
Amortization with Fewer Equations
for Proving Knowledge of Small Secrets

Rafael del Pino1,2,3,4, and Vadim Lyubashevsky4

1 INRIA, Paris
2 École Normale Supérieure, Paris

3 CNRS
4 IBM Research Zurich

Abstract. For a linear function f , a vector x with small coefficients, and a vector y = f(x),
we would like to be able to give a zero-knowledge proof for the knowledge of an x′ with small
coefficients that satisfies f(x′) = y. This is a common scenario in lattice-based cryptography, and
there is currently no satisfactory solution for this problem. All known protocols are built via the
repetition a basic protocol that only has constant (1/2 or 2/3) soundness error. This implies that
the communication complexity of the final protocol will be at least a factor of k larger than that
of the basic one, where k is the security parameter.

One can do better if one considers simultaneously proving the knowledge of many instances of the
above linear equation. The protocol that has the smallest amortized communication complexity
while achieving close-to-optimal slack (i.e. the ratio between the coefficients in the secret and those
that can be extracted from the proof) is due to Cramer et al. (Eurocrypt ’17) which builds on an
earlier work of Baum et al. (Crypto ’16). The main downside of this protocol is that the amortiza-
tion only kicks in when the number of equations is rather large – 4k2. This means that for k = 128,
it is only truly optimal when one has more than 216 equations to prove. The aforementioned work
of Cramer et al. also shows how to achieve a protocol requiring o(k2) samples, but it is only appli-
cable for much larger values of k and the number of required samples ends up being larger than 216.

The main result of our work is reducing the concrete minimal number of equations required for the
amortization, while keeping the communication complexity almost unchanged. The cost of this is
an increase in the running time of the zero-knowledge proof. More specifically, we show that one
can decrease the required number of equations by a factor of Ω(log2 α) at the cost of increasing
the running time by a factor of Ω(α). For example, increasing the running time by a factor of 8
allows us to decrease the required number of samples from 66000 to 4500 – a factor of 14. As a side
benefit, the slack of our protocol decreases by a factor of logα as well.

We also show that in the case that f is a function over the polynomial ring Z[X]/(Xd + 1) and
we would like to give a proof of knowledge of an x′ with small coefficients such that f(x′) = 2y,
then the number of samples needed for amortization is even lower. Without any trade-offs in the
running time, our algorithm requires around 2000 samples, and for the same factor 8 increase in
the running time, the requirement goes down to 850.

1 Introduction

Every lattice-based cryptographic construction relies on the fact that when given a matrix A and a
vector y over some ring R (such as Zq or Zq[X]/(Xd + 1) with the usual addition and multiplication
operations), it is hard to recover a vector x with small coefficients such that

Ax = y. (1)

In many instances, one would also like to construct a zero-knowledge protocol where the prover, who
knows x, is able to convince a verifier (who only has A and y) that he possesses this knowledge.

There are several known approaches for constructing such protocols. The first method is to adapt
the classic Stern protocol [Ste93], which was used for a similar code-based problem, to working over
larger rings [KTX08,LNSW13]. The main issue with this protocol is that each round has soundness error

2/3 and therefore needs to be repeated 192 times (to achieve 128 bits of security). For most practical
applications, this technique is therefore unsuitable.

A second approach is to use the “Fiat-Shamir with Aborts” idea of Lyubashevsky [Lyu08, Lyu09,
Lyu12] whose original application was to digital signatures. If one uses a ring R that contains a lot
of elements with small coefficients (e.g. R = Zq[X]/(Xd + 1)), then one can prove the knowledge of a
short x′ and c ∈ R such that Ax′ = cy. This is not exactly equivalent to proving (1), but it suffices
for the purposes of digital signatures, commitments [BKLP15], and to some applications of verifiable
encryption [LN17].

The most natural and useful scenario, however, is proving the knowledge of some s′ that exactly
satisfies (1). One could directly apply the “Fiat-Shamir with Aborts” technique with 0/1 challenges, but
this leads to protocols with soundness error 1/2, which is essentially as inefficient as those using the Stern
technique. When working over the ring R = Zq[X]/(Xd + 1), it was shown that one can decrease the
soundness error to 1/(2d+1) [BCK+14] and prove the knowledge of an x′ such that Ax′ = 2y. The main
observation in that paper was that rather than using challenges from the set 0/1, one could use them
from the set {0, Xi} for 0 ≤ i < 2d. Even though this latter proof does not exactly prove (1), the fact
that one can prove the knowledge for a constant multiple of y (rather than some arbitrary, unknown c)
makes this type of proof suitable for a variety of applications. But still, the soundness error of 1/(2d+ 1)
would require the proof to be repeated around a dozen times for typical values of d = 1024.

Amortized Proofs. A very interesting line of work, which built upon ideas from [CD09], considered
the amortized complexity of the [Lyu08, Lyu09] protocol. In [DPSZ12], it was shown that one could
prove the knowledge of a linear (in the security parameter) number of equations with essentially optimal
communication per equation. The main downside was that, while the prover may have known xi with
small coefficients that satisfied Axi = yi, he would only be able to prove knowledge of x′i whose coefficients
were on the order of 2Ω(k) larger. In practice, this slack is quite bad as it would require setting all the
parameters to be very large so as to make the proofs non-vacuous (i.e. so that there isn’t an efficient
algorithm that can simply compute such x′ from A and y).

More recently, using different and novel ideas, Baum et al. [BDLN16] showed how to reduce the slack
to super-polynomial in the security parameter, and the most recent work of Cramer et al. [CDXY17]
reduced this slack to being only a factor k larger than what one would get by running the basic protocol
from [Lyu08, Lyu09] with 0/1 challenges. The main downside of this latter algorithm is that it requires
doing at least 4k2 proofs at the same time. So for k = 128, this implies that one needs to have at least 216

equations that one wishes to prove simultaneously. When wanting to prove fewer than that, one could
include some “dummy” values, but this will have the effect of increasing the per-proof communication
complexity and running time. The main open direction in this line of work is therefore to reduce the
necessary number of equations while keeping the slack and communication to be as low as in [CDXY17].
This is the main result of the current paper.

1.1 Prior Work

High-level overview of [BDLN16,CDXY17]. We will use the notation from [CDXY17]. The setup
is that the prover has a linear function f and ordered pairs (y1,x1), . . . , (yn,xn) such that f(xi) = yi
(in (1), the function f is defined by the matrix A). He wishes to prove the knowledge of x′i with small
coefficients such that f(x′i) = yi. The algorithm from [CDXY17] works in two stages. In the first stage, it
runs the “imperfect prover” from [BDLN16] which proves the knowledge of all-but-k x′i. The main issue
is that after the first stage, we do not know which k secrets the extractor cannot extract.

In the second stage, the prover creates 4k2 additive combinations of yi, for which the pre-image is the
corresponding additive combination of the xi due to the linearity of the function f .1 The main result of
the paper is showing a strategy for producing these combinations such that for any set S of xi of size k,
each xi from S appears in at least k + 1 combinations without any other xi from S. One can then run
the imperfect proof on the 4k2 linear combinations and again get the guarantee that all but k secrets
can be extracted. Each element in S therefore appears in some extracted combination in which all other
elements were already extracted in the first stage. And due to the linearity of f , we can now extract the
sole element from the set S appearing in the combination.

1 To be more precise, the number of combinations is the first prime greater than 4k2.

2

[CDXY17] 0/1 Challenges xi Challenges

variable parameter α 2 16 64 1024 16 64 1024

minimum equations n 67103 4493 2213 853 853 443 293

communication per equation (≈ kB) 8.5 9.3 9.7 10.9 8.9 9.5 10.7

run-time per equation (function evaluations) 16 128 512 8092 128 512 8092

Table 1. Trade-offs between the running time and the minimum number of samples. We are considering
proofs for (Ring)-LWE instances of dimension 1024 where the secrets and errors have coefficients drawn
from {−1, 0, 1}.

An asymptotically more efficient construction is also given in [CDXY17]. This construction uses two
different additive combinations of the yi, the first one is a relaxed version in which for any set S of xi
of size k, all but k − 5k0.75 of the xi from S appears in at least k + 1 combinations without any other
xi from S. By running the imperfect proof on these sums all but 5k0.75 secrets can now be extracted.
The second additive combination is identical to the one of the previous proof but is now used on sets
of size 5k0.75, ensuring that after another execution of the imperfect proof all secrets can be extracted.
This improved version requires at least 4(5k0.75)2 = 100k1.5 = O(k1.5) secrets. However it is clear that
this construction only makes sense if k > 5k0.75, i.e. k > 625. So while this construction is more efficient
asymptotically we only consider the previous one which is better for all reasonable security parameters.

