+14] is equivalent to
SXIO and one-way function. This result is obtained with our first theorem and the following facts. Single-key
weakly succinct SKFE implies collusion-resistant SKFE [Ano17] and collusion-resistant SKFE implies
constant-arity MIFE [BKS16]. Previously, it was known that constant-arity MIFE implies SXIO [BNPW16a]
and polynomial-arity MIFE is equivalent to IO and one-way function [GGG+14].

By-product 5: We show that the existence of output-compact updatable randomized encoding with unbounded
number of updates [ACJ16] and one-way function is equivalent to that of single-key weakly succinct SKFE.
Previously, it is known that the existence of output-compact updatable randomized encoding with unbounded
number of updates and the hardness of the LWE problem imply the existence of single-key weakly succinct
SKFE [ACJ16]. It is also known that single-key weakly succinct SKFE implies output-compact updatable
randomized encoding with unbounded number of updates. Thus, we replace the LWE assumption in the
results by Ananth, Cohen, and Jain [ACJ16] with one-way function. We do not explain output-compact
updatable randomized encoding proposed by Ananthet al. since it is not the purpose of this study.

1.3 Overview of Our Construction Technique
Our core schemes are q-key weakly collusion-succinct functional encryption schemes that are constructed from
SXIO and an additional cryptographic primitive (one-way function, public-key encryption, or identity-based
encryption). Weak collusion-succinctness means the size of the encryption circuit is sub-linear in the number of
issuable functional keys. See Definition 2.18 for more details on succinctness. We explain our ideas to achieve
q-key collusion-succinct functional encryption schemes below.

Our main idea in one sentence. Our main idea is compressing a parallelized encryption circuit by using SXIO
to achieve weak collusion-succinctness.

Starting point. A naive idea to construct a q-key functional encryption scheme from a single-key non-succinct
functional encryption scheme is running q single-key non-succinct functional encryption schemes in parallel
where q is a polynomial fixed in advance. A master secret/public key consist of q master secret/public keys of the
single-key scheme, respectively. A ciphertext consists of q ciphertexts of a plaintext x under q master secret or
public keys. This achieves q-key functional encryption.8 However, this simple-parallel scheme is apparently not
weakly collusion-succinct since the size of the encryption circuit is linear in q. . Note that a single-key non-succinct
functional encryption scheme is constructed from a standard cryptographic primitive (such as one-way function,
public-key encryption) [SS10, GVW12].

7In MIFE, a functional decryption key is associated with a multi-arity function and a decryption algorithm takes multiple ciphertexts as
inputs.

8In fact, the functional key generation algorithm takes an additional input called index and is stateful. We ignore this issue here. See Section 2
regarding this issue.
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Compressing by SXIO. Our basic idea is compressing the encryption circuit of the simple-parallel scheme by
using SXIO. Instead of embedding all q keys in an encryption circuit, our encryption algorithm obfuscates a circuit
that generates the i-th master secret/public key of the simple-parallel scheme and uses it to generate a ciphertext under
the i-th key where i is an input to the circuit. For simplicity, we consider the SKFE case. We set a pseudo-random
function (PRF) keyK as a master secret key. For a plaintext x, our weakly collusion-succinct encryption algorithm
generates a circuit E′[K,x] that takes as an input an index i ∈ [q], generates the i-th master secret key MSKi by
using the hard-wired K and the index i, and outputs a ciphertext Enc(MSKi, x) of the single-key scheme9. A
ciphertext of our scheme is sxiO(E′[K,x]). In E′[K,x], each master secret key is generated in an on-line manner
by using the PRF (it is determined only by K and input i). The encryption circuit size of each Enc(MSKi, x) is
independent of q because it is the encryption algorithm of the single-key scheme. The input space of E′[K,x] is [q].
Thus, if we apply an SXIO to E′[K,x], then the size of our encryption circuit is poly(λ, |x|, |f |) · qγ . This achieves
weak collusion-succinctness. The size depends on |f |, but it is not an issue since our goal at this step is not (weak)
succinctness. The security is proved using the standard punctured programming technique [SW14].

We achieve a q-key weakly collusion-succinct PKFE by a similar idea to the SKFE case. Only one exception is
that we need an SXIO for not only an encryption circuit but also a master public-key generation circuit to avoid
embedding all q public-keys in an encryption algorithm. That is, a master public-key is an obfuscated circuit that
outputs a master public-key of a single-key scheme by using a PRF key. This incurs two applications of SXIO
in a nested manner (i.e., we obfuscate a circuit where another obfuscated circuit is hard-wired). Thus, a better
compression factor of SXIO is required to achieve weakly collusion-succinctness in this case. Such better SXIO is
implied by collusion-resistant (non-succinct) SKFE [BNPW16a].

Using power of identity-based encryption. To overcome the nested applications of SXIO, we directly construct
a q-key weakly collusion-succinct PKFE from an SXIO, identity-based encryption, and garbled circuit. However, the
main idea is the same. Our starting point is the single-key non-succinct PKFE scheme of Sahai and Seyalioglu [SS10],
which is based on a public-key encryption scheme PKE. We use a universal circuit Ux(·) in which a plaintext x is
hard-wired in and takes as an input a function f , which will be embedded in a functional key. Let s := |f |. The
scheme of Sahai and Seyalioglu is as follows.

Setup: A master public-key consists of 2s public-keys of PKE, {pkj0, pkj1}j∈[s].
Functional Key: A functional key for f consists of s secret-keys of PKE, {skfj}j∈[s] where f = f1 . . . fs.
Encryption: A ciphertext consists of a garbled circuit of Ux and encryptions of 2s labels of the garbled circuit

under pkjb.
Decryption: We obtain labels corresponding to f by using {skfj}j∈[s] and evaluate the garbled circuits.

We can replace PKE with an identity-based encryption scheme IBE by using identities in [s] × {0, 1}. That is,
{pkj0, pkj1}j∈[s] is aggregated into a master public-key of IBE. A functional key for f consists of secret keys for
identities (1, f1), . . . , (s, fs). In addition, encryptions of 2s labels consist of 2s ciphertexts for identities (j, b) for
all j ∈ [s] and b ∈ {0, 1}. We parallelize this by extending the identity space into [q]× [s]× {0, 1} to achieve a
q-key scheme. We need compression to achieve weakly collusion-succinctness since simple parallelization incurs
the linearity in q.

Our encryption algorithm obfuscates the following circuit Ẽ by using an SXIO. A master public-key of IBE is
hard-wired in Ẽ. Given index i, Ẽ generates a garbled circuit of Ux(·) with 2s labels and outputs the garbled circuit
and encryptions of the 2s labels under appropriate identities.An identity consists of (i, j, fj) ∈ [q]× [s]×{0, 1}. A
ciphertext of our scheme is sxiO(Ẽ). Therefore, if secret keys for identities {(i, j, fj)}j∈[s] are given as functional
keys, then we can obtain labels only for f from corresponding ciphertexts of IBE output by sxiO(Ẽ) and compute
Ux(f) = f(x). A master public-key and encryption circuit of the identity-based encryption are succinct in the
sense that their size is sub-linear in |ID| where ID is the identity space of IBE. That is, the size depends on |ID|α
for sufficiently small constant α.10 The garbled circuit part is independent of q. Therefore, the encryption circuit
that generates an obfuscated circuit of Ẽ is weakly collusion-succinct from the property of SXIO because the input
space of Ẽ is just [q]. Note that we can choose sufficiently small constant α for IBE. See Section 3.3 for more
details. In fact, this PKFE construction is similar to that of Bitanskyet al. (It originally comes from construction by
Sahai and Seyalioglu [SS10]), but we do not need decomposable garbled circuit because our goal is achieving weak

9We ignore the issue regarding randomness of the ciphertext in this section.
10When we say identity-based encryption, we assume that it satisfies this type of succinctness. In fact, most identity-based encryption schemes

based on number theoretic or lattice assumptions satisfy it. See Definition 2.8.
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collusion-succinctness, which allows encryption circuits to polynomially depend on the size of f (our goal is not
weak succinctness at this stage). Thus, a standard garbled circuit is sufficient for our construction. Moreover, SXIO
with a bad compression factor is sufficient since we use an SXIO only once.

SXIO

OWF

PKE

1-key non-
succinct
SKFE

1-key non-
succinct
PKFE

q-key collusion-
succinct SKFE

q-key collusion-
succinct PKFE

1-key weakly
succinct
SKFE

1-key weakly
succinct
PKFE

+

+

[SS10, GVW12] [BV15, AJS15]

Thm. 3.2

Thm. 3.3

Figure 1: Illustration of our first and second theorems. Dashed lines denote known constructions. White boxes denote our
ingredients or goal. Purple boxes denote our core schemes. Primitives in rounded boxes should be sub-exponentially-secure to
arrive at IO. We ignore puncturable PRF in this figure since it is implied by OWF.

It is known that public-key encryption (resp. one-way function) implies single-key non-succinct PKFE (resp.
SKFE) [SS10, GVW12] and bounded-key weakly collusion-succinct PKFE (resp. SKFE) implies single-key weakly
succinct PKFE (resp. SKFE) [BV15, AJS15]. Thus, we can obtain single-key weakly succinct PKFE (resp. SKFE)
by our weakly collusion-succinct PKFE (resp. SKFE). Figure 1 illustrates our first and second theorems.

Concurrent and Independent Work. Lin and Tessaro [LT17] proved that a collusion-resistant PKFE scheme
for P/poly is constructed from any single-key PKFE scheme for P/poly (e.g., a PKFE scheme based on public-key
encryption proposed by Gorbunov, Vaikuntanathan, and Wee [GVW12]) and IO for ω(log λ)-bit-input circuits. By
combining previous results [AJS15, AJ15, BV15], their result also implies that IO for P/poly can be constructed
from public-key encryption and IO for ω(log λ)-bit-input circuits both of which is sub-exponentially secure.

Their construction technique is similar to that of our single-key weakly succinct PKFE scheme for P/poly from
public-key encryption and SXIO. We emphasize that our work is completely independent of and concurrent with
theirs. One notable difference is that they use IO for ω(log λ)-bit-input circuits while we use SXIO for P/poly
based on collusion-resistant SKFE for P/poly with polynomial security loss, that is, a special case of IO for
O(log λ)-bit-input circuits. It is not known whether IO for ω(log λ)-bit-input circuits is constructed from collusion-
resistant SKFE for P/poly even if we allow sub-exponential security loss, though IO for O(poly(log λ))-bit-input
and sub-polynomial size circuits is constructed from collusion-resistant SKFE with quasi-polynomial security loss
[KS17]. Thus, our assumptions are milder than theirs to construct IO for P/poly (or single-key weakly succinct
PKFE for P/poly)11

Organization. The main body of this paper consists of the following parts. In Section 2, we provide preliminaries
and basic definitions. In Section 3, we present our constructions of weakly collusion-succinct functional encryption
shcemes based on SXIO and standard cryptographic primitives. In Section 4, we provide a statement about how
to transform weakly collusion-succinct functional encryption schemes into single-key weakly succinct functional
encryption schemes. In Section 5, we summarize our results. Due to limited space, we put omitted definitions,
constructions, statements, and proofs into the appendix.

