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Abstract. NTRUEncrypt is a fast and standardized lattice-based pub-
lic key encryption scheme, but it lacks a solid security guarantee. In
2011, Stehlé and Steinfeld first proposed a provably secure variant of
NTRUEncrypt, denoted by pNE, over power-of-2 cyclotomic rings. The
IND-CPA security of pNE is based on the worst-case quantum hardness
of classical problems over ideal lattices. Recently, Yu, Xu and Wang con-
structed pNE variants over prime cyclotomic rings, but the parameter is
much large. In this paper, we modify the key generation algorithm of
pNE scheme to make it applicable to general cyclotomic rings and pro-
vide asymptotical parameters of pNE over prime power cyclotomic rings.
In particular, our result allows tighter parameters for prime cyclotomic
rings than the previous result.

Keywords: Lattice-based cryptography, NTRU, Learning With Errors,
Provable security.

1 Introduction

NTRU, introduced by Hoffstein, Pipher and Silverman in [17], is a celebrated pub-
lic key cryptosystem standardized by IEEE. Its encryption scheme, NTRUEncrypt,
is one of the fastest known lattice-based encryption schemes. Due to its excellent
performance and potential resistance to quantum computers, NTRUEncrypt is
considered as not only a desirable alternative to classical schemes based on in-
teger factorisation or discrete logarithms but also a promising post-quantum
encryption scheme. Based on the underlying problem of NTRU, various crypto-
graphic primitives are designed, including digital signature [16, 8], identity-based
encryption [9], fully homomorphic encryption [23, 2] and multilinear maps [12,
22]. In the last 20 years, a batch of cryptanalytic estimations [5, 20, 13, 28, 11,
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18, 10, 1, 4, 21] were proposed aiming at NTRU family, and NTRUEncrypt is
generally believed to be secure in practice.

However, classical NTRU lacks a solid security guarantee, which may weaken
our confidence in this scheme. In 2011, Stehlé and Steinfeld proposed the first
provably secure NTRUEncrypt variant [31] that we denote by pNE, and gave a re-
duction from RLWE(Ring Learning With Errors) problem to the IND-CPA security
(indistinguishability under chosen-plaintext attack) of pNE. RLWE, introduced by
Lyubashevsky, Peikert and Regev [24], is an algebraic variant of LWE(Learning
With Errors [30]) and enjoys more popularity in cryptographic applications than
LWE due to its better compactness and efficiency. The hardness of RLWE is
based on some worst-case problems over ideal lattices, which provides pNE with
a strong security guarantee. Then, a variant of pNE against chosen-ciphertext
attacks [33] and a provably secure NTRU signature scheme [32] were proposed
successively. These modified NTRU schemes are restricted to power-of-2 cyclo-

tomic rings, i.e. Z[X]/(X2k + 1), following the regular RLWE setting. Recently,
Yu, Xu and Wang modified pNE to make it work over prime cyclotomic rings,
i.e. Z[X]/(Xn−1 + · · ·+ 1) with n a prime, in [35], which allows more flexibility
of parameter selections.

Compared with classical NTRU, provably secure NTRU keeps the same asymp-
totic efficiency but enjoys a firm theoretical security as well. While pNE is much
less practical [3], it shows an important connection between NTRU and RLWE,
and between problems over NTRU lattices and worst-case problems over ideal
lattices. With the recent calls for post-quantum cryptography by NIST, a better
understanding of these problems is necessary and thus the study of pNE would
be of theoretical value. An essential issue to be addressed is the choice of the
underlying ring for pNE, which is the main motivation of our paper.

Contribution In this paper, we study a new variant of pNE over cyclotomic
rings and show that, given appropriate parameters, provably secure NTRU can
hold over prime power cyclotomic rings even more general cyclotomic rings.
The key generation algorithm of our pNE is modified and relies on Gaussian
sampling with respect to canonical embedding instead of coefficient embedding.
We show that the public key, i.e. the ratio of two secret polynomials, will be
almost uniformly distributed, if two secrete polynomials are sampled from certain
Gaussians, which is a remarkable property of pNE originally proposed by Stehlé
and Steinfeld in [31]. It is worth noting that the “uniformity” of public key holds
for general cyclotomic rings not only for prime power cases, and the lower bound
of sample width r is same to that in [31] and asymptotically smaller than that
in [35]. Our result further enriches the provably secure NTRU family and allows a
more flexible choice of parameters. As by-products, an improved regularity result
for general cyclotomic rings and some properties of prime power cyclotomic rings
are shown, which may be of some independent interest. While we exploit some
ideas shown in [31, 32, 35], many technical differences still need to be treated
carefully and, to the best of our knowledge, concrete discussions for NTRU over
more general cyclotomic rings were not found in literature.
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Organization In Sect. 2, we introduce some notations and basic results that will
be used in our discussion. In Sect. 3, we show a series of relevant results over
general cyclotomic rings and several special properties of prime power cyclotomic
rings. Then, we describe our pNE variant over prime power cyclotomic rings and
demonstrate parameter requirements in Sect. 4.

2 Preliminaries

Embeddings and Norms Let P (X) ∈ Z[X] be a monic irreducible polynomial

of degree n and K = Q[X]/(P (X)). For any t =
∑n−1
i=0 tiX

i ∈ K, the vector
(t0, · · · , tn−1) ∈ Qn is called the coefficient vector of t. The coefficient embedding
maps any element of K to its coefficient vector. We denote by 〈s, t〉 the Euclidean
inner product of the coefficient vectors of s and t, and by ‖t‖ (resp. ‖t‖∞) the
Euclidean (resp. `∞) norm of the coefficient vector of t. For t = (t(1), · · · , t(m)) ∈
Km, its Euclidean norm (under coefficient embedding) is ‖t‖ =

√∑
i ‖t(i)‖2 and

its `∞ norm is ‖t‖∞ = maxi ‖t(i)‖∞. Note that, for a = (a1, · · · , an) ∈ Cn, we
also denote by ‖a‖ =

√∑
i |ai|2 its Euclidean norm and by ‖a‖∞ = maxi |ai|

its `∞ norm.
Besides coefficient embedding, canonical embedding is also very important,

especially in the context of RLWE [24, 25]. Assume that P (X) has s1 real
roots denoted by ω1, · · · , ωs1 , and 2s2 complex conjugate roots denoted by
ωs1+1, · · · , ωs1+2s2 where ωs1+k = ωs1+k+s2 for k ∈ {1, · · · , s2}. The field K
has exactly n embeddings into C denoted by σi : K → C where σi(t) = t(ωi)
for any t ∈ K. Then the canonical embedding σ : K → Cn is defined as
σ(t) = (σ1(t), · · · , σn(t)). In fact, the canonical embedding maps into the space
H = {(x1, · · · , xn) | x1, · · · , xs1 ∈ R, xx1+k = xx1+k+s2 , 1 ≤ k ≤ s2} iso-
morphic to Rn as an inner product space, and the inner product 〈σ(s), σ(t)〉
equals

∑
i σ(s)σ(t) = Tr(st), i.e. the trace of st. The T2-norm of t is T2(t) =

‖σ(t)‖ =
√∑

i |σi(t)|2, the T∞-norm of t is T2(t) = ‖σ(t)‖∞ and the algebraic
norm is N(t) =

∏
i |σi(t)|. For t = (t1, · · · , tm) ∈ Km, the T2-norm of t is

T2(t) =
√∑

i T2(ti)2 and the T∞-norm of t is T∞(t) = maxi T∞(ti).