More concrete description of the “imperfect proof” from [BDLN16]. The original protocol
from [BDLN16] is a Σ-protocol that can be seen as a very particular type of parallel composition of
the protocol from [Lyu08]. The basic protocol from [Lyu08] for proving the knowledge of x′ such that
f(x′) = y is as follows: The prover starts by choosing a mask g from some distribution and sends
h = f(g). The verifier then chooses a random bit b ∈ {0, 1} as a challenge and sends it to the prover. The
prover computes cx + g and performs a rejection sampling step (the rejection sampling step is necessary
for zero-knowledge). If it passes, then the prover sends cx + g to the verifier. The verifier checks that
f(cx + g) = cy + h.

The idea in [BDLN16] for giving “imperfect proofs” for n equations was to choose T = 2κn masking
parameters gj (for some small constant κ) and send hj = f(gj) to the verifier. The verifier then sends a
T -bit challenge string c1, . . . , cT , and the prover sends the gj for which cj = 0. For every 1 ≤ i ≤ n, the
prover also tries to send xi + gj for the first non-used gj (a gj is considered used if it was revealed in
the clear or was previously tried to be used for masking another xi′ with i′ < i – there should initially
be approximately κn unused gj). If the rejection sampling step passes, then the prover indeed sends the
xi + gj . Otherwise, he tries to send xi + gj′ where gj′ is the next unused g. The verifier checks that all
the revealed gj satisfy f(gj) = hj , and then checks that yi + hj = f(xi + gj) for all i. It is then shown
that if a prover succeeds with probability 2−k+1, then an extractor can extract n − k x′i that satisfy
f(x′i) = yi. Thus the protocol is a proof of knowledge of all-but-k pre-images.

1.2 Our Results

Our main result builds upon the works of [BDLN16, CDXY17] and allows us to reduce the required
minimum number of proofs at the expense of a higher running time. Most importantly, the communication
complexity per equation does not increase too much. As an example, if we increase the running-time
by a factor of 8, we can decrease the required number of equations from 67000 to around 4400 (see
Table 1). We also construct a protocol for proving knowledge of si with small coefficients over the ring
R = Zq[X]/(Xd + 1) such that Asi = 2ti. This protocol gets an even better trade-off between running
time and the minimum number of samples. For the same factor of 8 increase in running time, we only
now need to have 853 equations.

Figure 1 shows a graph that illustrates how increasing the running time by a factor α reduces the
minimum number of required equations. The implication is that for larger values of α, the added reduction
in the minimum number of equations is not worth the increase in the running time. For practical purposes,
the best trade-offs are achieved for small α’s. Figure 2 illustrates the small effect that increasing α has
on the communication complexity of the protocol. Even increasing α by 220, which is not advisable as
we just mentioned, would result in the communication complexity growing by less than a factor of 2.

3

0 2 4 6 8 10 12 14
0

5,000

10,000

15,000

20,000

logα

m
in

im
u
m
n

Required Number of Samples for Amortization

Fig. 1. The minimum number of samples required for amortization as a function of logα. The squares
represent our first protocol (with 0/1 challenges) and the triangles represent the second (with challenges
of the form Xi) when working over the ring Z[X]/(Xd + 1) for d = 1024.

Techniques. We achieve this improvement by modifying the first stage of the protocol – that is, the
“imperfect proof” from [BDLN16]. Improving this protocol to make it a proof of knowledge of all-but-τ
pre-images for some τ < k, allows us to only do the amortized second stage of [CDXY17] with only
4τ2 < 4k2 equations. A way to reduce τ is for the prover to produce a larger number of hj in the first
step of the Σ-protocol and then for the verifier to demand that the prover reveal the pre-images of a
larger fraction of the hj . The protocol of [BDLN16] can be thought of as a cut-and-choose protocol, thus
more reveals intuitively implies a higher probability of the correctness of the non-revealed parts. If we
introduce a parameter α, then the prover produces T = ακn elements hj in the first part, sends them
to the verifier, and receives a challenge c1, . . . , cT where a 1 − 1/α fraction of the cj are 0. The prover
reveals the pre-images of the corresponding hj and then uses the non-revealed gj (of which there are
κn) to send xi + gj in the same manner as in [BDLN16] described in Section 1.1. We prove that this
results in a protocol that proves the knowledge of all-but-τ pre-images for τ = k/ logα. Therefore, now
only 4(k/ logα)2 equations are needed for amortization to kick in.

One issue that still needs to be resolved is the communication complexity. Naively, it seems that one
would need to send T = ακn elements hj which would increase the communication complexity by a
factor α. We instead give an approach in which the communication is only logarithmically dependent
on α – furthermore it will only be small additive factors that have a dependence on logα. Rather than
sending h1, . . . , hT , the prover can instead send a hash h = H(h1, . . . , hT) where H is a collision-resistant
hash function. This does not completely solve the problem because at some point the prover will need
to send the hj so that the verifier can check the validity of h. But here we use the fact that all except
κn of the hj will have their pre-images simply revealed. Our strategy is therefore as follows: we create
the gj from 256-bit seeds sj which are leaves on a tree generated by a pseudorandom function (modeled
as a random oracle). That is, from the root of the tree, one can generate the entire tree. When required
to reveal pre-images of a set of hj , the prover does not need to send the gj (or their seeds) individually.
He can instead send roots of sub-trees which only include the seeds that will be revealed. We prove that
with this strategy, rather than sending ακn seeds, one only needs to send a maximum of κn logα many
elements from the tree (which are themselves 256 bits each).

Putting everything together, we show that at the expense of increasing the running time by a factor
of α, one can reduce the minimum number of samples required for amortization by a factor of log2 α. Our
second contribution is showing that when working over the ring Z[X]/(Xd + 1), proving the knowledge
of xi such that f(xi) = 2yi has an even better trade-off between running-time and the minimum number

4

0 5 10 15 20
8

10

12

14

logα

P
ro

o
f

si
ze

(k
B

)

Proof Size

Fig. 2. Proof sizes as a function of logα. We are considering proofs for the same types of instances as
in Table 1. The squares represent our first protocol (with 0/1 challenges) and the triangles represent the
second (with Xi challenges) when working over the ring Z[X]/(Xd + 1) for d = 1024.

of samples. In particular, we show that at the expense of an α-fold increase in running time, one can

reduce the minimum number of vectors by a factor of
(

logα+log 2d
1+1/ logα

)2
.

To obtain such an improvement we adapt the proof of [BCK+14] to the framework of [BDLN16].
Though merging the two protocols is rather straightforward, the knowledge extractors of both of these
schemes don’t combine as nicely. The knowledge extractor of [BDLN16] first recovers a set of all but k of
the masking parameters gj and then simply extracts xi from xi+gj . This method falls apart when used
with the protocol of [BCK+14] as the latter scheme uses rewinding to obtain two equations Xax + g
and Xbx + g and recovers a pre-image from their difference. The same rewinding is still possible in our
scheme but will yield two equations of the form Xaxi + gj and Xbxi + gj′ and extraction will be only
possible if j = j′, which cannot be guaranteed. We resolve this issue by conditioning our extractor on the

fact that j = j′ which results in a slightly sub-optimal number of extracted preimages: n− k·(1+1/ logα)
logα+log 2d

instead of simply n − k
logα+log 2d . It is not clear to us whether this small loss is necessary or simply an

artifact of our proof.

1.3 Paper Organization

In Section 2, we introduce the notation and definitions that we will be using throughout the paper. In
Section 3 we present a modification of the “imperfect proof” protocol of [BDLN16], which is a proof
of knowledge of all-but-τ pre-images for τ = k/ logα. This protocol only serves as intuition, and we
do not formally prove its correctness or security because the communication complexity (i.e. the proof
size) grows linearly in α. In Section 4, we show how to reduce the communication complexity of the
interactive protocol from Section 3 and prove its correctness, zero-knowledge, and soundness. We only
show honest-verifier zero-knowledge because this is enough to convert the protocol to a non-interactive
one using the Fiat-Shamir transform, which is the manner in which one would use these schemes in
practice. Analyzing the size of the communication is delayed until in Section 6 because this analysis
also applies to the protocol in Section 5. In Section 5, we show that if the proof is done over the ring
Z[X]/(Xd + 1), then the number of required equations can be made even smaller if one wants to prove
f(x′) = 2y.

5

2 Preliminaries

2.1 Notation

We will write vectors such as b or B in bold face. We refer to the ith position of a vector b as b [i]. Define

[r] = {1, . . . , r}. The euclidean norm of a vector , b ∈ Zr is ‖b‖ =
√∑

i∈[r] b [i]
2
. For a set S, we write

s
$← S to denote that s was drawn uniformly at random from S. For a distribution D, we write s← D

to denote that s is drawn from D.

