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Abstract

Substitution box (S-box) is an important component of block ciphers for providing confusion into the
cryptosystems. The functions used as S-boxes should have low differential uniformity, high nonlinearity
and high algebraic degree. Due to the lack of knowledge on the existence of APN permutations over
F22k , which have the lowest differential uniformity, when k > 3, they are often constructed from
differentially 4-uniform permutations. Up to now, many infinite families of such functions have been
constructed. Besides, the less cost of hardware implementation of S-boxes is also an important criterion
in the design of block ciphers. If the S-box is an involution, which means that the compositional
inverse of the permutation is itself, then the implementation cost for its inverse is saved. The same
hardware circuit can be used for both encryption and decryption, which is an advantage in hardware
implementation. In this paper, we investigate all the differentially 4-uniform permutations that are
known in the literature and determine whether they can be involutory. We found that some involutory
differentially 4-uniform permutations with high nonlinearity and algebraic degree can be given from
these known constructions.
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1. Introduction

Many block ciphers use substitution boxes (S-boxes) as the confusion part to bring the confusion
into the cryptosystems. To obtain a correct decryption and for the easiness of the implementation, S-
boxes are usually chosen to be permutations over a finite field with characteristic 2 and even extension
degree, i.e., F22k . Besides, in order to resist various kinds of cryptographic attacks, S-boxes used in
block ciphers should possess good cryptographic properties, for example, low differential uniformity to
resist differential attacks [BS91], high nonlinearity to resist linear attacks [Mat93], and high algebraic
degree to resist the higher order differential attack [Knu94, Lai94], which is described by Knudsen
when the degree is 2.

It is well known that for any function defined over F2n , the lowest differential uniformity is 2,
and these functions achieving this value are called almost perfect nonlinear (APN) functions. On this
aspect, they are the most ideal choices for S-boxes. Unfortunately, it is very difficult to construct
APN permutations for even n. Up to now, only one sporadic APN permutation over F26 was found
by Dillon et al [BDMW10]. To find any other APN permutations over F2n for even n is called the the
BIG APN problem.
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Therefore, when the input sizes are even, a natural tradeoff method is to use differentially 4-uniform
permutations as S-boxes. For instance, the AES block cipher uses a differentially 4-uniform function,
namely the multiplicative inverse function as S-box. Hence to provide more choices for the design
of block ciphers, it is of significant importance to construction more classes differentially 4-uniform
permutations over F22k with good cryptographic properties.

The low cost of hardware implementation of S-boxes is also an important criterion in the design
of block ciphers. For a block cipher, the S-box as a nonlinear part usually takes a relative high cost
in practical hardware implementation. Thus the cost of hardware implementation of an S-box is of
significant importance, especially in lightweight cryptography algorithms, which are aiming to provide
security in a limited resource environment. With the rapid development of lightweight cryptography, it
is of particular interest to investigate the problem of constructing S-boxes with excellent cryptographic
properties and low cost hardware implementation. If the S-box is an involution, which means that
the compositional inverse of the permutation is itself, then the implementation cost for its inverse is
saved. The same hardware circuit can be used for both encryption and decryption, which is certainly
an advantage in hardware implementation. For instance, the AES cipher uses the inverse function as
its S-box, which is, in fact, an involution as well.

In this paper, we study all the differentially 4-uniform permutations that are known in the literature
and determine whether these functions can be involutory or under what kinds of conditions they can
be. Some involutory differentially 4-uniform permutations with high nonlinearity and algebraic degree
can be given from these known constructions. Hence this provides more choices for the design of
lightweight block ciphers.

The rest of this paper is organized as follows. In the next section, we recall some basic knowledge
about Boolean functions, including some necessary definitions and notations. In Section 3, we examine
all the known primarily-constructed differentially 4-uniform permutations. The functions constructed
by switching method are examined in Section 4. The functions constructed by expansion and con-
traction are treated in Section 5 and 6 respectively. Conclusions and some open problems are given
in Section 7. All the involutory differentially 4-uniform permutations are presented in Table 1.

2. Preliminaries

Let n be a positive integer, F2n be the finite field with 2n elements and F∗2n be the corresponding
multiplicative cyclic group of order 2n − 1. F2n can also be regarded as a vector space of dimension
n over F2 , and can then be identified with Fn2 . In the following, we will switch between these two
points of view without explanation if the context is clear. Let ω = α(2n−1)/3 when n is an even integer,
where α is a primitive element of F2n . Then ω is an element of F4\F2 , and satisfies the equation
ω2 + ω + 1 = 0. For the sake of convenience, we always define 0−1 = 0.

Given two positive integers n and m, a mapping F from F2n to F2m is called an (n,m)-function or
a vectorial Boolean function. Particularly, when m = 1, F is called an n-variable Boolean function.
We denote by Bn the set of Boolean functions of n variables. The basic representation of any Boolean
function f ∈ Bn is by its truth table, i.e.,

f = [f(0), f(1), f(α), f(α2), . . . , f(α2n−2)].

The support of f is defined as Supp(f) = {x ∈ Fn2 : f(x) = 1}.
A (n, n)-function F can be represented uniquely by a polynomial in F2n [x]/〈x2n + x〉 as

F (x) =

2n−1∑

i=0

cix
i, ci ∈ F2n .
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For any l, 0 ≤ l ≤ 2n− 1, the number w2(l) of the nonzero coefficients lj ∈ F2 in the binary expansion
l =

∑n−1
j=0 lj2

j is called the 2-weight of l. The algebraic degree deg(F ) of F is equal to the maximum
2-weight of i such that ci 6= 0. It is known that if F is a permutation polynomial over F2n , then
deg(F ) ≤ n− 1 and we call F haing the maximum algebraic degree if the equality holds.

We define the trace function from F2n onto its subfield F2k (with k|n) as

Trnk(x) = x+ x2
k

+ x2
2k

+ · · ·+ x2
n−k

,

and denote the absolute trace function from F2n onto the binary subfield F2 by Tr(x) =
∑n−1

i=0 x
2i .

Definition 1 ([Nyb93]). For a function F : F2n → F2n , the differential uniformity of F (x) is defined
as

∆F = max{δF (a, b) : a ∈ F∗2n , b ∈ F2n},
where δF (a, b) = |{x ∈ F2n : F (x+ a) +F (x) = b}|. The differential spectrum of F (x) is the multi-set

{δF (a, b) : a ∈ F∗2n , b ∈ F2n}.

For a given integer δ, F is called differentially δ-uniform if ∆F = δ. It is easy to see that if x0 is a
solution of F (x+ a) + F (x) = b, so is x0 + a. Thus a lower bound of the differential uniformity of F
is 2. The functions which achieve this bound are called almost perfect nonlinear (APN) functions.

For any function F : F2n → F2n , the Walsh transform of F is defined as

WF (a, b) =
∑

x∈F2n

(−1)Tr(bF (x)+ax), a, b ∈ F2n .

The multi-set ΛF = {WF (a, b) : a ∈ F2n , b ∈ F∗2n} is called the Walsh spectrum of the function F . And
the multi-set {|WF (a, b)| : a ∈ F2n , b ∈ F∗2n} is called the extended Walsh spectrum of the function F .