Lattice A full-rank lattice is a set of all integer linear combinations of some
linearly independent vectors b1, · · · ,bn in an n-dimensional inner product space
V 4. We call B = (b1, · · · ,bn) a basis and n the dimension of the lattice. Let
B be a basis of L, then we denote the volume of L as det(L) =

√
det(B>B).

The dual lattice of L is the lattice L̂ = {c ∈ V | ∀i, 〈c,bi〉 ∈ Z}. The first
minimum λ1(L) (resp. λ∞1 (L)) is the minimum of Euclidean (resp. `∞) norm of
all non-zero vectors of L. More generally, for k ≤ n, the k-th minimum λk(L) is
the smallest r such that there are at least k linearly independent vectors of L
whose norms are not greater than r.

4 For coefficient and canonical embedding, the space V corresponds to Rn and H
respectively.
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Let R be the ring of integers of a field K with an additive isomorphism θ5

mappingR to the lattice θ(R). Let I be an ideal ofR, then θ(I) is an ideal lattice.
The norm of an ideal I is N(I) = |R/I|. For any t ∈ R, we have N(〈t〉) = N(t).
For any two ideals I, J , we have N(IJ) = N(I) N(J). The norm of a fractional
ideal I is defined as N(I) = N(dI)/N(d), where d ∈ R and dI ⊆ R.

By restricting SVP(Shortest Vector Problem) and γ-SVP(Approximate Short-
est Vector Problem with approximation factor γ) to ideal lattices, we get Ideal-
SVP and γ-Ideal-SVP. These ideal lattice problems do not seem to be substan-
tially easier than the versions for general lattice (perhaps, except for very large
γ [6]). Currently, it is believed that the worst-case hardness of γ-Ideal-SVP is
against subexponential quantum attacks, for any γ ≤ poly(n).

Probability and Statistics For a distribution D over a domain E, we write z ←↩
D when the random variable z is sampled from D, and denote by D(x) the
probability of z = x. If the domain E is a finite set, we use U(E) to denote the
uniform distribution over E. For two distributions D1, D2 over the same discrete
domain E, their statistical distance is ∆(D1;D2) = 1

2

∑
x∈E |D1(x)−D2(x)|. If

∆(D1;D2) = o(n−c) for any constant c > 0, then we call D1, D2 statistically
close with respect to n.

Cyclotomic Ring Let ξn be a primitive n-th root of unity. The n-th cyclotomic
polynomial, denoted by Φn(X), is the minimal polynomial of ξn. It is known
that Φn(X) =

∏
i∈Z∗n

(X − ξin) ∈ Z[X]. Each cyclotomic polynomial Φn(X)

corresponds to a binomial Θn(X) defined as Xn − 1 if n is odd and Xn/2 + 1
if n is even, and Θn(X) is a multiple of Φn(X). A cyclotomic ring is a quotient
ring of the form R = Z[X]/(Φn(X)). For some special n, the form of Φn(X) is
regular and simple. If n is a prime, we have Φn(X) = Xn−1 + Xn−2 + · · · + 1.

More generally, if n = dν is a power of prime d, we have Φn(X) = Φd(X
dν−1

)
and call it a prime power cyclotomic ring.

If a prime q satisfies q = 1 mod n, then Φn(X) splits completely into distinct
linear factors modulo q. Given n, according to Dirichlet’s theorem on arithmetic
progressions, there exist infinitely many primes congruent to 1 modulo n. Fur-
thermore, Linnik’s theorem asserts that the smallest such q is of size poly(n) (a
concrete bound is O(n5.2), see [34]).

Gaussian Measures Let ρr,c(x) = exp
(
−π‖x− c‖2/r2

)
be the n-dimensional

Gaussian function with center c ∈ V and width r. When c = 0, the Gaussian
function is written as ρr(x). Let ψr be the Gaussian distribution over R with
mean 0 and width r and ψnr be the spherical Gaussian distribution over Rn of
the vector (v1, · · · , vn) where all vi’s follow ψr independently. We can restrict ψr
over Q so that ψn

′

r can be viewed as a distribution over Q[X]/(Θn(X)) where
n′ = deg(Θn(X)), which only leads to a negligible impact to our results, as
explained in [7]. For S ⊂ V , the sum

∑
x∈S ρr,c(x) (resp.

∑
x∈S ρr(x)) is denoted

as ρr,c(S) (resp. ρr(S)). The discrete Gaussian distribution over a lattice L with

5 Both coefficient and canonical embedding are an additive isomorphism.
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center c and width r is defined by DL,r,c(x) = ρr,c(x)/ρr,c(L), for any x ∈ L. For

δ > 0, we denote the smoothing parameter by ηδ(L) = min{r : ρ1/r(L̂) ≤ 1 + δ}.
We now recall some results which will be used later.

Lemma 1 ([27], Le. 3.3). Let L be an n-dimensional full-rank lattice and
δ ∈ (0, 1). Then ηδ(L) ≤

√
ln(2n(1 + 1/δ))/π · λn(L).

Lemma 2 ([29], Le. 3.5). Let L be an n-dimensional full-rank lattice and

δ ∈ (0, 1). Then ηδ(L) ≤
√

ln(2n(1 + 1/δ))/π/λ∞1

(
L̂
)

.

Lemma 3 ([25], Cla. 7.1). Let L be an n-dimensional full-rank lattice and

δ, r > 0. Then ρ1/r(L) ≤ max
(

1, ηδ(L̂)nr−n
)

(1 + δ).

Lemma 4 ([27], Le. 4.4). Let L ⊆ V be an n-dimensional full-rank lattice and
δ ∈ (0, 1). Then Pb←↩DL,r,c(‖b− c‖ ≥ r

√
n) ≤ 1+δ

1−δ2−n for c ∈ V and r ≥ ηδ(L).

Lemma 5 ([15], Cor. 2.8). Let L′ ⊆ L ⊆ V be full-rank lattices and δ ∈
(0, 1/2). For c ∈ V and r ≥ ηδ(L′), we have ∆(DL,r,c mod L′;U(L/L′)) ≤ 2δ.

Lemma 6 ([15], Th. 4.1). There exists a polynomial-time algorithm that,
given a basis (b1, · · · ,bn) of a lattice L ⊆ Zn, a parameter r = ω(

√
log n) max ‖bi‖

and c ∈ Rn, outputs samples from a distribution statistically close to DL,r,c with
respect to n.

Hardness of RLWE The Ring Learning With Errors problem (RLWE) was first
proposed in [24] and shown hard for specific settings. In [7], Ducas and Durmus
gave an “easy-to-use” setting for RLWE and instantiated RLWE over general
cyclotomic rings. In this paper, we follow the setting of [7].

Definition 1 (RLWE error distribution in [7]). Let R = Z[X]/(Φn(X)).
Given ψ a distribution over Q[X]/(Θn(X)), we define ψ as the distribution over
R obtained by e = be′ mod Φn(X)e ∈ R with e′ ←↩ ψ. Here we denote by bfe
the polynomial whose coefficients are derived by rounding coefficients of f to the
nearest integers.

Definition 2 (RLWE distribution in [7]). Let R = Z[X]/(Φn(X)) and Rq =
R/qR. For s ∈ Rq and ψ a distribution over Q[X]/(Θn(X)), we define As,ψ as
the distribution over Rq × Rq obtained by sampling the pair (a, as + e) where
a←↩ U(Rq) and e←↩ ψ.

