
Practical Secure Aggregation
for Privacy-Preserving Machine Learning

Keith Bonawitz*, Vladimir Ivanov*, Ben Kreuter*,
Antonio Marcedone†‡,H. Brendan McMahan*, Sarvar Patel*,

Daniel Ramage*, Aaron Segal*, and Karn Seth*

*{bonawitz,vlivan,benkreuter,mcmahan,
sarvar,dramage,asegal,karn}@google.com

Google, Mountain View, CA 94043
‡marcedone@cs.cornell.edu

Cornell Tech, 2 West Loop Rd., New York, NY 10044

1 INTRODUCTION
Machine learning models trained on sensitive real-world data
promise improvements to everything from medical screen-
ing [48] to disease outbreak discovery [39]. And the wide-
spread use of mobile devices means even richer—and more
sensitive—data is becoming available [37].

However, large-scale collection of sensitive data entails risks.
A particularly high-profile example of the consequences of
mishandling sensitive data occurred in 1988, when the video
rental history of a nominee for the US Supreme Court was
published without his consent [4]. The law passed in response
to that incident remains relevant today, limiting how online
video streaming services can use their user data [44].

This work outlines an approach to advancing privacy-
preserving machine learning by leveraging secure multiparty
computation (MPC) to compute sums of model parameter
updates from individual users’ devices in a secure manner.
The problem of computing a multiparty sum where no party
reveals its update in the clear—even to the aggregator—is
referred to as Secure Aggregation. As described in Section 2,
the secure aggregation primitive can be used to privately
combine the outputs of local machine learning on user devices,
in order to update a global model. Training models in this
way offers tangible benefits—a user’s device can share an
update knowing that the service provider will only see that
update after it has been averaged with those of other users.

The secure aggregation problem has been a rich area of
research: different approaches include works based on generic

† Research performed during an internship at Google.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

secure multi-party computation protocols, works based on
DC-nets, works based on partially- or fully-homomorphic
threshold encryption, and works based on pairwise masking.
We discuss these existing works in more detail in Section 9,
and compare them to our approach.

We are particularly focused on the setting of mobile devices,
where communication is extremely expensive, and dropouts
are common. Given these constraints, we would like our
protocol to incur no more than twice as much communication
as sending the data vector to be aggregated in the clear,
and would also like the protocol to be fully robust to users
dropping at any point. We believe that previous works do not
address this mixture of constraints, which is what motivates
our work.

1.1 Our Results
We present a protocol for securely computing sums of vectors,
which has a constant number of rounds, low communication
overhead, robustness to failures, and which requires only one
server with limited trust. In our design the server has two
roles: it routes messages between the other parties, and it
computes the final result. We present two variants of the pro-
tocol: one is more efficient and can be proven secure against
honest but curious adversaries, in the plain model. The other
guarantees privacy against active adversaries (including an
actively adversarial server), but requires an extra round, and
is proven secure in the random oracle model. In both cases,
we can show formally that the server only learns users’ inputs
in aggregate, using a simulation-based proof as is standard
for MPC protocols. Both variants we present are practical
and we present benchmark results from our prototype imple-
mentation.

1.2 Organization
In Section 2 we describe the machine learning application
that motivates this work. In Section 3 we review the crypto-
graphic primitives we use in our protocol. We then proceed
to give a high-level overview of our protocol design in Sec-
tion 4, followed by a formal protocol description in Section 5.
In Section 6 we prove security against honest-but-curious

https://doi.org/10.1145/nnnnnnn.nnnnnnn

(passive) adversaries and include a high-level discussion of
privacy against active adversaries.In Section 7, we give per-
formance numbers based both on theoretical analysis as well
as on a prototype implementation. Finally, we discuss some
issues surrounding practical deployments and future work in
Section 8 and conclude with a discussion of related work in
Section 9.

2 SECURE AGGREGATION FOR
FEDERATED LEARNING

Consider training a deep neural network to predict the next
word that a user will type as she composes a text message.
Such models are commonly used to to improve typing efficacy
for a phone’s on-screen keyboard [31]. A modeler may wish
to train such a model on all text messages across a large pop-
ulation of users. However, text messages frequently contain
sensitive information; users may be reluctant to upload a copy
of them to the modeler’s servers. Instead, we consider train-
ing such a model in a Federated Learning setting, wherein
each user maintains a private database of her text messages
securely on her own mobile device, and a shared global model
is trained under the coordination of a central server based
upon highly processed, minimally scoped, ephemeral updates
from users [45, 52].

These updates are high-dimensional vectors based on infor-
mation from the user’s private database. Training a neural net
is typically done by repeatedly iterating over these updates
using a variant of a mini-batch stochastic gradient descent
rule [16, 30]. (See Appendix C for details.)

Although each update is ephemeral and contains no more
(and typically significantly less) information than the user’s
private database, a user might still be concerned about what
information remains. In some circumstances, it is possible to
learn invididual words that a user has typed by inspecting
that user’s most recent update. However, in the Federated
Learning setting, the server does not need to access any indi-
vidual user’s update in order to perform stochastic gradient
descent; it requires only the element-wise weighted averages of
the update vectors, taken over a random subset of users. Us-
ing a Secure Aggregation protocol to compute these weighted
averages1 would ensure that the server may learn only that
one or more users in this randomly selected subset wrote a
given word, but not which users.

Federated Learning systems face several practical chal-
lenges. Mobile devices have only sporadic access to power
and network connectivity, so the set of users participating in
each update step is unpredictable and the system must be ro-
bust to users dropping out. Because the neural network may
be parameterized by millions of values, updates may be large,
representing a direct cost to users on metered network plans.
Mobile devices also generally cannot establish direct commu-
nications channels with other mobile devices (relying on a
server or service provider to mediate such communication)
nor can they natively authenticate other mobile devices.

1Computing a secure weighted average given a secure sum operation
is straightfoward; for detail, see Appendix C.

Thus, Federated Learning motivates a need for a Secure
Aggregation protocol that:

(1) operates on high-dimensional vectors
(2) is highly communication efficient, even with a novel

set of users on each instantiation
(3) is robust to users dropping out
(4) provides the strongest possible security under the

constraints of a server-mediated, unauthenticated
network model

3 CRYPTOGRAPHIC PRIMITIVES
In this section, we discuss the cryptographic primitives and
assumptions needed for our construction.

3.1 Secret Sharing
We rely on Shamir’s t-out-of-n Secret Sharing [50], which
allows a user to split a secret s into n shares, such that any
t shares can be used to reconstruct s, but any set of at most
t− 1 shares gives no information about s.

The scheme is parameterized over a finite field F of size at
least l > 2k (where k is the security parameter of the scheme),
e.g. F = Zp for some large public prime p. We note that
such a large field size is needed because our scheme requires
clients to secret share their secret keys (whose length must be
proportional to the security parameter for the security proof
to go through). We also assume that integers 1, . . . , n (which
will be used to denote users in the protocol) can be identified
with distinct field elements in F. Given these parameters, the
scheme consists of two algorithms. The sharing algorithm
SS.share(s, t,U) → {(u, su)}u∈U takes as input a secret
s, a set U of n field elements representing user IDs, and
a threshold t ≤ |U|; it produces a set of shares su, each of
which is associated with a different u ∈ U . The reconstruction
algorithm SS.recon({(u, su)}u∈V , t)→ s takes as input the
threshold t and the shares corresponding to a subset V ⊆ U
such that |V|≥ t, and outputs a field element s.

Correctness requires that ∀s ∈ F, ∀t, n with 1 ≤ t ≤ n,
∀U ⊆ F where |U|= n, if {(u, su)}u∈U ← SS.share(s, t,U),
V ⊆ U and |V|≥ t, then SS.recon({(u, su)}u∈V , t) = s. Se-
curity requires that ∀s, s′ ∈ F and any V ⊆ U such that
|V|< t:

{{(u, su)}u∈U ← SS.share(s, t,U) : {(u, su)}u∈V} ≡
{{(u, su)}u∈U ← SS.share(s′, t,U) : {(u, su)}u∈V}

where “≡” denotes that the two distributions are identical.

3.2 Key Agreement
Key Agreement consists of a tuple of algorithms
(KA.param,KA.gen,KA.agree). The algorithm KA.param(k)→
pp produces some public parameters (over which our scheme
will be parameterized). KA.gen(pp) → (sSK

u , sPK
u) allows

any party u to generate a private-public key pair. KA.agree(
sSK
u , sPK

v)→ su,v allows any user u to combine their private
key sSK

u with the public key sPK
v for any v (generated using

2

Cloud-Hosted Mobile Intelligence Federated Learning Federated Learning with Secure Aggregation

Figure 1: Left: In the cloud-centric approach to machine intelligence, user devices interact with cloud-hosted
models, generating logs that can be used as training examples. The logs from many users are combined and
used to improve the model, which is then used to serve future user requests. Middle: In Federated Learning,
machine intelligence models are shipped to users’ devices where they are both evaluated and trained locally.
Summaries of improved models are shared with the server, where they are aggregated into a new model and
deployed to user devices. Right: When Secure Aggregation is added to Federated Learning, the aggregation of
model updates is logically performed by the virtual, incorruptible third party induced by the secure multiparty
communication, so that the cloud provider learns only the aggregated model update.

the same pp), to obtain a private shared key su,v between u
and v.

The specific Key Agreement scheme we will use is Diffie-
Hellman key agreement [20], composed with a hash function.
More specifically, KA.param(k) → (G′, g, q,H) samples
group G′ of prime order q, along with a generator g, and
a hash function H2; KA.gen(G′, g, q,H)→ (x, gx) samples
a random x ← Zq as the secret key sSK

u , and gx as the
public key sPK

u ; and KA.agree(xu, g
xv) → su,v outputs

su,v = H((gxv)xu).
Correctness requires that, for any key pairs generated by

users u and v (using KA.gen and the same parameters pp),
KA.agree(sSK

u , sPK
v) = KA.agree(sSK

v , sPK
u). For security,

in the honest but curious model, we want that for any adver-
sary who is given two honestly generated public keys sPK

u

and sPK
v (but neither of the corresponding secret keys sSK

u or
sSK
v), the shared secret su,v computed from those keys is in-

distinguishable from a uniformly random string. This exactly
mirrors the Decisional Diffie-Hellman (DDH) assumption,
which we recall below:

Definition 3.1 (Decisional Diffie-Hellman assumption).
Let G(k) → (G′, g, q,H) be an efficient algorithm which
samples a group G′ of order q with generator g, as well as a
function H : {0, 1}∗ → {0, 1}k. Consider the following proba-
bilistic experiment, parameterized by a PPT adversary M , a
bit b and a security parameter k.
DDH-Expb

G,M (k):

(1) (G′, g, q,H)← G(k)
(2) a← Zq;A← ga

(3) b← Zq;B ← gb

(4) if b = 1, s← H(gab), else s
$← {0, 1}k

(5) M(G′, g, q,H,A,B, s)→ b′

(6) Output 1 if b = b′, 0 o/w.

2In practice, one can use SHA-256.

The advantage of the adversary is defined as

AdvDDH
G,M (k) := |Pr[DDH-Exp1

G,M (k) = 1]−

Pr[DDH-Exp0
G,M (k) = 1]|

We say that the Decisional Diffie-Hellman assumption holds
for G if for all PPT adversaries M, there exists a negligible
function ϵ such that AdvDDH

G,M (k) ≤ ϵ(k).

Note that, traditionally, the Diffie-Hellman assumption
does not directly involve a hash function H (i.e. line step
4 is substituted with “if b = 1, s ← gab, else s

$← G′”), and
therefore to get from a random element of the group G′ to
a uniformly random string (which is necessary to be used
as the seed for a PRG, or to sample secret keys for other
primitives), one has to compose gab with a secure randomness
extractor (which composes well with this specific key agree-
ment operation). For simplicity, we choose to incorporate
such an extractor function H in the assumption.

