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Abstract. NTRUEncrypt is a fast and standardized lattice-based pub-
lic key encryption scheme, but it lacks a solid security guarantee. In
2011, Stehlé and Steinfeld first proposed a provably secure variant of
NTRUEncrypt, denoted by pNE, over power-of-2 cyclotomic rings. The
IND-CPA security of pNE is based on the quantum worst-case hardness
of classical problems over ideal lattices. Recently, Yu, Xu and Wang
constructed pNE variants over prime cyclotomic rings. In this paper, we
further extend the previous results to the case of general prime power
cyclotomic rings, which allows a more flexible choice of parameters. We
discover a potential trade-off between the power exponent of the ring
order and the minimal magnitude of modulus. Moreover, we discuss the
case of pNE over general rings assuming the hardness of corresponding
RLWE, and propose three attributes of the ring mattering to parameter
selection.

Keywords: Lattice-based cryptography, NTRU, Learning With Errors,
Provable security.

1 Introduction

NTRU, introduced by Hoffstein, Pipher and Silverman in [22], is a celebrated pub-
lic key cryptosystem standardized by IEEE. Its encryption scheme, NTRUEncrypt,
is one of the fastest known lattice-based encryption schemes. Based on NTRU,
various cryptographic primitives are designed, including digital signature [21,
11], identity-based encryption [12], fully homomorphic encryption [28, 4] and
multi-linear maps [16, 27]. In the last 20 years, many cryptanalytic estimations
[8, 25, 17, 20, 37, 32, 15, 23, 3, 13, 1, 7, 26] were proposed aiming at NTRU family,
and NTRU is still believed to be secure in practice.
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In 2011, Stehlé and Steinfeld proposed the first IND-CPA(indistinguishability
under chosen-plaintext attack) secure NTRUEncrypt variant, denoted by pNE,
over power-of-2 cyclotomic rings in [35]. pNE shows a connection between NTRU and
RLWE(Ring Learning With Errors problem). RLWE, introduced by Lyubashevsky,
Peikert and Regev [29], has been shown to be as hard as some worst-case prob-
lems over ideal lattices, which provides pNE with a strong security guarantee.
Recently, Yu, Xu and Wang modified pNE to make it work over prime cyclo-
tomic rings [39], which allows more flexibility of parameter selections. Despite
these efforts, the choice of the underlying rings for pNE is still an important issue
to be addressed.

Contribution In this paper, we study pNE over prime power cyclotomic rings
and show that, given appropriate parameters, pNE still holds in this more gen-
eral case. Our result further enriches the provably secure NTRU family and allows
a more flexible choice of parameters. As by-products, some properties of prime
power cyclotomic rings are shown, which may be of some independent inter-
est. Unifying the corresponding results of [35]and [39], some of their ideas are
also used in this paper. However, it is still not straightforward to deal with all
differences in the proofs.

We also study how prime power affects the final parameter selection. Let
n = dν be the cyclotomic ring order where d is a prime. As ν increases, the
magnitude of minimal modulus q in our result (measured by log(q)/ log(n))
decreases, which implies a set of smaller parameters may be used. However, for
large ν, the cyclotomic field Q[X]/Φ(X) tends to contain more subfields, which
might lead to a worrisome structure as shown in [1, 7].

Moreover, we consider the extension of pNE to general rings and propose
three attributes of the ring mattering parameter selection. To design a relatively
compact pNE, it requires all these attributes to be small. Although the hardness
of RLWE over general rings is not well-studied yet, it may be of some value for
searching the candidate of cyclotomic rings for lattice-based cryptosystems.

Open Problem In this paper, we work with coefficient embedding as that in the
NTRU setting. The canonical embedding, used in the context of RLWE [29, 30],
is another possible choice. Under canonical embedding, both addition and mul-
tiplication are coordinate-wise, and one may obtain tighter geometric bounds of
unified form for all cyclotomic rings. Indeed, regularity results shown in [30] can
be generalized to the form discussed in our paper, however, the current theory
is not sufficient to lead to “uniform” public key which is the core component
of pNE. To design a new key generation algorithm under canonical embedding,
some technical difficulties need to be overcome.

Organization In Sect. 2, we introduce some notations and basic results that
will be used in our discussion. In Section 3, we show a series of relevant re-
sults over prime power cyclotomic rings. Then we describe our pNE scheme over
prime power cyclotomic rings and demonstrate parameter requirements in Sect.
4. Finally, we further discuss the problem of ring selection in Sect. 5.
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2 Preliminaries

Lattice A lattice is a set of all integer linear combinations of some linearly
independent vectors b1, · · · ,bn in an m-dimensional Euclidean space. We call
B = (b1, · · · ,bn) a basis and m the dimension of the lattice. When n = m,
the lattice is full-rank. Let B be a basis of L, then we denote the volume of
L as det(L) =

√
det(B>B). The dual lattice of L is the lattice L̂ = {c ∈

Rm | ∀i, 〈c,bi〉 ∈ Z}. The first minimum λ1(L) (resp. λ∞1 (L)) is the minimum
of Euclidean (resp. `∞) norm of all non-zero vectors of L. More generally, for
k ≤ n, the k-th minimum λk(L) is the smallest r such that there are at least k
linearly independent vectors of L whose norms are not greater than r.

Let R be a ring with an additive isomorphism θ mapping R to the lattice
θ(R). Let I be an ideal of R, then θ(I) is an ideal lattice. The classical lattice
problems By restricting SVP(Shortest Vector Problem) and γ-SVP(Approximate
Shortest Vector Problem with approximation factor γ) to ideal lattices, we get
Ideal-SVPand γ-Ideal-SVP. These ideal lattice problems do not seem to be sub-
stantially easier than the versions for general lattice (except maybe very large
γ [9]). Currently, it is believed that the worst-case hardness of γ-Ideal-SVP is
against subexponential quantum attacks, for any γ ≤ poly(n).

Probability and Statistics Let U(E) be the uniform distribution over a finite
domain E. For two distributions D1,D2 over a same discrete domain E, their
statistical distance is ∆(D1;D2) = 1

2

∑
x∈E |D1(x) − D2(x)|. If ∆(D1;D2) =

o(n−c) for any constant c > 0, then we call D1, D2 statistically close with respect
to n. For a distribution D over a domain E, we write z ←↩ D when the random
variable z is sampled from D, and denote by D(x) the probability of z = x.

Gaussian Measures Let ρr,c(x) = exp
(
−π‖x− c‖2/r2

)
be the n-dimensional

Gaussian function with center c ∈ Rn and width r. When c = 0, the Gaussian
function is written as ρr(x). Let ψr be the Gaussian distribution over R with
mean 0 and width r and ψnr be the spherical Gaussian distribution over Rn of
the vector (v1, · · · , vn) where all vi’s follow ψr independently. We can restrict
ψr over Q, which only leads to a negligible impact to our results, as explained in
[10]. For S ⊂ Rn, the sum

∑
x∈S ρr,c(x) (resp.