Definition 3 (RLWEq,ψ,k). Let R = Z[X]/(Φn(X)) and Rq = R/qR. The prob-
lem RLWEq,ψ,k in the ring R is defined as follows. Given k samples drawn from
As,ψ where s←↩ U(Rq) and k samples from U(Rq ×Rq), distinguish them with
an advantage 1/ poly(n).

For certain error distributions, RLWE can be reduced from γ-Ideal-SVP. Note
that γ-Ideal-SVP discussed here is with respect to the canonical embedding.
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Theorem 1 ([7], Th. 2). Let n be an integer and Rq = Zq[X]/(Φn(X)) where
q is a prime congruent to 1 modulo n. Also, let α ∈ (0, 1) be a real number such
that αq > ω(

√
log n). There exists a randomized quantum reduction from γ-Ideal-

SVP on ideal lattices in Z[X]/(Φn(X)) with γ = Õ (
√
n/α) to RLWEq,ψnt ,k for t =

√
n′αq

(
ϕ(n)k

log(ϕ(n)k)

)1/4

where n′ = deg(Θn(X)) that runs in time O(q · poly(n)).

Let R×q be the set of all invertible elements of Rq. As explained in [31], one
can restrict As,ψ to R×q ×Rq and sample s from ψ, which leads to a variant of
RLWE (to distinguish As,ψ and U(R×q ×Rq)) with same hardness.

3 New Results on General Cyclotomic Rings

In this section, we will present a series of results on general cyclotomic rings.
While similar results restricted to power-of-2 and prime cyclotomic rings have
been discussed in [31, 35], our results are of a much wider meaning and some
results are with respect to canonical embedding instead of coefficient embedding.

3.1 Duality Results for Module Lattices

Some duality results about module lattices over power-of-2 and prime cyclotomic
rings are presented respectively in [31, 35]. Next we will give a general duality
result for general cyclotomic rings.

Let q = 1 mod n be a prime and Rq = R/qR. We know that Φn(X) splits
completely into distinct linear factors modulo q. Let {φi}i=1,··· ,ϕ(n) be the set of

all roots of Φn(X) modulo q, then each ideal ofRq is of the form
∏
i∈S(X−φi)·Rq

with S ⊆ {1, · · · , ϕ(n)} and denoted by IS . We also denote by JS the ideal
{t ∈ R | t mod q ∈ IS} of R and by S̄ the set {1, · · · , ϕ(n)} \ S.

Given a ∈ Rmq , the R-modules a⊥(JS) and L(a, JS) are defined as follows.

a⊥(JS) :=

{
(t1, · · · , tm) ∈ Rm |

m∑
i=1

tiai = 0 mod q

}⋂
JmS ,

L(a, JS) = {(a1s, · · · , ams) | s ∈ R/JS}+ JmS .

We view each element of R as its canonical embedding and work in the inner
product space H. LetR∨ be the fractional ideal corresponding to the dual lattice
of R. The following lemma shows an explicit representation of the dual lattice

â⊥(JS).

Lemma 7. Let R = Z[X]/(Φn(X)). Let q = 1 mod n be a prime and Rq =
R/qR. Given S ⊆ {1, · · · , ϕ(n)} and a ∈ Rmq , viewing each element of R as its
canonical embedding, we have:

â⊥(JS) =
1

q
{(a1s, · · · , ams) | s ∈ R∨/JS̄R∨}+

1

q
(JS̄R∨)

m
.
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Proof. Let L′(a, JS̄) = 1
q {(a1s, · · · , ams) | s ∈ R∨/JS̄R∨} + 1

q (JS̄R∨)
m
. We

first prove that L′(a, JS̄) ⊆ â⊥(JS). Let t = (t1, · · · , tm) ∈ L′(a, JS̄) and t′ =
(t′1, · · · , t′m) ∈ a⊥(JS). According to the definition of L′(a, JS̄), there exists
s ∈ R∨/JS̄R∨ such that qti = ais + bi where bi ∈ JS̄R∨. According to the
definition of a⊥(JS), we know that t′i ∈ JS and

∑
i ait

′
i = 0 mod q. Notice that

JSJS̄ = 〈q〉, we have 〈bi, t′i〉 = 0 mod q. It follows that
∑
i〈ti, t′i〉 = 1

q

∑
i〈ais, t′i〉+

1
q

∑
i〈bi, t′i〉 = 1

q Tr(
∑
i ait

′
is) + 1

q

∑
i〈bi, t′i〉 is an integer. Therefore, we finish the

proof of this part.

Now it suffices to prove that ̂L′(a, JS̄) ⊆ a⊥(JS). Let t = (t1, · · · , tm) ∈
̂L′(a, JS̄). Since 1

q (JS̄R∨, 0, · · · , 0) ⊆ L′(a, JS̄) and JS̄JS = 〈q〉, we obtain

t1 ∈ JS . For the same reason, we have ti ∈ JS for any i ∈ {1, · · · ,m}. For any
v ∈ R∨, from the fact that 1

q (a1, · · · , am)v ∈ L′(a, JS̄), a straightforward com-

putation leads to that Tr(v
∑
i aiti) = 0 mod q, which means that

∑
i aiti ∈ 〈q〉.

Combining the fact that ti ∈ JS , we conclude that t ∈ a⊥(JS). The proof is
completed. ut

By scaling a certain factor, we obtain the following duality result between
two families of module lattices a⊥(JS) and L(a, JS).

Lemma 8. Let R = Z[X]/(Φn(X)) and n′ = deg(Θn(X)). Let q = 1 mod n be
a prime and Rq = R/qR. Let g =

∏
p(1−Xn/p) ∈ R where p runs over all odd

primes dividing n. Given S ⊆ {1, · · · , ϕ(n)} and a ∈ Rmq , viewing each element
of R as its canonical embedding, we have:

â⊥(JS) =
g

qn′
· L(a, JS̄).

Proof. As shown in Corollary 2.18 in [25], we have R∨ = 〈g/n′〉. Combined with
Lemma 7, we prove the conclusion immediately. ut

Next, we shall show a quantitative relationship between the first minimums

of â⊥(JS) and L(a, JS̄).

Lemma 9. Let R = Z[X]/(Φn(X)) and n′ = deg(Θn(X)). Let q = 1 mod n be
a prime and Rq = R/qR. Given S ⊆ {1, · · · , ϕ(n)} and a ∈ Rmq , viewing each
element of R as its canonical embedding, we have:

λ∞1

(
â⊥(JS)

)
≥ λ∞1 (L(a, JS̄))

qn′
.

Proof. Let v = (v1, · · · , vm) ∈ â⊥(JS) such that T∞(v) = λ∞1

(
â⊥(JS)

)
. By

Lemma 8, we have that (u1, · · · , um) ∈ L(a, JS̄) where ui = qn′

g · vi for all

i ∈ {1, · · · ,m} and g is defined in Lemma 8. Since g ∈ R, from the definition
of L(a, JS̄), it follows that u′ = (gu1, · · · , gum) = qn′ · (v1, · · · , vm) ∈ L(a, JS̄).

Thus we conclude that λ∞1

(
â⊥(JS)

)
= T∞(v) = T∞(u′)

qn′ ≥ λ∞1 (L(a,JS̄))
qn′ . ut
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3.2 On the Absence of Unusually Short Vector in L(a, JS)

Let R×q be the set of all invertible elements of Rq. For a ←↩ U((R×q )m), the
lattice L(a, JS) is nearly impossible to contain a unusually short vector for the
`∞ norm with respect to canonical embedding.