In order to prove security against active adversaries (Theo-
rem A.2), we need a somewhat stronger security guarantee for
Key Agreement, namely that an adversary who is given two
honestly generated public keys sPK

u and sPK
v , and also the

ability to learn KA.agree(sSK
u , sPK) and KA.agree(sSK

v ,
sPK) for any sPKs of its choice (but different from sPK

u and
sPK
v), still cannot distinguish su,v from a random string. In

order to get this stronger property, we need to rely on a slight
variant of the Oracle Diffie-Hellman assumption (ODH) [2],
which we call Two Oracle Diffie-Hellman assumption (2ODH):

Definition 3.2 (Two Oracle Diffie-Hellman assumption
(2ODH)). Let G(k)→ (G′, g, q,H) be an efficient algorithm
which samples a group G′ of order q with generator g, as well
as a function H : {0, 1}∗ → {0, 1}k. Consider the following
probabilistic experiment, parameterized by a PPT adversary
M , a bit b and a security parameter k.
2ODH-Expb

G,M (k):
(1) (G′, g, q,H)← G(k)
(2) a← Zq;A← ga

(3) b← Zq;B ← gb

3

(4) if b = 1, s← H(gab), else s
$← {0, 1}k

(5) MOa(·),Ob(·)(G′, g, q,H,A,B, s)→ b′

(6) Output 1 if b = b′, 0 o/w.

where Oa(X) returns H(Xa) on any X ̸= B (and an error on
input B) and similarly Ob(X) returns H(Xb) on any X ̸= A.
The advantage of the adversary is defined as

Adv2ODH
G,M (k) := |Pr[2ODH-Exp1

G,M (k) = 1]−

Pr[2ODH-Exp0
G,M (k) = 1]|

We say that the Two Oracle Diffie-Hellman assumption holds
for G if for all PPT adversaries M, there exists a negligible
function ϵ such that Adv2ODH

G,M (k) ≤ ϵ(k).

This assumption can be directly used to prove the secu-
rity property we need for Key Agreement: the two oracles
Oa(·),Ob(·) formalize the ability of the adversary M to learn
KA.agree(sSK

u , sPK) and KA.agree(sSK
v , sPK) for differ-

ent sPK , and the negligible advantage of M in the above
game corresponds to an inability to distinguish between
s = su,v ← H(gab), and s

$← {0, 1}k.

3.3 Authenticated Encryption
(Symmetric) Authenticated Encryption combines confidential-
ity and integrity guarantees for messages exchanged between
two parties. It consists of a key generation algorithm that
outputs a private key3, an encryption algorithm AE.enc
that takes as input a key and a message and outputs a ci-
phertext, and a decryption algorithm AE.dec that takes as
input a ciphertext and a key and outputs either the origi-
nal plaintext, or a special error symbol ⊥. For correctness,
we require that for all keys c ∈ {0, 1}k and all messages
x, AE.dec(c,AE.enc(c, x)) = x. For security, we require
indistinguishability under a chosen plaintext attack (IND-
CPA) and ciphertext integrity (IND-CTXT) as defined in
[7]. Informally, the guarantee is that for any adversary M
that is given encryptions of messages of its choice under a
randomly sampled key c (where c is unknown to M), M
cannot distinguish between fresh encryptions under c of two
different messages, nor can M create new valid ciphertexts
(different from the ones it received) with respect to c with
better than negligible advantage.

3.4 Pseudorandom Generator
We require a secure Pseudorandom Generator [10, 56] PRG
that takes in a uniformly random seed of some fixed length,
and whose output space is [0, R)m (i.e. the input space for the
protocol). Security for a Pseudorandom Generator guarantees
that its output on a uniformly random seed is computation-
ally indistinguishable from a uniformly sampled element of
the output space, as long as the seed is hidden from the
distinguisher.

3Without loss of generality, we make the simplifying assumption that
the key generation algorithm samples keys as uniformly random strings.

3.5 Signature Scheme
The protocol relies on a standard UF-CMA secure signature
scheme (SIG.gen,SIG.sign,SIG.ver). The key generation
algorithm
SIG.gen(k) → (dPK , dSK) takes as input the security pa-
rameter and outputs a secret key dSK and a public key dPK ;
the signing algorithm SIG.sign(dSK ,m)→ σ takes as input
the secret key and a message and outputs a signature σ; the
verification algorithm SIG.ver(dPK ,m, σ)→ {0, 1} takes as
input a public key, a message and a signature, and returns
a bit indicating whether the signature should be considered
valid. For correctness, we require that ∀m,

Pr[(dPK , dSK)←SIG.gen(k), σ ← SIG.sign(dSK ,m) :

SIG.ver(dPK ,m, σ) = 1] = 1

Security demands that no PPT adversary, given a fresh hon-
estly generated public key and access to an oracle producing
signatures on arbitrary messages, should be able to produce a
valid signature on a message on which the oracle was queried
on with more than negligible probability.

3.6 Public Key Infrastructure
To prevent the server from simulating an arbitrary number
of clients (in the active-adversary model), we require the
support of a public key infrastructure that allows clients to
register identities, and sign messages using their identity,
such that other clients can verify this signature, but cannot
impersonate them. In this model, each party u will register(
u, dPK

u

)
to a public bulletin board during the setup phase.

The bulletin board will only allow parties to register keys for
themselves, so it will not be possible for the attacking parties
to impersonate honest parties.

4 TECHNICAL INTUITION
We note that our protocol is quite similar to the work of
Ács and Castelluccia [3], and we give a detailed comparison
between our approaches in Section 9. As in their protocol,
we divide the parties into two classes: a single server S that
aggregates inputs from n client parties U . Each user4 u ∈ U
holds a private vector xu of dimension m; for simplicity we
assume that the elements of xu and

∑
u∈U xu are in ZR for

some R. The goal of the protocol is to compute
∑

u∈U xu

in a secure fashion: at a high level, we guarantee that the
server only learns a sum of the clients’ inputs containing
contributions from at least a large fraction of the users and
that the users learn nothing.

4.0.1 Masking with One-Time Pads. The first observation
is that

∑
u∈U xu can be computed with perfect secrecy if xu

is masked in a particular way. Assume a total order on users,
and suppose each pair of users (u, v), u < v agree on some
random vector su,v. If u adds this to xu and v subtracts it
from xv, then the mask will be canceled when their vectors
are added, but their actual inputs will not be revealed. In

4We use the terms user and client interchangeably.

4

other words, each user u computes:

yu = xu +
∑

v∈U:u<v

su,v −
∑

v∈U:u>v

sv,u (mod R)

and sends yu to the server, and the server computes:

z =
∑
u∈U

yu

=
∑
u∈U

(
xu +

∑
v∈U:u<v

su,v −
∑

v∈U:u>v

sv,u

)
=
∑
u∈U

xu (mod R)

There are two shortcomings to this approach. The first is
that the users must exchange the random vectors su,v, which,
if done naively, would require quadratic communication over-
head (|U|×|x|). The second is that there is no tolerance for
a party failing to complete the protocol: if a user u drops
out after exchanging vectors with other users, but before
submitting yu to the server, the vector masks associated
with u would not be canceled in the sum z.

4.0.2 Efficient Communication and Handling Dropped Users.
We notice that we can reduce the communication by hav-
ing the parties agree on common seeds for a pseudorandom
generator (PRG) rather than on the entire mask su,v. These
shared seeds will be computed by having the parties broadcast
Diffie-Hellman public keys and engaging in a key agreement.

One approach to handling dropped-out users would be to
notify the surviving users of the drop-out, and to have them
each reply with the common seed they computed with the
dropped user. This approach still has a problem: additional
users may drop out in the recovery phase before replying with
the seeds, which would thus require an additional recovery
phase for the newly dropped users’ seeds to be reported,
and so on, leading the number of rounds up to at most the
number of users.

We resolve this problem by using a threshold secret sharing
scheme and having each user send shares of their Diffie-
Hellman secret to all other users. This allows pairwise seeds
to be recovered even if additional parties drop out during the
recovery, as long as some minimum number of parties (equal
to the threshold) remain alive and respond with the shares
of the dropped users’ keys.

This approach solves the problem of unbounded recovery
rounds, but still has an issue: there is a possibility that a user’s
data might accidentally be leaked to the server. Consider a
scenario where a user u is too slow in sending her yu to the
server. The server assumes that the user has dropped, and
asks all other users to reveal their shares of u’s secret key,
in order to remove u’s uncancelled masks from z. However,
just after receiving these shares and computing each of the
su,v values, the server may receive the delayed yu from u.
The server is now able to remove all the masks from yu, and
learn xu in the clear, breaking security for u. Moreover, an
adversarial server in the active model can similarly learn xu

simply by lying about whether user u has dropped out.

Generate DH keypairs <cu ,cu > and <su ,su >
User Server

Round 0:
Advertise Keys

Round 1:
Share Keys

Round 2:
Masked Input

Collection

Round 3:
Consistency

Checks

Send signed public keys <cu, su , σu>PK PK

Broadcast list of received public keys to all users in u1

Validate signatures, generate bu and compute su,v
Compute t-out-of-n secret shares for bu and su

Send encrypted shares of bu and su

Forward received encrypted shares
Compute masked input yu

Send yu

Wait for enough users u3⊆ u2
Send a list of at least t survived users: u3 ⊆ u2

Collect signatures

SK

PKSK

SK

Sign u3 and reply with a signature σu

PKSK

Round 4:
Unmasking

Send a list {v, σv}of survived users from u4 ⊆ u3

Compute x (the final aggregated value)
Reconstruct secrets

Abort if |u4| < t, validate signatures
PKSend shares of bu for alive users and su for dropped

Abort if |u3| < t
'

'

Wait for enough users u1⊆ u

Wait for enough users u2⊆ u1

Figure 2: High-level view of our protocol. Red,
underlined parts are required to guarantee security
in the active-adversary model (and not necessary in
the honest-but-curious one).

4.0.3 Double-Masking to Protect Security. To resolve this
new security problem, we introduce a double-masking struc-
ture that protects xu even when the server can reconstruct
u’s masks.

First, each user u samples an additional random seed bu
during the same round as the generation of the su,v values.
During the secret sharing round, the user also generates and
distributes shares of bu to each of the other users. When
generating yu, users also add this secondary mask:

yu = xu + PRG (bu)

+
∑

v∈U:u<v

PRG (su,v)

−
∑

v∈U:u>v

PRG (sv,u) (mod R)

During the recovery round, the server must make an ex-
plicit choice with respect to each user u: from each surviving
member v, the server can request either a share of the com-
mon secret su,v associated with u or a share of the bu for u;
an honest user v will never reveal both kinds of shares for
the same user. After gathering at least t shares of su,v for
all dropped users and t shares of bu for all surviving users,
the server can subtract off the remaining masks to reveal the
sum.

4.0.4 Putting it all Together. We summarize our proto-
col in Figure 2 and its asymptotic costs in Figure 3. The
computational cost is quadratic for the users, and cubic for
the server. As the size of the data vector gets large, the
communication and storage overhead for each of the clients
and the server using our protocol approaches a multiplicative
constant over sending the data in the clear.

5The server can reconstruct n secrets from aligned (t, n)-Shamir shares
in O(t2+nt) by caching Lagrange coefficients; see section 7.2 for details.

5

User Server5

computation O(n2 +mn) O(mn2)
communication O(n+m) O(n2 +mn)

storage O(n+m) O(n2 +m)

Figure 3: Cost summary for the protocol.

5 A PRACTICAL SECURE
AGGREGATION PROTOCOL

The protocol is run (in a synchronous network) between
a server and a set of n users, and consists of four rounds.
Each user u holds as input a vector xu (of equal length m)
consisting of elements from ZR for some R. The server has no
input, but can communicate with the users through secure
(private and authenticated) channels. At any point, users can
drop out of the protocol (in which case they stop sending
messages completely), and the server will be able to produce
a correct output as long as t of them survive until the last
round. To simplify the notation we assume that each user u
is assigned a unique “logical identity” (also denoted with u)
in the form of an integer between 1 and n, so that no two
honest users share the same index6.

A complete description is provided in Figure 4. We stress
that, in the figure, when we say that the server “collects
messages from at least t users”, we mean that the server
receives the messages from all users that have not dropped
out/aborted in that round (recall that we prove our results
in the synchronous setting), and aborts if the number of
messages received is less than t. In a practical implementation,
the server would wait until a specified timeout (considering
all users who did not respond in time to have dropped out),
and abort itself if not enough messages are received before
such timeout.

To prove security in the active adversary model, we also
assume the existence of a Public Key Infrastructure, which
for simplicity we abstract away by assuming all clients receive
as input (from a trusted third party) public signing keys for
all other clients.

Overall, the protocol is parameterized over a security pa-
rameter k, which can be adjusted to bound the success prob-
ability of any attacker. In all theorems, we implicitly assume
that the number of clients n is polynomially bounded in the
security parameter. Moreover, some of the primitives also
require additional global parameters.

