
Secure searching of biomarkers
through hybrid homomorphic encryption scheme

Miran Kim1, and Yongsoo Song2, Jung Hee Cheon2

1 University of California, San Diego,
mrkim@ucsd.edu

2 Seoul National University, Republic of Korea
{jhcheon,lucius05}@snu.ac.kr

Abstract. As genome sequencing technology develops rapidly, there has lately been an increas-
ing need to keep genomic data secure even when stored in the cloud and still used for research.
In this paper, we are interested in designing a protocol for the secure outsourcing matching
problem on encrypted data. We propose an efficient method to securely search a matching po-
sition with the query data and extract some information at the position. After decryption, we
only perform a small amount of comparison with the query information in plaintext. We apply
this method to find a set of biomarkers in encrypted genomes.
The important feature of our method is to encode a genomic database as a single element
of polynomial ring. It also requires only a single homomorphic multiplication for query com-
putation. Thus this method has the advantage over the previous methods in parameter size,
computational complexity, and communication cost.
We evaluate the performance of our method and verify that computation on large-scale personal
data can be securely and practically outsourced to a cloud environment during data analysis.
It takes about 3.9 seconds to search-and-extract the reference and alternate sequences of the
queried position in a database of size 4M.

Keywords. Homomorphic encryption, Biomarkers

1 Introduction

The rapid development of genome sequencing technology enables us to access large genome
dataset and it looks poised to make a significant breakthrough in medical research. While
genomic data can be used for a wide range of applications including healthcare, biomedical
research, and direct-to-consumer services, it has numerous special distinguishing features
and it can violate personal privacy via genetic disclosure or genetic discrimination [HAHT13,
EN14, NAC+15]. Due to these potential privacy issues, it should be managed with care.

There have been various privacy-enhancing techniques using cryptographic methods as
outsourced analysis tools of genomic data. Recently, it has been suggested that we can pre-
serve privacy through homomorphic encryption (HE), which allows computations to be car-
ried out on ciphertexts. Yasuda et al. [YSK+13] gave a practical solution to find the location
of a pattern in a text by computing multiple Hamming distance values on encrypted data.
Lauter et al. [LLAN14] gave a solution to privately compute the basic genomic algorithms
used in genome-wide association studies.

Homomorphic encryption can be applied to privacy-preserving sequence comparison, but
it is still impractical for the analysis of entire human genome information. For example,
Cheon et al. [CKL15] presented a protocol to compute the edit distance on homomorphically
encrypted data but it took about 27 seconds even on length 8 DNA sequence. It is not easy
to efficiently approximate the edit distance over encryption even though the distance to a
public human DNA sequence is given [KL15]. This inefficiency comes from the difficulty of
homomorphic evaluation of equality test: Encrypting the inputs bit-wise and computing over
the encrypted bits yield expensive computation cost (at least linear in the data bit-length).

2

In this paper, we suggest an efficient method to securely search a set of biomarkers using
hybrid Ring-GSW homomorphic encryption scheme. The important feature of our method is
to encode a genomic database as a single element of polynomial ring. The searching operation
in a database is done by a single multiplication with the query gene, thus the information
of DNA sequences at the matching position with the query data is moved to the constant
term of output polynomial. Then we perform the extraction procedure to obtain the DNA
sequence, and after decryption we compare it with the query DNA information in plaintext.
In particular, this conversion procedure not only prevents leakage of database information
that has not been queried by user but also reduces the communication cost by half.

Since all the matching computation is performed on encrypted data in the cloud, the se-
curity against a semi-honest adversary follows from the semantic security of the underlying
HE scheme. Furthermore, our method has the advantage over previous methods in parameter
size and computational complexity since it requires only a single multiplication. Our imple-
mentation takes about 3.9 seconds to extract the reference and alternative (non-reference)
sequences of the queried position when each of them consists of two single nucleotide poly-
morphisms (SNPs) in a database of size 4M.

2 Background

The iDASH (Integrating Data for Analysis, ‘anonymization’ and SHaring) National Center
organizes the iDASH Privacy & Security challenge for secure genome analysis. This paper is
based on a submission to the task 3 in 2016 iDASH challenge: secure outsourcing of testing
for genetic diseases on encrypted genomes.

