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Abstract
An m output pseudorandom generator G : ({±1}b)n → {±1}m that takes input n blocks of b

bits each is said to be `-block local if every output is a function of at most ` blocks. We show that
such `-block local pseudorandom generators can have output length at most Õ(2`b n d`/2e), by
presenting a polynomial time algorithm that distinguishes inputs of the form G(x) from inputs
where each coordinate is sampled from the uniform distribution on m bits.

As a corollary, we refute some conjectures recently made in the context of constructing
provably secure indistinguishability obfuscation (iO). This includes refuting the assumptions
underlying Lin and Tessaro’s [LT17] recently proposed candidate iO from bilinear maps.
Specifically, they assumed the existence of a secure pseudorandom generator G : {±1}nb →
{±1}2cb n as above for large enough c > 3 and ` � 2. (Following this work, and an independent
work of Lombardi and Vaikuntanthan [LV17b], Lin and Tessaro retracted the bilinear maps
based candidate from their manuscript.)

Our results actually hold for the much wider class of low-degree, non-binary valued
pseudorandom generators: if every output of G : {±1}n → �m (� = reals) is a polynomial (over
�) of degree at most d with at most s monomials and m > Ω̃(sn dd/2e), then there is a polynomial
time algorithm for distinguishing the output G(x) from z where each coordinate zi is sampled
independently from the marginal distribution on Gi . Furthermore, our results continue to hold
under arbitrary pre-processing of the seed. This implies that any such map G, with arbitrary seed
pre-processing, cannot be a pseudorandom generator in the mild sense of fooling a product
distribution on the output space. This allows us to rule out various natural modifications to
the notion of generators suggested in other works that still allow obtaining indistinguishability
obfuscation from bilinear maps.

Our algorithms are based on the Sum of Squares (SoS) paradigm, and in most cases can
even be defined more simply using a canonical semidefinite program. We complement our
algorithm by presenting a class of candidate generators with block-wise locality 3 and constant
block size, that resists both Gaussian elimination and sum of squares (SOS) algorithms whenever
m � n1.5−ε. This class is extremely easy to describe: Let � be any simple non-abelian group
with the group operation “∗”, and interpret the blocks of x as elements in �. The description of
the pseudorandom generator is a sequence of m triples of indices (i , j, k) chosen at random and
each output of the generator is of the form xi ∗ x j ∗ xk .
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1 Introduction

Understanding how “simple” a pseudorandom generator can be has been of great interest in
cryptography and computational complexity. In particular, researchers have studied the question
of whether there exist pseudorandom generators with constant input locality, in the sense that
every output bit only depends on a constant number of the input bits. Applebaum, Ishai and
Kushilevitz [AIK06] showed that, assuming the existence of one-way functions computable by
log-depth circuits, there is such a generator mapping n bits to n + nε bits for a small constant
ε > 0. Goldreich [Gol00] gave a candidate pseudorandom generator of constant locality that could
potentially have even polynomially large stretch (e.g. map n bits to ns bits for some s > 1).1 The
possibility of such “ultra simple” high-stretch pseudorandom generators has attracted significant
attention recently with applications including:

• Public key cryptography from “combinatorial” assumptions [ABW10].

• Highly efficient multiparty computation [IKO+11].

• Reducing the assumptions needed for constructing indistinguishability obfuscators (iO) [AJS15,
Lin16a, LV16, Lin16b, AS16, LT17].

The last application is perhaps the most exciting, as it represents the most promising pathway
for basing this important cryptographic primitive on more standard assumptions. Furthermore,
this application provides motivation for considering qualitatively different notions of “simplicity”
of a generator. For example, it is possible to relax the condition of having small input locality to
that of just having small algebraic degree (over the rationals), as well as allow other features such as
preprocessing of the input and admitting non-Boolean outputs.

At the same time, the application to obfuscation emphasizes a fine-grained understanding of the
quantitative relationship between the “simplicity” of a generator (such as its locality, or algebraic
degree) and its stretch (i.e., ratio of output and input lengths). For example, works of Lin and
Ananth and Sahai [Lin16b, AS16] show that a generator mapping n bits to n1+ε bits with locality 2
implies an obfuscation candidate based on standard cryptographic assumptions – a highly desired
goal, but it is known that it is impossible to achieve super-linear stretch with locality four (let alone
two) generator [MST06].

Very recently, Lin and Tessaro [LT17] proposed bypassing this limitation by considering a
relaxation of locality to a notion they referred to as block locality. They also proposed a candidate
generator with the required properties. If such secure PRGs exist, this would imply obfuscators
whose security is based on standard cryptographic assumptions, a highly desirable goal. Ananth
et al. [ABKS17] observed that the conditions can be relaxed further to allow generators without
a block structure, and even allow non-Boolean outputs, but their method requires (among other
restrictions) that each output is computed by a sparse polynomial of small degree.

In this paper we give strong limitations on this approach, in particular giving negative answers
to some of the questions raised in prior works. While a priori, questions of algebraic flavor, such as
the difference between the power of bilinear vs trilinear maps, and those of combinatorial essence
such as the difficulty of refuting random constraint satisfaction instances might seem unrelated,

1While Goldreich originally only conjectured that his function is a one-way function, followup work has considered
the conjecture that it is a pseudorandom generator, and also linked the two questions (see e.g., [App13, AR16]; see also
Applebaum’s survey [App16]).
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it turns out that techniques useful in the study of CSP refutation yield a barrier that, somewhat
surprisingly, seems to exactly correspond to what is needed to bypass the "trilinear map barrier" for
obfuscation constructions.

We complement our negative results with a simple construction of a candidate degree three
pseudorandom generator which resists known attacks (Gaussian elimination and sum-of-squares
algorithms) even for output length n1+Ω(1).

1.1 Our results

To state our results, let us define the notion of the image refutation problem for a map G that takes n
inputs into m outputs (e.g., a purported pseudorandom generator). Looking ahead, we will allow
maps to have non-Boolean outputs.2 Informally, the image refutation problem asks for a efficiently
computable certificate for a random string not being in the image of a purported generator G.

Definition 1.1 (Refutation problem). Let G : {±1}n → �m and Z be a distribution over �m . An
algorithm A is said to solve the G-image refutation problem w.r.t Z if on input z ∈ �m , A outputs
either ”refuted” or ”?” and satisfies:

• If z � G(x) for some x ∈ {±1}n then A(z) � ”?”.

• �z∼Z[A(z) � ”refuted”] > 0.5

Note that in particular if Z is the uniform distribution over {0, 1}m , then the existence of an
efficient algorithm that solves the G image refutation problem with respect to Z means that G is
not a pseudorandom generator - in fact, an image refutation algorithm, with probability at least 1/2,
shows that a random string from {±1}m is not in the image of G.
Remark 1.2 (Refutation vs Distinguishing). It is instructive to contrast the algorithmic tasks of image
refutation with the easier task of distinguishing the output of a pseudorandom generator from a
uniformly random string. In the latter case, we are typically concerned with distinguishing the
output distribution of a generator G : {±1}n → {±1}m when the input is chosen according to the
uniform distribution on {±1}m . It’s easy to see that a refutation algorithm immediately yields a
distinguisher. In general, refutation, however can be more powerful. For example, a refutation
algorithm can distinguish between the uniform distribution on {±1}m from the output distribution
of the generator even under arbitrary distributions on the seed. Thus, an image refutation algorithm
rules out not only the natural PRG construction but also natural modifications that involve using
some non-trivial pre-processing on the seed before inputting it into the generator, thus modifying
the input distribution. Such modifications were in fact suggested for candidate constructions of iO
from bilinear maps in the concurrent work of [LV17b]. While a distinguisher for the original PRG
may fail after this modification, a refutation algorithm continues to work. As we discuss later, this
is one of the key differences in our approach from that of [LV17b].

Our first result is a limitation on generators with “block locality” two:

Theorem 1.3 (Limitations of two block local generators). For every n, b, let G : {±1}nb → {±1}m be
such that, if we partition the input into n blocks of size b, then every output of G depends only on variables

2Allowing non-Boolean output can make a significant difference. For example, [LV17a, Theorem 6.1] show that every
degree two Boolean-valued function on {±1}n depends on at most four variables, which in particular means that it
cannot be used as the basis for a pseudorandom generator with super-linear output length. It also allows us to consider
polynomials that only take the values in {±1} on a subset of their inputs.
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inside two blocks. Then, there is an absolute constant K such that if m > K · 22b n log2 n, then there is an
efficient algorithm for the G-image-refutation problem w.r.t. the uniform distribution over {±1}m .

Theorem 1.3 yields an attack on the aforementioned candidate pseudorandom generator
proposed by Lin and Tessaro [LT17] towards basing indistinguishability obfuscator on bilinear
maps, as well as any other candidate of block-locality 2 compatible with their construction.

A special case that has been of considerable interest in literature is one where all outputs of the
PRG are computed by the same two-block-local predicate P : {±1}b → {±1}b → {±1}. For this case,
we give an image refutation algorithm that works whenever the stretch m � Ω̃(n2b). 3

Theorem 1.4 (Limitations of two block local generators with a single predicate, Theorem 5.3). For
every n, b, let G : {±1}nb → {±1}m be such that, if we partition the input into n blocks of size b, then every
output of G is the same predicate P applied to two b-bit blocks. Then, there is an absolute constant K such
that if m > K · 2b n log2 n, then there is an efficient algorithm for the G-image-refutation problem w.r.t. the
uniform distribution over {±1}m .

Yet another special case of interest is where the candidate generator obtained is chosen at
random: that is, the m pairs of blocks used to compute the output are chosen at random and,
further, each predicate computing an output is chosen randomly and independently conditioned
on being balanced. For this case, we show (in Theorem 5.16, Section 5.3) that we can again improve
our bound on the output length from Õ(22b n) to Õ(2b n):

Our next result applies to any degree d map, and even allows maps with non-Boolean output.
For the refutation problem to make sense, the probability distribution Z must be non-degenerate
or have large entropy, as otherwise it may well be the case that z ∼ Z is in the image of G with
high probability. For real-valued distributions, a reasonable notion of non-degeneracy is that
the distribution does not fall inside any small interval with high probability. Specifically, if we
consider normalized product distributions (where �Zi � 0 and �Z2

i � 1 for every i and the Zi are
independent), then we say that Z is c-spread (see Definition 4.1) if it is a product distribution and
�[Zi < I] > 0.1 for every interval I ⊆ � of length at most 1/c (where we can think of c as a large
constant or even a poly-logarithmic or small polynomial factor).

If Z is supposed to be indistinguishable from G(U), where U is the uniform distribution over
{±1}n , then these two distributions should agree on the marginals and in particular at least on their
first and second moments. Hence, we can assume that the map G has the same normalization as Z,
meaning that �G(U)i � 0 and �G(U)2i � 1.4 Our result for general low degree generators is the
following:

Theorem 1.5 (Limitations on degree d generators). Suppose that G : {±1}n → �m is such that for
every i ∈ [m] the map x 7→ G(x)i is a normalized polynomial of degree at most d with at most s monomials.
Let Z be a c-spread product distribution over �m . Then, there is some absolute constant K such that if
m > Kc2sn dd/2e log2 n, then there is an efficient algorithm for the G-image-refutation problem w.r.t. Z.

We believe the dependence on the degree d can be improved in the odd case from dd/2e to d/2.
Resolving this is related to some problems raised in the CSP refutation literature (e.g., see [Wit17,
Questions 5.2.3,5.2.7,5.2.8]).

3Unlike the other results in this paper, Theorem 1.4 builds upon the concurrent work [LV17b]. See Section 1.3 for a
detailed comparison between this work and [LV17b].

4We say that G is normalized if it satisfies these conditions. Clearly, any map can be normalized by appropriate shifting
and scaling.
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While for arbitrary polynomials we do not know how to remove the restriction on sparsity (i.e.,
number of non-zero monomials s), we show in Section 4 that we can significantly relax it in several
settings. Moreover, the applications to obfuscation require generators that are both low degree and
sparse; see Section 2. Nevertheless, we view eliminating the dependence on the sparsity as the main
open question left by this work. We conjecture that this can be done, at least in the pseudorandom
generator setting, as paradoxically, it seems that the only case where our current algorithm fails
is when the pseudorandom generator exhibits some “non-random” behavior. Improving this is
related to obtaining better upper bound on the stretch of block-local generators.

Up to the dependence on sparsity, Theorem 1.5 answers negatively a question of Lombardi
and Vaikuntanathan [LV17a, Question 7.2], who asked whether it is possible to have a degree d

pseudorandom generator with stretch n d
3
4 de+ε. It was already known by the work of Mossel et

al. [MST06] that such output length cannot be achieved by d-local generators; our work shows that,
at least for no(1)-sparse polynomials, relaxing locality to the notion of algebraic degree does not
help achieve a better dependency .

All of our results are based on the same algorithm: the sum of squares (SOS) semidefinite program
([Sho87, Par00, Las01]; see the lecture notes [BS17]). This is not surprising as for refuting CSPs,
semidefinite programs in general and the sum-of-squares semi-definite programming hierarchy in
particular are the strongest known general tools [RRS16, KMOW17]. This suggests that for future
candidate generators, it will be useful to prove resilience at least with respect to this algorithm.
Fortunately, there is now a growing body of techniques to prove such lower bounds.

Here, we establish that the sum-of-squares algorithm cannot be used to give an attack on PRGs
with stretch O(n2b). Note that the sum of squares algorithm captures all the techniques in literature
for efficiently refuting random CSPs including the algorithms in this paper and the work of [LV17b].
Our lower bound on the sum of squares algorithm below shows that using such techniques, one
cannot hope to attack two-block-local PRGs with stretch at most O(n2b) - for the case of identical
predicates computing all outputs of the generator, this, in particular, establishes the optimality of
our analyis of any technique captured by the sum of squares framework.

Concretely, in Section 6, we show that there is a natural sum-of-squares resistant construction
with a stretch of Θ̃(n2b).

Theorem 1.6 (See Theorem 6.1 for a formal version). For any b > 10 log log (n), there is a construction
of a two-block-local PRG G : ({±1}b)n → {±1}m for m � Ω(n2b) such that degree-Θ(n/24b) sum of squares
algorithm cannot solve the refutation problem for G.

For example, for b < ε/4 log (n), the above results rules out an attack on Ω(n2b)-stretch PRGs
using SoS algorithm that runs in time ∼ 2n1−ε .

While our results give strong barriers for degree two pseudorandom generators, they do not
rule out a degree three pseudorandom generator with output length n1+Ω(1). Indeed, we show a
very simple candidate generator that might satisfy this property. This is the generator G mapping
�n to �m where � is some finite non-abelian simple group (e.g., the size 60 group A5), where for
every ` ∈ [m], the `th output of G(x) is obtained as

G(x)` � xi ∗ x j ∗ xk

for randomly chosen indices i , j, k and ∗ is the group operation. This generator has block locality
three with constant size blocks and also (using the standard representation of group elements as
matrices) has algebraic degree three as well. Yet, it is a hard instance for the SOS algorithm which

4



encapsulates all the techniques used in this paper. While more study of this candidate’s security
is surely needed, there are results suggesting that it resists algebraic attacks such as Gaussian
elimination [GR02]. See Section 7 for details.