The nonlinearity of F is defined as

NL(F ) = 2n−1 − 1

2
max

a∈F2n ,b∈F∗2n
|WF (a, b)|.

It is known that if n is odd, the nonlinearity of F satisfies the inequality NL(F ) ≤ 2n−1−2
n−1
2 [CV94]

and when the equality holds F is called almost bent (AB). The Walsh spectrum of AB functions is

{0,±2
n+1
2 }. The notion of AB functions is closely connected with the notion of APN functions. AB

functions exist only for odd n and provide the optimal resistance to linear cryptanalysis. Besides,
every AB function is APN, and in the case of odd n, any quadratic APN function is an AB function.
A comprehensive survey on APN and AB functions can be found in [Car10, CCZ98].

When n is even, the upper bound of the nonlinearity is still open. The known maximum nonlin-
earity is 2n−1 − 2

n
2 . It is conjectured that NL(F ) is upper bounded by 2n−1 − 2

n
2 for any F over

F2n [Dob98]. These functions which meet this bound are usually called the best known nonlinear
functions.

Two functions F,G : F2n → F2n are called extended affine equivalent (EA-equivalent), if G(x) =
A1(F (A2(x))) + A3(x), where A1(x), A2(x) are affine permutations over F2n and A3(x) is an affine
function over F2n . Furthermore, if A3 = 0, then they are called affine equivalent. They are called CCZ-
equivalent (Carlet-Charpin-Zinoviev equivalent) if there exists an affine permutation over F2n × F2n

which maps GF to GG , where GF = {(x, F (x)) : x ∈ F2n} is the graph of F , and GG is the graph of G.
It is well known that EA-equivalence implies CCZ-equivalence, but not vice versa. Differential uni-

formity, nonlinearity and Walsh spectrum are invariants of both EA-equivalence and CCZ-equivalence.
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Algebraic degree is preserved by EA-equivalence, but not CCZ-equivalence. However, neither EA-
equivalence nor CCZ-equivalence preserves the permutation property.

In the following sections, we examine all the known differentially 4-uniform permutations over
F2n . In the sequel, we make convention that n is always an even positive integer if without special
declaration.

3. Functions Constructed by Primary Construction

There are 5 classes of primarily-constructed differentially 4-uniform permutations. These are listed
as follows. The inverse function is an involution obviously. In this section, we show that all the other
functions cannot be involutory.

– Gold function [Gol68]: x2
i+1, where n = 2k, k is odd and gcd(i, n) = 2.

– Kasami function [Kas71]: x2
2i−2i+1, where n = 2k, k is odd and gcd(i, n) = 2.

– Inverse function [Nyb93]: x−1, where n is even.

– Bracken-Leander function [BL10]: x2
2k+2k+1, where n = 4k and k is odd.

– A class of binomials found by Bracken et al. [BTT12]: αx2
s+1 + α2kx2

−k+2k+s , where n = 3k, k
even, k/2 odd, gcd(s, n) = 2, 3|(k + s) and α is a primitive element of F2n .

Lemma 1 ([Nyb93]). Suppose k is odd and n = 2k. Let i be an integer such that gcd(i, n) = 2. Then

the compositional inverse of x2
i+1 over F2n is xt, where t =

∑ k−1
2

j=0 22ji (mod 2n − 1). Its algebraic

degree is k+1
2 .

Lemma 2. Suppose n ≥ 6 is even. Let i be an integer such that gcd(i, n) = 2. Then (22i−2i+1)2 6= 1
(mod 2n − 1).

Proof. Otherwise, suppose that (22i − 2i + 1)2 = 1 (mod 2n − 1), then we obtain

0 = (22i − 2i + 1)2 − 1

= (22i − 2i)(22i − 2i + 2)

= 2i+1(2i − 1)(22i−1 − 2i−1 + 1) (mod 2n − 1).

Since gcd(2i − 1, 2n − 1) = 2gcd(i,n) − 1 = 3 and gcd(2i+1, 2n − 1) = 1, the above equation can be
reduced to that

3(22i−1 − 2i−1 + 1) = 0 (mod 2n − 1).

Let l denote the unique integer r, 0 ≤ r < n such that l = qn+r with q ∈ Z. Note that gcd(i, n) = 2
and n ≥ 6, then 0 < i ≤ n− 2, 0 < 2i ≤ n− 2. Hence, when i ≤ 2i,

0 < 3(22i−1 − 2i−1 + 1) < 4(22i−1 − 2i−1 + 1)

≤ 2n−1 − 2i+1 + 4

< 2n − 1.

When i > 2i, we have

0 < −3(22i−1 − 2i−1 + 1) < 4(2i−1 − 22i−1 − 1)

≤ 2n−1 − 22i+1 − 4

< 2n − 1.

So it is impossible that 3(22i−1 − 2i−1 + 1) = 0 (mod 2n − 1). The conclusion then follows. �
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Lemma 3. Suppose k ≥ 2 is an integer, then (22k + 2k + 1)2 6= 1 (mod 24k − 1).

Proof. Otherwise, suppose that (22k + 2k + 1)2 = 1 (mod 24k − 1). Then similarly as the proof of
Lemma 2, we have

(2k + 1)(22k−1 + 2k−1 + 1) (mod 24k − 1).

Notice that 24k − 1 = (2k + 1)(23k − 22k + 2k − 1), then we get

22k−1 + 2k−1 + 1 = 0 (mod 23k − 22k + 2k − 1).

Since 23k − 22k − 22k−1 = 22k−1(2k+1 − 3) > 0 and 2k − 1− (2k−1 + 1) = 2k−1 − 2 ≥ 0, it follows that
0 < 22k−1 + 2k−1 + 1 < 23k − 22k + 2k − 1, which is a contradiction. �

Theorem 4. The Gold function, Kasami function, Bracken-Leander function and the class of bino-
mials cannot be involutory over F2n.

Proof. Below we discuss these functions separately.

1. Suppose that Gold function x2
i+1 is an involution, then by Lemma 1 we must have k+1

2 = 2,
which implies that k = 3 and n = 6. Thus we get i = 2 or i = 4. One can then easily verify that
Gold function cannot be involutory in these cases.

2. Suppose that Kasami function x2
2i−2i+1 is an involution, then for any x ∈ F2n , we obtain

(
x2

2i−2i+1
)22i−2i+1

= x (mod x2
n

+ x),

which is equivalent to (22i − 2i + 1)(22i − 2i + 1) = 1 (mod 2n − 1). Then by Lemma 2, it is
impossible.

3. For the Bracken-Leander function, we suppose that it is an involution, namely

(22k + 2k + 1)2 = 1 (mod 24k − 1).

When k = 1, it can be easily checked that (22k + 2k + 1)2 6= 1 (mod 24k − 1). When k ≥ 3,
it is known that this is impossible by Lemma 3.

4. Finally, we consider the class of binomials. Let F (x) denote this class of binomials and suppose
that it is an involution. Since k is even and k/2 is odd, then k = 2 (mod 4). In the following,
we treat it for two cases according to the value of k.

When k = 2, then we have n = 6 and s = 4. Now

F (x) = αx2
4+1 + α22x2

4+26 = (α+ α4)x17.