Lemma 10. Let R = Z[X]/(Φn(X)). Let q = 1 mod n be a prime and Rq =
R/qR. For any S ⊆ {1, · · · , ϕ(n)}, m ≥ 2 and ε > 0, viewing each element

of R as its canonical embedding, we have λ∞1 (L(a, JS)) ≥ q(1− 1
m )

|S|
ϕ(n)
−ε with

probability ≥ 1− 24mϕ(n)

qεmϕ(n) over the uniformly random choice of a in (R×q )m.

Proof. Let β = (1 − 1
m ) |S|ϕ(n) − ε and B = qβ . Let p be the probability over the

randomness of a that λ∞1 (L(a, JS)) < B. For a non-zero vector t ∈ Rm with
T∞(t) < B and s ∈ R/JS = Rq/IS , let p(t, s) = Pa(∀i, ti − ais ∈ JS) and
pi(ti, s) = Pai(ti − ais ∈ JS), then we have p(t, s) =

∏
i pi(ti, s).

For f ∈ R, let S(f) = {i ∈ S | f(φi) = 0 mod q}. It suffices to consider
such (t, s) pairs that S(s) = S(ti) for all i ∈ {1, · · · ,m}: if not so, we can
prove p(t, s) = 0 due to the invertibility of ai. For each such pair, we denote
by d the cardinality of S(s). Notice that there are (q − 1)d+ϕ(n)−|S| distinct
ai’s in R×q such that ti − ais ∈ JS , i.e. pi(ti, s) = (q − 1)d−|S|, then we have

p(t, s) =
∏m
i=1 pi(ti, s) = (q−1)m(d−|S|). Therefore, the probability p is bounded

by

p ≤
∑

0≤d≤|S|

∑
S′⊆S
|S′|=d

∑
s∈Rq/IS
S(s)=S′

∑
t∈Rm

∀i,0<‖ti‖∞<B
S(ti)=S

′

(q − 1)m(d−|S|).

For |S′| = d, let N(B, d) be the number of t ∈ R such that T∞(t) ∈ (0, B)
and S(t) = S′. We first show a lower bound of λ∞1 (JS′). For any t such that
S(t) = S′, the ideal 〈t〉 is a full-rank sub-ideal of the ideal JS′ . Thus, we have
N(t) = N(〈t〉) ≥ N(JS′) = qd. By equivalence of norms and arithmetic-geometric

inequality, we conclude that T∞(t) ≥ T2(t)√
ϕ(n)

≥ N(t)1/ϕ(n) ≥ qd/ϕ(n), which

implies λ∞1 (JS′) ≥ qd/ϕ(n). As a direct result, we have N(B, d) = 0 when d ≥
βϕ(n).

We now suppose that d < βϕ(n). For any c ∈ H and l > 0, let C(l, c) =
{v ∈ H | ‖v − c‖∞ < l} . We notice that N(B, d) is the number of points of
the lattice JS′ in the region C(B,0). For any two different points v1,v2 ∈ JS′ ,
it can be verified that C(λ,v1)

⋂
C(λ,v2) = ∅ where λ = λ∞1 (JS′)/2. For any

v ∈ C(B,0), we also have that C(λ,v) ⊆ C(B + λ,0). Combining the fact that

λ∞1 (JS′) ≥ qd/ϕ(n), it follows that N(B, d) ≤ vol(C(B+λ,0))
vol(C(λ,0)) = (Bλ + 1)ϕ(n) ≤

22ϕ(n)qβϕ(n)−d.
Notice that the number of subsets of S is 2|S| and the number of s ∈ Rq/IS

satisfying S(s) = S′ is q|S|−|S
′|, a straightforward computation leads to that

p ≤ 2(m+1)|S| max
d<βϕ(n)

N(B, d)m

q(m−1)(|S|−d)
≤ 24mϕ(n)q−ϕ(n)mε.

We now complete the proof. ut
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3.3 Improved Regularity Result

Let χ be a distribution over Rq. We denote by Dχ the distribution of such tuple
(a1, · · · , am,

∑m
i=1 tiai) ∈ (R×q )m×Rq where ai ←↩ U(R×q ) and ti ←↩ χ for all i ∈

{1, · · · ,m}. The regularity of the generalized knapsack function (t1, · · · , tm) 7→∑m
i=1 tiai is the statistical distance between Dχ and U((R×q )m ×Rq).
In [26], Micciancio discussed the regularity over general rings and used it to

design one-way functions. Improved regularity results for power-of-2 and prime
cyclotomic rings were proposed in [31, 35] respectively. However, the results
in [31, 35] only focus on two special classes of cyclotomic rings and are considered
under coefficient embedding. The regularity result with respect to canonical
embedding was shown in [25] and applied for general cyclotomic rings, but it is
of some limitations for certain cryptographic applications.6

Now, we are to give an improved result that is applied for general cyclotomic
rings and of more flexibility than that in [25]. The following lemma can be proven
by combining Lemmata 2, 5, 9 and 10.

Lemma 11. Let R = Z[X]/(Φn(X)) and n′ = deg(Θn(X)). Let q = 1 mod n
be a prime and Rq = R/qR. Let S ⊆ {1, · · · , ϕ(n)}, m ≥ 2, ε > 0, δ ∈ (0, 1

2 ).

Let r ≥ n′
√

ln(2mϕ(n)(1 + 1/δ))/π · q
1
m+(1− 1

m )
|S|
ϕ(n)

+ε, c ∈ Rmϕ(n) and t ←↩
DZmϕ(n),r,c(Gaussian sampling over H using T2-norm and then mapping to R).

Then for all except a fraction ≤ 24mϕ(n)q−εmϕ(n) of a ∈ (R×q )m, we have

∆
(
t mod a⊥(JS);U(Zmϕ(n)/a⊥(JS))

)
≤ 2δ

and ∣∣∣DZmϕ(n),r,c(a⊥(JS))− q−ϕ(n)−(m−1)|S|
∣∣∣ ≤ 2δ.

Remark Let t ∈ Rm be the Gaussian sample in Lemma 11. Assume δ = q−cn

with c = O(1), Lemma 4 shows that T2(t) = Õ(n2)
√
mq

1
m+ε′ with overwhelming

probability. From Lemma 12, we know that ‖t‖ = Õ(
√
dn1.5)

√
mq

1
m+ε′ for the

case of n is a prime power7. The size of Gaussian sample is asymptotically
same to that in [31] when n = 2k, and smaller than that in [35] when n is a
prime. Furthermore, the regularity result in [25] allows a smaller sample width

(r ≥ 2ϕ(n) · q 1
m+ε′), but it seems to only hold for the case of δ = 2−Θ(n).

3.4 Properties of Prime Power Cyclotomic Rings

Compared with general cyclotomic rings, prime power cyclotomic rings are of
relatively simple structure. More importantly, non-prime power cyclotomic rings

6 As discussed in [35], it does not suffice to construct pNE only from the regularity
result in [25].

7 We take the upper bound in Lemma 12 directly, but, from the proof, ‖t‖ may be

about Õ(n1.5)
√
mq

1
m

+ε′ in average for large d.
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can be decomposed into the tensor product of prime power cyclotomic rings [25].8

In this paper, we will construct NTRU schemes over prime power cyclotomic
rings. We now present some properties of prime power cyclotomic rings . The
following result shows quantitative relations among different norms over prime
power cyclotomic rings.

Lemma 12. Let n = dν with d a prime and R = Z[X]/(Φn(X)). For any t ∈ R,
we have

N(t)
2

ϕ(n) ≤ T2(t)2

ϕ(n)
and

1

n
T2(t)2 ≤ ‖t‖2 ≤ d

n
T2(t)2.

