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Abstract—We design a novel, communication-efficient, failure-
robust protocol for secure aggregation of high-dimensional data.
Our protocol allows a server to compute the sum of large, user-
held data vectors from mobile devices in a secure manner (i.e.
without learning each user’s individual contribution), and can be
used, for example, in a federated learning setting, to aggregate
user-provided model updates for a deep neural network. We
prove the security of our protocol in the honest-but-curious and
malicious settings, and show that security is maintained even if
an arbitrarily chosen subset of users drop out at any time. We
evaluate the efficiency of our protocol and show, by complexity
analysis and a concrete implementation, that its runtime and
communication overhead remain low even on large data sets and
client pools. For 16-bit input values, our protocol offers 1.73×
communication expansion for 210 users and 220-dimensional
vectors, and 1.98× expansion for 214 users and 224-dimensional
vectors over sending data in the clear.

I. INTRODUCTION

Machine learned models trained on sensitive real-world data
promise improvements to everything from medical screening
[1] to disease outbreak discovery [2]. And the widespread use
of mobile devices means even richer—and more sensitive—data
is becoming available [3]. However, large-scale collection of
sensitive data entails risks. A particularly high-profile example
of the consequences of mishandling sensitive data occurred
in 1988, when the video rental history of a nominee for the
US Supreme Court was published without his consent [4]. The
law passed in response to that incident remains relevant today,
limiting how online video streaming services can use their user
data [5].

This work outlines an approach to advancing privacy-
preserving machine learning by leveraging secure multiparty
computation (MPC) to compute weighted averages of model
parameter updates from individual users’ devices in a secure
manner. The problem of computing a multiparty weighted
average where no party reveals its update in the clear—even
to the aggregator—is referred to as Secure Aggregation. As
described in Section II, the secure aggregation primitive can
be used to privately combine the outputs of local machine
learning on user devices, in order to update a global model.
Training models in this way offers tangible benefits—a user’s
device can share an update knowing that the service provider
will only see that update after it has been averaged with those
of other users.

While secure aggregation alone may suffice for some
applications, for other applications stronger guarantees may be
needed, as indicated by the failures of ad-hoc anonymization
techniques [6], [7], [8], and by the demonstrated capability to
extract information about individual training data from fully-
trained models (which are essentially aggregates) [9], [10],
[11]. In such cases, secure aggregation composes well with
differential privacy [12]. This is particular advantageous in the
local privacy setting [13], which offers provable guarantees for
the protection of individual training examples [14], [15] even
when the data aggregator is not assumed to be trusted [16], [?].
For example, when computing averages, partial averages over
subgroups of users may be computed and privacy-preserving
noise may be incorporated [17] before revealing the results
to the data aggregator. Under some privatization schemes,
for a fixed total number of users and for secure aggregation
subgroups of size n, the same amount of differential privacy
may be offered to each user while reducing the standard
deviation of the estimated average across all users by a factor
of
√
n relative to providing local differential privacy without

secure aggregation1. Thus, secure aggregation over just 1024-
user subgroups holds the promise of a 32× improvement in
differentially private estimate precision. We anticipate that these
utility gains will be crucial as methods for differentially private
deep learning in the trusted-aggregator setting [14] are adapted
to support untrusted aggregators, though a detailed study of
the integration of differential privacy, secure aggregation, and
deep learning is beyond the scope of the current work.

The secure aggregation problem has been a rich are of
research: different approaches include works based on generic
secure multi-party computation protocols, works based on DC-
nets, works based on partially- or fully-homomorphic threshold
encryption, and works based on pairwise masking. We discuss
these existing works in more detail in Section IV, and compare
them to our approach.

We are particularly focused on the setting of mobile devices,
where communication is extremely expensive, and dropouts are
common. Given these constraints, we would like our protocol
to incur no more than twice as much communication as sending
the data vector to be aggregated in the clear, and woudl also

1See Appendix D for details.



like the protocol to be fully robust to users dropping at any
point. We believe that previous works do not address this
mixture of constraints, which is what motivates our work.

A. Our Results

We present a protocol for securely computing sums of
vectors, which has a constant number of rounds, low commu-
nication overhead, robustness to failures, and which requires
only one server with minimal trust. In our design the server
has two roles: it routes messages between the other parties,
and it computes the final result. We present two variants of
the protocol: one is more efficient and can be proven secure
against honest but curious adversaries, in the plain model.
The other guarantees privacy against malicious adversaries
(including a malicious server), but requires an extra round, and
is proven secure in the random oracle model. In both cases,
we can show formally that the server only learns users’ inputs
in aggregate, using a simulation-based proof as is standard for
MPC protocols. Both variants we present are practical and we
present benchmark results from our prototype implementation.

B. Organization

In Section II we describe the machine learning application
that motivates this work. In Section III, we give a high-level
description of our protocol design. We discuss related work
in Section IV. We present our formal protocol description in
Section V. In Section VI we show security against honest-but-
curious (passive) adversaries in Sections VI. In that section,
we also include a high-level discussion of privacy against
malicious (active) adversaries, and give a full proof of the same
in Appendix C. In Section VII, we give performance numbers
based on a prototype implementation. Finally, we discuss some
issues surrounding practical deployments and future work in
Section VIII. We also provide an Appendix that includes the
aforementioned proof of privacy against active adversaries,
formalizes the cryptographic primitives used throughout the
paper, and provides some technical lemmas.

II. SECURE AGGREGATION FOR FEDERATED LEARNING

Consider training a deep neural network to predict the next
word that a user will type as she composes a text message. Such
models are commonly used to to improve typing efficacy for a
phone’s on-screen keyboard [25]. A modeler may wish to train
such a model on all text messages across a large population
of users. However, text messages frequently contain sensitive
information; users may be reluctant to upload a copy of them
to the modeler’s servers. Instead, we consider training such
a model in a Federated Learning setting, wherein each user
maintains a private database of her text messages securely on
her own mobile device, and a shared global model is trained
under the coordination of a central server based upon highly
processed, minimally scoped, ephemeral updates from users
[26], [10].

A neural network represents a function f(x,Θ) = y
mapping an input x to an output y, where f is parameterized
by a high-dimensional vector Θ ∈ Rm. For modeling text

message composition, x might encode the words entered so
far and y a probability distribution over the next word. A
training example is an observed pair 〈x,y〉 and a training set
is a collection D = {〈xi,yi〉; i = 1, . . . ,m}. A loss is defined
on a training set Lf (D,Θ) = 1

|D|
∑
〈xi,yi〉∈D Lf (xi,yi,Θ),

where Lf (x,y,Θ) = `(y, f(x,Θ)) for a loss function `, e.g.,
`(y, ŷ) = ||y − ŷ||2.

Training a neural net consists of finding parameters Θ that
achieve small Lf (D,Θ), typically by iterating a variant of a
minibatch stochastic gradient descent rule [27], [28]:

Θt+1 ← Θt − η∇Lf (Dt,Θt)

where Θt are the parameters after iteration t, Dt ⊆ D is a
randomly selected subset of the training examples, and η is a
learning rate parameter.

In the Federated Learning setting, each user u ∈ U holds a
private set Du of training examples with D =

⋃
u∈U Du. To

run stochastic gradient descent, for each update we select a
random subset of users U t ⊆ U (in practice we might have
say |U t| = 104 while |U| = 107) and for each user u ∈ U t we
select a random subset of that user’s data Dtu ⊆ Du. We then
form a (virtual) minibatch Dt =

⋃
u∈Ut Dtu. The minibatch

loss gradient ∇Lf (Dt,Θt) can be rewritten as a weighted
average across users:

∇Lf (Dt,Θt) =
1

|Dt|
∑
u∈Ut

δtu

where δtu = |Dtu|∇Lf (Dtu,Θt). A user can thus share just
〈|Dtu|, δtu〉 with the server, from which a gradient descent step:

Θt+1 ← Θt − η
∑
u∈Ut δ

t
u∑

u∈Ut |Dtu|

may be taken.
Although each update 〈|Dtu|, δtu〉 is ephemeral and contains

no more (and typically significantly less) information then the
raw Dtu, a user might still wonder what information remains.
There is evidence that a trained neural network’s parameters
sometimes allow reconstruction of training examples [9], [10],
[11], [14]; might the parameter updates be subject to similar
attacks? For example, if the input x is a one-hot vocabulary-
length vector encoding the most recently typed word, common
neural network architectures will contain at least one parameter
θw in Θ for each word w such that ∂Lf∂θw

is non-zero only when
x encodes w. Thus, the set of recently typed words in Dtu would
be revealed by inspecting the non-zero entries of δtu. However,
the server does not need to access any individual user’s update
in order to perform stochastic gradient descent; it requires
only the sums

∑
u∈Ut |Dtu| and

∑
u∈Ut δ

t
u. Using a Secure

Aggregation protocol to compute these sums would ensure that
the server learns only that one or more users in U t wrote the
word w, but not which users.

Federated Learning systems face several practical challenges.
Mobile devices have only sporadic access to power and network
connectivity, so the set U t participating in each update step is
unpredictable and the system must be robust to users dropping
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Fig. 1. Left: In the cloud-centric approach to machine intelligence, user devices interact with cloud-hosted models generating logs that can be used as potential
training examples; the logs from many users are combined and used to improve the model, which is then used to serve future requests from users. Middle: In
Federated Learning, machine intelligence models are shipped to users’ devices where they are evaluated locally. Potential training examples are written to local
storage and used to improve the model on the basis of local data. Summaries of improved models are shared with the server, where they are aggregated into a
new model which is then deployed to user devices to power future interactions. In practice, it is necessary to perform many iterations of Federated Learning in
sequence in order for training to converge to an optimal model; each of these iterations will be short-lived and involve a different randomly selected subset of
participating user devices. Right: When Secure Aggregation is added to Federated Learning, the aggregation of model updates is logically performed by the
virtual, incorruptible third party induced by the secure multiparty communication protocol. Otherwise the protocol remains the same. The cloud provider learns
only the aggregated model update.

out. Because Θ may contain millions of parameters, updates
δtu may be large, representing a direct cost to users on metered
network plans. Mobile devices also generally cannot establish
direct communications channels with other mobile devices
(relying on a server or service provider to mediate such
communication) nor can they natively authenticate other mobile
devices.

Thus, Federated Learning motivates a need for a Secure
Aggregation protocol that:

1) operates on high-dimensional vectors,
2) is highly communication efficient, even with a novel set

of users on each instantiation,
3) is robust to users dropping out, and
4) provides the strongest possible security under the con-

straints of a server-mediated, unauthenticated network
model.

III. TECHNICAL INTUITION

In this section, we will give the technical intuition for the
design of our protocol, in keeping with the contraints of the
application described in Section II. We note that our protocol
is quite similar the work of Ács and Castelluccia [15], and we
give a detailed comparison between our approaches in Section
IV.