Furthermore, it is easy to obtain that

1 = F (F (1)) = F (α+ α4) = (α+ α4)(α+ α4)17 = (α+ α4)18,

which is equivalent to that α+α4 = 1. It follows that α15 = 1, a contradiction with the condition
that α is a primitive element of F26 .
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When k ≥ 6, for any x ∈ F2n , it holds that

x = F (F (x)) = α
(
αx2

s+1 + α2kx2
2k+2k+s

)2s+1
+ α2k

(
αx2

s+1 + α2kx2
2k+2k+s

)22k+2k+s

= α2s+2x2
2s+2s+1+1 + α2k+s+2k

(
α+ α22k

)
x2

2k+s+22k+2k+2s+2k+s

+ α2k+2s+1x2
2k+2k+s+22s+2s + α2k+s+2x2

2k+s+2k+2s+2s+1

+ α22k+s+2k+1x2
2k+2s+2k+2s+1

+ α22k+s+22k+2kx2
2k+2s+22k+s+22k+2s

+ α2k+s+2k+1x2
k+2s+2k+s+2k+2s .

First we consider the weight of 22s + 2s+1 + 1 (mod 23k − 1). Since gcd(s, n) = 2 and n > 6,
then 2 ≤ s ≤ n − 2. we can easily get that 2s 6= s + 1 (mod 3k), 2s 6= 0 (mod 3k), s + 1 6= 0
(mod 3k). So the weight of 22s + 2s+1 + 1 (mod 23k − 1) is exactly equal to 3. In a similar
manner, it is easy to verify that the weight of other six exponents of x are exactly equal to 4, 4,
4, 3, 4, 4, respectively. However, the above equation holds for any x ∈ F2n , which is impossible
because that the right hand side does not contain any one of the terms of degree one.

We finish the proof. �

4. Functions Constructed by Switching Method

A number of differentially 4-uniform permutations have been constructed via the switching method.
Among the 5 classes of primarily-constructed differentially 4-uniform permutations, only the inverse
function is an involution. In the following, we consider the differentially 4-uniform permutations
constructed from inverse function.

4.1. By Adding a Boolean Function

Firstly, we list the known differentially 4-uniform permutations which were constructed by adding
a properly chosen Boolean function to the inverse function.

– Qu-Tan-Tan-Li [QTTL13]: x−1 + Tr(x−d + (x−1 + 1)d), where d = 2n − 2, or 3 × (2t + 1) for
2 ≤ t ≤ n/2− 1.

– Qu-Tan-Li-Gong [QTLG16]: x−1 + g(x), where g is some Boolean function.

– Peng-Tan (I) [PT16]:

F (x) =

{
x−1 + 1 if x ∈ T,
x−1 if x ∈ F2n\ T,

where T ⊂ F2n . As there are at least 22
n−2−1 such T , it is not possible to list them here. For

more detail on T , please refer to [PT16].

– Zha-Hu-Sun (I) [ZHSS15]:

F (x) =

{
x−1 + 1 if x ∈ S,
x−1 if x ∈ F2n\ S,

where S satisfies any of the following conditions:

(1) S = F2k1 ∪ F2k2 , k1, k2 are even, k1|n, k2|n, or

(2) S = F23 ∪ F2k1 , k1 is even, k1|n, gcd(3, k1) = 1, 6|n, n
6 is odd.
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– Chen-Deng-Zhu-Qu [CDZQ16]: x−1+g(x−1), where g(x) is a 4-Uniform BFI (4-uniform Boolean
function with respect to the inverse function).

All the above functions can be expressed in the following unified form

F (x) = x−1 + 1U (x), (1)

where U ( F2n , U 6= ∅, and 1U is the indicator function of U , i.e., 1U (x) = 1 if x ∈ U and 1U (x) = 0
otherwise. The following result gives the conditions to be satisfied for the function (1) being involutory.

Proposition 1. The function F (x) of (1) is an involution over F2n if and only if the subset U of F2n

satisfies any one of the following conditions:

(1) U = {0, 1}, or

(2) U = {ω, ω2}, or

(3) U = {0, 1, ω, ω2}.

Proof. The sufficiency is obvious. Now we consider the necessity.
First, we claim that the subset U ( F2n satisfies that x ∈ U holds if and only if 1

x−1+1
∈ U .

Indeed, assume x1, x2 ∈ F2n with F (x1) = F (x2). Then we have x−11 + 1U (x1) = x−12 + 1U (x2). If
1U (x1) = 1U (x2), we get x−11 = x−12 , which leads to x1 = x2. If 1U (x1) 6= 1U (x2), we get x−11 +1 = x−12 ,

which implies x2 = 1
x−1
1 +1

and 1U (x1) 6= 1U

(
1

x−1
1 +1

)
. But since F is a permutation over F2n , we must

have 1U (x) = 1U

(
1

x−1+1

)
, for any x ∈ F2n .

Now we suppose that F is an involution over F2n . Thus for any x ∈ F2n , we have F (F (x)) = x,
namely

1
1
x + 1U (x)

+ 1U

(
1

x
+ 1U (x)

)
= x. (2)

Below we consider two cases according as x = 0, 1 or not.
Case 1: When x = 0 or x = 1. Substitute x = 0 into Eq.(2), we have

1

1U (0)
+ 1U (1U (0)) = 0.

If 1U (0) = 0, we have 0 /∈ U , which implies 1 /∈ U,1U (1) = 0. Substitute x = 1 into Eq.(2), we
obtain

1

1 + 1U (1)
+ 1U (1 + 1U (1)) =

1

1
+ 1U (1) = 1.

So Eq.(2) holds also for x = 1.
If 1U (0) = 1, we have 0 ∈ U , which implies 1 ∈ U,1U (1) = 1. Substitute x = 1 into Eq.(2), we

obtain
1

1 + 1U (1)
+ 1U (1 + 1U (1)) =

1

1 + 1
+ 1U (1 + 1) = 1.

So Eq.(2) holds for x = 1 as well.
Case 2: When x 6= 0 and x 6= 1. Thus we have 1

x + 1U (x) 6= 0. Hence from Eq.(2) we get

1U (x)x2 + 1U (x)1U

(
1

x
+ 1U (x)

)
x+ 1U

(
1

x
+ 1U (x)

)
= 0. (3)
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If 1U (x) = 0, i.e., x /∈ U . From Eq.(3), we have 1U
(
1
x

)
= 0, which implies that

x /∈ U holds if and only if
1

x
/∈ U and

1

x−1 + 1
/∈ U.

If 1U (x) = 1, i.e., x ∈ U . From Eq.(3), we have

x2 + 1U

(
1

x
+ 1

)
x+ 1U

(
1

x
+ 1

)
= 0.

Suppose that 1U
(
1
x + 1

)
= 0, then we must have x = 0, which is a contradiction. Hence we have

1U
(
1
x + 1

)
= 1, and the above equation becomes

x2 + x+ 1 = 0.

So x = ω or x = ω2. It can be easily verified that for x = ω or x = ω2, if 1U (x) = 1, then
1U
(
1
x + 1

)
= 1.