Proof. By arithmetic-geometric inequality, the first inequality follows. We now
prove the second inequality. Let ω1, · · · , ωϕ(n) be all roots of Φn(X). Let V =

(ωi−1
j )i,j where 1 ≤ i, j ≤ ϕ(n) and c(t) be the coefficient vector of t, then

σ(t) = c(t) ·V. Let U = VV∗ where V∗ is the conjugate transpose of V. We
have that U = (uij)i,j is a symmetric matrix where

uij =

ϕ(n), for i = j;
−nd , for i 6= j and i = j mod n

d ;
0, for i 6= j mod n

d .

We denote by ei the i-th column of the ϕ(n)-dimensional identity matrix. Let
xi =

∑
j=i mod n

d
ei where i ∈ {1, · · · , nd } and 1 ≤ j ≤ ϕ(n). These n

d xi’s are

eigenvectors of U and corresponding eigenvalues equal n
d . Let yij = ei − ei+ jn

d

where i ∈ {1, · · · , nd } and j ∈ {1, · · · , d − 2}. It can be verified that these
n(d−2)

d = ϕ(n)− n
d yij ’s are also eigenvectors of U with respect to eigenvalue n

and all xi’s and yij ’s are linearly independent. Thus the largest eigenvalue of U
is at most n and the smallest one is n

d , then we have

n

d
≤ T2(t)2

‖t‖2
=
‖σ(t)‖2

‖c(t)‖2
≤ n.

The proof is completed. ut

The multiplicative expansion factor ofR is defined as γ×(R) = maxf,g∈R
‖fg‖
‖f‖‖g‖ .

For prime and power-of-2 cyclotomic rings, their expansion factors are of size
O(
√
n) where n is the order(see [14, 35]). The following lemma indicates that, for

general prime power cyclotomic rings, their expansion factors are well-bounded
as well.

Lemma 13. Let n = dν with d a prime and R = Z[X]/(Φn(X)). For any
f, g ∈ R, we have ‖fg‖∞ ≤ 2‖f‖‖g‖ and ‖fg‖ ≤ 2

√
ϕ(n)‖f‖‖g‖.

Proof. We first consider the multiplication over the ring R′ = Z[X]/(Xn − 1).
Let f ′, g′ ∈ R′ be the polynomials with the same coefficients as f, g respectively,

8 While this property is useful under canonical embedding, we may not need to use it
in this paper.
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i.e. all leading coefficients are 0. Let h′ ∈ R′ be the product of f ′ and g′.
We denote by (f ′0, · · · , f ′n−1), (g′0, · · · , g′n−1) and (h′0, · · · , h′n−1) the coefficient

vectors of f ′,g′ and h′. It is known that h′i =
∑n−1
j=0 f

′
jg
′
(i−j) mod n. By Cauchy-

Schwarz inequality, we have |h′i| ≤ ‖f ′‖‖g′‖ = ‖f‖‖g‖ for any i.
Let h = fg ∈ R. We deduce that h = h′ mod Φn(X) from the fact that Φn(X)

is a factor of Xn − 1. Notice that X l = −(X
n
d ·(d−2) + · · ·+X

n
d + 1)X l−ϕ(n) for

any l ∈ [ϕ(n), n), hence we have

h =

ϕ(n)−1∑
i=0

(
h′i − h′ϕ(n)+(i mod n

d )

)
Xi.

It leads to that

‖h‖∞ = max
0≤i<ϕ(n)

{|h′i − hϕ(n)+(i mod n
d )|} ≤ 2 max

0≤i<n
{|h′i|} ≤ 2‖f‖‖g‖.

Then we conclude that ‖h‖ ≤
√
ϕ(n)‖h‖∞ ≤ 2

√
ϕ(n)‖f‖‖g‖. ut

4 pNE over Prime Power Cyclotomic Rings

In this section, we will describe a class of NTRUEncrypt over general prime power
cyclotomic rings whose IND-CPA security can be reduced from RLWE and ap-
proximate Ideal-SVP. Our scheme is adapted from that in [35] with modified
Key Generation algorithm. We denote by pNE(n, d, ν, q, p, r, α, k) the provably
secure NTRU specified by the following public parameters.

– Let R = Z[X]/(Φn(X)) and its order n = dν where d is a prime.
– Let q = 1 mod n be a prime and Rq = R/qR. The ciphertext space is Rq.
– Let p ∈ R×q be of small norm, such as p = 2 or p = x+3. The message space

is R/pR.
– The parameter r is the width of discrete Gaussian distribution used for key

generation.
– The parameters α and k determine the RLWE error distribution.

Three main algorithms are listed as follows.

– Key Generation. Sample f ′ from DZϕ(n),r; if f = pf ′ + 1 mod q /∈ R×q ,
resample. Sample g from DZϕ(n),r; if g mod q /∈ R×q , resample. Note that the
Gaussian sampling works under T2-norm. Then return private key sk = f ∈
R×q and public key pk = h = pg/f ∈ R×q .

– Encryption. Given message M ∈ R/pR, let t =
√
n′αq

(
ϕ(n)k

log(ϕ(n)k)

)1/4

where n′ = deg(Θn(X)), set s, e←↩ ψnt and return ciphertext C = hs+ pe+
M ∈ Rq.

– Decryption. Given ciphertext C and private key f , compute C ′ = f ·
C mod q and return C ′ mod p.

Next we analysis the above algorithms and then give a set of parameters to make
pNE workable and provably secure.
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4.1 Key Generation

The key generation algorithm follows the idea originally proposed by Stehlé and
Steinfeld in [31]. Since our parameter conditions are much stronger than that
in Lemma 6, we assume that a polynomial-time perfect discrete Gaussian sam-
pler is available. The following lemma shows that the key generation algorithm
terminates in expected polynomial time for selective parameters.

Lemma 14. Let n = dν with d a prime and R = Z[X]/(Φn(X)). Let q = 1 mod
n be a prime and Rq = R/qR. Let r ≥ ϕ(n)

√
ln(2ϕ(n)(1 + 1/δ))/π ·q1/ϕ(n), for

any δ ∈ (0, 1/2). Then Pf ′←↩DZϕ(n),r

(
(p · f ′ + a mod q) /∈ R×q

)
≤ ϕ(n)(1/q + 2δ)

holds for a ∈ R and p ∈ R×q where DZϕ(n),r uses the T2-norm.

Proof. Let Jk be the ideal 〈q,X − φk〉 for any k ∈ {1, · · · , ϕ(n)}. The norm
of Jk is N(Jk) = q. Let ∆K be the discriminant of the cyclotomic field K =
Q(X)/(Φn(X)). As shown in [24], we have ∆K ≤ ϕ(n)ϕ(n). The volume of the
ideal lattice σ(Jk) is vol(σ(Jk)) = N(Jk) ·

√
∆K and then by Minkowski’s first

theorem, we have λ1(σ(Jk)) ≤
√
ϕ(n) vol(σ(Jk))1/ϕ(n) ≤ ϕ(n)q1/ϕ(n). Since

λϕ(n)(σ(Jk)) = λ1(σ(Jk)), by Lemma 1, we have r ≥ ηδ(LIk). Together with
Lemma 5, it leads to that the probability of p · f ′ + a = 0 mod Jk is at most
1/q + 2δ. By the union bound, the proof is completed. ut

Next we give a result showing that the sizes of secret polynomials f and g
are small with overwhelming probability. Despite that f and g are sampled from
Gaussian using the T2-norm, to coincide with NTRU setting, we measure their
sizes by Euclidean norms of their coefficient vectors.