We divide the parties into two classes: a single server S that
aggregates inputs from n client parties U . Each user2 u ∈ U
holds a private vector xu of dimension m; for simplicity we
assume the elements are in ZR. The goal of the protocol is
to compute

∑
u∈U xu in a secure fashion: at a high level, we

guarantee the server only learns a sum of the clients’ inputs
containing contributions from at least a large fraction of the
users and that users learn nothing.

1) Masking with One-Time Pads: The first observation is
that

∑
u∈U xu can be computed with perfect secrecy if xu is

masked in a particular way. Suppose each pair of users (u, v)
agree on some random vector su,v . If u adds this to xu and v
subtracts it from xv , then the mask will be canceled when their

2We use the terms user and client interchangeably.

vectors are added, but their actual inputs will not be revealed.
In other words, each user u computes:

yu = xu +
∑

v∈U :u<v

su,v −
∑

v∈U :u>v

sv,u (mod R)

and sends yu to the server, and the server computes:

z =
∑
u∈U

yu

=
∑
u∈U

(
xu +

∑
v∈U :u<v

su,v −
∑

v∈U :u>v

sv,u

)
=
∑
u∈U

xu (mod R)

There are two shortcomings to this approach. The first is that
the users must exchange the random vectors su,v, which, if
done naively, would require quadratic communication overhead
(|U| × |x|). The second is that there is no tolerance for a party
failing to complete the protocol: if a user u drops out after
exchanging vectors with other users, but before submitting yu
to the server, the vector masks associated with u would not
be canceled in the sum z.

2) Efficient Communication and Handling Dropped Users:
We notice that we can reduce the communication complexity by
having the parties agree on common seeds for a pseudorandom
generator (PRG) rather than on the entire mask sv,u. These
shared seeds will be computed by having the parties exchange
Diffie-Hellman public keys and engaging in a key agreement.

One approach to handling dropped-out users would be to
notify the surviving users of the drop-out, and to have them
each reply with the common seed they computed with the
dropped user. This approach still has a problem: additional
users may drop out in the recovery phase before replying with
the seeds, which would thus require an additional recovery
phase for the newly dropped users’ seeds to be reported, and
so on, leading the number of rounds up to at most the number
of users.



We resolve this problem by using a threshold secret sharing
scheme and having each user send shares of their Diffie-
Hellman secret to all other users. This allows pairwise seeds
to be recovered even if additional parties drop out during the
recovery, as long as some minimum number of parties (equal
to the threshold) remain alive and respond with the shares of
the dropped users’ keys.

This approach solves the problem of unbounded recovery
rounds, but still has an issue: there is a possibility that a user’s
data might accidentally be leaked to the server. Consider a
scenario where a user u is too slow in sending its yu to the
server. The server assumes that the user has dropped, and asks
all other users to reveal their shares of u’s secret key, in order
to remove u’s uncancelled masks from z. However, just after
receiving these shares and computing each of the su,v values,
the server may receive the delayed yu from u. The server is
now able to remove all the masks from yu, and learn xu in
the clear, breaking security for u. Moreover, a malicious server
can similarly learn xu simply by lying about whether user u
has dropped out.

3) Double-Masking to Protect Security: To resolve this new
security problem, we introduce a double-masking structure that
protects xu even when the server can reconstruct u’s masks.

First, each user u samples an additional random value bu
during the same round as the generation of the su,v values.
During the secret sharing round, the user also generates and
distributes shares of bu to each of the other users. When
generating yu, users also add this secondary mask:

yu = xu + bu +
∑

v∈U :u<v

su,v −
∑

v∈U :u>v

sv,u (mod R)

During the recovery round, the server must make an explicit
choice with respect to each user u: from each surviving member
v, the server can request either a share of the common secret
su,v associated with u or a share of the bu for u; an honest
user v will never reveal both kinds of shares for the same
user. After gathering at least t shares of su,v for all dropped
users and t shares of bu for all surviving users, the server can
subtract off the remaining masks to reveal the sum.

4) Putting it all Together: We summarize our protocol in
Figure 2 and its asymptotic costs in Figure 3. The computational
cost is quadratic for the users, and cubic for the server. As
the size of the data vector gets large, the communication and
storage overhead for each of the clients and the server using
our protocol approaches a multiplicative constant over sending
the data in the clear.

IV. RELATED WORK

In this section, we review the many existing works in the
field and briefly dicuss how they compare to our work.

As noted in Section II, we emphasize that our focus
is on mobile devices, where bandwidth is expensive, and
dropouts are common. Consequently, our main goal is to

3We reconstruct n secrets from aligned (t, n)-Shamir shares in O(t2 +nt)
by caching Lagrange coefficients; see section VII-B for details.

minimize communication while guaranteeing robustness to
dropouts. Computational cost is an important, but secondary,
concern. These constraints will motivate our discussion of, and
comparison with, existing works.

A. Works based on Generic Secure Multiparty Computation:

As noted in Section I, there is a long line of work showing
how multiple parties can securely compute any function using
generic secure MPC [18], [19], [20], [21], [22]. These works
generally fall into two categories: those based on Yao’s garbled
circuits, and those based on homomorphic secret sharing. The
protocols based on Yao’s garbled circuits are better suited to
2- or 3-party secure computation, and do not extend easily to
hundreds of users.

The MPC protocols based on secret sharing, however, easily
extend to hundreds of users. In addition, these protocols have
become relatively computationally efficient, and can be made
easily robust against dropouts. Some works, notably [29],
optimize these generic techniques for the specific task of secure
summation, and have publicly available implementations.

However, the key weakness of the secret-sharing based
generic MPC approach is communication cost. In all such
protocols, each user broadcasts a secret-share of its entire
data vector to some subset of the other users. To guarantee
robustness, this subset of users must be relatively large:
robustness is essentially proportional to the size of the subset.
Additionally, each secret share is as long the size of the entire
data vector.

This approach thus becomes prohibitively expensive in our
setting, where dropouts are common and data vectors are very
large. We defer a detailed cost comparison to an upcoming
version of this paper.

B. Works based on Dining Cryptographers Networks:

Dining cryptographers networks, or DC-nets, are a type of
communication network which provide anonymity by using
pairwise blinding of inputs [30], [31], similarly to our secure
aggregation protocol. The basic version of DC-nets, in which a
single participant at a time sends an anonymous message, can
be viewed as the restricted case of secure aggregation in which
all users except for one have an input of 0. Recent research has
examined increasing the efficiency of DC-nets protocols and
allowing them to operate in the presence of malicious users [?].
But previous DC-nets constructions share the flaw that, if even
one user aborts the protocol before sending its message, the
protocol must be restarted from scratch, which can be very
expensive [32].

C. Works based on Pairwise Additive Masking:

Pairwise blinding using additive stream ciphers has been
explored in previous work [15], [17], [33], [34], and deal with
dropouts/ failures in different ways.

[33], [34] rely on multiple non-colluding servers to provide
robustness to client failures, but these schemes still abort in
the case of a single server failure.

The work of Ács and Castelluccia [15], and the modification
suggested by [17], are the most closely related to our scheme,
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Fig. 2. High-level view of our protocol. Red parts are required to guarantee
security in the fully malicious model (and not necessary in the honest but curious
one).

computation
User O(n2 +mn)
Server3 O(mn2)
communication
User O(n+m)
Server O(n2 +mn)
storage
User O(n+m)
Server O(n2 +m)

Fig. 3. Cost summary for the protocol.

and have an explicit recovery round to deal with failures. Their
protocols operate very similarly to ours: pairs of clients use
Diffie-Hellman key exchange to agree on pairwise masks, and
send the server their data vectors, summed with each of their
pairwise masks and also a “self-mask”. In the recovery step, the
server tells all un-dropped clients which other clients dropped
out, and each un-dropped client responds with the sum of their
(uncancelled) pairwise masks with the dropped users, added to
their “self-mask”. The server subtracts these "recovery" values
from the masked vectors received earlier, and correctly learns
the sum of the undropped users’ data.

However, their recovery phase is brittle: if additional users
drop out during the recovery phase, the protocol cannot
continue. Simply repeating the recovery round is not sufficient,
since this has the potential to leak the “self-masks” of the
surviving users, which in turn can leak their data vectors.
Furthermore, the recovery round takes a significant portion of
the protocol running time. This is because the clients send the
sum of expanded masks, which are as long as the plaintext
data vector. This means that almost half of the communication
of the entire protocol occurs during the recovery round. In
the volatile setting of mobile devices that can lose power or
network, this leads to a significant risk of dropouts during that
phase.

Adding a more robust recovery phase is essential for
the mobile setting, and we view this as one of our key
improvements over their works.

D. Schemes based on (Threshold) Homomorphic Encryption

Schemes based on threshold additively-homomorphic cryp-
tosystems (e.g. the Paillier cryptosystem [35]) can handle
client dropouts, but are either computationally expensive, or
require additional trust assumptions. For example, Paillier-
based schemes require an expensive-to-generate set of threshold
decryption keys, that must either be generated and distributed

by a trusted third party who then has the ability to break the
entire security of the protocol, or be obliviously generated
collaboratively by the parties in the protocol, which is very
expensive.

The difficulty with threshold key-generation likewise affects
schemes based on Fully Homomorphic Encryption.

Halevi, Lindell and Pinkas [36] present a protocol that uses
homomorphic encryption to securely compute the sum in just
one round of interaction between the server and each of the
clients (assuming a PKI is already in place). Their protocol
has the substantial advantage that all parties do not need to be
online simultaneously for the protocol to execute. However, the
protocol also requires the communication rounds to be carried
out sequentially (i.e. messages cannot be sent in parallel, as
the server needs to wait for each client’s response before he
can send the next message to the following client). More
importantly for our setting, their protocol does not deal with
clients dropping out: all clients included in the protocol must
respond before the server can learn the decrypted sum.

V. A PRACTICAL SECURE AGGREGATION PROTOCOL

The protocol is run (in a synchronous network) between
a server and a set of n users, and consists of four rounds.
Each user u holds as input a vector xu (of equal length m)
consisting of elements from ZR for some R. The server has
no input, but can communicate with the users through secure
(private and authenticated) channels. At any point, users can
drop out of the protocol (in which case they stop sending
messages completely), and the server will be able to produce
a correct output as long as t of them survive until the last
round. To simplify the notation we assume that each user u is
assigned a unique “logical identity” (also denoted with u) in
the form of an integer between 1 and n, so that no two honest



users share the same index4.
A complete description is provided in Figure 4. We assume

the following cryptographic primitives (detailed descriptions
can be found in the appendix):
• Threshold Secret Sharing: (SS.share,SS.reconstruct)
• Key Agreement: (KA.paramGen,KA.gen,KA.agree)
• Authenticated Encryption: (AE.enc,AE.dec)
• Pseudorandom Generator: (PRG)
• Signature Scheme: (SIG.gen,SIG.sign,SIG.verify)

We stress that, in Figure 4, when we say that the server
“collects messages from at least t users”, we mean that the
server receives the messages from all users that have not
dropped out/aborted in that round (recall that we prove our
results in the synchronous setting), and aborts if the number of
messages received is less than t. In a practical implementation,
the server would wait until a specified timeout (considering all
users who did not respond in time to have dropped out), and
abort itself if not enough messages are received before such
timeout.