Combining the discussion of two cases, we deduce that U ⊆ {0, 1, ω, ω2}. Therefore, U = {0, 1} or
U = {ω, ω2} or U = {0, 1, ω, ω2}. We complete the proof. �

In [YWL13], it is shown that, when U = {0, 1} or U = {ω, ω2}, the differential uniformity of the
function of (1) is equal to 4 if and only if n = 2 (mod 4). When U = {0, 1, ω, ω2}, the function of (1)
is proved to be a differentially 4-uniform permutation in [ZHSS15]. Therefore, we have the following
corollary.

Corollary 5. The function F (x) of (1) is a differentially 4-uniform involution over F2n if and only
if the subset U of F2n and n satisfy any one of the following conditions:

(1) U = {0, 1} and n = 2 (mod 4), or

(2) U = {ω, ω2} and n = 2 (mod 4), or

(3) U = {0, 1, ω, ω2}.

By Lagrange interpolation, it is easy to obtain the explicit expressions of function F (x) of (1):

U = {0, 1} : F (x) = x2
n−2 + x2

n−1 + (x+ 1)2
n−1

=

2n−3∑

i=0

xi,

U = {ω, ω2} : F (x) = x2
n−2 + (x+ ω)2

n−1 + (x+ ω2)2
n−1

=
2n−3∑

i≥1,
i 6=0 (mod 3)

xi,

U = {0, 1, ω, ω2} : F (x) = x2
n−2 + x2

n−1 + (x+ 1)2
n−1 + (x+ ω)2

n−1 + (x+ ω2)2
n−1

= x2
n−2 +

2n−4∑

i≥0,
i=0 (mod 3)

xi.

It is obvious that the algebraic degree is equal to n− 1. For any (a, b) ∈ F2n × F∗2n , we have
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|WF (a, b)| =

∣∣∣∣∣∣
∑

x∈F2n\U
(−1)Tr(bx

−1+ax) +
∑

x∈U
(−1)Tr(b(x

−1+1)+ax)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

x∈F2n

(−1)Tr(bx
−1+ax) +

∑

x∈U
(−1)Tr(bx

−1+ax+b) −
∑

x∈U
(−1)Tr(bx

−1+ax)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∑

x∈F2n

(−1)Tr(bx
−1+ax)

∣∣∣∣∣∣
+ 2|U |.

It is well known that the extended Walsh spectrum of inverse function is bounded by 2
n
2
+1, so the

nonlinearity NL(F ) ≥ 2n−1−2
n
2 −|U |. Moreover, in [LWY13], it is showed that when U = {0, 1} and

n = 2 (mod 4), the function F (x) of (1) has the best known nonlinearity 2n−1 − 2
n
2 and its Walsh

spectrum is {−2
n
2
+1 ≤ y ≤ 2

n
2
+1 : y = 0 (mod 4)}.

4.2. By Using Some Non-affine Transformations on Some Subfields

Next we consider these functions constructed via modifying the inverse function by using some
EA-equivalent transformations (which are not affine) on some subfields by Peng and Tan [PT17].

– Peng-Tan (II) [PT17]:

F (x) =

{
β(x+ 1)−1 + α if x ∈ F2d

x−1 if x ∈ F2n\F2d
, (4)

where α, β, d, n satisfy any of the following conditions:

(i) α ∈ F2d , β = 1, d is even, or

(ii) α = β = 1, d is odd, or

(iii) α = 0, β = 1, d = 1, 3, n/2 is odd, or

(iv) α, β ∈ F2d , Tr(β−1) = 1, n/d is odd.

Obviously, we have α, β ∈ F2d and β 6= 0. If the function (4) is involutory, then from F (F (0)) = 0
and F (F (1)) = 1, we obtain the following equations:

β

α+ β + 1
= α, (5a)

β

α+ 1
= α+ 1. (5b)

If α = 0, then β = 1. One can easily check that F is an involution in this case.
If α = 1, then equations (5a) and (5b) hold. For any x ∈ F2n\F2d , F (F (x)) = F

(
1
x

)
= x and any

x ∈ F2d\F2 , F (F (x)) = F
(

β
x+1 + 1

)
= β

β
x+1

+1+1
+ 1 = x. Therefore, F is an involution.

If α 6= 0, 1, then by (5a) and (5b), we can deduce that α = β = ω or ω2. It follows that d is even
and n = 2 mod 4 because of condition (iv). Actually we can furthermore obtain that d = 2. Indeed,

when α = β = ω, for any x ∈ F2d\F22 , F (F (x)) = F (β(x + 1)−1 + α) = F ( ωx
x+1) = ω2x

ω2x+1
= x. This

implies x = ω2, a contradiction. The case α = β = ω2 can be treated similarly.
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Proposition 2. The Peng-Tan (II) function F (x) of (4) is a differentially 4-uniform involution over
F2n if α, β, d, n satisfy any of the following conditions:

(i) α = β = 1, or

(ii) α = 0, β = 1, d is even, or

(iii) α = 0, β = 1, d = 1, 3, n/2 is odd, or

(iv) α = β = ω or ω2, d = 2, n/2 is odd, or

(v) α = 1, Tr(β−1) = 1, n/d is odd.

In [PT17], it is shown that the function F (x) of (4) has algebraic degree n−1, and the nonlinearity
NL(F ) ≥ 2n−1 − 2

n
2 − 2d.

4.3. By Using Some Affine Transformations on Some Subfields

In [ZHS14], by modifying the values of the inverse function on some subfield and applying affine
transformations on the function, two new families of differentially 4-uniform permutations are con-
structed.

– Zha-Hu-Sun (II) [ZHS14]:

F (x) =

{
x−1 + α if x ∈ F2d

x−1 if x ∈ F2n\F2d
, (6)

where α ∈ F2d ; d|n; d is even, or d = 1, 3; n/2 is odd.

The case α = 0 is trivial. And when α = 1, it is the same with function (1). When α 6= 0, 1,
F (F (0)) = F (α) = 1

α + α 6= 0. Hence, it can not be involutory.

– Zha-Hu-Sun (III) [ZHS14]:

F (x) =

{
βx−1 + α if x ∈ F2d

x−1 if x ∈ F2n\F2d
, (7)

where α, β ∈ F2d ; Tr( 1
α) = 1; d|n; d is even; n/d is odd.

If the function (7) is an involution, then we can easily get that α = ω, β = ω2, or α = ω2, β = ω;
d = 2; n/2 is odd.

Similarly, it is shown that the functions F (x) of (6) and (7) have also algebraic degree n− 1, and
the nonlinearity NL(F ) ≥ 2n−1 − 2

n
2 − 2d in [ZHS14].

4.4. By Applying Constant Multiplication to the Inverse Function on Some Subsets

In [PTW16], by applying constant multiplication to the inverse function on some subsets (a union
of some cosets of the group generated by a fixed element), Peng et al. constructed a new family of
differentially 4-uniform permutations.