∑
x∈S ρr(x)) is denoted as ρr,c(S)

(resp. ρr(S)). The discrete Gaussian distribution over a lattice L with center c
and width r is defined by DL,r,c(x) = ρr,c(x)/ρr,c(L), for any x ∈ L. For δ > 0,

we denote the smoothing parameter by ηδ(L) = min{r : ρ1/r(L̂) ≤ 1 + δ}. We
now recall some results which will be used later.

Lemma 1 ([31], Le. 3.3). Let L ⊆ Rn be a full-rank lattice and δ ∈ (0, 1).
Then ηδ(L) ≤

√
ln(2n(1 + 1/δ))/π · λn(L).

Lemma 2 ([33], Le. 3.5). Let L ⊆ Rn be a full-rank lattice and δ ∈ (0, 1).

Then ηδ(L) ≤
√

ln(2n(1 + 1/δ))/π/λ∞1

(
L̂
)

.

Lemma 3 ([31], Le. 4.4). Let L ⊆ Rn be a full-rank lattice and δ ∈ (0, 1). For
c ∈ Rn and r ≥ ηδ(L), we have Prb←↩DL,r,c(‖b− c‖ ≥ r

√
n) ≤ 1+δ

1−δ2−n.
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Lemma 4 ([19], Cor. 2.8). Let L′ ⊆ L ⊆ Rn be full-rank lattices and δ ∈
(0, 1/2). For c ∈ Rn and r ≥ ηδ(L′), we have ∆(DL,r,c mod L′;U(L/L′)) ≤ 2δ.

Lemma 5 ([19], Th. 4.1). There exists a polynomial-time algorithm that,
given a basis (b1, · · · ,bn) of a lattice L ⊆ Zn, a parameter r = ω(

√
log n) max ‖bi‖

and c ∈ Rn, outputs samples from a distribution statistically close to DL,r,c with
respect to n.

Cyclotomic Ring Let ξn be a primitive n-th root of unity. The n-th cyclotomic
polynomial, denoted by Φn(X), is the minimal polynomial of ξn. It is known
that Φn(X) =

∏
i∈Z∗n

(X − ξin) ∈ Z[X]. Each cyclotomic polynomial Φn(X)

corresponds to a binomial Θn(X) defined as Xn − 1 if n is odd and Xn/2 + 1
if n is even, and Θn(X) is a multiple of Φn(X). A cyclotomic ring is a quotient
ring of the form R = Z[X]/Φn(X). For some special n, the form of Φn(X) is
regular and simple. If n is a prime, we have Φn(X) = Xn−1 + Xn−2 + · · · + 1.

More generally, if n = dν is a power of prime d, we have Φn(X) = Φd(X
dν−1

)
and call it a prime power cyclotomic ring.

If a prime q satisfies q = 1 mod n, then Φn(X) splits completely into distinct
linear factors modulo q. Given n, according to Dirichlet’s theorem on arithmetic
progressions, there exist infinitely many primes congruent to 1 modulo n. Fur-
thermore, Linnik’s theorem asserts that the smallest such q is of size poly(n) (a
concrete bound is O(n5.2), see [38]).

Hardness of RLWE The Ring Learning With Errors problem (RLWE) was first
proposed in [29] and shown hard for specific settings. In [10], Ducas and Durmus
gave an “easy-to-use” setting for RLWE and instantiated RLWE over general
cyclotomic rings. In this paper, we follow the setting of [10].

Definition 1 (RLWE error distribution in [10]). Let R = Z[X]/Φn(X).
Given ψ a distribution over Q[X]/Θn(X), we define ψ as the distribution over
R obtained by e = be′ mod Φn(X)e ∈ R with e′ ←↩ ψ. Here we denote by bfe
the polynomial whose coefficients are derived by rounding coefficients of f to the
nearest integers.

Definition 2 (RLWE distribution in [10]). Let R = Z[X]/Φn(X) and Rq =
R/qR. For s ∈ Rq and ψ a distribution over Q[X]/Θn(X), we define As,ψ as
the distribution over Rq × Rq obtained by sampling the pair (a, as + e) where
a←↩ U(Rq) and e←↩ ψ.

Definition 3 (RLWEq,ψ,k). Let R = Z[X]/Φn(X) and Rq = R/qR. The prob-
lem RLWEq,ψ,k in the ring R is defined as follows. Given k samples drawn from
As,ψ where s←↩ U(Rq) and k samples from U(Rq ×Rq), distinguish them with
an advantage 1/ poly(n).

For certain error distributions, RLWE can be reduced from γ-Ideal-SVP.
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Theorem 1 ([10], Th. 2). Let n be an integer and Rq = Zq[X]/Φn(X) where q
is a prime congruent to 1 modulo n. Also, let α ∈ (0, 1) be a real number such that
αq > ω(

√
log n). There exists a randomized quantum reduction from γ-Ideal-SVP

on ideal lattices in Z[X]/Φn(X) to RLWEq,ψnt ,k for t =
√
n′αq

(
ϕ(n)k

log(ϕ(n)k)

)1/4

where n′ = deg(Θn(X)) (with γ = Õ (
√
n/α)) that runs in time O(q · poly(n)).

Let R×q be the set of all invertible elements of Rq. As explained in [35], one
can restrict As,ψ to R×q ×Rq and sample s from ψ, which leads to a variant of
RLWE (to distinguish As,ψ and U(Rq ×Rq)) with same hardness.

3 New Results on Prime Power Cyclotomic Rings

In this section, we will present a series of results on prime power cyclotomic
rings. Some results restricted to power-of-2 and prime cyclotomic rings have
been discussed in [35, 39]. However, our results are of a wide meaning and partial
modifications should be treated carefully.

3.1 Properties of Prime Power Cyclotomic Rings

Let d be a prime and n = dν . The degree of Φn(X) is ϕ(n), the totient of n. Let

R = Z[X]/Φn(X). For any f =
∑ϕ(n)−1
i=0 fiX

i ∈ R, the vector (f0, · · · , fϕ(n)−1) ∈
Zϕ(n) is called the coefficient vector of f . For any s = (s1, · · · , sm) ∈ Rm, we
view s as a ϕ(n)m-dimensional vector in Zϕ(n)m by coefficient embedding. We
denote by 〈s, t〉 the Euclidean inner product of s, t ∈ Rm. In [35, 39], authors
expressed 〈s, t〉 as a coefficient of a polynomial related to s and t for the case
d = 2 and ν = 1 respectively. In this work, we give a similar expression of 〈s, t〉
for general d and ν.