1.2 Prior works

Most prior works on limitations of “simple” pseudorandom generators focused on providing upper
bounds on the output length in terms of the locality. Cryan and Miltersen [CM01] observe that
there is no PRG with locality 2 and proved that there is no PRG with locality 3 achieving super
linear stretch (i.e., having input length n and output length n + ω(n) bits). Mossel, Shpilka, and
Trevisan [MST06] extended this result to locality 4 PRGs and constructed (non-cryptographic)
small-biased locality 5 generators with linear stretch and exponentially-small bias. They also
showed that a k local generator cannot have output length better than O(2k n dk/2e). Applebaum,
Ishai, and Kushilevits [AIK06] showed that, under standard cryptographic assumptions, there
are locality 4 PRGs with sublinear-stretch. Applebaum and Raykov [App13, AR16] related the
pseudorandomness and one-wayness of Goldreich’s proposed one-way function [Gol00] in some
regime of parameters.

Apart from our focus on degree in the place of locality, another feature that distinguishes our
work from much of the prior works on pseudorandom generators is the focus on the refutation
problem (certifying that a random string is not in the image of the generator) as opposed to the search
problem (given the output of a uniformly random seed, recover the seed). This is important for us
since we do not want to make the typical assumption that the input (i.e., seed) to the pseudorandom
generator is uniformly distributed, as to allow the possibility of preprocessing for it.

The refutation problem was extensively studied in the context of random constraint satisfaction
problems (CSPs). The refutation problem for a k-local generator with n inputs and m outputs
corresponds to refuting a CSP with n variables and m constraints. Thus, the study of limitations
for local generators is tightly connected to the study of refutation algorithm for CSPs. Most well
studied in this setting is the problem of refuting random CSPs - given a random CSP instance with
a predicate P, certify that it is far from satisfiable with high probability. There is a large body of
works on the study of refuting random and semirandom CSPs, starting with the work of Feige [Fei02].5

In particular, we now know tight relations between the arity (or locality) of the predicates and
the number of constraints required to refute random instances [AOW15a, RRS16, KMOW17] using
the sum-of-squares semidefinite programming hierarchy - the algorithm of choice for the problem.

Most relevant to the current paper are works from this literature that deal with predicates
that have large arity but have small degree d (or the related notion of not supporting (d + 1)-wise
independent distribution). Allen, O’Donnell, andWitmer [AOW15a] showed that random instances
of such predicates can be refuted when the number of constraints m is larger than Õ(kd nd/2). In his
thesis proposal, Witmer [Wit17] sketched how to generalize this to the semirandom setting, though
only for the case of even degree d. This is related to the questions considered in this work for
higher degree, though our model is somewhat more general, considering not just CSPs but arbitrary
low-degree maps.

The notion of ` block locality is equivalent to the notion of CSPs of arity ` over a large alphabet
(specifically, exponential in the block size). Though much of the CSP refutation and approximation

5In a random CSP the graph of dependence between variables and constraints is random, and we also typically consider
adding a random pattern of negations or shifts to either the inputs or the outputs of the predicates. In semirandom
instances [Fei07, FO07], the graph is arbitrary and only this pattern of negations or shifts is random.
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literature deals with CSPs over a binary alphabet, there have been works dealing with larger
alphabet (see e.g., [AOW15a]). The work of [BRS11] gives an SOS based algorithm for 2-local CSPs
over large alphabet (or equivalently, 2 block-local CSPs) as long as the underlying constraint graph
is a sufficiently good expander. However, their algorithm (at least their analysis) has an exponential
dependence in the running time on the alphabet size which is unsuitable for our applications.

The main technical difference between our work and prior results in the CSP literature, is that
since for CSPs we often think as the arity as constant, these works often had poor dependence on
this parameter, whereas we want to handle the case that it can be as large as nε or in some cases even
unrestricted. Another difference is that in the cryptographic setting, we wish to allow the designer
of a pseudorandom generator significant freedom, and this motivates studying more challenging
semirandom models than those typically used in prior works. We discuss these technical issues in
more depth in Section 3.

The algorithms in almost all the refutation works in the CSP literature can be encapsulated
by the sum of squares semidefinite programming hierarchy. Some lower bounds for this hierarchy,
showing tightness of these analysis, were given in [BCK15, OW14, KMOW17]. For the alphabet-size
sensitive setting of block-local PRGs, we give a lower bound in Section 6.

1.3 Comparison with [LV17b]

In a concurrent and independent work, Lombardi and Vaikuntanathan [LV17b] also analyzed the
possibility of a secure block-wise local PRG motivated by the work of Lin and Tessaro [LT17]. They
show that there exists an efficient polynomial-time distinguisher with the following property: for
any m > Ω̃(n2b) and any predicate P : {±1}b × {±1}b → {±1} in two blocks of size b, there’s an
efficient distinguishing algorithm for the following two distributions over {±1}m : 1) the uniform
distribution on {±1}m and 2) the output distribution of Goldreich’s PRG GH : ({±1}b)n → {0, 1}m
instantiated with a random graph H and the single predicate P computing all m outputs when
given a uniformly random nb bit string as input. 6

We point out the major differences between our results on block-local PRGs and that of [LV17b]
here.

1. Distinguishing vs Refutation: As discussed in Remark 1.2, our approach yields the stronger
refutation guarantees while that of [LV17b] yields a distinguisher. This allows us to show that
reinforcing the block-local (or low-degree, more generally) PRGs by allowing arbitrary input
preprocessing cannot lead to a larger stretch. This is important, as preprocessing is OK to
do in the context of the applications for obfuscation, and in fact this was one of the avenues
suggested for bypassing these general type of negative results.

2. Single Predicates vs Multiple Predicates: The work of [LV17b] only applies to the PRGs where
each output is computed using the same predicate. Our approach shows that block-local (or
low-degree) PRGs cannot achieve large enough stretch even if each output is computed using
a different predicate - a priori, one could hope that using different predicates for different
outputs could add significantly to the stretch of the PRG. This bottleneck is in fact inherent
in the technical approach of [LV17b]. In particular, our approach allows us to analyze the
natural candidate for 2-block-local generator obtained by applying independently chosen

6From private communication with [LV17b], we learned that in an updated version of their work, they use a refutation
algorithm from our work to extend their distinguisher to the case when the graph H is arbitrarily chosen.
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multiple random predicates to randomly chosen pairs of input blocks and yields an Õ(2b n)
upper bound on their stretch, see Section 5.3.

3. Random Graph vs Arbitrary Graphs: The work of [LV17b] only handles block-local PRGs when
the underlying graph G defining the generator is chosen at random. This was because [LV17b]
relied on CSP refutation results that work under the assumption of the instance being random.

4. Special Case of Single Predicate Block-Local PRGs: For the PRGs with all outputs computed by a
single predicate, [LV17b] show a distinguisher that works whenever the stretch of the PRG
is Ω(n2b). For this case, we show that our algorithm in fact guarantees image refutation at
the same stretch requirement. (A previous version of our work didn’t include this result on
PRGs with single predicate.) Our refutation algorithm (Theorem 1.4) is in fact inspired by the
application of the Chor-Goldreich Lemma in the work of [LV17b].

We note that the three first differences: image refutation as opposed to distinguishing, allowing
different predicates as opposed to a single predicate, and using arbitrary graphs as opposed to
random graphs, exactly correspond to the open questions raised by [LV17b].7 Thus, our results
block all the approaches that [LV17b] identified as potential strategies for repairing the iO candidate.
This suggests that, rather than a "patchable problem", there is perhaps a fundamental barrier to this
approach of obtaining iO from bilinear maps.

1.4 Paper organization

Section 2 explains the connection between simple generators and the construction of indistinguisha-
bility obfuscator. This explanation allows us to draw the conclusion that our algorithm renders
recently proposed methods ineffective for constructing obfuscation from standard cryptographic
assumptions. For those interested in additional details, Appendix B) contains more information
about constructing obfuscators and in particular on the new result of [LT17]. In Section 3, we
provide a high level overview of our algorithmic techniques. Section 4 contains our main algorithm
and analysis, and in particular proves Theorem 1.5. We use standard tools from the SDP/SOS
literature that can be found in Appendix A. In Section 5 we focus our attention on pseudorandom
generators with small block-locality and show tighter results than those achieved by our general
analysis, in particular we prove Theorem 1.3 as well as an even tighter result for generators with
single predicates (Theorem 5.3) and random two-block-local PRGs (Theorem 5.16). In Section 6, we
show that sum-of-squares algorithm cannot be used to prove sharper upper bounds on the stretch
than ∼ n2b . Finally, in Section 7 we present our class of candidate block-local generators.

2 Relating simple generators and program obfuscators

A program obfuscator [Had00, BGI+01] is a compiler that given a program (say represented as a
Boolean circuit) transforms it into another “scrambled” program which is functionally equivalent
but its implementation details are “hidden”, making it hard to reverse-engineer. The study of
indistinguishability obfuscation (iO) stands at the forefront of cryptographic research in recent years
due to two main developments. Firstly, Garg et al. [GGH+13b] suggested that this notion might be
achievable given sufficiently strong cryptographic multilinear maps, for which a candidate construction

7See Section 5 on page 12 of https://eprint.iacr.org/2017/301/20170409:183008.
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was given by [GGH13a]. Secondly, it was shown by Sahai and Waters [SW14] and numerous
follow-up works that iO is extremely useful for constructing a wide variety of cryptographic objects,
many of which are unknown to exist under any other assumption.

A fundamental question in the construction of iO from multilinear maps is the level of multilin-
earity. Without going into details, this essentially corresponds to the highest degree of polynomials
that can be evaluated by this object. Whereas multilinear maps of level 2, a.k.a bilinear maps, can be
constructed based on pairing on elliptic curves [Jou00, BF01] and have been used in cryptographic
literature for over 15 years, the first obfuscation candidates required polynomial level (in the “security
parameter” of the scheme). Proposed constructions ofmultilinearmaps for level> 2haveonly started
to emerge recently [GGH13a, CLT13, CLT15, GGH15] and their security is highly questionable.
Indeed, many concrete security assumptions were shown to be broken w.r.t all known candidates
with level > 2 [BGH+15, CGH+15, CHL+15, CLR15, HJ15, MF15, CFL+16, CJL16, MSZ16].

A beautiful work of Lin [Lin16a], followed by [LV16, Lin16b, AS16], showed that the required
level of multilinearity can be reduced to a constant (ultimately 5 in [Lin16b, AS16]). These
works show a relation between the required multilinearity level and the existence of “simple”
pseudorandom generators (PRGs). At a rudimentary level, the PRGs are used to “bootstrap” simple
obfuscation-like objects into full-fledged obfuscators. This approach requires PRGs mapping {0, 1}n
to {0, 1}m with m � n1+Ω(1), which can be represented as low-degree polynomials over �.

More accurately, for a security parameter λ and large enough n, the required output length
is m � n1+ε · poly(λ), for some fixed polynomial poly(·) which is related to the computational
complexity of evaluating the underlying cryptographic primitives. One can ensure this condition
as long as the output length is at least n1+Ω(1) by setting n to be a sufficiently large polynomial in λ.
The situation complicates further when trying to optimize the concrete constant corresponding to
the level of multilinearity by means of preprocessing as in [Lin16b, AS16, LT17]. The stretch bound
needs to hold even with respect to the preprocessed seed length (see Appendix B for more details).

Lin [Lin16b] and Ananth and Sahai [AS16] instantiated this approach with locality-5 PRGs,
which can trivially be represented as degree 5 polynomials. Their main insight was that for constant
locality PRGs, preprocessing only blows up the seed by a constant factor. However, even so, the
required stretch is impossible to achieve with locality smaller than 5 [MST06].

Implications of our Work to Candidate Bilinear-Maps-Based Constructions. Very recently, Lin
and Tessaro [LT17] proposed an approach to overcome the locality barrier and possibly get all
the way to an instantiation of iO based on bilinear maps. This could be a major breakthrough
in cryptographic research, allowing to base “fantasy” cryptography on well studied hardness
assumptions. Lin and Tessaro showed that it is sufficient if the PRG has low block-wise locality
for blocks of logarithmic size. Namely, if we consider the seed of the PRG as an b × n matrix for
b � O(log n), then each output bit can be allowed to depend on ` columns of this matrix. The
required output length is m � 2c·b n1+Ω(1) for some constant c. An explicit value for c is not given, but
the construction requires c > 3 which seems to be essential for this approach (see Appendix B).Block-
wise locality allows a possible way to bypass the impossibility results for standard (i.e., bitwise)
locality, and indeed Lin and Tessaro conjectured that there is a pseudorandom generator with
output length n1+Ω(1) and block-wise locality ` � 2, and proposed a candidate construction.

Theorem 1.3 shows that generators with block-wise locality 2 cannot have the stretch required by
the [LT17] construction, thus suggesting that their current techniques are insufficient for achieving
obfuscation from bilinear maps. While our worst-case result leaves a narrow margin for possible
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improvement of the obfuscation reduction to work with 1 < c < 2, our improved analysis for
random graphs and predicates (see Theorem 5.16 in Section 5.3) suggests that our methods may be
effective, at least heuristically, for generators with any c > 1.

Ananth et al. [ABKS17] observed that there is a way to generalize the [LT17] approach, so that it
is sufficient that the range of the PRG is not {0, 1}, but rather some small specified set, so long as the
degree (as a polynomial over the rationals) is bounded by the level of multilinearity. Furthermore,
pseudorandomness was no longer a requirement, but rather it is only required that the output of
the generator is indistinguishable from some product distribution (in particular, the one where each
output entry is distributed according to its marginal). This suggests that perhaps a broader class
of generators than ones that have been considered in the literature so far are useful for reducing
the degree of multilinearity. However, their approach imposes a number of restrictions on such
generators in order to be effective. In particular, it requires preprocessing which increases the
seed length by a factor of sc , for some c > 1, where s is the number of monomials in each output
coordinate of the generator. Therefore, Theorem 1.5 rules out the applicability of this technique for
degree 2 generators, as well.

Supporting Evidence for Block-Wise Locality 3. We show that while the Lin-Tessaro approach
might not yet bring us all the way to level 2, it is quite plausible that it implies a construction from
tri-linear maps. Namely, that any improvement on the state of the art would imply full-fledged
program obfuscators. Specifically, as explained in Section 1.1, we present a candidate generator
of block-wise locality 3, with constant size blocks. We show that this candidate is robust against
algorithms such as ours, as well as other algorithmic methods. See Section 7 for more details.

3 Our techniques

In this section we give an informal overview of the proof of our main result, Theorem 1.5 (i.e.,
limitations of low degree generators), focusing mostly on the degree two case, and making some
simplifying assumptions. For the full proof see Section 4. We also describe at a high level, the ideas
involved in the improved algorithm for the special cases of single-predicate generators (Theorem
1.4), random block-local generators (Theorem 5.16) and sum-of-squares lower bound (Theorem 1.6)
that shows a generator with stretch m � Ω(n2b) that is resistant to sum-of-squares based attacks
(an algorithm that encapsulates all our techniques.)

