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Abstract

We present improved algorithms for gaussian preimage sampling using the lattice trapdoors of (Mic-
ciancio and Peikert, CRYPTO 2012). The MP12 work only offered a highly optimized algorithm for
the on-line stage of the computation in the special case when the lattice modulus q is a power of two.
For arbitrary modulus q, the MP12 preimage sampling procedure resorted to general lattice algorithms
with complexity cubic in the bitsize of the modulus (or quadratic, but with substantial preprocessing
and storage overheads.) Our new preimage sampling algorithm (for any modulus q) achieves linear
complexity, and has very modest storage requirements. As an additional contribution, we give a new
off-line quasi-linear time perturbation sampling algorithm, with performance similar to the (expected)
running time of an efficient method proposed by (Ducas and Nguyen, Asiacrypt 2012) for power-of-two
cyclotomics, but without the (matrix factorization) preprocessing and (lattice rounding) postprocessing
required by that algorithm. All our algorithms are fairly simple, with small hidden constants, and offer
a practical alternative to use the MP12 trapdoor lattices in a broad range of cryptographic applications.

1 Introduction

Lattice cryptography provides powerful techniques to build a wide range of advanced cryptographic primi-
tives, like identity based encryption [28, 19, 9, 3, 1, 2], attribute based encryption [14, 13, 15, 30, 12], some
types of fully homomorphic encryption and signatures [11, 10, 29, 32, 21], group signatures [33, 17, 37, 38, 47]
and much more (e.g., see [49, 44, 8, 50, 54, 5, 39, 31]). Most of the advanced applications of lattice cryp-
tography rely on a notion of strong lattice trapdoor, introduced in [28], which allows to sample points from
an n-dimensional lattice L with a gaussian-like distribution. This gaussian sampling operation is often the
main bottleneck in the implementation of advanced cryptographic functions that make use of strong lattice
trapdoors, and improving the methods to generate and use lattice trapdoors has been the subject of several
investigations [4, 28, 6, 48].

The current state of the art in lattice trapdoor generation and sampling is given by [44], which introduces
a new notion of lattice trapdoor, specialized to the type of q-ary lattices used in cryptography, i.e., integer
lattices L ⊆ Zn that are periodic modulo q · Zn. Building on techniques from [48], this algorithm includes
both an on-line and an off-line stage, and [44] focuses on improving the complexity of the on-line stage,
which is far more critical in applications. Unfortunately, the most efficient algorithms proposed in [44] for
(the on-line stage of) preimage sampling only apply to lattices with modulus q = 2k equal to a power of 2
(or, more generally, the power q = pk of a small prime p,) which is not compatible with the functional or
efficiency requirements of many applications. Moreover, only the on-line stage of [44] takes full advantage
of the structure of algebraic lattices [43, 41, 42] typically employed in the efficient instantiation of lattice
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MP12 MP12 DN12 This work
modulus q 2k any — any

On-line precomp. — O(log3 q) — —

On-line space O(1) O(log2 q) — O(1)

On-line time O(log q) O(log2 q) — O(log q)

Off-line precomp. O(n3 log3 q) O(n3 log3 q) O(n log n) —

Off-line space O(n2 log2 q) O(n2 log2 q) O(n log n) O(1)

Off-line time O(n2 log2 q) O(n2 log2 q) O(n log n log q) O(n log n log q)

Table 1: Running time of the on-line (G-sampling) and off-line (perturbation generation) stage of gaussian
preimage sampling for lattices over the nth-cyclotomic ring, n a power of two, and modulus q. On-line
running times are scaled by a factor n to take into account that each sample requires n independent calls to
the underlying G-sampling operation. Each algorithm includes an optional one-time preprocessing, followed
by a computation with the given space and time complexity. The DN12 results listed are the average case
complexities and storage.

cryptography, and essential to reduce the running time of lattice operations from quadratic (in the lattice
dimension) to quasi-linear. A straigthforward implementation of the off-line stage (e.g., using a generic
Cholesky decomposition algorithm) completely destroys the algebraic structure, and degrades the running
time of the (off-line) algorithm from quasi-linear to quadratic or worse. For lattices over “power-of-two”
cyclotomic rings (the most popular class of algebraic lattices used in cryptography), a much faster algorithm
for the off-line stage is described in [23, Section 6], which uses a combination of lazy floating-point techniques
and numerical analysis methods to improve the (expected) running time of the off-line computation from
quadratic to quasilinear, but at the cost of storing the result of a somehow slower precomputation.1

Our Contribution: We present new, improved algorithms for gaussian preimage sampling using the lattice
trapdoors of [44]. Specifically, we present a new algorithm (for the on-line stage) capable of handling any
modulus q (including the large prime moduli required by some applications) and still achieve the same level
of performance of the specialized algorithm of [44] for power-of-two modulus q = 2k. This improves the
running time of [44] for arbitrary modulus from cubic log3 q (or quadratic log2 q, using precomputation and
a substantial amount of storage) to just linear in log q and with minimal storage requirements.

As an additional contribution, we present an alternative to the off-line perturbation generation technique
of [23] for power-of-two cyclotomic rings, which takes full advantage of the algebraic structure of ring lattices,
but requires no preprocessing or storage. Our approach also generalizes to other cyclotomic rings more easily
than [23], and, used in combination with techniques from [42], achieves similar performance for any cyclotimic
of smooth order.

These improvements are summarized in Table 1. The improvements are not just asymptotic: our new
algorithms are fairly simple, with small hidden constants, and include a careful choice of the parameters
that allows to implement most steps using only integer arithmetic on very small numbers. The concrete
efficiency of our algorithms, in a range of different cryptographic applications, has been recently confirmed
by independent implementation efforts [34, 35, 20, 22]. Taken together, our new algorithms provide a very
efficient method to instantiate the lattice trapdoor sampling procedures of [44] in the ring setting, without
any restriction on the factorization of the modulus q, and offering a ready-to-use solution to cryptographic
applications that make use of lattice preimage sampling.

1The methods to speed up computations in algebraic lattices are only sketched in [23, Section 6], which refers for details to
a full version of the paper that is still to appear. Based on our best understanding of the material presented in the conference
proceedings, the precomputation can be as slow as Õ(n2.5), and require the storage of up to O(n2) bits, depending on the
quality of floating point approximation.
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Technical details In order to describe our techniques, we need first to provide more details on the lattice
trapdoor sampling problem. Given a lattice L and a target point t, the lattice gaussian sampling problem
asks to generate (possibly with the help of some trapdoor information) a random lattice point v ∈ L with
probability proportional to exp(−c‖v − t‖2). Building on techniques from [48], this problem is solved in
[44] by mapping L to a fixed (key independent) lattice Gn, generating a gaussian sample in Gn, and then
mapping the result back to L. (The linear function T mapping Gn to L serves as the trapdoor.) Without
further adjustments, this produces a lattice point in L with ellipsoidal gaussian distribution, with covariance
which depends on the linear transformation T . In order to produce spherical samples (as required2 by
applications), [44] employs a perturbation technique from [48] which adds some noise (with complementary
covariance) to the target t, before using it as a center for the Gn-lattice sampling operation. In summary,
the sampling algorithm of [48, 44] consists of two stages:

• an off-line (target independent) stage, which generates perturbation vectors with covariance matrix
defined by the trapdoor transformation T , and

• an on-line (target dependent) stage which generates gaussian samples from an (easy to sample) lattice
Gn.