Let f ∈ R be with coefficient vector (f0, · · · , fϕ(n)−1), we define two poly-

nomials fa and f` as follows. The coefficient vector of fa is (fa0 , · · · , f
a
ϕ(n)−1),

where

fai =

{
fi − fi+n

d
, for i < ϕ(n)− n

d ;
fi, for i ≥ ϕ(n)− n

d .

The coefficient vector of f` is (f`0 , · · · , f
`
ϕ(n)−1), where

f`i =
∑

j≥i,j=i mod n
d

fj .

For the case n is a power of 2, we have f` = fa = f for any f ∈ R, because
ϕ(n) = n/2.For the case n is a prime, these operations are same to that in [39]
and proven to be inverse to each other. Actually, the inverse relation still holds
for general prime power case.

Lemma 6. Let n = dν with d a prime and R = Z[X]/Φn(X), then (f`)a =
(fa)` = f for any f ∈ R.
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Exploiting above operations, we prove that the Euclidean inner product of
two elements equals the constant coefficient of a certain polynomial.

Lemma 7. Let n = dν with d a prime and R = Z[X]/Φn(X). Denote by X−1

the inverse of X. Let f ∈ R of coefficient vector (f0, · · · , fϕ(n)−1) and g ∈ R of
coefficient vector (g0, · · · , gϕ(n)−1). Then

ϕ(n)−1∑
i=0

figi = the constant coefficient of the polynomial f(X)g`(X−1).

Proof. It is noted that Φn(X) is a factor of Xn − 1. Hence Xn is essentially the
identity element of R, which implies that X−1 is equivalent to Xn−1 when it is
discussed in R. Let (g′0, · · · , g′ϕ(n)−1) be the coefficient vector of the polynomial

g`, then

f(X)g`(X−1) = f(X)g`(Xn−1) =
∑

i,j∈{0,··· ,ϕ(n)−1}

fig
′
jX

i+(n−1)j mod n.

For ϕ(n) ≤ l < n, we have X l = −(X
n
d ·(d−2) + · · · + X

n
d + 1)X l−ϕ(n) and

the degree of the polynomial on the right-hand side is less than n − ϕ(n) +
n(d−2)

d = ϕ(n) that is the degree of Φn(X). Therefore, the constant coefficient of

f(X)g`(X−1) equals
∑ϕ(n)−1
i=0 fig

′
i −

∑ϕ(n)−1−nd
i=0 fig

′
i+n

d
=
∑ϕ(n)−1−nd
i=0 fi(g

′
i −

g′i+n
d

) +
∑ϕ(n)−1
ϕ(n)−nd

fig
′
i. The terms {g′i − g′i+n

d
}ϕ(n)−1−nd
i=0 and {g′i}i≥ϕ(n)−nd are

exactly the coefficients of the polynomial (g`)a = g. Consequently, the constant

coefficient of f(X)g`(X−1) equals
∑ϕ(n)−1
i=0 figi. ut

Corollary 1. Let n = dν with d a prime and R = Z[X]/Φn(X). For any s =
(s1, · · · , sm) ∈ Rm and t = (t1, · · · , tm) ∈ Rm, then

〈s, t〉 = the constant coefficient of the polynomial

m∑
i=1

si(X)t`i (X−1).

Now we are to study quantitative relations among several common norms.
For t ∈ R, we denote by ‖t‖ the Euclidean norm of the coefficient vector of t.

Also, the T2-norm of t is T2(t) =
√∑

i∈Z∗n
|t(ξin)|2 and the algebraic norm is

N(t) =
∏
i∈Z∗n
|t(ξin)|.

Lemma 8. Let n = dν with d a prime and R = Z[X]/Φn(X). For any t ∈ R,
we have

N(t)
2

ϕ(n) ≤ T2(t)2

ϕ(n)
and ‖t‖2 =

T2(t)2 + n
d

∑n
d−1

k=0

(∑
i=k mod n

d
ti

)2

n
≥ T2(t)2

n
.
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Proof. By arithmetic-geometric inequality, the first inequality follows. We now
prove the second inequality. For any l ∈ Z∗n, the value of |t(ξln)|2 can be written
as

|t(ξln)|2 = t(ξln)t(ξ−ln ) =

ϕ(n)−1∑
i=0

t2i +
∑
i 6=j

titjξ
l(i−j)
n = ‖t‖2 +

∑
i 6=j

titjξ
l(i−j)
n .

Then, we have

T2
2(t) = ϕ(n) · ‖t‖2 +

∑
i6=j

titj
∑
l∈Z∗n

ξ(i−j)l
n

= ϕ(n) · ‖t‖2 +
∑
i6=j

titj

(
d−1∑
k=1

ξ(i−j)k
n

)n
d−1∑
k=0

ξ(i−j)dk
n

 .

Let S1(ξi−jn ) =
∑d−1
k=1 ξ

(i−j)k
n and S2(ξi−jn ) =

∑n
d−1

k=0 ξ
(i−j)dk
n . The term ξ

(i−j)d
n

equals 1 if and only if i = j mod n
d . A routine computation leads to that

S2(ξi−jn ) =

{
0, for i 6= j mod n

d ;
n
d , for i = j mod n

d .

Because i 6= j and |i−j| < ϕ(n), the term ξi−jn can not be 1. When i = j mod n
d ,

we have S1(ξi−jn ) =
ξ(i−j)dn −ξi−jn

ξi−jn −1
= −1. Combining the expressions of S1(ξi−jn )

and S2(ξi−jn ), we obtain

T2
2(t) = ϕ(n) · ‖t‖2 − n

d

 ∑
i 6=j

i=j mod n
d

titj


= ϕ(n) · ‖t‖2 − n

d

n
d−1∑
k=0

 ∑
i=k mod n

d

ti

2

−
ϕ(n)−1∑
i=0

t2i


= n · ‖t‖2 − n

d

n
d−1∑
k=0

 ∑
i=k mod n

d

ti

2

.

Thus the second inequality follows immediately. ut

The multiplicative expansion factor ofR is defined as γ×(R) = maxf,g∈R
‖fg‖
‖f‖‖g‖ .

For prime and power-of-2 cyclotomic rings, their expansion factors are of size
O(
√
n) where n is the order(see [18, 39]). The following lemma indicates that, for

general prime power cyclotomic rings, their expansion factors are well-bounded
as well.