We note that Figure 4 presents both variants of the pro-
tocol: in the honest but curious case, since all parties are
following the protocol honestly, we can avoid the use of sig-
natures and the need for a PKI (which, most notably, allows
us to avoid the ConsistencyCheck round entirely).

6 SECURITY ANALYSIS
In our security arguments, we will make use of the following
technical lemma. It says that if users’ values have uniformly
random pairwise masks added to them, then the resulting

6These identities will be bound to the users’ keys by a PKI. We rely
on this in the active-adversary setting.

values look uniformly random, conditioned on their sum being
equal to the sum of the users’ values. In other words, the
pairwise masks hide all information about users’ individual
inputs, except for their sum.

Lemma 6.1. Fix n, m, R, U with |U|= n, and {xu}u∈U
where ∀u ∈ U ,xu ∈ Zm

R . Then,

{{pu,v
$← Zm

R }u<v, pu,v := −pv,u∀u > v

: {xu +
∑

v∈U\{u}

pu,v (mod R)}u∈U}

≡

{{wu
$← Zm

R }u∈U s.t.
∑
u∈U

wu =
∑
u∈U

xu (mod R)

: {wu}u∈U}

where “≡” denotes that the distributions are identical.

We omit the proof, noting that it can be proved easily by
induction on n.

6.1 Honest but Curious Security
Here, we argue that our protocol is a secure multiparty
computation in the honest but curious setting, regardless of
how and when parties abort. In particular, we prove that when
executing the protocol with threshold t, the joint view of the
server and any set of less than t (honest) users does not leak
any information about the other users’ inputs, besides what
can be inferred from the output of the computation. Before
formally stating our result, we introduce some notation.

We will consider executions of our secure aggregation proto-
col where the underlying cryptographic primitives are instanti-
ated with security parameter k, a server S interacts with a set
U of n users (denoted with logical identities 1, . . . , n) and the
threshold is set to t. In such executions, users might abort at
any point during the execution, and we denote with Ui the sub-
set of the users that correctly sent their message to the server
at round i− 1, such that U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ U4 ⊇ U5. For
example, users in U2 \ U3 are exactly those that abort before
sending the message to the server in Round 2, but after send-
ing the message of Round 1. If Round ConsistencyCheck
has been omitted, define U4 := U3.

Denote the input of each user u with xu, and with xU′ =
{xu}u∈U′ the inputs of any subset of users U ′ ⊆ U .

In such a protocol execution, the view of a party consists
of its internal state (including its input and randomness)
and all messages this party received from other parties (the
messages sent by this party do not need to be part of the view
because they can be determined using the other elements of
its view). Moreover, if the party aborts, it stops receiving
messages and the view is not extended past the last message
received.

Given any subset C ⊆ U ∪ {S} of the parties, let
REAL

U,t,k
C (xU ,U1,U2,U3,U4,U5) be a random variable rep-

resenting the combined views of all parties in C in the above
protocol execution, where the randomness is over the internal

6

Secure Aggregation Protocol
• Setup:

– All parties are given the security parameter k, the number of users n and a threshold value t, honestly generated
pp← KA.gen(k), parameters m and R such that Zm

R is the space from which inputs are sampled, and a field F to be used
for secret sharing. All users also have a private authenticated channel with the server.

– All users u receive their signing key dSK
u from the trusted third party, together with verification keys dPK

v bound to each
user identity v.

• Round 0 (AdvertiseKeys):
User u:
– Generate key pairs (cPK

u , cSK
u) ← KA.gen(pp), (sPK

u , sSK
u) ← KA.gen(pp), and generate

σu ← SIG.sign(dSK
u , cPK

u ||sPK
u).

– Send (cPK
u ||sPK

u ||σu) to the server (through the private authenticated channel) and move to next round.
Server :
– Collect at least t messages from individual users in the previous round (denote with U1 this set of users). Otherwise, abort.
– Broadcast to all users in U1 the list {(v, cPK

v , sPK
v , σv)}v∈U1

and move to next round.
• Round 1 (ShareKeys):

User u:
– Receive the list {(v, cPK

v , sPK
v , σv)}v∈U1

broadcasted by the server. Assert that |U1|≥ t, that all the public key pairs are
different, and that ∀v ∈ U1, SIG.ver(dPK

v , cPK
v ||sPK

v , σu) = 1.
– Sample a random element bu ← F (to be used as a seed for a PRG).
– Generate t-out-of-|U1| shares of sSK

u : {(v, sSK
u,v)}v∈U1

← SS.share(sSK
u , t,U1)

– Generate t-out-of-|U1| shares of bu: {(v, bu,v)}v∈U1
← SS.share(bu, t,U1)

– For each other user v ∈ U1 \ {u}, compute eu,v ← AE.enc(KA.agree(cSK
u , cPK

v), u||v||sSK
u,v ||bu,v)

– If any of the above operations (assertion, signature verification, key agreement, encryption) fails, abort.
– Send all the ciphertexts eu,v to the server (each implicitly containing addressing information u, v as metadata).
– Store all messages received and values generated in this round, and move to the next round.
Server :
– Collect lists of ciphertexts from at least t users (denote with U2 ⊆ U1 this set of users).
– Sends to each user u ∈ U2 all ciphertexts encrypted for it: {eu,v}v∈U2

and move to the next round.
• Round 2 (MaskedInputCollection):

User u:
– Receive (and store) from the server the list of ciphertexts {eu,v}v∈U2 (and infer the set U2). If the list is of size < t, abort.
– For each other user v ∈ U2 \{u}, compute su,v ← KA.agree(sSK

u , sPK
v) and expand this value using a PRG into a random

vector pu,v = Δu,v · PRG(su,v), where Δu,v = 1 when u > v, and Δu,v = −1 when u < v (note that pu,v + pv,u = 0
∀u ̸= v). Additionally, define pu,u = 0.

– Compute the user’s own private mask vector pu = PRG(bu). Then, Compute the masked input vector yu ← xu + pu +∑
v∈U2

pu,v (mod R)

– If any of the above operations (key agreement, PRG) fails, abort. Otherwise, Send yu to the server and move to the next
round.

Server :
– Collect yu from at least t users (denote with U3 ⊆ U2 this set of users). Send to each user in U3 the list U3.

• Round 3 (ConsistencyCheck):
User u:
– Receive from the server a list U3 ⊆ U2 consisting of at least t users (including itself). If U3 is smaller than t, abort.
– Send to the server σ′

u ← SIG.sign(dSK
u ,U3).

Server :
– Collect σ′

u from at least t users (denote with U4 ⊆ U3 this set of users). Send to each user in U4 the set {v, σ′
v}v∈U4

.
• Round 4 (Unmasking):

User u:
– Receive from the server a list {v, σ′

v}v∈U4
. Verify that U4 ⊆ U3, that |U4|≥ t and that SIG.ver(dPK ,U3, σ′

v) = 1 for all
v ∈ U4 (otherwise abort).

– For each other user v in U2 \ {u}, decrypt the ciphertext v′||u′||sSK
v,u ||bv,u ← AE.dec(KA.agree(cSK

u , cPK
v), ev,u) received

in the MaskedInputCollection round and assert that u = u′ ∧ v = v′.
– If any of the decryption operations fail (in particular, the ciphertext does not correctly authenticate), abort.
– Send a list of shares to the server, which consists of sSK

v,u for users v ∈ U2 \ U3 and bv,u for users in v ∈ U3.
Server (generating the output):
– Collect responses from at least t users (denote with U5 this set of users).
– For each user in u ∈ U2 \U3, reconstruct sSK

u ← SS.recon({sSK
u,v }v∈U5

, t) and use it (together with the public keys received
in the AdvertiseKeys round) to recompute pv,u for all v ∈ U3 using the PRG.

– For each user u ∈ U3, reconstruct bu ← SS.recon({bu,v}v∈U5
, t) and then recompute pu using the PRG.

– Compute and output z =
∑

u∈U3
xu as

∑
u∈U3

xu =
∑

u∈U3
yu −

∑
u∈U3

pu +
∑

u∈U3,v∈U2\U3
pv,u

Figure 4: Detailed description of the Secure Aggregation protocol. Red, underlined parts are required to
guarantee security in the active-adversary model (and not necessary in the honest-but-curious one).

7

randomness of all parties, and the randomness in the setup
phase.

Our first theorem shows that the joint view of any subset
of honest users (excluding the server) can be simulated given
only the knowledge of the inputs of those users. Intuitively,
this means that those users learn “nothing more” than their
own inputs.

Theorem 6.2 (Honest But Curious Security,
against clients only). There exists a PPT simulator SIM

such that for all k, t,U with t ≤ |U|,xU ,U1,U2,U3,U4,U5 and
C such that C ⊆ U , U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ U4 ⊇ U5, the
output of SIM is perfectly indistinguishable from the output
of REALU,t,k

C :

REAL
U,t,k
C (xU ,U1,U2,U3,U4,U5)

≡

SIM
U,t,k
C (xC ,U1,U2,U3,U4,U5)

Proof. Note that, since the view of the server is omitted,
the joint view of the parties in C does not depend (in an
information theoretic sense) on the inputs of the parties not
in C. The simulator can therefore produce a perfect simula-
tion by running the honest but curious users on their true
inputs, and all other users on a dummy input (for example,
a vector of 0s), and outputting the simulated view of the
users in C. In more detail, the only value sent by the honest
parties which depend on their input is yu (sent to the server
in round MaskedInputCollection). One can easily note
that the response sent by the server to the users in round
MaskedInputCollection just contains a list of user identi-
ties which depends on which users responded on the previous
round, but not on the specific yu values of the responses.
This means that the simulator can use dummy values for the
inputs of all honest parties not in C, and the joint view of
users in C will be identical to that in REALU,t,k. □

In our next theorem, we consider security against an honest-
but-curious server, who can additionally combine knowledge
with some honest-but-curious clients. We show that any such
group of honest-but-curious parties can be simulated given
the inputs of the clients in that group, and only the sum of
the values of the remaining clients. Intuitively, this means
that those clients and the server learn “nothing more” than
their own inputs, and the sum of the inputs of the other
clients. Additionally, if too many clients abort before Round
Unmasking, then we show that we can simulate the view
of the honest-but-curious parties given no information about
the remaining clients’ values. Thus, in this case, the honest-
but-curious parties learn nothing about the remaining clients’
values.

Importantly, the view to be simulated must contain fewer
than t honest-but-curious clients, or else we cannot guarantee
security.

Theorem 6.3 (Honest But Curious Security, with
curious server). There exists a PPT simulator SIM such
that for all t,U ,xU ,U1,U2,U3,U4, and C such that C ⊆ U ∪
{S}, |C \ {S}|< t, U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ U4 ⊇ U5, the output

of SIM is computationally indistinguishable from the output
of REALU,t,k

C :

REAL
U,t,k
C (xU ,U1,U2,U3,U4,U5)

≈cSIM
U,t,k
C (xC ,z,U1,U2,U3,U4,U5)

where

z =

{∑
u∈U3\C xu if |U3|≥ t

⊥ otherwise.

Proof. We prove the theorem by a standard hybrid ar-
gument. We will define a simulator SIM through a series of
(polynomially many) subsequent modifications to the random
variable REAL, so that any two subsequent random variables
are computationally indistinguishable.

Hyb0 This random variable is distributed exactly as
REAL, the joint view of the parties C in a real execu-
tion of the protocol.

Hyb1 In this hybrid, we change the behavior of simu-
lated honest parties in the set U2\C, so that instead of
using KA.agree(cSK

u , cPK
v) to encrypt and decrypt

messages to other users v in the same set, they use a
uniformly random encryption key cu,v chosen by the
simulator. The Decisional Diffie-Hellman assumption
(as recalled in Definition 3.1) guarantees that this
hybrid is indistinguishable from the previous one.

Hyb2 In this hybrid, we substitute all ciphertexts en-
crypted by honest parties in the set U2\C and sent to
other honest parties with encryptions of 0 (padded to
the appropriate length) instead of shares of sSK

u and
bu. However, the honest clients in that set continue
to respond with the correct shares of sSK

u and bu
in Round Unmasking. Since only the contents of
the ciphertexts have changed, IND-CPA security of
the encryption scheme guarantees that this hybrid
is indistinguishable from the previous one.

Hyb3 Define:

U∗ =

{
U2 \ C if z = ⊥
U2 \ U3 \ C otherwise.