Not much attention is paid in [44] to the perturbation generation, as it does not depend on the target vector
t, and it is far less time critical in applications.3 As for the on-line stage, one of the properties that make
the lattice Gn easy to sample is that it is the orthogonal sum of n copies of a low dimensional lattice G, of
dimension log q. So, even using generic algorithms with quadratic running time, G sampling takes a total of
O(n log2 q) operations. For moduli q = nO(1) polynomial in the lattice dimension n, this results in quasilinear
running time O(n log2 n). However, since the G-sampling operation directly affects the on-line running time
of the signing algorithm, even a polylogarithmic term log2 q can be highly undesirable. To this end, [44] gives
a particularly efficient (and easy to implement) algorithm for G-lattice sampling when the lattice modulus
q = 2k is a power of 2 (or more generally, a power q = pk of a small prime p.) The running time of this
specialized G-sampling algorithm is log q, just linear in the lattice dimension, and has minimal (constant)
storage requirements. Thanks to its simplicity and efficiency, this algorithm has easily found its way in
concrete implementations of lattice based cryptographic primitives (e.g., see [7]), largely solving the problem
of efficient lattice sampling for q = 2k. However, setting q to a power of 2 (or more generally, the power of a
small prime), may be incompatible with applications and other techniques used in lattice cryptography, like
ciphertext packing techniques in fully homomorphic encryption [27] and fast implementation via the number
theoretic transform [40, 42]. For arbitrary modulus q, [44] falls back to generic algorithms (for arbitrary
lattices) with quadratic complexity. This may still be acceptable when the modulus q is relatively small.
But it is nevertheless undesirable, as even polylogarithmic factors have a significant impact on the practical
performance of cryptographic functions (easily increasing running times by an order of magnitude), and can
make applications completely unusuable when the modulus q = exp(n) is exponentially large. A concrete
example that well illustrates the limitations of [44] is the recent conjuction obfuscator of [16], which requires
the modulus q to be prime with bitsize log(q) = O(n) linear in the security parameter. In this setting, the
specialized algorithm of [44] (for q = 2k) is not applicable, and using a generic algorithm slows down the
on-line stage by a factor O(n).

Unfortunately, the specialized algorithm from [44] makes critical use of the structure of the G-basis
when q = 2k, and is not easily adapted to other moduli. (See Section 3 for details.) In order to solve
this problem we resort to the same technique used in [48, 44] to generate samples from arbitrary lattices:
we map G to an even simpler lattice D using an easy to compute linear transformation T ′, perform the
gaussian sampling in D, and map the result back to G. As usual, the error shape is corrected by including a
perturbation term with appropriate covariance matrix. The main technical problem to be solved is to find a
suitable linear transformation T ′ such that D can be efficiently sampled and perturbation terms can be easily

2More generally, applications require samples to be generated according to a distribution that does not depend on the
trapdoor/secret key.

3E.g., in lattice based digital signature schemes [28, 44], the off-line computation depends only on the secret key, and can
be performed in advance without knowing the message to be signed.
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generated. In Section 3 we demonstrate a choice of transformation T ′ with all these desirable properties.
In particular, using a carefully chosen transformation T ′, we obtain lattices D and perturbation matrices
that are triangular, sparse, and whose entries admit a simple (and efficiently computable) closed formula
expression. So, there is not even a need to store these sparse matrices explicitly, as their entries can be
easily computed on the fly. This results in a G-sampling algorithm with linear running time, and minimal
(constant) space requirements, beyond the space necessary to store the input, output and randomness of the
algorithm.

Next, in Section 4, we turn to the problem of efficiently generating the perturbations of the off-line stage.
Notice that generating these perturbations is a much harder problem than the one faced when mapping
G to D (via T ′). The difference is that while G,D, T ′ are fixed (sparse, carefully designed) matrices, the
transformation T is a randomly chosen matrix that is used as secret key. In this setting, there is no hope to
reduce the computation time to linear in the lattice dimension, because even reading/writing the matrix T
can in general take quadratic space. Still, when using algebraic lattices, matrix T admits a compact (linear
size) representation, and one can reasonably hope for faster perturbation generation algorithms, but [44] gives
no indication of how to achieve this. The off-line algorithm of [44] includes both a preprocessing (matrix
factorization) and postprocessing (lattice rounding) stage. Implementing the preprocessing using standard
Cholesky decomposition techniques (as mentioned in [44] for arbitrary lattices) immediately destroys all
the algebraic structure in the trapdoor, and results in very poor performance. An asymptotically superior
preprocessing method, which preserves the algebraic structure, is proposed in [23] for the important case of
power-of-two cyclotomic rings. More specifically, [23, Section 6] observes that when working in such rings,
one can replace the Cholesky decomposition with a factorization over ring elements that admits both a
compact representation and an efficient algorithm to compute it. The algorithms of [44, 23] are otherwise
identical, consisting of a preprocessing (matrix factorization) stage, noise generation over the reals, and
postprocessing (lattice rounding) step to map the noise to an appropriate integer lattice. We present an
alternative algorithm that uses the subring structure of power-of-two cyclotomic rings to completely bypass
the need to precompute any matrix factorization, and directly generates perturbation vectors in the target
lattice. In summary, our recursive algorithm efficiently generates the perturbation vectors (in quasilinear
time, and with very modest storage requirements), requiring neither the matrix factorization preprocessing
nor the lattice rounding postprocessing of [44, 23]. Lastly, while the techniques in [23] seem specific to
the power-of-two cyclotomic ring setting, our algorithm generalizes to perturbation sampling in arbitrary
cyclotomic rings, and can be implemented efficiently whenever the order of the cyclotomic ring is smooth.
Our techniques are related to the fast fourier orthogonalization algorithm of [24], but solve a different problem
altogether.

2 Preliminaries

We denote the complex numbers as C, the real numbers as R, the rational numbers as Q, and the integers
as Z. A number is denoted by a lower case letter, n ∈ Z for example. We denote the conjugate of a complex
number y as y∗. When q is a positive integer, log q is short for its rounded up logarithm in base two, dlog2 qe.
The index set of the first n natural numbers is [n] = {1, . . . , n}. Vectors are denoted by bold lower case
letters, v, and are in column form (vT is a row vector) unless stated otherwise. The inner product of two
vectors is 〈x,y〉 = xTy. We denote matrices with bold upper case letters B or with upper case Greek letters
(for positive-definite matrices). In addition, we denote the transpose of a matrix as BT , and its Hermitian
transpose as B†. The entry of B in row i and column j is denoted Bi,j . Unless otherwise stated, the norm
of a vector is the `2 norm. The norm of a matrix ‖B‖ = maxi ‖bi‖ is the maximum norm of its column
vectors. Given two probability distributions over a countable domain D, the statistical distance between
them is ∆(X,Y ) = 1

2

∑
ω∈D |X(ω) − Y (ω)|. For a random variable X, we denote its expectation as E[X].

Expectation is extended coordinate-wise to random vectors. We denote a random variable x sampled from
a distribution A as x← A. A random variable distributed as A is denoted x ∼ A.
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2.1 Linear Algebra

The Gram-Schmidt orthogonalization of an ordered set of linearly independent vectors B = {b1, . . . ,bk} is

B̃ = {b̃1, . . . , b̃k} where each b̃i is the component of bi orthogonal to span(b1, . . . ,bi−1). An anti-cylic
matrix is an n× n matrix of the form 

a0 −an−1 . . . −a1

a1 a0 . . . −a2

...
...

. . .
...

an−1 an−2 . . . a0

 .
For any two (symmetric) matrices Σ,Γ ∈ Rn×n, we write Σ � Γ if xT (Σ − Γ)x ≥ 0 for all (nonzero)

vectors x ∈ Rn, and Σ � Γ if xT (Σ−Γ)x > 0. It is easy to check that � is a partial order relation. Relations
� and ≺ are defined symmetrically. When one of the two matrices Γ = sI is scalar, we simply write Σ � s
or Σ � s. A symmetric matrix Σ ∈ Rn×n is called positive definite if Σ � 0, and positive semidefinite if
Σ � 0. Equivalently, Σ is positive semidefinite if and only if it can be written as Σ = BBT for some (square)
matrix B, called a square root of Σ and denoted B =

√
Σ. (Notice that any Σ � 0 has infinitely many

square roots B =
√

Σ.) Σ is positive definite if and only if its square root B is a square nonsingular matrix.
When B is upper (resp. lower) triangular, the factorization Σ = BBT is called the upper (resp. lower)
triangular Cholesky decomposition of Σ. The Cholesky decomposition of any positive definite Σ ∈ Rn×n can
be computed with O(n3) floating point arithmetic operations. For any scalar s, Σ � s if all eigenvalues of Σ
are strictly greater than s. In particular, positive definite matrices are nonsingular.