2.1 Problem Setting

The goal of task 3 is to privately calculate the probability of genetic diseases through match-
ing a set of biomarkers to encrypted genomes stored in a public cloud service. The requirement
is that the entire matching process needs to be carried out using homomorphic encryption so
that any information about database and query should not be revealed to the server during
computation.

Suppose that the client has a Variation Call Format (VCF) file which contains genotype
information such as chromosome number and position in the genome. It also contains some
information for each position such as reference and alternate sequences, where each base must
be one of SNPs: A, T,G, and C. The client encrypts the information using homomorphic
encryption and the server calculates the exact match over the encrypted data. The outcome
is the absence/presence of the specified biomarkers, that is, an encryption of 1 if matched;
otherwise, an encryption of 0. Finally the client decrypts the result by the secret key of
homomorphic encryption.

2.2 Practical Homomorphic Encryption

Fully Homomorphic cryptosystems allow us to homomorphically evaluate any arithmetic
circuit without decryption. However, the noise of the resulting ciphertext grows during ho-
momorphic evaluations, slightly with addition but substantially with multiplication. For
efficiency reasons, for tasks which are known in advance, we use a more practical Some-
what Homomorphic Encryption (SHE) scheme, which evaluates functions up to a certain
complexity. In particular, two techniques are used for noise management of SHE: one is the
modulus-switching technique introduced by Brakerski, Gentry and Vaikuntanathan [BGV12],

3

which scales down a ciphertext during every multiplication operation and reduces the noise
by its scaling factor. The other is a scale-invariant technique proposed by Brakerski such
that the same modulus is used throughout the evaluation process [Bra12].

Let us denote by [·]Q the reduction modulo Q into the interval (−Q/2, Q/2] ∩ Z of the
integer or integer polynomial (coefficient-wise). For a security parameter λ, we choose an
integer M = M(λ) that defines the M -th cyclotomic polynomial ΦM (X). For a polynomial
ring R = Z[X]/(ΦM (X)), set the plaintext space to Rt := R/tR for some fixed t ≥ 2 and
the ciphertext space to RQ := R/QR for an integer Q = Q(λ). Let χ = χ(λ) denote a noise
distribution over the ring R. We use the standard notation a← D to denote that a is chosen
from the distribution D.

The Basic Scheme. The following is a description of basic homomorphic encryption scheme
based on the hardness of (decisional) Ring Learning with Errors (RLWE) assumption, which
was first introduced by Lyubashevsky, Peikert and Regev [LPR10]. The assumption is that
it is infeasible to distinguish the following two distributions. The first distribution consists
of pairs (ai, ui), where ai and ui are drawn uniformly at random from RQ. The second
distribution consists of pairs of the form (ai, bi)=(ai, ais + ei) where ai is uniformly random
in RQ and s, ei are drawn from the error distribution χ. To improve efficiency for HE, we
use sparse secret keys s with coefficients sampled from {0,±1} as in [GHS12].

– RLWE.ParamsGen(λ): Given the security parameter λ, choose an integer M , a modu-
lus Q, a plaintext modulus t with t|Q, and discrete Gaussian distribution χerr. Output
params← (M,Q, t, χerr).

– RLWE.KeyGen(params): On the input parameters, let N = φ(M) and choose a sparse
random s from {0,±1}N . Generate an RLWE instance (a, b) = (a, [−as+e]Q) for e← χerr.
We set the secret key sk← s and the public key pk← (a, b).

– RLWE.Enc(m, pk): To encrypt m ∈ Rt, choose a small polynomial v and two Gaussian
polynomials e0, e1 over R and output the ciphertext

ct← (c0, c1)

= ((Q/t)m, 0) + (bv + e0, av + e1) ∈ R2
Q.

– RLWE.Dec(ct, sk): Given a ciphertext ct = (c0, c1), output m← b(t/Q) · [c0 + s · c1]Qe.
– RLWE.Add(ct, ct′): Given two ciphertexts ct = (c0, c1) and ct′ = (c′0, c

′
1), the homomorphic

addition is computed by ctadd ← ([c0 + c′0]Q, [c1 + c′1]Q).