This hybrid is distributed exactly as the previous one,
but here we substitute all shares of bu generated by
parties u ∈ U∗ and given to the corrupted parties in
Round ShareKeys with shares of 0 (using a different
sharing of 0 for every u ∈ U∗). Note that, in this
hybrid and the previous one, the adversary does not
receive any additional shares of bu for users u in the
set U∗ in Round Unmasking, either because the
honest clients do not reveal shares of bu for such u,
or because all honest clients abort (when |U3|< t,
which happens exactly when z = ⊥). Thus, MC’s
joint view contains only |C|< t shares of each bu. The
properties of Shamir’s secret sharing thus guarantee
that the distribution of any |C| shares of 0 is identical
to the distribution of an equivalent number of shares
of any given secret bu, making this hybrid identically
distributed to the previous one.

8

Hyb4 In this hybrid, for all parties u ∈ U∗, instead
of computing pu ← PRG(bu), we set it to be a
uniformly random vector (of the appropriate size).

Note that, in the previous hybrid, since bu is
chosen uniformly at random and its shares given to
the adversary are substituted with shares of 0, the
output of the random variable does not depend on the
seed of the PRG except through the PRG’s output.
Therefore, the only change in this hybrid boils down
to substituting the output of a PRG (on a randomly
generated seed otherwise independent from the joint
view of parties in C) with a uniformly random value.
Therefore, leveraging the security of the PRG, we
can argue that this hybrid is indistinguishable from
the previous one.

Hyb5 For all parties u ∈ U∗, in Round MaskedInput-
Collection, instead of sending:

yu ← xu + pu +
∑
v∈U2

pu,v

we send:

yu ← pu +
∑
v∈U2

pu,v

Since pu was changed in the previous hybrid to be
uniformly random and independent of any other
values, xu + pu is also uniformly random, and so
this hybrid and the previous hybrid are identically
distributed. Further, this hybrid and all subsequent
hybrids do not depend on the values xu for u ∈ U∗.

Note: If z = ⊥, then we can ignore the further
hybrids, and let SIM be as described in Hyb5, since
SIM can already simulate REAL without knowing xu

for any u /∈ C. Therefore in the following hybrids we
assume z ̸= ⊥.

Hyb6 This random variable is distributed exactly as
the previous one, but here we substitute all shares
of sSK

u generated by parties u ∈ U3 \ C and given
to the corrupted parties in Round ShareKeys with
shares of 0 (using a different sharing of 0 for every
u ∈ U3 \C). Following an analogous argument to that
for Hyb3, the properties of Shamir’s secret sharing
guarantee that this hybrid is identically distributed
to the previous one.

Hyb7 We fix a specific user u′ ∈ U3 \ C. For this user,
and each other user u ∈ U3 \ C, in order to compute
the value yu sent to the server, we substitute the
joint noise key (which would be computed by u′ and
u as su′,u = su,u′ ← KA.agree(sSK

u′ , sPK
u)) with a

uniformly random value (which will used by both
parties as a PRG seed).

In more detail, for each user u ∈ U3 \ C \ {u′},
a value s′u′,u is sampled uniformly at random and,
instead of sending

yu ← xu + pu +
∑
v∈U2

pu,v

SIM sends

y′
u ← xu + pu +

∑
v∈U2\{u′}

pu,v +∆u,u′ ·PRG(s′u′,u)

and accordingly

y′
u′ ← xu′ + pu′ +

∑
v∈U2

∆u′,v ·PRG(s′u′,v)

where ∆u,v = 1 when u > v and ∆u,v = −1 when
u < v.

It is easy to see that the Decisional Diffie-Hellman
Assumption (Definition 3.1) guarantees that this
hybrid is indistinguishable from the previous one7.

Hyb8 In this hybrid, for the same party u′ chosen in
the previous hybrid and all other parties v ∈ U3 \ C,
instead of computing pu′,v ← ∆u′,v · PRG(s′u′,v),
we compute it using fresh randomness ru′,v (of the
appropriate size) as pu′,v ← ∆u′,v · ru′,v.

Note that, in the previous hybrid, since s′u′,v is
chosen uniformly at random (and independently from
the Diffie-Hellman keys), the output of the random
variable does not depend on the seed of the PRG
except through the PRG’s output. Therefore, the
only change in this hybrid boils down to substituting
the output of a PRG (on an randomly generated
seed otherwise independent from the joint view of
parties in C) with a uniformly random value. There-
fore, leveraging the security of the PRG, we can
argue that this hybrid is indistinguishable from the
previous one.

Hyb9 In this hybrid, for all users u ∈ U3 \ C, in round
MaskedInputCollection instead of sending:

yu ← xu + pu +
∑
v∈U2

pu,v

= xu + pu +
∑

v∈U3\C

pu,v +
∑

v∈U2\U3\C

pu,v

we send:

yu ← wu + pu +
∑

v∈U2\U3\C

pu,v

Where {wu}u∈U3\C are uniformly random, subject
to
∑

U3\C wu =
∑

U3\C xu = z. Invoking Lemma 6.1
with n = |U3 \ C|, we have that this hybrid is identi-
cally distributed to the previous one. Moreover, note
that to sample from the random variable described
by this hybrid, knowledge of the individual xu for
u ∈ U3 \C is not needed, and their sum z is sufficient.

We can thus define a PPT simulator SIM that samples from
the distribution described in the last hybrid. The argument
above proves that the output of the simulator is computation-
ally indistinguishable from the output of REAL, completing
the proof. □

7It is important to note here that, in the previous hybrids, we removed
all shares of sSK

u for u ∈ U3 \ C from the joint view of parties in C.
Without doing so, we could not reduce to the security of DH Key
Agreement.

9

6.2 Privacy against Active Adversaries
In this section, we discuss our argument showing privacy
against active adversaries (detailed proofs are available in
Appendix A). By active adversaries, we mean parties (clients
or the server) that deviate from the protocol, sending in-
correct and/or arbitrarily chosen messages to honest users,
aborting, omitting messages, and sharing their entire view of
the protocol with each other, and also with the server (if the
server is also an active adversary).

We note that we only show input privacy for honest users:
it is much harder to additionally guarantee correctness and
availability for the protocol when some users are actively
adversarial. Such users can distort the output of the protocol
by setting their input values xu to be out of range8, by
sending inconsistent Shamir shares to other users in Round
ShareKeys, or by reporting incorrect shares to the server
in Round Unmasking. Making such deviations efficient to
detect and possibly recover from is left to future work.

We note some key differences between the argument for
honest-but-curious security, and the argument for privacy
against active adversaries.

The first key difference is that, for the proof against active
adversaries, we assume that there exists a public-key infras-
tructure (PKI), which guarantees to users that messages they
receive came from other users (and not the server). Without
this assumption, the server can perform a Sybil attack on
the users in Round ShareKeys, by simulating for a specific
user u all other users v in the protocol and thus receiving all
u’s key shares and recovering that users’ input. Alternatively,
we can require the server to act honestly in its first message
(in Round ShareKeys). Specifically, the server must hon-
estly forward the Diffie-Hellman public keys it receives to
all other users, allowing them to set up pairwise private and
authenticated channels amongst themselves.

However, if we assume a PKI, then we observe that the
server’s power in the remainder of the protocol is reduced to
lying to users about which other users have dropped out: since
all user-to-user messages (sent in round ShareKeys) are
authenticated through an authenticated encryption scheme,
the server cannot add, modify or substitute messages, but
rather, can only fail to deliver them. Note, importantly, that
the server can try to give a different view to each user of
which other users have dropped out of the protocol. In the
worst case, this could allow the server to learn a different
set of shares from each user in Round Unmasking, allowing
it to potentially reconstruct more secrets than it should be
allowed to. The ConsistencyCheck round is included in
the protocol to deal with this issue. The inclusion of the
ConsistencyCheck round is the second key difference with
the honest-but-curious proof.

The final key difference is that we need the proof to be
in the random oracle (RO) model. To see why, notice that

8Typically, each element of xu is expected to be from a range [0, RU) ⊂
[0, R), such that the sum of all xu is in [0, R). However, an actively
adversarial user could choose xu outside the expected range, i.e. on
[RU , R), allowing the adversarial user disproportionate impact on
protocol’s result, thus undermining correctness.

honestly acting users are essentially “commited” to their
secrets and input by the end of the MaskedInputCollec-
tion round. However, the server can adaptively choose which
users drop after the MaskedInputCollection round. This
causes problems for a simulation proof, because the simulator
doesn’t know honest users’ real inputs, and must use dummy
information in the earlier rounds, thus “committing” itself to
wrong values that are potentially easily detectable. The ran-
dom oracle adds a trapdoor for the simulator to equivocate,
so that even if it commits to dummy values in early rounds, it
can reprogram the random oracle to make the dummy values
indistinguishable from honest users’ values. More details can
be seen in the proof of Theorem A.2 in Appendix A.

6.3 Interpretation of Results
We summarize our system for the different security models
we consider in Figure 5.

Threat model Minimum
threshold

Minimum in-
puts in sum

Client-only adversary 1 t
Server-only adversary ⌊n

2
⌋+ 1 t

Clients-Server collu-
sion

⌊ 2n
3
⌋+ 1 t− nC

Figure 5: Parameterization for different threat mod-
els. “Minimum threshold” denotes the minimum
value of t required for security in the given threat
model. “Minimum inputs in the sum” denotes a lower
bound on the number of users’ values that are in-
cluded in the sum learned by the server. n denotes
the total number of users, while nC is the number of
corrupt users.

6.3.1 Security against only clients. In each of Theorems 6.2
and A.1, we see that the joint view of any subset of clients,
honest or adversarial, can be simulated given no information
about the values of the remaining clients. This means, no
matter how we set our t parameter, clients on their own learn
nothing about other clients.

6.3.2 Security against only the server. From Theorems 6.3
and A.2, we see that if we set nC = 0, that is, there are no
clients who cheat or collaborate with the server, then setting
t ≥ ⌊n

2
⌋+ 1 guarantees that the sum learned by the server

contains the values of at least t > n
2

clients, and the protocol
can deal with up to ⌈n

2
⌉ − 1 dropouts.

6.3.3 Security against a server colluding with clients. From
Theorems 6.3 and A.2, we see that we can allow a server
(honest or adversarial) to collaborate with up to nC = ⌈n

3
⌉−1

users (honest or adversarial), if we set t ≥ ⌊ 2n
3
⌋+ 1, at the

same time guaranteeing that the sum learned by the server
contains the values of at least n

3
clients. Additionally, the

protocol is robust to up to ⌈n
3
⌉ − 1 users dropping out.

For all the results above, we reiterate that if we want
security against servers that are allowed to actively deviate

10

from the protocol (whether or not they collaborate with
clients), we must use include the protocol features highlighted
in Figure 4.

7 EVALUATION
We summarize the protocol’s performance in Table 3. All
calculations below assume a single server and n users, where
each user holds a data vector of size m. We evaluate the
honest-but-curious version of the protocol, and ignore the cost
of the PKI, all signatures, and Round ConsistencyCheck.
We note that including their cost does not change any of the
asymptotics, and only slightly increases the computation and
communication costs.

7.1 Performance Analysis of Client
Computation cost: O(n2 +mn). Each user u’s computa-
tion cost can be broken up as (1) Performing the 2n key
agreements, which take O(n) time, (2) Creating t-out-of-n
Shamir secret shares of sSK

u and bu, which is O(n2) and (3)
Generating values pu and pu,v for every other user v for
each entry in the input vector by stretching one PRG seed
each, which takes O(mn) time in total. Overall, each user’s
computation is O(n2 +mn).

Communication cost: O(n +m). The communication
costs of each user can be broken up into 4 parts: (1) Exchang-
ing keys with each other user by sending 2 and receiving
2(n − 1) public keys, (2) Sending 2(n − 1) and receiving
2(n− 1) encrypted secret shares, (3) Sending a masked data
vector of size m⌈log2 R⌉ to the server, and (4) Sending the
server n secret shares, for an overall communication cost of
2naK+(5n−4)aS+m⌈log2 R⌉, where aK and aS are the num-
ber of bits in a key exchange public key and the number of bits
in a secret share, respectively. Overall, the user’s communica-
tion complexity is O(n+m). Assuming inputs for each user are
on the same range [0, RU − 1], we require R = n(RU − 1) + 1
to avoid overflow. A user could transmit its raw data us-
ing m⌈log2 RU⌉ bits. Taking aK = aS = 256 bits implies a
communication expansion factor of 256(7n−4)+m⌈log2 R⌉

m⌈log2 RU ⌉ . For
RU = 216 (i.e. 16-bit input values), m = 220 elements, and
n = 210 users, the expansion factor is 1.73×; for n = 214

users, it is 3.62×. For m = 224 elements and n = 214 users,
the expansion factor is 1.98×.