2 Preliminaries
We now define some notations and cryptographic primitives.

11IO for P/poly is equivalent to single-key weakly succinct PKFE for P/poly [AJ15, BV15] or collusion-resistant PKFE for P/poly [AJS15]
up to sub-exponential security loss. Moreover, single-key weakly succinct PKFE for P/poly is equivalent to collusion-resistant PKFE for
P/poly up to polynomial security loss [GS16, LM16].
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2.1 Notations and Basic Concepts
In this paper, x← X denotes selecting an element from a finite setX uniformly at random, and y ← A(x) denotes
assigning to y the output of an probabilistic or deterministic algorithm A on an input x. When we explicitly show
that A uses randomness r, we write y ← A(x; r). For strings x and y, x‖y denotes the concatenation of x and y.
Let [`] denote the set of integers {1, · · · , `}, λ denote a security parameter, and y := z denote that y is set, defined,
or substituted by z.

• We say that a Turing machine is probabilistic polynomial-time (PPT) if it is probabilistic and runs in
polynomial time.

• We model any efficient adversary as a family of polynomial-size (we write poly-size for shorthand) circuits
{Aλ}λ∈N. We omit the subscript λ when it is clear from the context.

• A function f : N → R is a negligible function if for any constant c, there exists λ0 ∈ N such that for any
λ > λ0, f(λ) < λ−c. We write f(λ) = negl(λ) to denote f(λ) being a negligible function.

• If X (b) = {X(b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables indexed by λ ∈ N, we say

that X (0) and X (1) are computationally indistinguishable if for any poly-size distinguisher D, there exists a
negligible function negl(λ), such that

∆ := |Pr[D(X(0)
λ ) = 1]− Pr[D(X(1)

λ ) = 1]| ≤ negl(λ).

We write X (0) c
≈δ X (1) to denote that the advantage ∆ is bounded by δ.

2.2 Basic Cryptographic Primitives
Definition 2.1 (Pseudo-Random Function). Let PRF := {FK : {0, 1}`1 → {0, 1}`2 | K ∈ {0, 1}λ} be a family
of polynomially computable functions, where `1 and `2 are some polynomials of λ. We say that PRF is a
pseudo-random function (PRF) family if for any poly-size adversary A, there exists a negligible function negl(λ),
such that

Advprf
A (λ) := |Pr[AFK(·)(1λ) = 1 | K ← {0, 1}λ]− Pr[AR(·)(1λ) = 1 | R← U ]| ≤ negl(λ),

where U is the set of all functions from {0, 1}`1 to {0, 1}`2 . We further say that PRF is δ-secure, for some concrete
negligible function δ(·), if the above advantage is smaller than δ(λ)Ω(1).

Puncturable PRFs, defined by Sahai and Waters [SW14], are PRFs with a key-puncturing procedure that
produces keys that allow evaluation of the PRF on all inputs, except for a designated polynomial-size set.

Definition 2.2 (Puncturable PRF). For sets D,R, a puncturable PRF consists of a tuple of algorithms PPRF =
(PRF.Gen,F,Punc) that satisfy the following two conditions.

Functionality preserving under puncturing: For any polynomial size set S ⊆ D and any x ∈ D \ S, it holds
that

Pr[FK(x) = FK{S}(x) | K ← PRF.Gen(1λ),K{S} ← Punc(K,S)] = 1.

Pseudorandom at punctured points: For any poly-size set S ⊆ D with S = {x1, . . . , xk(λ)} and any poly-size
distinguisher A, there exists a negligible function negl, such that

|Pr[A(FK{S}, {FK(xi)}i∈[k]) = 1]− Pr[A(FK{S}, Uk) = 1]| ≤ negl(λ),

whereK ← PRF.Gen(1λ),K{S} ← Punc(K,S) andU denotes the uniform distribution over R. We further
say that PPRF is δ-secure, for some concrete negligible function δ(·), if for any poly-size distinguisher the
above indistinguishability gap is smaller than δ(λ)Ω(1).

The Goldwasser-Goldreich-Micali tree-based construction of PRFs [GGM84] from one-way function is easily
seen to yield puncturable PRFs where the size of the punctured key grows polynomially with the size of the set S
being punctured, as recently observed [BW13, BGI14, KPTZ13]. Thus, we have:
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Theorem 2.3 ([GGM84, BW13, BGI14, KPTZ13]). If one-way function exists, then for any efficiently computable
functions n(λ) and m(λ), there exists a puncturable PRF that maps n-bits to m-bits (i.e., D := {0, 1}n(λ) and
R := {0, 1}m(λ)).

Definition 2.4 (Secret-Key Encryption). A secret-key encryption scheme SKE is a two tuple (Enc,Dec) of PPT
algorithms.

• The encryption algorithm Enc, given a key K ∈ {0, 1}λ and a message m ∈ M, outputs a ciphertext c,
whereM is the plaintext space of SKE.

• The decryption algorithm D, given a key K and a ciphertext c, outputs a message m̃ ∈ {⊥} ∪M. This
algorithm is deterministic.

Correctness: We require Dec(K,Enc(K,m)) = m for anym ∈M and keyK.

Definition 2.5 (CPA-Secure Secret-Key Encryption:). A tuple of algorithms SKE = (Enc,Dec) is a secure SKE
scheme forM if it satisfies the following requirement, formalized from the experiment Exptske

A (1λ, b) between an
adversary A and a challenger. Below, let n be a fixed polynomial of λ.

1. The challenger selects a challenge bit b← {0, 1}, generates a keyK ← {0, 1}λ, and sends 1λ to A.

2. A may make polynomially many encryption queries adaptively. If A sends (m0,m1) ∈ M×M to the
challenger, then the challenger returns c← Enc(K,mb).

3. A outputs b′ ∈ {0, 1}. The experiment outputs 1 if b = b′; otherwise 0.

We say the SKE scheme is CPA-secure if, for any PPT adversary A, there exists a negligible function negl(λ), such
that

Advske
A := |Pr[Exptske

A (1λ, 0) = 1]− Pr[Exptske
A (1λ, 1) = 1]| ≤ negl(λ).

We further say that SKE is δ-secure, for some concrete negligible function δ(·), if for any poly-size A the above
advantage is smaller than δ(λ)Ω(1).

Definition 2.6 (Plain Public-key Encryption). LetM be a message space. A public-key encryption scheme for
M is a tuple of algorithms (KeyGen,Enc,Dec) where:

• KeyGen(1λ) takes as input the security parameter and outputs a public key pk and secret key sk.

• Enc(pk,m) takes as input pk and a messagem ∈M and outputs a ciphertext ct.

• Dec(sk, ct) takes as input sk and ct, and outputs somem′ ∈M, or ⊥.

We also require the following property:

Correctness: For anym ∈M and (sk, pk)← KeyGen(1λ), we have that Dec(sk,Enc(pk,m)) = m.

We also recall the standard notion of security.

Definition 2.7 (Secure Public-key Encryption). A tuple of algorithms PKE = (KeyGen,Enc,Dec) is a secure
public-key encryption forM if it satisfies the following requirement, formalized from the experiment Exptpke

A (1λ, b)
between an adversary A and challenger:

1. The challenger runs (sk, pk)← KeyGen(1λ), and gives pk to A.

2. At some point, A sends two messagesm∗0,m∗1 as the challenge messages to the challenger.

3. The challenger generates ciphertext CT∗ ← Enc(pk,m∗b) and sends CT∗ to A.

4. A outputs a guess b′ for b. The experiment outputs 1 if b′ = b; otherwise 0.
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We say PKE is secure if, for any PPT adversary A, there exists a negligible function negl(λ), such that

Advpke
A := |Pr[Exptpke

A (1λ, 0) = 1]− Pr[Exptpke
A (1λ, 1) = 1]| ≤ negl(λ).

We further say that PKE is δ-secure, for some concrete negligible function δ(·), if for any poly-size A the above
advantage is smaller than δ(λ)Ω(1).

Definition 2.8 (Succinct Identity-Based Encryption). LetM be a message space and ID be an identity space.
A succinct identity-based encryption scheme with α-compression for M and ID is a tuple of algorithms
(Setup,Key,Enc,Dec) where:

• Setup(1λ) takes as input the security parameter and outputs a master secret key MSK and master public key
MPK.

• KG(MSK, id) takes as input MSK and an identity id ∈ ID. It outputs a secret key skid for id.

• Enc(MPK, id,m) takes as input MPK, id ∈ ID, and a messagem ∈M, and outputs a ciphertext ct.

• Dec(skid, ct) takes as input skid for id ∈ ID and ct, and outputs somem′ ∈M, or ⊥.

We require the following properties:

Correctness: For anym ∈ M, any id ∈ ID, (MSK,MPK)← Setup(1λ), and skid ← KG(MSK, id), we have
that Dec(skid,Enc(MPK, id,m)) = m.

Succinctness: For any security parameter λ ∈ N and identity space ID, the size of the encryption circuit Enc for
ID and messages of size ` is at most |ID|αpoly(λ, `) where 0 < α < 1.

The efficiency property is not explicitly stated in many papers on identity-based encryption scheme since
identity-based encryption schemes based on number theoretic or lattice assumptions satisfy the efficiency (in fact,
the size of most schemes is bounded by poly(λ, `, log |ID|)). This was defined by Bitansky et al. [BNPW16a].

In this study, we considered the following security, which is a weaker variant of standard selective-security as
Bitansky et al. [BNPW16a].

Definition 2.9 (Selectively-Secure Identity-BasedEncryption). A tuple of algorithms IBE = (Setup,Key,Enc,Dec)
is a selectively-secure identity-based encryption scheme forM and ID if it satisfies the following requirement,
formalized from the experiment Exptibe

A (1λ, b) between an adversary A and a challenger:

1. A submits the challenge identity id∗ ∈ ID and the challenge messagesm∗0,m∗1 to the challenger.

2. The challenger generates (MSK,MPK)← Setup(1λ) and ct∗ ← Enc(MPK,m∗b) and gives (MPK,ct∗) to
A.

3. A is allowed to query (polynomially many) identities id ∈ ID such that id 6= id∗. The challenger gives
skid ← KG(1λ,MSK, id) to A.

4. A outputs a guess b′ for b. The experiment outputs 1 if b′ = b, 0 otherwise.

We say the identity-based encryption scheme is selectively-secure if, for any PPTA, there exists a negligible function
negl(λ), such that

Advibe
A := |Pr[Exptibe

A (1λ, 0) = 1]− Pr[Exptibe
A (1λ, 1) = 1]| ≤ negl(λ).

We further say that IBE is δ-selectively secure, for some concrete negligible function δ(·), if for any poly-size A the
above advantage is smaller than δ(λ)Ω(1).