As we observe in Section 3.1 below, Theorem 1.5 can be used in a black-box way to obtain a
slightly weaker variant of Theorem 1.3, showing limitations of two block-local (and more generally
` block-local) generators. The full proof of Theorem 1.3, with the stated parameters, appears in
Section 5.

Our work builds on some of the prior tools used for analyzing local pseudorandom generators
and refuting constraint satisfaction problems, and in particular relies on semidefinite programming.
The key technical difference is that while prior work mostly focused on generators/predicates with
constant input locality or arity, we consider functions that could have much larger input locality, but
have small degree. The fact that (due to our motivations in the context of obfuscation) we consider
mappings with non-Boolean output also induces an extra layer of complexity.

We now describe our results in more detail. For simplicity, we focus on the degree two case,
which is the case that is of greatest interest in the application for obfuscation. Recall that a degree-two
map of �n to �m is a tuple of m degree two polynomials p̄ � (p1 , . . . , pm). We will assume that the
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polynomials are normalized in the sense that � pi(U) � 0 and � pi(U)2 � 1 for every i. Let Z be
some “nice” (e.g., O(1)-spread) distribution over �m . (For starters, one can think of the case that Z
is the uniform distribution over {±1}n , though we will want to consider more general cases as well.)
The image refutation problem for the map p̄ and the distribution Z is the task of certifying, given a
random element z from Z, that z < p̄({±1}n).

A natural approach is to use an approximation or refutation algorithm for the constraint
satisfaction problem obtained from the constraints {pi(x) � zi} for every i. The problem in our case
is that while each of these predicates is “simple” in the sense of having quadratic degree, it can
have very large locality or arity. In particular, the locality can be as large as s— the number of
monomials of pi—which we typically think of as equal to nε for some small ε > 0.

Much of the CSP refutation literature (e.g., see [AOW15a]) followed the so called “XOR principle”
which reduces the task of refuting a CSP with arbitrary predicates, to the task of refuting a CSP
where all constraints involve XORs (or products, when the input is thought of as ±1 valued) of the
input variables. Generally, applying this principle to arity s predicates leads to a 2s multiplicative
loss in the number of constraints, and also yields XORs that can involve up to s variables, which
is unacceptable in our setting. However, as shown by [AOW15a], the situation is much better
when the original predicate has small degree d (which, in particular, means it does not support a
(d + 1)-wise-independent distribution). In this case, utilizing the XOR principle results in a d-XOR
instance, and only yields roughly an sd loss in the number of constraints.

However, there are two issues with this approach. First, this reduction is not directly applicable
in the non-Boolean setting, which is relevant to potential applications in obfuscation. Second,
reducing to an XOR inherently leads to a loss in the output length that is related to the sparsity s,
while, as we’ll see, it may be sometimes possible to avoid losing such factors altogether.

Thus, our algorithm takes a somewhat different approach. Given the variables z1 , . . . , zm , we
consider the quadratic program

max
x∈{±1}n

m∑
i�1

zi pi(x) . (3.1)

The value of this program can be approximated to within a O(log n) factor using semidefinite
relaxation via the symmetric Grothendieck inequality of Charikar and Wirth [CW04]. Thus, it is
sufficient to show a gap in the value of this program between the “planted” case, where there is
some x such that pi(x) � zi for every i, and the case where the values zi are sampled from Z.

If there is some x such that pi(x) � zi for every i, then the value of the program (3.1) is at least∑m
i�1 z2

i which (using the fact that � z2
i � 1 and standard concentration bounds) we can assume to

be very close to m.8
On the other hand, consider the case where (z1 , . . . , zm) is chosen from Z. For every fixed

x ∈ {±1}n , we candefine m randomvariablesYx
1 , . . . ,Y

x
m such thatYx

i � zi pi(x) and letYx �
∑m

i�1 Yx
i .

Since Z is a product distribution, the random variables Yx
i are independent, and hence we can use

the Chernoff bound to show that with all but 0.01 · 2−n probability, the value of Yx will be at most
O(
√

nBm), where B is a bound on the magnitude of zi pi(x). We can then apply the union bound
over all possible x’s to show that the value of the quadratic program (3.1) is at most O(

√
nBm) with

probability 0.99.
For example, if each zi is a uniform element in {±1}, and |pi(x)| 6 O(1) for every x (as is the

case when pi is a predicate), then B � O(1) and so in this case the value of (3.1) will be at most

8Formally, in the case that pi(x) � zi wedo not assume anything about the distribution of z. However, if
∑m

i�1 z2
i < 0.9m,

we can simply choose to output ”?”.
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m/c as long as m � c2n. Setting c to the aforementioned approximation factor O(log n), we get a
successful refutation.

The resulting algorithm does the following. On input z1 , . . . , zm , run the SDP relaxation for (3.1)
and if the value is smaller than m/2, then output ”refuted” and declare that z is not in the image
of G. In the case where z � G(x) the value of the quadratic program, and so also its SDP relaxation,
will be at least 0.9m.9 On the other hand, if m � ω(n log n), then with high probability the value of
the quadratic program will be o(m/log n) and hence the relaxation will have value o(m).

In the discussion above we made two key assumptions:

• |pi(x)| 6 O(1) for every x ∈ {±1}n

• |zi | 6 O(1) for x ∈ {±1}n

In general both of these might be false. If pi has at most s non-zero monomials, and satisfies
� pi(U)2 � 1, then we can show that |pi(x)| 6

√
s for every x, using the known relations between

the `1 and `2 norms of pi’s Fourier transform. The second condition can be a little more tricky. If
the zi’s are subgaussian, then we can use Hoeffding’s inequality in place of the Chernoff bound, but
in general we cannot assume that this is the case. Luckily, it turns out that in our application we
can use a simple trick of rejecting outputs in which zi has unusually large magnitude to reduce to
the bounded case. The bottom line is that we get an efficient algorithm for the image-refutation
problem of an s-sparse quadratic map whenever m � sn log n.

The higher degree case reduces to the degree 2 by “quadratisizing” polynomials. That is, we
can consider a degree d polynomial on n variables as a degree 2 polynomial on the n dd/2e variables
obtained by considering all degree dd/2e monomials. Using this approach, we can generalize our
results (at a corresponding loss in the bound on the output) to higher degree maps.

3.1 Distinguishing generators with block-locality 2

A priori the notions of block locality and algebraic degree seem unrelated to one another. After all, a
two block local generator on size b blocks could have degree that is as large as 2b. However, we can
pre-process a length bn input x ∈ {±1}bn , by mapping it to an input x′ ∈ {±1}n′ for n′ � 2b n where
for every i ∈ [n], the ith block of x′ will consist of the values of all the 2b monomials on the ith block
of x. Note that a map of block locality ` in x becomes a map of degree ` in x′. Moreover, since every
output bit depends on at most ` blocks, each containing 2b variables, the number of monomials in
this degree ` polynomial is at most 2`b .

In this way, we can transform a candidate two block-local pseudorandomgeneratorG : {±1}bn →
{±1}m into a degree-2 sparsity-22b map G′ : {±1}n′ → �m . Note that even if G is a secure
pseudorandom generator, it is not necessarily the case that G′ is also a pseudorandom generator,
as the uniform distribution on x ∈ {±1}bn does not translate to the uniform distribution over
x′ ∈ {±1}2b n . However, the image of G′ contains the image of G, and hence if we can solve the
image refutation problem for G′, then we can do so for G as well. Applying the above result as a
black-box gives an efficient algorithm to break a two block-local generator of block size b as long as
the output length m satisfies

m � 22b n′ log2 n � 23b n log2 n .

9We ignore here the case where
∑

z2
i < 0.9m, in which case our algorithm will halt with the output ”?”.
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This is already enough to break the concrete candidate of Lin and Tessaro [LT17], but a more
refined analysis shows that we can improve the 23b factor to 22b . Furthermore, if we initialize the
construction with a random predicate on an expanding constraint graph we can bring this factor
down to 2b . Both improvements still use the same algorithm, only providing a tighter analysis of it
in these cases. We do not know if our analysis can be improved even further. Mapping out the
various trade-offs for block-local generators (or, equivalently, refuting very large alphabet CSPs), is
a very interesting open question.

The first improvement, described in Section 5.1, yields a better bound on the output of any
two-block-wise generator. As mentioned above, it uses the same algorithm. That is, we take
a candidate two-block-local generator G : {±1}bn → {±1}m and transform it into a degree two
mapping G′ : {±1}2b n → �m by “expanding out” the monomials in each block. We then run the
same algorithm as before on the generator G′, but the key idea is that because G′ arose out of the
expansion of a two-block-local generator, we can show a better upper bound on the objective value
of the quadratic program (3.1). Specifically, we can express each of these polynomials as a function
of the Fourier transform of the predicate that the original block local generator applied to each pair
of blocks. We can then change the order of summations, which enables us to reduce bounding (3.1)
to bounding 22b “simpler” sums, for which we able to obtain, in the random case, tighter bounds
with sufficiently high probability that allows to take a union bound over these 22b options. See
Section 5.1 for the full detail.

3.2 Improving the Stretch to n2b for the Single Predicate Case

The second improvement (Theorem 5.3), considers the special case where each output of the
generator is computed using the same predicate (as discussed before, this case is the principle focus
of [LV17b]). In this case, we show that our image refutation algorithm works whenever m (the
number of outputs) of the generator satisfies m � Ω̃(n2b). This matches the stretch required for the
distinguisher of [LV17b] to work.

We now describe at a high level, how our refutation algorithm works. The refutation algorithm
is given a string z ∈ {±1}m and description of the generator G that includes the underlying graph
G on n vertices and the predicate P : {±1}b × {±1}b → {±1}. As a first step, we will reduce the
problem of image refuting G to image refuting a somewhat simpler G′ where the predicate P will
be replaced by a “product-predicate” P′. A predicate P′ : [q] × [q] → {±1} is a product predicate
if it can be written as a product of two functions f : [q] → {±1} and 1 : [q] → {±1} applied to
each of the inputs to P. In the second step, we will give an efficient algorithm for image-refuting
two-block-local, single product predicate PRG.

We now describe the first step. Here, the algorithm wishes to certify that there’s no x ∈ ({±1}b)n
such that G(x) � z. Fix any x ∈ ({±1}b)n . For this fixed x, consider the distributionD on inputs to P,
generated by taking a random edge {i , j} in G and outputting (xi , x j).We will show, using a result
of Linial and Schraibman shown in the context of relating marginal complexity to various measures
of communication complexity, that onD (more generally, any distribution on inputs to P), there’s
a product predicate F(α, β) � f (α) · 1(β) such that �(α,β)∼D[P(α, β) · F(α, β)] > Θ(2−b/2). Thus, if
there is an x ∈ ({±1}b)n such that G(x) � z, then for the same x, �i∼[m][G′(x)i · zi] > Θ(2−b/2). If
we can now certify an upper bound of � 2−b/2 on �i∼[m][G′(x)i · zi] for every x and with high
probability over the draw of z, we’d obtain an image refutation algorithm. This latter question
turns out to be simpler because of the product nature of the predicate defining G′.

This step in our algorithm is inspired by the use of a result of Chor-Goldreich in the work of
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[LV17b]. This lemma says10 that for the uniform distribution on the inputs to P, there’s a product
predicate that has a correlation of Θ(2−b/2) with P. In the work of [LV17b] this observation is used
to replace P by a constant-alphabet predicate (obtained by massaging the constituents of the product
predicate given by Chor-Goldreich lemma above) to obtain a simplified PRG on constant-alphabet
size such that when the seed is chosen according to the uniform distribution on ({±1}b)n , the
modified PRG’s output distribution correlates well with that of the original one. Thus, a strong
enough refutation algorithm (they use one due to [AOW15a]) applied to the modified PRG is
enough to give a distinguisher. Observe that this approach doesn’t give a refutation algorithm
because the key step of replacing P with f · 1 relies on x being drawn uniformly from [q]n .

Instead of using off-the-shelf refutation algorithms (such as that of [AOW15b]), we solve the
image refutation problem for single product predicate block-local PRGs by giving a direct, simple
algorithm – this algorithm crucially works without the knowledge of the product predicate itself
or even the block size parameter b. This is important, as our argument that obtains G′ is not
constructive, in particular, the distribution that the product predicate approximates P on is a
complicated function of the (purported) arbitrary assignment x and the graph G. Thus, our
product-predicate refutation algorithmmust work without the explicit knowledge of the underlying
product predicate.

Indeed, we show (in Lemma 5.7) that given a graph G on n vertices with m � n edges and any
string z, we can (in one shot) show that z (w.h.p) is not in the image of any of the (infinitely many!)
generators obtained by using any two-block-local product predicate of arbitrarily large block size
with the same underlying graph G. In particular, our refutation algorithm does not need to know
the predicate itself or even the number of bits in each block of the seed for the generator!

3.3 Random Block Local Generators

We analyze the natural candidate of multiple-predicate, block-local generators, where both the
underlying graph and each of the predicates are chosen uniformly at random (conditioned on
the predicates being balanced), and show (see Section 5.3) that our refutation algorithm works
whenever m � Ω(n2b). As before, our idea to consider the problem of maximizing the polynomial∑

i zi pi(x). We work with the matrix M such that our target polynomial
∑

i zi pi(x) is a bilinear form
of M. To obtain a certificate for the upper bound on the polynomial, it then suffices to show a
strong enough upper bound on the spectral norm of the matrix M – which we show is small enough
(w.h.p) because of the randomness involved in defining the generator. M has some dependencies
between its various entries that preclude the use of standard bounds to upper bound the spectral
norm. So we compute an upper bound on the spectral norm using the standard trace method that
reduces the problem to some combinatorial properties that are simple to reason about.

4 Image refutation for low degree maps

In this section we will prove our main technical theorem, which is an algorithm for the image
refutation problem for every low degree map and “nice” or “non-degenerate” product distributions.
We start by defining the notion of non-degenerate distributions, which amounts to distributions

10We use a somewhat different way to describe the use Chor-Goldreich lemma by [LV17b] in order to show how it
inspires our approach.
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that do not put almost all their probability mass on a small (compared to their standard deviation)
interval.

Definition 4.1 (c-spread distributions). Let Z be a product distribution over �m with �Zi � 0
and �Z2

i � 1 for every i. We say that Z is c-spread if for every interval I ⊆ � of length 1/c, the
probability that Zi ∈ I is at most 0.9.

Normalized low-degree maps are polynomials over {±1}n - we use the standard Fourier basis
(e.g., see [O’D14]) to represent them:

Definition 4.2 (Fourier notation). For any S ⊆ [n], let χS(x) � Πi∈Sxi for any x ∈ {±1}n . A
function p : {±1}n → � can be uniquely expanded as

∑
S⊆[n] p̂(S)χS where the "Fourier coefficients"

p̂(S) � �x∼{±1}n [χS(x)p(x)] and the expectation is over the uniform distribution over the hypercube
{±1}n . Fourier coefficients satisfy the Parseval’s theorem: �x∼{±1}n p(x)2 �

∑
S⊆[n] p̂(S)2.