– Peng-Tan-Wang [PTW16]:

F (x) =

{
(γx)−1 if x ∈ U
x−1 if x ∈ F2n\U

, (8)

where γ ∈ F2n and U is a union of some cosets of the cyclic group 〈γ〉.
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If we write U =
⋃s
i=1 gi〈γ〉, then the compositional inverse of function (8) is

F−1(x) =

{
(γx)−1 if x ∈ U−1 :=

⋃s
i=1 g

−1
i 〈γ〉

x−1 if x ∈ F2n\U−1
.

Therefore, the function (8) is involutory if and only if U = U−1, i.e., U =
⋃s
i=1

(
gi〈γ〉 ∪ g−1i 〈γ〉

)
.

Corollary 6. Let U =
⋃
g∈G g〈γ〉, where G ⊆ F∗2n, γ ∈ F∗2n is of order d such that

(i) If g ∈ G, then g−1 ∈ G, and

(ii) Tr(γ) = Tr(γ−1) = 1, and

(iii) Tr
(

γ
(gi/gj)γl+(gj/gi)γ−l

)
= 1, for any gi, gj ∈ G, 0 ≤ l ≤ d−1

2 (when gi = gj, then 1 ≤ l ≤ d−1
2 ),

then the function F of (8) is a differentially 4-uniform involution over F2n.

In [PTW16], it is shown that the function (8) has maximum algebraic degree n − 1, and the
nonlinearity satisfies that NL(F ) ≥ 2n−1 − 2

n
2 − d · |G|.

When n = 2 · 3m · t, where gcd(6, t) = 1. ξ is an element of order 3m+1. For every set J ⊆
{0, 1, . . . , 3m − 1}, let U =

⋃
j∈J ξ

j〈ω〉, then the function (8) is proved to have differential uniformity

4. However, for any 0 ≤ j ≤ 3m − 1, the inverse of ξj is ξ3
m+1−j , which is not in the set U since

3m+1 − j > 3m − 1. Hence, the function in this case cannot be involutory.

4.5. By Permuting the Inverse Function

Based the idea of permuting the inverse function, Tang et al. [TCT15] designed a construction
providing a large number of differentially 4-uniform permutation with maximum algebraic degree and
high nonlinearity. It is proved that for every even n ≥ 12, the functions in a subclass of the constructed
class are CCZ-inequivalent to known differentially 4-uniform power functions and quadratic functions.

– Tang-Carlet-Tang [TCT15]:

F (x) =

{
(x+ 1)−1 if x ∈ T
x−1 if x ∈ F2n\T

, (9)

where T satisfies:

(i) if x ∈ T , then x+ 1 ∈ T , and

(ii) if x ∈ T , then Tr( 1x) = Tr( 1
x+1) = 1.

It is noticed that a function is an involution if and only if its compositional inverse is an involution
as well. The compositional inverse of function (9) is F−1(x) = x−1 + 1T (x−1), which is the case of the
function (1) we have already treated.

4.6. By Composing the Inverse Function and Some Cycles

In [LWY13], Li et al. investigated the composition of the inverse function and cycles over F2n , thus
more image values of the inverse function are changed. It is shown that lots of differentially 4-uniform
permutations can be constructed via this method.

Recall that a cycle over F2n is denoted by π = (α0 α1 · · · αm), where αi, 0 ≤ i ≤ m are pairwise
different elements of F2n . We call α ∈ π if α = αi for some 0 ≤ i ≤ m. The subscripts are computed
in Z/(m+ 1)Z throughout this subsection, which means αm+1 = α0.
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We define the composition of the inverse function and a cycle π = (α0 α1 · · · αm) over F2n as
follows:

F (x) =

{
α−1i+1 x = αi

x−1 x 6∈ {αi : 0 ≤ i ≤ m}
. (10)

Moreover, in [LWY13], the authors gave the compositional inverse of F (x):

F−1(x) =

{
αi−1 x = α−1i
x−1 x 6∈ {α−1i : 0 ≤ i ≤ m}

.

In fact, the compositional inverse of F (x) is the composition of the inverse function and a cycle
π1 = (α−1m α−1m−1 · · · α−10 ). Therefore, it is easy to see that the function F (x) is involutory if and only

if the cycles π = (α0 α1 . . . αm) and π1 = (α−1m α−1m−1 · · · α−10 ) are the same. Then the following
conclusion is obvious.

Proposition 3. The function (10) is an involution over F2n if and only if there exist integers i, j,
0 ≤ i, j ≤ m such that for any 0 ≤ k ≤ m, it holds that αi+k = 1

αj−k
. Especially,

1. If 0 ∈ π, 1 6∈ π, or 0 6∈ π, 1 ∈ π, then for any 0 ≤ k ≤ m, it holds that αi+k = 1
αi−k

;

2. If 0 ∈ π and 1 ∈ π, then the cycle π has the form (0 α1 · · · αl 1 α−1l · · · α−11 ), where l is an
integer.

It is showed that the nonlinearity of function (10) satisfies that NL(F ) ≥ 2n−1 − 2
n
2
−1 − (m+ 1),

where m+ 1 is the length of the cycle π. For the property of differential uniformity, one can refer to
[LWY13] for more details on the conditions for π such that F (x) has differential uniformity 4. In the
following, we list the case of some special cycles with length 3 such that the corresponding functions
have differential uniformity 4.

– π = (1 γ γ2), γ = ω or γ = ω2, n = 2 (mod 4);

– π = (0 1 γ), γ ∈ F2n\F2 , Tr( 1γ ) = Tr( 1
γ+1) = 1;

– π = (1 γ γ + 1), γ ∈ F2n\F2 , Tr(γ) = Tr( 1γ ) = Tr( 1
γ+1) = 1;

– π = (0 1 γ), γ 6∈
{
{ i2+i+1
i4+i+1

, i4+i2

i2+i+1
: i ∈ F2n} if k is odd or can be divided by 4

{ i2+i+1
i4+i+1

, i4+i2

i2+i+1
: i ∈ F2n}

⋃
F22 if k can be divided by 2 but not 4

.

By Proposition 3, these functions constructed by the cycle (0 1 γ) cannot be an involution. For
the cycle (1 γ γ + 1), it is easy to obtain that γ = ω or γ = ω2, which is the first case. In this case,
the nonlinearity NL(F ) ≥ 2n−1 − 2

n
2
−1 − 3. When γ = ω, by Lagrange interpolation, we have

F (x) = x−1 + (x+ 1)2
n−1(1 + ω2) + (x+ ω)2

n−1(ω + ω2) + (x+ ω2)2
n−1(1 + ω)

= ω2x2
n−2 + ω

2n−5∑

i≥2, i=2 (mod 3)

xi.

Its algebraic degree is obviously n− 1. The case of γ = ω2 can be treated similarly.
Next we consider the cycles π with length 2, namely transposition. By Proposition 3, we have that

0 ∈ π if and only if 1 ∈ π. If the cycle π = (0 1), the corresponding function is actually the special
case of function (1) with U = {0, 1}.
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If the cycle π 6= (0 1), then π = (γ γ−1), γ 6∈ F2 . In [YWL13], it is proved that in this case these
functions always have differential uniformity at most 6. Moreover, the differential uniformity is equal
to 4 if and only if Tr(γ) = Tr( 1γ ) = 1. By Lagrange interpolation, we have

F (x) = x2
n−2 + (x+ γ)2

n−1(γ + γ−1) + (x+ γ−1)2
n−1(γ + γ−1)

= (1 + γ2 + γ−2)x2
n−2 + (γ + γ−1)

2n−3∑

i=1

(γ2
n−i−1 + γ−(2

n−i−1))xi.