To prove security in the malicious model, we also assume the
existence of a Public Key Infrastructure, which for simplicity
we abstract away by assuming all clients receive as input (from
a trusted third party) public signing keys for all other clients.

Overall, the protocol is parameterized over a security
parameter k, which can be adjusted to bound the success
probability of any attacker. In all theorems, we implicitly
assume that the number of clients n is polynomially bounded
in the security parameter. Moreover, some of the primitives
also require additional global parameters.

We note that Figure 4 presents both variants of the protocol:
in the honest but curious case, since all parties are following
the protocol honestly, we can avoid the use of signatures and
the need for a PKI (which, most notably, allows us to avoid
the ConsistencyCheck round entirely).

VI. SECURITY ANALYSIS

In our security arguments, we will make use of an important
technical lemma (Lemma 1, presented in the Appendix). It
says that if users’ values have uniformly random pairwise
masks added to them, then the resulting values look uniformly
random, conditioned on their sum being equal to the sum of
the users’ values. In other words, the pairwise masks hide
all information about users’ individual inputs, except for their
sum.

A. Honest but Curious Security

Here, we argue that our protocol is a secure multiparty
computation in the honest but curious setting, regardless of
how and when parties abort. In particular, we prove that when
executing the protocol with threshold t, the joint view of the
server and any set of less than t (honest) users does not leak
any information about the other users’ inputs, besides what
can be inferred from the output of the computation. Before
formally stating our result, we introduce some notation.

4These identities will be bound to the users’ keys by a PKI. We rely on
this in the malicious setting.

We will consider executions of our secure aggregation
protocol where the underlying cryptographic primitives are
instantiated with security parameter k, a server S interacts with
a set U of n users (denoted with logical identities 1, . . . , n)
and the threshold is set to t. In such executions, users might
abort at any point during the execution, and we denote with
U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ U4 ⊇ U5 subsets of the users that
correctly sent their message to the server at round i− 1. For
example, users in U2 \ U3 are exactly those that abort before
sending the message to the server in Round 2, but after sending
the message of Round 1. If Round ConsistencyCheck has been
omitted, define U4 := U3.

Denote the input of each user u with xu, and with xU ′ =
{xu}u∈U ′ the inputs of all users in U ′.

In such a protocol execution, the view of a party consists of
its internal state (including its input and randomness) and all
messages this party received from other parties (the messages
sent by this party do not need to be part of the view because
they can be determined using the other elements of its view).
Moreover, if the party aborts, it stops receiving messages and
the view is not extended past the last message received.

Given any subset C ⊆ U ∪ {S} of the parties, let
REAL

U,t,k
C (xU ,U1,U2,U3,U4,U5) be a random variable rep-

resenting the combined views of all parties in C in the above
protocol execution, where the randomness is over the internal
randomness of all parties, and the randomness in the setup
phase.

Our first theorem shows that the joint view of any subset
of honest users (excluding the server) can be simulated given
only the knowledge of the inputs of those users. Intuitively,
this means that those users learn “nothing more” than their
own inputs.

Theorem 1 (Honest But Curious Security, against clients only).
There exists a PPT simulator SIM such that for all k, t,U
with t ≤ |U|,xU ,U1,U2,U3,U4,U5 and C such that C ⊆ U ,
U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ U4 ⊇ U5, the output of SIM is perfectly
indistinguishable from the output of REALU,t,kC :

REAL
U,t,k
C (xU ,U1,U2,U3,U4,U5)

≡
SIM
U,t,k
C (xC ,U1,U2,U3,U4,U5)

Proof. Note that, since the view of the server is omitted,
the joint view of the parties in C does not depend (in an
information theoretic sense) on the inputs of the parties
not in C. The simulator can therefore produce a perfect
simulation by running the honest but curious users on their
true inputs, and all other users on a dummy input (for
example, a vector of 0s), and outputting the simulated view
of the users in C. In more detail, the only value sent by the
honest parties which depend on their input is yu (sent to the
server in round MaskedInputCollection). One can easily note
that the response sent by the server to the users in round
MaskedInputCollection just contains a list of user identities
which depends on which users responded on the previous round,
but not on the specific yu values of the responses. This means



Secure Aggregation Protocol
• Setup:

– All parties are given the security parameter k, the number of users n and a threshold value t, honestly generated pp← KA.gen(k),
parameters m and R such that Zm

R is the space from which inputs are sampled, and a field F to be used for secret sharing. All
users also have a private authenticated channel with the server.

– All users u receive their signing key dSK
u from the trusted third party, together with verification keys dPK

v bound to each user
identity v.

• Round 0 (AdvertiseKeys):
User u:

– Generate key pairs (cPK
u , cSK

u )← KA.gen(pp), (sPK
u , sSK

u )← KA.gen(pp), and generate σu ← SIG.sign(dSK
u , cPK

u ||sPK
u ).

– Send (cPK
u ||sPK

u ||σu) to the server (through the private authenticated channel) and move to next round.
Server:

– Collect at least t messages from individual users in the previous round (denote with U1 this set of users). Otherwise, abort.
– Broadcast to all users in U1 the list {(v, cPK

v , sPK
v , σv)}v∈U1 and move to next round.

• Round 1 (ShareKeys):
User u:

– Receive the list {(v, cPK
v , sPK

v , σv)}v∈U1 broadcasted by the server. Assert that |U1| ≥ t, that all the public key pairs are different,
and that ∀v ∈ U1, SIG.verify(dPK

v , cPK
v ||sPK

v , σu) = 1.
– Sample a random element bu ← F (to be used as a seed for a PRG).
– Generate t-out-of-|U1| shares of sSK

u : {(v, sSK
u,v )}v∈U1 ← SS.share(sSK

u , t,U1)
– Generate t-out-of-|U1| shares of bu: {(v, bu,v)}v∈U1 ← SS.share(bu, t,U1)
– For each other user v ∈ U1 \ {u}, compute eu,v ← AE.enc(KA.agree(cSK

u , cPK
v ), u||v||sSK

u,v ||bu,v)
– If any of the above operations (assertion, signature verification, key agreement, encryption) fails, abort.
– Send all the ciphertexts eu,v to the server (each implicitly containing addressing information u, v as metadata).
– Store all messages received and values generated in this round, and move to the next round.

Server:
– Collect lists of ciphertexts from at least t users (denote with U2 ⊆ U1 this set of users).
– Sends to each user u ∈ U2 all ciphertexts encrypted for it: {eu,v}v∈U2 and move to the next round.

• Round 2 (MaskedInputCollection):
User u:

– Receive (and store) from the server the list of ciphertexts {eu,v}v∈U2 (and infer the set U2). If the list is of size < t, abort.
– For each other user v ∈ U2 \ {u}, compute su,v ← KA.agree(sSK

u , sPK
v ) and expand this value using a PRG into a random

vector pu,v = ∆u,v ·PRG(su,v), where ∆u,v = 1 when u > v, and ∆u,v = −1 when u < v (note that pu,v +pv,u = 0 ∀u 6= v).
Additionally, define pu,u = 0.

– Compute the user’s own private perturbation vector pu = PRG(bu). Then, Compute the masked input vector

yu ← xu + pu +
∑
v∈U2

pu,v (mod R)

– If any of the above operations (key agreement, PRG) fails, abort. Otherwise, Send yu to the server and move to the next round.
Server:

– Collect yu from at least t users (denote with U3 ⊆ U2 this set of users). Send to each user in U3 the list U3.
• Round 3 (ConsistencyCheck):

User u:
– Receive from the server a list U3 ⊆ U2 consisting of at least t users (including itself). If U3 is smaller than t, abort.
– Send to the server σ′u ← SIG.sign(dSK

u ,U3).
Server:

– Collect σ′u from at least t users (denote with U4 ⊆ U3 this set of users). Send to each user in U4 the set {v, σ′v}v∈U4 .
• Round 4 (Unmasking):

User u:
– Receive from the server a list {v, σ′v}v∈U4 . Verify that U4 ⊆ U3, that |U4| ≥ t and that SIG.verify(dPK ,U3, σ′v) = 1 for all
v ∈ U4 (otherwise abort).

– For each other user v in U2 \ {u}, decrypt the ciphertext v′||u′||sSK
v,u ||bv,u ← AE.dec(KA.agree(cSK

u , cPK
v ), ev,u) received in the

MaskedInputCollection round and assert that u = u′ ∧ v = v′.
– If any of the decryption operations fail (in particular, the ciphertext does not correctly authenticate), abort.
– Send a list of shares to the server, which consists of sSK

v,u for users v ∈ U2 \ U3 and bv,u for users in v ∈ U3.
Server (generating the output):

– Collect responses from at least t users (denote with U5 this set of users).
– For each user in u ∈ U2 \U3, reconstruct sSK

u ← SS.reconstruct({sSK
u,v }v∈U5 , t) and use it (together with the public keys received

in the AdvertiseKeys round) to recompute pv,u for all v ∈ U3 using the PRG.
– For each user u ∈ U3, reconstruct bu ← SS.reconstruct({bu,v}v∈U5 , t) and then recompute pu using the PRG.
– Compute and output z =

∑
u∈U3 xu as∑

u∈U3

xu =
∑
u∈U3

yu −
∑
u∈U3

pu +
∑

u∈U3,v∈U2\U3

pv,u

Fig. 4. Detailed description of the Secure Aggregation protocol. Red parts are required to guarantee security in the fully malicious model (and not necessary
in the honest but curious one).



that the simulator can use dummy values for the inputs of all
honest parties not in C, and the joint view of users in C will
be identical to that in REALU,t,k.

In our next theorem, we consider security against an honest-
but-curious server, who can additionally combine knowledge
with some honest-but-curious clients. We show that any such a
group of honest-but-curious parties can be simulated given the
inputs of the clients in that group, and only the sum of the values
of the remaining clients. Intuitively, this means that those clients
and the server learn “nothing more” than their own inputs, and
the sum of the inputs of the other clients. Additionally, if too
many clients abort before Round Unmasking, then we show
that we can simulate the view of the honest-but-curious parties
given no information about the remaining clients’ values. Thus,
in this case, the honest-but-curious parties learn nothing about
the remaining clients’ values.

Importantly, the view to be simulated must contain fewer
than t honest-but-curious clients, or else we cannot guarantee
security.