Storage cost: O(n +m). The user must store the keys
and secret-shares sent by each other user, which are O(n)
in total, and the data vector (which it can mask in-place),
which has size O(m).

7.2 Performance Analysis of Server
Computation cost: O(mn2). The server’s computation
cost can be broken down as (1) Reconstructing n t-out-of-n
Shamir secrets (one for each user), which takes total time
O(n2), and (2) generating and removing the appropriate pu,v

and pu values from the sum of the yu values received, which
takes time O(mn2) in the worst case.

We note that reconstructing n secrets in the Shamir scheme
takes O(n3) time in the general case: each secret reconstruc-
tion SS.recon({(u, su)}u∈U′ , t)→ s amounts to interpolat-
ing a polynomial L over the points encoded by the shares
and then evaluating at 0, which can be accomplished via
Lagrange polynomials:

s = L(0) =
∑
u∈U′

su
∏

v∈U′\{u}

v

v − u
(mod p)

Each reconstruction requires O(n2) computation and we
must perform n reconstructions, implying O(n3) total time.
However, in our setting, we can perform all of the recon-
structions in O(n2) time by observing that all of our secrets
will be reconstructed from identically-indexed sets of secret
shares – that is, U ′ is fixed across all secrets, because in round
Unmasking, each user that is still alive sends a share of
every secret that needs to be reconstructed. Therefore, we
can precompute the Lagrange basis polynomials

ℓu =
∏

v∈U′\{u}

v

v − u
(mod p)

in O(n2) time and O(n) space, then reconstruct each of n
secrets in O(n) time as L(0) =

∑
u∈U′ suℓu (mod p) resulting

in a total computational cost of O(n2) to reconstruct all the
secrets.

We also note that the O(mn2) term can be broken into
O(m(n − d) + md(n − d)), where d is the number of users
that dropped from the protocol. In practice, d may be signif-
icantly smaller than n, which would also reduce the server’s
computation cost.

Communication cost: O(n2 + mn). The server’s com-
munication cost is dominated by its mediation of all pairwise
communications between users, which is O(n2), and also for
receiving masked data vectors from each user, which is O(mn)
in total.

Storage cost: O(n2 +m). The server must store t shares
for each user, which is O(n2) in total, along with an m-
element buffer in which to maintain a running sum of yu as
they arrive.

7.3 Prototype Performance
In order to measure performance, we implemented a proto-
type in Java, with the following cryptographic primitives:

• For Key Agreement, we used Elliptic-Curve Diffie-
Hellman over the NIST P-256 curve, composed with
a SHA-256 hash.

• For Secret Sharing, we used standard t-out-of-n
Shamir Sharing.

• For Authenticated Encryption, we used AES-GCM
with 128-bit keys.

• For the Pseudorandom Number Generator, we used
AES in counter mode.

We assume an honest-but-curious setting, and thus omitted
the portions of Figure 4 special to active clients from our
simulations. We note that these omissions would not change
the overall shape of our results in practice, since, as we discuss

11

(a) Wall-clock running time per client, as the number of
clients increases. The data vector size is fixed to 100K
entries.

(b) Wall-clock running time per client, as the size of the
data vector increases. The number of clients is fixed to
500.

(c) Total data transfer per client, as the number of clients
increases. Different lines show different data vector sizes.
Assumes no dropouts.

(d) Total data expansion factor per client, as compared
to sending the raw data vector to the server. Differ-
ent lines represent different values of n. Assumes no
dropouts.

Figure 6: Client Running Time and Data Transfer Costs. All wall-clock running times are for a single-threaded
client implemented in Java, and ignore communication latency. Plotted points represent averages over 10 end-
to-end iterations, and error bars represent 95% confidence intervals. (Error bars are omitted where measured
standard deviation was less than 1%).

below, the bulk of the costs involve masking, storing and
sending the large data vector.

Additionally, we assume that when clients drop out of
the protocol, that they drop after sending their shares to all
other clients, but before sending their masked input to the
server. This is essentially the “worst case” dropout, since all
other clients have already incorporated the dropped clients’
masks, and the server must perform an expensive recovery
computation to remove them. We also assumed that client’s
data vectors had entries such that at most 3 bytes are required
to store the sum of up to all clients’ values without overflow.

We ran single-threaded simulations on a Linux workstation
with an Intel Xeon CPU E5-1650 v3 (3.50 GHz), with 32 GB
of RAM. Wall-clock running times and communication costs
for clients are plotted in Figure 6. Wall clock running times
for the server are plotted in Figure 7, with different lines

representing different percentages of clients dropping out.
Figure 8 shows wall-clock times per round for both the client
and the server. We omit data transfer plots for the server, as
they are essentially identical to those for the client, except
higher by a factor of n. This is because the incoming data
of the server is exactly the total outgoing data of all clients,
and vice versa. We also do not plot bandwidth numbers for
different numbers of dropouts, as the number of dropouts
does not have a significant impact on this metric.

In our simulations, for both the client and the server,
almost all of the computation cost comes from expanding the
various PRG seeds to mask the data vector. Compared to
this, the computational costs of key agreement, secret sharing
and reconstruction, and encrypting and decrypting messages
between clients, are essentially negligible, especially for large
choices of n and data vector size. This suggests that using

12

(a) Wall-clock running time for the server, as the number
of clients increases. The data vector size is fixed to 100K
entries.

(b) Wall-clock running time for the server, as the size of
the data vector increases. The number of clients is fixed
to 500.

Figure 7: Server Running Time and Data Transfer Costs. All wall-clock running times are for a single-threaded
server implemented in Java, and ignore communication latency. Plotted points represent averages over 10 end-
to-end iterations. Error bars are omitted where measured standard deviations are less than 1%.

Num. Clients Dropouts AdvertiseKeys ShareKeys MaskedInputColl. Unmasking Total
Client 500 0% 1 ms 154 ms 694 ms 1 ms 849 ms
Server 500 0% 1 ms 26 ms 723 ms 1268 ms 2018 ms
Server 500 10% 1 ms 29 ms 623 ms 61586 ms 62239 ms
Server 500 30% 1 ms 28 ms 514 ms 142847 ms 143389 ms
Client 1000 0% 1 ms 336 ms 1357 ms 5 ms 1699 ms
Server 1000 0% 6 ms 148 ms 1481 ms 3253 ms 4887 ms
Server 1000 10% 6 ms 143 ms 1406 ms 179320 ms 180875 ms
Server 1000 30% 8 ms 143 ms 1169 ms 412446 ms 413767 ms

Figure 8: CPU wall clock times per round. All wall-clock running times are for a single-threaded servers and
clients implemented in Java, and ignore communication latency. Each entry represents the average over 10
iterations. The data vector size is fixed to 100K entries with 24 bit entries.

Num. Clients Total Runtime Per-Client StdDev Server Total Runtime StdDev Total Communication Per Client
500 13159 ms 6443 ms 14670 ms 6574 ms 0.95 MB
1000 23497 ms 6271 ms 27855 ms 6874 ms 1.15 MB

Figure 9: End-to-End running time for the protocol, executed over a wide-area-network. All running times
are for a single-threaded servers and clients running in geographically separated datacenters, and include
computation time, network latency, and time spent waiting for other participants. Each entry represents the
average over 15 iterations, with iterations more than 3 standard deviations from the mean discarded. The
data vector size is fixed to 100K entries with 62 bits per entry, and there are no induced dropouts (beyond
<1% that occurred naturally).

an optimized PRG implementation would yield a significant
running-time improvement over our prototype.

As seen in Figures 6a and 6b, the running time of each
client increases linearly with both the total number of clients
and the number of data vector entries, but does not change
significantly when more clients drop out. In Figure 6c, the
communication expansion factor for each client increases as
the total number of clients increases, but this increase is
relatively small compared to the impact of increasing the size
of the data vector. This is also reflected in Figure 6d, where

the communication expansion factor for each client increases
as the total number of clients increases, but falls quickly as
the size of the data vector increases. This shows that the cost
of messages between clients amortizes well as the size of the
data vector increases.

In the case of the server, Figures 7a and 7b show that the
running time of the server increases significantly with the
fraction of dropouts. This is because, for each dropped client
u, the server must remove that client’s pairwise masks pu,v

from each other surviving client v, which requires (n − d)

13

PRG expansions, where d is the number of dropped users.
In contrast, each undropped user entails only a single PRG
expansion, to remove its self-mask. The high cost of dealing
with dropped users is also reflected in the server running
times in Figure 8.

In Figure 9, we show the results of running the protocol over
a Wide Area Network (WAN). The server and clients were
run on geographically seperated datacenters, with contention
for CPU and network. We give the standard deviations of the
running times, which reflects this contention, and occasional
machine failures (<1% of clients per execution). We observe
that the clients have a somewhat shorter runtime than the
server: this is because the server has to run the additional
(expensive) unmasking step after all clients have completed.

8 DISCUSSION AND FUTURE WORK
Identifying and Recovering from Abuse The security
proof in Theorem A.2 guarantees that when users’ inputs
are learned by the server, they are always in aggregate with
the values of other users. However, we do not protect against
actively adversarial clients that try to prevent the server from
learning any sum at all. For example, an attacker-controlled
client could send malformed messages to other clients, causing
enough of them to abort that the protocol fails before the
server can compute its output. Ideally, we would like such
abuse by corrupt clients to be efficiently identifiable, and the
protocol to gracefully recover from it. However, the problem
of assigning blame for abuse is subtle, and often adds several
rounds to protocols. We leave this problem to future work.

Enforcing Well-formed Inputs Our protocol also does
not verify that users’ inputs are well-formed or within any
particular bounds, so actively adversarial users could send
arbitrary values of their choice, that can cause the output
learned by the server to also be ill-formed. For our specific
machine learning application, we will be able to detect ob-
viously malformed outputs and can simply run the protocol
again with a different set of clients. However, an adversarial
client may be able to supply “slightly” malformed input values
that are hard to detect, such as double its real values.

A possible solution is to use zero-knowledge proofs that
the client inputs are in the correct range. Unfortunately, even
using the best-known garbled circuit techniques [35], even
one such proof would be more costly than the entire protocol.
We leave the problem of guaranteeing well-formed inputs
from the clients to future work.

Reducing Communication Further In the protocol we
describe, all clients exchange pairwise masks with all other
clients. However, it may be sufficient to have the clients ex-
change masks with only a subset of other clients, as long as
these subsets of clients do not form disjoint clusters. In fact,
previous works (notably, Ács et al. [3]) use this approach
already. However, in our setting, this requires extra care be-
cause the server facilitates the communication among clients,
and an actively adversarial server can choose dropouts based
on its knowledge of which pairs of clients exchanged masks
with each other. We leave this improvement to future work.

9 RELATED WORK
As noted in Section 2, we emphasize that our focus is on mo-
bile devices, where bandwidth is expensive, and dropouts are
common, and in our setting there is a single service provider.
Consequently, our main goal is to minimize communication
while guaranteeing robustness to dropouts. Computational
cost is an important, but secondary, concern. These con-
straints will motivate our discussion of, and comparison with,
existing works.

Works based on Multiple non-Colluding Servers:
To overcome the constraints of client devices, some previous
work has suggested that clients distribute their trust across
multiple non-colluding servers, and this has been deployed
in real-world applications [11]. The recently presented Prio
system of Gibbs and Boneh [17] is, from the perspective of the
client devices, non-interactive, and the computation among
the servers is very lightweight. Prio also allows client inputs
to be validated, something our current system cannot do, by
relying on multiple servers.

Araki et al. recently presented a generic three-party compu-
tation protocol that achieves very high throughput [5]. This
protocol could also be used in a setting where non-colluding
servers are available, with the clients sending shares to each
server that will be combined online.

Works based on Generic Secure Multiparty Com-
putation: As noted in Section 1, there is a long line of work
showing how multiple parties can securely compute any func-
tion using generic secure MPC [9, 19, 28, 42, 43]. These works
generally fall into two categories: those based on Yao’s gar-
bled circuits, and those based on homomorphic encryption or
secret sharing. The protocols based on Yao’s garbled circuits
are better suited to 2- or 3-party secure computation and do
not directly extend to hundreds of users.

MPC protocols based on secret sharing, however, can ex-
tend to hundreds of users. In addition, these protocols have
become relatively computationally efficient, and can be made
robust against dropouts. Boyle et al. studied generic MPC
at such scale, relying on a particular ORAM construction
to help localize the computation and avoid broadcasts [12].
Some works, notably [13], optimize these generic techniques
for the specific task of secure summation, and have publicly
available implementations.