When γ = ω or γ = ω2, the corresponding function is actually the special case of function (1) with
U = {ω, ω2}. When γ 6= ω and γ 6= ω2, (1 + γ2 + γ−2) 6= 0, the function F (x) has maximum algebraic
degree n− 1. The nonlinearity NL(F ) ≥ 2n−1 − 2

n
2
−1 − 2.

The number of such transpositions such that the corresponding function is differentially 4-uniform
involution is exactly equal to T (n) + 1 = 2n−2 − 2

n
2
−1 cos(n arccos 1√

8
) + 5

4 (see Remark 1).

5. Functions Constructed by Expansion

5.1. From the Inverse Function

In 2013, Carlet et al. [CTTL14] introduced a method to construct differentially 4-uniform permu-
tations over F2n from known permutations over F2n−1 . The construction is follows.

– Carlet et al. [CTTL14]: Let n ≥ 6 be an even integer. For any element c ∈ F2n−1\{0, 1} such
that Trn−11 (c) = Trn−11 (1/c) = 1, we define an (n, n)-function F as follows:

F (x1, . . . , xn−1, xn) =

{
(1/x′, f(x′)) if xn = 0

(c/x′, f(x′/c) + 1) if xn = 1
, (11)

where x′ ∈ F2n−1 is identified with (x1, . . . , xn−1) ∈ Fn−12 and f ∈ Bn−1 is an arbitrary Boolean
function of n− 1 variables.

In the following, we show that the above function is involutory if and only of f is the zero function
on F2n−1 .

Proposition 4. The function F(x) of (11) is involutory over F2n if and only if f = 0 on F2n−1.

Proof. If f is not the zero function on F2n−1 , then there exists an element x′0 ∈ F2n−1 such that
f(x′0) = 1. We consider the element (x′0, 0) ∈ F2n−1 × F2 .

F (F (x′0, 0)) = F

(
1

x0
, f(x′0)

)
=

(
cx′0, f

(
1

cx′0

)
+ 1

)
6= (x′0, 0),

since c 6= 1. The converse is obvious. �

Remark 1. It is mentioned in [CTTL14] that if we define T (n) as the number of c ∈ F2n such
that Trn1 (c) = Trn1 (1/c) = 1, then the construction (11) can give T (n− 1)− 1 differentially 4-uniform
involutions. Actually, we have that T (n) = 2n−2−(−1)n2

n
2
−1 cos(n arccos 1√

8
)+ 1

4 (see [Hir98, Section

1.4]). Hence, this construction gives 2n−3 + 2
n−3
2 cos((n − 1) arccos 1√

8
) − 3

4 differentially 4-uniform

involutions.
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The algebraic degree is proved to be n− 1 in [CTTL14]. For any (a, b) ∈ F2n × F∗2n , we identify a
with (a′, an) and b with (b′, bn), then

|WF (a, b)| =

∣∣∣∣∣∣
∑

x∈F2n

(−1)Tr(bF (x)+ax)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

(x′,xn)∈F2n−1×{0}
(−1)Tr

n−1
1 (b′/x′+a′x′) +

∑

(x′,xn)∈F2n−1×{1}
(−1)Tr

n−1
1 (b′c/x′+a′x′)+an+bn

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

x′∈F2n−1

(−1)Tr
n−1
1 (b′/x′+a′x′) + (−1)an+bn

∑

x′∈F2n−1

(−1)Tr
n−1
1 (b′c/x′+a′x′)

∣∣∣∣∣∣

≤ 2

∣∣∣∣∣∣
∑

x′∈F2n−1

(−1)Tr
n−1
1 (b′/x′+a′x′)

∣∣∣∣∣∣
≤ 2

⌊
2
n+1
2

⌋
.

This implies that the nonlinearity of the involution F (x) of (11) satisfies NL(F ) ≥ 2n−1 − b2n+1
2 c.

5.2. The Butterfly Structures

Recently, Perrin et al. [PUB16] introduced the so-called butterfly structure, which is a 2k-bit
mapping obtained by concatenating two bivariate functions over F2k for odd k. In [CDP16], Canteaut
et al. generalised this family of butterflies. Such butterflies have two CCZ-equivalent representations:
one is a quadratic function (denoted VR) and one is degree k + 1 or k involution (denoted HR) as
described in the following.

• the open butterfly HR is the involution over (F2k)2 defined by

HR(x, y) =
(
RR−1

y (x)(y), R−1y (x)
)
,

• the closed butterfly VR is the function over (F2k)2 defined by

VR(x, y) = (R(x, y), R(y, x)),

where Ry(x) = R(x, y) and R−1y (Ry(x)) = x for any x, y ∈ F2k . A representation of this structure is
given in Figure 1.

Definition 5 (CCZ-equivalence [CCZ98]). Two mappings 𝐹 and 𝐺 from F𝑚
2 into itself are said

to be CCZ-equivalent if there exists a linear permutation 𝐿 of F2𝑚
2 such that

{(𝑥, 𝐹 (𝑥)), ∀𝑥 ∈ F𝑚
2 } = {𝐿(𝑥,𝐺(𝑥)),∀𝑥 ∈ F𝑚

2 } .

CCZ-equivalence is the most relevant notion of equivalence with respect to the differential and
linear properties of a mapping since it preserves both the differential and the Walsh spectra. It is
worth noticing that neither the algebraic degree nor the fact that the mapping is a permutation
is invariant under CCZ-equivalence.

3 Generalised Butterflies

3.1 Definition

Let 𝑚 = 2𝑛 be an even integer. In the paper, Boolean functions of 𝑚 variables are identified
with functions from F2𝑛 × F2𝑛 . Similarly, vectorial functions from F𝑚

2 into F𝑚
2 are identified

with mappings from F2𝑛 × F2𝑛 to itself. It is worth noticing that the choice of the basis used
for identifying F2𝑛 with F𝑛

2 does not affect the cryptographic properties of the functions we are
studying since different bases lead to functions which are affine-equivalent.

In this setting, the scalar product between two elements (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in F2𝑛 × F2𝑛 is
defined as

Tr(𝑥1𝑥2) + Tr(𝑦1𝑦2)

where Tr is the trace function on F2𝑛 , i.e., Tr(𝑥) = 𝑥+ 𝑥2 + . . .+ 𝑥2
𝑛−1

.
We now define the family of vectorial functions that will be studied in the paper.

Definition 6 (Generalised Butterflies). Let 𝑅 be a bivariate polynomial of F2𝑛 such that 𝑅𝑦 :
𝑥 ↦→ 𝑅(𝑥, 𝑦) is a permutation of F2𝑛 for all 𝑦 in F2𝑛. The closed butterfly V𝑅 is the function of
(F2𝑛)

2 defined by
V𝑅(𝑥, 𝑦) =

(︀
𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑥)

)︀

and the open butterfly H𝑅 is the permutation of (F2𝑛)
2 defined by

H𝑅(𝑥, 𝑦) =
(︀
𝑅𝑅−1

𝑦 (𝑥)(𝑦), 𝑅−1
𝑦 (𝑥)

)︀

where 𝑅𝑦(𝑥) = 𝑅(𝑥, 𝑦) and 𝑅−1
𝑦 (𝑅𝑦(𝑥)) = 𝑥 for any 𝑦, 𝑥. A representation of H𝑅 is given in

Figure 1a and one of V𝑅 is given in Figure 1b.