Throughout this paper, we assume that the integer M is a power of two so that N =
M/2 and φM (X) = XN + 1. We adapt the conversion and modulus-switching techniques of
[DM15]. The conversion algorithm changes an RLWE encryption of m =

∑
imiX

i into an
LWE encryption of its constant term m0, and the modulus switching reduces the ciphertext
modulus Q down to q while preserving the message. We note that an LWE ciphertext is
represented as a vector in Zq for some modulus q, and the decryption procedure is done by
an inner product of the ciphertext and the secret key vector.

– RLWE.Conv(ct): Given a ciphertext ct = (c0, c1) with c0 =
∑

i c0,iX
i and c1 =

∑
i c1,iX

i,
output the vector ct′ = (c0,0, c1,0,−c1,N−1, . . . ,−c1,1).

– LWE.ModSwitch(ct): Given a ciphertext ct ∈ ZN+1
Q , output the vector ct′ ← b(q/Q) · cte ∈

ZN+1
q .

4

An RLWE ciphertext ct = (c0, c1) has the decryption structure of the form c0 + c1 · s =
(Q/t) ·m+ e and its constant term is

c0,0 + c1,0s0 −
N−1∑
i=1

c1,N−isi = (Q/t) ·m0 + e0.

It can be represented as an inner product of a vector (c0,0, c1,0,−c1,N−1,−c1,N−2, . . . ,−c1,1)
and the desired LWE secret key s = (1, s0, . . . , sN−1). Hence the output of the conversion
algorithm can be seen as an LWE encryption of m0. It is also easy to check that if ct ∈ ZN+1

Q

satisfies 〈ct, s〉 = (Q/t) · m + e (mod Q), then the output of LWE.ModSwitch algorithm
satisfies 〈ct′, s〉 = (q/t) ·m+ e′ (mod q) for some e′ ≈ (q/Q) · e. These techniques have been
proposed for an efficient bootstrapping [DM15], but they will play totally different roles in
our application. Finally an LWE ciphertext of modulus q can be decrypted by s as follows.

– LWE.Dec(ct, sk): Given a ciphertext ct ∈ ZN+1
q , output the value m← b(t/q) · [〈ct, s〉]qe.

If 〈ct, s〉 = (q/t) ·m+ e (mod q) for some small enough e, it returns the correct message
m modulo t. More precisely, the decryption procedure works if |te/q| < 1/2.

The Ring-GSW Scheme. Gentry, Sahai, and Waters [GSW13] suggested a fully homo-
morphic encryption based on the LWE problem, where the message is encrypted as an approx-
imate eigenvalue of a ciphertext. Ducas and Micciancio [DM15] described its RLWE variant.
The RGSW symmetric encryption scheme consists of the following algorithms.

– RGSW.ParamsGen(·),RGSW.KeyGen(·): Use the same parameter params and secret key s
with the basic RLWE scheme. Additionally set the decomposition base Bg and exponent

dg satisfying B
dg
g ≥ Q.

– RGSW.Enc(m, sk): To encrypt m ∈ Rt, pick a matrix a ∈ R2dg
Q uniformly at random, and

e ∈ R2dg ' Z2dg·n with discrete Gaussian distribution χ of parameter ς, and output the
ciphertext

CT← [b,a] +mG ∈ R2dg×2
Q

where b = −a · s+ e and the gadget matrix G = (I ‖ BgI ‖ . . . ‖ B
dg−1
g I)T ∈ R2dg×2

Q for
2× 2 identity matrix I.

Let WDBg(·) be the decomposition with the base Bg, where the dimension of input
vector is multiplied by dg through this algorithm. The RGSW encryption of m satisfies

CT · (1, s) = m · (1, s, . . . , Bdg−1
g , B

dg−1
g s) + e. Roughly, m is an approximate eigenvalue of

WDBg(CT) with respect to the eigenvector (1, s, . . . , B
dg−1
g , B

dg−1
g s). In [CGGI16], the hybrid

multiplication between RGSW ciphertexts and RLWE ciphertexts has been defined as follows.