For any n×n matrix S and index sets I, J ⊆ {1, . . . , n}, we write S[I, J ] for the |I|× |J | matrix obtained
by selecting the elements at positions (i, j) ∈ I × J from S. When I = J , we write S[I] as a shorthand for
S[I, I]. Notice that for any nonsingular matrix S ∈ Rn×n, and index set I ⊆ {1, . . . , n}, the submatrix S[I]
is also nonsingular. For any nonsingular matrix S ∈ Rn×n and index partition I ∪ Ī = {1, . . . , n}, I ∩ Ī = ∅,
the I × I matrix

S/I = S[I]− S[I, Ī] · S[Ī]−1 · S[Ī , I]

is called the Schur complement of S[Ī], often denoted by S/S[Ī] = S/I. In particular, if S =

[
A B
BT D

]
then

the Schur complement of A is the matrix S/A = D −BTA−1B. For any index set I, a symmetric matrix
S is positive definite if and only if both S[I] and its Schur’s complement S/S[I] are positive definite.

The next two theorems regarding the spectra of principal submatrices and Schur complements of positive
definite matrices are used in Section 4. In both theorems, λi is the ith (in non-increasing order, with
multiplicity) eigenvalue of a symmetrix matrix.

Theorem 1 (Cauchy) For any symmetric matrix S ∈ Rn×n, I ⊆ {1, . . . , n} and 1 ≤ i ≤ |I|

λi(S) ≥ λi(S[I]) ≥ λi+n−|I|(S).

Theorem 2 ([55, Corollary 2.3]) For any positive definite Σ ∈ Rn×n, I ⊆ {1, . . . , n} and 1 ≤ i ≤ |I|

λi(Σ) ≥ λi(Σ/I) ≥ λi+n−|I|(Σ).

In other words, the eigenvalues of principal submatrices and Schur complements of a positive definite matrix
are bounded from below and above by the smallest and largest eigenvalues of the original matrix, respectively.

2.2 Gaussians and Lattices

A lattice Λ ⊂ Rn is a discrete subgroup of Rn. Specifically, a lattice of rank k is the integer span L(B) =
{z1b1 + · · ·+ zkbk | zi ∈ Z} of a basis B = {b1, . . . ,bk} ⊂ Rn (k ≤ n). There are infinitely many bases for
a given lattice since right multiplying a basis by a unimodular transformation gives another basis. The dual
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lattice of Λ, denoted by Λ∗, is the lattice {x ∈ span(Λ)| 〈x,Λ〉 ⊆ Z}. It is easy to see that B−T is a basis for
L(B)∗ for a full rank lattice (n = k).

The n-dimensional gaussian function ρ : Rn → (0, 1] is defined as ρ(x) := exp(−π‖x‖2). Applying an
invertible linear transformation B to the gaussian function yields

ρB(x) = ρ(B−1x) = exp(−π · xTΣ−1x)

with Σ = BBT � 0. For any c ∈ span(B) = span(Σ), we also define the shifted gaussian function (centered
at c) as ρ√Σ,c(x) = ρ√Σ(x− c). Normalizing the function ρB,c(x) by the measure of ρB,c over the span of

B gives the continuous gaussian distribution with covariance Σ/(2π), denoted by D√Σ,c. Let S ⊂ Rn be

any discrete set in Rn, then ρ√Σ(S) =
∑

s∈S ρ
√

Σ(s). The discrete gaussian distribution over a lattice Λ,
denoted by DΛ,

√
Σ,c, is defined by restricting the support of the distribution to Λ. Specifically, a sample

y ← DΛ,
√

Σ,c has probability mass function ρ√Σ,c(x)/ρ√Σ,c(Λ) for all x ∈ Λ. Discrete gaussians on lattice

cosets Λ + c, for c ∈ span(Λ), are defined similarly setting Pr{y ← DΛ+c,
√

Σ,p} = ρ√Σ,p(y)/ρ√Σ,p(Λ + c)

for all y ∈ Λ + c. For brevity we let DΛ+c,
√

Σ,p(y) := Pr{y← DΛ+c,
√

Σ,p}.
For a lattice Λ and any (typically small) positive ε > 0, the smoothing parameter ηε(Λ) [45] is the smallest

s > 0 such that ρ(s ·Λ∗) ≤ 1 + ε. More generally, for any positive definite matrix Σ and lattice Λ ⊂ span(Σ),

we write
√

Σ ≥ ηε(Λ) if ρ(
√

Σ
T ·Λ∗) ≤ 1 + ε. The reader is referred to [45, 28, 48] for additional information

on the smoothing parameter. Here we recall two bounds and a discrete gaussian convolution theorem to be
used later.

Lemma 2.1 ([28, Lemma 3.1]) Let Λ ⊂ Rn be a lattice with basis B, and let ε > 0. Then,

ηε(Λ) ≤ ‖B̃‖
√

log(2n(1 + 1/ε))/π.

Lemma 2.2 ([48, Lemma 2.5]) Let Λ be any full rank n-dimensional lattice. For any ε ∈ (0, 1), Σ � 0
such that

√
Σ ≥ ηε(Λ), and any c ∈ Rn,

ρ√Σ(Λ + c) ∈
[

1− ε
1 + ε, 1

]
· ρ√Σ(Λ).

Theorem 3 ([48, Theorem 3.1]) For any vectors c1, c2 ∈ Rn, lattices Λ1,Λ2 ⊂ Rn, and positive definite
matrices Σ1,Σ2 � 0, Σ = Σ1 + Σ2 � 0, Σ−1

3 = Σ−1
1 + Σ−1

2 � 0, if
√

Σ1 � ηε(Λ1) and
√

Σ3 � ηε(Λ2) for some
ε ≤ 1/2, then the distribution

X = {x | p← DΛ2+c2,
√

Σ2
,x← DΛ1+c1,

√
Σ1,p
}

is within statistical distance ∆(X,Y ) ≤ 8ε from the discrete gaussian Y = DΛ1+c1,
√

Σ. Moreover, the

probability of each sample x ∼ X is within an interval of [1 − 16ε, 1 + 16ε] of the probability mass function
of Y at x, in other words PrX{a} ∈ [1− 16ε, 1 + 16ε] · PrY {a} for all a ∈ Λ1 + c1.

2.3 Cyclotomic Fields

Let n be a positive integer. The n-th cyclotomic field over Q is the number field Kn = Q[x]/(Φn(x)) ∼= Q(ζ)
where ζ is an n-th primitive root of unity and Φn(x) is the minimal polynomial of ζ over Q. The nth
cyclotomic ring is On = Z[x]/(Φn(x)). Let ϕ(n) be Euler’s totient function. Kn is a ϕ(n)-dimensional
Q-vector space, and we can view Kn as a subset of C by viewing ζ as a complex primitive n-th root of unity.

Multiplication by a fixed element f , g 7→ f · g, is a linear transformation on Kn as a Q-vector space.
We will often view field elements as ϕ(n)-dimensional rational vectors via the coefficient embedding. This

is defined by f(x) =
∑ϕ(n)−1
i=0 fix

i 7→ (f0, · · · , fϕ(n)−1)T mapping a field element to its vector of coefficients

under the power basis {1, x, · · · , xϕ(n)−1} (or equivalently {1, ζ, · · · , ζϕ(n)−1}). We can represent a field
element as the matrix in Qϕ(n)×ϕ(n) that represents the linear transformation by its multiplication in the
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SampleG(q = bk, s, u)
for i = 0, . . . , k − 1 :
xi ← DbZ+u,s

u := (u− xi)/b ∈ Z.
return (x0, . . . , xk−1).