Lemma 9. Let n = dν with d a prime and R = Z[X]/Φn(X). For any f, g ∈ R,
we have ‖fg‖∞ ≤ 2‖f‖‖g‖ and ‖fg‖ ≤ 2

√
ϕ(n)‖f‖‖g‖.
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Proof. We apply the idea of [39] and first consider the multiplication over the ring
R′ = Z[X]/(Xn−1). Let f ′, g′ ∈ R′ be the polynomials with the same coefficients
as f, g respectively, i.e. all leading coefficients are 0. Let h′ ∈ R′ be the product
of f ′ and g′. We denote by (f ′0, · · · , f ′n−1), (g′0, · · · , g′n−1) and (h′0, · · · , h′n−1) the

coefficient vectors of f ′,g′ and h′. It is known that h′i =
∑n−1
j=0 f

′
jg
′
(i−j) mod n. By

Cauchy-Schwarz inequality, we have |h′i| ≤ ‖f ′‖‖g′‖ = ‖f‖‖g‖ for any i.
Let h = fg ∈ R. We deduce that h = h′ mod Φn(X) from the fact that Φn(X)

is a factor of Xn − 1. Notice that X l = −(X
n
d ·(d−2) + · · ·+X

n
d + 1)X l−ϕ(n) for

any l ∈ [ϕ(n), n), hence we have

h =

ϕ(n)−1∑
i=0

(
h′i − h′ϕ(n)+(i mod n

d )

)
Xi.

It leads to that

‖h‖∞ = max
0≤i<ϕ(n)

{|h′i − hϕ(n)+(i mod n
d )|} ≤ 2 max

0≤i<n
{|h′i|} ≤ 2‖f‖‖g‖.

Then we conclude that ‖h‖ ≤
√
ϕ(n)‖h‖∞ ≤ 2

√
ϕ(n)‖f‖‖g‖. ut

3.2 Duality Results for Module Lattices

Some duality results with respect to module lattices over power-of-2 and prime
cyclotomic rings are presented respectively in [35, 39]. Next we will give a general
duality result for all prime power cyclotomic rings.

Let q = 1 mod n be a prime and Rq = R/qR. We know that Φn(X) splits
completely into distinct linear factors modulo q and denote by {φi}i=1,··· ,ϕ(n)

all roots of Φn(X) modulo q. Each ideal of Rq is of the form
∏
i∈S(X − φi) · Rq

with S ⊆ {1, · · · , ϕ(n)} and denoted by IS . Given a ∈ Rmq , three families of

R-modules a⊥(IS), L(a, IS) and La
(a, IS) are defined as follows.

a⊥(IS) :=

{
(t1, · · · , tm) ∈ Rm | ∀i, (ti mod q) ∈ IS and

m∑
i=1

tiai = 0 mod q

}
,

L(a, IS) := {(t1, · · · , tm) ∈ Rm | ∃s ∈ Rq,∀i, (ti mod q) = ai · s mod IS} ,

L
a

(a, IS) :=
{

(t1, · · · , tm) ∈ Rm | (t`1 , · · · , t`m) ∈ L(a, IS)
}
.

Identifying R with Zϕ(n), these R-modules can be viewed as mϕ(n)-dimensional
lattices, called module lattices. The definitions and notations of above module
lattices look the same as that in [39], but it is worth noting that the ring R
becomes a general prime power cyclotomic ring so that the meanings of ` and
a are modified as well. The duality relationship between a⊥(IS) and La

(a, IS)
holds for more general cases.

Lemma 10. Let n = dν with d a prime and R = Z[X]/Φn(X). Let q = 1 mod n
be a prime and Rq = R/qR. Given S ⊆ {1, · · · , ϕ(n)} and a ∈ Rmq , let a× ∈ Rmq
be defined by a×i = ai(X

−1) and I×
S̄

be the ideal
∏
i∈S̄(X − φ−1

i ) · Rq where S̄ is

the complement of S. Then â⊥(IS) = 1
qL

a(a×, I×
S̄

).
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Remark The main technique of proof is to associate Euclidean inner product
of vectors with certain polynomials as stated in Corollary 1. The above lemma
can be proven in a manner similar to [39] and hence we omit the proof here.

3.3 On the Absence of Unusually Short Vector in La(a, IS)

Let R×q be the set of all invertible elements of Rq. For a ←↩ U((R×q )m), the

lattice La(a, IS) is nearly impossible to contain a unusually short vector for the
`∞ norm. We first show a similar result for L(a, IS).

Lemma 11. Let n = dν > 7 with d a prime and R = Z[X]/Φn(X). Let q =
1 mod n be a prime and Rq = R/qR. For any S ⊆ {1, · · · , ϕ(n)}, m ≥ 2 and
ε > 0, set

β := 1− 1

m
+

1−
√

1 + 4m(m− 1)
(

1− |S|
ϕ(n)

)
+ 4mε

2m
≥ 1− 1

m
−ε−(m−1)

(
1− |S|

ϕ(n)

)
,

then we have λ∞1 (L(a, IS)) ≥ 1√
n
qβ with probability ≥ 1 − 2ϕ(n)

(q−1)εϕ(n) over the

uniformly random choice of a in (R×q )m.

Remark The proof essentially follows the same approach in [35, 39] but with
minor differences on the inequalities for different norms. The concrete relations
among norms are shown in Lemma 8. Thus the proof is not included in our
paper. Furthermore, this result holds for all prime power cyclotomic rings, but
it can be optimized for some special cases. For example, for n = 2ν , the second

inequality in Lemma 8 can be replaced with an identity that ‖t‖2 = 2T2(t)2

n so

that the threshold length will increase to
√

2
nq

β .

Next we shall show a quantitative relationship between λ∞1 (L(a, IS)) and
λ∞1 (La(a, IS)).

Lemma 12. Let n = dν > 7 with d a prime and R = Z[X]/Φn(X). Let q =
1 mod n be a prime and Rq = R/qR. Then, for any a ∈ (R×q )m and S ⊆
{1, · · · , ϕ(n)}, we have

λ∞1 (L(a, IS)) ≤
⌈
d− 1

2

⌉
λ∞1 (La(a, IS)).

Proof. We first prove that ‖X
ϕ(n)

2 t`‖∞ ≤
⌈
d−1

2

⌉
‖t‖∞ for any t ∈ R. For the case

d = 2, two elements t and t` are same and hence the inequality holds. It suffices
to prove the inequality for the case d > 2. Let (t0, · · · , tϕ(n)), (t`0 , · · · , t

`
ϕ(n)) and

(t′0, · · · , t′ϕ(n)) be the coefficient vectors of t, t` and X
ϕ(n)

2 t` respectively. By
classifying all coefficients according to the residue modulo n

d of indices, we write

t` as t` =
∑n

d−1
i=0

(∑
j=i mod n

d
t`j X

j
)

. Let St(i) =
∑
j=i mod n

d
t`j X

j . There

9



must be one and only one j ∈ [ϕ(n)
2 , ϕ(n)

2 + n
d ) such that j = i mod n

d , denoted

by i. Notice that ϕ(n) = n− n
d and that ϕ(n)

2 = d−1
2

n
d is a multiple of n

d , then

X
ϕ(n)

2 St(i) =
∑

j=i mod n
d

j<
ϕ(n)

2

(t`j − t
`
i

)Xj+
ϕ(n)

2 +
∑

j=i mod n
d

j≥ϕ(n)
2 +n

d

(t`j − t
`
i

)Xj+
ϕ(n)

2 −n − t`
i
Xi−nd

=
∑

j=i mod n
d

ϕ(n)
2 ≤j<ϕ(n)

(t`
j−ϕ(n)

2

− t`
i

)Xj +
∑

j=i mod n
d

0≤j<ϕ(n)
2 −

n
d

(t`
j+

ϕ(n)
2 +n

d

− t`
i

)Xj − t`
i
Xi−nd .