2.3 Functional Encryption
In this subsection we review the different notions of functional encryption.
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Secret-Key Functional Encryption

We introduce the syntax of an index based variant SKFE scheme that we call an index based SKFE (iSKFE)
scheme. “Index based” means that, to generate the i-th functional decryption key, we need to feed an index i to a
key generation algorithm. For a single-key scheme, an iSKFE scheme is just a standard SKFE scheme in which the
key generation algorithm does not take an index as an input since the index is always fixed to 1.
Definition 2.10 (Index Based Secret-key Functional Encryption). LetM := {Mλ}λ∈N be a message domain,
Y := {Yλ}λ∈N a range, I := {Iλ}λ∈N an index space, and F := {Fλ}λ∈N a class of functions f :M→ Y . An
iSKFE scheme forM,Y, I, and F is a tuple of algorithms SKFE = (Setup, iKG,Enc,Dec) where:

• Setup(1λ) takes as input the security parameter and outputs a master secret key MSK.

• iKG(MSK, f, i) takes as input MSK, a function f ∈ F , and an index i ∈ I , and outputs a secret key skf for
f .

• Enc(MSK, x) takes as input MSK and a message x ∈M and outputs a ciphertext c.

• Dec(skf , c) takes as input skf for f ∈ F and c and outputs y ∈ Y , or ⊥.

Correctness: We require Dec(iKG(MSK, f, i),Enc(MSK, x)) = f(x) for any x ∈ M, f ∈ F , i ∈ I, and
MSK← Setup(1λ).

Next, we introduce selective-message message privacy [BS15].
Definition 2.11 (Selective-Message Message Privacy). Let SKFE be an SKFE scheme whose message space,
function space, and index space areM, F , and I, respectively. We define the selective-message message privacy
experiment Expsm-fp

A (1λ, b) between an adversary A and a challenger as follows.

1. A is given 1λ and sends (x(1)
0 , x

(1)
1 ), · · · , (x(qm)

0 , x
(qm)
1 ) to the challenger, where qm is a polynomial of λ.

2. The challenger chooses MSK← Setup(1λ) and a challenge bit b← {0, 1}.

3. The challenger generates CT(j) ← Enc(MSK, x(j)
b ) for j ∈ [qm] and sends them to A.

4. A is allowed to make arbitrary |I| function queries. For the `-th key query (f`, i`) ∈ F × I from A, the
challenger generates skf` ← iKG(MSK, f`, i`) and returns skf` to A. If A sends the same index twice,
that is, there are queries (f`1 , i`1) and (f`2 , i`2) where i`1 = i`2 and `1 < `2, then the challenger ignores
(f`2 , i`2). W.l.o.g, we can consider i` = `.

5. A outputs b′ ∈ {0, 1}. The experiment output 1 if b = b′ and f`(x(j)
0 ) = f`(x(j)

1 ) for all j ∈ [qm] and
` ∈ [qk], where qk is the number of key queries made by A; otherwise ⊥.

We say that SKFE is (qk, qm)-selective-message message private (or selectively secure for short) if for any
poly-size adversary A, there exists a negligible function negl(λ), such that

Advsm-mp
A (λ) := |Pr[Expsm-mp

A (1λ, 0) = 1]− Pr[Expsm-mp
A (1λ, 1) = 1]| ≤ negl(λ).

We further say that SKFE is (qk, qm, δ)-selective-message message private, for some concrete negligible function
δ(·), if for any poly-size adversary A the above advantage is smaller than δ(λ)Ω(1).
Remark 2.12 (Regarding the number of queries). In this study, qm in SKFE is basically an unbounded polynomial
(i.e., not fixed in advance). Thus, we omit qm and write (qk, δ)-selective-message message private when qm is an
unbounded polynomial. Let FE be a functional encryption scheme. If qk is an unbounded polynomial, then we
say FE is a collusion-resistant functional encryption. If qk is a bounded polynomial (i.e., fixed in advance), then
we say FE is a bounded collusion-resistant functional encryption. If qk = 1, we say FE is a single-key functional
encryption. In this study, our constructions are bounded collusion-resistant. Thus, we can consider |I| = qk.
Remark 2.13 (Regarding an index for algorithm iKG). Our definitions of functional encryptions slightly deviates
from the standard ones (ex. the definition by Ananth and Jain [AJ15] or Brakerski and Segev [BS15]). Our key
generation algorithm takes not only a master secret key and a function but also an index, which is used to bound the
number of functional key generations. This index should be different for each functional key generation. One might
think this is a limitation, but this is not the case in this study because our goal is constructing IO and our functional
encryption schemes are just intermediate tools for doing this. In particular, for a single-key scheme, |I| = 1 and we
do not need such an index. In fact, such an index have been introduced by Li and Micciancio in the context of
PKFE [LM16].
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Variants of Security.

Definition 2.14 (Weakly Selective-Message Message Privacy). In Expsm-mp
A (1, b), if A must submit not only

messages (x(1)
0 , x

(1)
1 ), · · · , (x(q)

0 , x
(q)
1 ) but also functions (f1, . . . , fqk) to the challenger at the beginning of the

experiment, then the modified experiment is defined as Expsm∗-mp
A (1, b) and an SKFE is weakly selective-message

message private (or weakly-selective secure for short) if Advsm∗-mp
A (λ) (similarly defined) is negligible.

Public-Key Functional Encryption

Definition 2.15 (Index Based Public-Key Functional Encryption). LetM := {Mλ}λ∈N be a message domain,
Y := {Yλ}λ∈N a range, I := {Iλ}λ∈N an index space, and F := {Fλ}λ∈N a class of functions f :M→ Y . An
index based PKFE (iPKFE) scheme forM,Y, I, and F is a tuple of algorithms PKFE = (Setup, iKG,Enc,Dec)
where:

• Setup(1λ) takes as input the security parameter and outputs a master secret key MSK and master public key
MPK.

• iKG(msk, f, i) takes as input MPK, a function f ∈ F , and an index i ∈ I. It outputs a secret key skf for f .

• Enc(mpk,m) takes as input MPK and a messagem ∈M, and outputs a ciphertext c.

• Dec(skf , c) takes as input skf for f ∈ F and c, and outputs y ∈ Y , or ⊥.

Correctness: For anym ∈M, i ∈ I , f ∈ F , and (MSK,MPK)← Setup(1λ)wehave thatDec(iKG(MSK, f, i),
Enc(MPK,m)) = f(m).

Definition 2.16 (Selectively-Secure PKFE).We say that a tuple of algorithms iPKFE = (Setup, iKey,Enc,Dec)
is a selectively-secure PKFE scheme forM,Y, I, and F , if it satisfies the following requirement, formalized from
the experiment Exptsel

A (1λ, b) between an adversary A and challenger:

1. A submits a message pair x∗0, x∗1 ∈M to the challenger.

2. The challenger runs (msk,mpk) ← Setup(1λ) and generates a ciphertext ct∗ ← Enc(mpk, x∗b). The
challenger gives (mpk, ct∗) to A.

3. A is allowed to make arbitrary |I| = qk function queries, where it sends a function and index (f`, i`) ∈ F×I
to the challenger. The challenger checks that f`(x∗0) = f`(x∗1). If the check fails, then the challenger aborts.
Else if there are queries (f`′ , i`′) and (f`, i`) where i`′ = i` and `′ < `, then the challenger ignores (f`, i`).
Otherwise, the challenger responds with skf` ← iKG(msk, f`, i`) for the `-th query f`. W.l.o.g, we can
consider i` = `.

4. A outputs a guess b′ for b.

5. The experiment outputs 1 if b = b′; otherwise 0.

We say that a PKFE scheme is selectively-secure if, for any poly-size A, there exists a negligible function negl(λ),
such that

Advsel
A (λ) := |Pr[Exptsel

A (1λ, 0) = 1]− Pr[Exptsel
A (1λ, 0) = 1]| ≤ negl(λ).

We further say that iPKFE is (qk, δ)-selectively secure, for some concrete negligible function δ(·), if for any poly-size
A the above advantage is smaller than δ(λ)Ω(1).

Definition 2.17 (Weakly-Selective Secure [GS16]). Wesay that a tuple of algorithms iPKFE = (Setup, iKey,Enc,Dec)
is aweakly selectively-secure iPKFE scheme forM,Y, I, andF , if it satisfies the following requirement, formalized
from the experiment Exptsel∗

A (1λ, b) between an adversary A and challenger:

1. A submits a message pair x∗0, x∗1 ∈ M, functions (f1, . . . , fqk) ∈ Fqk , and indices (i1, . . . , iqk) ∈ Iqk to
the challenger.

2. If there exists i` and i`′ such that i` = i`′ and `′ < `, then the challenger ignores f` at the next stage.
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3. The challenger runs (msk,mpk)← Setup(1λ), generates ciphertext ct∗ ← Enc(mpk, x∗b) and secret keys
skf` ← Key(msk, f`, i`) for all ` ∈ [qk] and i` ∈ I. The challenger gives (mpk, ct∗, skf1 , . . . , skfqk ) to A.

4. A outputs a guess b′ for b.

5. The experiment outputs 1 if b = b′ and fi(x∗0) = fi(x∗1) for all i ∈ [qk]; otherwise ⊥.

We say that a PKFE scheme is weakly-selective secure if, for any poly-size adversary A, there exists a negligible
function negl(λ), such that

Advsel∗
A (λ) := |Pr[Exptsel∗

A (1λ, 0) = 1]− Pr[Exptsel∗
A (1λ, 1) = 1]| ≤ negl(λ).

We further say that iPKFE is (qk, δ)-weakly-selective secure, for some concrete negligible function δ(·), if for any
poly-size A the above advantage is smaller than δ(λ)Ω(1).

Next, we introduce notions regarding efficiency, called succinctness for functional encryption schemes.

Definition 2.18 (Succinctness of Functional Encryption [BV15]). For a class of functions F = {Fλ} over
message domainM = {Mλ}, we let:

• n(λ) be the input length of the functions in F ,

• s(λ) = maxf∈Fλ |f | be a bound on the circuit size of functions in Fλ,

• d(λ) = maxf∈Fλ depth(f) be a bound on the depth, and

a functional encryption scheme is

• succinct if the size of the encryption circuit is bounded by poly(n, λ, log s), where poly is a fixed polynomial.

• weakly succinct if the size of the encryption circuit is bounded by sγ · poly(n, λ), where poly is a fixed
polynomial, and γ < 1 is a constant. We call γ the compression factor.

• weakly collusion-succinct if the size of the encryption circuit is bounded by qγ · poly(n, λ, s), where q is the
upper bound of issuable functional keys in bounded-key schemes, poly is a fixed polynomial, and γ < 1 is a
constant. We call γ the compression factor.

The following theorem by Bitansky and Vaikuntanathan [BV15, Section III] states that one can construct IO
from any single-key weakly succinct PKFE.

Theorem 2.19 ([BV15]). If there exists a single-key sub-exponentially weakly-selective secure weakly succinct
PKFE scheme for P/poly, then there exists an indistinguishability obfuscator for P/poly.

2.4 Garbling Scheme
Definition 2.20 (Garbling Scheme). Let {Cn}n∈N be a family of circuits in which each circuit in Cn takes n bit
inputs. A circuit garbling scheme GC consists of two algorithms (Grbl,Eval).