We define a normalized degree d map to be a collection of degree d polynomials p̄ � (p1 , . . . , pm)
mapping {±1}n to �m such that � pi(U) � 0 and � pi(U)2 � 1 for every i where U is the uniform
distribution.11

Our main technical theorem is the following:

Theorem 4.3 (Main theorem). There is an efficient algorithm that solves the refutation problem for every
normalized degree d map p̄ and c-spread probability distribution Z as long as

m > K · c2s(p̄)n dd/2e log2(n) (4.1)

for some global constant K.

To state the result in a stronger form, we use a somewhat technical definition for the parameter
s(p̄), which is deferred till later (see Equation (4.5) and Definition 4.9 below). However, one
important property of it is that for every normalized polynomial map p̄ � (p1 , . . . , pm), s(p̄)
is smaller than the maximum sparsity (i.e., number of monomials) of the polynomials. Hence,
Theorem 4.3 implies Theorem 1.5 from Section 1.1. The fact that we only require a factor of s(p̄) as
opposed to the sparsity makes our result stronger, and in some cases this difference can be very
significant.

The algorithm for proving Theorem 4.3 is fairly simple:

11Note that we are using the same normalization for the Zi ’s and pi(U), which makes sense in the context of a
pseudorandom generator applied to the uniform distribution over the seed. If we wanted to consider other distributions
D over the seed, we would need to require that � pi(D)2 is not much smaller than � pi(U)2. This condition is satisfied by
many natural distributions.
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Refutation algorithm
Input: z ∈ �m , p1 , . . . , pm normalized polynomials of degree d in {±1}n .
Output: ”refuted” or ”?”.
Operation:

1. Let I � {i ∈ [m] : z2
i 6 100}. Let µi be the conditional expectation of zi conditioned on

z2
i 6 100.

2. If
∑

i∈I(zi − µi)2 < m/(10c) return ”?”.

3. Let θ be the value of the degree dd/2e SOS relaxation for the degree d polynomial optimization
problem

max
x∈{±1}n

∑
i∈I

(zi − µi)pi(x) (4.2)

4. Return ”refuted” if θ −∑
i∈I µi(zi − µi) < m/(10c) otherwise return ”?”.

The degree d sum of squares program is a semidefinite programming relaxation to a polynomial
optimization problem, which means that the value θ is always an upper bound on (4.2). The most
important fact we will use about this program is the symmetric Grothendieck Inequality of Charikar
and Wirth [CW04], which states that in the important case where d � 2, the integrality gap of this
program (i.e., ratio between its value and the true maximum) is O(log n).

For this case, where d � 2, this program is equivalent to the semidefinite program known as
the basic SDP relaxation for the corresponding quadratic program. This means that θ can also be
computed as

max
X∈�(n+1)×(n+1)
X�0, Xii�1 ∀i

tr(A · X) , (4.3)

where A is an (n + 1) × (n + 1)matrix that represents the quadratic polynomial
∑

i∈I(zi − µi)pi , in the
sense that for every i , j ∈ [n], Ai , j corresponds to the coefficient of xi x j in this polynomial, and for
every i ∈ [n], Ai ,n+1 � An+1,i is the coefficient of xi .

We now turn to proving Theorem 4.3. We start by showing the case that d � 2. The proof for
general degree will follow by a reduction to that case.

4.1 Degree 2 image refutation

In this section, we prove Theorem 4.3 for the case d � 2, which is restated below as the following
lemma:

Lemma 4.4 (Image refutation for degree 2). There is an efficient algorithm that solves the refutation
problem for every normalized degree 2 map p̄ and c-spread probability distribution Z as long as

m > K · c2s(p̄)n log2 n (4.4)

for some absolute constant K > 0.

In this case, the parameter s(p̄) is defined as follows:

s(p1 , . . . , pm) � 1
m max

x∈{±1}n

m∑
i�1

pi(x)2 (4.5)
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By expanding each pi in the Fourier basis as pi �
∑

p̂i(S)χS, we can see that maxx∈{±1}n |pi(x)| 6∑ |p̂i |. Hence, in particular, s(p̄) is smaller than the average of the `1 norm squared of the pi’s
Fourier coefficients. Using the fact that � pi(U)2 � 1, and the standard relations between the `1 and
`2 norms, we can see that if every one of the pi polynomials has at most s monomials (i.e., non-zero
Fourier coefficients), then s(p̄) 6 s.

We now prove Lemma 4.4. To do so, we need to show two statements:

• If z � p̄(x), then the algorithm will never output ”refuted”.

• If z is chosen at random from Z, then the algorithm will output ”refuted” with high
probability.

We start with the first and easiest fact, which in fact holds for every degree d.

Lemma 4.5. Let z ∈ �m be such that there exists an x∗ such that pi(x∗) � zi . Then, the algorithm does not
output ”refuted”.

Proof. Suppose otherwise. We can assume that
∑

i∈I(zi −µi)2 > m/(10c) as otherwise wewill output
”?”. Since the SDP is a relaxation, in particular, the value θ is larger than

∑
i∈I(zi − µi)pi(x∗) �∑

i∈I(zi − µi)zi under our assumption. Hence, θ −∑
i∈I(zi − µi)µi >

∑
i∈I(zi − µi)2 > m/(10c) �

Wenow turn to themore challenging part, which is to show that the algorithmoutputs ”refuted”
with high probability when z is sampled from Z. We start by observing that by Markov’s inequality,
for every i, the probability that z2

i > 100� z2
i � 100 is at most 0.99. Hence, the expected size of the

set I defined by the algorithm is at least 0.99m and using Chernoff’s bound it follows with very
high probability that |I | > 0.9m. Let Z′i be the random variable Zi conditioned on the (probability
> 0.99) event that Z2

i 6 100, and µi � �Z′i . Note that by definition (Z′i)2 6 100 with probability
1, i.e. |Z′i | 6 10 with probability 1, which in turn implies that |µi | 6 10. By the “spread-out-ness”
condition on Zi and the union bound, �[Z′i < [µi − 1

2c , µi +
1
2c ] > 0.1 − 0.01 and hence, in particular,

�[(Z′i − µi)2] > 1
500c2 .

We can consider the process of sampling the zi values from the algorithm as being obtained by
first choosing the set I, and then sampling zi independently from the random variable Z′i for every
coordinate i ∈ I. The following lemma says that there will not be an integral (i.e., {±1}-valued)
solution to the SDP with large value.

Lemma 4.6. With probability at least 0.99 it holds that for every x ∈ {±1}n ,∑
i∈I

(z′i − µi)pi(x) 6 O(
√

nms(p̄)) (4.6)

Proof. We use the union bound. For every fixed x ∈ {±1}n , we let αi � pi(x). We know that∑
i∈I α

2
i 6

∑m
i�1 α

2
i 6 maxx∈{±1}n

∑
pi(x)2 � ms(p̄). Since |z′i − µi | 6 20, it follows that (z′i − µi) is

sub-gaussian with constant standard deviation. Therefore,
∑

i∈I(z′i − µi)αi is sub-gaussian with
zero expectation standard deviation O(

√
ms(p̄)). Therefore, there exists a value O(

√
nms(p̄)) s.t.

the probability that
∑

i∈I(z′i − µi)αi exceeds it is smaller than 0.001 · 2−n . Applying the union bound
implies the lemma. �
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Lemma 4.4 will follow from Lemma 4.6 using the fact that the SDP gives O(log n) approximation
factor for true maximum. In particular the symmetric version of Grothendieck inequality shown by
[CW04] implies that the value θ computed by the algorithm is at most a factor of O(log n) larger
than the true maximum of the integer program (4.2), see Theorem A.3 in Appendix A.

To finish the proof, we need to ensure that (after multiplying by O(log n)) the bound on the
RHS of (4.6) will be smaller than m/(100c) + ∑

i∈I(zi − µi)µi . Indeed, since |µi | 6 10, with high
probability over the choice of the zi’s (which are chosen from Z′i), the quantity

∑
i(zi − µi)µi is

at most, say, 10 times the standard deviation, which is O(
√

m) � m/c. (Here no union bound is
needed.) So, by plugging in (4.6) what we really need is to ensure that

m/(20c log n) > O(
√

nms(p̄))

or that
m > O(ns(p̄)c2 log2 n)

which exactly matches the conditions of Lemma 4.4 hence concluding its proof (and hence the proof
Theorem 4.3 for the d � 2 case).

4.2 Refutation for d > 2

In this section, we show how to reduce the general degree d case to the case d � 2, hence completing
the proof of Theorem 4.3. The main tool we use is the notion of “quadratizing” a polynomial.
That is, we can convert a degree d polynomial p on n variables into a degree two polynomial p̃ on
(n + 1)dd/2e variables by simply encoding every monomial of degree up to dd/2e of the input as a
separate variable.

Definition 4.7 (Quadratization). Let p be a degree d polynomial on �n which we write in Fourier
notation (see Definition 4.2) as p �

∑
|S |6d p̂(S)χS. Let d′ � dd/2e Then the quadratization of p is the

degree two polynomial q on
( n
6d′

)
variables defined as:

q(y) �
∑
S,T

p̂(S ∪ T)yS yT

where the elements of the
( n
6d′

)
dimensional vector y are indexed by sets of size at most d′, and this

sum is taken over all sets S, T ⊆ [n] of size at most d′ such that every element in S is smaller than
every element of T, |S | � max{|S ∪ T |, d′}.

The following simple properties ensured by quadratization are easy to verify:

Lemma 4.8. Let q be the quadratization of a degree d polynomial p on
( n
6d′

)
variables for d′ � dd/2e . Then,

1. For any x ∈ {±1}n there exists y ∈ {±1}( n
6d′) such that q(y) � p(x).

2.
∑

S,S′ q̂({S, S′})2 �
∑

T p̂(T)2.

3. max
y∈{±1}(

n
6d′) q(y) 6 ∑

|T |6d |p̂(T)|.

Proof sketch. For 1, we let yS � χS(x) for every |S | 6 d′. For 2 and 3, we note that the set of nonzero
Fourier coefficients of p and q is identical because for every set |U | 6 d there is a unique way
to split it into disjoint sets S, T of size at most d′ where S is the first min{|U |, d′} coordinates of
U, and q̂({S, T}) � Û. For all other pairs S, T that do not arise in this manner, it will hold that
q̂({S, T}) � 0. This means that both the `1 and `2 norms of the vector q̂ are the same as that of the
vector p̂, implying both 2 and 3. �
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We define the complexity of the degree d normalized map p̄ as the complexity of the degree 2
normalized map of the quadratizations of pis:

Definition 4.9 (Complexity of degree d normalized maps). Let p̄ be a normalized degree d map
and let q̄ be its quadratization. Then, we define s(p̄) as s(q̄) from (4.5).

Remark 4.10. Part 2 of Lemma 4.8 shows that if p̄ is normalized the so is its quadratization q̄. Part 3
of Lemma 4.8 shows that s(p̄) 6 sparsity(p) for any normalized degree d map p.

We can now complete the proof of Theorem 4.3.

Proof of Theorem 4.3. Let p̄ � (p1 , . . . , pm) be a normalized degree d polynomial map and let
z1 , . . . , zm be the inputs given to the algorithm. If there is an x such that pi(x) � zi for every i, then
by Lemma 4.5 (which did not assume that d � 2), the algorithm will return ”?”.

Suppose otherwise, that z1 , . . . , zm are chosen from the distribution Z. Recall that our algorithm
computes θ to be the value of the degree 2d′ SOS relaxation for the quadratic program (4.2). This
value satisfies

θ � max
µ(x)
�̃
µ

[∑
i∈I

(zi − µi)pi(x)
]
,

where the maximum is over all degree 2d′ pseudo-distributions satisfying {x2
i � 1} for every i 6 n.

If µ is a degree 2d′ pseudodistribution over {±1}n then we can define a degree 2 pseudodistri-
bution µ′ over {±1}( n

d′) by having y ∼ µ be defined as yS � χS(x) for x ∼ µ.12 Let q̄ � (q1 , . . . , qm)
be the quadratization of p̄ � (p1 , . . . , pm). Then the distribution µ′ above demonstrates that θ 6 θ′

where

θ′ � max
µ′(y)
�̃
µ′

[∑
i∈I

(zi − µi)qi(x)
]
.

But since this is the value of a degree two SDP relaxation for a quadratic program, we know by
Theorem A.3 that it provides an O(log n) approximation factor, or in other words that

θ′ 6 O(log n) max
y∈{±1}(

n
d′)

∑
i∈I

(zi − µi)qi(y) . (4.7)

Since the qi’s are degree two polynomials over O(nd′) variables, Lemma 4.6 implies that when
z1 , . . . , zm are randomly chosen from Z, w.h.p. the RHS of (4.7) is at most O((log n)

√
nd′ms(q̄)) �

O((log n)
√

nd′ms(p̄)). Setting this to be smaller than (m/10c2) recovers Theorem 4.3. �

5 Block local generators

Recall that a map G : {±1}bn → {±1}m is ` block-local if the input can be separated into n blocks of b
bits each13, such that every output of G depends on at most ` blocks.

In this section we will show tighter bounds for block-local generators than those derived from
the theorem in Section 4. Of particular interest is the case of block-locality 2 due to its applications
for obfuscation from bilinear maps. In Section 5.1 we show a tighter analysis of our algorithm from

12While it is clear that this operation makes sense for actual distributions, it turns out to be not hard to verify that it
also holds for pseudodistributions, see the lecture notes [BS17].

13Our algorithm works even if the blocks intersect arbitrarily. The construction in [LT17] uses only non-intersecting
blocks.
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Section 4 for any block-local generator. This yields a distinguisher for any block-locality 2 generator
with m � 22b n log n. In Section 5.3, we analyze a particularly natural instantiation for 2-block-local
PRGs - a random predicate and random constraint graph and show that our distinguisher works
for an even smaller m � 2b n. In fact, we show that one can even use a simpler distinguisher that
computes the largest singular value of a certain matrix arising out of the input instead of running a
semidefinite program.

5.1 Bounds on general block-local generators

In this subsection we prove the following result:

Theorem 5.1 (Limitations of block local generators). For every `-block-local G : {±1}bn → {±1}m there
is an efficient algorithm for the G image refutation problem w.r.t. the uniform distribution over {±1}m as
long as

m > (K log n)2`b(n + 2`b)d`/2e ,

where K is a constant depending only on `.
If ` is constant and b � o(n) (as is mostly the case), the above translates to refutation for m >

(K log n)2`b n d`/2e .

Theorem 1.3 from the introduction is the special case of Theorem 5.1 for the case ` � 2, and so
in particular Theorem 5.1 breaks any 2 block local pseudorandom generator with stretch Ω̃(n22b) to
instantiate the bilinear-map based construction of iO of [LT17].

Remark 5.2. A slightly weaker bound can be obtained by a direct application of Theorem 4.3. We
sketch the argument here.

Let x1 , x2 , . . . , xn denote elements of {±1}b describing the n input blocks. Let xi , j denote the jth

bit of the ith block. For any predicate P, a function of `-blocks, say x1 , x2 , . . . , x` , we can write the
Fourier polynomial

P(x1 , x2 , . . . , x`) �
∑

S1⊆1×[b],S2⊆2×[b],...,S`⊆`×[b]
P̂(S1 ∪ S2 ∪ . . . ∪ S`)

∏
i6`

χSi (xi).