Figure 1: A sampling algorithm for G-lattices when the modulus q is a perfect power of the base b. The
algorithm is implicitly parametrized by a base b and dimension k.

coefficient embedding. This matrix is called a field element’s coefficient multiplication matrix. When n is a
power of two, an element’s coefficient multiplication matrix is anti-cyclic.

An isomorphism from the field F to the field K is a bijection θ : F → K such that θ(fg) = θ(f)θ(g),
and θ(f + g) = θ(f) + θ(g) for all f, g ∈ F . An automorphism is an isomorphism from a field to itself.
For example, if we view the cyclotomic field Kn as a subset of the complex numbers, then the conjugation
map f(ζ) 7→ f(ζ)∗ = f(ζ∗) is an automorphism and can be computed in linear time O(n). In power-of-two
cyclotomic fields, the conjugation of a field element corresponds to the matrix transpose of an element’s
anti-cyclic multiplication matrix.

Another embedding is the canonical embedding which maps an element f ∈ Kn to the vector of evalu-
ations of f , as a polynomial, at each root of Φn(x). When n is a power of two, the linear transformation
between the coefficient embedding and the canonical embedding is a scaled isometry.

3 Sampling G-lattices

For any positive integers b ≥ 2, k ≥ 1 and non-negative interger u < bk, we write [u]kb for the base-b expansion
of u, i.e., the unique vector (u0, . . . , uk−1) with entries 0 ≤ ui < b such that u =

∑
i uib

i. Typically, b = 2 and
[u]k2 is just the k-digits binary representation of u, but larger values of b may be used to obtain interesting
efficiency trade-offs. Throughout this section, we consider the values of b and k as fixed, and all definitions
and algorithms are implicitly parametrized by them.

In this section we study the so-called G-lattice sampling problem, i.e., the problem of sampling the
discrete Gaussian distribution on a lattice coset

Λ⊥u (gT ) = {z ∈ Zk : gT z = u mod q}

where q ≤ bk, u ∈ Zq and g = (1, b, . . . , bk−1). A very efficient algorithm to solve this problem is given in [44]
for the special case when q = bk is a power of the base b. The algorithm, shown in Figure 1, is very simple.
This algorithm reduces the problem of sampling the k-dimensional lattice coset Λ⊥u (gT ) for u ∈ Zq to the
much simpler problem of sampling the one-dimensional lattice cosets u + bZ for u ∈ Zb. The simplicity of
the algorithm is due to the fact that, when q = bk is an exact power of b, the lattice Λ⊥(gT ) has a very
special basis

Bbk =



b
−1 b

−1
. . .

. . . b
−1 b


which is sparse, triangular, and with small integer entries. (In particular, its Gram-Schmidt orthogonalization

B̃bk = bI is a scalar matrix.) As a result, the general lattice sampling algorithm of [36, 28] (which typically
requires O(k3)-time preprocessing, and O(k2) storage and online running time) can be specialized to the
much simpler algorithm in Figure 1 that runs in linear time O(k), with minimal memory requirements and
no preprocessing at all.
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We give a specialized algorithm to solve the same sampling problem when q < bk is an arbitrary modulus.
This is needed in many cryptographic applications where the modulus q is typically a prime. As already
observed in [44] the lattice Λ⊥(gT ) still has a fairly simple and sparse basis matrix

Bq =



b q0

−1 b q1

−1
. . .

...
. . . b qk−2

−1 qk−1


where (q0, . . . , qk−1) = [q]kb = q is the base-b representation of the modulus q. This basis still has good
geometric properties, as all vectors in its (left-to-right) Gram-Schmidt orthogonalization have length at
most O(b). So, it can be used with the algorithm of [36, 28] to generate good-quality gaussian samples on
the lattice cosets with small standard deviation. However, since the basis is no longer triangular, its Gram-
Schmidt orthogonalization is not sparse anymore, and the algorithm of [36, 28] can no longer be optimized
to run in linear time as in Figure 1. In applications where q = nO(1) is polynomial in the security parameter
n, the matrix dimension k = O(log n) is relatively small, and the general sampling algorithm (with O(k2)
storage and running time) can still be used with an acceptable (albeit significant) performance degradation.
However, for larger q (e.g., fully homomorphic encryption schemes with exponential q = 2O(n)) this becomes
prohibitive in practice. Moreover, even for small q, it would be nice to have a sampling algorithm with O(k)
running time, linear in the matrix dimension, as for the exact power case. Here we give such an algorithm,
based on the convolution methods of [48], but specialized with a number of concrete technical choices that
result in a simple and very fast implementation, comparable to the specialized algorithm of [44] for the exact
power case.

Overview The idea is the following. Instead of sampling Λ⊥u (gT ) directly, we express the lattice basis
Bq = TD as the image (under a linear transformation T) of some other matrix D with very simple (sparse,
triangular) structure. Next, we sample the discrete gaussian distribution (say, with variance σ2) on an
appropriate coset of L(D). Finally, we map the result back to the original lattice applying the linear
transformation T to it. Notice that, even if L(D) is sampled according to a spherical gaussian distribution,
the resulting distribution is no longer spherical. Rather, it follows an ellipsoidal gaussian distribution with
(scaled) covariance σ2TTT . This problem is solved using the convolution method of [48], i.e., initially
adding a perturbation with complementary covariance s2I− σ2TTT to the target, so that the final output
has covariance σ2TTT + (s2I − σ2TTT ) = s2I. In summary, at a very high level, the algorithm performs
(at least implicitly) the following steps:

1. Compute the covariance matrix Σ1 = TTT and an upper bound r on the spectral norm of TTT

2. Compute the complementary covariance matrix Σ2 = r2I− Σ1

3. Sample p← DΛ1,σ
√

Σ2
, from some convenient lattice Λ1 using the Cholesky decomposition of Σ2

4. Compute the preimage c = T−1(u− p)

5. Sample z← DL(D),−c,σ

6. Output u + Tz

The technical challenge is to find appropriate matrices T and D that lead to a very efficient implementa-
tion of all the steps. In particular, we would like T to be a very simple matrix (say, sparse, triangular, and
with small integer entries) so that T has small spectral norm, and both linear transformations T and T−1

can be computed efficiently. The matrix D (which is uniquely determined by B and T) should also be sparse
and triangular, so that the discrete gaussian distribution on the cosets of L(D) can be efficiently sampled.
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Finally (and this is the trickiest part in obtaining an efficient instantiation) the complementary covariance
matrix Σ2 = r2I − Σ1 should also have a simple Cholesky decoposition Σ2 = LLT where L is triangular,
sparse and with small entries, so that perturbations can be generated efficiently. Ideally, all matrices should
also have a simple, regular structure, so that they do not need to be stored explicitly, and can be computed
on the fly with minimal overhead.

In the next subsection we provide an instantiation that satisfies all of these properties. Next, in Sub-
section 3.2 we describe the specialized sampling algorithm resulting from the instantiation, and analyze its
correctness and efficiency properties.

3.1 Instantiation

In this subsection, we describe a specific choice of linear transformations and matrix decompositions that
satisfies all our desiderata, and results in a very efficient instantiation of the convolution sampling algorithm
on G-lattices.

A tempting idea may be to map the lattice basis Bq to the basis Bbk , and then use the efficient sampling
algorithm from Figure 1. However, this does not quite work because it results in a pretty bad transformation
T which has both poor geometrical properties and a dense matrix representation. It turns out that a very
good choice for a linear transformation T is given precisely by the matrix T = Bbk describing the basis when
q is a power of b. We remark that T is used as a linear transformation, rather than a lattice basis. So, the
fact that it equals Bbk does not seem to carry any special geometric meaning, it just works! In particular,
what we do here should not be confused with mapping Bq to Bbk . The resulting factorization is

Bq =



b q0

−1 b q1

−1
. . .