Theorem 2 (Honest But Curious Security, with curious
server). There exists a PPT simulator SIM such that for
all t,U ,xU ,U1,U2,U3,U4, and C such that C ⊆ U ∪ {S},
|C \ {S}| < t, U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ U4 ⊇ U5, the output of
SIM is computationally indistinguishable from the output of
REAL

U,t,k
C :

REAL
U,t,k
C (xU ,U1,U2,U3,U4,U5)

≈cSIMU,t,kC (xC , z,U1,U2,U3,U4,U5)

where

z =

{∑
u∈U3\C xu if |U3| ≥ t

⊥ otherwise.

Proof. We prove the theorem by a standard hybrid argu-
ment. We will define a simulator SIM through a series of
(polynomially many) subsequent modifications to the random
variable REAL, so that any two subsequent random variables
are computationally indistinguishable.

Hyb0 This random variable is distributed exactly as REAL,
the joint view of the parties C in a real execution of
the protocol.

Hyb1 In this hybrid, we change the behavior of simulated
honest parties in the set U2 \ C, so that instead of
using KA.agree(cSKu , cPKv ) to encrypt and decrypt
messages to other users v in the same set, they use a
uniformly random encryption key cu,v chosen by the
simulator. The Decisional Diffie-Hellman assumption
(as recalled in Definition 1) guarantees that this hybrid
is indistinguishable from the previous one.

Hyb2 In this hybrid, we substitute all ciphertexts encrypted
by honest parties in the set U2 \ C and sent to other
honest parties with encryptions of 0 (padded to the
appropriate length) instead of shares of sSKu and
bu. However, the honest clients in that set continue
to respond with the correct shares of sSKu and bu

in Round Unmasking. Since only the contents of
the ciphertexts have changed, IND-CPA security of
the encryption scheme guarantees that this hybrid is
indistinguishable from the previous one.

Hyb3 Define:

U∗ =

{
U2 \ C if z = ⊥
U2 \ U3 \ C otherwise.

This hybrid is distributed exactly as the previous one,
but here we substitute all shares of bu generated by
parties u ∈ U∗ and given to the corrupted parties in
Round ShareKeys with shares of 0 (using a different
sharing of 0 for every u ∈ U∗). Note that, in this
hybrid and the previous one, the adversary does not
receive any additional shares of bu for users u in
the set U∗ in Round Unmasking, either because the
honest clients do not shares of bu for such u, or
because all honest clients abort (when |U3| < t, which
happens exactly when z = ⊥). Thus, MC’s joint
view contains only |C| < t shares of each bu. The
properties of Shamir’s secret sharing thus guarantee
that the distribution of any |C| shares of 0 is identical
to the distribution of an equivalent number of shares
of any given secret bu, making this hybrid identically
distributed to the previous one.

Hyb4 In this hybrid, for all parties u ∈ U∗, instead
of computing pu ← PRG(bu), we set it to be a
uniformly random vector (of the appropriate size).
Note that, in the previous hybrid, since bu is chosen
uniformly at random and its shares given to the
adversary are substituted with shares of 0, the output
of the random variable does not depend on the
seed of the PRG except through the PRG’s output.
Therefore, the only change in this hybrid boils down
to substituting the output of a PRG (on a randomly
generated seed otherwise independent from the joint
view of parties in C) with a uniformly random value.
Therefore, leveraging the security of the PRG, we
can argue that this hybrid is indistinguishable from
the previous one.

Hyb5 For all parties u ∈ U∗, in Round MaskedInputCol-
lection, instead of sending:

yu ← xu + pu +
∑
v∈U2

pu,v

we send:
yu ← pu +

∑
v∈U2

pu,v

Since pu was changed in the previous hybrid to
be uniformly random and independent of any other
values, xu + pu is also uniformly random, and so
this hybrid and the previous hybrid are identically
distributed. Further, this hybrid and all subsequent
hybrids do not depend on the values xu for u ∈ U∗.
Note: If z = ⊥, then we can ignore the further
hybrids, and let SIM be as described in Hyb5, since



SIM can already simulate REAL without knowing xu
for any u /∈ C. Therefore in the following hybrids we
assume z 6= ⊥.

Hyb6 This random variable is distributed exactly as the
previous one, but here we substitute all shares of
sSKu generated by parties u ∈ U3 \C and given to the
corrupted parties in Round ShareKeys with shares of
0 (using a different sharing of 0 for every u ∈ U3 \C).
Following an analogous argument to that for Hyb3,
the properties of Shamir’s secret sharing guarantee
that this hybrid identically distributed to the previous
one.

Hyb7 We fix a specific user u′ ∈ U3 \ C. For this user, and
each other user u ∈ U3 \ C, in order to compute the
value yu sent to the server, we substitute the joint
noise key (which would be computed by u′ and u
as su′,u = su,u′ ← KA.agree(sSKu′ , sPKu )) with a
uniformly random value (which will used by both
parties as a PRG seed).
In more detail, for each user u ∈ U3\C\{u′}, a value
s′u′,u is sampled uniformly at random and, instead of
sending

yu ← xu + pu +
∑
v∈U2

pu,v

SIM sends

y′u ← xu+pu+
∑

v∈U2\{u′}

pu,v+∆u,u′ ·PRG(s′u′,u)

and accordingly

y′u′ ← xu′ + pu′ +
∑
v∈U2

∆u′,v · PRG(s′u′,v)

It is easy to see that the Decisional Diffie-Hellman
Assumption (Definition 1) guarantees that this hybrid
is indistinguishable from the previous one5.

Hyb8 In this hybrid, for the same party u′ chosen in the
previous hybrid and all other parties v ∈ U3 \ C,
instead of computing pu′,v ← ∆u′,v · PRG(s′u′,v),
we compute it using fresh randomness ru′,v (of the
appropriate size) as pu′,v ← ∆u′,v · ru′,v .
Note that, in the previous hybrid, since s′u′,v is
chosen uniformly at random (and independently from
the Diffie-Hellman keys), the output of the random
variable does not depend on the seed of the PRG
except through the PRG’s output. Therefore, the only
change in this hybrid boils down to substituting the
output of a PRG (on an randomly generated seed
otherwise independent from the joint view of parties
in C) with a uniformly random value. Therefore,
leveraging the security of the PRG, we can argue
that this hybrid is indistinguishable from the previous
one.

5It is important to note here that, in the previous hybrids, we removed all
shares of sSK

u for u ∈ U3 \ C from the joint view of parties in C. Without
doing so, we could not reduce to the security of DH Key Agreement.

Hyb9 In this hybrid, for all users u ∈ U3 \ C, in round
MaskedInputCollection instead of sending:

yu ← xu + pu +
∑
v∈U2

pu,v

= xu + pu +
∑

v∈U3\C

pu,v +
∑

v∈U2\U3\C

pu,v

we send:

yu ← wu + pu +
∑

v∈U2\U3\C

pu,v

Where {wu}u∈U3\C are uniformly random, subject
to
∑
U3\C wu =

∑
U3\C xu = z. Invoking Lemma 1

with n = |U3 \ C|, we have that this hybrid is identi-
cally distributed to the previous one. Moreover, note
that to sample from the random variable described
by this hybrid, knowledge of the individual xu for
u ∈ U3\C is not needed, and their sum z is sufficient.

We can thus define a PPT simulator SIM that samples from the
distribution described in the last hybrid. The argument above
proves that the output of the simulator is computationally
indistinguishable from the output of REAL, completing the
proof.

B. Privacy against Active Adversaries

In this section, we discuss our argument showing privacy
against active adversaries (detailed proofs are available in
Appendix C).

By active, or malicious, adversaries, we mean parties (clients
or the server) that deviate from the protocol, sending incorrect
and/or arbitrarily chosen messages to honest users, aborting,
omitting messages, and sharing their entire view of the protocol
with each other, and also with the server (if the server is also
malicious).

In Appendix C, we show that even when the server and
a subset of users act maliciously, colluding and deviating
arbitrarily from the protocol, that privacy for the remaining
honest users is preserved. That is, no party learns anything
more than the sum of the inputs of a single subset of honest
users of large size.

We note that we only show input privacy for honest users:
it is much harder to additionally guarantee correctness and
availability for the protocol when some users are malicious.
Malicious users can distort the output of the protocol by
setting their input values xu to be uniformly random, by
sending inconsistent Shamir shares to other users in Round
ShareKeys, or by reporting incorrect shares to the server in
Round Unmasking. Making such deviations efficient to detect
and possibly recover from is left to future work.

We note some key differences between the argument for
honest-but-curious security, and the argument for privacy
against active adversaries.

The first key difference is that, for the proof against
malicious adversaries, we assume that there exists a public-key
infrastructure (PKI), which guarantees to users that messages



they receive came from other users (and not the server). Without
this assumption, the server can perform a Sybil attack on the
users in Round ShareKeys, by simulating for a specific user
u all other users v in the protocol and thus receiving all
u’s key shares and recovering that users’ input. Alternatively,
as mentioned in section V, we can require the server to act
honestly in its first message (in Round ShareKeys). Specifically,
the server must honestly forward the Diffie-Hellman public keys
it receives to all other users, allowing them to set up pairwise
private and authenticated channels amongst themselves.

However, if we assume a PKI, then we observe that the
server’s power in the remainder of the protocol is reduced
to lying to users about which other users have dropped out:
since all user-to-user messages (sent in round ShareKeys) are
authenticated through an authenticated encryption scheme, the
server cannot add, modify or substitute messages, but rather,
can only fail to deliver them. Note, importantly, that the server
can try to give a different view to each user of which other
users have dropped out of the protocol. In the worst case, this
could allow the server to learn a different set of shares from
each user in Round Unmasking, allowing it to potentially
reconstruct more secrets than it should be allowed to. The
ConsistencyCheck round is included in the protocol to deal
with this issue. The inclusion of the ConsistencyCheck round
is the second key difference with the honest-but-curious proof.

The final key difference is that we need the proof to be
in the random oracle (RO) model. To see why, notice that
honestly acting users essentially “commited” to their secrets
and input by the end of the MaskedInputCollection round.
However, the server can adaptively choose which users drop
after the MaskedInputCollection round. This causes problems
for a simulation proof, because the simulator doesn’t know
honest users’ real inputs, and must use dummy information in
the earlier rounds, thus “committing” itself to wrong values
that are potentially easily detectable. The random oracle adds
a trapdoor for the simulator to equivocate, so that even if it
commits to dummy values in early rounds, it can reprogram
the random oracle to make the dummy values indistinguishable
from honest users’ values. More details can be seen in the
proof of Theorem 4 in Appendix C.

C. Interpretation of Results

We summarize our system for the different security models
we consider in Figure 5.