Let xi ,S � χS(xi) for any S ⊆ i × [b] - that is, xi ,S is the representation of the b bits of the block in
the “Hadamard encoding” as 2b bits. This encoding of n blocks leads to n′ � n2b variables. Then,
the above Fourier polynomial can be equivalently written as

P(x1 , x2 , . . . , x`) �
∑

S1⊆1×[b],S2⊆2×[b],...,S`⊆`×[b]
P̂(S1 ∪ S2 ∪ . . . ∪ S`)

∏
i6`

xi ,S .

Observe that the degree of P is ` in the new variables xi ,S. Thus, every `-local PRG with m
outputs and n inputs is equivalent to a degree `, `2b-arity predicates on n′ � n2b variables. Such
polynomials have sparsity at most 2`b .

Applying Theorem 4.3 now yields that if

m > K log (n)2`b n′d`/2e � K log (n)2`b n d`/2e(2b`)d`/2e ,

then our algorithm solves the image refutation problem establishing that if the output is longer
than m, the `-block local PRG is not secure. For ` � 2 in particular, the above analysis yields a
threshold of

m � K log (n)22b(n2b`) � K log (n)23b n.
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As we show next, the analysis of our algorithm can be tightened in the special case when P is a
predicate and, in particular, yields that m > K log (n)22b n is enough for our algorithm to establish
that 2-block-local PRGs are insecure.

Proof of Theorem 5.1. We begin with a detailed proof for the case of ` � 2. Let G be a graph on
n blocks with m edges and let pi , j be a collection of 2-block-local predicates for (i , j) ∈ G such
that each pi , j : [b] × [b] → {0, 1} is an arbitrary predicate on 2b bits. Let z ∈ {±1}m be generated
uniformly at random – one bit for every edge (i , j) of the graph G. We will certify that there is no
x ∈ ({±1}b)n such that pi , j(xi , x j) � zi , j for every 1 6 i 6 m with high probability.

For every (i , j) ∈ G, we can write pi , j(xi , x j) �
∑

S,T⊆[b] p̂i , j(S, T)χS(xi)χT(x j). We think of
this as a degree 2 polynomials qi , j in the n2b variables χS(xi) for S ⊆ [b] and 1 6 i 6 n. We
run the algorithm from Section 4.1 on the degree 2 polynomials qi , j . As outlined above, our
analysis in Theorem 4.3 can be used to show that the refutation algorithm succeeds so long as
m � K log (n)22b(n2b`) � K log (n)23b n. Here, we give a better analysis of the SDP value θ in the
algorithm for this special case.

We write: ∑
(i , j)∈G

zi , j pi , j(x) �
∑
(i , j)∈G

∑
S,T⊆[b]

zi , j · p̂i , j(S, T)χS(xi)χT(x j).

Changing the order of summations, this yields:∑
(i , j)∈G

zi , j pi , j(x) �
∑

S,T⊆[b]

∑
(i , j)∈G

zi , j · p̂i , j(S, T)χS(xi)χT(x j). (5.1)

We recall that the SDP relies on the expansion of x into a vector y ∈ {±1}n2b , where yi ,S � χS(xi).
Therefore, our SDP relaxation will find y ∈ {±1}n2b that approximately maximizes the quadratic
function

∑
S,T⊆[b]

∑
(i , j)∈G zi , j · p̂i , j(S, T)yi ,S y j,T . Analogously to Lemma 4.6, we will show that for a

large enough constant C it holds that

�
z∈{±1}m

 max
y∈{±1}n2b

∑
S,T⊆[b]

∑
(i , j)∈G

zi , j · p̂i , j(S, T)yi ,S y j,T > C
√

22b(n + 2b)m
 < 0.01 , (5.2)

which, along with the symmetric Grothendieck inequality, completes the proof analogous to the
argument in the proof of Theorem 4.3. To prove that (5.2) holds, we will show that for all S, T ⊆ [b]
it holds that

�
z∈{±1}m

 max
y∈{±1}n2b

∑
(i , j)∈G

zi , j · p̂i , j(S, T)yi ,S y j,T > C
√
(n + 2b) ·

√ ∑
(i , j)∈G

|p̂i , j(S, T)|2
 < 0.01 · 2−2b .

(5.3)
Applying the union bound over all 22b possible values of S, T, together with Cauchy-Schwarz,
shows that if (5.3) holds then so does (5.2). To apply Cauchy-Schwarz we recall that p̄ are predicates
and thus,

∑
S,T⊆[b] p̂i , j(S, T)2 � 1 for every (i , j) ∈ G. Thus,∑

(i , j)∈G

∑
S,T⊆[b]

|p̂i , j(S, T)|2 � m .
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Finally, (5.3) holds by concentration. For any fixed S, T, the expression in (5.3) depends on
{yi ,S , y j,T}i , j∈[n] which is a set of at most 2n variables (out of the total n2b). Since the zi ’s are uniform
in {±1}, by standard Chernoff bounds, it follows that for an appropriate constant C,

�
z


∑
(i , j)∈G

zi , j · p̂i , j(S, T)yi ,S y j,T > C
√
(n + 2b) ·

√ ∑
(i , j)∈G

|p̂i , j(S, T)|2
 < 0.01 · 2−(2n+2b) . (5.4)

Applying the union bound over all 22n possible values of the set {yi ,S , y j,T}i , j∈[n] implies (5.3) and
thus also (5.2).

The case of general ` is analogous. We first expand the blocks and obtain n2b variables. Over
the new set of variables, our predicates are functions of degree `. We quadratize them as in the
proof of Theorem 4.3 and then apply the argument above to the resulting quadratic polynomials.
We omit further details here.

�

5.2 Sharper Bounds on the Stretch of Block-Local PRGs with a Single Predicate

Next, we prove a tighter upper bound of Θ̃(n2b) on the stretch of a block local PRGs with a single
predicate P (instead of a different predicate for each output) with block-locality 2. The following is
the main result of this section:

Theorem 5.3. For b ∈ �, let G : {±1}bn → {±1}m be a two block-local PRG defined by an instance graph
G([n], E) with m � |E | edges and an arbitrary predicate P : {±1}b → {±1}b → {±1} such that for any
seed x ∈ ({±1}b)n , for every e ∈ E, Ge � P(xe1 , xe2). Let z ∈ {±1}m .

Then, for any m > O(log2 (n))n2b , there exists a poly(m , n) time algorithm that takes input G, z and
P and outputs ”refuted” or ”?” with the following guarantees:

1. If the output is ”refuted”, then,

max
x∈({±1}b)n

∑
(i , j)∈E

P(xe1 , xe2)ze < 0.99m.

2. When z ∈ {±1}m is chosen uniformly at random, then �[ Algorithm outputs ”refuted”] > 1− 1/n.

The proof is based on two key observations. The first component shows how to refute a special
class of generators that we call bipartite single-product-predicate generators with stretch independent
of the block-size. The second one shows how to reduce the image refutation problem for arbitrary
single-predicate two-block local generators to this special case at the cost of blowing up the stretch
by at most a 2b factor.

5.2.1 Image Refutation for Bipartite Single Product Predicate Generators

Webegin bydefining the class of productpredicates and bipartite single-product-predicate generators.

Definition 5.4 (Product Predicates). A two block-local predicate F : {±1}b × {±1}b → {±1} is said
to be product, if there exist L : {±1}b → {±1} and R : {±1}b → {±1} such that F(x , y) � L(x)R(y).
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Definition 5.5 (Bipartite Single-Product-Predicate Generators). A two-block local, bipartite, single-
product-predicate generator G : {±1}bn × {±1}bn → {±1}m is described by bipartite instance graph
G([n], [n], E) on left and right vertex sets [n], m edges labeling the m outputs and a two-block local
product predicate F : {±1}b → {±1}b → {±1} such that for any x ∈ {±1}bn seen as n blocks of b
bits each, one for vertex of the graph G, Ge � F(xe1 , xe2) for every e ∈ E.

A specific example of a bipartite single-product-predicate generator is one where F is a XOR
function. That is, b � 1 and L, R : {±1} → {±1} are identity functions. The next simple lemma
helps us show that for a given bipartite instance graph G([n], [n], E)with m � |E | edges, refuting
the bipartite, single-product-predicate generator G with the XOR predicate is enough to refute all
bipartite single-product-predicates with arbitrary block lengths!

Lemma 5.6. Let G([n], [n], E) be a bipartite instance graph with m � |E | edges and z ∈ {±1}m . Suppose
there exists a b ∈ �, a product predicate F : {±1}b × {±1}b → {±1} and x ∈ ({±1}b)n such that∑

e∈E F(xe1 , xe2) · ze � m. Then, there exists an y ∈ {±1}2n such that
∑

e∈E ye1 ye2 ze � m.

Proof. Let G be the generator with the product predicate F and let F be defined by predicates
L, R : {±1}b → {±1}. Let G′ be generator with the same instance graph G with the product predicate
being the XOR predicate (and thus b � 1.) Suppose x ∈ {±1}2bn is such that Ge � F(xe1 , xe2) � ze .

Choose y ∈ {±1}2n by setting y(i ,L) � L(xi) and y(i ,R) � R(xi). It is now easy to verify that
G′(y) � z. �

The next lemma is our first tool. It uses the simple observation above (Lemma 5.6) to establish
that there’s an algorithm that refutes all possible bipartite single-product-predicate generators
G : {±1}bn → {±1}m with a given instance graph G([n], E) (for arbitrary values of b). We stress that
this algorithm takes only the instance graph as the input and not the product predicate or the block
size parameter b (and thus, in one shot, refutes all single-product-predicate generators, with all
possible block sizes, on the input instance graph).

Lemma 5.7 (Predicate Oblivious Strong Refutation for Single-Product-Predicate Generators). Let
G([n], E) be a directed graph on n vertices and m edges. Let z ∈ {±1}m . For any ε > 0 and m >

9C2
CW log2 (n)n/ε2, there exists an poly(m , n) time algorithm that outputs ”?” or ”refuted” and satisfies:

1. If the output is ”refuted”, then,

max
b∈�

max
x∈({±1}b)n

max
F : {±1}b×{±1}b→{±1}

product predicate

∑
e∈E

F(xe1 , xe2)ze < εm.

2. When z ∈ {±1}m is chosen uniformly at random, then, �[ Algorithm outputs ”refuted”] > 1−1/n.

We will need the following result of Charikar-Wirth here:

Fact 5.8 (Grothendieck’s Inequality). There’s a universal constnat CCW such that for any A ∈ {±1}n×n

on n vertices,

max
Y∈�n×n ,Y∈Y�0,Yi ,i�1 for 16i6n

∑
i , j6n

Yi , jAi , j 6 CCW log (n) · max
y∈{±1}n

∑
i , j6n

yi y jAi , j .

Our algorithm to establish Lemma 5.7 is simple:

22



Bipartite Product Refutation algorithm
Input: z ∈ {±1}m , bipartite instance graph G([n], [n], E).
Output: ”refuted” or ”?”.
Operation:

1. Let θ(z) be the value of the standard SDP relaxation optimization problem

max
y∈{±1}2n

∑
e∈E

ye1 ye2 ze . (5.5)

That is,
θ(z) � max

Y∈R2n×2n ,
Y�0,

Yii�1 for 16i62n

∑
e∈E

Ye1 ,e2 ze . (5.6)

2. Return ”refuted” if θ < εm, otherwise return ”?”.

Proof. The proof is simple and follows from the following two observations.
Claim 5.9. For m > 9n/δ2, �z∼{±1}m [maxy∈{±1}2n

∑
e∈E ye1 ye2 ze > δm] 6 1/n.

Proof of Claim. For a fixed y, the probability that maxy∈{±1}2n
∑

e∈E ye1 ye2 ze > t
√

m is at most e−t2/2.

For t � 3
√

nm, this probability is at most e−4n . Using union bound over all possible 22n values
of y yields that �z∼{±1}m [maxy∈{±1}2n

∑
e∈E ye1 ye2 ze > 3

√
mn] 6 1/n. Finally, if m > 9n/δ2, then

3
√

mn 6 δm. �

Applying Fact 5.8 with δ � ε/CCW log (n), we immediately obtain the following observation.
Claim 5.10. For m > 9C2

CW log2 (n)n/ε2, �z∈{±1}m [θ(z) < εm] > 1 − 1/n where θ is the SDP value
computed in (5.6).

We can now use Lemma 5.6 to complete the proof. From Claim 5.10, it is clear that the algorithm
outputs ”refuted” with probability at least 1 − 1/n. To verify the first property, observe that if
there is a b ∈ �, a product predicate F and an x ∈ ({±1}b)n such that

∑
e∈E Ge ze > εm, then by

Lemma 5.6, maxy∈{±1}2n
∑

e∈E ye1 ye2 ze > εm. Since θ > maxy∈{±1}2n
∑

e∈E ye1 ye2 ze > εm, the first
step in the algorithm never produces a θ < εm and we are done.

�

5.2.2 Image Refutation for Arbitrary Two-Block Local, Single Predicate Generators

In this section, we describe our second component that helps us use the result from the previous
section in order to obtain an image refutation algorithm for arbitrary two block local generators
with a single predicate with block length b whenever the stretch m > Θ̃(n) · 2b .

We start by defining the value of a generator at any given z.

Definition 5.11 (Value). Let G : {±1}bn → {±1}m be defined by an instance graph G and predicate
P. Given any z ∈ {±1}m , we write valG(z) � 1

m maxx∈{±1}bn
∑

e∈E Ge(x)ze ∈ [−1, 1].

Key to our result is the following claim that shows that one can replace P by a product predicate
and still maintain high value.
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Lemma 5.12. Let G : {±1}bn → {±1}m be defined by an instance graph G and predicate P. Fix z ∈ {±1}m
such that valG(z) � 1. Then, there exists a product predicate F such that G′ : {±1}bn → {±1}m obtained by
replacing P by F satisfying: valG′(z) > 2−b/2−1.

To show this lemma, we will appeal to a classical result of Linial and Schraibman [LS09].

Fact 5.13 (Lower Bound on Cut-Norm, follows from Lemma 3.3 in [LS09] and Lemma 4.2 in
[LMSS07] ). Let P be a q × q matrix with {±1} entries and rank r. Let µ be a distribution over entries of P,
i.e, over [q] × [q]. Then, there’s a rank 1 matrix uv>, u , v ∈ {±1}q such that∑i , j6q P(i , j) · u(i)v( j) > 1

2
√

r
.

Proof of Lemma 5.12. Since valG(z) � 1, there exists an x ∈ ({±1}b)n such that G(x) � z. For each
(s , t) ∈ {±1}b × {±1}b , let ns ,t � |{(xe1 , xe2) | e ∈ E and (xe1 , xe2) � (s , t)}|. Then,

∑
s ,t∈{±1}b ns ,t � m.

Let µ be the distribution on {±1}b × {±1}b defined by the mass function µ(s , t) � ns ,t/m for
every s , t ∈ {±1}b . Let P (by a slight abuse of notation) be the matrix indexed by {±1}b on rows and
columns with (s , t)th entry given by P(s , t).We call this the “matrix of the predicate” P.