2.2 Homomorphic OWF

In this section we follow the framework of [BDLN16] in defining homomorphic one-way functions over
integer vectors (which includes polynomial rings) as well as amortized zero-knowledge proofs of preimage
for these functions. Let λ ∈ N be a security parameter, G be an Abelian group, β, r ∈ N, f : Zr → G be
a function and A be any algorithm. Consider the following game:

InvertA,f,β(λ) :

1. Choose x ∈ Zr, ‖x‖ ≤ β and compute y = f(x).
2. On input (1λ, y) the algorithm A computes an x′.
3. Output 1 iff f(x′) = y, ‖x′‖ ≤ β, and 0 otherwise.

Definition 1 (Homomorphic OWF over Integer Vectors (ivOWF)). A function f : Zr → G is
called a homomorphic one-way function over the integers if the following conditions hold:

– There exist a polynomial time algorithm evalf such that evalf (x) = f(x) for all x ∈ Zr.
– for all x,x′ ∈ Zr it holds that f(x) + f(x′) = f(x + x′).
– for every PPT algorithm A there exists a negligible function negl(λ) such that:

Pr [InvertA,f,β(λ) = 1] ≤ negl(λ)

2.3 Rejection Sampling and the Normal Distribution

For a protocol to be zero-knowledge, the output of the prover needs to be independent of his secret.
In certain situations achieving this independence requires rejection sampling. While [BDLN16] used
rejection sampling in the infinity norm (as in [Lyu08, Lyu09]) we use the euclidean norm and thus
rejection sampling over the `2 norm using normal distributions (as in [Lyu12]), which allows for tighter
parameters. But all our techniques easily work for the `∞ norm as well.

Definition 2 (Continuous Normal Distribution). The continuous Normal distribution over Rr cen-

tered at v with standard deviation σ is defined by the probability density function ρrv,σ(x) =
(

1√
2πσ2

)r
e−
‖x−v‖2

2σ2

Definition 3 (Discrete Normal Distribution). The discrete Normal distribution over Zr centered
at v with standard deviation σ is defined by the probability mass function Drv,σ(x) = ρrv,σ(x)/ρrσ(Zr)

Lemma 4 (Tail-Cut Bound [Ban93]). Pr [‖z‖ ≥ 2σ
√
r; z← Drσ] < 2−r

Theorem 5 (Rejection sampling [Lyu12] Theorem 4.6). Let V be a subset of Zr with elements
of norm less than T , let h be a distribution over V. Let σ = 11T , for v, z ∈ Zr let Rej(v, z) be the
algorithm that outputs 1 with probability min

(
Drσ(z)/(3Drv,σ(z)), 1

)
and 0 otherwise. Then we have:

(v, z | Rej(v, z) = 1) ∼s (v, z′)

Where v← h, z← Drv,σ, and z′ ← Drσ, i.e. the output of Rej is a discrete Normal distribution centered
on 0. Moreover the probability that Rej outputs 1 is exponentially close to 1/3.

6

2.4 Zero-Knowledge Proofs of Knowledge

We will consider amortized proofs of knowledge for preimages of an ivOWF. Formally, given an ivOWF
f the relation we want to give a zero-knowledge proof of knowledge for is:

RKSP(n, f, β) =

{
(Y,X) ∈ (G× Zr)n

∣∣∣∣Y = (y1, . . . , yn) ∧X = (x1, . . . ,xn)

∧ [yi = f(xi) ∧ ‖xi‖ ≤ β]i∈[n]

}
We define a second binary relation R′, such that R ⊂ R′, which characterizes the soundness slack of
the protocol, i.e. while the input to the protocol is a pair (Y,X) ∈ R the knowledge extractor can only
extract values in R′. Typically the relation R′ is identical to R except for the fact that the components
of X are bounded in norm by a constant β′ = τβ with τ > 1. We will however see in section 5 a ZKPOK
for a different relation R′.

Definition 6 (Zero-Knowledge Proof of Knowledge). Let PZK be a two-party protocol, let R,R′
be binary relations such that R ⊆ R′, let k be a statistical security parameter. PZK is a zero-knowledge
proof of knowledge if the following properties hold:

Correctness: If P,V are honest and run PZK on an instance of R, then the protocol terminates with
probability greater than 1− 2O(k)

Soundness: For any pair (a, b) ∈ R, for any deterministic prover P̂ that succeeds with probability
p > 2−k one can extract b′ such that (a, b′) ∈ R′ in expected time poly(s, k) · 1/p, where s is the size of
the input to the protocol.

Computational Honest-Verifier Zero-Knowledge: There exists an expected PPT simulator S such
that for any (a, b) ∈ R, and for any PPT algorithm A. A has advantage negl(k) in distinguishing between
the two following distributions:

– V iewV [P(a, b)↔ V(a)] the view of V consisting in the transcript of the protocol as well as the random
coins of V.

– S(a)

2.5 Imperfect Proof of Knowledge and a Compiler

In [BDLN16], the authors introduce the concept of an imperfect proof of knowledge. An imperfect proof of
knowledge is a protocol that proves knowledge of pre-images in the relationRKSP, however the knowledge
extractor is not required to be able to extract all the pre-images.

Definition 7 (Imperfect Proof of knowledge). Let PIProof be a two-party protocol, let f be an
ivOWF, let RKSP(n, f, β) and RKSP(n, f, β′) be two binary relations on f , k be the security parameter.
The protocol PIProof is an imperfect proof of knowledge with imperfection τ(k) if the following properties
hold:

Correctness: If P,V are honest and run on an instance of R, then the protocol terminates with prob-
ability greater than 1− negl(k)

Soundness: For any pair (Y = (y1, . . . , yn),X = (x1, . . . ,xn)) ∈ RKSP(n, f, β), for any deterministic
prover P̂ that succeeds with probability p > 2−k one can extract at least n − τ(k) values x′i such that
f(x′i) = yi and ‖x′i‖ ≤ β′ in expected time poly(s, k) · 1/p, where s is the size of the input to the protocol.

7

P V

X := (x1, . . . ,xn) Y
Y := (y1 := f(x1), . . . , yn := f(xn))

g1, . . . ,gT ← Drσ
a1, . . . , aT := f(g1), . . . , f(gt)

h1, . . . , hT := H(a1), . . . , H(aT) h1, . . . , hT-
c� c← χT ∈ {0, 1}T

O := {j, c [j] = 0} , C := [T] \ O (gj)j∈O-

∀j ∈ O, Check :

{
H(f(gj)) = hj
‖gj‖ ≤ B

Φ := ∅
∀i ∈ [n] :

find the first j ∈ C, j > max(Φ)
s.t. Rej(xi + gj) = 1
zi := xi + gj
Φ := Φ ∪ {j}

If |Φ| < n abort
Φ, (zi)i∈[n]-

∀i ∈ [n] :

Check

{
H(f(zi)− yi) = hΦi
‖zi‖ ≤ B

Fig. 3. Warm-up construction. An imperfect proof of knowledge with imperfection k/ logα + 1 and
communication that grows linearly with α

Computational Honest-Verifier Zero-Knowledge: There exists an expected PPT simulator S such
that for any (Y,X) ∈ RKSP(n, f, β), and for any PPT algorithm A. A has advantage negl(k) in distin-
guishing between the two following distributions:

– V iewV [P(Y,X)↔ V(Y)] the view of V consisting in the transcript of the protocol has well as the
random coins of V.

– S(Y)

[BDLN16] introduced a ZKPOK that uses an imperfect proof as a building block. The construction
was later improved in [CDXY17] allowing for very efficient proofs that only require two executions of
the imperfect proof system, while only introducing an additional soundness slack of k. The protocol,
however, requires the amortization to be done on at least 4k2 secrets, which can be impractical. We give
a somewhat refined statement of this construction as the proof of [CDXY17] can be straightforwardly
adapted to using the imperfection τ(k) instead of k.

Theorem 8 (Compiler [CDXY17] Theorem 2). Let f be an ivOWF, let k be a statistical security
parameter, let RKSP(n, f, β) and RKSP(n, f, β′) be two binary relations on f . Let PIProof be an imperfect
proof with imperfection τ(k). If n ≥ 4τ(k)2 + O(log k) then there exists an efficient construction for a
zero-knowledge proof of knowledge PCProof with soundness slack τ(k)β′.

In this paper, we give constructions that can reduce the imperfection τ(k) of the imperfect proof to
values less than k, thus allowing for more efficient zero-knowledge protocols in cases where the number
of available equations is less than τ(k).