Threat model Minimum
threshold

Minimum in-
puts in sum

Client-only adversary 1 t
Server-only adversary bn2 c+ 1 t
Clients-Server collu-
sion

b 2n
3 c+ 1 t− nC

Fig. 5. Parameterization for different threat models. “Minimum threshold”
denotes the minimum value of t required for security in the given threat model.
“Minimum inputs in the sum” denotes a lower bound on the number of users’
values that are included in the sum learned by the server.

1) Security against only clients: In each of Theorems 1 and
3, we see that the joint view of any subset of clients, honest
or malicious, can be simulated given no information about the
values of the remaining clients. This means, no matter how we
set our t parameter, clients on their own learn nothing about
other clients.

2) Security against only the server: From Theorems 2 and
4, we see that if we set nC = 0, that is, there are no clients who
cheat or collaborate with the server, then setting t ≥ bn2 c+ 1
guarantees that the sum learned by the server contains the
values of at least t > n

2 clients, and the protocol can deal with
up to dn2 e − 1 dropouts.

3) Security against a server colluding with clients: From
Theorems 2 and 4, we see that we can allow a server (honest
or malicious) to collaborate with up to nC = dn3 e − 1 users
(honest or malicious), if we set t ≥ b 2n

3 c+ 1, at the same time
guaranteeing that the sum learned by the server contains the
values of at least n3 clients. Additionally, the protocol is robust
to up to dn3 e − 1 users dropping out.

For all the results above, if we reiterate that if we want
security against malicious servers (whether or not they collab-
orate with clients), we must use include the protocol features
highlighted in Figure 4.

VII. EVALUATION

We summarize the protocol’s performance in Table 3. All
calculations below assume a single server and n users, where
each user holds a data vector of size m. We evaluate the honest-
but-curious version of the protocol, and ignore the cost of the
PKI, all signatures, and Round ConsistencyCheck. We note
that including their cost does not change any of the asymptotics,
and only slightly increases the computation and communication
costs.

A. Performance Analysis of Client

Computation cost: O(n2+mn). Each user u’s computation
cost can be broken up as (1) Performing the 2n key agreements,
which take O(n) time, (2) Creating t-out-of-n Shamir secret
shares of sSKu and bu, which is O(n2) and (3) Generating
values pu and pu,v for every other user v for each entry in
the input vector by stretching one PRG seed each, which
takes O(mn) time in total. Overall, each user’s computation
is O(n2 +mn).

Communication cost: O(n+m). The communication costs
of each user can be broken up into 4 parts: (1) Exchanging
keys with each other user by sending 2 and receiving 2(n− 1)
public keys, (2) Sending 2(n − 1) and receiving 2(n − 1)
encrypted secret shares, (3) Sending a perturbed data vector
of size mdlog2Re to the server, and (4) Sending the server n
secret shares, for an overall communication cost of 2naK +
(5n − 4)aS + mdlog2Re, where aK and aS are the number
of bits in a key exchange public key and the number of bits in
a secret share, respectively. Overall, the user’s communication
complexity is O(n+m). Assuming inputs for each user are
on the same range [0, RU − 1], we require R = n(RU − 1) + 1
to avoid overflow. A user could transmit its raw data using



(a) Wall-clock running time per client, as the number of clients
increases. The data vector size is fixed to 100K entries.

(b) Wall-clock running time per client, as the size of the data vector
increases. The number of clients is fixed to 500.

(c) Total data transfer per client, as the number of clients increases.
Different lines show different data vector sizes. Assumes no dropouts.

(d) Total data expansion factor per client, as compared to sending the
raw data vector to the server. Different lines represent different values
of n. Assumes no dropouts.

Fig. 6. Client Running Time and Data Transfer Costs. All wall-clock running times are for a single-threaded client implemented in Java, and ignore
communication latency. Plotted points represent averages over 10 end-to-end iterations, and error bars represent 95% confidence intervals. (Error bars are
omitted where measured standard deviation was less than 1%).

mdlog2RUe bits. Taking aK = aS = 256 bits implies a
communication expansion factor of 256(7n−4)+mdlog2 Re

mdlog2 RUe
. For

RU = 216 (i.e. 16-bit input values), m = 220 elements, and
n = 210 users, the expansion factor is 1.73×; for n = 214

users, it is 3.62×. For m = 224 elements and n = 214 users,
the expansion factor is 1.98×.

Storage cost: O(n+m). The user must store the keys and
secret-shares sent by each other user, which are O(n) in total,
and the data vector (which it can perturb in-place), which has
size O(m).

B. Performance Analysis of Server

Computation cost: O(mn2). The server’s computation cost
can be broken down as (1) Reconstructing n t-out-of-n Shamir
secrets (one for each user), which takes total time O(n2),
and (2) generating and removing the appropriate pu,v and pu
values from the sum of the yu values received, which takes
time O(mn2) in the worst case.

We note that reconstructing n secrets in the Shamir scheme
takes O(n3) time in the general case: each secret reconstruction

SS.reconstruct({(u, su)}u∈U ′ , t) → s amounts to interpolat-
ing a polynomial L over the points encoded by the shares and
then evaluating at 0, which can be accomplished via Lagrange
polynomials:

s = L(0) =
∑
u∈U ′

su
∏

v∈U ′\{u}

v

v − u
(mod p)

Each reconstruction requires O(n2) computation and we
must perform n reconstructions, implying O(n3) total time.
However, in our setting, we can perform all of the reconstruc-
tions in in O(n2) time by observing that all of our secrets
will be reconstructed from identically-indexed sets of secret
shares – that is, U ′ is fixed across all secrets, because in
round Unmasking, each user that is still alive sends a share
of every secret that needs to be reconstructed. Therefore, we
can precompute the Lagrange basis polynomials

`u =
∏

v∈U ′\{u}

v

v − u
(mod p)



(a) Wall-clock running time for the server, as the number of clients
increases. The data vector size is fixed to 100K entries.

(b) Wall-clock running time for the server, as the size of the data
vector increases. The number of clients is fixed to 500.

Fig. 7. Server Running Time and Data Transfer Costs. All wall-clock running times are for a single-threaded server implemented in Java, and ignore
communication latency. Plotted points represent averages over 10 end-to-end iterations. Error bars are omitted where measured standard deviations are less than
1%.

in O(n2) time and O(n) space, then reconstruct each of
n secrets in O(n) time as L(0) =

∑
u∈U ′ su`u (mod p)

resulting in a total computational cost of O(n2) to reconstruct
all the secrets.

We also note that the O(mn2) term can be broken into
O(m(n − d) + md(n − d)), where d is the number of
users that dropped from the protocol. In practice, d may be
significantly smaller than n, which would also reduce the
server’s computation cost.

Communication cost: O(n2 +mn). The server’s commu-
nication cost is dominated by its mediation of all pairwise
communications between users, which is O(n2), and also for
receiving perturbed data vectors from each user, which is
O(mn) in total.

Storage cost: O(n2 +m). The server must store t shares for
each user, which is O(n2) in total, along with an m-element
buffer in which to maintain a running sum of yu as they arrive.

C. Prototype Performance

In order to measure performance, we implemented a proto-
type in Java, with the following cryptographic primitives:
• For Key Agreement, we used Elliptic-Curve Diffie-

Hellman over the NIST P-256 curve, composed with a
SHA-256 hash.

• For Secret Sharing, we used standard t-out-of-n Shamir
Sharing.

• For Authenticated Encryption, we used AES-GCM with
128-bit keys.

• For the Pseudorandom Number Generator, we used AES
in counter mode.

We assume an honest-but-curious setting, and thus omitted
the portions of Figure 4 special to malicious clients from our
simulations. We note that these omissions would not change
the overall shape of our results in practice, since, as we discuss
below, the bulk of the costs involve masking, storing and
sending the large data vector.

Additionally, we assume that when clients drop out of the
protocol, that they drop after sending their shares to all other
clients, but before sending their masked input to the server. This
is essentially the “worst case” dropout, since all other clients
have already incorporated the dropped clients perturbations,
and the server must perform an expensive recovery computation
to remove them. We also assumed that client’s data vectors
had entries of 2 bytes each, such that 3 bytes are required to
store the sum of up to 500 clients’ values without overflow.

We ran single-threaded simulations on a Linux workstation
with an Intel Xeon CPU E5-1650 v3 (3.50 GHz), with 32
GB of RAM. Wall-clock running times and communication
costs for clients are plotted in Figure 6. Wall clock running
times for the server are plotted in Figure 7, with different
lines representing different percentages of clients dropping out.
Figure 8 shows wall-clock times per round for both the client
and the server. We omit data transfer plots for the server, as
they are essentially identical to those for the client, except
higher by a factor of n. This is because the incoming data
of the server is exactly the total outgoing data of all clients,
and vice versa. We also do not plot bandwidth numbers for
different numbers of dropouts, as the number of dropouts does
not have a significant impact on this metric.

In our simulations, for both the client and the server,
almost all of the computation cost comes from expanding
the various PRG seeds to mask the data vector. Compared to
this, the computational costs of key agreement, secret sharing
and reconstruction, and encrypting and decrypting messages
between clients, are essentially negligible, especially for large
choices of n and data vector size. This suggests that using
an optimized PRG implementation would yield a significant
running-time improvement over our prototype.

As seen in Figures 6a and 6b, the running time of each
client increases linearly with both the total number of clients
and the number of data vector entries, but does not change
significantly when more clients drop out. In Figure 6c, the



Dropouts AdvertiseKeys ShareKeys MaskedInputCollection Unmasking Total
User 0% 1 ms 376 ms 1030 ms 1 ms 1413 ms
Server 0% 1 ms 26 ms 723 ms 1268 ms 2018 ms
Server 10% 1 ms 29 ms 623 ms 61586 ms 62239 ms
Server 30% 1 ms 28 ms 514 ms 142847 ms 143389 ms

Fig. 8. Wall clock times per round. All wall-clock running times are for a single-threaded servers and clients implemented in Java, and ignore communication
latency. Each entry represents the average over 10 iterations. Number of clients is fixed to 500, and the data vector size is fixed to 100K entries.

communication expansion factor for each client increases as the
total number of clients increases, but this increase is relatively
small compared to the impact of increasing the size of the
data vector. This is also reflected in Figure 6d, where the
communication expansion factor for each client increases as
the total number of clients increases, but falls quickly as the
size of the data vector increases. This shows the the cost of
messages between clients amortizes well as the size of the data
vector increases.

In the case of the server, Figures 7a and 7b show that the
running time of the server increases significantly with the
fraction of dropouts. This is because, for each dropped client u,
the server must remove that client’s pairwise perturbations pu,v
from each other surviving client v, which requires (n−d) PRG
expansions, where d is the number of dropped users. In contrast,
each undropped user needs only a single PRG expansion, to
remove its self-perturbation. The high cost of dealing with
dropped users is also reflected in the server running times in
Figure 8.

