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Abstract. Private Set Intersection (PSI) is a cryptographic technique that allows two parties to com-
pute the intersection of their sets without revealing anything except the intersection. We use fully
homomorphic encryption to construct a fast PSI protocol with a small communication overhead that
works particularly well when one of the two sets is much smaller than the other, and is secure against
semi-honest adversaries.

The most computationally efficient PSI protocols have been constructed using tools such as hash func-
tions and oblivious transfer, but a potential limitation with these approaches is the communication
complexity, which scales linearly with the size of the larger set. This is of particular concern when per-
forming PSI between a constrained device (cellphone) holding a small set, and a large service provider
(e.g. WhatsApp), such as in the Private Contact Discovery application.

Our protocol has communication complexity linear in the size of the smaller set, and logarithmic in
the larger set. More precisely, if the set sizes are Ny < Nx, we achieve a communication overhead
of O(Ny logNx). Our running-time-optimized benchmarks show that it takes 36 seconds of online-
computation, 71 seconds of non-interactive (receiver-independent) pre-processing, and only 12.5MB
of round trip communication to intersect five thousand 32-bit strings with 16 million 32-bit strings.
Compared to prior works, this is roughly a 38–115× reduction in communication with minimal difference
in computational overhead.

1 Introduction

1.1 Private Set Intersection

Private Set Intersection (PSI) refers to a setting where two parties each hold a set of private items, and
wish to learn the intersection of their sets without revealing any information except for the intersection
itself. Over the last few years, PSI has become truly practical for a variety of applications due to a long
list of publications, e.g. [PSZ14,PSSZ15,PSZ16,KKRT16,OOS17,RR16,Lam16,BFT16a,DCW13]. The most
efficient protocols have been proposed by Pinkas et al. [PSZ16] and Kolesnikov et al. [KKRT16]. While these
protocols are extremely fast, their communication complexity is linear in the sizes of both sets. When one
set is significantly smaller than the other, the communication overhead becomes considerable compared to
the non-private solution, which has communication linear in the size of the smaller set.

1.2 Fully Homomorphic Encryption

Fully homomorphic encryption is a powerful cryptographic primitive that allows arithmetic circuits to be
evaluated directly on encrypted data, as opposed to having to decrypt the data first. Despite the basic
idea being old [RAD78], the first construction was given only in 2009 by Craig Gentry [Gen09]. While the
early fully homomorphic encryption schemes were impractical, in only a few years researchers managed
to construct much more efficient schemes (e.g. [BV14,FV12,BGV12,LATV12,BLLN13,GSW13]), bringing
practical applications close to reality [NLV11,GHS12,GBDL+16].

At first glance, it might seem easy to use fully homomorphic encryption to achieve a low communication
cost in PSI. The party with smaller set sends its encrypted set to the other party, who evaluates the intersec-
tion circuit homomorphically, and sends back the encrypted result for the first party to decrypt. The total
communication is only

2× ciphertext expansion × size of the smaller set.



However, a naive implementation of the above idea will result in a very inefficient solution. The reason is
that—for all known fully homomorphic encryption schemes—the computational cost not only grows with
the size of the inputs (in this case, the sum of the two set sizes), but also grows rapidly with the depth of the
circuit. Thus our main challenge is to come up with various optimizations to make the solution practical, and
even faster than the state-of-the-art protocols in many scenarios. In short, we will show that it is possible to
construct a fast fully homomorphic encryption based PSI protocol, with a low communication overhead.

1.3 Related Work

Meadows [Mea86] proposed one of the first secure PSI protocols, which was later fully described by Huberman,
Franklin and Hogg in [HFH99]. This approach was based on public-key cryptography, and leveraged the
multiplicative homomorphic property of Diffie-Hellman key exchange. While these schemes have relatively
good communication cost, the running time can be prohibitive when the set sizes become large due to the
need to perform modular exponentiation for every item in both sets several times.

Since [HFH99], several other paradigms have been considered. Freedman et al. [FNP04] proposed a pro-
tocol based on oblivious polynomial evaluation. This approach leveraged partially homomorphic encryption,
and was later extended to the malicious setting in [DSMRY09,HN10,HN12]. Another approach was proposed
by Hazay et al. [HL08], and was based on a so-called Oblivious PRF.

Recently, more promising approaches based on Oblivious Transfer (OT) have been invented [IKNP03,OOS17].
At the time, by far the most efficient scheme was introduced by Pinkas et al. [PSZ14], and later improved
in [PSZ16,OOS17,KKRT16]. We will denote the two parties engaged in a PSI protocol by sender and re-
ceiver, and maintain that after the execution of the protocol, the receiver learns the intersection of the sets,
whereas the sender learns no information. The high level idea of the OT-based protocols is that the receiver
engages in many OTs with the sender, and obliviously learns a randomized encoding for each item in its set,
without revealing which values were encoded. The sender can then encode its items locally, and send them
to receiver, who computes a plaintext intersection on the encodings. Due to the encodings being randomized,
they do not reveal any information beyond the intersection. One inherent property of this approach is that
the communication is linear in both set sizes due to the need to encode and send all of the encodings. The
approach we take is similar, except that we use fully homomorphic encryption in place of Oblivious Transfer.

Yet another OT-based approach was introduced by Dong et al. [DCW13], which builds on a data structure
known as a Bloom filter. This data structure allows efficient membership test by setting specific bits in a long
bit array. Importantly, the bit-wise AND of two Bloom filters is itself a valid Bloom filter for the intersection
of the two original sets. With a few modifications to this idea, a secure protocol can then be constructed
by allowing one of the parties to learn the bit-wise AND of the two Bloom filters with the use of OT.
This approach requires a greater amount of communication than the approach introduced by Pinkas et al.
[PSZ14], and results in inferior performance.

A commonly cited solution for PSI is to use generic secure multi-party computation protocols to compute
the intersection. Huang et al. [HEK12] was the first to implement such a protocol using garbled circuits,
which [PSZ14] later improved, and provided an implementation. They showed that a garbled circuit approach
requires significantly more communication compared to OT-based methods. For a more complete survey of
practical approaches, we point the reader to [PSZ16].

A very efficient server-aided protocol has also been proposed by Kamara et al. [KMRS14]. In this setting,
it is assumed that there exists a non-colluding server. The basic idea is that a random function is sampled
between the two parties which is applied to the elements in their respective sets. These encodings are then
sent to the server who reports the intersection. While conceptually simple and very efficient, the reliance on
such as server is undesirable. Moreover, the communication complexity is linear in both set sizes.

In all of the above protocols it is assumed that the set sizes (or upper bounds) are made public at the be-
ginning of the protocol. Ateniese et al. [ACT11] introduced a protocol based on RSA accumulators [BdM94],
which relaxes this assumption by hiding the receiver’s set size. This protocol works by having the receiver
construct and send an RSA accumulator for its set. The sender can then construct a response for each of its
items, which allows the receiver to test whether they were contained in the RSA accumulator. An important
property of the RSA accumulator is that its size is small, and independent of the receiver’s set size. As such,
this protocol is most interesting when the receiver has a set much larger than the sender. In a follow-up work



Bradley et al. [BFT16b] extended this protocol to imposing an upper bound on the number of items in the
accumulator, thereby preventing a so-called “full-domain attack” by the receiver.

1.4 Contributions and Roadmap

As our discussion has shown, all of the prior PSI protocols require both parties to encode and send data over
the network that is proportional to their entire sets. However, the trivial insecure solution only requires the
smaller set to be sent. We address this gap by constructing the first secure and practical PSI protocol with
low communication overhead based on a leveled fully homomorphic encryption scheme.

Our basic protocol requires communication linear in the smaller set, achieving optimal communication
that is on par with the naive solution. We then combine an array of optimizations to significantly reduce
communication size, computational cost, and the depth of the homomorphic circuit, while only adding a
logarithmic overhead to the communication. In summary, we

– Propose a basic PSI protocol based on fully homomorphic encryption;
– Combine various optimizations to vastly reduce the computational and communication cost;
– Use fine-tuned fully homomorphic encryption parameters for the homomorphic computation to avoid the

costly bootstrapping operation [Gen09,GHS12], and to achieve good performance;
– Develop a prototype implementation in C++ and demonstrate a 38–115× reduction in communication

over previous state-of-the-art protocols.