Apply Fact 5.13 to matrix P and distribution µ and noting that rank of P is at most 2b , we have
that there are functions u , v : {±1}b → {±1} such that

�
µ
[P(s , t)u(s)v(t)] > 2−b/2−1. (5.7)

We claim that the product predicate F(s , t) � u(s)v(t) for any s , t ∈ {±1}b satisfies the required
conditions. To verify this, we must show that the generator where we replace P by F has value at
least m · 2−b/2−1. To exhibit a lower bound on the value of this modified generator, we show that its
output at the same x as above correlates well with z.

We can estimate this correlation as:∑
(i , j)∼E

F(xi , x j) · zi , j �
∑
(i , j)∼E

F(xi , x j) · P(xi , x j) � m · �
(s ,t)∼µ

F(s , t) · P(s , t) � m · 2−b/2−1 ,

where in the last equality, we used (5.7). �

Our refutation algorithm will work by reducing to the bipartite single-product-predicate case
handled in the previous section. For this reduction, we will need another simple component.

For a two-local generator defined by an instance graph G([n], E), our refutation algorithm will
start by “doubling” G to produce an bipartite graph on 2n vertices by creating two copies of every
block. We define this doubling operation next.

Definition 5.14 (Doubling of G, G). Let G([n], E) be a directed instance graph. The doubling of G
is a bipartite graph G′([n], [n], E′) to be the bipartite graph on |V | � 2n vertices produced as follows:
for every directed edge e � (i , j) of G, create an bipartite edge in G′: (i , j).

The doubling of any two block-local generator G : {±1}bn → {±1} with a predicate F is one, that,
for any x ∈ {±1}2bn (thought of as a block of b bits for each of the 2n vertices of G′) outputs m bit
string, and for every edge e � (i , j) of G′ outputs G′e � F(xi , x j).

The following is easy to observe:

Lemma 5.15. Suppose z ∈ {±1}m is such that G(x) � z for some x ∈ {±1}bn where G is a two block-local
generator G : {±1}bn → {±1}m . Then, there exists a y ∈ {±1}2bn such that G′(y) � z for G′, the doubling
of G.
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Proof. Identify the vertices of G′ with (i , L) and (i , R) for i ∈ [n] (where L and R stand for “left”
and “right”, respectively). Define y ∈ {±1}2bn so that y(i ,L) � y(i ,R) � xi . It’s easy to verify that
G′(y) � z. �

We can now complete the proof of Theorem 5.3.

Proof of Theorem 5.3. Let G′ : {±1}bn × {±1}bn → {±1}m be the generator with instance graph
G′([2n], E′) obtained by following two transformations in sequence.

1. Replace P by the product predicate given by Lemma 5.12.

2. Applying doubling.

Then, G′ is a bipartite single-product-predicate generator. We apply the algorithm from
Lemma 5.7 to G′ for ε � 2−b/2−1.

Thus, if m > 9(2n)C2
CW log2 (n)2b+2 � 72C2

CW log2 (n)n2b , then the algorithm outputs ”refuted”
with probability at least 1− 1/n. Further, observe that if there is an x ∈ ({±1}b)n such that G(x) � z,
then, applying Lemma 5.15 and Lemma 5.12, there’s an x′ such that

∑
e∈E′ G′(x′)e ze > 2−b/2−1m.

On the other hand, by Lemma 5.7, we know that whenever the algorithm outputs ”refuted”, the
instance val′G(z) 6 εm � 2−b/2−1m. Thus, the first condition of the theorem is satisfied. �

5.3 Image Refutation for Random Block-Local PRGs

A particularly appealing construction of block local PRGs is obtained by instantiating them with
a random graph with ∼ m edges and a random and independent predicate for every edge. A
priori, the randomness in this construction could appear to aid the security of the PRG. Indeed,
such instantiations are in fact suggested by [LT17]. We show that in this case, as in the previous
section where all predicates are identical, we can show a stronger upper bound on the stretch of the
local PRG in terms of the block size b. Whereas in Section 5.1, for general block-local PRGs with
non-identical predicates, we lost a factor of 22b log(n) in the output length, for the special case of a
random graphs and random, independent predicates, this can be improved to Θ(2b) as we show in
this section. We note that the only property of random graphs that we use is expansion.

More concretely, in this section, we analyze the stretch of the following candidate construction
of a block-local PRG.

• We choose a graph G([n], q) where every edge is present in G with probability q �
m
(n2) . Thus,

with high probability, the number of edges in the graph is m ±
√

m.

• For every edge {i , j} in G, we choose a uniformly randompredicate Pi , j(x , y) � ±1 conditioned
on Pi , js being balanced, i.e. �x ,y∼{±1}b Pi , j(x , y) � 0.

• On input (seed) x ∈ {±1}bn , which we think of as partitioned into blocks x1 , . . . , xn ∈ {±1}b ,
the generator outputs hi , j(xi , x j) for every edge (i , j) of G.

Theorem 5.16 (Limitations of random block-local generators). There is some constant K such that if
G : {±1}bn → {±1}m is a generator sampled according to the above model and m > K2b n log3 (n), then
w.h.p. there is a polynomial-time algorithm for the G image refutation problem w.r.t. the uniform distribution
over {±1}m .
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Proof. We identify the underlying graph G with its collection of edges, and hence can think of the
outputs of the pseudorandom generator G as indexed by (i , j) ∈ G. For every edge i , j in G, we
think of the predicate Pi , j as a 2b × 2b matrix indexed by strings in {±1}b that is, for any α, β ∈ {±1}b ,
the (α, β)-entry of the matrix Pi , j is given by Pi , j(α, β).

For any x � (x1 , x2 , . . . , xn), with xi ∈ {±1}b , define y � y(x) ∈ {0, 1}2b n as a vector indexed by
(i , α) for α ∈ {±1}b and (i , α) entry of y equal to 1 iff xi � α and 0 otherwise. Further, we see yi as a
vector in 2b dimensions indexed by α ∈ {±1}b itself. Then, as before, for any z ∈ {±1}G, the fraction
of constraints satisfied by any assignment x ∈ {±1}bn is equal to maxx∈{±1}bn

∑
{i , j}∈G zi , jPi , j(y(x)).

As in the previous sections, our approach for the image refutation problem will involve showing
that the term

τ(z) � max
x∈{±1}2b n

m∑
(i , j)∈G

zi , jPi , j(y(x)) (5.8)

takes very different values in the planted case (where z � G(x)for some x) and in the random case
(where z is chosen at random in {±1}m), and furthermore proposing an efficient way to approximate
τ(z) that will allow us to distinguish the two cases.

In this section, because of the randomness in the graph G and the predicates Pi , js, it actually
suffices for us to use the spectral norm (i.e., the largest singular value) of an appropriate matrix
associated with G as a certificate of upper bound on τ(z) instead of semidefinite programming.14

Let M be the matrix with rows and columns indexed by (i , α) for i ∈ [n] and α ∈ {±1}b and
(i , α), ( j, β)-entry of M given by 0 if {i , j} is not an edge in G and zi , j · Pi , j(α, β) otherwise.

We can now describe our algorithm.

The Algorithm. On input z � (zi , j)(i , j)∈G, our algorithm will consider the 2b n × 2b n matrix
M � M(z) above.

It will compute the value θ � n‖M‖, where ‖M‖ is the spectral norm of M. The algorithm will
output ”?” if θ > m/2 and ”refuted” otherwise. (Recall that in our previous algorithms, a similar
value θ was computed using a SDP relaxation.)

Let us first establish that θ is in fact an upper bound on τ(z) as defined in (5.8). Observe that for
any x, y(x) is a vector in Rn2b which we think of as indexed by (i , α) for i ∈ [n] and α ∈ {±1}b . Thus,
any i, yi is a vector of 2b dimension. Further, yi is non-zero in exactly one coordinate (namely, the α
that equals xi). As a result, ‖y‖22 � n (despite it being a vector of n2b dimensions). Thus, using (5.8),

τ(z) 6 max
y∈{0,1}2b n :‖y‖22�n

∑
(i , j)∈G

zi , jPi , j(y) 6 max
y:‖y‖22�n

∑
i , j

zi , j y>i Pi , j y j � y>M y 6 ‖y‖2·‖M‖ � n‖M‖ ,

(5.9)

To analyze the algorithm’s performance, we first notice that in the planted case where z � G(x),
θ > τ(z) > m since there is always a y, derived from x, for which zi , j pi , j(y) � 1 for all {i , j} ∈ G. To
complete the analysis, it suffices show that when the zi’s are chosen uniformly at random, it will
hold with high probability that θ < εm for some sufficiently small ε > 0.

The key component in this is the spectral norm estimate for M show in Lemma 5.17 which proves
that ‖M‖ 6 O(log1.5 (n)) ·

√
m/n2b/2. Plugging in this bound yields θ 6 O(log1.5 (n))

√
mn2b/2. For

14The SOS program is only stronger than this spectral bound so we could have used the exact same algorithm as in
Section 4. We use the spectral norm for the sake of clarity of exposition.
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m � K2b n, thus θ 6 O(log1.5 (n))
√

Kn2b , which, for a large enough K � Θ(log3 (n)), yields that
θ 6 m/2. as required.

�

Lemma 5.17. Let M ∈ �n2b×n2b be the matrix defined above with entries indexed by (i , α) and ( j, β) for
i , j ∈ [n] and α, β ∈ {±1}b and M((i , α), ( j, β)) � zi , j · pi , j(α, β) if {i , j} ∈ G and 0 otherwise. Then, with
probability at least 0.99, ‖M‖ 6 O(log1.5 (n)) ·

√m
n 2b/2.

Proof. The balancedness constraint on each of the randomly chosen predicates causes some trouble
in our analysis - we’d like every non-zero entry of M to be an independent and uniform ±1 variable.
To get to this case, we will define an alternate way of sampling the same G.

We choose the graph in the exact same way as before - each edge included with probability
q � m/

(n
2
)
. For each edge in G, say {i , j}, we sample the predicate Pi , j (seen as a 2b × 2b matrix as

above) in two steps.

1. Sample a matrix Qi , j as follows: sample any entry (α, β) uniformly and independently.

2. Sample Ci , j as follows. If Qi , j has 22b−1 + r entries equal to +1 for r > 0, choose r entries of
Qi , j that are +1 uniformly at random and for those entries, set Ci , j to be −2. Ci , j has all other
entries 0.

3. If Qi , j has 22b−1 + r entries that equal −1 for r > 0 do the same as above with +1 replaced by
−1s.

Two easily verifiable facts about Qi , j and Ri , j are as follows: 1) the marginal distributions of
Qi , j is uniform over all possible sign-matrices of dimension 2b × 2b 2) Pi , j � Qi , j + Ci , j is uniformly
distributed over sign matrices with equal number of 1s and −1s.

Let M1 and M2 be the matrices whose (i , α), ( j, β) entries are defined by:

M1((i , α), ( j, β)) �
{

0 if {i , j} < G

Qi , j(α, β) otherwise.

M2((i , α), ( j, β)) �
{

0 if {i , j} < G

Ci , j(α, β) otherwise.

By triangle inequality, ‖M1 + M2‖ 6 ‖M1‖ + ‖M2‖.We will show the following two claims to
complete that immediately complete the proof by a union bound.
Claim 5.18. With probability at least 0.999 over the draw from the random model above,

‖M1‖ 6
√

m/n2b/2O(log (n)).

Proof of Claim 5.18. Wewill use the trace method to analyze the norm of the matrix M1. Let N � n2b

for notational convenience. Themain idea behind the tracemethod is simple. Let σ1 > σ2 > . . . > σN

be the singular values of M1. Then, for any ` ∈ �, (M1M>1 )` has eigen-values σ
2`
1 , σ

2`
2 , . . . , σ

2`
N . Thus,

σ2`
1 6 tr((M1M>1 )`) �

∑N
i�1 σ

2`
i 6 Nσ2`

1 . In particular, tr((M1M>1 )`) gives a factor N approximation
to σ2`

1 .
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Taking expectations, we thus have that �[σ2`
1 ] 6 �[tr((M1M>1 )`)]. In particular, by Markov’s

inequality, with probability at least 0.99, σ2`
1 6 100�[tr((M1M>1 )`)]. We will choose ` � log (N) and

upper bound �[(tr((M1M>1 )`))1/2` to thus obtain a bound on σ1 that holds with 0.99 probability.
To analyze �[(tr((M1M>1 )`))], we will expand tr((M1M>1 )` as a sum of product of entries of the

matrix M1. We have:

tr((M1M>1 )` �
∑

i1 ,α1 ,i2 ,α2 ,...,i2` ,α2`

M1((i1 , α1), (i2 , α2))M>1 (i2 , α2 , i3α3) · · ·M1(i2`−1 , α2`−1 , i2`α2`)M>1 (i2` , α2` , i1α1)

�

∑
i1 ,α1 ,i2 ,α2 ,...,i2` ,α2`

M1((i1 , α1), (i2 , α2))M1(i3 , α3 , i2α2) · · ·M1(i2`−1 , α2`−1 , i2`α2`)M1(i1 , α1 , i2`α2`).

For any (i j , i j+1) and α jα j+1, observe that M1((i j , α j), (i j+1 , α j+1)) � G(i j , i j+1) · P′i j ,i j+1
(α j , α j+1).

Further, random variables G and P′ are independent. Thus, taking expectations and using linearity
and product rule for expectations yields:

�[tr((M1M>1 )`] �
∑

i1 ,α1 ,i2 ,α2 ,...,i2` ,α2`

�[Π2`
j�1G(i j , i j+1)]�[Π2`

j�1P′i j ,i j+1
(α j , α j+1)].

Let’s analyze a term in the summation above. For a term, consider the following parameters: 1)
γ: the number of distinct edges of G that appear in the first expectation and 2) for any edge e of G
that appears in the first product, let 1e be the number of entries of Pe that appear in the second
product.

Now, observe that every non-zero entry of P′i j ,i j+1
is mean zero and independent. Thus, if the

term contributes a non-zero expectation, then, each distinct Pe must appear an even number of
times in the second product. In particular, the number of distinct edges of G that appear cannot be
more than γ � 2`/2 � `. Next, observe that if there are γ distinct edges of G that appear in the first
product, then there are at most γ + 1 distinct vertices of G that appear in the edges. This can be
seen as follows: observe that i1 , i2 , . . . , i2` , i1 forms a cycle. By traversing along the cycle, observe
that except the first one, each time a new vertex (one that wasn’t encountered before) is traversed,
the edge that led to the vertex is also new.

Finally, note that in any non-zero term, the expectation of the second product is exactly 1. The
first term has an expectation of 6 (2m

n2 )γ where γ defined above is the number of distinct edges of G
that appear in the first product. We now parameterize the term by the number of distinct vertices
t 6 ` + 1 (since γ 6 `) in a non-zero term and estimate their count: then, the number of distinct
ways of choosing t vertices of G is at most nt . The number of distinct ways of choosing > t + 1
edges is at most t2` . Finally, choosing (αi)s that have ` + 1 distinct elements can be done in at most
`` · 2b(`+1) different ways. The first product for such a term has an expectation of at most (2m

n2 )t−1.
The second term has an expectation of 1.