...
. . . b qk−2

−1 qk−1

 =



b
−1 b

−1
. . .

. . . b
−1 b




1 d0

1 d1

. . .
...

1 dk−2

dk−1

 = BbkD

where the entries of the last column of D are defined by the recurrence di = di−1+qi
b with initial condition

d−1 = 0. Notice that all the di are in the range [0, 1), and bi+1 · di is always an integer. In some sense,
sampling from L(D) is even easier than sampling from L(Bbk) because the first k − 1 columns of D are
orthogonal and the corresponding coordinates can be sampled independently in parallel. (This should be
contrasted with the sequential algorithm in Figure 1.)

We now look at the geometry and algorithmic complexity of generating perturbations. The covariance
matrix of T = Bbk is given by

Σ1 = BbkBT
bk =


b2 −b
−b (b2 + 1) −b

. . .
. . .

. . .

−b (b2 + 1) −b
−b (b2 + 1)

 .

The next step is to find an upper bound r2 on the spectral norm of Σ2, and compute the Cholesky decom-
position LLT of the complementary covariance matrix Σ2 = r2I−Σ1. By the Gershgorin circle theorem, all
eigenvalues of Σ1 are in the range (b± 1)2. So, we may set r = b+ 1. Numerical computations also suggest
that this choice of r is optimal, in the sense that the spectral norm of Σ1 approaches b + 1 as k tends to
infinity. The Cholesky decomposition is customarily defined by taking L to be a lower triangular matrix.
However, for sampling purposes, an upper triangular L works just as well. It turns out that using an upper
triangular L in the decomposition process leads to a much simpler solution, where all (squared) entries have
a simple, closed form expression, and can be easily computed on-line without requiring any preprocessing
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computation or storage. (By contrast, numerical computations suggest that the standard Cholesky decom-
position with lower triangular L is far less regular, and even precomputing it requires exponentially higher
precision arithmetic than our upper triangular solution.) So, we let L be an upper triangular matrix, and
set r = b+ 1.

For any r, the perturbation’s covariance matrix Σ2 = r2I−Σ1 has Cholesky decomposition Σ2 = L · LT
where L is the sparse upper triangular matrix defined by the following equations:

L =


l0 h1

l1 h2

. . .
. . .

hk−1

lk−1

 where

l20 + h2
1 = r2 − b2

l2i + h2
i+1 = r2 − (b2 + 1) (i = 1, . . . , k − 2)
l2k−1 = r2 − (b2 + 1)
lihi = b (i = 1, . . . , k − 1)

It can be easily verified that these equations have the following simple closed form solution:

r = b+ 1, l20 = b

(
1 +

1

k

)
+ 1, l2i = b

(
1 +

1

k − i

)
, h2

i+1 = b

(
1− 1

k − i

)
(1)

We observe that also the inverse transformation B−1
bk

has a simple, closed-form solution: the ith column of

B−1
bk

equals (0, · · · , 0, 1
b , . . . , (

1
b )k−i). Notice that this matrix is not sparse, as it has O(k2) nonzero entries.

However, there is no need to store it and the associated transformation can still be computed in linear time
by solving the sparse triangular system Tx = b by back-substitution.

3.2 The Algorithm

The sampling algorithm, SampleG, is shown in Figure 2. It takes as input a modulus q, an integer variance
s, a coset u of Λ⊥(gT ), and outputs a sample statistically close to DΛ⊥u (gT ),s. SampleG relies on subroutines
Perturb and SampleD where Perturb(σ) returns a perturbation, p, statistically close to DL(Σ2),σ·

√
Σ2

,
and SampleD(σ, c) returns a sample z such that Dz is statistically close to DL(D),−c,σ. Both Perturb
and SampleD are instantiations of the randomized nearest plane algorithm [36, 28]. In addition, Perturb
and SampleD rely on a subroutine SampleZ(σ, t) which returns a sample statistically close to DZ,t,σ.

Assuming constant time sampling for SampleZ and scalar arithmetic, SampleG runs in time O(k). The
scalars ci in SampleG, representing c = B−1

bk
(u− p), and di in SampleD, representing the last column of

D, are rational numbers of the form x/bi for a small integer x and i ∈ [k]. The numbers li, hi are positive
numbers less than

√
2b+ 1. Though recent results suggests otherwise [52], longer than double floating point

precision may be needed for li and hi in applications where k = O(n) instead of k = O(log n). Then,
SampleZ could be instantiated with the lazy floating point techniques of [23] and SampleG would be
quasi-linear time in k instead of linear in k.

By combining the bounds in Theorems 2.1 and 3, the variance s can be practically as small as in the
case when q = bk. The algorithms store floating point numbers ci, di, hi, and li for a total storage of O(k)
floating point numbers, but can be adapted to constant time storage since they are determined by simple
recurrence relations (ci, di) or simple formulas (hi, li). We conclude with the statement of correctness in the
form of the following corollary.

Corollary 1 Let ε ≤ 1/2 be such that s2

(b+1)2 ≥ ηε(L(D)) and
√

Σ3 ≥ ηε(L([b + 1]2B−1
bk
− BT

bk)) where

Σ−1
3 = (b+1)2

s2 I + [s2B−1
bk

B−t
bk
− s2

(b+1)2 I]−1. In addition, let s
b+1 ≥ max{‖D‖, ‖LT ‖} · ω(

√
log k). Then,

SampleG returns a perturbation within a statistical distance O(ε) from DΛ⊥u (gT ),s for any q < bk.

4 Perturbation Sampling in Cyclotomic Rings

The lattice preimage sampling algorithm of [44] requires the generation of n(2 + log q)-dimensional gaussian
perturbation vectors p with covariance Σp = s2 · I− α2T ·TT where T ∈ Z(2+log q)n×n log q is a matrix with
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SampleG(s,u = [u]kb ,q = [q]kb )
σ := s/(b+ 1)
p← Perturb(σ)
for i = 0, . . . , k − 1 :
ci := (ci−1 + ui − pi)/b

z← SampleD(σ, c)
for i = 0, . . . , k − 2 :
ti := b · zi − zi−1 + qi · zk−1 + ui

tk−1 := qk−1 · zk−1 − zk−2 + uk−1

return t

Perturb(σ)
β := 0
for i = 0, . . . , k − 1 :
ci := β/li, and σi := σ/li
zi ← SampleZ(σi, ci)
β := −zihi

p0 := (2b+ 1)z0 + bz1

for i := 1, . . . , k − 1 :
pi := b(zi−1 + 2zi + zi+1)

return p

SampleD(σ, c)
zk−1 ← SampleZ(σ/dk−1,−ck−1/dk−1)
c := c− zk−1d
for i ∈ {0, . . . , k − 2} :
zi ← SampleZ(σ,−ci)

return z

Figure 2: Sampling algorithm for G-lattices for any modulus q < bk. The algorithms take b and k as implicit
parameters, and SampleG outputs a sample with distribution statistically close to DΛ⊥u (gT ),s. Any scalar
with an index out of range is 0, i.e. c−1 = z−1 = zk = 0.

small entries serving as a lattice trapdoor, α is a small constant factor and s is an upper bound on the spectral
norm of αT. In [44] this is accomplished using the Cholesky factorization of Σp, which takes O(n log q)3

precomputation and O(n log q)2 storage and running time. (All integer arithmetics can be performed modulo
q, and time and space complexity bounds are in terms of arithmetic operations in Zq.)