Combining the definition of operation `, it can be verified that each t′i is a sum
of tj ’s whose indices form an arithmetic progression of common difference n

d and

length at most d−1
2 . Thus ‖X

ϕ(n)
2 t`‖∞ = maxi |t′i| ≤ d−1

2 maxi |ti| = d−1
2 ‖t‖∞

and then we have ‖X
ϕ(n)

2 t`‖∞ ≤
⌈
d−1

2

⌉
‖t‖∞.

Let v = (v1, · · · , vm) ∈ La(a, IS) whose infinity norm equals λ∞1 (La(a, IS)).

We know that (v`1 , · · · , v`m) ∈ L(a, IS) and hence v′ = (X
ϕ(n)

2 v`1 , · · · , X
ϕ(n)

2 v`m) ∈
L(a, IS). Notice that ‖v′‖∞ = maxi ‖X

ϕ(n)
2 v`i ‖∞ ≤

⌈
d−1

2

⌉
maxi ‖vi‖∞ =

⌈
d−1

2

⌉
‖v‖∞

and v′ 6= 0, then we conclude that λ∞1 (L(a, IS)) ≤
⌈
d−1

2

⌉
λ∞1 (La(a, IS)). ut

Applying Lemmata 11 and 12, we obtain the following result.

Lemma 13. Let n = dν > 7 with d a prime and R = Z[X]/Φn(X). Let q =
1 mod n be a prime and Rq = R/qR. For any S ⊆ {1, · · · , ϕ(n)}, m ≥ 2 and
ε > 0, set

β := 1− 1

m
+

1−
√

1 + 4m(m− 1)
(

1− |S|
ϕ(n)

)
+ 4mε

2m
≥ 1− 1

m
−ε−(m−1)

(
1− |S|

ϕ(n)

)
,

then we have λ∞1 (La(a, IS)) ≥ 1

d d−1
2 e
√
n
qβ with probability ≥ 1− 2ϕ(n)

(q−1)εϕ(n) over

the uniformly random choice of a in (R×q )m.

3.4 Regularity Results

We present some regularity results over prime power cyclotomic rings which
may be useful in general cryptographic applications. The following lemma can
be proven by combining Lemmata 2, 4, 10 and 13. For NTRU discussed in this
paper, it suffices to focus on the case m = 2.

Lemma 14. Let n = dν > 7 with d a prime and R = Z[X]/Φn(X). Let q =
1 mod n be a prime and Rq = R/qR. Let S ⊆ {1, · · · , ϕ(n)}, m ≥ 2, ε > 0, δ ∈
(0, 1

2 ). Let r ≥
⌈
d−1

2

⌉√
n ln(2mϕ(n)(1 + 1/δ))/π · q

1
m+(m−1)

|S|
ϕ(n)

+ε, c ∈ Rmϕ(n)

and t ←↩ DZmϕ(n),r,c. Then for all except a fraction ≤ 2ϕ(n)(q − 1)−εϕ(n) of
a ∈ (R×q )m, we have

∆
(
t mod a⊥(IS);U(Zmϕ(n)/a⊥(IS))

)
≤ 2δ.
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For a ∈ (R×q )m, we know that det
(
a⊥(IS)

)
= det

(
1
qL

a(a×, I×
S̄

)
)−1

=

qϕ(n)+(m−1)|S|. Notice that |Zmϕ(n)/a⊥(IS)| = det
(
a⊥(IS)

)
, the following re-

sult is an immediate consequence of Lemma 14.

Lemma 15. Let n = dν > 7 with d a prime and R = Z[X]/Φn(X). Let q =
1 mod n be a prime and Rq = R/qR. Let S ⊆ {1, · · · , ϕ(n)}, m ≥ 2, ε > 0, δ ∈
(0, 1

2 ). Let r ≥
⌈
d−1

2

⌉√
n ln(2mϕ(n)(1 + 1/δ))/π · q

1
m+(m−1)

|S|
ϕ(n)

+ε, c ∈ Rmϕ(n)

and t ←↩ DZmϕ(n),r,c. Then for all except a fraction ≤ 2ϕ(n)(q − 1)−εϕ(n) of
a ∈ (R×q )m, we have∣∣∣DZmϕ(n),r,c(a⊥(IS))− q−ϕ(n)−(m−1)|S|

∣∣∣ ≤ 2δ.

3.5 Gap of Ideal Lattices

Let I be an ideal of Z[X]/Φn(X) and LI be the ideal lattice generated by I (under
the coefficient embedding). For the case n = 2ν , it is known that λϕ(n)(LI) =
λ1(LI). For the case n = d is a prime, the gap between λϕ(n)(LI) and λ1(LI) is
proven to be at most

√
n (see [39]). Next we are to prove a general result for all

prime power cyclotomic rings, which would be of independent interest.

Lemma 16. Let n = dν with d a prime and R = Z[X]/Φn(X). For any non-
zero ideal I of R, we have:

λϕ(n)(LI) ≤
√
d · λ1(LI).

Proof. Let v ∈ I whose coefficient vector v = (v0, · · · , vϕ(n)−1) is a non-zero

shortest vector of LI . We denote by v(k) =
(
v

(k)
0 , · · · , v(k)

ϕ(n)−1

)
the coefficient

vector of Xkv. It is known that v(k) ∈ LI for any k ∈ {1, · · · , ϕ(n) − 1}. Let
R′ = Z[X]/(Xn − 1). Let v ∈ R′ be the polynomial with the same coefficients
as v and v(k) = Xkv ∈ R′. The coefficient vector of v is (v0, · · · , vn−1) with

vl = 0 for l ≥ ϕ(n) and that of v(k) is denoted by
(
v

(k)
0 , · · · , v(k)

n−1

)
. We have

that v
(k)
i = v(i−k) mod n. Since Φn(X) is a factor of Xn−1, we know that Xkv =

v(k) mod Φn(X). By the fact that X l = −(X
n
d ·(d−2) + · · ·+X

n
d + 1)X l−ϕ(n) for

l > ϕ(n), the following result holds:

v
(k)
i = v

(k)
i − v

(k)
(i mod n

d )+ϕ(n) = v(i−k) mod n − v((i mod n
d )+ϕ(n)−k) mod n.