VIII. DISCUSSION AND FUTURE WORK

1) Identifying and Recovering from Abuse: The security
proof in Theorem 4 guarantees that when users’ inputs are
learned by the server, they are always in aggregate with the
values of other users. However, we do not protect against
malicious clients that try to prevent the server from learning
any sum at all. For example, an attacker-controlled client could
send malformed messages to other clients, causing enough
of them to abort that the protocol fails before the server can
compute its output. Ideally, we would like such abuse by
malicious clients to be efficiently identifiable, and the protocol
to gracefully recover from it. However, the problem of assigning
blame for abuse is subtle, and often adds several rounds to
protocols. We leave this problem to future work.

2) Enforcing Well-formed Inputs: Our protocol also does not
verify that users’ inputs are well-formed or within any particular
bounds, so malicious users could send arbitrary values of their
choice, that can cause the output learned by the server to also
be ill-formed. For our specific machine learning application,
we will be able to detect obviously malformed outputs and can
simply run the protocol again with a different set of clients.
However, a malicious client may be able to supply “slightly”
malformed input values, that are hard to detect, for example,
using double its real values.

A possible solution is to use zero-knowledge proofs that
the client inputs are in the correct range. Unfortunately, even
using the best-known garbled circuit techniques [40], even

one such proof would be more costly than the entire protocol.
We leave the problem of guaranteeing well-formed inputs from
the clients to future work.

3) Reducing Communication Further: In the protocol we
describe, all clients exchange pairwise perturbation with all
other clients. However, it may be sufficient to have the clients
exchange perturbations with only a subset of other clients, as
long as these subsets of clients do not form disjoint clusters. In
fact, previous works (notably [15]) use this approach already.
However, in our setting, this requires extra care because the
server facilitates the communication among clients, and can
choose dropouts maliciously based on it’s knowledge of which
pairs of clients exchanged masks with each other. We leave
this improvement to future work.

IX. CONCLUSION

We have presented a practical protocol for securely aggre-
gating data while ensuring that clients’ inputs are only learned
by the server in aggregate. The overhead of our protocol is
very low, and it can tolerate large numbers of failing devices,
making it ideal for mobile applications. We require only one
service provider, which simplifies deployment. Our protocol
has immediate applications to real-world federated learning,
and we expect to deploy a full application in the near future.
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APPENDIX A
CRYPTOGRAPHIC PRIMITIVES

In this section, we discuss the cryptographic primitives and
assumptions needed for our construction.

A. Secret Sharing

We rely on Shamir’s t-out-of-n Secret Sharing [41], which
allows a user to split a secret s into n shares, such that any
t shares can be used to reconstruct s, but any set of at most
t− 1 shares gives no information about s.

The scheme is parameterized over a finite field F of size at
least l > 2k (where k is the security parameter of the scheme),
e.g. F = Zp for some large public prime p. We note that
such a large field size is needed because our scheme requires
clients to secret share their secret keys (whose length must be
proportional to the security parameter for the security proof
to go through). We also assume that integers 1, . . . , n (which
will be used to denote users in the protocol) can be identified
with distinct group elements in F. Given these parameters,
the scheme consists of two algorithms. The sharing algorithm
SS.share(s, t,U) → {(u, su)}u∈U takes as input a secret s,
a set U of n field elements representing user IDs, and a
threshold t ≤ |U|; it produces a set of shares su, each of
which is associated with a different u ∈ U . The reconstruction
algorithm SS.reconstruct({(u, su)}u∈V , t)→ s takes as input
the threshold t and the shares corresponding to a subset V ⊆ U
such that |V| ≥ t, and outputs a field element s.

Correctness requires that ∀s ∈ F,∀t, n with 1 ≤ t ≤ n,
∀U ⊆ F where |U| = n, if V ⊆ U and |V| ≥ t, then
SS.reconstruct({(u, su)}u∈V , t) = s. Security requires that
∀s, s′ ∈ F and any V ⊆ U such that |V| < t:

{{(u, su)}u∈U ← SS.share(s, t,U) : {(u, su)}u∈V} =

{{(u, su)}u∈U ← SS.share(s′, t,U) : {(u, su)}u∈V}

where “=” denotes that the two distributions are identical.

B. Key Agreement

Key Agreement consists of a tuple of algorithms
(KA.paramGen,KA.gen,KA.agree). KA.paramGen(k) →
pp produces some public parameters (over which our scheme
will be parameterized); KA.gen(pp) → (sSKu , sPKu ) al-
lows any party u to generate a private-public key pair,
KA.agree(sSKu , sPKv ) → su,v that allows any user u to
combine their private key sSKu with the public key sPKv for
any v (generated using the same pp), to obtain a private shared
key su,v between u and v.

The specific Key Agreement scheme we will use is Diffie-
Hellman key agreement [42], composed with a hash function.
More specifically, KA.paramGen(k)→ (G′, g, q,H) samples
group G′ of prime order q, along with a generator g, and
a hash function H6; KA.gen(G′, g, q,H) → (x, gx) samples
a random x ← Zq as the secret key sSKu , and gx as the
public key sPKu ; and KA.agree(xu, g

xv ) → su,v outputs
su,v = H((gxv )xu).

6In practice, one can use SHA-256.

Correctness requires that, for any key pairs generated by
users u and v (using KA.gen and the same parameters pp),
KA.agree(sSKu , sPKv ) = KA.agree(sSKv , sPKu ). For security,
in the honest but curious model, we want that for any adversary
who is given two honestly generated public keys sPKu and
sPKv (but neither of the corresponding secret keys sSKu or
sSKv ), the shared secret su,v computed from those keys is
indistinguishable from a uniformly random string. This exactly
mirrors the Decisional Diffie-Hellman assumption, which we
recall below:

Definition 1 (Decisional Diffie-Hellman assumption (DDH)).
Let G(k) → (G′, g, q,H) be an efficient algorithm which
samples a group G′ of order q with generator g, as well
as a function H : {0, 1}∗ → {0, 1}k. Consider the following
probabilistic experiment, parameterized by a PPT adversary
M , a bit b and a security parameter k.
DDH−ExpbG,M (k):

1) (G′, g, q,H)← G(k)
2) a← Zq;A← ga

3) b← Zq;B ← gb

4) if b = 1, s← H(gab), else s $← {0, 1}k
5) M(G′, g, q,H,A,B, s)→ b′

6) Output 1 if b = b′, 0 o/w.
The advantage of the adversary is defined as

AdvDDHG,M (k) := |Pr[DDH−Exp1
G,M (k) = 1]−

Pr[DDH−Exp0
G,M (k) = 1]|

We say that the Decisional Diffie-Hellman assumption holds
for G if for all PPT adversaries M, there exists a negligible
function ε such that AdvDDHG,M (k) ≤ ε(k).

Note that, traditionally, the Diffie-Hellman assumption does
not directly involve a hash function H (i.e. line step 4 is sub-
stituted with “if b = 1, s← gab, else s $← G′”), and therefore
to get from a random element of the group G′ to a uniformly
random string (which is necessary to be used as the seed for a
PRG, or to sample secret keys for other primitives), one has
to compose gab with a secure randomness extractor (which
composes well with this specific key agreement operation). For
simplicity, we choose to incorporate such an extractor function
H in the assumption.

In order to prove security against malicious adversaries
(Theorem 4), we need a somewhat stronger security guarantee
for Key Agreement, namely that an adversary who is given two
honestly generated public keys sPKu and sPKv , and also the abil-
ity to learn KA.agree(sSKu , sPK) and KA.agree(sSKv , sPK)
for any sPKs of its choice (but different from sPKu and sPKv ),
still cannot distinguish su,v from a random string. In order to
get this stronger property, we need to rely on a slight variant
of the Oracle Diffie-Hellman assumption (ODH) [39], which
we call Two Oracle Diffie-Hellman assumption (2ODH):

Definition 2 (Two Oracle Diffie-Hellman assumption (2ODH)).
Let G(k) → (G′, g, q,H) be an efficient algorithm which
samples a group G′ of order q with generator g, as well



as a function H : {0, 1}∗ → {0, 1}k. Consider the following
probabilistic experiment, parameterized by a PPT adversary
M , a bit b and a security parameter k.
2ODH−ExpbG,M (k):

1) (G′, g, q,H)← G(k)
2) a← Zq;A← ga

3) b← Zq;B ← gb

4) if b = 1, s← H(gab), else s $← {0, 1}k
5) MOa(·),Ob(·)(G′, g, q,H,A,B, s)→ b′

6) Output 1 if b = b′, 0 o/w.
where Oa(X) returns H(Xa) on any X 6= B (and an error on
input B) and similarly Ob(X) returns H(Xb) on any X 6= A.
The advantage of the adversary is defined as

Adv2ODH
G,M (k) := |Pr[2ODH−Exp1

G,M (k) = 1]−
Pr[2ODH−Exp0

G,M (k) = 1]|

We say that the Two Oracle Diffie-Hellman assumption holds
for G if for all PPT adversaries M, there exists a negligible
function ε such that Adv2ODH

G,M (k) ≤ ε(k).

This assumption can be directly used to prove the secu-
rity property we need for Key Agreement: the two oracles
Oa(·),Ob(·) formalize the ability of the adversary M to learn
KA.agree(sSKu , sPK) and KA.agree(sSKv , sPK) for different
sPK , and the negligible advantage of M in the above game
corresponds to an inability to distinguish between s = su,v ←
H(gab), and s $← {0, 1}k.

C. Authenticated Encryption

(Symmetric) Authenticated Encryption combines confiden-
tiality and integrity guarantees for messages exchanged between
two parties. It consists of a key generation algorithm which
outputs a private key7, an encryption algorithm AE.enc that
given a key and a message produces a ciphertext, and a
decryption algorithm AE.dec which given a ciphertext and
a key returns either the original plaintext, or a special error
symbol ⊥. For correctness, we require that for all keys
c ∈ {0, 1}k and all messages x, AE.dec(c,AE.enc(c, x)) = x.
For security, we require indistinguishability under a chosen
plaintext attack (IND-CPA) and ciphertext integrity (IND-
CTXT) as defined in [43]. Informally, the guarantee is that for
any adversary M that is given encryptions of messages of its
choice under a randomly sampled key c (where c is unknown
to M ), M cannot distinguish between fresh encryptions under
c of two different messages, nor can M create new valid
ciphertexts (different from the ones it received) with respect
to c with better than negligible advantage.

D. Pseudorandom Generator

We require a secure Pseudorandom Generator [44], [45]
PRG that takes in a uniformly random seed of some fixed
length, and whose output space is [0, R)m (i.e. the input space
for the protocol). Security for a Pseudorandom Generator

7Without loss of generality, we make the simplifying assumption that the
key generation algorithm samples keys as uniformly random strings.

guarantees that its output on a uniformly random seed is
computationally indistinguishable from a uniformly sampled
element of the output space, as long as the seed is hidden from
the distinguisher.