Grbl(1λ, C) takes as inputs a security parameter 1λ and a circuit C ∈ Cn and outputs a garbled circuit C̃, together
with 2n wire keys (a.k.a labels) {wi,α}i∈[n],α∈{0,1}.

Eval(C̃, {wi,xi}i∈[n]) takes as inputs a garbled circuit C̃ and n wire keys {wxi}i∈[n] where xi ∈ {0, 1} and
outputs y.

A garbling scheme is required to satisfy the following properties.

Correctness: It holdsEval(C̃, {wi,xi}i∈[n]) = C(x) for everyn ∈ N,x ∈ {0, 1}n, where (C̃, {wi,α}i∈[n],α∈{0,1})←
Grbl(1λ, C).

Security: Let GC.Sim be a PPT simulator. We define the following experiments Exptgc
A(1λ, b) between a challenger

and an adversary A as follows.

1. The challenger chooses a bit b← {0, 1} and sends security parameter 1λ to A.
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2. A sends a circuit C ∈ Cn and an input x ∈ {0, 1}n to the challenger.

3. If b = 0, the challenger computes (C̃, {wi,α}i∈[n],α∈{0,1})← Grbl(1λ, C) and returns (C̃, {wi,xi}i∈[n])
to A. Otherwise, the challenger returns (C̃, {wxi}i∈[n])← GC.Sim(1λ, 1|C|, C(x)).

4. A outputs b′ ∈ {0, 1}. The experiment outputs 1 if b = b′;otherwise 0.

We say that GC is secure if there exists a simulator GC.Sim, for any poly-size A, there exists a negligible
function negl(λ), such that

Advgc
A,GC.Sim(λ) = |Pr[Exptgc

A(1λ, 0) = 1]− Pr[Exptgc
A(1λ, 1) = 1]| ≤ negl(λ).

We further say that GC is δ-secure, for some concrete negligible function δ(·), if for any poly-size adversary A the
above advantage is smaller than δ(λ)Ω(1).

Theorem 2.21 ([Yao86]). If there exists one-way function, there exists a secure garbling scheme for poly-size
circuits.

2.5 Decomposable Randomized Encoding
Definition 2.22 (Decomposable Randomized Encoding). Let c ≥ 1 be an integer constant. A c-local decom-
posable randomized encoding scheme RE for a function f : {0, 1}n → {0, 1}m consists of two polynomial-time
algorithms (RE.E,RE.D).

RE.E(1λ, f, x) takes as inputs the security parameter 1λ, a function f , and an input x for f , chooses randomness
r, and outputs an encoding f̂(x; r) where f̂ : {0, 1}n × {0, 1}ρ → {0, 1}µ.

RE.D(f̂(x; r)) takes as inputs f̂(x; r) and outputs f(x).

A randomized encoding scheme satisfies the following properties. Let s
f̂
(resp. sf ) denote the size of the circuit

computing f̂ (resp. f ).

Correctness: For any λ, f , and x, it holds that Pr[f(x) = RE.D(RE.E(1λ, f, x))] = 1.

Decomposability: Computation of f̂ can be decomposed into computation of µ functions. That is, f̂(x; r) =
(f̂1(x; r), · · · , f̂µ(x; r)), where each f̂i depends on at most a single bit of x and c bits of r. We write
f̂(x; r) = (f̂1(x; rS1), · · · , f̂µ(x; rSµ)), where Si denotes the subset of bits of r that f̂i depends on.
Parameters ρ and µ are bounded by sf · poly(λ, n).

Semantic Security: Let RE.Sim be a PPT simulator. We define the following experiments Exptdre
A (1λ, b) between

a challenger and an adversary A as follows.

1. The challenger chooses a bit b← {0, 1} and sends security parameter 1λ to A.
2. A sends a function f and input x ∈ {0, 1}n to the challenger.

3. If b = 0, the challenger computes
{
f̂i(x; r)

}µ
i=1
← RE.E(1λ, f, x) and returns them to A. Otherwise,

the challenger returns
{
f̂i(x; r)

}µ
i=1
← RE.Sim(1λ, 1|f |, f(x)).

4. A outputs a guess b′ ∈ {0, 1}. The experiment outputs 1 if b′; otherwise 0.

We say that RE is semantically secure if there exists a simulator RE.Sim, for any poly-size adversaryA, there
exists a negligible function negl(λ), such that

|Pr[Exptdre
A (1λ, 0) = 1]− Pr[Exptdre

A (1λ, 1) = 1]| ≤ negl(λ).

We further say that RE is δ-secure, for some concrete negligible function δ(·), if for any poly-size A the above
advantage is smaller than δ(λ)Ω(1).

Theorem 2.23 ([Yao86, AIK06]). If there exists one-way function, there exists a semantically secure decomposable
randomized encoding for poly-size circuits.
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Difference between decomposable randomized encoding and decomposable garbled circuit. One might
think decomposable randomized encoding is also a complicated tool since randomized encoding is similar notion to
garbled circuit and we explain that decomposable garbled circuit is a complicated tool in Section 1. In fact, both
are basically slight extensions of Yao’s garbled circuit. However, decomposable randomized encoding is a simple
tool and does not incur 2O(d) security loss while decomposable garbled circuit does. The reason decomposable
garbled circuit is complicated is that it is customized to be an IO-friendly (or SXIO-friendly) tool [BNPW16a]. We
use neither IO nor SXIO when we use decomposable randomized encoding. Thus, we do not need an IO-friendly
(or SXIO-friendly) tool for our purpose. See the paper by Bitanskyet al. for details of decomposable garbled
circuit [BNPW16a].

2.6 Indistinguishability Obfuscation
Definition 2.24 (Indistinguishability Obfuscator). A PPT algorithm iO is an IO for a circuit class {Cλ}λ∈N if it
satisfies the following two conditions.

Functionality: For any security parameter λ ∈ N, C ∈ Cλ, and input x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1 .

Indistinguishability: For any poly-size distinguisher D, there exists negl(·) such that the following holds: For any
pair of circuits C0, C1 ∈ Cλ such that for any input x, C0(x) = C1(x) and |C0| = |C1|,

|Pr [D(iO(C0)) = 1]− Pr [D(iO(C1)) = 1] | ≤ negl(λ) .

We further say that iO is δ-secure, for some concrete negligible function δ(·), if for any poly-size distinguisher
the above advantage is smaller than δ(λ)Ω(1).

2.7 Strong Exponentially-Efficient Indistinguishability Obfuscation
Definition 2.25 (Strong Exponentially-Efficient Indistinguishability Obfuscation). Let γ < 1 be a constant.
An algorithm sxiO is a γ-compressing SXIO for a circuit class {C}λ∈N if it satisfies the functionality and
indistinguishability in Definition 2.24 and the following efficiency requirement:

Non-trivial time efficiency We require that the running time of sxiO on input (1λ, C) is at most 2nγ · poly(λ, |C|)
for any λ ∈ N and any circuit C ∈ {Cλ}λ∈N with input length n.

3 Collusion-Succinct Functional Encryption from SXIO
In our bounded-key weakly collusion-succinct SKFE and PKFE schemes, we use single-key non-succinct SKFE
and PKFE schemes that are implied from one-way function and public-key encryption, respectively.

Theorem 3.1 ([GVW12]). If there exists a δ-secure one-way function, then there exists a (1, δ)-selectively secure
and non-succinct SKFE scheme for P/poly. If there exists a δ-secure public-key encryption, then there exists a
(1, δ)-selectively-secure and non-succinct PKFE scheme for P/poly.

Throughout this paper, let n and s be the length of a message x and size of a function f of a functional encryption
scheme, respectively as in Definition 2.18.

3.1 Collusion-Succinct SKFE from SXIO and One-Way Function
In this section, we discuss how to construct a bounded-key collusion-succinct SKFE scheme from SXIO and
one-way function.
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OurConstruction. The construction of an iSKFE scheme qFE from a single-key SKFE and SXIO is as follows. Let
1FE = (1FE.Setup, 1FE.KG, 1FE.Enc, 1FE.Dec) be a single-key non-succinct SKFE scheme, (PRF.Gen,F,Punc)
a puncturable PRF, and sxiO a γ̃-compressing SXIO.

qFE.Setup(1λ) :

• GenerateK ← PRF.Gen(1λ).
• Return M̂SK← K.

qFE.iKG(M̂SK, f, i) :

• ParseK ← M̂SK.
• Compute ri ← FK(i) and MSKi ← 1FE.Setup(1λ; ri).
• Compute skif ← 1FE.KG(MSKi, f).

• Return ŝkf ← (i, skif ).

qFE.Enc(M̂SK, x) :

• ParseK ← M̂SK.
• GenerateK ′ ← PRF.Gen(1λ) and E1FE[K,K ′, x] defined in Figure 2.
• Return ĈT← sxiO(E1FE[K,K ′, x]).

qFE.Dec(ŝkf , ĈT) :

• Parse (i, skif )← ŝkf .

• Compute CTi ← ĈT(i).
• Return y ← 1FE.Dec(skif ,CTi).

Encryption Circuit E1FE[K,K ′, x](i)

Hardwired: puncturable PRF keyK,K ′, and a message x.
Input: index i ∈ [q].
Padding: circuit is padded to size pad := pad(λ, n, s, q), which is determined in analysis.

1. Compute ri ← FK(i) and r′i ← FK′(i).
2. Compute MSKi ← 1FE.Setup(1λ; ri).
3. Output CTi ← 1FE.Enc(MSKi,m; r′i).

Figure 2: Description of E1FE[K,K′, x]

Theorem 3.2. If there exists non-succinct (1, δ)-selective-message message private SKFE for P/poly and δ-secure
γ̃-compressing SXIO for P/poly where 0 < γ̃ < 1 (γ̃ might be close to 1), then there exists weakly collusion-succinct
(q, δ)-selective-message message private SKFE for P/poly with compression factor γ′ such that 0 < γ̃ < γ′ < 1,
where q is any polynomial of λ.

Proof of Theorem 3.2. We start with analyzing succinctness, then move to the security proof.

Padding Parameter. The proof of security relies on the indistinguishability of the obfuscated circuits of E1FE
and E(j) defined in Figure 2 and 3. Accordingly, we set pad := max(|E1FE|, |E(j)|). Let, n and s be the size ofm
and f , respectively. The circuits E1FE and E(j) compute a puncturable PRF over domain [q], an SKFE master secret
key, and may have punctured PRF keys and a hardwired ciphertext. Note that 1FE is independent of q. Thus,

pad ≤ poly(λ, n, s, log q) .
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Weak Collusion-Succinctness. The input space for E1FE is [q]. Therefore, by the SXIO guarantee, the size of the
encryption circuit (dominated by running the obfuscated E1FE or E(j)) is

qγ̃ · poly(λ, n, s, log q) < qγ
′
· poly(λ, n, s) .

Security Proof. Let us assume that the underlying primitives are δ-secure. We define a sequence of hybrid games.