In Section 2 we review the setups and tools we use to build the protocol: the PSI setup and its definition
of security, and preliminaries on (leveled) fully homomorphic encryption. In Section 3 we propose our basic
strawman PSI protocol. Then, in Section 4, we apply optimizations to vastly improve the strawman protocol
and make it practical. The formal description of the optimized protocol, along with a security proof, is
presented in Section 5. In Section 6 we provide a performance analysis of our implementation, and compare
our performance results to [PSZ16] and [KKRT16].

2 Preliminaries

2.1 Notations

Throughout this paper, we will use the notation [n] to denote the set {1, ..., n}. The computational and
statistical security parameters will be denoted by κ, λ, respectively. Other parameters include:
– X,Y ⊆ {0, 1}σ are the sender’s and receiver’s sets, each of size Nx, Ny;
– m denotes the size of a hash table, and d denotes the number of items to be inserted into a hash table;
– n, q and t denote the encryption parameters described in Section 2.3;
– h denotes the number of hash functions used for cuckoo hashing in Section 4.2;
– B denotes the bin size for the simple hashing scheme described in Section 4.2;
– ` denotes the windowing parameter described in Section 4.3;
– α denotes the partitioning parameter described in Section 4.3.

2.2 Private Set Intersection

We use standard notations and call the two parties engaging in PSI the sender and the receiver. The sender
holds a set X of size Nx, and the receiver holds a set Y of size Ny. Both sets consist of σ-bit strings. We
always assume the set sizes Nx and Ny are public. The ideal PSI functionality computes the intersection,
outputs nothing to the sender, and X ∩ Y to the receiver. We construct a new protocol for PSI from fully
homomorphic encryption, and prove it to be secure in the semi-honest security model, where both parties
correctly follow the protocol, but may try to learn as much as possible from their view of the protocol
execution.

Our protocol is particularly powerful when the sender’s set is much larger than the receiver’s set. Hence
we assume Nx � Ny throughout the paper, even though the protocol works for arbitrary set sizes with
no changes. More precisely, we achieve a communication complexity of O(Ny logNx). Also, we require only



the sender to perform work linear in the larger set size Nx. Intuitively, the receiver encrypts and sends
its set to the sender, who computes the intersection on homomorphically encrypted data by evaluating
an appropriate comparison circuit. The output is then compressed to much smaller size using homomorphic
multiplication, and sent back to the receiver for decryption. We note that the receiver only performs relatively
light computation in the protocol, i.e. encryptions and decryptions of data linear in its set size Ny. This is
particularly useful when the receiver is limited in its computational power, e.g. when the receiver is a mobile
device.

Private contact discovery One particularly interesting application for our PSI protocol is private contact
discovery. In this setting, a service provider, e.g. WhatsApp, has a set of several million users. Each of these
users holds their own set of contacts, and wants to learn which of them also use the service. The insecure
solution to this problem is to have the user send the service provider their set of contacts, who then performs
the intersection on behalf of the user. While this protects the privacy of the service provider, it leaks the
user’s private contacts to the service provider.

While PSI offers a natural solution to this problem, one potential issue with applying existing protocols
to this setting is that both the communication and computation complexity for both parties is linear in the
larger set. As a result, a user who may have only a few hundred contacts has to receive and process data linear
in the number of users that the service has, resulting in a suboptimal protocol for constrained hardware,
such as cellphones. This problem was initially raised in an article by Moxie Marlinspike from Open Whisper
Systems—the company that developed the popular secure messaging app Signal—when they were trying to
deploy PSI for contact discovery [Mar14]. Our PSI protocol addresses this issue by allowing the constrained
devices to process and receive data that is linear in only their set size, and only logarithmic in the service
provider’s set size. Moreover, the major part of the computation can be performed by the service provider
in a large data center, where processing power is relatively inexpensive, whereas the user only performs a
light computation.

2.3 Leveled Fully Homomorphic Encryption

Fully homomorphic encryption schemes are encryption schemes that allow arithmetic circuits to be evaluated
directly on ciphertexts, ideally enabling powerful applications such as outsourcing of computation on private
data [RAD78,Gen09]. For improved performance, the encryption parameters are typically chosen to support
only circuits of a certain bounded depth (leveled fully homomorphic encryption), and we use this in our
implementation.

Many of the techniques and algorithms presented in this paper are agnostic to the exact fully homomorphic
encryption scheme that is being used, but for simplicity we restrict to RLWE-based cryptosystems using
power-of-2 cyclotomic rings of integers [LPR10]. In such cryptosystems the plaintext space is Zt[x]/(xn + 1),
and the ciphertext space is Zq[x]/(xn + 1), where n is a power of 2 and t� q are integers. It is customary to
denote R = Z[x]/(xn + 1), so that the plaintext and ciphertext spaces become Rt = R/tR, and Rq = R/qR,
respectively. We assume the fully homomorphic encryption scheme to have plaintext and ciphertext spaces
of this type, and the notation (n, q, t) will always refer to these parameters. For example, the Brakerski-
Gentry-Vaikuntanathan (BGV) [BGV12] and the Fan-Vercauteren (FV) [FV12] schemes have this structure.

A leveled fully homomorphic encryption scheme can be described by the following set of randomized
algorithms:

• FHE.Setup(1λ): Given a security parameter λ, outputs a set of encryption parameters parms.
• FHE.KeyGen(parms): Outputs a secret key sk and a public key pk. Optionally outputs one or more

evaluation keys evk.
• FHE.Encrypt(m, pk): Given message m ∈ Rt, outputs ciphertext c ∈ Rq.
• FHE.Decrypt(c, sk): Given ciphertext c ∈ Rq, outputs message m ∈ Rt.
• FHE.Evaluate(C, (c1, . . . , ck), evk): Given an arithmetic circuit f with k input wires, and inputs c1, . . . , ck

with ci → FHE.Encrypt(mi, pk), outputs a ciphertext c such that

Pr [FHE.Decrypt(c, sk) 6= f(m1, . . . ,mk)] = negl(λ) .

We also require that the size of the output of FHE.Evaluate is not more than polynomial in λ independent
of what f is (compactness) (see e.g. [ABC+15]).



We say that a fully homomorphic encryption scheme is secure if it is IND-CPA secure, and weakly circular
secure, which means that the scheme remains secure even when the adversary is given encryptions of the bits
of the secret key. A fully homomorphic encryption scheme achieves circuit privacy if the distribution of the
outputs of any fixed homomorphic evaluation is indistinguishable from the distribution of fresh encryptions
of the plaintext outputs. In this way, one can effectively hide the circuit that was evaluated on encrypted
data. We refer the reader to [ABC+15,BGV12,DS16] for more details.

3 The Basic Protocol

We describe our basic protocol in Figure 1 as a strawman protocol. The receiver encrypts each of its items y,
and sends them to the sender. For each y, the sender then evaluates homomorphically the product of differ-
ences of y with all of the sender’s items x, randomizes the product by multiplying it with a uniformly random
non-zero plaintext, and sends the result back to the receiver. The result decrypts to zero precisely when y is
in the sender’s set, and to a uniformly random non-zero plaintext otherwise, revealing no information about
the sender’s set to the receiver.

To be more precise, we assume from now on that the plaintext modulus t in our FHE scheme is a prime
number, large enough to encode σ-bit strings as elements of Zt. We also temporarily restrict the plaintext
space to its subring of constant polynomials (this restriction will be removed in Section 4.1), and assume
plaintexts to be simply elements of Zt. Recall that the sizes of the sets X and Y , and the (common) bit-length
σ of the items, are public information.

Input: Receiver inputs set Y of size Ny; sender inputs set X of size Nx. Both sets consist of bit strings of length
σ. Nx, Ny, and σ are public.
Output: Receiver outputs X ∩ Y ; sender outputs ⊥.