3 Warmup Construction

We present a first construction that achieves imperfection τ(k) = k/log(α) + 1 for any parameter α, but
has proof size that grows linearly in α. This first construction is similar to the one of [BDLN16]. Their
protocol works in two phases: first the prover samples masking parameters gj , j ∈ [T] and a cut-and-
choose protocol reveals each one with probability one half. After this step, the verifier is convinced that

8

with probability 1− 2−k all but k of them are well formed. In the second phase the masking parameters
that were not revealed are used to hide the secrets of the prover. We modify the first phase of this
protocol so that the prover reveals each masking parameter with probability 1 − 1/α, for α ≥ 2, this
reduces the percentage of gj on which the prover can cheat and, in turn, reduces the imperfection of
the proof. However, the number of masking parameters necessary for the second phase is on the order
of n, meaning that, since the prover will reveal a fraction 1 − 1/α of them, the protocol then requires
T = Θ(αn) masking parameters.

We describe this protocol in Figure 3. We do not give a formal proof that it is an imperfect proof of
knowledge with imperfection k/ logα+1 as the protocol presented in the next section is a strict improve-
ment upon this one. While this first protocol achieves better imperfection than the one of [BDLN16], it
has a major downside in that the communication cost grows linearly with α, since we need T ≥ αn. This
voids any improvement over the previous protocol. To remedy this problem we will modify this protocol
as follows:

– Rather than sending the hash of every ai in the first round the prover will only send h = H(h1, . . . , hT),
thus making the first flow of the protocol constant size.

– In his second move, the prover sends gj , j ∈ O. This is an issue because |O| ' (α − 1)4n, but also
because the gi can be rather large. We solve these problems by sending a set of seeds from which
a PRG will be used to derive the gi. This way only 256 bits need to be sent for each seed. Most
crucially, by using a tree data-structure, we show that the prover only needs to send 4n logα seeds
in his second move.

4 Amortized Proof for f(xi) = yi with Fewer Equations

In this section we describe our first concrete imperfect proof of knowledge and prove that it has imper-
fection τ(k) = k/ logα+ 1. We show that the proof is only slightly dependent on α in Section 6.

We will need the following two functions, which can both be efficiently implemented using an extend-
able output function (e.g. SHAKE128 [BDPA16]) which will be modeled as a random oracle:

– PRF : {0, 1}256 → {0, 1}512 a size doubling pseudo-random function
– PRG : {0, 1}256 → {0, 1}∗ a pseudo-random generator

For a randomized algorithm h and a seed s ∈ {0, 1}256 we will write h [PRG(s)] to denote an execution
of h using as randomness the bits output by PRG(s).
We first describe the tree structure that we will use. From now on we will only consider T = 2t a power
of two, which simplifies the description of the protocols and does not affect efficiency – all the results
we obtain can be adapted to general T. A tree Γ is a binary tree with nodes labeled in {0, 1}∗ (the root
will have the label ∅, its left child will have label 0, its right child will have label 1, etc...). We consider
complete binary trees of depth t, which implies that the leaves will be labeled in {0, 1}t. We map the
range [T] to the labels of the leaves through the mapping where the image of t ∈ [T] is the leaf labeled
by the binary decomposition of t − 1. Each node will have two extra attributes, one will be the seed
associated to the node (which can be bottom for the verifier since he will not know all the seeds), the
other will be a bit indicating whether the associated seed must be sent to the verifier in the first flow.
The purpose of this seed tree is twofold. We will use the leaves as seeds for the PRG when generating
the gj , j ∈ [T]. This way sending the seeds to the verifier in the first flow will be sufficient as he can then
reconstruct the gj , j ∈ O using the PRG. More importantly, rather than directly sending the leaves of
the seed tree, it will be more efficient to send the smallest set of nodes needed to recover the leaves for
indices that lie in O. We define the tree structure as follows:

Tree T:

– Label ⊂ {0, 1}∗
– Left ∈ Tree ∪ ⊥
– Right ∈ Tree ∪ ⊥
– Leaf ∈ {0, 1}
– Sel ∈ {0, 1}
– Seed ∈ {0, 1}256 ∪ ⊥

9

P V

X := (x1, . . . ,xn) Y
Y := (y1 := f(x1), . . . , yn := f(xn))

Tree ΓP := new Tree Tree ΓV := new Tree
Initialize(ΓP , ∅, t) Initialize(ΓV , ∅, t)
s

$← {0, 1}256
SeedTree(ΓP , s)
∀i ∈ [T] : gi ← Drσ [PRG(si)]
a1, . . . , aT := f(g1), . . . , f(gt)
h1, . . . , hT := H(a1), . . . , H(aT)

h := H(h1, . . . , hT) h -
c� c← χT ∈ {0, 1}T

O := {j, c [j] = 0} , C := [T] \ O
Prefix(ΓP ,O)

S :=
{
j ⊂ {0, 1}t, ΓP [j] .Sel = 1

} (sj)j∈S-
(hj)j∈C

O := {j, c [j] = 0} , C := [T] \ O
Prefix(ΓV ,O)
Reconstruct(ΓV , (sj)j∈S ,O)
(sj)j∈O := (ΓV [j] .Seed)j∈O

∀j ∈ O

gj := f(Drσ [PRG(sj)])
hj := H(gj)
Check: ‖gj‖ ≤ B

Check : H(h1, . . . , hT) = h
Φ := ∅
∀i ∈ [n] :

find the first j ∈ C, j > max(Φ)
s.t. Rej(xi + gj) = 1
zi := xi + gj
Φ := Φ ∪ {j}

If |Φ| < n abort
Φ, (zi)i∈[n]-

∀i ∈ [n] :

Check

{
H(f(zi)− yi) = hΦi
‖zi‖ ≤ B

Fig. 4. Our first construction: an imperfect proof of knowledge with imperfection k
logα + 1. The commu-

nication complexity only has a small dependence on logα.

10

For j ∈ {0, 1}∗ we denote by Γ [j] the node with label j. We will describe four algorithms: the first to
initialize the tree will be performed by both parties, the second to initialize the seeds will only be used by
the prover, the third to compute the indexes of the seeds that will be sent in the first flow of the protocol
will be used by both parties, and the fourth to recover the seeds needed to compute the gj , j ∈ O will
only be used by the verifier.

Algorithm 1 Initialize(Γ, l, d)

Require: A tree Γ , a label l ⊂ {0, 1}t, a depth d
1: Γ.Label := l
2: Γ.Sel := 0
3: Γ.Seed :=⊥
4: if d = 0 then
5: Self.Leaf := 1
6: Self.Left :=⊥
7: Self.Right :=⊥
8: else
9: Self.Leaf := 0

10: Initialise(Γ.Left, (l, 0), d− 1)
11: Initialise(Γ.Right, (l, 1), d− 1)
12: end if

The second algorithm will use a seed fixed by the prover and compute the seed associated with the
children of each node as the first and second half of PRF applied on the seed of the parent node.

Algorithm 2 SeedTree(Γ, v)

Require: A tree Γ , v ∈ {0, 1}256
1: Γ.Seed := v
2: if Γ.Leaf = 0 then
3: (v1, v2) := PRF(v)
4: SeedTree(Γ.left, v1)
5: SeedTree(Γ.right, v2)
6: end if

The Prefix algorithm will compute the prefix of a set of nodes and set their attribute Sel to 1. A
node n will be in the prefix of a set O if all the leaves that descend from n are in O and none of the
ancestors of n are in the prefix of O. The algorithm ensues directly from this definition.

Algorithm 3 Prefix(Γ,O)

Require: A tree Γ , a set of indices O ⊂ [T]
1: if Γ.Leaf = 1 ∧ Γ.label ∈ O then
2: Γ.Sel := 1
3: return 1
4: else if Γ.Leaf = 0 ∧Prefix(Γ.Left,O) = 1 ∧Prefix(Γ.Right,O) = 1 then
5: Γ.Sel := 1
6: Γ.Left.Sel := 0
7: Γ.Right.Sel := 0
8: return 1
9: end if

10: return 0

The Reconstruct algorithm will use a tree in which the prefix S of O has been computed as well as
a set of seeds sj , j ∈ S and will reconstruct the seeds sj , j ∈ O by using SeedTree for each node in S.

11

s

s0

s00

s000 s001

s01

s010 s011

s1

s10

s100 s101

s11

s110 s111

Fig. 5. Seed tree for t = 3, and O = {1, 2, 3, 5, 6, 7, 8}, the nodes needed to reconstruct (sj)j∈O are those
in prefix(O) = {00, 010, 1}.