Hyb0: The first game is the original selective security experiment for b = 0, Exptsel
A (1λ, 0). In this game, A first

selects the challenge messages (x(1)
0 , x

(1)
1 ), . . . , (x(qm)

0 , x
(qm)
1 ), then obtains encryptions of x(1)

0 , . . . , x
(qm)
0

and the master public key. After that, it also queries q functions {fi}i∈[q] such that fi(x
(j)
0 ) = fi(x(j)

1 ) for
all i ∈ [q] and j ∈ [qm] and receives functional keys (see Definition 2.10 for more details).

Hybi
∗

1 : Let i∗ ∈ [q]. For all j ∈ [qm], we change target ciphertexts E1FE[K,K ′, x(j)
0 ] into E(j) described in

Figure 3. In this hybrid game, we set ri∗ = FK(i∗), r(j)
i∗ = FK(j)(i∗), MSKi∗ ← 1FE.Setup(1λ; ri∗),

and CT(j)
i∗ ← 1FE.Enc(MSK∗i , x

(j)
0 ; r(j)

i∗ ) where K(j) ← PRF.Gen(1λ) is randomness for the j-th target
ciphertext. Thus, when i∗ = 1, the behaviors of E1FE[K,K ′, x(j)

0 ] and E(j) are the same since the hard-wired
ciphertexts CT(j)

1 for all j ∈ [qm] are the same as those in Hyb0. Their size is also the same since we pad
circuit E1FE[K,K ′, x(j)

0 ] to have the same size as E(j). Then, we can use the indistinguishability guarantee
of sxiO and it holds that Hyb0

c
≈δ Hyb1

1. (In fact, we use indistinguishability qm times to change all qm
ciphertexts.)

Encryption Circuit E(j)[K{i∗},K(j){i∗}, x(j)
0 , x

(j)
1 ,CT(j)

i∗ ](i)

Hardwired: punctured PRF keysK{i∗},K(j){i∗}, index i∗, messages x(j)
0 , x(j)

1 , and CT(j)
i∗ .

Input: index i ∈ [q].
Padding: circuit is padded to size pad = pad(λ, n, s, q), which is determined in the analysis.

1. If i = i∗, then output CT(j)
i∗ .

2. Else if compute ri ← FK{i∗}(i) and r
(j)
i ← FK(j){i∗}(i).

3. Compute MSKi ← 1FE.Setup(1λ; ri).
4. For i > i∗, output CTi ← 1FE.Enc(MSKi, x(j)

0 ; r(j)
i ).

5. For i < i∗, output CTi ← 1FE.Enc(MSKi, x(j)
1 ; r(j)

i ).

Figure 3: Circuit E(j)[K{i∗},K(j){i∗}, i∗, x(j)
0 , x

(j)
1 ,CT(j)

i∗ ]

Hybi
∗

2 : We change ri∗ = FK(i∗) and r(j)
i∗ = FK(j)(i∗) into uniformly random ri∗ and r

(j)
i∗ for all j ∈ [qm]. Due to

the pseudo-randomness at punctured points, it holds that Hybi
∗

1
c
≈δ Hybi

∗

2 .

Hybi
∗

3 : We change the hard-wired ciphertext CT(j)
i∗ from 1FE.Enc(MSKi∗ , x(j)

0 ) to 1FE.Enc(MSKi∗ , x(j)
1 ) for all

j ∈ [qm]. In Hybi
∗

2 and Hybi
∗

3 , we do not need the master secret key MSKi∗ and randomness for ciphertexts,
which are used to generate CT(j)

i∗ . We just use the hardwired CT(j)
i∗ for i = i∗. Therefore, Hybi

∗

2
c
≈δ Hybi

∗

3
follows directly from the selective-message message privacy of 1FE.

Hybi
∗

4 : We change ri∗ and r
(j)
i∗ into ri∗ = FK(i∗) and r(j)

i∗ = FK(j)(i∗) and un-puncture K{i∗} and K(j){i∗}.
We can show that Hybi

∗

3
c
≈δ Hybi

∗

4 holds in a reverse manner.

From the definition of E(j)[K{i∗},K(j){i∗}, x(j)
0 , x

(j)
1 ,CT(j)

i∗ ] and Hybi
∗

1 , the behaviors of E(j) in Hybi
∗

4 and
Hybi

∗+1
1 are the same. Thus, Hybi

∗

4
c
≈δ Hybi

∗+1
1 holds due to sxiO. It also holds that Hybq4

c
≈δ Exptsel

A (1λ, 1).
(Again, we use the security of sxiO qm times.) This completes the proof of Theorem 3.2.
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3.2 Collusion-Succinct PKFE from SXIO and Public-Key Encryption
In this section, we discuss how to construct a bounded-key weakly collusion-succinct PKFE scheme from an SXIO
and PKE scheme.

Our construction. The construction of a iPKFE scheme qFE from an SXIO and public-key encryption scheme is
as follows. Let 1FE = (1FE.Setup, 1FE.KG, 1FE.Enc, 1FE.Dec) be a single-key non-succinct PKFE scheme and
(PRF.Gen,F,Punc) a puncturable PRF.

qFE.Setup(1λ) :

• GenerateK ← PRF.Gen(1λ).
• Generate sxiO(S1fe) where circuit S1fe is defined in Figure 4.

• Return (M̂PK, M̂SK) := (sxiO(S1fe),K).

qFE.iKG(M̂SK, f, i) :

• ParseK := M̂SK.
• Compute ri ← FK(i) and (MSKi,MPKi)← 1FE.Setup(1λ; ri).
• Compute skif ← 1FE.KG(MSKi, f).

• Return ŝkf ← (i, skif ).

qFE.Enc(M̂PK, x) :

• Parse sxiO(S1fe) := M̂PK.

• GenerateK ′ ← PRF.Gen(1λ) and E1fe[M̂PK,K ′, x] defined in Figure 5.

• Return ĈT← sxiO(E1fe[M̂PK,K ′, x]).

qFE.Dec(ŝkf , ĈT) :

• Parse (i, skif ) := ŝkf .

• Compute CTi ← ĈT(i).
• Return y ← 1FE.Dec(skif ,CTi).

Setup Circuit S1fe[K](i)

Hardwired: puncturable PRF keyK.
Input: index i ∈ [q].
Padding: circuit is padded to size padS := padS(λ, n, s, q), which is determined in analysis.

1. Compute ri ← FK(i).
2. Compute (MPKi,MSKi)← 1FE.Setup(1λ; ri) and output MPKi.

Figure 4: Description of S1fe[K].

Theorem 3.3. If there exists (1, δ)-selectively-secure non-succinct PKFE for P/poly and δ-secure γ-compressing
SXIO for P/poly where γ is an arbitrarily small constant such that 0 < γ < 1, then there exists (q, δ)-selectively-
secure collusion-succinct PKFE for P/poly with compression factor β, where q is any polynomial of λ, and β is a
constant such that 0 < β < 1.

Proof of Theorem 3.3. We start with analyzing succinctness, then move on to the security proof.
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Encryption Circuit E1fe[M̂PK,K ′, x](i)

Hardwired: master public key M̂PK, puncturable PRF keyK ′, and message x.
Input: an index i ∈ [q].
Padding: circuit is padded to size padE := padE(λ, n, s, q), which is determined in analysis.

1. Compute MPKi ← M̂PK(i).
2. Compute r′i ← FK′(i) and output CTi ← 1FE.Enc(MSKi, x; r′i).

Figure 5: Description of E1fe[M̂PK,K′, x].

Padding Parameter. The proof of security relies on the indistinguishability of obfuscated S1fe, S∗1fe, E1fe, and E∗1fe
defined in Figures 4, 5, 6, and 7. Accordingly, we set padS := max(|S1fe|, |S∗1fe|) and padE := max(|E1fe|, |E∗1fe|).
The circuits S1fe and S∗1fe compute a puncturable PRF over domain [q], a key pair of 1FE, and may have punctured
PRF keys and a master public key hardwired. The circuits E1fe and E∗1fe run M̂PK and compute a puncturable PRF
over domain [q], a ciphertext of 1FE, and may have punctured PRF keys and a hard-wired ciphertext. Note that 1FE
is independent of q. Thus, it holds that

padS ≤ poly(λ, n, s, log q),

padE ≤ poly(λ, n, s, log q, |M̂PK|).

Weak Collusion-Succinctness. Let γ′ be a compression factor of the SXIO for S1fe. The input space for S1fe and
E1fe are [q]. Therefore, by the γ′-compressing SXIO guarantee, the size of the setup circuit (dominated by running
the obfuscated S1fe) is

qγ
′
· poly(λ, n, s, log q) .

Let γ be a compression factor of the SXIO for E1fe. The size of the encryption circuit E1fe (dominated by running
the obfuscated E1fe) is

qγ · poly(λ, n, s, log q, |sxiO(S1fe)|) < qγ+cγ′ · poly(λ, n, s),

where c is some constant. We assume there exists SXIO with an arbitrarily small compression factor. Thus, we can
take γ′ such that β := γ + cγ′ < 1.

Security Proof. Let us assume that the underlying primitives are δ-secure. We define a sequence of hybrid games.

Hyb0: The first game is the original selective security experiment for b = 0, Exptsel
A (1λ, 0). A first selects

the challenge messages (x∗0, x∗1) and receives the master public key sxiO(S1fe[K]) and target ciphertext
sxiO(E1fe[M̂PK,K ′, x∗0]). Next, A queries q pairs (f1, i1), . . . , (fq, iq) such that f`(x∗0) = f`(x∗1) and
receives functional keys SKf1 , . . . ,SKfq . (see Definition 2.15 for more details).

Hybi
∗

1 : Let i∗ ∈ [q] We change S1fe into S∗1fe described in Figure 6. In this hybrid game, we set ri∗ := FK(i∗),
and (MPKi∗ ,MSKi∗) := 1FE.Setup(1λ; ri∗). Thus, when i∗ = 1, the behavior of S1fe is the same as that of
S∗1fe since the hard-wired MPK1 is generated by FK(1). Their size is also the same since we pad circuit S1fe
to have the same size as S∗1fe. Then, we can use the indistinguishability guarantee of sxiO and it holds that
Hyb0

c
≈δ Hyb1

1.

Hybi
∗

2 : We change E1fe into E∗1fe described in Figure 7 when the challenger generates a target ciphertext. In this
hybrid game, we set r′i∗ := FK′(i∗), and CTi∗ := 1FE.Enc(M̂PK(i∗), x∗0; r′i∗). Thus, the behavior of E1fe is
the same as that of E∗1fe, and so is its size since we pad circuit E1fe to have the same size as E∗1fe. Then, we can
use the indistinguishability guarantee of sxiO and it holds that Hybi

∗

1
c
≈δ Hybi

∗

2 .
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Setup Circuit S∗1fe[K{i∗},MPKi∗ ](i)

Hardwired: puncturable PRF keyK{i∗}, MPKi∗ , and index i∗.
Input: index i ∈ [q].
Padding: circuit is padded to size padS := padS(λ, n, s, q), which is determined in analysis.