E. Signature Scheme

The protocol relies on a standard UF-CMA secure signature
scheme (SIG.gen,SIG.sign,SIG.verify). The key generation
algorithm SIG.gen(k) → (dPK , dSK) takes as input the
security parameter and outputs a secret key dSK and a public
key dPK ; the signing algorithm SIG.sign(dSK ,m)→ σ takes
as input the secret key and a message and outputs a signature
σ; the verification algorithm SIG.verify(dPK ,m, σ)→ {0, 1}
takes as input a public key, a message and a signature,
and returns a bit indicating whether the signature should be
considered valid. For correctness, we require that ∀m,

Pr[(dPK , dSK)←SIG.gen(k), σ ← SIG.sign(dSK ,m) :

SIG.verify(dPK ,m, σ) = 1] = 1

Security demands that no PPT adversary, given a fresh honestly
generated public key and access to an oracle producing
signatures on arbitrary messages, should be able to produce a
valid signature on a message on which the oracle was queried
on with more than negligible probability.

F. Public Key Infrastructure

To prevent the server from simulating an arbitrary number
of clients (in the malicious model), we require the support
of a public key infrastructure that allows clients to register
identities, and sign messages using their identity, such that
other clients can verify this signature, but cannot forge them.
We model such an infrastructure by assuming that a trusted
party generates a public-private key-pair for a signature scheme
for each client in the protocol (honest or malicious), and that,
at the start of the protocol, this trusted party provides each
client with its private signing key dSKu , together with the public
verification key dPKv for every other user v.

APPENDIX B
TECHNICAL LEMMA

In our security arguments, we will make use of the following
technical lemma. It says that if users’ values have uniformly
random pairwise masks added to them, then the resulting values
look uniformly random, conditioned on their sum being equal to
the sum of the users’ values. In other words, the pairwise masks
hide all information about users’ individual inputs, except for
their sum.



Lemma 1. Fix n, m, R, U with |U| = n, and {xu}u∈U where
∀u ∈ U ,xu ∈ ZmR . Then,

{{pu,v
$← ZmR }u<v, pu,v := −pv,u∀u > v

: {xu +
∑

v∈U\{u}

pu,v (mod R)}u∈U}

≡

{{wu
$← ZmR }u∈U s.t.

∑
u∈U

wu =
∑
u∈U

xu (mod R)

: {wu}u∈U}

where “≡” denotes that the distributions are identical.

We omit the proof, noting that it can be proved easily by
induction on n.

APPENDIX C
PRIVACY AGAINST MALICIOUS ADVERSARIES

In this section, we give formal arguments showing that our
protocol preserves privacy against active adversaries.

Before we state our theorems, we introduce some additional
definitions and notation for the setting of malicious and
colluding users and servers. As is standard, we consider
only computationally-bounded malicious parties, namely those
whose strategies can be described by some probabilistic
polynomial-time algorithm M . We note that our proofs will
be performed in the so-called “Random Oracle” model [37].
A random oracle O can be thought of as a perfectly random
function in the sky, which can be queried on any input x and
bit length l, and which returns O(x), a binary string of length l,
such that each O(x) is uniformly random and independent, and
such that repeated queries on the same x and l give the same
result. A random oracle can also be thought of as a “perfect
PRG”: whereas PRG(x) outputs a pseudorandom string, O(x)
outputs a truly random string. While a random oracle can never
actually be instantiated due to its provably exponential size, it
is often replaced with a cryptographic hash function with little
practical loss in security [38]. In our proofs in this section,
we will assume that a common random oracle O is available
to all the parties, who can each make arbitrarily many oracle
queries to O during the course of their execution. Also, all
honest parties will substitute all PRG calls with calls to O,
on the same input as they used for the PRG, and with the
appropriate bit length l.

We also allow the malicious parties to adaptively choose
the set of honest parties that (truly) abort in that round, which
gives them more power than having the aborts be independently
chosen, or predetermined fixed in advance.

For fixed n, t and k and a set C of corrupt parties, we
let MC indicate the polynomial-time algorithm that denotes
the “next-message” function of parties in C. That is, given a
party identifier c ∈ C, a round index i, a transcript T of all
messages sent and received so far by all parties in C, joint
randomness rC for the corrupt parties’ execution, and access
to random oracle O, MC(c, i, T, rC) outputs the message for
party c in round i (possibly making several queries to O along

the way). Additionally, given a round index i, a transcript T
of all messages sent and received so far by all parties in C,
and joint randomness rC for the corrupt parties’ execution,
MC(i, T, rC) outputs the set of parties Ui that abort due to
failure in that round (again, possibly making several queries
to O along the way). 8 We note that MC is thus effectively
choosing the inputs for all malicious users.

Let REALU,t,kC (MC ,xU ) be a random variable representing
the combined views of all parties in C in the above protocol
execution, where all corrupt parties’ messages and the inde-
pendent failures of the honest parties are chosen using MC ,
and all parties including MC have access to O. The random
variable’s distribution is over the random choices of honest
parties’ randomness and rC , over randomness of setup, and of
the random oracle O which is provided to all parties.

As in the case of honest-but-curious users, we consider two
separate cases: one where only a subset of users are malicious
and colluding, and one where the server is additionally
malicious and colluding with some subset of malicious users.

Theorem 3 (Privacy against actively-malicious users, with
honest server). There exists a PPT simulator SIM such that for
all PPT adversaries MC , all k, t,U ,xU\C , C ⊆ U , the output of
SIM is perfectly indistinguishable from the output of REALU,t,kC :

REAL
U,t,k
C (MC ,xU\C) ≡ SIM

U,t,k
C (MC)

Proof. The proof is identical to that for Theorem 1: even
though the malicious users additionally get to send arbitrary
messages and select the abort pattern of the honest users, the
messages they receive from honest users never depend on
the private input xu of those users. Thus, the simulator can
emulate the real view of the corrupted users C by using MC for
the malicious users, and running the honest users on dummy
inputs.

Note: Though SIM does not get access to a random oracle
O, it can simulate O on the fly using standard techniques.
Specifically, it first creates an internal table mapping x to O(x)
that is initially empty. Now, whenever a party making an oracle
request on input x, SIM checks if x is in its table, and if so,
returns the associated O(x), and otherwise, generates a fresh,
uniformly random string for O(x), puts (x,O(x)) in its table,
and sends O(x) as the response to the querying party. Since
all parties run in polynomial time, the table can never grow
to more than polynomial size, so SIM remains efficient, and
additionally, all parties get exactly the same uniformly random
distribution of responses to oracle queries as they would from
a real O.

We now proceed to the proof of security when the malicious
parties also include the server. Before we do so, we recall that,
in contrast with Theorem 2, MC is now allowed to dynamically
choose which users abort in each round, rather than the aborts
being statically fixed beforehand. Accordingly, the particular
subset of honest users for which the server learns the sum is
dynamically determined during the execution of the protocol,

8Note that additional honest parties may also abort in each round if the
messages they receive from corrupt parties are malformed.



and in particular, we can no longer provide a sum z of some
fixed subset of the users’ inputs as input to the simulator SIM.
Instead, we will allow SIM to make a single query to an ideal
functionality that will allow it to learn the sum z of values
for a single subset L of honest parties, chosen dynamically
by SIM at run-time. More formally, we give SIM access to
an oracle Idealδ{xu}u∈U\C

for appropriately chosen δ, such that
Idealδ{xu}u∈U\C

can be queried only once, and, given a subset
L, operates as follows:

Idealδ{xu}u∈U\C
(L) =

{∑
u∈L xu if L ⊆ (U \ C) and |L| ≥ δ

⊥ otherwise

We also stress that the following theorem relies, in order to
leverage the security of the key agreement in a context where
some of the clients might be malicious, on a slight variant of
the Oracle Diffie-Hellman assumption (ODH) [39], which we
call Two Oracle Diffie-Hellman assumption (2ODH) and detail
in the appendix.

The theorem shows that the joint view of colluding malicious
parties in a real execution of a protocol can be simulated given
only a single sum of a (dynamically-chosen) subset of at least
δ honest users, meaning intuitively that the malicious parties
learn “nothing more” than a single sum of a subset of the
honest parties’ inputs.

Theorem 4 (Privacy against active adversaries, including the
server). There exists a PPT simulator SIM such that for all
k, t,U , C ⊆ U ∪ {S} and xU\C , letting n = |U| and nC =
|C∩U|, if 2t > n+nC , then the output of SIM is computationally
indistinguishable from the output of REALU,t,k:

REAL
U,t,k
C (MC ,xU\C) ≈c SIM

U,t,k,Idealδ{xu}u∈U\C
C (MC)

where δ = t− nC .

Proof. We prove the theorem by a standard hybrid argument.
We will define a simulator SIM through a series of (polynomi-
ally many) subsequent modifications to the real execution REAL,
so that the views of MC in any two subsequent executions
are computationally indistinguishable. In each of the hybrids
below, even though we do not explicitly mention it, SIM will
cause honest parties to abort as they would during the real the
protocol (e.g., if they receive a malformed message), and also
if they are in a set Ui output by MC .
Hyb0 This random variable is distributed exactly as the

view of MC in REAL, the joint view of the parties C
in a real execution of the protocol.

Hyb1 In this hybrid, the real execution is emulated by a
simulator that knows all the inputs xu of the honest
parties, and runs a full execution of the protocol with
MC , which includes simulating the random oracle
“on the fly” (using a dynamically generated table), the
PKI and the rest of the setup phase.
The view of the adversary in this hybrid is the same
as the previous one.

Hyb2 In this hybrid, the simulator additionally aborts if
MC provides any of the honest parties u (in round

AdvertiseKeys) with a correct signature with respect
to an honest v’s public key, on (cPKv ||sPKv ) different
from those sent by v. Since this amounts to breaking
the security of the signature scheme, this hybrid is
identical from the previous one.

Hyb3 This hybrid is identical to Hyb2, except that, for any
pair of honest users u, v, the messages among them
are encrypted (in round ShareKeys, before being
given to MC) and decrypted (in round Unmasking,
after MC has delivered them) using a uniformly
random key (as opposed to the one obtained through
the key agreement KA.agree(cSKu , cPKv )).
The 2ODH assumption guarantees that this hybrid is
indistinguishable from the previous one. In particular,
we can switch the encryption keys between one pair
of honest users at a time (since n is polynomial
in k, there are only polynomially many pairs of
honest users), and argue that an adversary noticing
the difference when one key is switched will also be
able to break the 2ODH.