The trapdoor matrix T of [44] has some additional structure: TT = [T̄T , I] for some T̄ ∈ Z2n×n log q.
Moreover, when working with algebraic lattices, T̄ = φn(T̃) is the image (under a ring embedding φn : Rn →
Zn×n) of some matrix T̃ ∈ R2×log q

n with entries in a ring Rn of rank n. (Most commonly, Rn = O2n =
Z[x]/(xn + 1) is the ring of integers of the (2n)th cyclotomic field K2n for n = 2k a power of two.) In [7] it
is observed that, using the sparsity of Σp, the preprocessing storage and on-line computation cost of noise
perturbation reduce to O(n2 log q).4 This is a factor log q improvement over a generic implementation, but
it is still quadratic in the main security parameter n. This can be a significant improvement in practice, but
the overall cost of the algorithm remains substantial. When using generic trapdoors T̄ ∈ Z2n×n log q, there is
little hope to improve the running time below O(n2 log q), because just reading the matrix T̄ takes this much
time. However, when using algebraic lattices the trapdoor T̄ = φn(T̃) admits a compact representation T̃
consisting of only 2n log q integers, so one may hope to reduce the running time to linear or quasi-linear
in n. Unfortunately, all efficiency advantages of working with structured lattices are lost when computing
the Cholesky decomposition of Σp as in [44], because the Cholesky decomposition does not respect the ring
structure and produces arbitrary matrices over R.

A method for discrete gaussian sampling with covariance described by a ring element Rn in quasi-linear
time is given in [23]. A similar quasi-linear sampler can also be obtained by using the CRT transformation
(defined in [42]) to diagonalize the matrix described by the ring element. Both methods produce gaussian
vectors that may not have integer coordinates, and require the use of the randomized rounding sampler of
[48] to round the result to an integer vector. In this section we give an alternative algorithm to generate
perturbation vectors p with covariance Σp when T̄ = φn(T̃) that directly produces vectors with integer
coordinates. Our algorithm takes full advantage of the ring structure of Rn, compactly representing Σp and
all other matrices generated during the execution of the algorithm as the image of matrices with entries in

4Sparsity also reduces the preprocessing running time to O(log q · n2 + n3) = O(n3), but still cubic in n.
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SampleP(n, q, s2, α2, T̃)
z = (α−2 − s−2)−1

a = s2 − z · T̃0T̃
T
0

b = −z · T̃0T̃
T
1

d = s2 − z · T̃1T̃
T
1

for i = 0, . . . , (n log q − 1):
qi ← SampleR

(
s2 − α2

)
p←Sample2(a, b, d)

return
(
p−

(
α

s2−α2

)
Tq,q

)

Sample2(a, b, d)
p1 ← SampleF(d)
p0 ← SampleF(a− bd−1b∗)
return (p0 + (bd−1)p1, p1)

SampleF(f)
if dim(f) = 1 return SampleR(f)
else let f(x) = f0(x2) + x · f1(x2)

(p0, p1)← Sample2(f0, f1, f0)
let p(x) = p0(x2) + x · p1(x2)
return p

Figure 3: Sampling algorithm SampleP for floating point perturbations where T = φn(T̃) is a compact
trapdoor over a power of two cyclotomic ring. Note, T̃i is a row vector over Rn for each i ∈ {0, 1}. The
algorithm uses a subroutine SampleR(σ2) to sample a 1-dimensional gaussian with variance σ2 centered at
0.

the ring Rn. In particular, similarly to [23], our algorithm has time and space complexity quasi-linear in n,
but it does not require any preprocessing/storage, or postprocessing for rounding the result to an integer
vector. The algorithm can be expressed in a modular way as the combination of three steps:

1. First, the problem of sampling a O(n log q)-dimensional integer vectors p with covariance Σp is reduced
to the problem of sampling a 2n-dimensional integer vector with covariance expressed by a 2×2 matrix
over Rn.

2. Next, the problem of sampling with covariance in R2×2
n is reduced to sampling two n-dimensional

vectors, each with a covariance expressed by a single ring element in Rn.

3. Finally, if n > 1, the sampling problem with covariance in Rn is reduced to sampling an n-dimensional
perturbation with covariance expressed by a 2× 2 matrix over the smaller ring Rn/2.

Iterating the last two steps log n times reduces the original problem to sampling in R1 = Z. Details about
each step are described in the next subsections. We remark that the algorithm is described as a recursive
procedure just for simplicity of presentation and analysis, but it can be implemented just as easily using
a simple nested loop, similarly to many FFT-like algorithms. We first describe an algorithm to generate
perturbations from continuous gaussians, which admits a simpler proof, but requires the use of high precision
floating point arithmetics. Then, we describe an integer-based version of the algorithm which generates
perturbations from discrete gaussians over Zn(2+log q). The continuous gaussian perturbation generation
method presented here is given primarily as a warm up to the main algorithm to generate discrete gaussian
perturbations.

4.1 Algorithm for Floating Point Perturbations

The sampling algorithm for continuous gaussians is shown in Figure 3. The entry point of the algorithm is the
SampleP procedure, which takes as input integer parameters n, q, a matrix T̃ ∈ R2×log q

n and two positive
real numbers s2, α2, and is expected to produce an n(2 + log q)-dimensional vector p with (non-spherical)
gaussian distribution D√

Σp
of covariance

Σp = s2 · I− α2

[
φn(T̃)

I

]
·
[
φn(T̃)T I

]
=

[
s2I− α2φn(T̃) · φn(T̃)T −α2φn(T̃)

−α2φn(T̃)T (s2 − α2)I

]
(2)

The algorithm calls two subroutines:
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• SampleR(s2 − α2) which samples a one-dimensional gaussian variable of covariance s2 − α2, and can
be implemented using any standard technique, and

• Sample2(a, b, d), which, on input three ring elements a, b, d compactly describing a positive definite
matrix

Σ2 =

[
φn(a) φn(b)
φn(b)T φn(d)

]
,

is expected to sample a (2n)-dimensional vector p← D√Σ2
with covariance Σ2.

In turns, Sample2 (also described in Figure 3) makes use of a procedure SampleF(f) which on input a
ring element f with positive definite φn(f), returns a sample p← D√

φn(f)
.

Correctness The proof of correctness of the algorithm is based on the following general lemma.

Lemma 4.1 For any positive definite matrix Σ =

[
A B
BT D

]
, the process

1. p1 ← D√
A−BD−1BT

2. p2 ← D√D

3. return

[
BD−1

I

]
p2 +

[
I
0

]
p1

produces a vector with gaussian distribution D√Σ.

Proof Let p2,p1 be independent 0-mean multivariate gaussian samples with respective covariances D and
A−BD−1BT . Due to independence, the output (BD−1p2 + p1,p2) is gaussian with covariance[

BD−1

I

]
D
[
D−TBT I

]
+

[
I
0

]
(A−BD−1BT )

[
I 0

]
=

[
A B
BT D

]
as claimed. �

Consider the ring O2n as a two-dimensional free On-module (as well as K2n as a two dimensional Kn-
vector space) by splitting a polynomial f(x) ∈ K2n into f(x) = f0(x2)+x ·f1(x2) for fi ∈ Kn. Algebraically,
this is seen by viewing K2n under the isomorphism K2n = Q[x]/(x2n + 1) ∼= Q(ζ2n) (x 7→ ζ2n) with the
relation ζ2

2n = ζn for primitive n-th and 2n-th roots of unity ζn and ζ2n, respectively.
Now, the (power basis) multiplication matrix of a field element can be represented as a two-by-two block

matrix with multiplication matrices in the smaller field, φn/2(·), as blocks by permuting the row and column
indices according to the stride permutation as in the FFT (permuting the increasing elements of [n] to
the increasing evens followed by the increasing odds). Specifically, we have the following relation after the
permutation

φn(f) =

[
φn/2(f0) φn/2(x · f1)
φn/2(f1) φn/2(f0)

]
.

Notice, φn/2(x · f1) = φn/2(f1)T = φn/2(f∗1 ) when φn � 0 as is the case for the input f . Now, SampleF can
simply perform the convolution in Lemma 4.1 with a call to Sample2 when the dimension is greater than
one and sampling D√f otherwise.