Let S1 =
∑ϕ(n)−1
i=0 v2

(i−k) mod n, S2 =
∑n

d−1

i′=0 v
2
(i′+ϕ(n)−k) mod n. We have that

S1 + S2 =

n−1∑
i=0

v2
i =

ϕ(n)−1∑
i=0

v2
i = ‖v‖2 = λ1(LI)2.

11



Let S3(i′) =
∑
j∈{0,···ϕ(n)−1}
j=i′ mod n

d

v(j−k) mod n. A routine computation leads to that

‖v(k)‖2 = S1 + (d− 1)S2 − 2

n
d−1∑
i′=0

S3(i′)v(i′+ϕ(n)−k) mod n

≤ S1 + (d− 1)S2 + S2 +

n
d−1∑
i′=0

S3(i′)2

≤ S1 + dS2 + (d− 1)

n
d−1∑
i′=0

 ∑
j∈{0,···ϕ(n)−1}
j=i′ mod n

d

v2
(j−k) mod n


= d(S1 + S2) = dλ1(LI)2.

Notice that v and {v(k)}ϕ(n)−1
k=1 are linearly independent and of norm within√

dλ1(LI), then we get that λϕ(n)(LI) ≤
√
d · λ1(LI). ut

Interestingly, for prime power cyclotomic rings, it seems to be the prime factor
rather than the order that determines the gap of ideal lattices. By combining
Minkowski’s theorem, we obtain the following corollary.

Corollary 2. Let n = dν > 7 with d a prime and R = Z[X]/Φn(X). Let
q = 1 mod n be a prime and Rq = R/qR. Let S ⊆ {1, · · · , ϕ(n)} and denote by
LIS the lattice generated by the ideal 〈q,

∏
i∈S(X − φi)〉. Then

λϕ(n)(LIS ) ≤
√
d · λ1(LIS ) ≤

√
dϕ(n) · q

|S|
ϕ(n) .

4 pNE over Prime Power Cyclotomic Rings

In this section, we will describe a class of NTRUEncrypt over general prime power
cyclotomic rings whose IND-CPA security can be reduced from RLWE and ap-
proximate Ideal-SVP. Our scheme is adapted from that in [39] with minor differ-
ences. We denote by pNE(n, d, ν, q, p, r, α, k) the provably secure NTRU specified
by the following public parameters.

– Let R = Z[X]/Φn(X) and its order n = dν where d is a prime.
– Let q = 1 mod n be a prime and Rq = R/qR. The ciphertext space is Rq.
– Let p ∈ R×q be of small norm, such as p = 2 or p = x+3. The message space

is R/pR.
– The parameter r is the width of discrete Gaussian distribution used for key

generation.
– The parameters α and k determine the RLWE error distribution.

Three main algorithms are listed as follows.
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– Key Generation. Sample f ′ from DZϕ(n),r; if f = pf ′ + 1 mod q /∈ R×q ,
resample. Sample g from DZϕ(n),r; if g mod q /∈ R×q , resample. Then return
private key sk = f ∈ R×q and public key pk = h = pg/f ∈ R×q .

– Encryption. Given message M ∈ R/pR, let t =
√
n′αq

(
ϕ(n)k

log(ϕ(n)k)

)1/4

where n′ = deg(Θn(X)), set s, e←↩ ψnt and return ciphertext C = hs+ pe+
M ∈ Rq.

– Decryption. Given ciphertext C and private key f , compute C ′ = f ·
C mod q and return C ′ mod p.

Next we analysis the above algorithms and then give a set of parameters to make
pNE workable and provably secure.

4.1 Key Generation

The key generation algorithm follows the idea originally proposed by Stehlé and
Steinfeld in [35]. Since our parameter conditions are much stronger than that
in Lemma 5, we assume that a polynomial-time perfect discrete Gaussian sam-
pler is available. The following lemma shows that the key generation algorithm
terminates in expected polynomial time for selective parameters.

Lemma 17. Let n = dν > 7 with d a prime and R = Z[X]/Φn(X). Let q =
1 mod n be a prime and Rq = R/qR. Let r ≥

√
dϕ(n) ln(2ϕ(n)(1 + 1/δ))/π ·

q1/ϕ(n), for any δ ∈ (0, 1/2). Then Prf ′←↩DZϕ(n),r

(
(p · f ′ + a mod q) /∈ R×q

)
≤

ϕ(n)(1/q + 2δ) holds for a ∈ R and p ∈ R×q .

Proof. Let Ik be the ideal 〈q,X − φk〉 for any k ∈ {1, · · · , ϕ(n)}. Corollary 2

shows that λϕ(n)(LIk) ≤
√
dϕ(n) · q

1
ϕ(n) . By Lemma 1, we have r ≥ ηδ(LIk).

Together with Lemma 4, it leads to that the probability of p · f ′+ a = 0 mod Ik
is at most 1/q + 2δ. By the union bound, the proof is completed. ut

Next we prove that the norms of secret polynomials f and g are small.

Lemma 18. Let n = dν > 7 with d a prime and R = Z[X]/Φn(X). Let q =
1 mod n be a prime and Rq = R/qR. Let r ≥

√
dϕ(n) ln(6ϕ(n))/π ·q1/ϕ(n). The

secret key polynomials f , g satisfy, with probability ≥ 1− 2−ϕ(n)+3,

‖f‖ ≤ 3ϕ(n)‖p‖r and ‖g‖ ≤
√
ϕ(n) · r.

If deg p = 0, then ‖f‖ ≤ 2
√
ϕ(n) · ‖p‖r with probability ≥ 1− 2−ϕ(n)+3.

Proof. Combining Lemmata 3 and 17, we have that ‖g‖ is less than r
√
ϕ(n)

with probability ≥ 1− 2−ϕ(n)+3 and so is ‖f ′‖. Since ‖f‖ ≤ 1 + ‖pf ′‖, together
with Lemma 9, we complete the proof. ut

For power-of-2 and prime cyclotomic rings, sampling f and g with certain
width r makes the public key almost uniform over R×q , which is a remarkable
property for provably secure NTRU. This conclusion holds for general prime
power cyclotomic rings as well.
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Theorem 2. Let n = dν > 7 with d a prime and R = Z[X]/Φn(X). Let q =
1 mod n be a prime and Rq = R/qR. Let D×r,z the discrete Gaussian DZϕ(n),r

restricted to R×q + z. Let 0 < ε < 1
2 and r ≥

⌈
d−1

2

⌉√
nϕ(n)

√
ln(8nq) · q 1

2 +2ε.
Then

∆

(
y1 + p ·D×r,z1
y2 + p ·D×r,z2

mod q;U(R×q )

)
≤ 23ϕ(n)

qbεϕ(n)c

for p ∈ R×q , yi ∈ Rq and zi = −yip−1 mod q for i ∈ {1, 2}.