1. Setup: Sender and receiver jointly agree on a fully homomorphic encryption scheme. Receiver generates a
public-secret key pair for the scheme, and keeps the secret key to itself.

2. Set encryption: Receiver encrypts each element yi in its set Y using the fully homomorphic encryption
scheme, and sends the Ny ciphertexts (c1, . . . , cNy) to sender.

3. Computing intersection: For each ci, sender
(a) samples a random non-zero plaintext element ri;
(b) homomorphically computes

di = ri
∏
x∈X

(ci − x) .

Sender return the ciphertexts (d1, . . . , dNy) to receiver.
4. Reply extraction: Receiver decrypts the ciphertexts (d1, . . . , dNy) and outputs

X ∩ Y = {yi : FHE.Decrypt(di) = 0} .

Fig. 1: Basic PSI protocol.

We have the following informal theorem with regards to the security and correctness of the basic protocol.

Theorem 1 (informal). The protocol described in Figure 1 securely and correctly computes the private set
intersection of X and Y in the semi-honest security model, provided that the fully homomorphic encryption
scheme is IND-CPA secure and achieves circuit privacy.

Proof (Proof sketch). Receiver’s security is straightforward: the receiver sends an array of ciphertexts, which
looks pseudorandom to the sender since the fully homomorphic encryption scheme is IND-CPA secure. For
sender’s security, we note that the receiver’s view consists of an array of ciphertexts. It follows from circuit
privacy that the receiver only learns the decryptions of these ciphertexts, and nothing more.

For a fixed index i, we have

FHE.Decrypt(di) = ri
∏
x∈X

(yi − x) ,



which is zero precisely when yi ∈ X (correctness), and otherwise a uniformly random element in Zt \ {0},
because Zt is a field. Thus, the receiver learns no additional information beyond the intersection X ∩ Y .

This basic strawman protocol is extremely inefficient: it requires the sender to perform O(NxNy) homo-
morphic multiplications and additions, and the depth of the circuit is high, pushing the FHE parameter sizes
to be huge. In addition, the sender and the receiver need to communicate O(Ny) FHE ciphertexts, which can
be prohibitive even for state-of-the-art fully homomorphic encryption schemes. It is therefore quite surprising
that the protocol becomes very efficient when combined with the enhancements described in the next section.

4 Optimizations

4.1 Batching

Our first step to improve performance is through the use of batching, which is a well-known and powerful tech-
nique in fully homomorphic encryption to enable SIMD (Single Instruction, Multiple Data) operations on ci-
phertexts. We give a brief explanation here, and refer the reader to [GHS12,BGH13,SV14,LCP16,GBDL+16]
for more details and example applications.

For suitable choices of the plaintext modulus t, there is a ring isomorphism from the plaintext space Rt
to Znt . As an example, a constant polynomial a ∈ Rt corresponds to the vector (a, . . . , a) ∈ Znt . Moreover,
this isomorphism translates polynomial additions and multiplications into coefficient-wise additions and
multiplications in each of the n fields Zt. To simplify the exposition, we use the polynomial and vector
notations for plaintexts interchangeably, omitting the conversions from one representation to the other.

We can apply batching to reduce both the computational and communication cost of the basic protocol
as follows. The receiver groups its items into vectors of length n, encrypts them, and sends Ny/n ciphertexts
to the sender. Upon seeing each ciphertext ci, the sender samples a vector ri = (ri1, . . . , rin) ∈ (Z∗t )n of
uniformly random non-zero elements of Zt, homomorphically computes di = ri

∏
x∈X(ci − x), and sends it

back to the receiver. Note that these modifications do not affect correctness or security, since the exact same
proof can be applied per each vector coefficient.

The batching technique allows the sender to operate on n items from the receiver simultaneously, resulting
in n-fold improvement in both the computation and communication. Since in typical cases n has size several
thousands, this results in a significant improvement over the basic protocol.

4.2 Hashing

Even with the batching techniques of Section 4.1, the sender still needs to encode each of its set elements
into separate plaintexts, and individually compare them to the receiver’s items. Instead, it would be nice if
the sender could also take advantage of batching. We will achieve this through the use of hashing techniques.
Specifically, we use batching in conjunction with cuckoo hashing and permutation-based hashing, which have
been developed and explored in detail in the context of PSI in e.g. [PSZ14,PSSZ15].

Before jumping into the technicalities of cuckoo hashing and permutation-based hashing, we start with
a high-level explanation of why hashing is beneficial in our context. Suppose the two parties hash the items
in their sets into two hash tables using some agreed-upon deterministic hash function. Now they only need
to perform a PSI for each bin, since items in different bins are necessarily different.

One important point is that all bins must be padded to a fixed size to maintain security. Observe that
the bins prior to padding will have uneven loads, and the load of a specific bin (the number of items mapped
into the bin) can reveal additional information beyond the intersection. To overcome this, we need to pad
each bin with dummy items up to a pre-determined maximum size.

The simple hashing technique just described significantly reduces the complexity of our protocol. It is
well known that hashing d items into a hash table of size m = d results in a maximum load of O(log d) with
high probability. For example, in the case that both parties have d = Nx = Ny items, the overall complexity
of the basic protocol reduces to O(d log2 d), where the log2 d factor comes from performing the basic PSI
protocol on a single bin. Next, we will reduce the complexity even further via better hashing techniques.



Cuckoo hashing Cuckoo hashing [PR01,DM03,FPSS03] is a way to build dense hash tables by using h > 1
hash functions H1, ...,Hh. To insert an item x, we choose a random index i from [h], and insert the tuple
(x, i) at location Hi(x) in the table. If this location was already occupied by a tuple (y, j), we replace (y, j)
with (x, i), choose a random j′ from [h] \ {j}, and recursively re-insert (y, j′) into the table. For m ≈ d
and fairly small h, cuckoo hashing succeeds with very high probability, i.e. the recursive re-insertion process
always succeeds before a pre-determined upper bound on the recursion depth is reached. We will discuss the
success probability of cuckoo hashing in Section 4.2.

In order to apply cuckoo hashing to our PSI protocol, we must ensure that bin-wise comparisons will
always yield the correct intersection. This is done by letting the receiver perform cuckoo hashing with m & Ny

bins. The sender must insert each of its items into a two-dimensional hash table using all h hash functions
H1, ...,Hh (simple hashing), because there is no way for it to know which one of the hash functions the
receiver eventually ended up using for the items in the intersection. To determine the maximum load on the
sender’s side, we apply a standard balls-into-bins argument. Concretely, when inserting d = hNx balls into
m bins, we have

Pr[at least one bin has load > B]

≤ m
d∑

i=B+1

(
d

i

)(
1

m

)i(
1− 1

m

)d−i
.

(1)

Our default assumption is that the sender (who performs simple hashing) has a larger set, so that d > m logm.
In this case B is upper-bounded by d/m+O(

√
d logm/m) with high probability [RS98].

Permutation-based hashing Independent of the exact hashing scheme, permutation-based hashing [ANS10]
is an optimization to reduce the length of the items stored in the hash tables by encoding a part of an item
into the bin index. For simplicity, we assume m is a power of two, and describe permutation-based hash-
ing only in connection with cuckoo hashing. To insert a bit string x into the hash table, we first parse it
as xL‖xR, where the length of xR is equal to log2m. The hash functions H1, ...,Hh are used to construct
location functions as

Loci(x) = Hi(xL)⊕ xR , 1 ≤ i ≤ h ,
which we will use in cuckoo hashing. Moreover, instead of inserting the entire tuple (x, i) into the hash table
as in regular cuckoo hashing, we only insert (xL, i) at the location specified by Loci(x).

The correctness of the PSI protocol still holds after applying permutation-based hashing. The reason is
if (xL, i) = (yL, j) for two items x and y, then i = j and xL = yL. If in addition these are found in the same
location, then Hi(xL)⊕xR = Hj(yL)⊕xR = Hj(yL)⊕ yR, so xR = yR, and hence x = y. The lengths of the
strings stored in the hash table are thus reduced by log2m− dlog2 he bits. The complete hashing routine is
specified in Figure 2.