Algorithm 4 Reconstruct(Γ, S,O)

Require: A tree Γ , a list of seeds S = [sj], a set O ⊂ [T]. We assume that Prefix(Γ,O) was applied.
1: if Γ.Sel = 1 then
2: SeedTree(Γ, S[0])
3: S := S[1 :]
4: else
5: Reconstruct(Γ.Left, S)
6: Reconstruct(Γ.Right, S)
7: end if

We give in Figure 5 an example of a seed tree as well as a set O and its prefix.
We describe our improved protocol in Figure 4. We will first prove its correctness.

Theorem 9 (Correctness). Let f be an ivOWF, k be a statistical security parameter, H a collision
resistant hash function, r ≥ 128 be an integer, χ the bernouilli distribution of parameter 1 − 1/α (i.e.
P [χ = 0] = 1− P [χ = 1] = 1/α). Let T = 5αn, σ = 11β, B = 2σ

√
r.

For honest P, V, and for (Y,X) ∈ RKSP(n, f, β) , the protocol PIProof given in Figure 4 completes with
probability greater than 1− 2−100.

Proof. By the homomorphic property of f and by construction of
Initialize, SeedTree, Prefix, and Reconstruct all the checked equalities hold. We fist consider the
probability that P aborts. P will abort if he runs out of samples during the rejection sampling. For each
gj , j ∈ [T] the probability that gj will not be revealed is 1/α, and by Theorem 5 the probability that
the rejection sampling will succeed is 1/3, in which case the vector obtained will be of norm less than B
with overwhelming probability (4). We can model the probability that each gj will not be revealed and
will pass both checks of the rejection step by a Bernoulli variable Xj s.t Pr [Xj = 1] = 1/(3α)− 2−O(n).
P will abort if

∑
j∈[T]Xj < n. Using the Chernoff bound we obtain:

Pr

∑
j∈[T]

Xj < n

 ≤ exp

(
− (T − 3αn)2

3αT
+ 2−O(n)

)

= exp

(
−4n

15
+ 2−O(n)

)
,

which is negligible asymptotically (and in practice less than 2−100 whenever we amortize over n ≥ 260
secrets.)
We now consider the probability that V aborts. V will abort if there exists either j ∈ O such that
‖gj‖ > B or i ∈ [n] such that ‖zi‖ > B. Since the gj and the zi are drawn independently from the

12

distribution Drσ by using a union bound we have that the probability that the norm of one of them
exceeds B is less than (T + n)2−r. ut

We now show that this protocol is honest-verifier zero-knowledge.

Theorem 10 (HVZK). With parameters set as in Theorem 9, the protocol PIProof described in Fig-
ure 4 is computationally honest-verifier zero-knowledge.

Proof. The honest-verifier zero-knowledge proof is very close to that of [BDLN16], but we still include
it here for completeness as there are slight differences. Consider the following algorithm SIProof :

– On input (Y = (y1, . . . , yn), β) sample s
$← {0, 1}256 and (sj)j⊂{0,1}t using SeedTree.

– Sample c← χT , compute the sets O and C.
– Set Φ′ = ∅, for j ∈ C sample zj ← Drσ and do the following:

• Sample b
$← {0, 1, 2}

• If b = 0 ∧ ‖zj‖ ≤ B then Φ′ = Φ′ ∪ j
– For j ∈ O set hj = H(f(Drσ [PRG(sj)]))

– If |Φ′| < n then for j ∈ C set hj
$← {0, 1}256, h = H(h1, . . . , hT), output (h, c, (sj)j∈prefix(O), (hj)j∈C)

and abort.
– If |Φ′| ≥ n set Φ to be the first n elements of Φ′ and for i ∈ [n] rename zΦ[i] as zi. For j ∈ C \ Φ set

hj
$← {0, 1}256.

– For i ∈ [n] set aΦ[i] = f(zi)− yi, hΦ[i] = H(aΦ[i]).
– Set h = H(h1, . . . , hT), output

(h, c, (sj)j∈prefix(O), (hj)j∈C , Φ, (zΦ[i])i∈[n])

We first consider the abort probability of the simulator: S will abort if |Φ′| < n. For each j ∈ [T] the
simulator adds a zj to Φ′ iff c [j] = 1∧ b = 0∧‖zj‖ ≤ B, the probability of this event is 1/(3α)− 2−O(n),
thus the probability of abort will be exponentially close to the one of PIProof . Regardless of whether
the simulator aborts or not, all the checks performed by the verifier will accept: h is set to be h =
H(h1, . . . , hT), and when S does not abort he sets hΦ[i] so that H(f(zi)− yi) = hΦ[i]. The sets O and C
are defined in the same way as in PIProof and the sj , j ∈ prefix(O) are also sampled according to the
protocol. Note that in PIProof for j ∈ C \ Φ the hj are distributed uniformly since H is modeled as a
random oracle and no preimages of the hj are given (note that for some leaves of the tree the verifier
knows half of the output of PRF on the parent node, even conditioning on this knowledge the second half
of the output is uniform as PRF is modeled as a random oracle). It remains to analyze the distribution
of zi for i ∈ [n]. We have by Theorem 5 that the distribution of zi, i ∈ [n] in PIProof is that of a discrete
gaussian centered in 0 with standard deviation σ and thus identical to the distribution of zi in S. ut

We finally show the soundness of the protocol, i.e. that one can extract all but τ(k) = k/ logα + 1
preimages from a prover that succeeds with probability greater than 2−k

Theorem 11 (Soundness). With parameters set as per Theorem 9, the protocol PIProof has imperfec-
tion τ(k) = k/ logα+ 1 and slack 2B.

Proof. Let k′ = k/ logα + 1, let P̂ be a deterministic prover that makes an honest verifier accept with
probability p > 2−k. We will construct an extractor E that extracts n − k′ values x′i, i ∈ I ⊂ [n] such
that f(x′i) = yi and ‖x′i‖ ≤ 2B. E will run in expected time poly(s, k) · 1/p where s is the size of the
input to PIProof .

E starts P̂ who outputs h and runs the protocol on random challenges until he outputs (sj)j∈prefix(O)

and (hj)j∈C , from this E can recover hashes (hj)j∈[T] such that H(h1, . . . , hT) = h, fix h := h and

hj := hj . Set A := ∅ and run T instances of P̂ in parallel, which we denote P̂1, . . . , P̂T . Do the following
until |A| ≥ T − k′:

– For each P̂j sample a random challenge cj ← χT subject to cj [j] = 0 and run P̂j on challenge cj .

13

– For each instance P̂j that does not abort, reconstruct sj from the prover’s response and set gj =

Drσ [PRG(sj)]. Verify the proof output by P̂j and set A = A∪gj . Note that if the proof is valid then
the verifier can reconstruct h1, . . . , hT s.t

H(h1, . . . , hT) = h = H(h1, . . . , hT)

since H is collision resistant we have in particular that hj = hj which implies H(f(gj)) = hj . We
also have ‖gj‖ ≤ B.

Observe that if this algorithm terminates we obtain a set A of at least T − k′ preimages of the hj by the
function H ◦ f . We will now show that this extractor finishes in expected polynomial time. This proof is
very similar to the one of [BDLN16] but we choose to present it anyway as it will be reused in the next
section.

Let pj be the probability that P̂j outputs a good gj (i.e such that H(f(gj)) = hj ∧ ‖gj‖ ≤ B). We

say that pj is bad if pj < p/k′ and good otherwise. Let Xj be the event that P̂j eventually outputs a
good gj , where Xj = 1 if the event happens and Xj = 0 otherwise. If pj is good then after l iterations:

Pr [Xj = 0] ≤ (1− p/k′)l ≤ e−lp/k
′

so after at most l = k · k′/p iterations we can expect that gj was extracted except with probability

negligible in k. This can be generalized to the success of all P̂j (where pj is good) by a union bound,
and the probability of failing is still negligible because T is polynomial in k. The resulting extractor thus
runs in time O(Tk2/p logα) provided there are less than k′ bad pj .
Assume there are k′ bad pj which, for simplicity, are p1, . . . , pk′ . In the protocol the challenge is taken

according to the distribution χT . The success probability of P̂ can be conditioned on the value of c [1] as

p = Pr
[
P̂ succeeds

]
= Pr

[
P̂ succeeds c [1] = 0

]
· Pr [c [1] = 0]

+ Pr
[
P̂ succeeds c [1] = 1

]
· Pr [c [1] = 1]

= p1

(
1− 1

α

)
+

1

α
Pr
[
P̂ succeeds c [1] = 1

]

Conditioning additionally on c [2] yields

p ≤ p1
(

1− 1

α

)
+

1

α

((
1− 1

α

)
αp2 + 1/αPr

[
P̂ succeeds c [1] = 1 ∧ c [2] = 1

])
=

(
1− 1

α

)
(p1 + p2) +

1

α2
Pr
[
P̂ succeeds c [1] = 1 ∧ c [2] = 1

]
The reason the inequality holds is as follows: the probability that a random challenge s.t c [2] will yield
a preimage of h2 is p2. Now conditioning on c [1] = 1, which occurs with probability 1/α, will increase
that probability from p2 to at most αp2.