However, the weakness of generic MPC protocols based on
secret-sharing is communication cost. In all such protocols,
each user sends a secret-share of its entire data vector to
some subset of the other users. To guarantee robustness,
this subset of users must be relatively large: robustness is
essentially proportional to the size of the subset. Additionally,
each secret share is as long as the size of the entire data vector.
In our setting the constraints on total communication make
these approaches unworkable.

Works based on Dining Cryptographers Networks:
Dining cryptographers networks, or DC-nets, are a type of
communication network which provide anonymity by using
pairwise blinding of inputs [15, 29], similarly to our secure
aggregation protocol. The basic version of DC-nets, in which

14

a single participant at a time sends an anonymous message,
can be viewed as the restricted case of secure aggregation in
which all users except for one have an input of 0.

Recent research has examined increasing the efficiency
of DC-nets protocols and allowing them to operate in the
presence of active adversaries [18]. But previous DC-nets
constructions share the flaw that, if even one user aborts the
protocol before sending its message, the protocol must be
restarted from scratch, which can be very expensive [38].

Works based on Pairwise Additive Masking: Pair-
wise blinding using additive stream ciphers has been ex-
plored in previous work [3, 25, 32, 34], presenting different
approaches to dealing with client failures.

The work of Ács and Castelluccia [3], and the modification
suggested by [32], are the most closely related to our scheme,
and have an explicit recovery round to deal with failures.
Their protocols operate very similarly to ours: pairs of clients
use Diffie-Hellman key exchange to agree on pairwise masks,
and send the server their data vectors, summed with each of
their pairwise masks and also a “self-mask”. In the recovery
step, the server tells the remaining clients which other clients
dropped out, and each remaining client responds with the
sum of their (uncancelled) pairwise masks with the dropped
users, added to their “self-mask”. The server subtracts these
"recovery" values from the masked vectors received earlier,
and correctly learns the sum of the undropped users’ data.

However, their recovery phase is brittle: if additional users
drop out during the recovery phase, the protocol cannot
continue. Simply repeating the recovery round is not sufficient,
since this has the potential to leak the “self-masks” of the
surviving users, which in turn can leak their data vectors.
Moreover, since the entire sum of the masks is sent, this
round requires almost as much communication as the rest of
the protocol, making further client failures during this step
likely.

Schemes based on (Threshold) Homomorphic
Encryption Schemes based on threshold additively-
homomorphic cryptosystems (e.g. the Paillier cryptosys-
tem [40, 49]) can handle client dropouts, but are either
computationally expensive or require additional trust as-
sumptions. For example, Paillier-based schemes require an
expensive-to-generate set of threshold decryption keys, that
must either be generated and distributed by a trusted third
party or generated online with an expensive protocol. Simi-
larly the pairing-based scheme of Leontiadis et al. [41] calls
for a trusted dealer to set up the keys.

The schemes of Shi et al. [51] and Chan et al. [14] use an
approach similar to ours, but in the exponent in some group
(the latter scheme extends the former to provide robustness
against client dropouts). They also consider the need for
differential privacy and give a rigorous analysis of distributed
noise generation. Unfortunately, the size of the group elements
is too large for our setting, and their schemes also call for a
trusted dealer.

Halevi, Lindell and Pinkas [33] present a protocol that
uses homomorphic encryption to securely compute the sum

in just one round of interaction between the server and each
of the clients (assuming a PKI is already in place). Their
protocol has the advantage that all parties do not need to be
online simultaneously for the protocol to execute. However,
the protocol also requires the communication to be carried
out sequentially between the clients and the server. More
importantly for our setting, their protocol does not deal with
clients dropping out: all clients included in the protocol must
respond before the server can learn the decrypted sum.

10 CONCLUSION
We have presented a practical protocol for securely aggregat-
ing data while ensuring that clients’ inputs are only learned
by the server in aggregate. The overhead of our protocol is
very low, and it can tolerate large numbers of failing devices,
making it ideal for mobile applications. We require only one
service provider, which simplifies deployment. Our protocol
has immediate applications to real-world federated learning,
and we expect to deploy a full application in the near future.

REFERENCES
[1] Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan,

Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with
differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages
308–318. ACM, 2016.

[2] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle
diffie-hellman assumptions and an analysis of dhies. In Cryptog-
raphers’ Track at the RSA Conference, pages 143–158. Springer,
2001.

[3] Gergely Ács and Claude Castelluccia. I have a DREAM! (DiffeR-
entially privatE smArt Metering). In International Workshop on
Information Hiding, pages 118–132. Springer, 2011.

[4] Stephen Advokat. Publication of bork’s video rentals raises pri-
vacy issue. Chicago Tribune, 1987.

[5] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and
Kazuma Ohara. High-throughput semi-honest secure three-party
computation with an honest majority. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 805–817, New York, NY, USA, 2016.
ACM.

[6] Michael Barbaro, Tom Zeller, and Saul Hansell. A face is exposed
for aol searcher no. 4417749. New York Times, 9(2008), 2006.

[7] Mihir Bellare and Chanathip Namprempre. Authenticated en-
cryption: Relations among notions and analysis of the generic
composition paradigm. In International Conference on the The-
ory and Application of Cryptology and Information Security,
pages 531–545. Springer, 2000.

[8] Mihir Bellare and Phillip Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. In Proceedings of the
1st ACM conference on Computer and communications security,
pages 62–73. ACM, 1993.

[9] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Complete-
ness theorems for non-cryptographic fault-tolerant distributed
computation. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 1–10. ACM, 1988.

[10] Manuel Blum and Silvio Micali. How to generate cryptographi-
cally strong sequences of pseudorandom bits. SIAM journal on
Computing, 13(4):850–864, 1984.

[11] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin
Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen,
Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, et al. Secure
multiparty computation goes live. In International Conference
on Financial Cryptography and Data Security, pages 325–343.
Springer, 2009.

[12] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-Scale
Secure Computation: Multi-party Computation for (Parallel)
RAM Programs, pages 742–762. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2015.

15

[13] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas
Dimitropoulos. Sepia: Privacy-preserving aggregation of multi-
domain network events and statistics. Network, 1:101101, 2010.

[14] T-H Hubert Chan, Elaine Shi, and Dawn Song. Privacy-preserving
stream aggregation with fault tolerance. In International Con-
ference on Financial Cryptography and Data Security, pages
200–214. Springer, 2012.

[15] David Chaum. The dining cryptographers problem: uncondi-
tional sender and recipient untraceability. Journal of Cryptology,
1(1):65–75, 1988.

[16] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
Revisiting distributed synchronous sgd. In ICLR Workshop Track,
2016.

[17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and
scalable computation of aggregate statistics. In 14th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 17), pages 259–282, Boston, MA, 2017. USENIX
Association.

[18] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford.
Proactively accountable anonymous messaging in verdict. In
USENIX Security, pages 147–162, 2013.

[19] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryp-
tion. In Advances in Cryptology–CRYPTO 2012, pages 643–662.
Springer, 2012.

[20] Whitfield Diffie and Martin Hellman. New directions in cryptogra-
phy. IEEE transactions on Information Theory, 22(6):644–654,
1976.

[21] John C Duchi, Michael I Jordan, and Martin J Wainwright. Local
privacy and statistical minimax rates. In Foundations of Com-
puter Science (FOCS), 2013 IEEE 54th Annual Symposium on,
pages 429–438. IEEE, 2013.

[22] Cynthia Dwork. Differential privacy. In 33rd International
Colloquium on Automata, Languages and Programming, part
II (ICALP 2006), volume 4052, pages 1–12, Venice, Italy, July
2006. Springer Verlag.

[23] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya
Mironov, and Moni Naor. Our data, ourselves: Privacy via dis-
tributed noise generation. In Eurocrypt, volume 4004, pages
486–503. Springer, 2006.

[24] Cynthia Dwork and Aaron Roth. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theoretical
Computer Science, 9(3–4):211–407, 2014.

[25] Tariq Elahi, George Danezis, and Ian Goldberg. Privex: Private
collection of traffic statistics for anonymous communication net-
works. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 1068–1079.
ACM, 2014.

[26] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor:
Randomized aggregatable privacy-preserving ordinal response. In
Proceedings of the 2014 ACM SIGSAC conference on computer
and communications security, pages 1054–1067. ACM, 2014.

[27] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model
inversion attacks that exploit confidence information and basic
countermeasures. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages
1322–1333. ACM, 2015.

[28] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 218–229. ACM, 1987.

[29] Philippe Golle and Ari Juels. Dining cryptographers revisited.
In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 456–473. Springer, 2004.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. Book in preparation for MIT Press, 2016.

[31] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey
Parker. Language modeling for soft keyboards. In Proceedings of
the 7th international conference on Intelligent user interfaces,
pages 194–195. ACM, 2002.

[32] Slawomir Goryczka and Li Xiong. A comprehensive comparison
of multiparty secure additions with differential privacy. IEEE
Transactions on Dependable and Secure Computing, 2015.

[33] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computa-
tion on the web: Computing without simultaneous interaction. In
Annual Cryptology Conference, pages 132–150. Springer, 2011.

[34] Rob Jansen and Aaron Johnson. Safely measuring tor. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, pages 1553–1567. ACM, 2016.
[35] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-

knowledge using garbled circuits: how to prove non-algebraic
statements efficiently. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 955–
966. ACM, 2013.

[36] Neal Koblitz and Alfred J Menezes. The random oracle model:
a twenty-year retrospective. Designs, Codes and Cryptography,
77(2-3):587–610, 2015.

[37] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter
Richtárik, Ananda Theertha Suresh, and Dave Bacon. Feder-
ated learning: Strategies for improving communication efficiency.
arXiv preprint arXiv:1610.05492, 2016.

[38] Young Hyun Kwon. Riffle: An efficient communication system
with strong anonymity. PhD thesis, Massachusetts Institute of
Technology, 2015.

[39] Vasileios Lampos, Andrew C Miller, Steve Crossan, and Christian
Stefansen. Advances in nowcasting influenza-like illness rates
using search query logs. Scientific reports, 5:12760, 2015.

[40] Iraklis Leontiadis, Kaoutar Elkhiyaoui, and Refik Molva. Private
and Dynamic Time-Series Data Aggregation with Trust Relax-
ation, pages 305–320. Springer International Publishing, Cham,
2014.

[41] Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, and Refik
Molva. PUDA – Privacy and Unforgeability for Data Aggre-
gation, pages 3–18. Springer International Publishing, Cham,
2015.

[42] Yehuda Lindell, Eli Oxman, and Benny Pinkas. The ips compiler:
Optimizations, variants and concrete efficiency. Advances in
Cryptology–CRYPTO 2011, pages 259–276, 2011.

[43] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai.
Efficient constant round multi-party computation combining bmr
and spdz. In Annual Cryptology Conference, pages 319–338.
Springer, 2015.

[44] Kathryn Elizabeth McCabe. Just you and me and netflix makes
three: Implications for allowing frictionless sharing of personally
identifiable information under the video privacy protection act.
J. Intell. Prop. L., 20:413, 2012.

[45] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hamp-
son, et al. Communication-efficient learning of deep networks
from decentralized data. arXiv preprint arXiv:1602.05629, 2016.

[46] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan.
Computational differential privacy. In Advances in Cryptology-
CRYPTO 2009, pages 126–142. Springer, 2009.

[47] Arvind Narayanan and Vitaly Shmatikov. Robust de-
anonymization of large sparse datasets. In 2008 IEEE Symposium
on Security and Privacy (sp 2008), pages 111–125. IEEE, 2008.

[48] John Paparrizos, Ryen W White, and Eric Horvitz. Screening
for pancreatic adenocarcinoma using signals from web search
logs: Feasibility study and results. Journal of Oncology Practice,
12(8):737–744, 2016.

[49] Vibhor Rastogi and Suman Nath. Differentially private aggrega-
tion of distributed time-series with transformation and encryption.
In Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of data, pages 735–746. ACM, 2010.

[50] Adi Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[51] Elaine Shi, HTH Chan, Eleanor Rieffel, Richard Chow, and Dawn
Song. Privacy-preserving aggregation of time-series data. In
Annual Network & Distributed System Security Symposium
(NDSS). Internet Society., 2011.

[52] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep
learning. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 1310–1321.
ACM, 2015.