Hashing failures In an unlikely event where cuckoo hashing fails, it could leak some information of the
receiver’s set to the sender. To prevent this, we must ensure that with overwhelming probability the cuckoo
hashing algorithm will succeed. While some asymptotic results exist for estimating the failure probability
of cuckoo hashing [FMM09,DGM+10], the hidden constants are difficult to determine precisely. Instead, to
obtain optimal parameters, we choose to determine the failure probability using empirical methods. The
general technique we use is similar to that of [PSZ16], with two exceptions: first, we omit an auxiliary data
structure known as the stash due to its incompatibility with the fully homomorphic encryption approach;
second, we primarily focus on h = 3 in our experiments (see below), whereas [PSZ16] focused on h = 2.

We start by fixing the cuckoo hash table consisting of m bins, and vary the number for items d < m to
be inserted. For each (d,m) pair, we run the cuckoo hashing algorithm 230 times. For d � m, we find that
the algorithm never fails in the experiments. To compute the required ratio ε = m/d to achieve a statistical
security level of λ ≥ 40 (i.e. cuckoo hashing fails with probability at most 2−40), we begin by setting ε to a
value slightly larger than one, and gradually increase it until we can expect zero hashing failures. From this
we observe that λ increases linearly with the scaling factor ε when h ≥ 3.

Over the course of our experiments, we observed that cuckoo hashing with no stash performs very poorly
when h = 2, which was also observed and discussed in detail in [PSZ16], which is why we shift our focus



Input: Receiver inputs set Y of size Ny; sender inputs set X of size Nx. Both sets consist of bit strings of
length σ. Nx, Ny, σ are public. Both parties input integers h,m,B and a set of hash function H1, ..., Hh :
{0, 1}σ−log2m → {0, 1}log2m. The location functions Loci is defined with respect to Hi for i ∈ [h].
Output: Receiver outputs a permutation-based cuckoo hash table with the items in Y inserted, or ⊥. Sender
outputs a permutation-based hash table with the items in X inserted using simple hashing and all location
functions, or ⊥.

1. [Sender] Let Bx be an array of m bins, each with capacity B, and value {(⊥,⊥)}B . For each x ∈ X
and i ∈ [h], the sender samples j ← [B] s.t. Bx[Loci(x)][j] = ⊥, and sets Bx[Loci(x)][j] := (xL, i). If the
sampling fails due to a bin being full, the sender outputs ⊥. Otherwise it outputs Bx.

2. [Receiver] Let By be an array of m bins, each with capacity 1, and value (⊥,⊥). For each y ∈ Y , the
receiver
(a) sets w = y, and i← [B];
(b) defines and calls the function Insert(w, i) as follows: swap (w, i) with the entry at By[Loci(w)]. If

(w, i) 6= (⊥,⊥), recursively call Insert(w, j), where j ← [h] \ {i}.
If for any y ∈ Y the recursive calls to Insert exceeds the system limit, the receiver halts and outputs ⊥.
Otherwise it outputs By.

Fig. 2: Hashing routine.

Table size m
Insert size d

3 · 28 3 · 212 3 · 216 3 · 220 3 · 224 3 · 228

λ = 30 40 30 40 30 40 30 40 30 40 30 40

8192 8 9 17 20 68 74 536 556 6727 6798 100611 100890

16384 7 8 13 16 46 51 304 318 3492 3543 50807 51002

Table 1: Simple hashing bin size upper bound B for failure probability 2−λ, with λ ∈ {30, 40}, and h = 3;
see equation (1).

to h = 3. Furthermore, the marginal gain of h = 4 is outweighed by the increased cost of simple hashing.
By applying linear regression to the empirical data for λ ≥ 0, we observe that λ = 124.4ε − 144.6 for
m = 16384, and λ = 125ε− 145 for m = 8192. To achieve a statistical security level of λ = 40, the maximum
number of items that can be cuckoo hashed into 8192 bins with h = 3 is therefore 5535. For m = 16384, the
corresponding maximum number of items is 11041. The respective simple hashing parameter for the given
hash table size and different d = hNx values are given in Table 1.

Dummy values In order to make the sender’s simple hash table evenly filled, we need to pad each bin with
dummy items after hashing. We let the sender and receiver fix two different dummy values from Zt, as long
as they do not occur as legitimate values. For example, if legitimate values have at most σ bits, then we can
set the receiver’s dummy value to 2σ, and the sender’s dummy value to 2σ+1 − 1.

Hashing to a smaller representation In many cases the total number of items Nx +Ny is much smaller
than the number 2σ of all possible strings of length σ. Since the performance of our protocol will degrade
with increasing string length, it is beneficial for the parties to compress their strings with an agreed-upon
hash function to a fixed length σmax, and then execute the PSI protocol on these hashed strings. Indeed,
this is a well-known technique in the PSI community.

More precisely, when a total of Nx + Ny random strings are hashed to a domain of size 2σmax , the
probability of a collision is approximately (Nx + Ny)2/2σmax+1. For a statistical security parameter λ, we
require that Pr[collision occurs] ≤ 2−λ. Therefore, the compressed strings should have length at least

σmax = 2 log2(Nx +Ny) + λ− 1.

Now we apply permutation-based cuckoo hashing to the compressed strings, further reducing the string
length to

σmax − log2m+ dlog2 he.



In addition, we need to reserve two more values in the plaintext space for the dummy values discussed in
Section 4.2. Thus, by choosing the encryption parameter t so that

log2 t > σmax − log2m+ dlog2 he+ 1 (2)

we can accommodate arbitrarily long strings in our PSI protocol.

Combining with batching It is straightforward to combine hashing techniques introduced in this section
with the batching technique in Section 4.1. After the receiver hashes its items into a table of size m, it
parses the table into m/n vectors of length n. The receiver then encrypts each vector using batching, and
proceeds as usual. Similarly, the sender performs the same batching step for each of the B columns of its two-
dimensional hash table, resulting in Bm/n plaintext vectors. The rest of the protocol remains unchanged,
and we see that adding batching to the hashing techniques provides an n-fold reduction in both computation
and communication.

4.3 Reducing the Circuit Depth

With the optimizations discussed in Section 4.1 and Section 4.2, our protocol already achieves very low com-
munication cost: typically just a few homomorphically encrypted ciphertexts. Unfortunately, the depth of the
arithmetic circuit that needs to be homomorphically evaluated is still O(logNx), which can be prohibitively
high for currently known fully homomorphic encryption schemes.

We use two tricks—windowing and partitioning—to critically reduce this depth. For simplicity of expo-
sition, we will discuss how these two tricks work over the basic protocol, and briefly explain how to combine
them with previous optimizations.

Windowing We use a standard windowing technique to lower the depth of the arithmetic circuit that
the sender needs to evaluate on the receiver’s homomorphically encrypted data, resulting in a valuable
computation-communication trade-off.

Recall that in the basic protocol, for each item y ∈ Y , the receiver sends one ciphertext c = FHE.Encrypt(y)
to the sender, who samples a random element r in Zt \ {0}, homomorphically evaluates r

∏
x∈X(c− x), and

sends the result back to the receiver. If the receiver sends encryptions of extra powers of y, the sender can
use these powers to evaluate the same computation with a much lower depth circuit. More precisely, for

a window size of ` bits, the receiver computes and sends c(i,j) = FHE.Encrypt(yi·2
`j

) to the sender for all
1 ≤ i ≤ 2` − 1, and all 0 ≤ j ≤ blog2(Nx)/`c. For example, when ` = 1, the receiver sends encryptions of

y, y2, y4, . . . , y2
blog2 Nxc

.
This technique results in a significant reduction in the circuit depth. To see this, we write

r
∏
x∈X

(y − x) = ryNx + raNx−1y
Nx−1 + . . .+ ra0 . (3)

If the sender only has an encryption of y, it needs to compute at worst the product ryNx , which requires
a circuit of depth dlog2(Nx + 1)e. Now if the encryptions c(i,j) are already given to the sender, then we
can separate the sender’s computation into two steps. First, the sender computes an encryption of yi for all
0 ≤ i ≤ Nx. The sender needs to compute at worst a product of blog2(Nx)/`c+1 terms, requiring a circuit of
depth dlog2(blog2(Nx)/`c+ 1)e. In an extreme case, if the receiver gives the sender encryptions of all powers
of y up to yNx , the depth in this step becomes zero. Then, the sender computes a dot product of encryptions
of yi (0 ≤ i ≤ Nx) with the vector of coefficients (r, raNx−1, . . . , ra0) in plaintext from its own data. This
second step has multiplicative depth one.