Lemma 15. Let n = dν with d a prime and R = Z[X]/(Φn(X)). Let q > 8n be a

prime satisfying q = 1 mod n and Rq = R/qR. Let r ≥ ϕ(n)
√

2 ln(6ϕ(n))
π ·q1/ϕ(n).

The secret key polynomials f , g satisfy, with probability ≥ 1− 2−ϕ(n)+3,

‖f‖ ≤ 2
√
dn · ‖p‖r and ‖g‖ ≤

√
d− 1 · r.

If deg p = 0, then ‖f‖ ≤ 2
√
d− 1 · ‖p‖r with probability ≥ 1− 2−ϕ(n)+3.

Proof. Let δ = 1
10ϕ(n)−1 , then r ≥

√
ln(2ϕ(n)(1 + 1/δ))/π · ϕ(n)q1/ϕ(n). From

Lemma 1, it can be verified that r ≥ ηδ(Zϕ(n)). Applying Lemma 4, we have

Pg←↩DZϕ(n),r

(
T2(g) ≥ r

√
ϕ(n)

)
≤ 1 + δ

1− δ
2−ϕ(n).

Since r ≥ ϕ(n)
√

ln(2ϕ(n)(1 + 1/δ))/π · q1/ϕ(n), Lemma 14 yields

Pg←↩DZϕ(n),r

(
T2(g) ≥ r

√
ϕ(n) | g ∈ R×q

)
≤
Pg←↩DZϕ(n),r

(
T2(g) ≥ r

√
ϕ(n)

)
Pg←↩DZϕ(n),r

(
g ∈ R×q

)
≤1 + δ

1− δ
2−ϕ(n) · 1

1− ϕ(n)(1/q + 2δ)
≤ 23−ϕ(n).
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Combined with Lemma 12, it follows that ‖g‖ ≤ r
√
d− 1 with probability ≥

1 − 23−ϕ(n). The same argument holds true for the polynomial f ′ such that
f = p · f ′ + 1.

If deg p = 0, we have ‖f‖ ≤ 1 + ‖p‖‖f ′‖ ≤ 2‖p‖r
√
d− 1 with probability

≥ 1 − 23−ϕ(n). For general cases, applying Lemma 13, we know that ‖f‖ ≤
1 + 2

√
ϕ(n)(d− 1)‖p‖r ≤ 2

√
dn · ‖p‖r with probability ≥ 1− 23−ϕ(n). ut

For power-of-2 and prime cyclotomic rings, sampling f and g with certain
width r makes the public key almost uniform over R×q , which is a remarkable
property for provably secure NTRU. Similar conclusion holds for general cyclo-
tomic rings as well, but the Gaussian sampling should work under T2-norm.

Theorem 2. Let n > 7 and R = Z[X]/(Φn(X)). Let q = 1 mod n be a prime
and Rq = R/qR. Let D×r,z the discrete Gaussian DZϕ(n),r (using T2-norm) re-

stricted to R×q + z. Let ε ∈ (0, 1/3) and r ≥ n1.5
√

ln(8nq) · q 1
2 +ε. Then

∆

(
y1 + p ·D×r,z1
y2 + p ·D×r,z2

mod q;U(R×q )

)
≤ 210ϕ(n)

qbεϕ(n)c

for p ∈ R×q , yi ∈ Rq and zi = −yip−1 mod q for i ∈ {1, 2}.

Remark The proof essentially follows the same approach in [31], but some differ-
ences still need to be treated carefully. Thus we include the proof in Appendix A
for reference.

4.2 Decryption

The successful decryption is ensured by the fact that a polynomial of `∞ norm
(under coefficient embedding) less than q/2 keeps unchanged after modulo q
reduction. In the decryption algorithm, we calculate a middle term C ′ = f ·C =
pgs + pfe + fM mod q. We now estimate the `∞ norms of pgs, pfe and fM
respectively.

We first study the sizes of e and s which follow RLWE error distribution.

Lemma 16. Let n = dν > 7 with d a prime and R = Z[X]/(Φn(X)). We view
each element of R as its coefficient vector. For t > 1 and u > 0, we have

Pb←↩ψnt

(
‖b‖ ≥

(
2
√

2n+
√

2du
)
t
)
≤ exp(−u).

Proof. To begin with, we recall some results that will be useful in our proof.

Proposition 1. For any x ∈ R and ε ∈ (0, 1), we have bxe2 ≤ 1
4ε + 1

1−εx
2.
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Proposition 2. Let Σ = M>M where

M =


1 −1

1 −1
. . .

...
1 −1

0

 ∈ Rd×d.

Then we have Tr(Σ) = 2(d − 1), Tr(Σ2) = (d − 1)(d + 2) and ‖Σ‖ = d where
Tr(·) and ‖ · ‖ are the trace and the operator norm of the matrix.

Proposition 3. Let B ∈ Rn×n and Σ = B>B. Let v be a vector drawn from
ψn1 . For any u > 0, we have

P
(
‖Bv‖2 > Tr (Σ) + 2

√
Tr (Σ2)u+ 2‖Σ‖u

)
≤ exp(−u).

Two first propositions are shown in the proof of Lemma 17 in [35] and the third
one is shown in [19].

For the case d = 2, we have Θn(X) = Φn(X). Let b = bb′ mod Φn(X)e =

bb′e ∈ R with b′ ←↩ ψ
n
2
t and v = 1

t · b
′. By Proposition 1, we have

‖b‖2 ≤ t2

1− ε
‖v‖2 +

n

8ε
.

Applying Proposition 3, we get

P
(
‖v‖2 > n/2 +

√
2nu+ 2u

)
≤ exp(−u).

Let ε =

(
1 +

√
8t2
(
n/2 +

√
2nu+ 2u

)
/n

)−1

∈ (0, 1) and

A =

√
n
2 +
√

2nu+ 2u

1− ε
+

n

8t2ε
.

We can verify that A =
√
n/2 +

√
2nu+ 2u +

√
n/(8t2) < 2

√
2n +

√
2du and

then we have

Pb←↩ψnt

(
‖b‖ ≥

(
2
√

2n+
√

2du
)
t
)

≤Pb←↩ψnt
(‖b‖ > At)

≤Pv←↩ψn1

(
1

1− ε
‖v‖2 +

n

8t2ε
> A2

)
=P
(
‖v‖2 > n/2 +

√
2nu+ 2u

)
≤ exp(−u).
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For the case d > 2, we have Θn(X) = Xn − 1. Let b = bb′ mod Φn(X)e ∈
R with b′ ←↩ ψnt . Let (b0, · · · , bϕ(n)−1) and (b′0, · · · , b′n−1) be the coefficient

vector of b and b′ respectively. For any k ∈ {0, · · · , nd − 1}, the vector b′(k) =(
b′k, b

′
k+n

d
, · · · , b′

k+
n(d−1)

d

)
can be viewed as a vector sampled from ψdt and then

the vector b(k) =
(
bk, bk+n

d
, · · · , b

k+
n(d−2)

d

)
is equivalent to a vector drawn from

ψdt . Let v = 1
t

(
b′(0)|| · · · ||b′(nd−1)

)
∈ Rn. By Proposition 1, a straightforward

computation leads to that

‖b‖2 =

n
d−1∑
k=0

‖b(k)‖2 ≤ t2

1− ε
‖M′v‖2 +

n− n
d

4ε
,

where M′ = M⊗ Idn
d

and M is defined in Proposition 2. Let Σ′ = M′>M′. We

deduce from Proposition 2 that Tr(Σ′) = 2(n − n
d ),Tr(Σ′2) = (n − n

d )(d + 2)
and ‖Σ′‖ = d. Then, by Proposition 3, we have

P
(
‖M′v‖2 > 2(n− n

d
) + 2

√
(n− n

d
)(d+ 2)u+ 2du

)
≤ exp(−u).