Hyb4 This hybrid is identical to Hyb3, except additionally,
SIM will abort if MC succeeds to deliver, in round
ShareKeys, a message to an honest client u on behalf
of another honest client v, such that i) the message
is different from the message SIM had given MC
in round ShareKeys, and ii) the message does not
cause the decryption algorithm (using the proper key)
to fail. Note that, as the encryption key that the
two users were using in the previous hybrid was
randomly selected, such a message would directly
constitute a forgery against the INT-CTXT security
of the encryption scheme.

Hyb5 In this hybrid, in addition, SIM substitutes all the
encrypted shares sent between pairs of honest users
with encryptions of 0. (It still returns the “real” shares
in Round Unmasking as it did before).
Note that, since the corresponding encryption keys
were chosen uniformly at random, IND-CPA security
of the encryption scheme guarantees this hybrid is
indistinguishable from the previous one.

Hyb6 In this hybrid, in addition, SIM aborts if MC provides
any of the honest parties (in round Consistency-
Check) with a signature on a set which correctly
verifies w.r.t. the public key of an honest party, but
such that the honest client never produced a signature
on that set.
Because of the security of the signature scheme, such
forgeries can happen only with negligible probability,
therefore this hybrid is indistinguishable from the
previous one.
We are now able to define the set Q to be the only set
Q ⊆ U such that there exists an honest user which
received the set Q in round ConsistencyCheck, and
later received at least t valid signatures on it in round
Unmasking (where valid means that the signatures
verify with respect to a set of distinct public signature



keys among those received by the client from the
trusted party at the start of the protocol).
In case no such set Q exists (e.g. no set had enough
signatures, or not enough honest users survived), we
define Q = ∅.
Note that this set is well defined: since the server
cannot forge signatures on behalf of the honest clients,
and each honest client will sign at most one set Q,
if there were two such sets this would imply that at
least t − nC distinct honest parties signed each of
them, i.e. that 2(t − nC) ≤ n − nC , which directly
contradicts 2t > n+ nC .

Hyb7 In this hybrid, in addition, SIM aborts if MC queries
the random oracle/PRG on input bu for some honest
user u (i.e. the value sampled by SIM on behalf of u
in round ShareKeys) either i) before the adversary
received the responses from the honest players in
round Unmasking or ii) after such responses have
been received, but where u 6∈ Q.
In both cases, because the value bu is information
theoretically hidden from MC , SIM will abort due
to this new condition only if MC is able to guess
one of the bu, which can only happen with negligible
probability (as they are chosen from the exponentially
large domain F). To see why the view of MC does
not depend on bu, let us analyze which of the view’s
components depend on any bu. In case i), MC only
receives from SIM at most nC shares of b (sent by u
in round ShareKeys, one for each of the malicious
clients). However. since nC < t, the distribution of
any such shares is independent from bu (because of
the properties of secret sharing). Even in case ii),
the view of MC is still independent from bu: since
u 6∈ Q, no honest user would send to the server any
share of bu, and therefore SIM does not have to send
any to MC .

Hyb8 In this hybrid, in addition, SIM aborts if MC queries
the random oracle/PRG on input su,v for some honest
users u, v either i) before the adversary received
the responses from the honest players in round
Unmasking or ii) after such responses have been
received, but where u, v ∈ Q.
To argue that this hybrid is indistinguishable from the
previous one (except with negligible probability), we
will reduce to the security of the 2ODH assumption.
In particular, consider a distinguisher SIM′ which
receives a 2ODH challenge (G′, g, q, A,B, z) and
guesses at random two honest users u, v, hoping that
the adversary’s query which will cause the simulator
to abort will be exactly su,v . SIM′ acts exactly as SIM
in the previous hybrid, except it sets up sPKu = A and
sPKv = B as the public keys for those users and uses
its two oracles to complete the simulation without
having access to the corresponding secret keys. In
particular, in round AdvertiseKeys, SIM′ sends these
modified public keys to MC (as opposed to the fresh

ones SIM would have sampled in the previous hybrid).
In round ShareKeys, rather than generating shares
of the secret keys sSKu and sSKv (which it does not
know), it generates and sends to the malicious parties
shares of 0. In round MaskedInputCollection, when
generating y values for all the honest users (to be
sent to MC), SIM′ sets su,v = z, and uses its two
oracles Oa and Ob to compute all other required
s values for u and v and other users. Then, if MC
makes a random oracle query for z, SIM′ will guess
that z = H(gab) and abort the simulation; otherwise
it will guess that z was chosen at random.
Let us now analyze the advantage of such SIM′ in the
2ODH−Exp game. Notice that, conditioned on
the choice of u, v being correct, and until the point
where the adversary makes a random oracle query
for z, the view of the adversary in this simulated
protocol execution is exactly the same as the one of
Hyb7. This is because, as in the previous argument,
for both possible values of z, the adversary will obtain
less than t shares of both sSKu and sSKv , which thus
reveal “no information” about the actual values of
sSKu and sSKv . Moreover, because we are modeling
the PRG as a random oracle, MC cannot extract
any information about su,v from yu and yv without
querying the random oracle.
Therefore, if MC can distinguish between Hyb7 and
Hyb8 with more than negligible probability, then it
must be triggering the abort condition with more than
negligible probability and therefore (conditioned on
the choice of u and v being correct) MC must make to
the random oracle/PRG a query of the form H(gab)
with more than negligible probability. This implies
that, when z = H(gab), SIM′ will claim (correctly)
that z = H(gab) with non negligible probability.
On the other hand, when z is chosen uniformly
random, it is information theoretically hidden from
MC’s view, and therefore MC can only make a query
for it (which will cause SIM′ to incorrectly claim
that z = H(gab)) with negligible probability. In other
words, if MC distinguishes between Hyb7 and Hyb8

with non-negligible probability p, then the algorithm
SIM′ described above also breaks 2ODH assumption
probability at least p/2n2, which is non-negligible,
concluding the argument.

Hyb9 This hybrid is defined exactly as the previous one,
except that the values of yu computed by the simula-
tor on behalf of the honest clients and sent to MC in
round MaskedInputCollection are substituted with
uniformly sampled values, and the output of some
random oracle queries for the PRG is modified to
ensure consistency/correctness for the result. More in
detail, after the server delivers to honest clients the
messages for round ConsistencyCheck, but before
SIM sends their responses, these messages sent by
MC to the honest clients define a set Q (as defined



in hybrid Hyb6). For all u ∈ Q \ C, SIM programs
the random oracle to set PRG(bu) as follows:

PRG(bu)← yu − xu −
∑
v∈Fu

PRG(su,v)

where v ∈ Fu iff v 6∈ Q \ C and MC delivered a
ciphertext to u from v in round ShareKeys (which
captures the fact that in a real execution u would
have included the joint noise pu,v for v in its masked
input vector yu). For all u /∈ Q\C, SIM sets PRG(bu)
arbitrarily.
We will argue that the view of MC in this hybrid is
statistically indistinguishable from the previous one.
First, note that for honest clients u 6∈ Q, since MC
cannot query the PRG on input bu, in both hybrids
the value yu is distributed uniformly at random (and
independent from the rest of the view).
Similarly, for honest clients u ∈ Q, before Round
Unmasking, MC cannot query the PRG on input
bu, so yu looks uniformly random as expected. After
Round Unmasking, when MC learns bu, it has exactly
the same distribution as in the previous hybrid, i.e. it
satisfies

yu − PRG(bu)−
∑
v∈Fu

PRG(su,v) = xu

Thus, this hybrid is indistinguishable from the previ-
ous one.

Hyb10 This hybrid is defined exactly as the previous one,
except that for all u ∈ Q\C, instead of programming
the random oracle to set PRG(bu) to9:

PRG(bu)← yu − xu −
∑
v∈Fu

PRG(su,v)

= yu − xu −
∑
v∈Q

PRG(su,v)

−
∑

v∈Fu\Q

PRG(su,v)

as in the previous hybrid, SIM instead sets

PRG(bu)← yu −wu −
∑

v∈Fu\Q

PRG(su,v)

where {wu}u∈Q\C are chosen uniformly at random,
subject to

∑
u∈Q\C wu =

∑
u∈Q\C xu. Since, as

argued before, su,v’s for u, v ∈ Q \ C are never
queried by MC , by Lemma 1, in the view of MC ,
the above values are identically distributed as the
previous hybrid.

Hyb11 This hybrid is defined as the previous one, with the
only difference being that the simulator now does not
receive the inputs of the honest parties, but instead, in
round Unmasking, makes a query to the functionality
Ideal for the set Q\C and uses the value to sample the

9Notice that Q must be a subset of Fu, or else u aborts

required wu values. Note that since by construction
|Q| ≥ t, |Q \ C| ≥ t − nC = s, and therefore the
functionality Ideal will not return ⊥.
It is easy to see that this change does not modify
the view seen by the adversary, and therefore it is
perfectly indistinguishable from the previous one.
Moreover, this hybrid does not make use of the honest
party’s inputs, and this concludes the proof.

APPENDIX D
DIFFERENTIAL PRIVACY AND SECURE AGGREGATION

Suppose that each of U users has a vector xi with an `2-
norm bounded by ∆

2 , such that the `2-sensitivity of
∑
i xi is

bounded by ∆. For ε ∈ (0, 1), we can achieve (ε, δ)-differential
privacy for the sum via the Gaussian mechanism [46], by adding
zero-mean multivariate Gaussian noise drawn from N (0, σ2I),
where σ = ∆

ε

√
2 ln( 1.25

δ ).
In the local privacy setting, users distrust the aggregator,

and so before any user submits her value to the aggregator,
she adds noise zi ∼ N (0, σ2I), achieving (ε, δ)-differential
privacy for her own data in isolation. Summing contributions at
the server yields

∑U
i=1 xi +

∑U
i=1 zi. Observe that the mean

of k normally distributed random variables ri ∼ N (0, σ2I) is
r̄ ∼ N (0, σ

2

k I); it follows that the server can form an unbiased
estimator of x̄ from the user contributions as

x̂LDP =
1

U

(
U∑
i=1

xi +

U∑
i=1

zi

)
∼ N (x̄,

σ2

U
I).

Now consider a setting wherein a trusted third party is
available that can aggregate and privatize batches of n user
inputs; for simplicity, assume that U is a multiple of n. The
users deliver raw inputs xi to the third party, who produces U

n
batch-sums, each with (ε, δ)-differential privacy for users in
the batch, by adding zj ∼ N (0, σ2I) noise to the batch-sum
j before releasing it. Summing the released batch-sums at the
server yields

∑U
i=1 xi +

∑U
n
j=1 zj . The server can once again

form an unbiased estimator of x̄ as

x̂TTP =
1

U

 U∑
i=1

xi +

U
n∑
j=1

zj

 ∼ N (x̄,
σ2

nU
I).

Observe that the standard deviation of x̂TTP is a factor of
1√
n

smaller than that of x̂LDP .
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