The cost of windowing is in increased communication. The communication from the receiver to the sender
is increased by a factor of (2` − 1)(blog2(Nx)/`c + 1), and the communication back from the sender to the
receiver does not change.

It is easy to incorporate batching and hashing methods with windowing. The only difference is that
batching and hashing effectively reduce the sender’s set size by nearly a factor of n. More precisely, the depth
of the circuit becomes dlog2(blog2(B)/`c+ 1)e+ 1, where B is as in Figure 2. Without windowing, batching



and hashing encode the entire set Y into one hash table of size m & NY , producing m/n ciphertexts to be
communicated to the sender. With windowing this is expanded to (2`−1)(blog2(B)/`c+1) ·m/n ciphertexts.

Finally, we note that security of windowing technique is guaranteed by the IND-CPA security of the
underlying fully homomorphic encryption scheme.

Partitioning Another way to reduce circuit depth is to let the sender partition its set into α subsets, and
perform one PSI protocol execution per each subset. In the basic protocol, this reduces sender’s circuit depth
from dlog2(Nx + 1)e to dlog2(Nx/α+ 1)e, at the cost of increasing the return communication from sender to
receiver by a factor of α.

Partitioning can be naturally combined with windowing in a way that offers an additional benefit of
reducing the number of homomorphic operations. Recall from Section 4.3 that the sender needs to compute
encryptions of all powers y, . . . , yNx for each of the receiver’s items y. With partitioning, the sender only
needs to compute encryptions of y, . . . , yNx/α, which it can reuse for each of the α partitions. Thus, with
both partitioning and windowing, the sender’s computational cost in the first step described in Section 4.3
reduces by a factor of α, whereas the cost in the second step remains the same.

We may combine batching and hashing with partitioning in the following way. The sender performs its
part of the hashing routine (Figure 2) as usual, but splits the contents of its bins (each of size B) into α
parts of equal size, resulting in α tables each with bin size ≈ B/α. It then performs the PSI protocol with
the improvements described in Section 4.1, 4.2, and 4.3 using each of the α hash tables. Now sender’s circuit
depth reduces to dlog2(blog2(B/α)/`c + 1)e + 1, where B is as in Figure 2. The communication from the
sender to the receiver is α ciphertexts.

We would like to note that in order to preserve the sender’s security, it is essential that after using simple
hashing to insert its items into the hash table, the sender partitions the contents of the bins—including
empty locations with value (⊥,⊥)—in a uniformly random way. Since in the hashing routine (Figure 2) the
sender inserts its items in random locations within each bin, the correct partitioning can be achieved by
evenly splitting the contents of each bin into α subsets using any deterministic partitioning method.

4.4 Reducing Reply Size via Modulus Switching

Finally, we employ modulus switching (see [BGV12]), which effectively reduces the size of the response
ciphertexts. Modulus switching is a well-known operation in lattice-based fully homomorphic encryption
schemes. It is a public operation, which transforms a ciphertext with encryption parameter q into a ciphertext
encrypting the same plaintext, but with a smaller parameter q′ < q. As long as q′ is not too small, correctness
of the encryption scheme is preserved. Since FHE ciphertexts have size linear in log q, modulus switching
reduces ciphertext sizes by a factor of log q/ log q′. This trick allows the sender to “compress” the return
ciphertexts before sending them to the receiver. In practice, we are able to reduce the return ciphertexts to
about 15–20% of their original size. We note that the security of the protocol is trivially preserved as long
as the smaller modulus q′ is determined at setup.

5 Full Protocol and Security Proof

5.1 Formal Description

We detail the full protocol in Figure 4, given a secure fully homomorphic encryption scheme with circuit
privacy. The ideal functionality of this protocol is given in Figure 3.

We prove security in the standard semi-honest simulation-based paradigm. Loosely put, we say that the
protocol ΠPSI of Figure 4 securely realizes the functionality Fpsi, if it is correct, and there exist two simulators
(PPT algorithms) Simr,Sims with the following properties. The simulator Simr takes the receiver’s set and the
intersection as input, and needs to generate a transcript for the protocol execution that is indistinguishable
from the receiver’s view of the real interaction. Sims is similarly defined, with the exception of not taking
the intersection as input. For a formal definition of simulation based security in the semi-honest setting, we
refer the reader to [Lin16].

Theorem 2. The protocol in Figure 4 is a secure protocol for Fpsi in the semi-honest setting.



Parameters: Two parties denoted as the sender and receiver with sets of items of bit-length σ. Receiver’s set
is of size Ny; sender’s set is of size Nx. sid denotes the session ID of the protocol instance.

Functionality: On input (Receive, sid, Y ) from the receiver and (Send, sid, X) from the sender, where X,Y ⊆
{0, 1}σ, |X| = Nx, |Y | = Ny. The functionality sends (Output, sid, X ∩ Y ) to the receiver, and nothing to the
sender.

Fig. 3: Ideal functionality FPSI for private set intersection with one-sided output.

Proof. It is easy to see that the protocol correctly computes the intersection conditioned on the hashing
routine succeeding, which happens with overwhelming probability 1− 2−λ.

We start with a corrupt receiver, and show the existence of Simr. For easy of exposition, we will assume
that the simulator/protocol is parameterized by (h,m,B, n, q, t, α, `,H ′, {Hi}1≤i≤h), which are fixed and
public, and that hashing to a smaller representation (Section 4.2) is used. We will then define the receiver’s
simulator Simr as follows. Simr computes the set Y ′ = H ′(Y ), and uses a modified hashing routine to
cuckoo-hash its elements into a table of size m. The modification is that if an element y is in X ∩ Y , then a
0 is inserted, and otherwise a random non-zero element in Zt is inserted. After hashing finishes, Simr inserts
random non-zero elements from Zt into the remaining empty slots. Next, Simr creates α− 1 more tables of
the same size, and fills them with random non-zero elements from Zt. It then randomly permutes the values
inserted in the matching bins among all α tables. Finally, it batches each table into m/n FHE plaintext
polynomials, and homomorphically encrypts them into m/n ciphertexts. The resulting m/n · α ciphertexts
will serve as a simulation of the receiver’s view. Due to the circuit privacy assumption on underlying fully
homomorphic encryption scheme, this view is indistinguishable from the receiver’s view in the real execution
of the protocol.

The case of a corrupt sender is straightforward. The simulator Sims can generate new encryptions of zero
in place of the encryptions in Step 5. By the IND-CPA security of the fully homomorphic encryption scheme,
this result is indistinguishable from the sender’s view in the real protocol.

5.2 Discussion

Function privacy While our protocol (Figure 4) assumes a fully homomorphic encryption scheme with
circuit privacy, in practice it is much more efficient to instantiate it with leveled fully homomorphic encryp-
tion (recall Section 2.3), i.e. choose encryption parameters large enough to avoid the costly bootstrapping
operation. This does not change the security properties of the protocol, as the encryption parameters are
selected purely based on public parameters Nx, Ny and σ.

While circuit privacy can be achieved in fully homomorphic encryption using e.g. the techniques of [DS16],
in practice the slightly weaker notion of (statistical) function privacy [GHV10] suffices, and is easier to achieve
in the leveled setting using re-randomization and noise flooding, where the sender re-randomizes the output
ciphertexts by homomorphically adding to them an encryption of zero with a very large noise [Gen09,DS16].
A standard “smudging lemma” (see e.g. [AJLA+12]) implies that in order to achieve 2−λ statistical distance
between output ciphertexts of different executions, it suffices to add encryptions of zero with noise λ +
log2 n+ log2 α bits larger than an upper bound on the noise in the original outputs of the computation. We
used the heuristic results in [CS16] to bound the amount of noise in the output ciphertexts before flooding.