𝑅−1

𝑅

(a) The open butterfly H𝑅 (bijective).

𝑅 𝑅

(b) The closed butterfly V𝑅.

Figure 1: The butterfly constructions.

It can be easily checked that, for any choice of the keyed permutation 𝑅, the open butterfly
H𝑅 is an involution.

Lemma 1. The permutation H𝑅 and the function V𝑅 of (F2𝑛)
2 are CCZ-equivalent.

Proof. The proof is identical to the proof of Lemma 2 in [PUB16].

4

(a) The open butterfly HR (involution).

Definition 5 (CCZ-equivalence [CCZ98]). Two mappings 𝐹 and 𝐺 from F𝑚
2 into itself are said

to be CCZ-equivalent if there exists a linear permutation 𝐿 of F2𝑚
2 such that

{(𝑥, 𝐹 (𝑥)), ∀𝑥 ∈ F𝑚
2 } = {𝐿(𝑥,𝐺(𝑥)),∀𝑥 ∈ F𝑚

2 } .

CCZ-equivalence is the most relevant notion of equivalence with respect to the differential and
linear properties of a mapping since it preserves both the differential and the Walsh spectra. It is
worth noticing that neither the algebraic degree nor the fact that the mapping is a permutation
is invariant under CCZ-equivalence.

3 Generalised Butterflies

3.1 Definition

Let 𝑚 = 2𝑛 be an even integer. In the paper, Boolean functions of 𝑚 variables are identified
with functions from F2𝑛 × F2𝑛 . Similarly, vectorial functions from F𝑚

2 into F𝑚
2 are identified

with mappings from F2𝑛 × F2𝑛 to itself. It is worth noticing that the choice of the basis used
for identifying F2𝑛 with F𝑛

2 does not affect the cryptographic properties of the functions we are
studying since different bases lead to functions which are affine-equivalent.

In this setting, the scalar product between two elements (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in F2𝑛 × F2𝑛 is
defined as

Tr(𝑥1𝑥2) + Tr(𝑦1𝑦2)

where Tr is the trace function on F2𝑛 , i.e., Tr(𝑥) = 𝑥+ 𝑥2 + . . .+ 𝑥2
𝑛−1

.
We now define the family of vectorial functions that will be studied in the paper.

Definition 6 (Generalised Butterflies). Let 𝑅 be a bivariate polynomial of F2𝑛 such that 𝑅𝑦 :
𝑥 ↦→ 𝑅(𝑥, 𝑦) is a permutation of F2𝑛 for all 𝑦 in F2𝑛. The closed butterfly V𝑅 is the function of
(F2𝑛)

2 defined by
V𝑅(𝑥, 𝑦) =

(︀
𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑥)

)︀

and the open butterfly H𝑅 is the permutation of (F2𝑛)
2 defined by

H𝑅(𝑥, 𝑦) =
(︀
𝑅𝑅−1

𝑦 (𝑥)(𝑦), 𝑅−1
𝑦 (𝑥)

)︀

where 𝑅𝑦(𝑥) = 𝑅(𝑥, 𝑦) and 𝑅−1
𝑦 (𝑅𝑦(𝑥)) = 𝑥 for any 𝑦, 𝑥. A representation of H𝑅 is given in

Figure 1a and one of V𝑅 is given in Figure 1b.

𝑅−1

𝑅

(a) The open butterfly H𝑅 (bijective).

𝑅 𝑅

(b) The closed butterfly V𝑅.

Figure 1: The butterfly constructions.

It can be easily checked that, for any choice of the keyed permutation 𝑅, the open butterfly
H𝑅 is an involution.

Lemma 1. The permutation H𝑅 and the function V𝑅 of (F2𝑛)
2 are CCZ-equivalent.

Proof. The proof is identical to the proof of Lemma 2 in [PUB16].

4

(b) The closed butterfly VR.

Figure 1: The butterfly constructions.

It is showed that the differential uniformity of these functions is at most 4 when α, β, R(x, y)
satisfy any one of the following conditions:
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– Perrin et al. [PUB16]: α ∈ F2k , α 6= 0, R(x, y) = (x+ αy)3 + y3;

– Fu et al. [FF16] : gcd(i, k) = 1 and α ∈ F2k , α 6= 0, R(x, y) = (x+ αy)2
i+1 + y2

i+1;

– Canteaut et al. [CDP16]: α, β ∈ F2k , α 6= 0, β 6= 0 and β 6= (1 +α)3, R(x, y) = (x+αy)3 + βy3.

Moreover, in [FF16], it is proved that when gcd(i, k) = 1 and R(x, y) = (x+ y)2
i+1 + y2

i+1, the closed
butterfly, namely

VR(x, y) =
(

(x+ y)2
i+1 + x2

i+1, (x+ y)2
i+1 + y2

i+1
)

is also a differentially 4-uniform permutation over (F2k)2. However

VR(VR(x, x)) = VR

(
x2

i+1, x2
i+1
)

=
(
x(2

i+1)2 , x(2
i+1)2

)
= (x, x),

which does not hold for any x ∈ F2k . This implies that VR(x, y) is not involutory.
In all the three cases (in fact, the first case is a special case of the third case), the functions always

have the best known nonlinearity, namely 22k−1 − 2k. Moreover, when α = β = 1, their extended
Walsh spectrum is {0, 2k+1}, otherwise, their extended Walsh spectrum is {0, 2k, 2k+1}.

6. Functions Constructed by Contraction

In [Car11], Carlet presented a method to construct differentially 4-uniform permutations over F2n

by using APN permutations over F2n+1 . The construction is as follows.

– Carlet [Car11]: Let c = n (mod 2), α ∈ F2n+1 and Trn+1
1 (α) = 1. Identify a vector of Fn2 as an

element of H = {u ∈ F2n+1 : Trn+1
1 (u) = 0}. Then the restriction of x + 1

x+α+c +
(

1
x+α+c

)2
to

H is a differentially 4-uniform permutation over Fn2 .

In our case, c = 0 since n is even. Denote the function of the above construction by F , and suppose
that F is involutory. Then, for any β ∈ F2n+1\H, we have α+ β ∈ H,

F (F (α+ β)) = F

(
α+ β +

1

β
+

1

β2

)

= α+ β +
1

β
+

1

β2
+

1

β + 1
β + 1

β2

+

(
1

β + 1
β + 1

β2

)2

= α+ β.

(12)

Notice that β 6= 0 and β3 + β + 1 6= 0. Otherwise, it can imply that Trn+1
1 (β) = Trn+1

1 (β4 + β2) = 0,
a contradiction. So the equation (12) can be furthermore reduced to

β5 + β4 + β3 + β2 + β + 1 = 0,

which contradicts that β is arbitrary. Therefore, the construction F cannot be an involution.