– Hybrid.Mult(CT, ct): Given an RGSW ciphertext CT ∈ R2dg×2
Q and an RLWE ciphertext

ct ∈ R2
Q output the vector ct′ ← CTT ·WDBg(ct).

If CT and ct are RGSW and RLWE encryptions of m and m′, respectively, their multiplica-
tion ct′ is a valid RLWE encryption ofmm′. For convenience, we will denote Hybrid.Mult(CT, ct)

algorithm by �, i.e., (CT, ct) ∈ R2dg×2
Q ×R2

Q 7→ CT� ct ∈ R2
Q.

5

3 Privacy-preserving Database Searching and Extraction

Let us consider a database of a set of n tuples. Each tuple consists of pairs (di, αi) for
i = 1, . . . , n, where di denotes a data-tag in the domain {0, 1, . . . , T − 1} and αi represents
the corresponding value attribute in a plaintext space Zt\{0}. Note that all the tags should
be distinct from each other. For instance, in the case of personal information database, αi
may be the age of user whose identity number is di.

Given a query tag d from a tag domain and a query value α from a plaintext space, the
matching problem is to determine the existence of an index i such that (d, α) = (di, αi). Now
consider the following simplified search query: select αi if there exists an index i such that
di = d; otherwise zero (⊥). The purpose of this section is to store the database and carry out
this search query on the public cloud. The server should learn nothing from encrypted query
and any information other than the final result should not be leaked to user. Throughout
this work, we will use semi-honest (honest but curious) adversary model, which is a standard
assumption for evaluation of homomorphic encryption.

3.1 Our Method of Secure Search-and-extract

Our main idea is the following encoding method of database suitable for the efficient com-
putation of equality test and extraction:

DB(X) =
∑
i

αiX
di ∈ Zt[X].

The user encrypts this polynomial with the RLWE public-key encryption scheme and stores
the ciphertext ctDB in the server. At the query phase, given a query tag d, the user encrypts
the monomial X−d with the RGSW symmetric encryption scheme and sends the ciphertext
CTQ to the server. We assume that the RGSW encryption scheme has the same secret key sk
as the one of RLWE encryption scheme.

Given two ciphertexts CTQ ← RGSW.Enc(X−d) and ctDB ← RLWE.Enc(DB(X)), the
server first performs their multiplication to obtain an ciphertext, denoted by ctmult = CTQ�
ctDB. It follows from the previous section that ctmult is a valid RLWE encryption of the
polynomial

DB(X) ·X−d =
∑
i

αiX
di−d ∈ Rt.

Since we use the cyclotomic polynomial φM (X) = XN + 1 of power-of-two degree, the
polynomial ring R has the property XN = −1. Thus, for any tag d, the constant term of the
polynomial DB(X) ·X−d is αi if there is some index i satisfying d = di, otherwise zero.

Now the server applies the RLWE.Conv algorithm on ctmult to compute an LWE encryption
ctconv of this constant term. This conversion procedure not only prevents the leakage of
information that has not been queried but also reduces the size of output ciphertext by
half. In addition, the (optional) modulus-switching procedure can be considered to get a
ciphertext ctres with a smaller modulus size and reduce the communication cost. Finally the
user decrypts this LWE ciphertext and gets the desired value αi or zero (⊥). Algorithm 1
summarizes the procedure of secure search-and-extraction.

Our method can be modified to support a secure comparison of data values using a hash
(one-way) function. If hashed values of αi are used as polynomial coefficients, our method
will return a hashed value of αi to the user instead of αi. The user may check whether the
resulting value and the hashed query value are the same or not without knowing information
about database.

6

Algorithm 1 Procedure of secure search-and-extraction

1: Database encryption: The data owner encodes the genomic information as DB(X) and
submits its encryption to the server:

ctDB ← RLWE.Enc(DB(X)).

2: Query encryption: The user encodes the query tag d and sends its encryption to the
server:

CTQ ← RGSW.Enc(X−d).

3: Evaluation phase: The server computes their multiplication, and carries out the conver-
sion and modulus-switching operations:

ctmult ← Hybrid.Mult(CTQ, ctDB).

ctconv ← RLWE.Convert(ctmult).

ctres ← LWE.ModSwitch(ctconv).