Let

ε =

1 +

√
4t2
(
2(n− n

d ) + 2
√

(n− n
d )(d+ 2)u+ 2du

)
n− n

d

−1

∈ (0, 1)

and

A =

√
2(n− n

d ) + 2
√

(n− n
d )(d+ 2)u+ 2du

1− ε
+
n− n

d

4t2ε
.

We can verify that

A =

√
2(n− n

d
) + 2

√
(n− n

d
)(d+ 2)u+ 2du+

√
n− n

d

4t2
< 2
√

2n+
√

2du

and then we have

Pb←↩ψnt

(
‖b‖ ≥

(
2
√

2n+
√

2du
)
t
)

≤Pb←↩ψnt
(‖b‖ > At)

≤Pv←↩ψn1

(
1

1− ε
‖M′v‖2 +

n− n
d

4t2ε
> A2

)
=P
(
‖M′v‖2 > 2(n− n

d
) + 2

√
(n− n

d
)(d+ 2)u+ 2du

)
≤ exp(−u).

Combining two above cases, we complete the proof. ut
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Let u = Θ(log1+κ n), together with Lemmata 15 and 13, we obtain a bound
of the norms of pgs and pfe.

Lemma 17. In pNE(n, d, ν, q, p, r, α, k), t =
√
n′αq

(
ϕ(n)k

log(ϕ(n)k)

)1/4

> 1 where

n′ = deg(Θn(X)). Then for κ > 0, we have

‖pgs‖∞, ‖pfe‖∞ ≤ 24
√

2
√
dn3 ·Θ

(
log

1+κ
2 n

)
‖p‖2rt

with probability at least 1− n−Θ(logκ n). In particular, if deg p = 0, then

‖pgs‖∞, ‖pfe‖∞ ≤ 12
√

2
√
dn ·Θ

(
log

1+κ
2 n

)
‖p‖2rt

with probability at least 1− n−Θ(logκ n).

For the term fM , its norm can be bounded as well.

Lemma 18. In pNE(n, d, ν, q, p, r, α, k), we have ‖fM‖∞ ≤ 4
√
dn3 · ‖p‖2r with

probability at least 1 − 2−ϕ(n)+3. In particular, if deg p = 0, then ‖fM‖∞ ≤
2
√
dn · ‖p‖2r with probability at least 1− 2−ϕ(n)+3.

Proof. By reducing modulo the pXi’s, we can write M into
∑ϕ(n)−1
i=0 εipX

i with

εi ∈ (− 1
2 ,

1
2 ] and then get ‖M‖ ≤ 2

√
ϕ(n)‖

∑ϕ(n)−1
i=0 εiX

i‖‖p‖ ≤ ϕ(n)‖p‖ from

Lemma 13. If deg p = 0, we have ‖M‖ = ‖p‖ · ‖
∑ϕ(n)−1
i=0 εiX

i‖ ≤
√
ϕ(n)

2 ‖p‖.
Then, combining Lemmata 15 and 13 with the above result, the proof is com-
pleted. ut

Combining Lemmata 17 and 18, we give a set of parameters such that
pNE enjoys a high probability of successful decryption.

Theorem 3. Let t =
√
n′αq

(
ϕ(n)k

log(ϕ(n)k)

)1/4

> 1 where n′ = deg(Θn(X)). If

ω
(√

dn3 log n
)
‖p‖2rt/q < 1 (resp. ω

(√
dn log n

)
‖p‖2rt/q < 1 if deg p = 0),

then the decryption algorithm of pNE recovers M with probability 1 − n−ω(1)

over the choice of s, e, f, g.

4.3 Security Reduction and Parameters

The provable security of pNE is guaranteed by the following theorem. The proof
totally follows from that in [35] and thus we omit it.

Lemma 19. Let n = dν > 7 with d a prime and R = Z[X]/(Φn(X)). Let
q > 8n be a prime congruent to 1 modulo n and Rq = R/qR. Let p ∈ R×q and

t =
√
n′αq

(
ϕ(n)k

log(ϕ(n)k)

)1/4

> 1 where n′ = deg(Θn(X)). Let ε ∈ (0, 1/3) and

r ≥ n1.5
√

ln(8nq) · q 1
2 +ε. If there exists an IND-CPA attack against pNE that

runs in time T and has success probability 1/2+δ, then there exists an algorithm
solving RLWEq,ψ,k with ψ = ψnt that runs in time T ′ = T+O(kn) and has success
probability 1/2 + δ′ where δ′ = δ/2− q−Ω(n).
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Combining Lemmata 19 with Theorem 3 and 1, we get our main result.

Theorem 4. Let n = dν > 7 with d a prime and R = Z[X]/(Φn(X)). Suppose

q = 1 mod n is a prime of size poly(n) and q
1
2−ε = ω

(
d0.5n3.75 log1.5 n‖p‖2

)
(resp.

q
1
2−ε = ω

(
d0.5n2.75 log1.5 n‖p‖2

)
, if deg p = 0) for any ε ∈ (0, 1/3) and p ∈

R×q . Let r = n1.5
√

ln(8nq) · q 1
2 +ε and t =

√
n′αq

(
ϕ(n)k

log(ϕ(n)k)

)1/4

where n′ =

deg(Θn(X)), k = O(1) and αq = Ω(log0.75 n). If there exists an IND-CPA attack
against pNE(n, d, ν, q, p, r, α, k) that runs in time poly(n) and has success proba-
bility 1/2+1/poly(n), then there exists a poly(n)-time algorithm solving γ-Ideal-
SVP on ideal lattices in Z[X]/(Φn(X)) with γ = Õ

(√
nq/ log0.75 n

)
. Moreover,

the decryption success probability exceeds 1 − n−ω(1) over the choice of the en-
cryption randomness.

By choosing ε = o(1) and deg p = 0, the minimal modulus q for which pNE holds
is Ω̃(dn5.5), and the minimal approximate factor γ is Ω̃(dn6). For the case d = 2,
the smallest q and γ shown in [31] are Ω̃(n5) and Ω̃(n5.5) respectively which are
smaller than our results by a factor of

√
n. That is because we follow a different

RLWE setting applicable for general cyclotomic rings. For the case ν = 1, the
smallest q and γ shown in [35] are Ω̃(n7.5) and Ω̃(n8) respectively which are
asymptotically larger than ours by a factor of n. That means our NTRU scheme
is of tighter parameters.