1. If i = i∗, output MPKi∗ .
2. Else if compute ri ← FK{i∗}(i).
3. Compute (MPKi,MSKi)← 1FE.Setup(1λ; ri) and output MPKi.

Figure 6: Circuit S∗1fe[K{i∗},MPKi∗ ].

Encryption Circuit E∗1fe[M̂PK,K ′{i∗}, x∗0, x∗1,CTi∗ ](i)

Hardwired: master public key M̂PK, puncturable PRF keyK ′{i∗}, and index i∗.
Input: index i ∈ [q].
Padding: circuit is padded to size padE := padE(λ, n, s, q), which is determined in analysis.

1. Compute MPKi ← M̂PK(i).
2. If i = i∗, output CTi∗ .
3. Else if compute r′i ← FK′(i).

For i > i∗: Output CTi ← 1FE.Enc(MPKi, x∗0; r′i).
For i < i∗: Output CTi ← 1FE.Enc(MPKi, x∗1; r′i).

Figure 7: Circuit E∗1fe[M̂PK,K′{i∗}, x∗0, x∗1,CTi∗ ].

Hybi
∗

3 : We change ri∗ = FK(i∗) and r′i∗ = FK′(i∗) into uniformly random ri∗ and r′i∗ . Due to the pseudo-
randomness at punctured points, it holds that Hybi

∗

2
c
≈δ Hybi

∗

3 .

Hybi
∗

4 : We change CTi∗ from 1FE.Enc(M̂PK(i∗), x∗0) to 1FE.Enc(M̂PK(i∗), x∗1). In Hybi
∗

3 and Hybi
∗

4 , we do not
need randomness to generate MPKi∗ and CTi∗ . We just use the hardwired CT∗i and an output of M̂PK for
input i∗. Note that M̂PK(i∗) is the hard-wired MPKi∗ . Therefore, Hybi

∗

3
c
≈δ Hybi

∗

4 follows directly from the
selective security of the PKFE scheme under the master public key MPKi∗ .

Hybi
∗

5 : We change r∗i and r′i∗ into ri∗ = FK(i∗) and r′i∗ = FK′(i∗) and un-punctureK{i∗} andK ′{i∗}. We can
show Hybi

∗

4
c
≈δ Hybi

∗

5 in a reverse manner.

From the definition of S∗1FE, E∗1FE, and Hybi
∗

1 , the behaviors of S∗1FE and E∗1FE in Hybi
∗

5 and Hybi
∗+1

1 are the same.
Thus, Hybi

∗

5
c
≈δ Hybi

∗+1
1 due to sxiO. It also holds that Hybq5

c
≈δ Exptsel

A (1λ, 1). This completes the proof of
Theorem 3.3.

3.3 Collusion-Succinct PKFE from SXIO and Identity-Based Encryption
In this section, we directly construct a weakly collusion-succinct and weakly-selective secure iPKFE scheme from
an SXIO and identity-based encryption scheme.
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Our construction. The construction of a weakly collusion-succinct and weakly-selective secure q-key PKFE
scheme qFE is based on an SXIO, identity-based encryption scheme in the sense of Definition 2.812, and garbled
circuit, which is implied by a one-way function. Our collusion-succinct PKFE scheme is weakly-selective secure
(see Definition 2.17) because we use function descriptions as identities and the selective security of identity-based
encryption requires adversaries to submit a target identity at the beginning of the game.

Let IBE = (IBE.Setup, IBE.KG, IBE.Enc, IBE.Dec) be an identity-based encryption scheme whose identity
space is [q] × [s] × {0, 1}, GC = (Grbl,Eval) a garbled circuit, and (PRF.Gen,F,Punc) a PRF whose domain
is [q]× [s]× {0, 1, 2}. We assume that we can represent every function f by a s bit string (f [1], · · · , f [s]). Let
U(f, x) is a universal circuit that computes f(x).

qFE.Setup(1λ) :

• Generate (MPKibe,MSKibe)← IBE.Setup(1λ).
• Set MPK := MPKibe and MSK := MSKibe and return (MPK,MSK).

qFE.iKG(MSK, f, i) :

• Parse MSKibe ← MSK and (f [1], · · · , f [s]) := f .
• For j ∈ [s], compute SKj ← IBE.KG(MSKibe, (i, j, f [j])).
• Return SKf := (i, f, {SKj}j∈[s]).

qFE.Enc(MPK, x) :

• Parse MPKibe ← MPK and chooseK ← PRF.Gen(1λ).
• Return CTfe := sxiO(ELgc[MPKibe,K, x]). ELgc is defined in Figure 8.

qFE.Dec(SKf ,CTfe) :

• Parse (i, f, {SKj}j∈[s]) := SKf .

• Compute (Ũ , {CTj,α}j∈[s],α∈{0,1})← CTfe(i).

• For j ∈ [s], compute Lj ← IBE.Dec(SKj ,CTj,f [j]).

• Return y := Eval(Ũ , {Lj}j∈[s]).

Garbling with encrypted labels circuit ELgc[MPKibe,K, x]

Hardwired: puncturable PRF keyK, public parameter of IBE MPKibe, and plaintext x.
Input: index i ∈ [q].
Padding: circuit is padded to size padEL := padEL(λ, n, s, q), which is determined in analysis.

1. Compute rgc ← FK(i‖1‖2).
2. Compute (Ũ , {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x); rgc).
3. For j ∈ [s] and α ∈ {0, 1}, compute ri‖j‖α ← FK(i‖j‖α) and CTj,α ←

IBE.Enc(MPKibe, (i, j, α), Lj,α; ri‖j‖α).
4. Return (Ũ , {CTj,α}j∈[s],α∈{0,1}).

Figure 8: The description of ELgc. In the description, U(·, x) is a universal circuit in which x is hardwired as the second input.

12Again, we stress that the size of the encryption circuit is |ID|α · poly(λ, `) where ` is the length of plaintext and ID is the identity-space
and most identity-based encryption schemes based on concrete assumptions have such succinct encryption circuits. In our scheme, ID is just a
polynomial size.
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Theorem 3.4. If there exists δ-selectively-secure succinct identity-based encryption with α-compression (α is a
sufficiently small constant) and δ-secure γ̃-compressing SXIO for P/poly for a constant γ̃ such that 0 < γ̃ < 1
(γ̃ might be close to 1), then there exists weakly collusion-succinct (q, δ)-weakly-selective-secure PKFE with
compression factor β, where q is any polynomial of λ and γ̃ < β < 1.

Proof of Theorem 3.4. We start with analyzing succinctness then moving on to the security proof.

Padding Parameter. The proof of security relies on the indistinguishability of obfuscated ELgc and EL∗gc defined
in Figures 8 and 9. Accordingly, we set padEL := max(|ELgc|, |EL∗gc|). The circuits ELgc and EL∗gc compute a
puncturable PRF over domain [q], IBE ciphertext, and garbled circuit of U(·, x) and may have punctured PRF keys
and a hard-wired ciphertext. Note that |ID| = 2qs Thus, due to the efficiency of IBE, it holds that

padEL ≤ (2qs)αpoly(λ, n) + poly(λ, n, s, log q) .

Weak Collusion-Succinctness. The input space for ELgc is [q]. Note that the size of set S∗ in EL∗gc is logarithmic
in q. Therefore, by the SXIO guarantee, the size of the encryption circuit (dominated by running the obfuscated
ELgc) is bounded by

qγ̃ · poly(λ, padEL) < qγ̃+cα · poly(λ, n, s)
< qβ · poly(λ, n, s),

where c is some constant if we choose α such that γ̃ + cα < β (which is possible since α is sufficiently small
constant and c is a constant).

Security Proof. Let us assume that the underlying primitives are δ-secure. We define a sequence of hybrid games.

Hyb0: The first game is the original weakly-selective security experiment for b = 0, Exptsel∗
A (1λ, 0). In this

game, A first selects the challenge messages (x∗0, x∗1) and queries q pairs (f1, i1), . . . , (fq, iq) such that
f`(x∗0) = f`(x∗1) for all ` ∈ [q], then obtains an encryption of x∗0, the master public key, and functional keys
SKf1 , . . . ,SKfq . (see Definition 2.17 for more details).

Hybi
∗

1 : We change ELgc into EL∗gc described in Figure 9. In this hybrid game, we set r∗gc = FK(i∗‖1‖2), r∗i∗‖j‖α =
FK(i∗‖j‖α), (Ũ∗, {L∗j,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗0); r∗gc), andCTj,αi∗ ← IBE.Enc(MPKibe, (i∗, j, α),
Lj,α; r∗j‖α). Hereafter, we use r∗j‖α instead of r∗i∗‖j‖α for ease of notation. Thus, when i∗ = 1, the behaviors
of ELgc and EL∗gc are the same from the definition of EL∗gc, and so are their size since we pad circuit ELgc to
have the same size as EL∗gc. Then, we can use the indistinguishability guarantee of sxiO, and it holds that
Hyb0

c
≈δ Hyb1

1.

Hybi
∗

2 : We change r∗gc = FK(i∗‖1‖2) and r∗j‖α = FK(i∗‖j‖α) into uniformly random r∗gc and r∗j‖α for all j ∈ [s]

and α ∈ {0, 1}. We define S∗ :=
{
i∗‖1‖2, {i∗‖j‖α}j∈[s],α∈{0,1}

}
. Due to the pseudo-randomness at

punctured points, it holds that Hybi
∗

1
c
≈δ Hybi

∗

2 .

Hybi
∗

3 : For ease of notation, let f∗ := fi∗ and f be the complement of f , that is, (f [1], . . . , f [s]) := (1 −
f [1], . . . , 1− f [s]). Moreover, we omit each randomness for IBE.Enc since it is uniformly random at this
hybrid game. For labels of (f∗[1], . . . , f∗[j]), we change

• normal ciphertexts CTj,f
∗[j]

i∗ ← IBE.Enc(MPKibe, (i∗, j, f∗[j]), L
j,f∗[j]

) into

• junk ciphertexts CTj,f
∗[j]

i∗ ← IBE.Enc(MPKibe, (i∗, j, f∗[j]), 0`(λ)), where ` is a polynomial denoting
the length of labels output by Grbl.

That is, for identities that A did not query, we do not encrypt corresponding labels. We do not change
CTj,f

∗[j]
i∗ . Note that all f1, . . . , fq are known in advance since we consider weakly-selective security. A is not

given secret keys of IBE for identity (i∗, j, f∗[j]), so this change is not detected. We show Hybi
∗

2
c
≈δ Hybi

∗

3
in Lemma 3.5 by using the selective security of IBE.
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Garbling with encrypted labels circuit EL∗gc[MPKibe, i
∗,K{S∗}, x∗0, x∗1, {CTj,αi∗ }j,α]

Hardwired: punctured PRF key K{S∗} where S∗ :=
{
i∗‖1‖2, {i∗‖j‖α}j∈[s],α∈{0,1}

}
, index i∗, set S∗,

public parameter of IBE MPKibe, challenge plaintexts x∗0, x∗1, Ũ∗, and {CTj,αi∗ }j∈[s],α∈{0,1}.
Input: index i ∈ [q].
Padding: circuit is padded to size padEL := padEL(λ, n, s, q), which is determined in analysis.