Return the resulting ciphertext ctres to the user.
4: Decryption phase: The user decrypts the ciphertext with the secret key and gets the

desired value:
α← LWE.Dec(ctres).

3.2 Comparison with Related Work

Equality test has been traditionally considered difficult to perform on homomorphic encryp-
tion, because of its large circuit depth [CKK15, KL15, CKK16]. They evaluate the equality
test on each encrypted tuple of database, so at least Ω(n) homomorphic operations are re-
quired for searching on database of size n. In addition, Boneh et al. [BGH+13] does not
protect the database information to the users, that is, the whole database can be recovered
by the resulting ciphertext of a query. However, our method is very efficient in parameter
size and complexity since it requires only a single hybrid multiplication.

One limitation of this method is that the tags di should be bounded by ciphertext dimen-
sion N to construct the encoding polynomial DB(X). Since the dimension N has a significant
influence on the performance of HE scheme, too large value of N has an impractical impact
on the performance. In the next section, we will describe how to overcome this problem in
terms of the application to genomic data.

4 Secure Searching of Biomarkers

We return to our main goal of task3: secure outsourcing matching of a set of biomakers to
encrypted genomes. We describe how to encode and encrypt the genotype information of
VCF file in order to apply the privacy-preserving database searching and extraction.

4.1 Encoding of Genomic Data

VCF file contains multiple genotype information lines, where each of them consists of a
triple (chi, posi,SNPsi) of chromosome number, position, and a sequence of SNP alleles. A
chromosome identifier ch ranges from 1 to 22, X, and Y. A non-negative integer pos represents
the reference position with the first base having position 1, and SNPs is a reference or

7

alternate sequence in {A, T,G,C}∗. A query from user is also a triple of the same form and
we aim to decide absence/presence of this biomarker in the database file.

We represent the sex chromosomes X and Y as 0 and 23, respectively. Then we define an
encoding function E : Z× Z→ Z by

(ch, pos) 7→ d = ch + 24 · pos.

In the following, we describe how to encode the SNPs. For convenience we set the upper
bound for the length of SNPs, so let nSNP be the maximal number of reference (or alternate)
alleles to be compared between the query genome and user genome in the target database.
Each of SNP is represented by two bits as

A 7→ 00, T 7→ 01, G 7→ 10, C 7→ 11,

and then concatenated with each other. Next we pad with 1 to the left of the bit string in
order to express the staring position of SNPs. Finally it is zero-padded into a binary string
of length `SNP = 2 · nSNP + 1, and we convert it into an integer value, denoted by αi. If a
single nucleotide variant at the given locus is not known, then it is encoded as 0-string. For
example, ‘GC’ is encoded as a bit string 1|10|11, which will be represented as an integer
1|10|11(2) = 27.

Now consider the case that we wish to encode the reference and alternate alleles together.
Let αref

i and αalt
i denote the integer encodings of nSNP reference alleles and nSNP alternate

alleles, respectively. Then we define an encoding αi by the concatenation of two encodings,
i.e., αi = 2`SNP · αref

i + αalt
i as an integer. Table 1 shows the format of database file and

illustrates some examples of encoded genomic data.

Table 1. The format of genome data and its encoding with nSNP = 10

CHROM POS d REF ALT α

1 161235340 3869648161 G A 12582916
1 161235596 3869654305 C T 14680069
1 161235657 3869655769 G T 12582917
1 161235981 3869663545 G A 12582916
1 161237503 3869700073 · TTTTTGT 21849
1 161237891 3869709385 G A 12582916
1 161238009 3869712217 G · 12582912
1 161238488 3869723713 A G 8388614
1 161238683 3869728393 G A 12582916
1 161238856 3869732545 T · 10485760
1 161239028 3869736673 AG · 37748736
1 161239142 3869739409 A G 8388614
1 161239346 3869744305 G T 12582917
1 161239470 3869747281 C T 14680069
1 161239788 3869754913 · AA 16
1 161239978 3869759473 C T 12582917
1 161240641 3869775385 TGAT · 740294656

8

4.2 Encryption of Genomic Data

A database file is encoded as a set of pair (di, αi) for i = 1, . . . , n such that di = E(chi, posi)
and αi is the encoded integer of the i-th SNP allele string. Then the encodings di and αi are
regarded as data-tag and value attribute, respectively. The data user constructs a polynomial
DB(X) =

∑
k ckX

k such that

ck =

{
αi if k = di for some i,

α← Zt otherwise.