We prove the correctness of the sampling algorithm in three steps, corresponding to the three procedures
SampleP, Sample2 and SampleF.

Corollary 2 If SampleF correctly samples the distribution D√
φn(f)

, then Sample2 correctly samples the

distribution D√Σ2
.
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SamplePZ(n, q, s, α, T̃)
z = (α−2 − s−2)−1

a := s2 − zT̃0T̃
T
0

b := −zT̃0T̃
T
1

d := s2 − zT̃1T̃
T
1

for i = 0, . . . , (n log q − 1) :
qi ← SampleZ(s2 − α2)

c := − α2

s2−α2 T̃q

p← Sample2Z(a, b, d, c,)
return (p,q)

Sample2Z(a, b, d, c)
let c = (c0, c1)
q1 ← SampleFZ(d, c1)
c0 := c0 + bd−1(q1 − c1)
q0 ← SampleFZ(a− bd−1b∗, c0)
return (q0, q1)

SampleFZ(f, c)
if dim(f) = 1 return SampleZ(f, c)
else let f(x) = f0(x2) + x · f1(x2)

c′ := Pstride(n)(c)
(q0, q1)← Sample2Z(f0, f1, f0, c

′)
let q(x) = q0(x2) + x · q1(x2)
return q

Figure 4: Sampling algorithm SamplePZ for integer perturbations where T = φn(T̃) is a compact trapdoor
over a power of two cyclotomic ring. Note, T̃i is a row vector over Rn for each i ∈ {0, 1}. The algorithm
uses a subroutine SampleZ(σ2, t) which samples a discrete gaussian over Z with variance σ2 centered at t.
The stride permutation, Pstride(n), sends a vector of coefficients to the increasing even indices followed by
the increasing odd indices.

Proof The corollary follows by instantiating Lemma 4.1 with A = φn(a), B = φn(b) and D = φn(d). �

Corollary 3 If Sample2 correctly samples the distribution D√Σ2
, then SampleP correctly samples the

distribution D√Σp
.

Proof The corollary follows by instantiating Lemma 4.1 with Σ := Σp, equivalently

A = s2I− α2φn(T̃) · φn(T̃)T , B = −α2φn(T̃) and D = (s2 − α2)I. �

Efficiency Multiplications are done in the field Ki, for an element’s dimension i ∈ {1, 2, . . . , 2n}, in time
Õ(i) by using the Chinese remainder transform (CRT ) [42].

By treating scalar arithmetic as constant time, SampleF has a time complexity of Õ(n log q) for the
transformation by T is O(n log n log q) and SampleF has complexity O(n log2 n) (represented by the re-
currence R(n) = 2R(n/2) + (n/2) log n/2). The algorithm requires n log q scalar storage for the trapdoor
T̃.

4.2 Integer Perturbation Algorithm for Power of Two Cyclotomics

In this subsection we discuss the discrete versions of the algorithms which produce an n(2+log q)-dimensional
perturbation distributed as p ∼ DZn(2+log q),

√
Σp

in time Õ(n log q).

Correctness First, we state an analogous lemma for discrete gaussians to Lemma 4.1.

Lemma 4.2 Let Σ =

[
A B
BT D

]
be a positive definite (n+m)× (n+m) matrix, ε ≤ 1/2, and Σ ≥ ηε(Zn+m)

. Perform the following experiment:

• Sample the m-dimensional vector x2 ← DZm,
√

D,c2
.

• Sample the n-dimensional vector x1 ← DZn,
√

A−BD−1BT ,c1+BD−1(x2−c2)
.
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Then, the concatenated vector (x1,x2) is distributed within a statistical distance of 2ε from DZn+m,
√

Σ,c

where c = (c1, c2). Moreover, the probability of each point (x̄1, x̄2) ∈ Zn+m is in the interval [1, 1 + 3ε] ·
DZn+m,

√
Σ,c(x̄1, x̄2).

Proof Note, x1 can be re-written as x1 = x′1 + BD−1x2 where x′1 ∼ DZn−BD−1x2,
√

Σ/D,c1
.

Pr[z = x̄1,x2 = x̄2] (3)

= DZn−BD−1x̄2,
√

Σ/D,c1
(x̄1 −BD−1x̄2) ·DZm,

√
D,c2

(x̄2) (4)

=
ρ√

Σ/D
(x̄1 −BD−1x̄2 − c1) · ρ√D(x̄2 − c2)

ρ√
Σ/D

(Zn −BD−1x̄2 − c1) · ρ√D(Zm − c2)
(5)

=
ρ√Σ(x̄1 − c1, x̄2 − c2)

ρ√
Σ/D

(Zn −BD−1x̄2 − c1) · ρ√D(Zm − c2)
(6)

∈
[
1,

1 + ε

1− ε

]
·

ρ√Σ(x̄1 − c1, x̄2 − c2)

ρ√
Σ/D

(Zn − c1) · ρ√D(Zm − c2)
(7)

⊆ [1, 1 + 3ε]DZn+m,
√

Σ,c(x̄1, x̄2) (8)

Equations (4) and (5) are from construction, and equation (6) is from the following relation regarding
the inverse of a positive-definite block matrix,

Σ−1 =

[
A B
BT D

]−1

=

[
(A−BD−1BT )−1 −(A−BD−1BT )−1BD−1

−D−1BT (A−BD−1BT )−1 D−1 + D−1BT (A−BD−1BT )−1BD−1

]
.

Equations (7) and (8) come from Lemma 2.2 as well as Theorem 2 (
√

Σ ≥ ηε(Zn+m) implies
√

Σ/D =√
A−BD−1B ≥ ηε(Zn)) and ε ≤ 1/2, respectively. �

The sampling algorithms, shown in Figure 4, SamplePZ , Sample2, SampleFZ are the algorithms for
floating point perturbations adapted to the integer perturbation case. Again, each algorithm represents one
of the three stages in reducing sampling p ∼ DZn(2+log q),

√
Σp

to sampling p ∼ DZ,
√
f,c, and each performs a

discrete gaussian convolution as in Lemma 4.2. The only difference is that each algorithm must update a
randomized center.

Regarding the correctness of the algorithm, we need to ensure each convolution is non-degenerate. The
fact that Σp � 0 is enough for the continuous algorithms to return a non-degenerate sample, though not

for the discrete case. As shown in Lemma 4.2, we need Σ ≥ ηε(Zn
′
) at each of the O(n) discrete gaussian

convolutions. As we will see below, this can be guaranteed with a simple bound on the eigenvalues of Σp due
to the homomorphic properties of φn(·) and the interlacing theorems in section 2. First, we state a lemma
showing that if a covariance matrix is wide enough over the integer lattice of its dimension, then all principle
submatrices and Schur complements are wide enough over the integer lattice of their respective dimension.

Lemma 4.3 Let Σ � 0 be a positive definite matrix in Rn×n, λmin be its minimum eigenvalue, and let
I0, I1 ⊂ [n] be arbitrary, non-empty subsets. If

√
λmin ≥ ηε(Zn), then

√
Σ[I0] ≥ ηε(Z|I0|) and

√
Σ/Ī1 ≥

ηε(Zn−|I1|) for any principal submatrix - Schur complement pair, (Σ[I0],Σ/Ī1), of Σ.

Proof Let M := Σ[I0] ∈ Rn0×n0 . M is diagonalizable so let M = QTΛQ be its diagonalization. Notice, we
have the following inequality from the interlacing theorems

xTMx = xTQTΛQx = yTΛy =
∑
i∈[n0]

λiy
2
i ≥ λmin‖y‖2 = λmin‖x‖2.