References

[1] Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched
NTRU assumptions: Cryptanalysis of some FHE and graded encoding
schemes. In: CRYPTO 2016. pp. 153–178 (2016)

[2] Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-
based fully homomorphic encryption scheme. In: 14th IMA International
Conference on Cryptography and Coding. pp. 45–64 (2013)

[3] Cabarcas, D., Weiden, P., Buchmann, J.A.: On the efficiency of provably
secure NTRU. In: PQCrypto 2014. pp. 22–39 (2014)

[4] Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and
cryptanalysis of the GGH multilinear map without a low-level encoding of
zero. Lms Journal of Computation & Mathematics 19(A), 255–266 (2016)

[5] Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: EUROCRYPT
1997. pp. 52–61 (1997)

[6] Cramer, R., Ducas, L., Wesolowski, B.: Short Stickelberger class relations
and application to Ideal-SVP. In: EUROCRYPT 2017. pp. 324–348 (2017)

[7] Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: PKC 2012. pp.
34–51 (2012)

[8] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal gaussians. In: CRYPTO 2013. pp. 40–56 (2013)

[9] Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption
over NTRU lattices. In: ASIACRYPT 2014. pp. 22–41 (2014)

17



[10] Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: Cryptanalysis of
NTRUSign countermeasures. In: ASIACRYPT 2012. pp. 433–450 (2012)

[11] Gama, N., Nguyen, P.Q.: New chosen-ciphertext attacks on NTRU. In: PKC
2007. pp. 89–106 (2007)

[12] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: EUROCRYPT 2013. pp. 1–17 (2013)

[13] Gentry, C.: Key recovery and message attacks on NTRU-composite. In:
EUROCRYPT 2001. pp. 182–194 (2001)

[14] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC
2009. pp. 169–178 (2009)

[15] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC 2008. pp. 197–206 (2008)

[16] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte,
W.: NTRUSign: Digital signatures using the NTRU lattice. In: CT-RSA
2003. pp. 122–140 (2003)

[17] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key
cryptosystem. In: ANTS 1998. pp. 267–288 (1998)

[18] Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle
attack against NTRU. In: CRYPTO 2007. pp. 150–169 (2007)

[19] Hsu, D., Kakade, S.M., Zhang, T.: A tail inequality for quadratic forms
of subgaussian random vectors. Electronic Communications in Probability
17(25), 1–6 (2011)

[20] Jaulmes, E., Joux, A.: A chosen-ciphertext attack against NTRU. In:
CRYPTO 2000. pp. 20–35 (2000)

[21] Kirchner, P., Fouque, P.A.: Revisiting lattice attacks on overstretched
NTRU parameters. In: EUROCRYPT 2017. pp. 3–26 (2017)
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A Proof of Theorem 2

For a ∈ R×q , we define Pa = Pf1,f2
((y1 + pf1)/(y2 + pf2) = a), where fi ←↩

D×r,zi . It suffices to prove that |Pa − (q − 1)−ϕ(n)| ≤ 22ϕ(n)+5

qbεϕ(n)c · (q − 1)−ϕ(n) =: ε′

for all except a fraction ≤ 29ϕ(n)q−εϕ(n) of a ∈ R×q .
For a = (a1, a2) ∈ (R×q )2, let Pa = Pf1,f2

[a1f1 + a2f2 = a1z1 + a2z2], then
we have Pa = P−a2·a−1

1
. We consider the equation a1f1 + a2f2 = a1z1 + a2z2 of

the pair (f1, f2). All its solutions forms the set z + a⊥× where z = (z1, z2) and
a⊥× = a⊥

⋂
(R×q + qZϕ(n))2. Then it leads to that

Pa =
DZ2ϕ(n),r(z + a⊥×)

DZϕ(n),r(z1 +R×q + qZϕ(n)) ·DZϕ(n),r(z2 +R×q + qZϕ(n))
.

Due to the invertibility of a1, a2, for any (x1, x2) ∈ a⊥, the elements x1 and
x2 belong to the same ideal JS . Using the inclusion-exclusion principle, we have

DZ2ϕ(n),r(z + a⊥×) =
∑

S⊆{1,··· ,ϕ(n)}

(−1)|S| ·DZ2ϕ(n),r(z + a⊥(JS)),

DZϕ(n),r(zi+R×q +qZϕ(n)) =
∑

S⊆{1,··· ,ϕ(n)}

(−1)|S| ·DZϕ(n),r(zi+JS),∀i ∈ {1, 2}.

Now we are to estimate DZ2ϕ(n),r(z + a⊥×) by considering each DZ2ϕ(n),r(z +

a⊥(JS)) respectively. For the case |S| ≤ εϕ(n), let δ = q−ϕ(n)−bεϕ(n)c and m =
2, then Lemma 11 implies that, for all except a fraction ≤ 28ϕ(n)q−εϕ(n) of
a ∈ (R×q )2, ∣∣∣DZ2ϕ(n),r(z + a⊥(JS))− q−ϕ(n)−|S|

∣∣∣ ≤ 2δ.

For the case |S| > εϕ(n), we can find S′ ⊆ S with |S′| = bεϕ(n)c. Because
a⊥(JS) ⊆ a⊥(JS′), we have DZ2ϕ(n),r,−z(a⊥(JS)) ≤ DZ2ϕ(n),r,−z(a⊥(JS′)). From
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the previous result, we conclude that DZ2ϕ(n),r,−z(a⊥(JS)) ≤ 2δ+q−ϕ(n)−bεϕ(n)c.
Therefore, the following inequality holds.∣∣∣∣DZ2ϕ(n),r(z + a⊥×)− (q − 1)ϕ(n)

q2ϕ(n)

∣∣∣∣
=

∣∣∣∣∣∣
∑

S⊆{1,··· ,ϕ(n)}

(−1)|S| ·
(
DZ2ϕ(n),r(z + a⊥(JS))− q−ϕ(n)−|S|

)∣∣∣∣∣∣
≤2ϕ(n)+1δ + 2

ϕ(n)∑
k=dεϕ(n)e

(
ϕ(n)
k

)
q−ϕ(n)−bεϕ(n)c ≤ 2ϕ(n)+2q−ϕ(n)−bεϕ(n)c,

for all except a fraction ≤ 29ϕ(n)q−εϕ(n) of a ∈ (R×q )2.

Next, we are to estimate DZϕ(n),r(zi +R×q + qZϕ(n)). Let ∆K be the discrim-
inant of the cyclotomic field K = Q(X)/(Φn(X)). As shown in [24], we have
∆K ≤ ϕ(n)ϕ(n). The volume of the ideal lattice JS is vol(JS) = N(JS) ·

√
∆K

and then we have λϕ(n)(JS) = λ1(JS) ≤
√
ϕ(n) vol(JS)1/ϕ(n) ≤ ϕ(n)q|S|/ϕ(n).

Let δ = q−ϕ(n)/2. For S of cardinality ≤ ϕ(n)/2, by Lemma 1, we get that
r ≥ ηδ(JS). Using Lemma 5, we know |DZϕ(n),r,−zi(JS)−q−|S|| ≤ 2δ. For the case

|S| > ϕ(n)/2, using the same argument, we haveDZϕ(n),r,−zi(JS) ≤ 2δ+q−ϕ(n)/2.
Therefore, the following inequality holds.∣∣∣∣DZϕ(n),r(zi +R×q + qZϕ(n))− (q − 1)ϕ(n)

qϕ(n)

∣∣∣∣
=

∣∣∣∣∣∣
∑

S⊆{1,··· ,ϕ(n)}

(−1)|S| ·
(
DZϕ(n),r,−zi(JS)− q−|S|

)∣∣∣∣∣∣
≤2ϕ(n)+1(δ + q−ϕ(n)/2) = 2ϕ(n)+2q−ϕ(n)/2.

Overall, we prove that, except for a fraction ≤ 29ϕ(n)q−εϕ(n) of a ∈ (R×q )2,

DZ2ϕ(n),r(z + a⊥×) = (1 + δ0) · (q − 1)ϕ(n)

q2ϕ(n)
,

DZϕ(n),r(zi +R×q + qZϕ(n)) = (1 + δi) ·
(q − 1)ϕ(n)

qϕ(n)
,∀i ∈ {1, 2}.

where |δi| ≤ 22ϕ(n)+2q−bεϕ(n)c for i ∈ {0, 1, 2}, which implies that |Pa − (q −
1)−ϕ(n)| ≤ ε′.
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