Thus, we obtain an upper bound of `2`)∑
t6`+1 nt(2m

n2 )t−12b(`+1) � `O(`) · m`n−`−12b(`+1) on
�[tr((M1M>1 )`].

Taking 2`th root, this gives an upper estimate on the norm of ` · 2b(1/2+ 1
2` ) ·

√
m/n · n 1

2` . By
choosing ` � log (n), we obtain the claim.

�

Claim 5.19. With probability at least 0.999 over the draw from the random model above, ‖M2‖ 6√
m/nO(log3/2 (n)).
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Proof. We will again use the trace method and the first few manipulations are same as in the proof
of the claim above. As in the proof above, we obtain the following:

�[tr((M2M>2 )`] �
∑

i1 ,α1 ,i2 ,α2 ,...,i2` ,α2`

�[Π2`
j�1G(i j , i j+1)]�[Π2`

j�1Ci j ,i j+1(α j , α j+1)].

We now analyze the above sum term by term. Observe that any entry of Ci , j has mean-zero. Thus,
if a term contributes non-zero value to the expectation, then the second product must have more
than 1 entry for each edge {i j , i j+1} of G. Thus, the number of distinct edges of G that appear in
the first product in a term above is at most 2`. As above, this implies that the number of distinct
elements in {i1 , i2 , . . . , i2`} for a term that contributes non-zero value to the expectation above is at
most ` + 1. Let’s call every collection of indices (i1 , i2 , . . . , i2`) that participates in some term with
non-zero expectation, a “contributing” index.

Then, we can write the expression above as:

�[tr((M2M>2 )`] �
∑

(i1 ,i2 ,...,i2`) contributing
�[Π2`

j�1G(i j , i j+1)]
∑

α1 ,α2 ,...,α2`

�[Π2`
j�1Ci j ,i j+1(α j , α j+1)]. (5.10)

Next, by a Chernoff+Union bound argument, with probability at least 1 − 1/n, for every i , j that
is an edge in G, the number of non-zero entries in Ci , j is at most O(

√
log (n)) · 2b . Let’s condition on

this event in what follows.
Observe that the probability of any q 6 2` different entries of Ci , j being simultaneously non-zero,

conditioned on the event above is at most O(logq/2 (n)) · 2−qb).
Next, fix the number of distinct α js in the second sum above to γ. Then, observe that number of

distinct pairs (α j , α j+1)must at least be γ − 1 (start from α1 and observe that each time a new vertex
is encountered, there’s also a new edge that is traversed. Thus, the number of edges is at least 1 less
than the number of distinct vertices.). From the argument above, thus, the summation over α js
makes a total contribution of at most

∑
γ62` 2bγO(log(γ−1)/2 (n)) · 2−(γ−1)b) 6 2`O(log`(n))2b .

Plugging this bound back in (5.10) then yields an upper estimate of
(∑t6`+1 nt(2m/n2)t)2`O(log`(n))2b . Taking 2`th roots, we thus obtain that: �[tr((M2M>2 )`]1/2` 6
O(log1/2 (n))2b/2` · O(m/n)1/2+1/2` . Using ` � Ω(log (n)) then yields an upper bound of√

m/nO(log3/2 (n)) on the largest singular value of M2 as required.
�

�

6 Lower Bound for Refuting Two-Block-Local PRGs

In this section, we establish that if b > 10 log log (n), then there’s no 2O(n/24b)-time algorithm for
image refutation of block-local PRG of stretch Ω(n2b) based on the sum-of-squares method.

The main goal of this section is summarized in the following theorem.

Theorem 6.1. For any b > 10 log log (n), there’s a construction G : {±1}n → {±1}m for m � Ω(n2b)
such that for any z ∈ {±1}m , there’s a feasible solution for the degree Θ(n/24b) sum-of-squares relaxation of
the constraints {Gi � zi}. In particular, sum of squares algorithm of degree Θ(n/24b) cannot accomplish
image refutation for G.
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Our construction is extremely natural – the underlying graph will be chosen at random and the
predicates (each edge has a different predicate) XORs on subsets of the blocks on the end points
of an edge chosen with some care. We abstract our the properties of the random graph that we
need by defining “nice” graphs below. We show that a random graph with appropriately chosen
parameter immediately after.

6.1 The Constraint Graph

Definition 6.2 (Nice Graphs). A (α, β)-nice graph G is a graph on [n] such that:

1. G has m � Ω(n2b) edges.

2. Degree of every vertex is at most 2b .

3. Every induced subgraph of at most βn vertices has at most αn edges.

As we show next, (α, β)-nice graphs (for a proper choice of α and β) can be constructed by
choosing G at random from the Erdős-Rényi distribution.

Lemma 6.3. Fix b > 10 log log (n). Let G ∼ G(n , q) for q � C/n for C � 2b/10. Then, for α � 1.4 and
β � 2−4b , �[G is (α, β)-nice] > 1 − o(1).

Proof. Follows from Lemmas 6.4 and 6.5 below. �

Lemma 6.4. Let b > 10 log log (n). With probability at least 1 − 1/n, a graph drawn according to G(n , q)
for q � C/n for C � 2b/10 has the maximum degree of its vertices upper bounded by 2b − 1.

Proof. We assume that 2b < n − 1 as otherwise the claim is vacuous. The probability that the degree
of a fixed vertex exceeds 2b − 1 is at most

(n−1
2b

)
(C/n)2b−1 6 (eC/2b)2b−1 6 2−2b

. If b > 10 log log (n),
we are immediately done by a union bound over all possible n vertices. �

Lemma 6.5 (Vertex Expansion in Random Graphs). Fix b > 10 log log (n). Let G ∼ G(n , q) for
q � C/n for C � 2b/10. For β � 2−4b and α � 1.4, with probability at least 1 − o(1) over the choice of G,
every induced subgraph on at most t < βn vertices has at most αt edges.

Proof. Fix any t. By union bound, the probability that there’s a t-size subgraph with more than αt

edges is at most
(n

t

)
·
((t2)
αt

)
(C/n)αt . By standard approximations, this is at most (ne/t)t · (te/α)αt ·

(C/n)αt 6 (t/n)t(α−1)(2C)αt 6 ((2C)α · βα−1))t .
By a union bound, the probability that there’s a t sized induced subgraph of G for t < βn that

has αt edges is at most: 2(2C)α · βα−1 which for the choice of β � 2−4b and C < 2b/10 can be seen as
at most o(1). �

6.2 Lower Bound Instance

1. Let G be an (α, β)-nice graph.

2. We consider the seed x ∈ {±1}bn as being divided into n blocks of b bits each as usual.

3. Fix i, a vertex of G. For every neighbor j of i, assign a distinct non-empty subset Si , j ⊆ {(i , a) |
a ∈ [b]} to the edge {i , j}. Note that Si , j is distinct from S j,i . Lemma 6.4 below shows that this
is possible with high probability over the draw of the graph G in the first step.
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4. Let Pi , j(xi , x j) � Πv∈Si , j ,w∈S j,i xv xw .

For large enough n and the instance chosen above, when z ∈ {0, 1}m chosen uniformly at
random, there’s no solution x ∈ {±1}b that satisfies more than 1/2 + ε fraction of the constraints by
standard Chernoff+Union bound arguments. Nevertheless, we will construct a sum-of-squares
solution - a pseudo-expectation - of degree n/24b that satisfies all the XOR constraints for an arbitrary
choice of z. This establishes that for m � Ω(n2b), sum-of-squares of degree n/24b cannot solve the
image refutation problem for the PRG constructed in the previous section.

6.3 Constructing the Pseudo-expectation

We fix the following for this section.

1. We will fix G to be an (α, β)-nice graph on n vertices.

2. For every edge {i , j} in G, let Si , js be the subsets of variables in the ith block of b bits that
participates in the XOR constraint for the edge {i , j} chosen as in the previous section.

3. Order edges of G in any order and let C1 , C2 , . . . , Cm be defined by setting Ce � Si , j ∪ S j,i for
{i , j} being the eth edge. Observe that each Ci satisfies |Ci | 6 2b.

Notation.

1. For any subsets Q ,Q′, Q∆Q′ denotes the symmetric difference of Q and Q′.More generally,
for any subsets Q1 ,Q2 , . . . ,Qr ⊆ [nb], we write ∆`6rQi for the subset of all elements of [nb]
that occur in an odd number of sets in Q1 ,Q2 , . . . ,Qr .

2. For any collection of indices of constraints Q ⊆ [m], we writeV(Q) for the vertices of G that
participate in some constraint in C` for some ` ∈ Q.

Akey notion thatwewill use in the construction of our pseudo-expectation is that of a low-degree
derivation. Informally, low-degree derivation is a process that takes some XOR constraints and
obtains new XOR constraints by combining already generated constraints with a certain restriction:
two existing XOR constraints can be combined to “derive” a new constraint only if the symmetric
difference of the sets of indices that the XOR constraints are on, is at most d - the degree of the
derivation.

Definition 6.6 (Degree d Derivation). A degree derivation of a subset C ⊆ [nb] is a sequence of
T1 , T2 , . . . , Tr of subsets of equations C1 , C2 , . . . , Cm in an XOR instance such that:

1. ∆`∈Tr C` � C.

2. Each Ti is either C j for some j 6 m or

3. there exist a , b < i such that Ti � Ta∪Tb and for Ca � ∆`∈Ta C` and Cb � ∆`∈Tb C` , |Ca∆Cb | 6 d.

The key reason for sum-of-squares to not be able to solve the image refutation problem for the
instance we constructed is that low-degree derivations cannot discover that the equations xCi � zi

cannot be satisfied (for say, a randomly chosen z).
The following is a direct consequence of Lemma 6.5.
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Lemma 6.7. Let T be a collection of indices in [m] such that |V(T)| < βn. Then, |∆`∈T C` | > 0.05|V(T)|.

Proof. Let Q �V(T). Let EQ be the edges corresponding to the constraints {C` | ` ∈ T}. Consider
the vertices that have degree 1 or 2 in the graph (Q , EQ).We will show that the number of such
vertices is at least 0.1|Q |. This is enough to complete the claim - this is because, for any block of
variables corresponding to vertices of degree 1 or 2 in (Q , EQ), the subset of variables involved in
the constraints on the edges in EQ are different and thus, there is at least one variable from the block
that does occurs exactly once for every vertex of degree 1 or 2 in Q.

We now show that the degree 1 or 2 vertices in (Q , EQ) are at least 0.1|V(T)|. Add any edge in
G that is incident between vertices of Q and not already included in EQ to obtain E′Q . Observe that
the degree 1 or 2 vertices in the graph (Q , E′Q) are a subset of the degree 1 or 2 vertices in the graph
(Q , EQ).We will lower bound the degree 1 or 2 vertices in (Q , E′Q) instead. Notice that this is the
induced subgraph of G on vertices in Q. Further, |Q | 6 βn. Thus, applying Lemma 6.5, the number
of edges |E′Q | 6 α |Q | � 1.4|Q |. Now, clearly,

∑
q∈Q dq � 2|E′Q | 6 2.8|Q |, where dq is the degree of a

vertex q ∈ Q in the subgraph (Q , E′Q). In particular,
∑

q∈Q ,dq>3 dq 6 2.8|Q | and thus, the number of
vertices with degree at least 3 is at most (2.8/3)|Q |. Or, the number of vertices in (Q , E′Q) of degree
1 or 2 is at least 0.2/3|Q | > 0.06|Q |. �

Lemma 6.8 (Low-degree Derivations are Small). Let d > 2b and suppose 100d 6 βn. Then, if
T1 , T2 , . . . , Tr is a degree d-derivation, then each |V(Ti)| 6 50d.

Proof. Suppose, towards a contradiction, that there is a i such that |V(Ti)| > 50d and take the
least such i. Then, Ti � Ta ∪ Tb for some a , b < i such that |∆`inTi C` | � |∆`∈Ta∪Tb C` | 6 d.
Thus, |V(Ta)|, |V(Tb)| 6 50d. In particular, |V(Ti)| 6 100d < βn. Applying Lemma 6.7 to Ti , we
have that |∆`inTi C` | > 0.05|V(Ti)| > 0.05 ∗ 50d � 2.5d. This is contradiction as this means that
|∆`∈Ta∪Tb C` | > d. �

Corollary 6.9 (No low-degree derivations of ∅). Let 100d < βn. Then, there’s no degree d-derivation of
∅ in the XOR instance.

Proof. Lemma 6.8 implies that set T of clauses produced by any degree d derivation satisfies
|V(T)| 6 50d. Lemma 6.7 implies that |∆`∈T C` | , 0. Thus, there’s no degree d derivation of ∅. �

Definition 6.10 (The Pseudo-Expectation). Given an instance of XOR with equations xCi � zi for
1 6 i 6 m and for any z ∈ {±1}m , define a linear operator �̃ on mulitlinear monomials of degree
6 d/4 (and thus, all multilinear degree 6 d polynomials)

1. �̃[x∅] � �̃[1] � 1.

2. �̃[xCi ] � zi for every i 6 m.

3. Repeat until impossible: if �̃[xC], �̃[xC′] have been already set before, and |C∆C′ | 6 d/2, then
set �̃[xC∆C′] � �̃[xC] �̃[XC′]. Observe that this is equivalent to saying: If C has a degree d/2
derivation T1 , T2 , . . . , Tr of C from the instance, set �̃[xC] � Π`∈Tr z` .

4. Otherwise, set �̃[xC] � 0.

Key to the success of the procedure above for constructing the pseudo-expectation is the fact
that there are no spurious low-degree derivations. This is the content of the following lemma.

32



Lemma 6.11 (Pseudo-expectation is well-defined). There’s no C such that �̃[xC] gets two conflicting
values in Definition 6.10.

Proof. If C has no degree d/2 derivation, there’s nothing to prove. Suppose there’s C such that
|C | 6 d/4 and there are twodistinct degree d/2derivations ofC. Then, combining the twoderivations
gives us a degree d derivation of ∅, and as a result, Corollary 6.9 yields a contradiction. �

Lemma 6.12 (Pseudo-expectation is PSD). For every degree d/8 polynomial p, �̃[p2] > 0.

Proof. This argument is entirely analogous to the one in the classical Grigoriev’s theorem (see
lecture notes [BS17]). We define an equivalence relation on monomials of degree at most d/8. Two
monomial indices C ∼ C′ (are in the same equivalence class) if �̃[xC∆C′] , 0.We claim that this
is indeed an equivalence relation. It is easy to see that C ∼ C (reflexivity). To check transitivity,
suppose C1 ∼ C2 and C2 ∼ C3. Then, C1∆C2 has a degree d/2 derivation and C2∆C3 has a
degree d/2 derivation. Further, |C1∆C2 |, |C2∆C3 | 6 d/4 since each Ci has size at most d/8. Thus,
|C1∆C3 | 6 |C1∆C2 | + |C2∆C3 | 6 d/2 and thus, C1∆C3 has a degree d/2-derivation and in particular,
�̃[xC1∆C3] , 0 implying that C1 ∼ C3.