Malicious behavior When considering malicious behavior our protocol faces several challenges. Most
notable is the sender’s ability to compute an arbitrary function on the receiver’s homomorphically encrypted
dataset. While the sender can not learn additional information directly from the ciphertexts, it is able to
maliciously influence the correctness of the output, e.g. force the intersection/output to be the receiver’s full
set, or more generally f(X) ⊆ X. Efficiently preventing such behavior by the sender appears to be extremely
challenging.

For the case of a malicious receiver we need only to consider potential leakage which the receiver can
induce (sender has no output). First, the receiver may provide a set of size greater than Nx due to its ability
to fill vacant slots in the cuckoo hash table. Additionally, the argument that function privacy can easily be



Input: Receiver inputs set Y ⊂ {0, 1}σ of size Ny; sender inputs set X ⊂ {0, 1}σ of size Nx. Nx, Ny, σ are
public. κ and λ denote the computational and statistical security parameters, respectively.
Output: The receiver outputs Y ∩X; the sender outputs ⊥.

1. [Perform hashing] Hashing parameters h,m,B are agreed upon such that simple hashing hNx balls into
m bins with max load B, and cuckoo hashing Ny balls into m bins succeed with probability ≥ 1− 2−λ.

(a) [Hashing to shorter strings] Let σ′ = 2 log2(Nx + Ny) + λ − 1. If σ > σ′, then both parties hash

their sets to a smaller representation. First, a random hash function H ′ : {0, 1}σ → {0, 1}σ
′

is sampled.
Let X ′ = {H ′(x) | x ∈ X} and Y ′ = {H ′(y) | y ∈ Y }. Perform the rest of the protocol with (X ′, Y ′, σ′)
replacing (X,Y, σ), and output the corresponding items in X,Y as the intersection.

(b) [Hashing to bins] The parties perform Figure 2 with parameters h,m,B, and randomly sampled hash
functions H1, ..., Hh : {0, 1}σ−log2m → {0, 1}log2m as input. The sender performs Step 1 of Figure 2
with set X to obtain Bx, and the receiver performs Step 2 with Y to obtain By.

2. [Choose FHE parameters] The parties agree on parameters (n, q, t) for an IND-CPA secure FHE scheme
with circuit privacy. They choose t to be large enough so that log2 t > σ − log2m+ dlog2 he+ 1.

3. [Choose circuit depth parameters] The parties agree on the windowing parameter ` ∈ [1, log2B] and
partitioning parameter α ∈ [1, B] as to minimize the overall cost.

4. [Pre-process X]
(a) [Partitioning] The sender partitions its table By vertically (i.e. by columns) into α subtables

By,1,By,2, . . . ,By,α, each having B′ := B/α columns.
(b) [Computing coefficients] For each row v of each subtable, the sender replaces the row v with coeffi-

cients of the polynomial
∏
s(x−vs), i.e. it replaces v by Sym(v) = ((−1)j

∑
S⊂[B′],|S|=j

∏
s∈S vs)0≤j≤B′ .

(c) [Batching] For each subtable obtained from the previous step, the sender interprets each of its column
as a vector of length m with elements in Zt. Then the sender batches each vector into m/n plaintext

polynomials. As a result, the r-th subtable is transformed into m/n ·B′ polynomials S
(r)
i,j , 1 ≤ i ≤ m/n,

0 ≤ j ≤ B′.
5. [Encrypt Y ]

(a) [Batching] The receiver interprets By as a vector of length m with elements in Zt. It batches this
vector into m/n plaintext polynomials Y 1, ..., Y m/n.

(b) [Windowing] For each batched plaintext polynomial Y computed during Step 5a, the receiver com-

putes the component-wise i · 2j-th powers Y
i·2j

, for 1 ≤ i ≤ 2` − 1 and 0 ≤ j ≤ blog2(B′)/`c.
(c) [Encrypt] The receiver uses FHE.Encrypt to encrypt each such power, obtaining m/n collections of

ciphertexts {ci,j}. The receiver sends these ciphertexts to the sender.
6. [Intersect]

(a) [Homomorphically compute encryptions of all powers] For each collection of ciphertexts {ci,j},
the sender homomorphically computes a vector c = (c0, . . . , cB′), such that ck is a homomorphic

ciphertext encrypting Y
k
. In the end, the sender obtains m/n vectors c1, . . . , cm/n.

(b) [Homomorphically evaluate the dot product] The sender homomorphically evaluates

ri,r =

B′∑
j=0

ci[B
′ − j] · S(r)

i,j , for all 1 ≤ i ≤ m/n, and 1 ≤ r ≤ α,

optionally performs modulus switching on the ciphertexts ri,r to reduce their sizes, and sends them
back to the receiver.

7. [Decrypt and get result] For each 1 ≤ r ≤ α, the receiver decrypts all ciphertexts it receives and
concatenates the resulting m/n vectors into one vector Rr of length m. Finally, the receiver outputs

Y ∩X =
⋃

1≤r≤α

{y ∈ Y : Rr[Loc(y)] = 0} .

Fig. 4: Full protocol.

achieved through noise flooding no longer holds due to the receiver being possibly providing ciphertexts with
more noise than expected. As such, the noise level of the response ciphertexts may depend on the sender’s
set, and thereby leak additional information. However, in general we believe that this protocol provides



Name n q t DBC κ

SEAL16384-1 16384 2226 − 226 + 1 8519681 76 � 128 bits

SEAL16384-2 16384 2226 − 226 + 1 8519681 46 � 128 bits

SEAL16384-3 16384 2189 − 221 + 9 · 215 + 1 8519681 48 � 128 bits

SEAL8192-1 8192 2226 − 226 + 1 8519681 46 ≈ 120 bits

SEAL8192-2 8192 2189 − 221 + 9 · 215 + 1 8519681 48 > 128 bits

Table 2: Encryption parameter sets for SEAL v2.1. Security estimates are based on [APS15,Alb17].

reasonable protection against a malicious receiver for most practical applications. We leave a more formal
analysis of the malicious setting and potential countermeasures to future work.

When receiver holds the larger set So far we have made the assumption that the receiver’s set size is
much smaller than the sender’s set size. Here we remark that our protocol can be slightly modified to handle
the opposite case, where the receiver holds the larger set. The idea is that the two parties can perform our
protocol with their roles switched until the last step. At this point, the receiver (who has now been playing
the sender’s role) holds an encryption of a vector v. It samples a random plaintext vector r, and sends back
to the sender an encryption of v + r. The sender decrypts this value, and sends back the plaintext vector
v + r to the receiver, who can compute the final result v. This protocol is still secure in the semi-honest
setting, and the communication remains linear in the smaller set and logarithmic in the larger set.

6 Implementation and Performance

6.1 Performance Results

We implemented our PSI protocol described in Figure 4. For fully homomorphic encryption we used SEAL v2.1
[LCP16], which implements the Fan-Vercauteren scheme [FV12] in C++. The parameters for SEAL that we
used are given in Table 2, along with their computational security levels κ, estimated based on the best cur-
rently known attacks [APS15,Alb17]. The column labeled “DBC” refers to the decomposition_bit_count

parameter in SEAL. We note that these parameters are highly optimized for the particular computations
that we perform.

We give detailed computational performance results for our protocol in Table 3 for both single and multi-
threaded execution with 4, 16, and 64 threads. As the receiver’s computation is typically relatively small
compared to the sender’s, we restrict to single-threaded execution on the receiver’s side. Still, it is worth
pointing out that also the receiver’s computation would benefit hugely from multi-threading, when available.
Communication costs for our experiments are given in Table 4. We chose a statistical security level λ = 40,
and a string length σ = 32 bits.

The benchmark machine has two 18-core Intel Xeon CPU E5-2699 v3 @ 2.3GHz and 256GB of RAM.
We perform all tests using this single machine, and simulate network latency and bandwidth using the Linux
tc command. Specifically, we consider a LAN setting, where the two parties are connected via local host
with 10Gbps throughput, and a 0.2ms round-trip time (RTT). We also consider three WAN settings with
100Mbps, 10Mbps, and 1Mbps bandwidth, each with an 80ms RTT. All times are reported as the average
of 10 trials.