Based on the above idea, Li and Wang [LW14] constructed several classes differentially 4-uniform
permutations with the best known nonlinearity over Fn2 from quadratic APN permutations (which are
also AB permutations) over F2n+1 , where n is even.

(i) Suppose n ≥ 4 is even, gcd(i, n + 1) = 1, u ∈ F∗2n+1 . Identify a vector of Fn2 as an element of

the n-dimension linear subspace Hu = {ux2i + u2
i
x : x ∈ F2n+1}. Let Fu(x) be the restriction of

ux
2i

2i+1 + u2
i
x

1

2i+1 to Hu, where x
1

2i+1 is the compositional inverse of x2
i

over F2n+1 ;
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(ii) Suppose n ≥ 4 is even, gcd(i, n + 1) = 1, u ∈ F∗2n+1 . Identify a vector of Fn2 as an element of

the n-dimension linear subspace Hu = {ux2i + u2
i
x : x ∈ F2n+1}. Let F ′u(x) be the restriction of

ux
2i

2i+1 + u2
i
x

1

2i+1 + x to Hu, where x
1

2i+1 is the compositional inverse of x2
i

over F2n+1 ;

(iii) Let m = n+ 1 be odd and divisible by 3, gcd(i,m) = 1, s = i mod 3. F (x) = x
1

2i+1 + Trm3 (x+
x2

2s
) is an AB permutation over F2m . Identify a vector of Fn2 as an element of the linear subspace

Tr(0) = {x ∈ F2m : Trm1 (x) = 0}. Let F ′(x) be the restriction of F (x) + F (x)2
i

to Tr(0).

Then Fu(x), F ′u(x) and F ′(x) are differentially 4-uniform permutations over Fn2 . Their nonlinearity is

2n−1 − 2
n
2 and the extended Walsh spectrum is {0, 2n2 , 2n+2

2 }.

In the case of (i) (resp. case of (iii)), in [LW14] it is proved that deg(Fu(x)) = n+2
2 , and

deg(F−1u (x)) ≤ 3 (resp. deg(F ′(x)) = n+2
2 , deg(F ′−1(x)) ≤ 7). If the function is an involution,

then we must have that n = 4 (resp. n = 2 or n = 8). One can checked experimentally that the
function can not be involutory in these cases.

Next we consider the case of (ii), the compositional inverse of F ′u(x) is the restriction of

x+ u
(
x+ u2

i+1
) 2i

2i+1 + u2
i
(
x+ u2

i+1
) 1

2i+1

to Hu [LW14]. If this function F ′u(x) is an involution, then we must have

ux
2i

2i+1 + u2
i
x

1

2i+1 + x = x+ u
(
x+ u2

i+1
) 2i

2i+1 + u2
i
(
x+ u2

i+1
) 1

2i+1 ,

i.e.,

ux
2i

2i+1 + u2
i
x

1

2i+1 = u
(
x+ u2

i+1
) 2i

2i+1 + u2
i
(
x+ u2

i+1
) 1

2i+1 ,

held for any x ∈ Hu. However, by case (i), we know that ux
2i

2i+1 + u2
i
x

1

2i+1 is a permutation when
restricted to Hu, it follows then that u = 0, a contradiction. Therefore, F ′u(x) can not be involutory
as well.

7. Conclusion and Open Problems

In this paper, we studied the involutory property for S-boxes constructed from differentially 4-
uniform permutations. If a function used as an S-box in some ciphers is an involution, then the
implementation cost for its inverse is saved. This is an advantage in hardware implementation, es-
pecially in lightweight cryptography algorithms. Thus, the property of being involutory is a desired
property for a good S-box. We examine all the differentially 4-uniform permutations in the litera-
ture and determine whether they can be involutory. Some differentially 4-uniform involutions with
good cryptography properties are found, which providing more choices for the design of S-boxes with
low hardware implementation. The list of all the involutory differentially 4-uniform permutations we
known is given in Table 1.

We know that if F is an involution over F2n , and P is a permutation over F2n , then G = P−1◦F ◦P
is an involution over F2n as well. Moveover, if F is differentially 4-uniform and P is affine, then G,
which is affine equivalent to F , is a differentially 4-uniform involution. This construction is trivial. It
is an interesting problem to investigate the case where P is not affine. It is also a challenging problem
to give a characterization of the involution F and permutation P such that the involution G has lower
differential uniformity over F2n .
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Table 1: Involutory Differentially 4-uniform Permutations

Functions Conditions References

x−1 n is even [Nyb93]

x−1 + 1U (x)
(1) U = {0, 1}, n/2 is odd, or [QTTL13, PT16]

(2) U = {ω, ω2}, n/2 is odd, or [QTLG16, ZHSS15]

(3) U = {0, 1, ω, ω2} [CDZQ16]

F (x) =

{
β(x+ 1)−1 + α if x ∈ F2d

x−1 if x ∈ F2n\F2d

(1) α = β = 1, or
(2) α = 0, β = 1, d is even, or
(3) α = 0, β = 1, d = 1, 3, n/2 is odd, or [PT17]
(4) α = β = ω or ω2, d = 2, n/2 is odd, or
(5) α = 1, Tr( 1

β ) = 1, n/d is odd

F (x) =

{
βx−1 + α if x ∈ F2d

x−1 if x ∈ F2n\F2d

(1) α = ω, β = ω2, d = 2, n/2 is odd, or [ZHS14]

(2) α = ω2, β = ω, d = 2, n/2 is odd, or

F (x) =

{
(γx)−1 if x ∈ U
x−1 if x ∈ F2n\U

U =
⋃
g∈G g〈γ〉, where G ⊆ F∗2n , γ ∈ F∗2n

is of order d such that
(i) If g ∈ G, then g−1 ∈ G, and
(ii) Tr(γ) = Tr( 1γ ) = 1, and [PTW16]

(iii) Tr
(

γ
(gi/gj)γl+(gj/gi)γ−l

)
= 1, for any

gi, gj ∈ G, 0 ≤ l ≤ d−1
2 (when gi = gj ,

then 1 ≤ l ≤ d−1
2 )

F (x) = (π(x))−1 =

{
α−1i+1 x = αi

x−1 x 6∈ π

(1) π = (1 γ γ2), γ ∈ F22\F2 , n/2 is odd, or
(2) π = (0 1), n/2 is odd, or [LWY13]
(3) π = (γ 1

γ ), Tr(γ) = Tr( 1γ ) = 1

F (x1, . . . , xn−1, xn) =
Trn−11 (c) = Trn−11 (1c ) = 1{

(1/x′, 0) if xn = 0

(c/x′, 1) if xn = 1
[CTTL14]

HR(x, y) =
(
RR−1

y (x)(y), R−1y (x)
)

n = 2k, k is odd, α ∈ F∗
2k

, Ry(x) = R(x, y),

(1) gcd(i, k) = 1, [PUB16]

R(x, y) = (x+ αy)2
i+1 + y2

i+1, or [FF16]
(2) β ∈ F∗

2k
, β 6= (1 + α)3, [CDP16]

R(x, y) = (x+ αy)3 + βy3
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