Let p1 , p2 , . . . pr be such that p �
∑

i pi and pi contains only the monomials from p that
belong to the ith equivalence class. Then, observe that �̃[p2

i ] �
∑

C,C′ pi(C)pi(C′) �̃[xC∆C′] �∑
C,C′ pi(C)pi(C′) �̃[xC] �̃[xC′] � (

∑
C pi(C) �̃[xC])2 > 0. To finish the proof, observe that �̃[p2] �∑

i , j �̃[pi p j] �
∑

i �̃[p2
i ] > 0 where we used the fact that �̃[pi p j] � 0 since the pseudo-expectation

of product of monomials from different equivalence classes is 0.
�

Ourmain result about this construction is the following claim that shows that the sum-of-squares
relaxation’s value for the maximum of the polynomial

∑
{i , j}∈G Pi , j(x) equals m.

Lemma 6.13 (Formal version of Theorem 6.1). For the instance considered in this section and any
z ∈ {±1}m , there exists a pseudo-expectation �̃ of degree Ω(n/24b) that satisfies the set of constraints
{pi , j(x) � zi , j}. In particular, �̃[∑{i , j}∈G zi , j pi , j(x)] � m.

Proof. We use the construction described above. Lemma 6.11 shows that the construction is
well-defined. By our choice, �̃ is defined only on multi-linear monomials and extended to other
monomials by standard multilinear reduction. Thus, it satisfies the constraints that x2

i , j � 1. Further,
for any monomial xC with C of size at most d/4 − |Ci |, �̃[xCxCi ] � �̃[xC]zi . This is because either
�̃[xCxCi ] � 0 in which case the claim is vacuous or otherwise, C, Ci are obtained in degree d
derivation in which case they are set to satisfy the constraint above. Finally, Lemma 6.12 shows that
�̃[p2] > 0. This completes the proof. �

7 A class of block-local candidate pseudorandom generators

In this section we outline a simple candidate pseudorandom generator of degree d that has
potentially output length as large as nd/2−ε. We have not conducted an extensive study of this
candidate’s security, but do believe it’s worthwhile example as a potential counterpoint to our
results on limitations for pseudorandom generator, demonstrating that they might be tight.

The idea is simple: for a finite group � that does not have any abelian quotient group (for
example, a non-abelian simple group will do), we choose dm random indices {i j,k} j∈[m],k∈[d] and let

33



G be the generator mapping �n to �m where

G(x) j � xi j,1 ∗ xi j,2 ∗ · · · ∗ xi j,d (7.1)

If want to output m bits rather than m elements of �, then we use a group � of even order and
apply to each coordinate some balanced map f : �→ {0, 1}. For every group element 1 ∈ �, the
predicate

x1 ∗ · · · ∗ xd � 1 (7.2)

supports a d − 1 wise independent distribution. Hence, using the results of [KMOW17] we can
show that as long m < nd/2−ε, for a random z ∈ �m , the SOS algorithm cannot be used to efficiently
refute the statement that z � G(x) for some x.

Ruling out Gaussian-elimination type attacks is trickier. For starters, solving a linear system
over a non-abelian group is NP-hard [GR02, KTT07]. Also, Applebaum and Lovett [AL16, Theorem
5.5] showed that at least for the large d case, because the predicate (7.2) has rational degree d, the
image-refutation problem for this generator is hard with respect to algebraic attacks (that include
Gaussian elimination) for m � nΩ(d). Nevertheless, there are non trivial algorithms in the group
theoretic settings (such as the low index subgroup algorithm, see [CD05] and [RSW06, Sec. 6]). A
more extensive study of algebraic attacks against this predicate is needed to get better justifications
of its security, and we leave such study for future work.

We remark that the condition that the group � does not have abelian normal subgroups is
crucial. Otherwise, we can write � as the direct product� ×�′ where� is abelian, and project all
equations to their component in�. We will get m random equations in n variables over the abelian
group�, and hence we can use Gaussian elimination to refute those.
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A Analysis of the basic SDP program

The degree d SOS program [BS17] for a polynomial optimization problem of the form

max
x∈{±1}n

p(x)

corresponds to
max �̃

µ
p

where �̃ ranges over the set of degree d expectation operators that satisfy the constraints {x2
i � 1}ni�1.

These are defined as follows:

Definition A.1 (Pseudo-expectation). Let Pn ,d denote the space of all degree 6 d polynomials on
n variables. A linear operator �̃ : Pn ,d is a degree d pseudo-expectation if it satisfies the following
conditions:

1. �̃[1] � 1.

2. �̃[p2] > 0 for every polynomial p of degree at most d/2.

A pseudo-expectation is said to satisfy a constraint {q � 0} if for every polynomial p of degree at
most d − de1(q), �̃[pq � 0. We say that �̃ satisfies the constraint {q > 0} if for every polynomial p
of degree at most d/2 − de1(q)/2, �̃[p2q] > 0.

If µ is any distribution on �n , then the associated expectation is a pseudo-expectation operator
of all degrees. The above definition can be thought of as a relaxation of the notion of an actual
expectation.

Key to the utility of the definition above is the following theorem that shows one can efficiently
search over the space of all degree d pseudo-expectations.

Theorem A.2 ([Sho87, Par00, Las01]). For any n, and integer d, the following set has an nO(d) time weak
separation oracle (in the sense of [GLS81]):

{�̃[(1, x1 , x2 , . . . , xn , )⊗d] | �̃ is a degree d pseudo-expectation}
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In this appendix we expand on howCharikar andWirth’s work [CW04] implies the the following
theorem:

Theorem A.3. For every degree two polynomial p : �n → �with no constant term, the value of the degree
two SOS program for

max
x∈{±1}n

p(x) (A.1)

is larger than the true value of (A.1) by a factor of at most O(log n).

Theorem A.3 is a direct implication of the following result of [CW04]:

Theorem A.4 (Symmetric Grothendieck Inequality, [CW04], Theorem 1). Let A be any m × m matrix
such that Ai ,i � 0 for every i. Then,

max
X�0,Xi ,i�1∀i

Tr(AX) 6 O(log n) max
x∈{±1}n

x>Ax

Proof of Theorem A.3 from Theorem A.4. Suppose that there is a degree 2 pseudo-distribution {x}
such that �̃ p(x) > θ, and let X be the n + 1 × n + 1 matrix corresponding to �̃(x , 1)(x , 1)>. That is,
Xi , j � �̃ xi x j and Xn+1,i � Xi ,n+1 � �̃ xi . Note that X is a psd matrix with 1’s on the diagonal.

Then Tr(AX) > θ if A be the (n + 1) × (n + 1)matrix that represents the polynomial p. In this
case Theorem A.4 implies that there is an n + 1 dimensional vector (x , σ) ∈ {±1}n+1 such that
(x , σ)>A(x , σ) > Ω(θ/log n). If we write p(x) � q(x) + l(x), where q is the homogeneous degree
two and l is linear, then we can see by direct inspection that

(x , σ)>A(x , σ) � q(x) + σl(x) � p(σx)

with the last equality following from the fact that q(−x) � q(x) and l(−x) � −l(x). Hence the vector
σx ∈ {±1}n demonstrates that the value of (A.1) is at least Ω(θ/log n). �

B The Lin-Tessaro candidate obfuscator

In this section we provide more information on the candidate obfuscator of Lin and Tessaro [LT17]
and its relation to the notion of block-wise local PRGs. At a very high level, the construction, which
builds on a line of works initiated by the beautiful paper of Lin [Lin16a], can be described as follows:

• They reduce the task of building an obfuscator to the task of constructing a functional encryption
scheme15 for NC1 functions that has a certain ciphertext compactness property.

• Lin [Lin16b] showed that one can obtain an appropriate functional encryption schemes for
`-degree functions from `-linear maps.

• The idea behind closing the gap between NC1 functions and degree `maps is to use randomized
encodings [IK02, AIK06] which encode an NC1 function f of complexity m by a function 1
with constant input locality that takes an additional random input of length m.

• Unfortunately, encoding this random input would destroy the compactness property and
hence we instead encode the seed for a pseudorandom generator G : {0, 1}n → {0, 1}m .

15This is an encryption scheme that supports generation of restricted decryption keys that allow computation on
encrypted values.
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• If every output of the pseudorandom generator is a polynomial of degree d and every output
of the randomized encoding depends on at most c bits of the input, we get that the resulting
function is a polynomial of degree dc, which can then be evaluated using a dc-linear map.

• To reduce the need for multilinearity further, one can pre-process the seed for the generator.
Thus, instead of encoding only the seed, we also encode the values of various monomials
applied to it. To maintain the compactness property, the stretch of the pseudorandom
generator needs to compensate for this preprocessing. If every output of the generator
depends on s monomials which are arranged in a “nice” way (as happens to be the case
of block locality), then this preprocessing will reduce the final degree to d but increase the
length of the seed by a factor of sc , where c is the locality of the randomized encoding scheme
(i.e., the number of bits from the random tape that each output depends upon). Thus, loosely
speaking, the output length of a pseudorandom generator of degree d and sparsity s will
need to be roughly sc n1+ε for it to be applicable in this setting. For known randomized
encodings, the locality parameter c is at least 3, which in particular means that for block local
transformations of block length b, we require an output length of at least 23b n1+ε. Our results
show that such output length cannot be achieved with a two block-local generator.

We now provide a somewhat more detailed, though still quite informal, overview of the recent
construction of obfuscations and how simple pseudorandom generators fit into this picture. See the
introduction of [LT17] for a more complete description of the history and technical tools.

All current candidate constructions of indistinguishability obfuscation (iO) rely on the notion of
multilinear maps (or a related notion called graded encoding schemes). Very roughly speaking, an
`-linear map allows one to evaluate any degree-` polynomials on secret encoded values and to test
whether the output of such a polynomial is zero or not.

Having an `-linear map in hand, constructions of iO usually proceed in two steps. The first
step is generic: the goal is to base the existence of iO on the seemingly weakest possible generic
primitive. The second step is to design a construction of this latter primitive using an `-linear map
for ` being as small as possible (preferably, ` � 2).

As it turns out the right notion that on the one hand is strong enough to allow for bootstrapping
to iO but on the other is simple enough that we can construct it from `-linear maps is functional
encryption (FE). A functional encryption scheme supports (in addition to encryption and decryption)
restricted decryption keys that allow users to learn specific functions of the encrypted data and
nothing else. That is, the holder of the secret key of the scheme can generate a key for a function f
and whoever holds a ciphertext of a message x and the key for f can compute f (x) but gain no
additional information about x.

Lin [Lin16b] showed how to construct an FE scheme that supports all degree-` functions using
an `-linear map. Furthermore, Lin’s construction has various efficiency properties that are useful
when using it to get all the way to iO and in particular the crucial property of ciphertext compactness
which roughly means that the ciphertext can be smaller than the description of the function. The
security of the construction is reduced to an assumption called Symmetric External Diffie-Hellman
(SXDH) on the `-linear map. For ` � 2 this assumption is quite common.

Having the second step of our construction, we proceedwith the first step – getting a construction
of iO for all circuits from FE for low degree polynomials. Before we explain the approach of Lin
and Tessaro [LT17] it is useful to explain the approach of Lin and Vaikuntanathan [LV16]. The first

41



step was to construct FE for NC1 with some compactness property16 rather than plain iO for all
circuits. This is enough by a bootstrapping theorem of [AJ15, BV15]. The next step was to notice
(see [AJS15]) that it is actually enough to be able to construct an FE for NC0 and assume a PRG in
NC0 with polynomial stretch. The idea of this transformation is to translate functions in NC1 into
their randomized encoding17 which is in NC0 [IK02, AIK06]. A randomized encoding, as the name
suggests, is a randomized procedure so we need to encode the randomness for evaluation. It turns
out that the randomness size is proportional to the function size which, if we embed in a ciphertext,
causes us to lose compactness altogether. Thus, to preserve compactness, the randomness is derived
via a PRG. To preserve the low degree of the computation, we further need the PRG to be local. This
resulted in [LV16] with a construction of iO from O(1)-linear maps using a constant locality PRGs.

The next step was made by Lin in [Lin16b], where she was able to optimize the above approach
and obtain a construction with the concrete constant 5. Specifically, Lin proved a generic theorem
that says that any locality-` PRG can be used together with an FE scheme that supports polynomials
of degree ` to get iO.18 As we have already mentioned, in the above statement ` cannot be smaller
than 5 as locality 4 PRG do not exist. The idea of Lin was to reduce the degree of the polynomial
to be evaluated by preprocessing some of the computation of the function already at the time of
encryption. To illustrate this idea, think of a function f (x , y) that is linear in x but say quadratic in
y. If we pre-compute x ⊗ y (where ⊗ denotes tensor product), then we can compute f with one
degree less: there exists a function f ′(x , y , x ⊗ y) that computes f (x , y) in degree 2, by replacing
each monomial of the form x y1 y2 with a monomial of the form (x y1)y2 and taking (x y1) from x ⊗ y.
Deciding what to pre-compute and what not is a delicate task as we have to keep the ciphertext
compact (so we clearly cannot pre-compute all possible monomials of f ).

In the work of Lin and Tessaro [LT17] they propose a variant of local PRG called block-wise
local PRGs (see Section 5) to circumvent the ` > 5 barrier and were able to show how to pre-process
the inputs in the new construction correctly to preserve the various efficiency properties. Their
theorem (roughly speaking) is that for any `, iO can be constructed from an `-local PRG with blocks
of size logarithmic in the security parameter and polynomial stretch and `-linear maps. Let us
elaborate a little more on how the transformation works. We refer to [LT17] for the full details.

Recall that we have reduced the task of constructing an iO scheme to the task of building FE for
NC0 functionalities by using a randomized encodings. Given a function 1 in NC1, we will generate a
functional key for the randomized encoding of the function with randomness derived from a PRG.

1̂(x , s) � RandEnc(1 , x; PRG(s)).

This is a function in NC0. Its degree depends on the degree of the PRG and the degree of the
randomized encoding (viewed as polynomials over the rationals). It is known that the degree of the
randomized encoding is 1 in x and 3 in PRG(s). So (very roughly) this can be re-written as

1̂(x , s) �
∑

i0 ,i1 ,i2 ,i3

ci0 ,i1 ,i2 ,i3 xi0 ri1 ri2 ri3 ,

16Compactness says, roughly, that the size of a ciphertext in the FE scheme is sub-linear in the size of the function for
which we generate a key.

17Randomizing encodings allow to represent a function f (x) by a low-degree randomized mapping f̂ (x , r) whose
output distribution on an input x is a randomized encoding of f (x).

18Here and in the rest of this section we ignore additional assumptions (such as Learning With Errors or the need for
sub-exponential hardness) that are sometimes required due to technical reasons we will not go into.
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where r � PRG(s). This apparently is not enough for the efficient preprocessing, so [Lin16b]
suggests a different way to compute the ri’s: she uses 3 seeds per random string and defines

ri1 ri2 ri3 � PRG(si1)PRG(si2)PRG(si3).

The latter has a very small number of degree 3 monomials which allows her to pre-process them
without compromising compactness of the scheme.

The case of block-wise local PRGs is handled in a very similar way. The monomials are written
in the same way but now the preprocessing is over a much larger set. They first pre-process all
possible symbols per block and then pre-compute all degree-3 monomials over theses symbols. For
the scheme to stay compact the PRG thus has to map 2b n bits into roughly (2b)3 · n1+ε bits for some
constant ε > 0.
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