The user encrypts the polynomial with the RLWE public-key encryption scheme as described
above.

The query genes are also encoded as a pair of integers (d, α), however, we consider only
the information of d is encrypted using the RGSW symmetric encryption scheme, that is, the
user encrypts the monomial X−d.

5 Implementation and Experimental Results

In this section, we explain how to set the parameters and describe our optimization techniques
for the implementation. We also present our results using the techniques. The dataset was
randomly selected from Personal Genome Project. Our implementation is publicly available
on github [KS16].

5.1 How to Set Parameters

The security of the underlying homomorphic encryption scheme relies on the hardness of the
RLWE assumption. We derive a lower-bound on the ring dimension as N ≥ λ+110

7.2 · log2Q to
get λ-bit security level from the security analysis of [GHS12].

Given the ciphertext modulus Q, it follows from the estimation of noise growth during
evaluations [DM15] and decryption condition that we get the upper bound on the plaintext
modulus t to ensure the correctness of decryption after computation. So we set t as the
largest power-of-two integer less than the upper bound. If the encodings of the allele strings
are too large, we divide them into smaller integers so that each of them is smaller than t.
Then we repeat the algorithm to construct the corresponding polynomials of each integer.

5.2 Optimization Techniques

As we mentioned before, the ring dimension N needs to be larger than the encoded inte-
gers di’s. However, the encoded integers di from VCF files have bits size about 32, while a
dimension N with about 11 ≤ log2N ≤ 16 is considered appropriate for implementation of
HE schemes to achieve both security and efficiency. Hence direct application of our method
to the VCF file would yield an impractical result.

For compression of tag data and its re-randomization, we make the use of a pseudo
random number generator H(·) which transforms a tag di into a pair of two non-negative

integers d∗i and d†i less than N . Our implementation adopts SHA-3 and extracts log2N = 11

bits of the hashed value for each of d∗i and d†i .
We construct two polynomials

DB∗(X) =
∑
k

c∗kX
k, DB†(X) =

∑
k

c†kX
k

9

by the Algorithm 2. Note that for any 1 ≤ i ≤ n and H(di) = (d∗i , d
†
i) ∈ {0, . . . , N − 1}2,

the pair of constructed polynomials DB∗ and DB† satisfy αi = cd∗i + c
d†i

. The procedure of

database encoding for secure search of biomarkers is described in Algorithm 2.

Algorithm 2 Encoding genomic data

1: c∗d∗1
← α1 ∈ Zq, c†

d†1
← α1 − c∗d∗1

2: d∗1 ∈ D∗, d
†
1 ∈ D†

3: for i ∈ {2, . . . , n} do

4: if d∗i /∈ D∗and d†i /∈ D† then
5: c∗d∗i

← αi ∈ Zq, c†
d†i
← αi − c∗d∗i

6: else if d∗i ∈ D∗and d†i /∈ D† then
7: c†

d†i
← αi − c∗d∗i

8: else if d∗i /∈ D∗and d†i ∈ D† then
9: c∗d∗i

← αi − c†
d†i

10: end if
11: d∗i ∈ D∗, d

†
i ∈ D†

12: end for
13: return DB∗(X) =

∑
k c
∗
kX

k, DB†(X) =
∑

k c
†
kX

k

Let ct∗DB and ct†DB denote the ciphertexts of the polynomials DB∗ and DB†, respectively.
Similarly, given the query encoding d, the user computes its randomized value H(d) = (d∗, d†)

and encrypts the two polynomials X−d
∗

and X−d
†
. We denote the ciphertexts by CT∗Q and

CT†Q. The server computes the hybrid multiplication to obtain the ciphertexts

ct∗mult = CT∗Q � ct∗DB, ct
†
mult = CT†Q � ct†DB.