Remark To prove the above theorem, it suffices to follow the same approach in
[35] and treat the difference caused by the new regularity result shown in Lemma
15. Thus we omit the proof.

4.2 Decryption

The successful decryption is ensured by the fact that a polynomial of `∞ norm
less than q/2 keeps unchanged after modulo q reduction. In the decryption al-
gorithm, we calculate a middle term C ′ = f · C = pgs + pfe + fM mod q. We
now estimate the `∞ norms of pgs, pfe and fM respectively.

We first study the sizes of e and s which follow RLWE error distribution.

Lemma 19. Let n = dν > 7 with d a prime and R = Z[X]/Φn(X). For t > 1
and u > 0, we have

Pr
b←↩ψnt

(
‖b‖ ≥

(
2
√

2n+
√

2du
)
t
)
≤ exp(−u).

Proof. To begin with, we recall some results that will be useful in our proof.

Proposition 1. For any x ∈ R, we have bxe2 ≤ 1
4ε + 1

1−εx
2.

Proposition 2. Let Σ = M>M where

M =


1 −1

1 −1
. . .

...
1 −1

0

 ∈ Rd×d.

Then we have tr(Σ) = 2(d− 1), tr(Σ2) = (d− 1)(d+ 2) and ‖Σ‖ = d.

Proposition 3. Let B ∈ Rn×n and Σ = B>B. Let v be a vector drawn from
ψn1 . For any u > 0, we have

Pr
(
‖Bv‖2 > tr (Σ) + 2

√
tr (Σ2)u+ 2‖Σ‖u

)
≤ exp(−u).
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Two first propositions are shown in the proof of Lemma 17 in [39] and the third
one is shown in [24].

For the case d = 2, we have Θn(X) = Φn(X). Let b = bb′ mod Φn(X)e =

bb′e ∈ R with b′ ←↩ ψ
n
2
t and v = 1

t · b
′. By Proposition 1, we have

‖b‖2 ≤ t2

1− ε
‖v‖2 +

n

8ε
.

Applying Proposition 3, we get

Pr
(
‖v‖2 > n/2 +

√
2nu+ 2u

)
≤ exp(−u).

Let ε =

(
1 +

√
8t2
(
n/2 +

√
2nu+ 2u

)
/n

)−1

∈ (0, 1) and

A =

√
n
2 +
√

2nu+ 2u

1− ε
+

n

8t2ε
.

We can verify that A =
√
n/2 +

√
2nu+ 2u +

√
n/(8t2) < 2

√
2n +

√
2du and

then we have

Pr
b←↩ψnt

(
‖b‖ ≥

(
2
√

2n+
√

2du
)
t
)

≤ Pr
b←↩ψnt

(‖b‖ > At)

≤ Pr
v←↩ψn1

(
1

1− ε
‖v‖2 +

n

8t2ε
> A2

)
= Pr

(
‖v‖2 > n/2 +

√
2nu+ 2u

)
≤ exp(−u).

For the case d > 2, we have Θn(X) = Xn − 1. Let b = bb′ mod Φn(X)e ∈
R with b′ ←↩ ψnt . Let (b0, · · · , bϕ(n)−1) and (b′0, · · · , b′n−1) be the coefficient

vector of b and b′ respectively. For any k ∈ {0, · · · , nd − 1}, the vector b′(k) =(
b′k, b

′
k+n

d
, · · · , b′

k+
n(d−1)

d

)
can be viewed as a vector sampled from ψdt and then

the vector b(k) =
(
bk, bk+n

d
, · · · , b

k+
n(d−2)

d

)
is equivalent to a vector drawn from

ψdt . Let v = 1
t

(
b′(0)|| · · · ||b′(nd−1)

)
∈ Rn. By Proposition 1, a straightforward

computation leads to that

‖b‖2 =

n
d−1∑
k=0

‖b(k)‖2 ≤ t2

1− ε
‖M′v‖2 +

n− n
d

4ε
,

where M′ = M⊗ Idn
d

and M is defined in Proposition 2. Let Σ′ = M′>M′. We

deduce from Proposition 2 that tr(Σ′) = 2(n − n
d ), tr(Σ′2) = (n − n

d )(d + 2)
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and ‖Σ′‖ = d. Then, by Proposition 3, we have

Pr

(
‖M′v‖2 > 2(n− n

d
) + 2

√
(n− n

d
)(d+ 2)u+ 2du

)
≤ exp(−u).

Let

ε =

1 +

√
4t2
(
2(n− n

d ) + 2
√

(n− n
d )(d+ 2)u+ 2du

)
n− n

d

−1

∈ (0, 1)

and

A =

√
2(n− n

d ) + 2
√

(n− n
d )(d+ 2)u+ 2du

1− ε
+
n− n

d

4t2ε
.

We can verify that

A =

√
2(n− n

d
) + 2

√
(n− n

d
)(d+ 2)u+ 2du+

√
n− n

d

4t2
< 2
√

2n+
√

2du

and then we have

Pr
b←↩ψnt

(
‖b‖ ≥

(
2
√

2n+
√

2du
)
t
)

≤ Pr
b←↩ψnt

(‖b‖ > At)

≤ Pr
v←↩ψn1

(
1

1− ε
‖M′v‖2 +

n− n
d

4t2ε
> A2

)
= Pr

(
‖Mv‖2 > 2(n− n

d
) + 2

√
(n− n

d
)(d+ 2)u+ 2du

)
≤ exp(−u).

Combining two above cases, we complete the proof. ut

Let u = Θ(log1+κ n), together with Lemmata 18 and 9, we obtain a bound
of the norms of pgs and pfe.

Lemma 20. In pNE(n, d, ν, q, p, r, α, k), t =
√
n′αq

(
ϕ(n)k

log(ϕ(n)k)

)1/4

> 1 where

n′ = deg(Θn(X)). Then for κ > 0, we have

‖pgs‖∞, ‖pfe‖∞ ≤ 12
√

2ϕ(n)
√
nϕ(n)Θ

(
log

1+κ
2 n

)
‖p‖2rt

with probability at least 1− n−Θ(logκ n). In particular, if deg p = 0, then

‖pgs‖∞, ‖pfe‖∞ ≤ 4
√

2
√
nϕ(n)Θ

(
log

1+κ
2 n

)
‖p‖2rt

with probability at least 1− n−Θ(logκ n).
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For the term fM , its norm can be bounded as well.

Lemma 21. In pNE(n, d, ν, q, p, r, α, k), we have ‖fM‖∞ ≤ 6ϕ(n)2‖p‖2r with
probability at least 1 − 2−ϕ(n)+3. In particular, if deg p = 0, then ‖fM‖∞ ≤
2ϕ(n)‖p‖2r with probability at least 1− 2−ϕ(n)+3.