Pre-processing The “Sender pre-processing” column in Table 3 measures the computational cost for the
sender to prepare its coefficients of the polynomial r

∏
x∈X(y−x), as mentioned in Section 4.3. More precisely,

the sender’s pre-processing work includes hashing and batching of its data, computing the coefficients in the
right-hand side of (3), and sampling the random vectors. We also have the sender perform number theoretic
transforms (NTT) to its plaintext polynomials to facilitate the underlying homomorphic multiplications in
the second step described in Section 4.3.

We remark that our pre-processing can be done entirely offline without involving the receiver. Specifically,
given an upper bound on the receiver’s set size, the sender can locally choose parameters and perform



Parameters Optim. Running time (seconds)

Nx Ny FHE parameters α `
Sender pre-processing Sender online Receiver
T = 1 4 16 64 1 4 16 64 Enc. Dec.

224

11041
SEAL16384-2

256 1 72.2 18.0 6.2 3.0 42.2 14.4 7.1 5.6 0.3 10.3
128 2 70.9 19.1 6.3 3.1 38.9 15.6 9.8 9.1 0.5 5.1

SEAL16384-1 64 3 76.8 20.6 6.7 3.3 41.1 21.6 16.2 16.9 0.9 2.6

5535 SEAL8192-1
256 1 64.1 17.9 5.5 2.7 36.0 11.8 6.3 5.5 0.2 4.9
128 2 71.2 18.5 6.3 2.9 36.1 14.2 9.6 9.2 0.3 2.4
64 3 80.4 21.5 6.7 3.2 41.9 21.5 17.7 17.7 0.5 1.2

220

11041 SEAL16384-1
128 1 9.1 2.5 1.0 0.5 8.0 2.6 1.2 1.1 0.2 5.1
64 2 6.9 2.0 0.8 0.4 5.2 1.8 1.1 1.0 0.3 2.7
32 3 6.4 1.7 0.9 0.6 4.5 2.1 1.3 1.5 0.7 1.3

5535 SEAL8192-2
128 1 5.1 1.4 0.6 0.4 4.2 1.5 0.8 0.7 0.1 1.9
64 2 4.4 1.2 0.6 0.3 3.4 1.7 0.7 1.0 0.2 1.0
32 3 4.3 1.2 0.5 — 3.6 1.4 1.5 — 0.3 0.5

216

11041 SEAL16384-3
16 1 1.2 0.3 0.2 — 1.3 0.6 0.6 — 0.2 0.5
8 2 1.0 0.3 0.2 — 1.5 1.2 1.3 — 0.3 0.3
4 3 0.9 0.3 — — 1.9 1.7 — — 0.5 0.1

5535 SEAL8192-2
32 1 0.9 0.3 0.2 — 0.9 0.4 0.3 — 0.1 0.5
16 2 0.7 0.2 0.1 — 0.7 0.3 0.3 — 0.1 0.2
8 3 0.6 0.2 — — 0.7 0.5 — — 0.3 0.1

Table 3: Running time in seconds for our protocol with T ∈ {1, 4, 16, 64} threads; λ = 40, σ = 32, h = 3.
Since we implemented multi-threading by dividing the α partitions evenly between threads, having T > α

offers no performance benefit. These cases are denoted by “—” in the table.

the pre-processing. Upon learning the receiver’s actual set size, the parameters selected by the sender are
communicated to the receiver. We note that in order to achieve simulation-based security, the selected hash
functions can only be used once. As such, each instance of the protocol must have an independent pre-
processing phase, and in the event that a single pre-processing phase is used between several instances, an
adversary with control of a party’s set could force a hashing failure to occur. However, if such adversaries are
not considered, then the pre-processing phase can be reused, resulting in significantly better performance.

PSI with longer items When implementing our PSI protocol, we restrict the item length to be 32 bits.
The reason is, although we can accommodate arbitrary size items in principle as described in Section 4.2,
doing so naively with our protocol would require the encryption parameters to be substantially increased,
which has a large negative impact on performance. We leave the task of making our protocol efficient for
arbitrary size items to future work.

6.2 Comparison to Pinkas et al. [PSZ16]

Our primary point of comparison is the Pinkas et al. PSI protocol [PSZ16], in which the authors consider
both the case of symmetric set sizes, and the setting where the receiver’s set is significantly smaller than
the sender’s. While our protocol can easily handle symmetric set sizes, our main advantage over [PSZ16]
is in the asymmetric setting, which we now focus on. To make comparing the two protocols easier, we ran
them on the same machine, and summarized the total running times side by side in Table 5. We chose to
evaluate performance for the set sizes Ny ∈ {5535, 11041}, Nx ∈ {216, 220, 224} to maximize the utilization
of ciphertext batching, described in Section 4.1. The sizes for Ny were determined in Section 4.2 to be the
largest that can guarantee a statistical security level of λ ≥ 40. If a direct comparison to the running times
reported in [PSZ16] is desired, the reader can feel free to round down our set sizes Ny to match the sizes
therein.

When comparing the two protocols, we find that our communication cost scales much better when the
sender’s set size is greater than 216. For instance, when considering strings of 32 bits, with Ny ≤ 5535 and
Nx = 220, our protocol sends 5.6MB, while the same Nx, Ny parameters applied to [PSZ16] result in 30.4MB



Parameters Optim. Comm. size (MB) Comm. time (seconds)

Nx Ny FHE parameters α ` R → S S → R 10 Gbps 100 Mbps 10 Mbps 1 Mbps

224

11041
SEAL16384-2

256 1 3.6 33.8 0.0 4.0 30.2 300.4
128 2 6.3 16.9 0.0 2.4 19.0 186.7

SEAL16384-1 64 3 12.7 8.4 0.0 2.2 17.4 169.4

5535 SEAL8192-1
256 1 3.2 16.9 0.0 2.0 16.3 161.5
128 2 4.1 8.4 0.0 1.3 10.3 101.0
64 3 6.8 4.2 0.0 1.1 9.1 88.1

220

11041 SEAL16384-1
128 1 1.8 16.9 0.0 1.8 15.3 149.9
64 2 3.6 8.4 0.0 1.3 9.9 98.0
32 3 7.2 4.2 0.0 1.2 9.4 92.6

5535 SEAL8192-2
128 1 1.1 8.4 0.0 1.0 7.8 77.0
64 2 1.9 4.2 0.0 0.6 5.1 49.3
32 3 3.4 2.2 0.0 0.6 4.7 45.0

216

11041 SEAL16384-3
16 1 2.3 2.1 0.0 0.5 3.6 35.5
8 2 3.0 1.1 0.0 0.4 3.4 33.0
4 3 6.0 0.5 0.0 0.6 5.4 52.9

5535 SEAL8192-2
32 1 0.8 2.1 0.0 0.3 2.4 22.9
16 2 1.5 1.1 0.0 0.3 2.2 20.7
8 3 3.0 0.5 0.0 0.4 3.0 28.6

Table 4: Communication cost in MB for our protocol; λ = 40, σ = 32, h = 3. 10Gbps network assumes
0.2ms RTT, and the others use 80ms RTT. R → S and S → R denote the communications from receiver to

sender, and from sender to receiver.

of communication—a 5.4× improvement. Increasing Nx even further to Nx = 224, our protocol requires
just 11.0MB of communication, whereas [PSZ16] requires over 480MB—a 43.7× improvement. Moreover,
continuing to increase the sender’s set size results in an even greater communication benefit.

When computing the intersection of sets of size Ny ≤ 5535 and Nx = 220 in a single-threaded LAN
setting, our protocol requires 8.6 seconds. Evaluating the protocol of [PSZ16] using the same parameters
results in an execution time of 3.1 seconds. While [PSZ16] is faster than our protocol in this particular
setting, it also requires 5.4× more communication, and distributes the computational cost equally between
the parties. That is, each party performs O(Nx + Ny) operations. In contrast, our protocol places very few
requirements on the computational power of the receiver.