Next, we can bound the quantity ρM−1(Z(n0)∗ \ {0}) = ρM−1(Zn0 \ {0}) by ε:

ρM−1(Zn0 \ {0}) =
∑

x∈Zn0\{0}

e−πxT Mx ≤
∑

x∈Zn0\{0}

e−πλmin‖x‖2 ≤
∑

x∈Zn\{0}

e−πλmin‖x‖2 ≤ ε.
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The jump from Zn0 to Zn comes from the relation Zn0 ⊂ Zn. The proof for the Schur complement is
identical. �

Corollary 4 If SampleFZ correctly samples the distribution DZn′ ,
√
φn′ (f),c′

for n′ ∈ 1, 2, . . . , n and
√

Σ2 ≥

ηε(Z2n′), then Sample2Z samples from a distribution within statistical distance of 2ε of DZ2n′ ,
√

Σ2,c
.

Proof The corollary follows by instantiating Lemma 4.2 with A = φn(a), B = φn(b) and D = φn(d). �

Corollary 5 If Sample2Z correctly samples the distribution DZ2n′ ,
√

Σ2
, c and

√
Σp ≥ ηε(Zn(2+log q)), then

SamplePZ correctly samples the distribution DZn(2+log q),
√

Σp
.

Proof The corollary follows by instantiating Lemma 4.2 with Σ := Σp, equivalently

A = s2I− α2φn(T̃) · φn(T̃)T , B = −α2φn(T̃) and D = (s2 − α2)I. �

Theorem 4 Let 0 < ε ≤ 1/2 and λmin be the minimum eigenvalue of Σp. If λmin ≥ ηε(Zn2+log q), then
SamplePZ returns a perturbation within a statistical distance O(n · ε) of DZn(2+log q),

√
Σp

.

Proof The interlacing theorems and Lemma 4.3 imply the conditions for Corollaries 4 and 5 are met.
Since there are Θ(n) convolutions, the output of SamplePZ is in the interval [1, (1+3ε)O(n)]DZn(2+log q),

√
Σp

and the statistical distance is within O(nε) by the binomial theorem. �

Storage and Precision Next, we bound the magnitude of the centers and variances given to the sampler
SampleZ. The one-dimensional variances are bounded by the interlacing theorems since they are computed
from a sequence of principal submatrices and their Schur complements from Σ2. This shows that the
variances f are all bounded by the maximum eigenvalue of Σ2, λmax. Regarding the centers, we assume all
one-dimensional Z-samples are within a distance of f

√
n of their centers since each is not with probability

O(2−n) if SampleZ is a rejection sampler ([28] Lemma 4.2). In addition, one can show that the largest
eigenvalue of φn(bd−1) is upper-bounded in magnitude by λmax/λmin by the interlacing theorems as well as
simultaneous diagonalization of anti-cyclic matrices. This implies each one dimensional center c is upper-
bounded in magnitude by n(log n)λ2

max/λmin = Õ(nλmax) with all but probability O(2−n+logn) when the
ratio of the maximum and minimum eigenvalue of Σ2 is constant.

Representing the rationals as fractions requires bit-length n log q integers due to the blow-up of numerators
and denominators from the inverse ring elements b−1 (this can be seen through Cramer’s rule). As a result,
one should use floating point numbers to represent the centers and covariances.

Assuming constant time for floating point arithmetic and SampleZ, SampleFZ runs in time Õ(n), like
the continuous case in the previous subsection. Therefore, SamplePZ runs in time Õ(n log q). Storage
consists of reading the trapdoor T̃ which consists of 2n log q small integers, then the algorithm stores 4n
floating point numbers for the input of Sample2Z .

Recent results suggest double precision floating point numbers are enough to preserve security in lattice-
based cryptosystems [46, 52], but one can use the lazy floating techniques of [23] for SampleZ and still yield
a version of SamplePZ that has quasi-linear time complexity on average if longer floating point precision
is needed. This would involve tweaking SampleFZ to record its path through the tree of recursions and
pass its path to SampleZ. Then, SampleZ could re-compute its center and variance in high precision with
access to previous samples and the trapdoor T̃.

Efficiency Assuming constant time for scalar computations (double precision), SamplePZ runs in time
Õ(n log q) since it has the same complexity as SampleP in the previous subsection.
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4.3 General Cyclotomic Rings

In this subsection, we show the techniques from the power of two cyclotomic case apply to the arbitrary
cyclotomic case. Let n = ϕ(n′), q be a positive integer, On′ = Z[x]/(Φn′(x)) be the n′-th cyclotomic ring

with Kn′ as the n′-th cyclotomic field over Q, and let T̃ ∈ O2×log q
n′ be a ring trapdoor matrix. Note, the

ring On′ is a lattice in the canonical embedding. Let rad(n′) be the product of all distinct prime divisors of
n′. Define the diagonal matrix of a field element, f ∈ Kn′ , as Ψ(f)i,i = f(ζi) where ζ is a complex primitive
n′-th root of unity and each i is a distinct element in the group of units modulo n′, i ∈ Z∗n′ . This is the
multiplication matrix of an element in the canonical embedding. Notice, Ψ(f)† = Ψ(f∗) since conjugation
is an automorphism of all cyclotomic fields over Q. We apply Ψ(·) element-wise to vectors and matrices over
Kn′ .

Now, our goal is to efficiently sample the lattice DO2+log q

n′ ,
√

Σp
where

Σp = s2I− α2

[
Ψ(T̃)
I

] [
Ψ(T̃)† I

]
and Ψ(T̃)† is the Hermitian transpose of Ψ(T̃). Sampling DO2+log q

n′ ,
√

Σp
reduces to sampling discrete gaus-

sians over Z in nearly the same steps as the previous subsection with z = (α−2 − s−2)−1:

1. Sampling p← DO2+log q

n′ ,
√

Σp
reduces to sampling DO2

n′ ,
√

Σ2×2
where

Σ2×2 = s2I− z ·Ψ(T̃)Ψ(T̃)† =

[
Ψ(a) Ψ(b)
Ψ(b∗) Ψ(d)

]
by first sampling p2 ← DOlog q

n′ ,
√
s2−α2 , updating the randomized center c := −α2

s2−α2 Ψ(T̃)p2, then

sampling p1 ← DO2
n′ ,c,
√

Σ2×2
.

2. Sampling DO2
n′ ,c,
√

Σ2×2
reduces to sampling DOn′ ,

√
Ψ(f)

for a positive definite field element f by

sampling q2 ← DOn′ ,c2,
√

Ψ(d)
, then by updating the center c1 := c1 + Ψ(bd−1)(q2− c2) and sampling

q2 ← DOn′ ,c2,
√

Ψ(a−bd−1b∗)
.

Similar to how SamplePZ must sample DZn log q,
√
s2−α2 , the first step above requires sampling the discrete

gaussian DOlog q

n′ ,
√
s2−α2 . This can be done in O(rad(n′)n′ log q) since spherical discrete guassians over the

ring On′ can be sampled in time O(rad(n′)n′) [42].
By using the randomized nearest plane algorithm to sample discrete gaussians on On′ with diagonal

covariances, sampling p statistically close to DO2+log q

n′ ,
√

Σp
is O(rad(n′)n′ log q) + Õ(n log q). We conclude

on observing that the above reduction holds for any number field which has complex conjugation as an
automorphism, though might not be as efficient for the ring/lattice of interest may have no sparse basis in
the canonical embedding.
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signature size. In K. Sako and P. Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013 -
19th International Conference on the Theory and Application of Cryptology and Information Security,
Bengaluru, India, December 1-5, 2013, Proceedings, Part II, volume 8270 of Lecture Notes in Computer
Science, pages 41–61. Springer, 2013.

[38] A. Langlois, S. Ling, K. Nguyen, and H. Wang. Lattice-based group signature scheme with verifier-
local revocation. In H. Krawczyk, editor, Public-Key Cryptography - PKC 2014 - 17th International
Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina, March 26-
28, 2014. Proceedings, volume 8383 of Lecture Notes in Computer Science, pages 345–361. Springer,
2014.
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