Now let ct denote the ciphertext computed by the homomorphic addition between ct∗mult

and ct†mult. Finally the server converts it into an LWE ciphertext and performs the modulus-
switching procedure as described above. The Algorithm 3 describes the procedure of secure
search-and-extraction using our proposed optimization techniques.

5.3 Implementation Results

The use of variable type ‘int32 t ’ accelerates the speed of implementations and basic C++ std
libraries, so we set Q = 232 as the ciphertext modulus. We also set t = 211 as the modulus
parameter of the plaintext space to ensure the correctness for the output ciphertext. We take
the following parameters for Gadget matrix G: Bg = 128 and dg = 5, so that they satisfy

the condition B
dg
g ≥ Q.

Each coefficient of the secret key sk is chosen at random from {0,±1} and we set 64 as the
number of nonzero coefficients in the secret key. As in the work of [DM15], we considered the
Gaussian distribution of standard deviation σ = 1.4 to sample random error polynomials.

For the efficiency of homomorphic multiplication, we also used the optimized library for
complex FFT, i.e., the Fast Fourier Transform in the West [FJ05]. That is, we use the
complex primitive 2N -th root of unity rather than a primitive root in a prime field of order

10

Algorithm 3 Procedure of optimized secure search of biomarkers

1: Database encryption: The data owner encodes the genomic information as DB∗(X) and
DB†(X). Then the user submits the ciphertexts to the server:

ct∗DB ← RLWE.Enc(DB∗(X)),

ct†DB ← RLWE.Enc(DB†(X)).

2: Query encryption: The user encodes the query as X−d
∗

and X−d
†
. Then the user sends

the ciphertexts to the server:

CT∗Q ← RGSW.Enc(X−d
∗
),

CT†Q ← RGSW.Enc(X−d
†
).

3: Evaluation phase: The server computes their multiplications:

ct∗mult ← CT∗Q � ct∗DB, ct
†
mult ← CT†Q � ct†DB.

Let ct ← ct∗mult + ct†mult. The server converts it into an LWE ciphertext and performs
modulus-switching operations:

ctconv ← RLWE.Convert(ct).

ctres ← LWE.ModSwitch(ctconv).

Return the resulting ciphertext ctres to the user.
4: Decryption phase: The user decrypts the ciphertext with the secret key and gets the

desired value:
α← LWE.Dec(ctres).

Q. We measure a running time of 0.804 seconds to set up the FFT environment at dimension
2N = 212. The key generation of two schemes takes about 0.247 ms in total.

Table 2 presents the time complexity and storage for the evaluation of secure searching
of biomarkers. All the experiments were performed on a single Intel Core i5 running at 2.9
GHz processor. The chosen parameters provide λ = 128 bits of security level.

6 Conclusions

In this work, we suggested an efficient method to securely search the query tag and extract
the corresponding value from a database over hybrid GSW homomorphic encryption scheme.
We came up with a solution to the secure outsourcing matching problem by using polynomial
encoding and extraction of desired value based on the multiplication of an RGSW cipher-
text and an ordinary RLWE ciphertext. And then we applied this method to find a set of
biomarkers in DNA sequences.

Our solution shows the progress of cryptographic techniques in terms of their capability
can support real-world genome data analysis in a cloud environment. We list a few fascinating
open problems to remain. First, we only considered the semi-honest adversary model in this
work. Other tools such as homomorphic authenticated scheme may lead to more efficient
protocols in the malicious settings. Another issue is to support k multiple queries while

11

Table 2. Implementation results of secure searching of biomarkers

DB size nSNP
Complexity Storage

Query-enc DB-enc Eval Dec Query DB Result

10K

2

3.247ms

3.563ms 0.018s 0.004ms

160KB

3MB 0.75MB

5 7.212ms 0.039s 0.011ms 6MB 1.5MB

10 14.813ms 0.079s 0.027ms 12MB 3MB

100K

2 21.424ms 0.111s 0.034ms 17MB 4.25MB

5 42.415ms 0.227s 0.064ms 34MB 8.5MB

10 99.921ms 0.454s 0.139ms 68MB 17MB

4M

2 0.745s 3.954s 1.171ms 593MB 148MB

5 1.506s 7.911s 1.949ms 1185MB 296MB

10 3.001s 15.442s 3.795ms 2370MB 593MB

maintaining the performance and communication cost less than k times of a single query
case. We expect to have much faster performance by applying more efficient method.