[53] Reza Shokri, Marco Stronati, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. arXiv preprint
arXiv:1610.05820, 2016.

[54] Latanya Sweeney and Ji Su Yoo. De-anonymizing south korean
resident registration numbers shared in prescription data. Tech-
nology Science, 2015.

[55] Martin J Wainwright, Michael I Jordan, and John C Duchi. Pri-
vacy aware learning. In Advances in Neural Information Pro-
cessing Systems, pages 1430–1438, 2012.

[56] Andrew C Yao. Theory and application of trapdoor functions. In
Foundations of Computer Science, 1982. SFCS’08. 23rd Annual
Symposium on, pages 80–91. IEEE, 1982.

16

A PRIVACY AGAINST ACTIVE
ADVERSARIES

In this section, we give formal arguments showing that our
protocol preserves privacy against active adversaries.

Before we state our theorems, we introduce some addi-
tional definitions and notation for the setting of active and
colluding users and servers. As is standard, we consider
only computationally-bounded adversarial parties, namely
those whose strategies can be described by some probabilistic
polynomial-time algorithm M . We note that our proofs will
be performed in the so-called “Random Oracle” model [8]. A
random oracle O can be thought of as a perfectly random
function in the sky, which can be queried on any input x and
bit length l, and which returns O(x), a binary string of length
l, such that each O(x) is uniformly random and independent,
and such that repeated queries on the same x and l give the
same result. A random oracle can also be thought of as a
“perfect PRG”: whereas PRG(x) outputs a pseudorandom
string, O(x) outputs a truly random string. While a random
oracle can never actually be instantiated due to its provably
exponential size, it is often replaced with a cryptographic
hash function with little practical loss in security [36]. In our
proofs in this section, we will assume that a common random
oracle O is available to all the parties, who can each make
arbitrarily many oracle queries to O during the course of
their execution. Also, all honest parties will substitute all
PRG calls with calls to O, on the same input as they used
for the PRG, and with the appropriate bit length l.

We also allow the adversarial parties to adaptively choose
the set of honest parties that (truly) abort in that round,
which gives them more power than having the aborts be
independently chosen, or predetermined fixed in advance.

For fixed n, t and k and a set C of corrupt parties, we
let MC indicate the polynomial-time algorithm that denotes
the “next-message” function of parties in C. That is, given a
party identifier c ∈ C, a round index i, a transcript T of all
messages sent and received so far by all parties in C, joint
randomness rC for the corrupt parties’ execution, and access
to random oracle O, MC(c, i, T, rC) outputs the message for
party c in round i (possibly making several queries to O along
the way). Additionally, given a round index i, a transcript T
of all messages sent and received so far by all parties in C,
and joint randomness rC for the corrupt parties’ execution,
MC(i, T, rC) outputs the set of parties Ui that abort due to
failure in that round (again, possibly making several queries
to O along the way). 9 We note that MC is thus effectively
choosing the inputs for all corrupt users.

Let REAL
U,t,k
C (MC ,xU) be a random variable representing

the combined views of all parties in C in the above protocol
execution, where all corrupt parties’ messages and the inde-
pendent failures of the honest parties are chosen using MC,
and all parties including MC have access to O. The random
variable’s distribution is over the random choices of honest

9Note that additional honest parties may also abort in each round if
the messages they receive from corrupt parties are malformed.

parties’ randomness and rC, over randomness of setup, and
of the random oracle O which is provided to all parties.

As in the case of honest-but-curious users, we consider two
separate cases: one where only a subset of users are adver-
sarial and colluding, and one where the server is additionally
adversarial and colluding with some subset of corrupt users.

Theorem A.1 (Privacy against actively adversar-
ial users, with honest server). There exists a PPT
simulator SIM such that for all PPT adversaries MC, all
k, t,U ,xU\C, C ⊆ U , the output of SIM is perfectly indistin-
guishable from the output of REALU,t,k

C :

REAL
U,t,k
C (MC ,xU\C) ≡ SIM

U,t,k
C (MC)

Proof. The proof is identical to that for Theorem 6.2:
even though the adversarial users additionally get to send
arbitrary messages and select the abort pattern of the honest
users, the messages they receive from honest users never
depend on the private input xu of those users. Thus, the
simulator can emulate the real view of the corrupted users
C by using MC for the adversarial users, and running the
honest users on dummy inputs.

Note: Though SIM does not get access to a random oracle
O, it can simulate O on the fly using standard techniques.
Specifically, it first creates an internal table mapping x to
O(x) that is initially empty. Now, whenever a party making
an oracle request on input x, SIM checks if x is in its table, and
if so, returns the associated O(x), and otherwise, generates a
fresh, uniformly random string for O(x), puts (x,O(x)) in its
table, and sends O(x) as the response to the querying party.
Since all parties run in polynomial time, the table can never
grow to more than polynomial size, so SIM remains efficient,
and additionally, all parties get exactly the same uniformly
random distribution of responses to oracle queries as they
would from a real O. □

We now proceed to the proof of security when the adver-
sarial also include the server. Before we do so, we recall that,
in contrast with Theorem 6.3, MC is now allowed to dynam-
ically choose which users abort in each round, rather than
the aborts being statically fixed beforehand. Accordingly, the
particular subset of honest users for which the server learns
the sum is dynamically determined during the execution of
the protocol, and in particular, we can no longer provide a
sum z of some fixed subset of the users’ inputs as input to
the simulator SIM. Instead, we will allow SIM to make a single
query to an ideal functionality that will allow it to learn the
sum z of values for a single subset L of honest parties, chosen
dynamically by SIM at run-time. More formally, we give SIM

access to an oracle Idealδ{xu}u∈U\C
for appropriately chosen

δ, such that Idealδ{xu}u∈U\C
can be queried only once, and,

given a subset L, operates as follows:

Idealδ{xu}u∈U\C (L) =

{∑
u∈L xu if L ⊆ (U \ C) and |L|≥ δ

⊥ otherwise

We also stress that in order to leverage the security of the
key agreement in a context where some of the clients might
be active adversaries, the following theorem relies on a slight

17

variant of the Oracle Diffie-Hellman assumption (ODH) [2],
which we call Two Oracle Diffie-Hellman assumption (2ODH)
and detail in the appendix.

The theorem shows that the joint view of colluding corrupt
parties in a real execution of a protocol can be simulated
given only a single sum of a (dynamically-chosen) subset of
at least δ honest users, meaning intuitively that the corrupt
parties learn “nothing more” than a single sum of a subset of
the honest parties’ inputs.

Theorem A.2 (Privacy against active adversaries,
including the server). There exists a PPT simulator
SIM such that for all k, t,U , C ⊆ U ∪ {S} and xU\C, letting
n = |U| and nC = |C ∩ U|, if 2t > n+ nC, then the output of
SIM is computationally indistinguishable from the output of
REALU,t,k:

REAL
U,t,k
C (MC ,xU\C) ≈c SIM

U,t,k,Idealδ{xu}u∈U\C
C (MC)

where δ = t− nC.

Proof. We prove the theorem by a standard hybrid ar-
gument. We will define a simulator SIM through a series of
(polynomially many) subsequent modifications to the real
execution REAL, so that the views of MC in any two subse-
quent executions are computationally indistinguishable. In
each of the hybrids below, even though we do not explicitly
mention it, SIM will cause honest parties to abort as they
would during the real the protocol (e.g., if they receive a
malformed message), and also if they are in a set Ui output
by MC .

Hyb0 This random variable is distributed exactly as the
view of MC in REAL, the joint view of the parties C
in a real execution of the protocol.

Hyb1 In this hybrid, the real execution is emulated by
a simulator that knows all the inputs xu of the honest
parties, and runs a full execution of the protocol with
MC, which includes simulating the random oracle
“on the fly” (using a dynamically generated table),
the PKI and the rest of the setup phase.

The view of the adversary in this hybrid is the
same as the previous one.

Hyb2 In this hybrid, the simulator additionally aborts
if MC provides any of the honest parties u (in round
AdvertiseKeys) with a correct signature with re-
spect to an honest v’s public key, on (cPK

v ||sPK
v)

different from those sent by v. Since this amounts to
breaking the security of the signature scheme, this
hybrid is identical from the previous one.

Hyb3 This hybrid is identical to Hyb2, except that, for
any pair of honest users u, v, the messages among
them are encrypted (in round ShareKeys, before
being given to MC) and decrypted (in round Un-
masking, after MC has delivered them) using a uni-
formly random key (as opposed to the one obtained
through the key agreement KA.agree(cSK

u , cPK
v)).

The 2ODH assumption guarantees that this hy-
brid is indistinguishable from the previous one. In

particular, we can switch the encryption keys be-
tween one pair of honest users at a time (since n is
polynomial in k, there are only polynomially many
pairs of honest users), and argue that an adversary
noticing the difference when one key is switched will
also be able to break the 2ODH.

Hyb4 This hybrid is identical to Hyb3, except addi-
tionally, SIM will abort if MC succeeds to deliver, in
round ShareKeys, a message to an honest client u
on behalf of another honest client v, such that i) the
message is different from the message SIM had given
MC in round ShareKeys, and ii) the message does
not cause the decryption algorithm (using the proper
key) to fail. Note that, as the encryption key that
the two users were using in the previous hybrid was
randomly selected, such a message would directly
constitute a forgery against the INT-CTXT security
of the encryption scheme.

Hyb5 In this hybrid, in addition, SIM substitutes all
the encrypted shares sent between pairs of honest
users with encryptions of 0. (It still returns the “real”
shares in Round Unmasking as it did before).

Note that, since the corresponding encryption
keys were chosen uniformly at random, IND-CPA
security of the encryption scheme guarantees this
hybrid is indistinguishable from the previous one.

Hyb6 In this hybrid, in addition, SIM aborts if MC
provides any of the honest parties (in round Con-
sistencyCheck) with a signature on a set which
correctly verifies w.r.t. the public key of an honest
party, but such that the honest client never produced
a signature on that set.

Because of the security of the signature scheme,
such forgeries can happen only with negligible proba-
bility, therefore this hybrid is indistinguishable from
the previous one.

We are now able to define the set Q to be the only
setQ ⊆ U such that there exists an honest user which
received the set Q in round ConsistencyCheck,
and later received at least t valid signatures on it
in round Unmasking (where valid means that the
signatures verify with respect to a set of distinct
public signature keys among those received by the
client from the trusted party at the start of the
protocol).

In case no such setQ exists (e.g. no set had enough
signatures, or not enough honest users survived), we
define Q = ∅.

Note that this set is well defined: since the server
cannot forge signatures on behalf of the honest
clients, and each honest client will sign at most one
set Q, if there were two such sets this would imply
that at least t − nC distinct honest parties signed
each of them, i.e. that 2(t − nC) ≤ n − nC, which
directly contradicts 2t > n+ nC .

18

Hyb7 In this hybrid, in addition, SIM aborts if MC
queries the random oracle/PRG on input bu for
some honest user u (i.e. the value sampled by SIM

on behalf of u in round ShareKeys) either i) before
the adversary received the responses from the hon-
est players in round Unmasking or ii) after such
responses have been received, but where u ̸∈ Q.

In both cases, because the value bu is information
theoretically hidden from MC , SIM will abort due to
this new condition only if MC is able to guess one of
the bu, which can only happen with negligible prob-
ability (as they are chosen from the exponentially
large domain F). To see why the view of MC does
not depend on bu, let us analyze which of the view’s
components depend on any bu. In case i), MC only
receives from SIM at most nC shares of b (sent by u
in round ShareKeys, one for each of the corrupt
clients). However. since nC < t, the distribution of
any such shares is independent from bu (because of
the properties of secret sharing). Even in case ii), the
view of MC is still independent from bu: since u ̸∈ Q,
no honest user would send to the server any share of
bu, and therefore SIM does not have to send any to
MC .

Hyb8 In this hybrid, in addition, SIM aborts if MC
queries the random oracle/PRG on input su,v for
some honest users u, v either i) before the adversary
received the responses from the honest players in
round Unmasking or ii) after such responses have
been received, but where u, v ∈ Q.