Repeating the above argument generalizes to

p ≤
(

1− 1

α

)
(p1 + p2 + . . .+ pk′)

+
1

αk′
Pr
[
P̂ succeeds c [1] = 1 ∧ . . . ∧ c [k′] = 1

]
<

(
1− 1

α

)
p+

1

αk′

This entails that

p <
1

αk′−1
= α−k/logα = 2−k

14

From this we conclude that there are less than k’ bad pj , and thus that E has extracted a set A of size
at least T − k′ of elements gj s.t

H(f(gj)) = hj ∧ ‖gj‖ ≤ B.

We will now show how to use this set A to extract n− k′ secrets x′i.

E runs regular instances of P̂ until one of them succeeds call this instance P̃, this takes expected time
1/p. From the output of P̃ E obtains a set Φ̃ as well as (z̃i)i∈[n] s.t H(f(z̃i) − yi) = hΦ̃[i] (by collision

resistance of H and by the fact that H(h̃1, . . . , h̃T) = h) and ‖z̃i‖ ≤ B. For each i ∈ [n] if there exists
gΦ̃[i] ∈ A, then we have H(f(z̃i) − yi) = H(f(gΦ̃[i])), setting x′i = z̃i − gΦ̃[i] gives f(x′i) = yi and

‖x′i‖ ≤ 2B. Since |A| ≥ T − k′ there are at most k′ of the Φ̃ [i] that are not in this set and E can extract
n− k′ preimages x′i. ut

Using this imperfect proof with the compiler of Theorem 8 results in a proof of knowledge with soundness
slack 4k

√
rβ/ logα, communication overhead O(1) (we will discuss this in further details in Section 6)

and amortization over 4
(

k
logα + 1

)2
secrets. e.g. for α = 210 one can create amortized proofs for as few

as 853 secrets with a security parameter k = 128, while the construction of [CDXY17] needs to amortize
over at least 67103 secrets for the same security. However this protocol is not strictly better in the sense
that the computation cost, which is essentially the number of evaluations of the function f , increases
multiplicatively in α for both the prover and the verifier, making this protocol impractical for very large
α. In the next section we describe a new variant of the scheme inspired by the work of [BCK+14] that
reduces the soundness errror τ(k) without necessarily increasing the computational cost of the protocol.

5 Proving f(xi) = 2yi with Even Fewer Equations

In this section we use an idea from the zero-knowledge proof of [BCK+14] to improve the imperfection
of our previous scheme. In [BCK+14] the authors prove knowledge of preimages for an ivOWF over a
polynomial ring of dimension d, they take advantage of this structure by replacing the binary challenge
of the classic 3-round ZKPOK with a challenge in

{
0,±1,±X, . . . ,±Xd−1} this improves the soundness

error of the protocol from 1/2 to 1/(2d+1). We adapt this technique to further improve the imperfection
of our imperfect proof. The knowledge extractor becomes however substantially more complicated.

Let R be the polynomial ring Z[X]/〈Xd+1〉. For (a1, . . . , al) ∈ Rl and for b ∈ R let ? be the following
product ? : R×Rl → Rl such that b ? (a1, . . . , al) = (ba1, . . . , bal).
In this section we will consider ivOWFs f : Zr ' Rl → R such that for b ∈ R and a ∈ Rl we have
f(b ? a) = bf(a). This type of one-way function is often used in ideal-lattice constructions.

Lemma 12 ([BCK+14] Lemma 3.2). Let d be a power of 2, let a, b ∈{
±1, . . . ,±Xd−1}. Then 2(a−b)−1 mod Xd+1 only has coefficients in {−1, 0, 1}. In particular

∥∥2(a− b)−1
∥∥ ≤√

d.

We now prove that the construction of Figure 6 is an imperfect proof of knowledge.

Theorem 13. Let f : Rl → R be an ivOWF, r = ld ≥ 128 be an integer, let f ′ = 2f , let k be a statistical
security parameter, H a collision resistant hash function, χ a distribution over

{
0,±1,±X, . . . ,±Xd−1}

with Pr [χ = 0] = 1 − 1/α and ∀c ∈
{
±1, . . . ,±Xd−1}, Pr [χ = c] = 1/(2dα). Let T = 5αn, σ = 11β,

B = 2
√
rσ. The protocol PIProof given in Figure 6 is an imperfect proof of knowledge for the relations

RKSP(f, n, β) and RKSP(f ′, n,
√
dB) with imperfection k(1+1/ logα)

logα+log 2d + 1

Proof. The proofs for the correctness and zero-knowledge of the protocol are identical to the proofs in
the previous section. On the other hand the soundness proof is more involved.

Soundness: Let k′ = k(1+1/ logα)
logα+log 2d + 1, let P̂ be a deterministic prover that makes an honest verifier ac-

cept with probability p > 2−k. We will construct an extractor E that extracts n−k′ values x′i, i ∈ I ⊂ [n]
such that f(x′i) = 2yi and ‖x′i‖ ≤

√
dB. E will run in time poly(s, k) · 1/p1+2/ logα where s is the size of

the input to PIProof .

15

P V

X := (x1, . . . ,xn) Y
Y := (y1 := f(x1), . . . , yn := f(xn))

Tree ΓP := new Tree Tree ΓV := new Tree
Initialize(ΓP , ∅, t) Initialize(ΓV , ∅, t)
s

$← {0, 1}256
SeedTree(ΓP , s)
∀i ∈ [T] : gi ← Drσ [PRG(si)]
a1, . . . , aT := f(g1), . . . , f(gt)
h1, . . . , hT := H(a1), . . . , H(aT)

h := H(h1, . . . , hT) h -
c� c← χT ∈

{
0,±1, . . . ,±Xd−1

}T
O := {j, c[j] = 0} , C := [T] \ O
Prefix(ΓP ,O)

S :=
{
j ⊂ {0, 1}t, ΓP [j] .Sel = 1

} (sj)j∈S-
(hj)j∈C

O := {j, cj = 0} , C := [T] \ O
Prefix(ΓV ,O)
Reconstruct(ΓV , (sj)j∈S ,O)
(sj)j∈O := (ΓV [j] .Seed)j∈O

∀j ∈ O

gj := f(Drσ [PRG(sj)])
hj := H(gj)
Check: ‖gj‖ ≤ B

Check : H(h1, . . . , hT) = h
Φ := ∅
∀i ∈ [n] :

find the first j ∈ C, j > max(Φ)
s.t. Rej(c[j] ? xi + gj) = 1
zi := c[j] ? xi + gj
Φ := Φ ∪ {j}

If |Φ| < n abort
Φ, (zi)i∈[n]-

∀i < i′ ∈ [n] , Check : Φi < Φi′

∀i ∈ [n] :

Check :

{
H(f(zi)− c [Φi] yi) = hΦi
‖zi‖ ≤ B

Fig. 6. Our second construction: an imperfect proof of knowledge for f(xi) = 2yi with imperfection
k(1+1/ logα)
logα+log 2d + 1

16

We first use the same extractor as in the proof of Theorem 11. We note that even though the scheme
is different, the same extractor applies with the only difference being that the equation verified by the
extracted x′i will be of the form f(x′i) = bXayi for some b ∈ {−1, 1} , a ∈ [d], which directly gives
f(−bXd−ax′i) = yi, since this new pre-image has the same norm we can rename it and obtain the same
result. We thus obtain the following:

– h the hash sent by P̂ on his first flow.
– h1, . . . , hT such that H(h1, . . . , hT) = h
– A set A of at least T − k/ logα− 1 vectors g′j such that H(f(g′j)) = hj , we define Ψ ⊂ [T] to be the

indices of the hj for which a preimage was not extracted.
– A set S of at least n−k/ logα−1 vectors x′i such that f(x′i) = yi, we define Υ ⊂ [n] to be the indices

of the yi for which a preimage was not extracted.