1. If i = i∗, then output (Ũ∗, {CTj,αi∗ }j∈[s],α∈{0,1}).
2. Else if compute rgc ← F(K, i‖1‖2).

For i > i∗: Compute (Ũ , {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗0); rgc).

For i < i∗: Compute (Ũ , {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗1); rgc).

3. For j ∈ [s] and α ∈ {0, 1}, compute ri‖j‖α ← F(K, i‖j‖α) and CTj,αi ←
IBE.Enc(MPKibe, (i, j, α), Lj,α; ri‖j‖α).

4. Return (Ũ , {CTj,αi }j∈[s],α∈{0,1}).

Figure 9: The description of EL∗gc. In the description, U(·,m) is a universal circuit in whichm is hardwired as the second
input.

Lemma 3.5. It holds that Hybi
∗

2
c
≈δ Hybi

∗

3 if IBE is selectively secure.

Proof. First, we define more hybrid games Hj∗ for j∗ ∈ [s] as follows.

Hj∗ : This is the same as Hybi
∗

2 except that for j ≤ j∗, CTj,f
∗[j]

i∗ ← IBE.Enc(MPKibe, i
∗‖j‖f∗[j], 0`).

Apparently, H0 and Hs are the same as Hybi
∗

2 and Hybi
∗

3 , respectively.

We show that Hj∗−1
c
≈δ Hj∗ holds for all j∗ ∈ [s]. This immediately implies the lemma.

We construct an adversary B in the selective security game of IBE as follows. To simulate the weakly-selective
security of PKFE, B runs A of qFE and receives a message pair (x∗0, x∗1) and function queries (f1, . . . , fq)
with indices. B simulates the game of qFE as follows.

Setup and Encryption: B sets id∗ := i∗‖j∗‖f∗[j∗] as the target identity to the challenger of IBE. Note that
f∗ = fi∗ .
To set challenge messages of IBE, B computes (Ũ∗, {L∗j,α}j∈[s],α∈{0,1}) ← Grbl(1λ, U(·, x∗0); r∗gc)
and sets m∗0 := L∗

j∗,f∗[j∗]
and m1 := 0`(λ). B sends id∗ and (m∗0,m∗1) to the challenger of IBE,

and receives MPKibe and CTj
∗,f∗[j∗]
i∗ as the master public-key and target ciphertext of IBE. B sets

MPK := MPKibe. To simulate ciphertexts of qFE, B does the followings.

• For all j ≤ j∗ − 1, B computes CTj,f
∗[j]

i∗ ← IBE.Enc(MPKibe, i
∗‖j‖f∗[j], Lj,f∗[j]) and

CTj,f
∗[j]

i∗ ← IBE.Enc(MPKibe, i
∗‖j‖f∗[j∗]), 0`).

• For j = j∗, B computes CTj
∗,f∗[j∗]
i∗ ← IBE.Enc(MPKibe, i

∗‖j∗‖f∗[j∗], Lj∗,f∗[j∗]).
• For all j ≥ j∗ + 1 and α ∈ {0, 1}, B computes CTj,αi∗ ← IBE.Enc(MPKibe, i

∗‖j‖α), Lj,α).

By using these ciphertexts {CTj,αi∗ }j∈[s],α∈{0,1} ,B construct programEL∗gc and setsCT∗fe := sxiO(EL∗gc)
as the target ciphertext of qFE.

Key Generation: Then, B queries identities (i, 1, fi[1]), . . . , (i, s, fi[s]) for all i ∈ [q] to the challenger of
IBE, receives SKji ← IBE.KG(MSKibe, i‖j‖fi[j]), and sets SKfi := (i, fi, {SKji}j∈[s]) for all i ∈ [q].
Note that (i∗‖j∗‖f∗[j∗]) is not queried.
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Now B sets all values for A and sends MPK, {SKfi}i∈[q], and CT∗fe to A. If B is given CTj
∗,f∗[j∗]
i∗ =

IBE.Enc(MPKibe, i
∗‖j∗‖f∗[j∗]), L

j∗,f∗[j∗]
), then B perfectly simulates Hj∗−1. If B is given CTj

∗,f∗[j∗]
i∗ =

IBE.Enc(MPKibe, i
∗‖j∗‖f∗[j∗], 0`(λ)), then B perfectly simulates Hj∗ . Therefore, the advantage between

Hj∗−1 and Hj∗ is bounded by the advantage of IBE and it holds that Hj∗−1
c
≈δ Hj∗ . This completes the

proof of the lemma.

Hybi
∗

4 : Wechange (Ũ∗, {L∗j,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗0); r∗gc) into simulated garbled circuit (Ũ∗, {L∗j,f∗[j]}j∈[s])
← Sim.GC(1λ, f∗(x∗0); r∗gc). Now a simulator for Hybi

∗

4 does not have {L∗
j,f∗[j]

} since the simulator of

GC cannot generate them. However, the simulator for Hybi
∗

4 does not need them since it generates junk
ciphertexts for such labels as in Hybi

∗

3 . It holds that Hybi
∗

3
c
≈δ Hybi

∗

4 due to the security of the garbled circuit.

Hybi
∗

5 : We change (Ũ∗, {L∗j,f∗[j]}j∈[s]) ← Sim.GC(1λ, f∗(x∗0); r∗gc) into (Ũ∗, {L∗j,f∗[j]}j∈[s]) ← Sim.GC(1λ,
f∗(x∗1)); r∗gc). By the requirement of the security game, fi(x∗0) = fi(x∗1) holds for all i ∈ [q]. Thus, the
distribution of (Ũ∗, {L∗j,f∗[j]}j∈[s]) is perfectly the same and it holds that Hybi

∗

4
c
≈δ Hybi

∗

5 due to sxiO.

Hybi
∗

6 : We change the simulated garbled circuit, junk ciphertexts, and punctured PRF keys back into the
real garbled circuit, normal IBE ciphertexts, and un-punctured PRF keys. In this hybrid game, we
set r∗gc = FK(i∗‖1‖2), r∗j‖α = FK(i∗‖j‖α), (Ũ∗, {L∗j,α}j∈[s],α∈{0,1}) ← Grbl(1λ, U(·, x∗1); r∗gc), and
CTj,αi∗ ← IBE.Enc(MPKibe, (i∗, j, α), Lj,α; r∗j‖α). We can show Hybi

∗

5
c
≈δ Hybi

∗

6 in a reverse manner.

It holds Hybi
∗

6
c
≈δ Hybi

∗+1
1 by the definition of EL∗gc and sxiO. That is, Exptsel∗

A (1λ, 0) = Hyb0
c
≈δ Hyb1

1
c
≈δ

· · ·
c
≈δ Hybq6

c
≈δ Exptsel∗

A (1λ, 1) holds.

4 Weakly Succinct FE from Collusion-Succinct FE
In this section, we see a transformation from a q-key weakly collusion-succinct index based functional encryption
into a single-key weakly succinct one. Bitansky and Vaikuntanathan have shown such a transformation [BV15,
Proposition IV.1]. Ananth, Jain, and Sahai show a transformation from a collusion-resistant non-succinct FE into a
(collusion-resistant) succinct one [AJS15]. It is easy to verify that the transformation by Ananthet al. also works
for q-key collusion-succinct functional encryption schemes to achieve single-key weakly succinct ones. The key
tool for these transformation is decomposable randomized encoding, which is implied by one-way function (see
Definition 2.22).

We stress that the transformation in this section is not new. The differences between theirs and ours is that
we assume that the underlying weakly collusion-succinct scheme is weakly-selective secure and uses an index
for functional key generation. To construct IO by using the theorem by Bitansky and Vaikuntanathan [BV15], a
single-key weakly-selective secure weakly succinct PKFE scheme is sufficient. Adversaries should query a function
before it receives the public parameter. Note that if the maximum size of functions in a function family is fixed,
the size of a randomized encoding (denoted by µ) of a function is also fixed. Thus, (µ, δ)-weakly-selective secure
schemes are sufficient for this transformation. We can easily observe this fact. Moreover, the index-based functional
key generation is not an issue since our goal is a single-key scheme and µ is fixed in advance. Thus, readers that are
familiar with the transformation by Bitansky and Vaikuntanathan [BV15, Proposition IV.1] can skip this section.
We write the transformation and a proof for the weakly-selective security for confirmation. Of course, we can obtain
a selectively secure scheme by the transformation if we use a selectively secure scheme as the underlying scheme.

Conversion. Our single-key weakly succinct PKFE scheme sFE = (sFE.Setup, sFE.KG, sFE.Enc, sFE.Dec) for
circuits of size at most s = s(λ) with n = n(λ) bit inputs is based on a q-key weakly collusion-succinct iPKFE
scheme qFE = (qFE.Setup, qFE.iKG,FE.Enc, qFE.Dec) for circuits of size at most s with n bit inputs. Let F, RE,
and SKE be a PRF, c-local decomposable randomized encoding, and CPA-secure secret-key encryption scheme,
respectively. The construction is essentially the same as the FE scheme from any weakly collusion-succinct FE
scheme byBitansky andVaikuntanathan [BV15, Proposition IV.1]. In the scheme, we useF : {0, 1}λ×[c]→ {0, 1}.

sFE.Setup(1λ) :
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• Generate (MPK,MSK)← qFE.Setup(1λ).
• Return (MPK,MSK).

sFE.KG(MSK, f) :

• Generate t← {0, 1}λ.

• Compute decomposed f , that is, (f̂1, . . . , f̂µ) together with (S1, · · · , Sµ) where Si ⊆ [ρ] and |Si| = c.
• Choose SK ← {0, 1}λ. For i ∈ [µ], generate CTiske ← SKE.Enc(SK, 0), and compute skfi ←

qFE.iKG(MSK,Dre[f̂i, Si, t,CTiske], i). The circuit Dre is defined in Figure 10.
• Return skf ← (skf1 , · · · , skfµ).

sFE.Enc(MPK, x) :

• GenerateK ← PRF.Gen(1λ).
• Return CT← qFE.Enc(MPK, (0, x,K,⊥)).

sFE.Dec(skf ,CT) :

• Parse (skf1 , · · · , skfµ)← skf .
• For i ∈ [µ], compute ei ← qFE.Dec(skfi ,CT).
• Decode y from (e1, · · · , eµ).
• Return y.

Decomposable Randomized Encoding Circuit Dre[f̂i, Si, t,CTiske]

Hardwired: decomposed function f̂i, set Si, tag t, and ciphertext CTiske
Input: bit b, message x, PRF keyK, and SKE secret key SK

1. If b = 1, return ei ← SKE.Dec(SK,CTiske).
2. Else for j ∈ Si, compute rj ← FK(t‖j), set rSi ← {rj}j∈Si where rj is j-th bit of r.
3. Return ei ← f̂i(x; rSi).

Figure 10: Description of Dre.