Acknowledgements. This work was supported by IT R&D program of MSIP/KEIT [No.
B0717-16-0098]. The authors would like to thank the referee for helpful comments. The
authors would also like to thank the iDASH Secure Genome Analysis Contest organizers,
in particular Xiaoqian Jiang and Shuang Wang, for running the contest and providing the
opportunity to submit competing implementations for these important tasks.

References

[BGH+13] Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, and David J Wu. Private database queries
using somewhat homomorphic encryption. In International Conference on Applied Cryptography
and Network Security, pages 102–118. Springer, 2013.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, pages 309–325. ACM, 2012.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus swithing from classical gapsvp.
In Advances in Cryptology–CRYPTO 2012, volume 7417, pages 868–886. Springer, 2012.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homomor-
phic encryption: Bootstrapping in less than 0.1 seconds. In Advances in Cryptology–ASIACRYPT
2016: 22nd International Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, pages 3–33. Springer, 2016.

[CKK15] Jung Hee Cheon, Miran Kim, and Myungsun Kim. Search-and-compute on encrypted data. In
International Conference on Financial Cryptography and Data Security, pages 142–159. Springer,
2015.

[CKK16] Jung Hee Cheon, Miran Kim, and Myungsun Kim. Optimized search-and-compute circuits and
their application to query evaluation on encrypted data. IEEE Transactions on Information Foren-
sics and Security, 11(1):188–199, 2016.

[CKL15] Jung Hee Cheon, Miran Kim, and Kristin Lauter. Homomorphic computation of edit distance. In
International Conference on Financial Cryptography and Data Security, pages 194–212. Springer,
2015.

[DM15] Léo Ducas and Daniele Micciancio. Fhew: Bootstrapping homomorphic encryption in less than a
second. In Advances in Cryptology–EUROCRYPT 2015, volume 9056, pages 617–640. Springer,
2015.

12

[EN14] Yaniv Erlich and Arvind Narayanan. Routes for breaching and protecting genetic privacy. Nature
Reviews Genetics, 15(6):409–421, 2014.

[FJ05] Matteo Frigo and Steven G Johnson. The design and implementation of fftw3. Proceedings of the
IEEE, 93(2):216–231, 2005.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation of the aes circuit. In
Advances in Cryptology–CRYPTO 2012, volume 7417, pages 850–867. Springer, 2012.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in Cryptology–CRYPTO
2013, volume 8042, pages 75–92. Springer, 2013.

[HAHT13] Mathias Humbert, Erman Ayday, Jean-Pierre Hubaux, and Amalio Telenti. Addressing the con-
cerns of the lacks family: quantification of kin genomic privacy. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 1141–1152. ACM, 2013.

[KL15] Miran Kim and Kristin Lauter. Private genome analysis through homomorphic encryption. BMC
medical informatics and decision making, 15(Suppl 5):S3, 2015.

[KS16] Miran Kim and Yongsoo Song. Implementation of secure searching of biomarkers, 2016.
http://github.com/amedonis/HybridHE.

[LLAN14] Kristin Lauter, Adriana López-Alt, and Michael Naehrig. Private computation on encrypted ge-
nomic data. In International Conference on Cryptology and Information Security in Latin America,
pages 3–27. Springer, 2014.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. In Advances in Cryptology - EUROCRYPT 2010, pages 1–23, 2010.

[NAC+15] Muhammad Naveed, Erman Ayday, Ellen W Clayton, Jacques Fellay, Carl A Gunter, Jean-Pierre
Hubaux, Bradley A Malin, and XiaoFeng Wang. Privacy in the genomic era. ACM Computing
Surveys (CSUR), 48(1):6, 2015.

[YSK+13] M Yasuda, T Shimoyama, J Kogure, K Yokoyama, and T Koshiba. Secure pattern matching using
somewhat homomorphic encryption. In Proceedings of the 2013 ACM Cloud Computing Security
Workshop, pages 65–76, 2013.