By construction of this extractor we have |Υ | ≤ |Ψ | ≤ k/ logα+ 1.
Observe that, on a successful run of P̂, the set Φ is a strictly increasing mapping from [n] to [T] (this
is explicitely checked by the verifier) in the previous protocol this was used to show zero-knowledge, as
reusing randomness could leak information, but this is now crucial for soundness. We also note that since
Φ is a function from [n] to [T] we have either:

(A) Φ(Υ) ⊂ Ψ
(B) Or ∃i ∈ Υ s.t. Φ[i] /∈ Ψ

If on a run P̂ is successful and (B) occurs then there exist i, j ∈ [n]× [T] such that H(f(zi)− c [j] yi) =
hj and j = Φ[i] /∈ Ψ . As we have already extracted g′j with H(f(g′j)) = hj = hj we obtain that

x′i = c [j]
−1

(zi − g′j) is a preimage of yi. We can thus redefine the set Υ to be Υ := Υ \ i. Suppose

that on a successful run of P̂, (B) occurs with probability greater than 1/2. The extractor can then
run P̂ O(2/p) times, successfully extract a new preimage of the yi and reduce the size of Υ by 1. After
repeating this procedure O(k) times we have either that |Υ | < k′, in which case the extractor is done, or
that (B) occurs with probability strictly lower than 1/2 on a successful run, for the rest of the proof we
assume the latter. Since either (A) or (B) occurs on a successful run this implies that (A) happens with
probability strictly greater than 1/2.
On any run where (A) occurs, Φ induces a strictly increasing mapping from Υ to Ψ , let G be the set of
all such mappings, we have

|G| =
(
|Ψ |
|Υ |

)
≤ 2|Ψ | ≤ 2k/ logα+1.

The extractor runs |G| parallel instances of P̂ denoted as P̂g, g ∈ G. and does the following until |S| ≥
n− k′.

– Run instance P̂g with fresh randomness until it succeeds, (A) occurs and Φ(Ψ) = g(Ψ). Denote the
challenge used as c̃g and the output of the prover as z̃gi , i ∈ [n].

– Run |Υ | parallel instances of P̂g denoted as P̂gi , i ∈ Υ , do the following:

• For each P̂gi sample a random challenge cgi ← χT subject to cgi [i] 6= c̃g [i] and run P̂gi on challenge
cgi .

• For each instance P̂gi that does not abort. If (A) occurs and Φ(Ψ) = g(Ψ), then the vector zi
output by the prover verifies:

H(f(zi)− cgi [g(i)] yi) = hi.

From the previous step we had z̃gi such that

H(f(z̃gi)− c̃g [g(i)] yi) = hi.

The extractor sets

x′i = (zgi − z̃gi) · 2 (cgi [g(i)]− c̃g [g(i)])
−1

Note that f(x′i) = 2yi and by Lemma 12 ‖x′i‖ ≤
√
dB.

17

We now prove that this extractor terminates in expected time poly(s, k) · 1/p1+2/ logα. Since |G| ≤
2/p1/ logα it is sufficient to show that there exists g in G such that P̂g runs in time poly(s, k)·1/p1+1/ logα.
On any run where (A) occurs, Φ(Υ) is a function in G, this implies that

Pr
[
P̂ succeeds ∧ (A)

]
=
∑
g∈G

Pr
[
P̂ succeeds ∧ (A) ∧ Φ(Υ) = g

]
and thus

∃γ ∈ G s.t. Pr
[
P̂ succeeds ∧ (A) ∧ Φ(Υ) = γ

]
≥

Pr
[
P̂ succeeds ∧ (A)

]
|G|

≥ p1+1/ logα

2

We will use the shorthand P̂ ∧ γ for the event P̂ succeeds ∧ (A) ∧ Φ(Υ) = γ. Let pi be the probability
that P̂γi succeeds, i.e.

pi = Pr
[
P̂ ∧ γ c [γ(i)] 6= c̃γ [γ(i)]

]
,

we say that pi is bad if pi <
Pr[P̂∧γ]

k′ and good otherwise. If there are less than k′ bad pi then the
extractor terminates in expected time

poly(s, k) · |G|

Pr
[
P̂ ∧ γ

] = poly(s, k) · 2k(1+2/ logα)

(c.f. the proof of Theorem 11). Assume that there are k′ bad pi which, for simplicity, are p1, . . . , pk′ .
Then the event P̂ ∧ γ can be conditioned on the value of c[γ(1)] as

Pr
[
P̂ ∧ γ

]
= Pr

[
P̂ ∧ γ c [γ(1)] 6= c̃γ [γ(1)]

]
· Pr [c [γ(1)] 6= c̃γ [γ(1)]]

+ Pr
[
P̂ ∧ γ c [γ(1)] = c̃γ [γ(1)]

]
· Pr [c [γ(1)] = c̃γ [γ(1)]]

=
2dα− 1

2dα
p1 +

1

2dα
Pr
[
P̂ ∧ γ c [γ(1)] = c̃γ [γ(1)]

]
Conditioning on c [γ(2)] , . . . , c [γ(k′)] we have

Pr
[
P̂ ∧ γ

]
≤ 2dα− 1

2dα
(p1 + . . .+ pk′)

+
1

(2dα)k′
Pr
[
P̂ ∧ γ c [γ(1)] = c̃γ [γ(1)] , . . . , c [γ(k′)] = c̃γ [γ(k′)]

]
<

2dα− 1

2dα
Pr
[
P̂ ∧ γ

]
+

1

(2dα)k′

≤ 1

(2dα)k′−1

= 2−k(1+1/ logα)−log(2dα)+1

< 2−k(1+1/ logα)−1

which contradicts the fact that Pr
[
P̂ ∧ γ

]
≥ p1+1/ logα

2 .

From this we conclude that there are less than k′ bad pi, and thus that the extractor has extracted a set
S of n− k′ x′i such that ‖x′i‖ ≤

√
dB and f(x′i) = 2yi in time poly(s, k) · 2k(1+2/ logα). ut

6 Proof Size

In this section we will go more in-depth in the trade-offs offered by the schemes described in Sections 4
and 5. We first give the expected value as well as an upper bound on the size of the prefix S of the set
O as the second flow of the prover will consist in sending |S| seeds (and |C| hashes).

18

Lemma 14. Let T = 2t, let c ← χT ∈ CT (the set C from which the values of c are taken does not
matter, all that matters is the probability with which 0 is sampled) with χ such that Pr [χ = 0] = 1−1/α,
let O = {j ∈ [T] , c [j] = 0}, and let S(c) = prefix(O) be as defined in section 4. Then:

– The expected size of S(c) over the choice of c← χT is

Exp
c←χT

[|S(c)|] =

(
1− 1

α

)
T −

t−1∑
i=0

2i
(

1− 1

α

)2t−i

– With overwhelming probability we can bound the size of S(c) by

|S(c)| ≤
⌊

1.4T

α
log

α

1.4

⌋
Proof. Consider the binary tree Γ which leaves are numbered according to [T], we will say that a leaf
j ∈ [T] is selected if c [j] = 0. First observe that we can split Γ into two trees ΓL and ΓR of size T/2, ΓL
being the binary tree associated to the first T/2 values cL of c and ΓR the tree associated to the last T/2
vales cR of c. The prefix S(c) of Γ will be the union of the prefixes S(cL) and S(cR), except if all the
leaves of Γ are selected, in which case its prefix will be its root. i.e. ∀c 6= (0, . . . , 0), S = S(cL) ∪ S(cR),
which implies |S(c)| = |S(cL)|+ |S(cR)|.
We can rewrite the expected value of |S(c)| as follows:

Exp
c←χT

[|S(c)|] =
∑
c∈CT

|S(c)|Pr [c]

=
∑

(cL,cR)∈CT
(|S(cL)|+ |S(cR)|) Pr [cL, cR]

+ 1 ·
(

1− 1

α

)T
− (1 + 1) ·

(
1− 1

α

)T
=

∑
cL∈CT/2

 ∑
cR∈CT/2

(|S(cL)|+ |S(cR)|) Pr [cR]

Pr [cL]−
(

1− 1

α

)T

=
∑

cL∈CT/2

(
Exp

cR←χT/2
[|S(cR)|] + |S(cL)|

)
Pr [cR]−

(
1− 1

α

)T

= 2 Exp
c←χT/2

[|S(c)|]−
(

1− 1

α

)T
To obtain the second equality we removed |S(c)| in the case c = (0, . . . , 0) from the sum and artificially
added |S(cL)|+ |S(cR)|. By induction on the size of c we obtain the expected value.
To obtain the second equation we first use the Chernoff bound to obtain a lower bound on the size of O.
Let C = [T] \ O, we have:

Pr [|C| > 1.4T/α] ≤ e− T
15α = e−

n
3

since for all practical parameters we will have n ≥ 250, we can assume that |C| ≤ 1.4T/α. We consider
the worst case for the size of S for a given |C| = a, i.e. we define

W (T, a) = max
#0(c)=T−a

(|S(c)|) .