Theorem 4.1. If there exists weakly collusion-succinct (µ, δ)-weakly-selective-secure PKFE (resp. SKFE) for
circuits of size at most s = s(λ) with n = n(λ) inputs with encryption circuit of size µγ · poly(λ, n, s) where
µ = s · poly′(λ, n) and poly and poly′ are fixed polynomials, then there exists weakly succinct (1, δ)-weakly-
selective-secure PKFE (resp. SKFE) for circuits of size at most s = s(λ) with encryption circuit of size
sγ · poly′′(λ, n) where poly′′ is a fixed polynomial.

We show only the PKFE case. The SKFE case is similarly proven.

Proof of Theorem 4.1. We start with analyzing succinctness then move on to the security proof.

Weak Succinctness. Let Di := Dre[f̂i, Si, t,CTiske]. To issue one key, we need to issue 1 · µ = s · poly(λ, n)
keys of qFE since we consider functions of size s. Thus, we choose s · poly(λ, n) as the number of issued keys of
PKFE. Note that poly(λ, n) is determined by RE. The size of Di is poly(λ, n) since |f̂i| is independent of |f | by
the decomposability of RE and |τ | and |CTiske| are bounded by O(λ). The size of encryption circuit sFE.Enc is

(s · poly(λ, n))γ · poly(λ, n) = sγ · poly(λ, n) .
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Security Proof. Let us assume that the underlying primitives are δ-secure. We define a sequence of hybrid games.

Hyb0: The first game is the original weakly-selective security experiment for b = 0, Exptsel∗
A (1λ, 0). In this game,

A first selects the challenge messages (x∗0, x∗1) and a function f then obtains an encryption of x∗0, the master
public key, and a functional decryption key skf .

Hyb1: We change CTiske ← SKE.Enc(SK, 0) into CTiske ← SKE.Enc(SK, f̂i(x∗0; rSi)) for all i ∈ [µ]. It holds that
Hyb0

c
≈δ Hyb1 due to the CPA-security of SKE.

Hyb2: We change CT← qFE.Enc(MPK, (0, x,K,⊥)) into CT← qFE.Enc(MPK, (1, x,⊥,SK)).

Lemma 4.2. It holds that Hyb1
c
≈δ Hyb2 if qFE is a (q, δ)-weakly-selective-secure PKFE.

Proof of lemma. We construct an adversary B of qFE. First, A sends messages (x∗0, x∗1) and a function
f to the challenger of sFE. B generates K ← PRF.Gen(1λ) and chooses random t and an secret-key
encryption key SK ← {0, 1}λ, computes (f̂1, . . . , f̂µ) from f together with (S1, . . . , Sµ), generates
CTiske ← SKE.Enc(SK, f̂i(x∗0; rSi)), and construct Dre[f̂i, Si, t,CTiske] for all i ∈ [µ]. Note that µ is fixed
whenwe design sFE for circuits of size atmost s. However, themaster public-key of qFE is not set yet. Thus, we
can use the weakly-selective security of the µ-key scheme. B sends messages ((0, x∗0,K,⊥), (1, x∗0,⊥,SK))
as challenge messages and functions Di := Dre[f̂i, Si, t,CTiske] to the challenger of qFE and receives MPK,
CT∗, and {skDi}i∈[µ]. B passes MPK, CT∗, and {skDi}i∈[µ] as the master public-key, target ciphertext, and
functional key for f to A. This perfectly simulates Hyb1 if CT∗ is an encryption of (0, x∗0,K,⊥) and Hyb2
if CT∗ is an encryption of (1, x∗1,⊥,SK). Thus, the lemma follows.

Hyb3: We change rj ← FK(t‖j) into rj ← {0, 1} for all j ∈ [ρ]. It holds that Hyb2
c
≈δ Hyb3 due to the

pseudo-randomness of F.

Hyb4: We change ei ← f̂i(x∗0; rSi) into ei ← f̂i(x∗1; rSi). It holds that Hyb3
c
≈δ Hyb4 due to the security of the

decomposable randomized encoding and the condition f(x∗0) = f(x∗1) for sFE. In fact, we intermediately
use the output of the simulator of RE.

This completes the proof of Theorem 4.1.

5 Putting It Altogether: Single-Key Weakly Succinct PKFE and IO
Before we summarize our theorems, we introduce a few known theorems regarding SKFE and SXIO. Brakerski,
Komargodski, and Segev [BKS16] and Bitanskyet al. [BNPW16a, BNPW16b] prove the following theorems.

Theorem 5.1 ([BKS16, BNPW16a]). If there exists a non-succinct collusion-resistant SKFE for P/poly, then
there exists a γ-compressing SXIO for P/poly where γ is an arbitrary constant such that 0 < γ < 1. (γ could be
sufficiently small)

Theorem 5.2 ([BNPW16b]). If there exists a single-key weakly succinct SKFE for P/poly, then there exists a
γ̃-compressing SXIO for P/poly where γ̃ is a constant such that 1/2 ≤ γ̃ < 1.

In this theorem, weakly-selective security of a SKFE scheme (see Definition 2.14) is sufficient for the
transformation though Bitanskyet al. do not explicitly point out it.

Theorem 5.3 ([GS16, LM16]). If there exists a (1, δ)-selectively secure and weakly succinct PKFE scheme for
P/poly, then there exists a (poly, δ)-selectively secure and succinct PKFE scheme for P/poly.

5.1 Main Theorems
We summarize our theorems. By Theorem 3.1, 3.2, and 4.1, we obtain the following theorem.

Theorem 5.4. If there exists one-way function and γ̃-compressing SXIO for P/poly for a constant γ̃ such that
0 < γ̃ < 1 (γ̃ might be close to 1), there exists a single-key selective-message message private and weakly succinct
SKFE for P/poly.
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By Theorem 3.1, 3.3, 4.1, and 5.1, we obtain the following theorem since Theorem 3.3 requires a sufficiently
small compression factor.

Theorem 5.5. If there exists a plain public-key encryption scheme and collusion-resistant and non-succinct SKFE
for P/poly, then there exists a single-key selectively secure and weakly succinct PKFE for P/poly.

Combined with Theorem 2.19, IO is obtained from a sub-exponentially secure plain public-key encryption
and sub-exponentially secure collusion-resistant (non-succinct) SKFE for P/poly. This theorem has already been
proved by Bitanskyet al. [BNPW16a], but our construction and proof are significantly simpler than theirs as we
show in Section 3.2. Moreover, our construction avoids 2O(d) security loss where d is the depth of circuits. That is,
we obtain the following corollary by using Theorem 5.3.

Corollary 5.6. If there exists a plain public-key encryption and collusion-resistant and non-succinct SKFE scheme
for P/poly, then there exists a collusion-resistant and succinct PKFE scheme for P/poly. This transformation
incurs only polynomial security loss.

By Theorem 3.4, 4.1, and 5.2, we obtain the following theorem since Theorem 3.4 just requires that γ̃ is slightly
smaller than 1 (no need to be sufficiently small).

Theorem 5.7. If there exists identity-based encryption and single-key weakly succinct SKFE for P/poly, then there
exists a single-key weakly-selective secure weakly succinct PKFE for P/poly.

Combined with Theorem 2.19, IO is obtained if we assume sub-exponential security of identity-based encryption
and single-key weakly succinct SKFE.

Theorem 5.8. If there exits a sub-exponentially secure plain public-key encryption and sub-exponentially secure
single-key weakly succinct SKFE for P/poly, then there exists IO.

Figure 12 illustrates our theorems.

5.2 By-products of Theorem 5.4
Before we show our corollaries, we introduce a few known facts.

Theorem 5.9 ([BNPW16a]). If there exits a constant-arity MIFE for P/poly, then there exits a γ-compressing
SXIO for P/poly.

Theorem 5.10 ([BKS16]). If there exits a collusion-resistant non-succinct SKFE for P/poly, then there exits a
constant-arity MIFE for P/poly.

Theorem 5.11 ([ACJ16]). A single-key weakly succinct SKFE for P/poly implies output-compact updatable
randomized encoding with an unbounded number of updates.

Theorem 5.12 ([ACJ16]). Output-compact updatable randomized encoding with the unbounded number of updates
implies a γ̃-compressing SXIO for P/poly.

Note that Ananthet al. prove Theorem 5.12 for a γ̃-compressing XIO, but it is easy to observe that their
construction of XIO is actually a γ̃-compressing SXIO.

The following theorem is proved in a concurrent work.

Theorem 5.13 ([Ano17]). If there exists a single-key selectively secure and weakly succinct SKFE for P/poly, then
there exists a collusion-resistant SKFE for P/poly.

Corollaries of Theorem 5.4. By Theorem 5.2 and 5.4, we can obtain the following corollaries.

Corollary 5.14. A single-key weakly succinct SKFE for P/poly is equivalent to one-way function and γ̃-compressing
SXIO for P/poly such that 0 < γ̃ < 1 (γ̃ might be close to 1).

Corollary 5.15. If there exists a single-key weakly selective-message message private and weakly succinct SKFE
scheme for P/poly, there exists a single-key selective-message message private and weakly succinct SKFE scheme
for P/poly.
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Figure 11: Illustration of our theorems. Dashed lines denote known facts or trivial implications. White boxes denote our
ingredients or goal. Purple boxes denote our key schemes. Green boxes denote our intermediate tools. Primitives in rounded
boxes should be sub-exponentially-secure to arrive at IO. γ-SXIO denotes SXIO with compression factor γ, which is sufficiently
small constant of less than 1. γ̃-SXIO denotes SXIO with compression factor γ̃, which is arbitrary constant of less than 1. We
ignore puncturable PRF and decomposable RE in this figure since they are implied by OWF .

By Theorem 5.1, 5.13, and 5.4, we can obtain the following corollary.

Corollary 5.16. If there exists one-way function and γ̃-compressing SXIO for P/poly for a constant γ̃ such that
0 < γ̃ < 1 (γ̃ might be close to 1), then there exists a γ-compressing SXIO for P/poly for an arbitrarily small
constant γ such that 0 < γ < 1.

By Theorem 5.9, 5.10, 5.13, and 5.4, we can obtain the following corollary.

Corollary 5.17. A constant-arity MIFE for P/poly is equivalent to a γ̃-compressing SXIO such that 0 < γ̃ < 1.

By Theorem 5.9, 5.10, 5.13, and 5.4, we can obtain the following corollary.

Corollary 5.18. A constant-arity MIFE for P/poly is equivalent to one-way function and γ̃-SXIO such that
0 < γ̃ < 1.

By Theorem 5.11, 5.12, and 5.4, we can obtain the following corollary.

Corollary 5.19. A single-key weakly succinct SKFE forP/poly is equivalent to one-way function and output-compact
updatable randomized encoding with an unbounded number of updates.
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Figure 12: Illustration of our corollaries. The thick line denotes our first main theorem. Solid lines denote known implications.
Dashed lines denote our corollaries. γ-SXIO denotes SXIO with compression factor γ, which is sufficiently small constant of
less than 1. γ̃-SXIO denotes SXIO with compression factor γ̃, which is arbitrary constant of less than 1.
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