Since our protocol achieves a lower communication than [PSZ16] in the asymmetric set sizes setting,
we obtain much better performance as we decrease the network bandwidth. To clearly demonstrate this,
we consider several other network environments that model the WAN setting. In particular, we restrict
the parties to a 100Mbps, 10Mbps, and 1Mbps networks with a 80ms round trip time. In these settings,
our protocol outperforms [PSZ16] with few exceptions. Namely, the single-threaded 100Mbps setting, with
Nx = 224, Ny ≤ 5535, our protocol requires 107.2 seconds, whereas [PSZ16] requires 87.9 seconds. However,
our protocol receives a much greater speedup in the multi-threaded setting, reducing our running time to
36.7 seconds when the sender uses 4 threads. On the other hand, [PSZ16] requires 65.5 seconds for the
same set sizes and with both parties using 4 threads—a nearly 1.8× slowdown compared to our protocol.
As we further decrease the bandwidth, the difference becomes much more significant. In the 1Mbps single-
threaded setting, with Nx = 224, Ny ≤ 5535, our protocol requires 211.1 seconds compared to [PSZ16]
requiring 4080.6 seconds—a 19.3× improvement in running time. When utilizing 4 threads, our running
time decreases to 132.7 seconds, while [PSZ16] requires 4064.3 seconds—a 30.6× improvement.

We also consider the running time of our protocol when more than 4 threads are used by the sender. When
allowing 16 threads in the LAN setting, our running time decreases to 16.9 seconds for Nx = 224, Ny ≤ 5535.
[PSZ16] on the other hand experiences less speedup over 4 threads, requiring just over 20 seconds for Nx = 224

when performed with 16 threads. This demonstrates that our protocol can outperform [PSZ16] even in the
LAN setting, when at least 16 threads are used by the sender.

An important property of our protocol is the relatively small amount of work required by the receiver. In
many applications the computations power of the receiver is significantly less than the sender. This is most
notable in the contact discovery application where the receiver is likely a cellphone while the sender can be



Parameters Protocol Comm. Total time (seconds)

Nx Ny Size (MB)
10 Gbps 100 Mbps 10 Mbps 1 Mbps
T = 1 4 1 4 1 4 1 4

224

11041
Us 23.2, †21.1 115.4 40.3 117.8 42.7 134.4 59.3 †290.8 †215.1

[PSZ16] 480.9 40.5 23.3 88.0 66.4 449.5 427.5 4084.8 4067.2
[KKRT16] 975.0 70.8 — 188.7 — 1269.1 — 12156.7 —

5535
Us 20.1, †12.5, ‡11.0 105.2 34.8 107.2 36.7 †120.3 †45.8 †211.1 ‡132.7

[PSZ16] 480.4 40.1 23.1 87.9 65.5 449.2 427.3 4080.6 4064.3
[KKRT16] 962.1 70.4 — 188.3 — 1263.5 — 12153.2 —

220

11041
Us 11.5 12.8 5.7 14.0 6.9 22.2 15.1 105.4 98.3

[PSZ16] 30.9 3.3 2.1 7.0 5.6 29.8 28.3 263.7 262.1
[KKRT16] 58.5 4.5 — 11.6 — 79.4 — 688.1 —

5535
Us 5.6 8.6 3.3 9.2 3.9 13.3 8.0 53.6 48.3

[PSZ16] 30.4 3.1 2.0 6.8 5.0 29.0 27.9 260.0 259.6
[KKRT16] 57.3 4.4 — 11.5 — 79.3 — 686.0 —

216

11041
Us 4.1, †4.4 3.0 †1.7 3.4 †2.1 6.4 †5.3 36.0 35.0

[PSZ16] 2.6 0.7 0.6 1.5 1.4 3.3 3.1 21.6 22.1
[KKRT16] 4.5 0.4 — 1.4 — 5.6 — 48.2 —

5535
Us 2.6 1.8 0.9 2.0 1.2 3.9 3.1 22.5 21.7

[PSZ16] 2.1 0.7 0.6 1.4 1.3 2.9 2.8 19.8 21.3
[KKRT16] 3.7 0.4 — 1.2 — 5.4 — 46.7 —

Table 5: Total communication cost in MB and running time in seconds comparing our protocol to [PSZ16]
and to [KKRT16], with T ∈ {1, 4} threads; λ = 40, σ = 32, h = 3. 10Gbps network assumes 0.2ms RTT,

and others use 80ms RTT. Only single-threaded results are shown for [KKRT16] due to limitations of their
implementation. The communication cost for [KKRT16] is based on the equation provided in their paper;

empirical communication was observed to be ∼ 1.5 times larger.

run at a large datacenter where computational power is inexpensive. For instance, Table 3 with parameters
SEAL8192-1, α = 64, ` = 3 shows that for a intersection between 5535 and 224 items, the receiver need only
perform 1.7 seconds of computation while the server with 16 threads required 18 seconds with a total of
11MB of communication, less than half the size of the average 2012 iOS application download size [Res12]
and a tenth of the average 2015 daily US smartphone mobile data usage [Eri16]. In contrast, [PSZ16] requires
480MB of communication—a 44× increase–and the computational load of the receiver is significantly higher
requiring 50 million hash table queries and several thousand oblivious transfers.

6.3 Comparison to Kolesnikov et al. [KKRT16]

We also compare our protocol to that of Kolesnikov et al. [KKRT16], which optimizes the use of oblivious
transfer. While their results do improve the running time for symmetric sets of large items, we found that
when applied to our setting their improvement provides little benefit, and is outweighed by other optimiza-
tions employed by [PSZ16]. In particular, [PSZ16] considers a different oblivious transfer optimization which
is more efficient on short strings, and also optimizes cuckoo hashing for the setting of asymmetric set sizes.

These design decisions result in [KKRT16] requiring 2×more communication than [PSZ16], and 87×more
than our protocol, when intersecting 5535 and 224 size sets with parameters SEAL8192-1, α = 64, ` = 3. When
benchmarking [KKRT16], we found that the communication is actually ∼ 1.5 larger than their theoretical
limit. The theoretical communication complexity of [KKRT16] is

Nxsv + k(1.2Ny + s) ,

where s = 6 is the stash size in cuckoo hashing, k ≈ 444 is the width of the pseudorandom code, v =
λ + log2(NxNy) is the size of the OPRF output, and 1.2 is related to cuckoo hashing utilization. The
communication complexity of [PSZ16] also follows same equation, but with a smaller k due to more optimized
oblivious transfer sub-protocol. Our protocol on the other hand requires

1.5CσNy log2Nx



bits of communication, where C is a small constant for ciphertext expansion, σ = 32 is the string length, and
1.5 is related to the cuckoo hashing utilization with no stash. For example, when Nx = 224 and Ny = 5535,
our protocol requires only 12.5MB of communication, whereas the empirical communication of [KKRT16] in
this setting is almost 115× larger.

This increase in communication translates into increased running times compared to [PSZ16] and our
protocol in the WAN settings. For instance, when intersecting 5535 and 224 items on a 10Mbps connection,
our protocol is more than 57× faster, while [PSZ16] is only 3× faster. The total running times are summarized
in Table 5 to make comparison to our protocol and to [PSZ16] easy. Since the implementation of [KKRT16]
does not support multi-threading, we only present results for T = 1.

7 Conclusions

Although there has been huge progress in fully homomorphic encryption schemes since the groundbreaking
work of Craig Gentry in 2009, it is still believed by many to be too expensive for practical use-cases. However,
in this paper we have constructed a practical private set intersection protocol using the Fan-Vercauteren
scheme, adopting and combining optimizations from both fully homomorphic encryption and cutting-edge
work on PSI. We think our protocol is particularly interesting for the private contact discovery use-case,
where it achieves a very low communication overhead: about 12MB to intersect a set of 5 thousand items
with a set of 16 million items, which is significantly lower than in the previous state-of-the-art protocols.
We regard our work as a first step to explore the possibilities of applying fully homomorphic encryption to
private set intersection, and look forward to further discussions and optimizations.
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