We will prove that ∀a ∈ [T] ,W (T, a) ≤ a log (T/a). Remark that for all T , W (T, 0) = 1. Since for all
c ∈ CT we have

|S(c)| ≤ |S(cL)|+ |S(cR)| ,
we get

W (T, a) ≤ max
b

(W (T/2, b) +W (T/2, a− b))

where max(0, a− T/2) ≤ b ≤ min(a, T/2). We prove that

∀a ∈ [T] ,W (T, a) ≤ a log (T/a)

by induction over T = 2t:

19

– For T = 1, W (1, 1) = 1
– For 2T : Assume that for all 1 ≤ b ≤ T , W (T, b) ≤ b log (T/b) (and W (T, 0) = 1). Fix a ∈ [2T]. Let
f(b) = W (T, b) +W (T, a− b), then

W (2T, a) ≤ max
b

(f(b))

for max(0, a− T/2) ≤ b ≤ min(a, T/2).

• For b = a or b = 0,

f(b) = W (T, a) +W (T, 0) ≤ a log(T/a) + 1 ≤ a log(2T/a)

• For b 6= a and b 6= 0,

f(b) ≤ a log(T/a) + (a− b) log(T/(a− b)).

Simple analysis shows that this function reaches its maximum for b = a/2, and thus f(b) ≤
a log(2T/a)

We conclude by using the fact that W (T, a) is an integer. Finally, with high probability

|S(c)| ≤W (T, 1.4T/α) ≤
⌊

1.4T

α
log

α

1.4

⌋
ut

We will show that the size of the protocol given in Figure 4 can be made nearly independent of the
parameter α by cleverly encoding each flow. We will consider the four flows of the protocol each on its
own (though it is clear that the proof really is a three-move protocol since the last two flows can be sent
simultaneously).

First Flow: The prover sends h ∈ {0, 1}256 to the verifier, this is clearly independent of α.

Flow size = 256 bits

Second Flow: The verifier sends c ∈ {0, 1}T to the prover, this takes 5αn bits since T = 5αn. However
the verifier can compute the sets O and C = [T] \ O before sending c (rather than doing it afterwards)
and equivalently send the set C, we have |C| ≤ 7n and since the indices of C are in [T] they can be
encoded in log(5αn) bits. The second flow only depends on α logarithmically.

Flow size ≤ 7n log(5αn) bits

Third Flow: The prover sends (sj)j∈S and (hj)j∈C to the verifier. From Lemma 14 we have that
|S| ≤ 7n log(α/1.4) and similarly |C| ≤ 7n, since the seeds and hash all are in {0, 1}256 this flow depends
logarithmically on α.

Flow size ≤ 7n log

(
2α

1.4

)
· 256 bits

Fourth Flow (i.e. second part of the Third Flow): The prover sends Φ and (zi)i∈[n] to the
verifier. Since Φ ∈ [T]n sending it naively would require n log(5αn) bits, however all the elements of Φ
correspond to non-zero indices of c, i.e. they are in C. Φ can thus be encoded using n log(|C|) ≤ n log(7n)
bits. The coefficients of the zi come form Dσ by a tail cutting argument they can be represented in
log(11σ) = log(112β) bits each and there are nr of them. The fourth flow is independent of α.

Flow size ≤ n log(7n) + nr log(112β) bits

The proof in Figure 6 only differs in size from this proof on the second flow, where the challenge c is in{
0,±1,±X, . . . ,±Xd−1}T . But similarly to the encoding we use for the first protocol, the verifier can sim-

ply send the set C as well as a vector of dimension |C| containing the challenges in
{
±1,±X, . . . ,±Xd−1}.

20

[CDXY17] Protocol I Protocol II

α 2 64 1024 2 64 1024

k 128 128 128 128 128 128

τ(k) 129 23 14 22 10 8

n 67103 2213 853 2027 443 293

T 6.7 ∗ 106 7.1 ∗ 105 4.4 ∗ 106 2 ∗ 104 1.4 ∗ 105 1.5 ∗ 106

Slack 2.6 ∗ 105 4.6 ∗ 104 2.8 ∗ 104 1.4 ∗ 106 6.4 ∗ 105 25.1 ∗ 105

Communication 8.5 kB 9.7 kB 10.9 kB 8.2kB 9.5 kB 10.7 kB

run-time 16 512 8192 8 512 8192

Table 2. Comparison between [CDXY17] and our protocols for the R-LWE ivOWF with binary secrets.
Masking parameters are revealed with probability 1− 1/α, k is the security parameter, τ(k) the imper-
fection of the protocol, and n the number of secrets. The communication is per secret and the run-time
is in number of evaluations of the ivOWF per secret per player.

The size of the second flow now becomes 7n log(5αn) + 7n log(2d). The total size of the proof is finally
upper bounded by:

256 + n

(
7 log(5αn) + 1792 log

(
2α

1.4

)
+ log(7n) + 7 log(2d) + r log(112β)

)
bits

Where the boxed term only exists in the protocol from Figure 6. Note that this size only has a very slight
dependence on α. In fact the largest summand will be the one corresponding to the zi up to α ∼ 230,
for which the computation requirements of the proof will already be the bottleneck. The complete proof
consists in two iterations of the imperfect proof, one with parameter β and the second with parameter
τ(k)β, the size of the complete proof is thus:

512 + n

(
14 log(5αn) + 3584 log

(
2α

1.4

)
+ 2 log(7n) + 14 log(2d) + r log(τ(k)114β2)

)
bits

And if we consider the average case rather than the worst case we can assume that |S| ≤ 5n logα (which
is very close to the expected value given in Lemma 14) and |C| = 5n. Which gives the expected proof
size:

512 + n

(
10 log(5αn) + 2560 log (2α)

+ 2 log(5n) + 10 log(2d) + r log(τ(k)114β2)

)
bits

We compare in Table 2 our scheme with the one of [CDXY17] for the (Ring)-LWE one-way function with
dimension d = 1024 (so r = 2048), and binary secrets (so β =

√
r). For a fair comparison we consider the

protocol of [CDXY17] in the euclidean norm and with our improvements (only one hash in the first flow
and seeds instead of gj in the third flow). The communication cost per secret and the slack are rather
similar in all three protocols. The main difference being that our protocols allows for amortization over
very few secrets but at a larger computation cost. In Figure 1 we plot the number n of secrets we can
amortize over as a function of logα. It is apparent that increasing logα past a certain threshold yields
very little advantage while drastically increasing the computation cost (which grows linearly in α). It is
also clear that our second protocol gives better amortization than the first one, though this only proves
the knowledge of short pre-images of 2y.

References

Ban93. Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Math-
ematische Annalen, 296:625635, 1993.

21

BCK+14. Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, and Gregory Neven.
Better zero-knowledge proofs for lattice encryption and their application to group signatures. In
ASIACRYPT, pages 551–572, 2014.

BDLN16. Carsten Baum, Ivan Damg̊ard, Kasper Green Larsen, and Michael Nielsen. How to prove knowledge
of small secrets. In CRYPTO, pages 478–498, 2016.

BDPA16. Guido Bertoni, Joan Daemen, Michal Peeters, and Gilles Van Assche1. The keccak sponge function
family, 2016.

BKLP15. Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof Pietrzak. Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In ESORICS, 2015.

CD09. Ronald Cramer and Ivan Damg̊ard. On the amortized complexity of zero-knowledge protocols. In
CRYPTO, pages 177–191, 2009.

CDXY17. Ronald Cramer, Ivan Damg̊ard, Chaoping Xing, and Chen Yuan. Amortized complexity of zero-
knowledge proofs revisited: Achieving linear soundness slack. In EUROCRYPT, 2017. Also available
at http://eprint.iacr.org/2016/681.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In CRYPTO, pages 643–662, 2012.

KTX08. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In ASIACRYPT, pages 372–389, 2008.

LN17. Vadim Lyubashevsky and Gregory Neven. One-shot verifiable encryption from lattices. In EURO-
CRYPT, 2017.

LNSW13. San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In PKC, pages 107–124, 2013.

Lyu08. Vadim Lyubashevsky. Lattice-based identification schemes secure under active attacks. In Public Key
Cryptography, pages 162–179, 2008.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.
In ASIACRYPT, pages 598–616, 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, pages 738–755, 2012.
Ste93. Jacques Stern. A new identification scheme based on syndrome decoding. In CRYPTO, pages 13–21,

1993.

22

	Amortization with Fewer Equations for Proving Knowledge of Small Secrets
	Rafael del Pino, and Vadim Lyubashevsky