To argue that this hybrid is indistinguishable from
the previous one (except with negligible probabil-
ity), we will reduce to the security of the 2ODH as-
sumption. In particular, consider a distinguisher SIM′

which receives a 2ODH challenge (G′, g, q, A,B, z)
and guesses at random two honest users u, v, hop-
ing that the adversary’s query which will cause the
simulator to abort will be exactly su,v. SIM′ acts ex-
actly as SIM in the previous hybrid, except it sets up
sPK
u = A and sPK

v = B as the public keys for those
users and uses its two oracles to complete the sim-
ulation without having access to the corresponding
secret keys. In particular, in round AdvertiseKeys,
SIM′ sends these modified public keys to MC (as op-
posed to the fresh ones SIM would have sampled in the
previous hybrid). In round ShareKeys, rather than
generating shares of the secret keys sSK

u and sSK
v

(which it does not know), it generates and sends to
the corrupt parties shares of 0. In round MaskedIn-
putCollection, when generating y values for all the
honest users (to be sent to MC), SIM′ sets su,v = z,
and uses its two oracles Oa and Ob to compute all
other required s values for u and v and other users.
Then, if MC makes a random oracle query for z, SIM′

will guess that z = H(gab) and abort the simulation;
otherwise it will guess that z was chosen at random.

Let us now analyze the advantage of such SIM′ in
the 2ODH-Exp game. Notice that, conditioned on
the choice of u, v being correct, and until the point
where the adversary makes a random oracle query
for z, the view of the adversary in this simulated
protocol execution is exactly the same as the one of
Hyb7. This is because, as in the previous argument,
for both possible values of z, the adversary will obtain
less than t shares of both sSK

u and sSK
v , which thus

reveal “no information” about the actual values of
sSK
u and sSK

v . Moreover, because we are modeling
the PRG as a random oracle, MC cannot extract
any information about su,v from yu and yv without
querying the random oracle.

Therefore, if MC can distinguish between Hyb7
and Hyb8 with more than negligible probability,
then it must be triggering the abort condition with
more than negligible probability and therefore (con-
ditioned on the choice of u and v being correct) MC
must make to the random oracle/PRG a query of
the form H(gab) with more than negligible probabil-
ity. This implies that, when z = H(gab), SIM′ will
claim (correctly) that z = H(gab) with non negligible
probability. On the other hand, when z is chosen uni-
formly random, it is information theoretically hidden
from MC’s view, and therefore MC can only make
a query for it (which will cause SIM′ to incorrectly
claim that z = H(gab)) with negligible probability.
In other words, if MC distinguishes between Hyb7
and Hyb8 with non-negligible probability p, then the
algorithm SIM′ described above also breaks 2ODH
assumption probability at least p/2n2, which is non-
negligible, concluding the argument.

Hyb9 This hybrid is defined exactly as the previous
one, except that the values of yu computed by the
simulator on behalf of the honest clients and sent to
MC in round MaskedInputCollection are substi-
tuted with uniformly sampled values, and the output
of some random oracle queries for the PRG is mod-
ified to ensure consistency/correctness for the result.
More in detail, after the server delivers to honest
clients the messages for round ConsistencyCheck,
but before SIM sends their responses, these messages
sent by MC to the honest clients define a set Q (as
defined in hybrid Hyb6). For all u ∈ Q \ C, SIM pro-
grams the random oracle to set PRG(bu) as follows:

PRG(bu)← yu − xu −
∑
v∈Fu

PRG(su,v)

where v ∈ Fu iff v ̸∈ Q \ C and MC delivered a
ciphertext to u from v in round ShareKeys (which
captures the fact that in a real execution u would
have included the joint noise pu,v for v in its masked
input vector yu). For all u /∈ Q\C, SIM sets PRG(bu)
arbitrarily.

We will argue that the view of MC in this hybrid is
statistically indistinguishable from the previous one.

19

First, note that for honest clients u ̸∈ Q, since MC
cannot query the PRG on input bu, in both hybrids
the value yu is distributed uniformly at random (and
independent from the rest of the view).

Similarly, for honest clients u ∈ Q, before Round
Unmasking, MC cannot query the PRG on input
bu, so yu looks uniformly random as expected. After
Round Unmasking, when MC learns bu, it has ex-
actly the same distribution as in the previous hybrid,
i.e. it satisfies

yu −PRG(bu)−
∑
v∈Fu

PRG(su,v) = xu

Thus, this hybrid is indistinguishable from the pre-
vious one.

Hyb10 This hybrid is defined exactly as the previous
one, except that for all u ∈ Q \ C, instead of pro-
gramming the random oracle to set PRG(bu) to10:

PRG(bu)← yu − xu −
∑
v∈Fu

PRG(su,v)

= yu − xu −
∑
v∈Q

PRG(su,v)

−
∑

v∈Fu\Q

PRG(su,v)

as in the previous hybrid, SIM instead sets

PRG(bu)← yu −wu −
∑

v∈Fu\Q

PRG(su,v)

where {wu}u∈Q\C are chosen uniformly at ran-
dom, subject to

∑
u∈Q\C wu =

∑
u∈Q\C xu. Since,

as argued before, su,v’s for u, v ∈ Q \ C are never
queried by MC, by Lemma 6.1, in the view of MC,
the above values are identically distributed as the
previous hybrid.

Hyb11 This hybrid is defined as the previous one, with
the only difference being that the simulator now
does not receive the inputs of the honest parties, but
instead, in round Unmasking, makes a query to
the functionality Ideal for the set Q \ C and uses the
value to sample the required wu values. Note that
since by construction |Q|≥ t, |Q \ C|≥ t − nC = s,
and therefore the functionality Ideal will not return
⊥.

It is easy to see that this change does not modify
the view seen by the adversary, and therefore it
is perfectly indistinguishable from the previous one.
Moreover, this hybrid does not make use of the honest
party’s inputs, and this concludes the proof.

□

10Notice that Q must be a subset of Fu, or else u aborts

B DIFFERENTIAL PRIVACY AND
SECURE AGGREGATION

While secure aggregation alone may suffice for some appli-
cations, for other applications stronger guarantees may be
needed, as indicated by the failures of ad-hoc anonymization
techniques [6, 47, 54], and by the demonstrated capability to
extract information about individual training data from fully-
trained models (which are essentially aggregates) [27, 52, 53].

In such cases, secure aggregation composes well with differ-
ential privacy [22]. This is particularly advantageous in the
local privacy setting [21], which offers provable guarantees
for the protection of individual training examples [1, 3] even
when the data aggregator is not assumed to be trusted [26, 55].
For example, when computing averages, partial averages over
subgroups of users may be computed and privacy-preserving
noise may be incorporated [23, 32] before revealing the results
to the data aggregator. Under some privatization schemes,
for a fixed total number of users and for secure aggregation
subgroups of size n, the same amount of (computational [46])
differential privacy may be offered to each user while reducing
the standard deviation of the effective noise added to the
estimated average across all users by a factor of

√
n relative

to providing local differential privacy without secure aggrega-
tion. Thus, secure aggregation over just 1024-user subgroups
holds the promise of a 32× improvement in differentially
private estimate precision. We anticipate that these utility
gains will be crucial as methods for differentially private deep
learning in the trusted-aggregator setting [1] are adapted to
support untrusted aggregators, though a detailed study of
the integration of differential privacy, secure aggregation, and
deep learning is beyond the scope of the current work.

Suppose that each of U users has a vector xi with an ℓ2-
norm bounded by Δ

2
, such that the ℓ2-sensitivity of

∑
i xi is

bounded by ∆. For ϵ ∈ (0, 1), we can achieve (ϵ, δ)-differential
privacy for the sum via the Gaussian mechanism [24], by
adding zero-mean multivariate Gaussian noise drawn from
N (0, σ2I), where σ = Δ

ϵ

√
2 ln(1.25

δ
).

In the local privacy setting, users distrust the aggregator,
and so before any user submits her value to the aggregator,
she adds noise zi ∼ N (0, σ2I), achieving (ϵ, δ)-differential
privacy for her own data in isolation. Summing contributions
at the server yields

∑U
i=1 xi+

∑U
i=1 zi. Observe that the mean

of k normally distributed random variables zi ∼ N (0, σ2I)

is z̄ ∼ N (0, σ2

k
I); it follows that the server can form an

unbiased estimator of x̄ from the user contributions as

x̂LDP =
1

U

(
U∑

i=1

xi +
U∑

i=1

zi

)
∼ N (x̄,

σ2

U
I).

Now consider a setting wherein a trusted third party is
available that can aggregate and privatize batches of n user
inputs; for simplicity, assume that U is a multiple of n. The
users deliver raw inputs xi to the third party, who produces
U
n

batch-sums, each with (ϵ, δ)-differential privacy for users in
the batch, by adding zj ∼ N (0, σ2I) noise to the batch-sum
j before releasing it. Summing the released batch-sums at

20

the server yields
∑U

i=1 xi +
∑U

n
j=1 zj . The server can once

again form an unbiased estimator of x̄ as

x̂TTP =
1

U

 U∑
i=1

xi +

U
n∑

j=1

zj

 ∼ N (x̄,
σ2

nU
I).

Observe that the standard deviation of x̂TTP is a factor
of 1√

n
smaller than that of x̂LDP . The secure aggregation

protocol can be used in lieu of a trusted third party while
retaining these gains by moving to a computational variant
of differential privacy [46].

C NEURAL NETWORKS AND
FEDERATED LEARNING UPDATES

A neural network represents a function f(x,Θ) = y mapping
an input x to an output y, where f is parameterized by a
high-dimensional vector Θ ∈ Rm. For modeling text message
composition, x might encode the words entered so far and
y a probability distribution over the next word. A training
example is an observed pair ⟨x,y⟩ and a training set is
a collection D = {⟨xi,yi⟩; i = 1, . . . ,m}. A loss is defined
on a training set Lf (D,Θ) = 1

|D|
∑

⟨xi,yi⟩∈D Lf (xi,yi,Θ),
where Lf (x,y,Θ) = ℓ(y, f(x,Θ)) for a loss function ℓ, e.g.,
ℓ(y, ŷ) = ||y − ŷ||2.

Training a neural net consists of finding parameters Θ
that achieve small Lf (D,Θ), typically by iterating a variant
of a minibatch stochastic gradient descent rule [16, 30]:

Θt+1 ← Θt − η∇Lf (Dt,Θt)

where Θt are the parameters after iteration t, Dt ⊆ D is a
randomly selected subset of the training examples, and η is
a learning rate parameter.

In the Federated Learning setting, each user u ∈ U holds a
private set Du of training examples with D =

⋃
u∈U Du. To

run stochastic gradient descent, for each update we select a
random subset of users U t ⊆ U (in practice we might have
say |U t|= 104 while |U|= 107) and for each user u ∈ U t we
select a random subset of that user’s data Dt

u ⊆ Du. We then
form a (virtual) minibatch Dt =

⋃
u∈Ut Dt

u. The minibatch
loss gradient ∇Lf (Dt,Θt) can be rewritten as a weighted
average across users:

∇Lf (Dt,Θt) =
1

|Dt|
∑
u∈Ut

δt
u

where δt
u = |Dt

u|∇Lf (Dt
u,Θ

t). A user can thus share just the
concatenated vector

[
|Dt

u|
]
∥δt

u with the server, from which
the server can compute the desired weighted average and a
gradient descent step:

Θt+1 ← Θt − η

∑
u∈Ut δ

t
u∑

u∈Ut |Dt
u|

may be taken.
There is evidence that a trained neural network’s pa-

rameters sometimes allow reconstruction of training exam-
ples [1, 27, 52, 53]; it is possible that the parameter updates
be subject to similar attacks. For example, if the input x is a
one-hot vocabulary-length vector encoding the most recently

typed word, common neural network architectures will con-
tain at least one parameter θw in Θ for each word w such
that ∂Lf

∂θw
is non-zero only when x encodes w. Thus, the set of

recently typed words in Dt
u would be revealed by inspecting

the non-zero entries of δt
u.

21

	1 Introduction
	1.1 Our Results
	1.2 Organization

	2 Secure Aggregation for Federated Learning
	3 Cryptographic Primitives
	3.1 Secret Sharing
	3.2 Key Agreement
	3.3 Authenticated Encryption
	3.4 Pseudorandom Generator
	3.5 Signature Scheme
	3.6 Public Key Infrastructure

	4 Technical Intuition
	5 A Practical Secure Aggregation Protocol
	6 Security Analysis
	6.1 Honest but Curious Security
	6.2 Privacy against Active Adversaries
	6.3 Interpretation of Results

	7 Evaluation
	7.1 Performance Analysis of Client
	7.2 Performance Analysis of Server
	7.3 Prototype Performance

	8 Discussion and Future Work
	9 Related work
	10 Conclusion
	References
	A Privacy against Active Adversaries
	B Differential Privacy and Secure Aggregation
	C Neural Networks and Federated Learning Updates