Combining Lemmata 20 and 21, we give a set parameters such that pNE enjoys
a high probability of successful decryption.

Theorem 3. Let t =
√
n′αq

(
ϕ(n)k

log(ϕ(n)k)

)1/4

> 1 where n′ = deg(Θn(X)). If

ω
(√

ϕ(n)3n log n
)
‖p‖2rt/q < 1 (resp. ω

(√
ϕ(n)n log n

)
‖p‖2rt/q < 1 if deg p =

0), then the decryption algorithm of pNE recovers M with probability 1− n−ω(1)

over the choice of s, e, f, g.

4.3 Security Reduction and Parameters

The provable security of pNE is guaranteed by the following theorem. The proof
totally follows from that in [39] and thus we omit it.

Lemma 22. Let n = dν > 7 with d a prime and R = Z[X]/Φn(X). Let
q > 8n be a prime congruent to 1 modulo n and Rq = R/qR. Let ε, δ > 0,

p ∈ R×q and t =
√
n′αq

(
ϕ(n)k

log(ϕ(n)k)

)1/4

> 1 where n′ = deg(Θn(X)). Let

r ≥
⌈
d−1

2

⌉√
nϕ(n)

√
ln(8nq) · q 1

2 +ε. If there exists an IND-CPA attack against
pNE that runs in time T and has success probability 1/2 + δ, then there exists
an algorithm solving RLWEq,ψ,k with ψ = ψnt that runs in time T ′ = T +O(kn)
and has success probability 1/2 + δ′ where δ′ = δ/2− q−Ω(n).

Combining Lemmata 22 with Theorem 3 and 1, we get the main result.

Theorem 4. Let n = dν > 7 with d a prime and R = Z[X]/Φn(X). Suppose

q = 1 mod n is a prime of size poly(n) and q
1
2−ε = ω

(
dn3.75 log1.5 n‖p‖2

)
(resp.

q
1
2−ε = ω

(
dn2.75 log1.5 n‖p‖2

)
, if deg p = 0) for any ε ∈ (0, 1/2) and p ∈ R×q . Let

r = dn
√

ln(8nq) · q 1
2 +ε and t =

√
n′αq

(
ϕ(n)k

log(ϕ(n)k)

)1/4

where n′ = deg(Θn(X)),

k = O(1) and αq = Ω(log0.75 n). If there exists an IND-CPA attack against
pNE(n, d, ν, q, p, r, α, k) that runs in time poly(n) and has success probability
1/2 + 1/poly(n), then there exists a poly(n)-time algorithm solving γ-Ideal-SVP
on ideal lattices in Z[X]/Φn(X) with γ = Õ

(√
nq/ log0.75 n

)
. Moreover, the

decryption success probability exceeds 1−n−ω(1) over the choice of the encryption
randomness.

By choosing ε = o(1) and deg p = 0, the minimal modulus q for which pNE
holds is Ω̃(d2n5.5), and the minimal approximate factor γ is Ω̃(d2n6). For the
case d = 2, the smallest q and γ shown in [35] are Ω̃(n5) and Ω̃(n5.5) respectively
which are smaller than our results by a factor of

√
n. That is because we follow

a different RLWE setting to work on more general cyclotomic rings.
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5 Further Analysis

5.1 Prime vs Prime Power

In pNE scheme, the parameter r matters to the sizes of secret keys directly and
a feasible value of r is Ω̃(dn · q 1

2 +ε) shown in Theorem 4. For two special cases,

i.e. power-of-2 and prime cyclotomic rings, this value becomes Ω̃(n · q 1
2 +ε) and

Ω̃(n2 · q 1
2 +ε) respectively, which coincides with the results of [35] and [39] in the

asymptotic sense.
To ensure successful decryption, a large r induces a large modulus q, which

dominantly impacts the efficiency of pNE(see [5]). Notice that n = dν and then

the polynomial factor dn can be written as n1+ 1
ν . Thus, assume n is of fixed

bit length, the larger ν is, the relatively smaller dn is, and the more efficient
pNE is. On the other hand, for large ν, the field Q(X)/Φn(X) tends to have
more subfields of proper relative degree, which may lead to a class of subfield
attacks as shown in [1, 7]. Even though, for NTRU over any ring, a more efficient
lattice attacks was proposed in a very recent paper [26], the presence of subfields
is still considered as a worrisome algebraic structure. Overall, it seems a trade-off
between the compactness of parameters and the robustness of ring structures.

5.2 pNE on Other Rings

Next we are to discuss what kinds of rings we can construct pNE over, under
the assumed hardness of corresponding RLWE. Let P (X) ∈ Z[X] is a monic
irreducible polynomial of degree n and R = Z[X]/P (X). Let ξ1, ξ2, · · · , ξn be
all complex roots of P (X). Let ` and a be a pair of inverse operations over
R such that Lemma 7 and 10 holds. Let q be a prime such that P (X) splits
into k irreducible factors modulo q and each of degree d = n/k. Note that we
require k = n to ensure the security reduction from RLWE in our pNE and the
case k < n was discussed in [36]. We assume RLWE with error distribution χ
over Rq = R/qR is hard. We define α(P ), β(P ), γ(P ) > 0 as follows:

– Let α(P ) = maxt∈R
T2(t)
‖t‖ where T2(t) =

√∑n
i=1 |t(ξi)|2.

– Let β(P ) = mins∈R,s6=0

{
maxt∈R

‖st`‖∞
‖t‖∞

}
.

– Let γ(P ) be the expansion factor γ×(R).

To make public key close to uniform, we can set r = Ω̃(
√
nα(P )β(P )·q0.5+2ε).

To ensure correct decryption, we can set q = Ω̃(
√
nγ(P )e(χ)‖p‖2r), where p is

set to be an integer and e(χ) is a threshold upper bound such that ‖e‖ ≤ e(χ)
with probability ≥ 1−nω(1), if e←↩ χ. Combining these two conditions, to build a
relative efficient pNE, we need to choose a polynomial P (X) of small α(P ), β(P )
and γ(P ). In this sense, the ring Z[X]/(Xn−X−1) suggested in [2] may be worth
considering. Conversely, for some cyclotomic rings of highly composite order,
the value γ(P ) can be super-polynomial of n and hence pNE over such rings
is extremely impractical. We highlight again that above discussions are under
the assumed hardness of RLWE over R. A very recent paper [34] demonstrates
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a polynomial-time quantum reduction from worst-case ideal lattice problems to
RLWE for general rings, which provides a theoretical grounding for the further
extension of pNE. This reduction applies to any fixed ring, but some RLWE
instances may still be weak [14, 6]. Therefore, it is a priority to find a nice
polynomial ring with solid RLWE hardness.
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