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Abstract

Identity-based sequential aggregate signature (IBSAS) schemes are usu-
ally applied to secure network routing and sensor networks, since they allow
multiple signers to sequentially produce a short signature of different mes-
sages to reduce bandwidth overhead and storage space for signatures, and
allow signers to attest to these messages as well as the order in which they
signed using their identities. In CCS’07, Boldyreva et al. introduced this con-
cept and constructed the first IBSAS scheme in the random oracle model.
After that, a couple of IBSAS schemes are proposed and proved. Unfor-
tunately, none of them is constructed based on a standard computational
problem and secure in the standard model (i.e., without random oracles).
How to construct this kind of scheme is still an open problem. In this paper,
we propose a generic construction of IBSAS schemes by employing 2-level
Hierarchical Identity-based Encryption Schemes, and then prove its security
in the security model proposed by Boldyreva et al. in CCS’ 07. Afterwards,
we instantiate the generic construction to obtain a concrete IBSAS scheme
secure under the Computational Diffie-Hellman (CDH) assumption in the
standard model, thus solving the above open problem. An extra fruit of our
generic construction is that it can be used to construct the first lattice-based
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IBSAS scheme, which is secure in the random oracle model. Finally, we show
the performance comparisons between our schemes and previous ones.
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1. Introduction

Aggregate signature schemes, introduced by Boneh et al. [10] in 2003, are
digital signatures that allow multiple signers to sign different messages while
keeping the total signature size constant. One of the main concerns is to find
an effective method of compressing a list of signatures to reduce bandwidth
overhead and storage space for signatures. Such schemes can be applied
to the secure border gateway protocol (BGP) in network routing and sensor
networks [4, 19, 35]. In BGP, routers generate and forward route attestations
to other routers to advertise the routes which should be used to reach their
networks. Secure BGP solves the problem of attestation forgery by having
each router add its signature to a valid attestation before forwarding it to
its neighbors. Because of the size of route attestations is limited, aggregate
signatures are useful in reducing the overhead of multiple signatures along a
path. Nicol et al. [28] gave a detailed analysis of the application of aggregate
signatures to the secure BGP routing protocol [22].

For applications such as compressing certificate chains [10], the ability to
combine preexisting individual signatures into an aggregate is unnecessary.
Each user, when producing a signature, is aware of the signatures above his
in the chain. Thus aggregation for certificate chains should be performed
incrementally and sequentially. The formal definition of sequential aggre-
gate signature was introduced by Lysyanskaya et al. [25] in 2004, which
is constructed sequentially, with each signer modifying the aggregate-so-far
signature in turn. Roughly speaking, the sequential aggregate signing al-
gorithm takes as input a private key SKi, a message Mi and a sequential
aggregate σ′ to sign, where σ′ is the signature of the ordered messages M1,
M2, . . ., Mi−1 under the ordered public keys PK1, PK2, . . ., PKi−1. All of
M1, M2, . . ., Mi−1 and PK1, PK2, . . ., PKi−1 must also be provided as input
of the sequential aggregate signing algorithm. Then the algorithm outputs a
sequential aggregate signature σ on all i messages M1, M2, . . ., Mi.
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Recently, sequential aggregate signature schemes have aroused great in-
terest. Lysyanskaya et al. [25] constructed a sequential aggregate signature
scheme based on RSA in the random oracle model. The first sequential ag-
gregate signature scheme in the standard model, namely without random
oracles, was proposed by Lu et al. [24]. They converted the Waters’ signa-
ture scheme [34] to the sequential aggregate signature scheme, and proved
its security under the well known Computational Diffie-Hellman (CDH) as-
sumption (see Definition 1). In 2011, Schröder [32] constructed a sequential
aggregate signature with short public keys using the Camenisch-Lysyanskaya
signature scheme, but the security is only proven under the interactive LR-
SW assumption [26](see Appendix B), which can be considered as a relaxed
notion of [12]. Recently, Lee et al. [23] proposed the first sequential ag-
gregate signature scheme with short public keys (i.e., a constant number of
group elements) in prime order (asymmetric) bilinear groups, which is secure
under static assumptions in the standard model. One common limitation of
the above schemes is that they are constructed based on concrete hardness
assumptions.

Unfortunately, using public-key-based sequential aggregate signature sche-
mes that necessitate a public-key infrastructure (PKI) dramatically increas-
es setup and storage or bandwidth overhead of secure networking protocols.
Namely, in routing-based network applications, such schemes will either (a)
incur the setup and storage overhead of distributing the public keys and
corresponding certificates of all users out-of-band, and participating routers
storing them indefinitely; or (b) defeat the aim of minimizing bandwidth if
public keys (which cannot be aggregated) and certificates of the signer in each
signature would always have to be sent along with the latter for verification.

If the public key of a user is self-evidently associated with the user’s i-
dentity information (e.g., name, IP address, email address, phone number),
then in essence there is no need to certificate the public key. Identity-based
cryptosystems were introduced by Shamir [33] in 1984 to achieve it. In an
identity-based cryptosystem, the key generation process includes two algo-
rithms: (1) Setup algorithm, which generates the system public parameters
and a master secret key from a security parameter, (2) Key Generation al-
gorithm, which generates the user’s private key from the master secret key
and user’s identity information (more formally, public key). As users’ private
keys are generated by the master secret key, they have to trust the master
absolutely. Therefore, identity-based cryptosystems are only suitable for the

3



scenario where an unconditional trust is acceptable.

Boldyreva et al. [4] treated sequential aggregate signatures in the identity-
based setting and thus introduced the concept of identity-based sequential
aggregate signature (IBSAS) schemes (see Section 2.2). Further, under an
interactive pairings-based assumption, they constructed an IBSAS scheme in
the random oracle model. Meanwhile, they raised an open problem, i.e., how
to construct a secure IBSAS scheme under standard computational hard-
ness assumption in the standard model. However, Hwang et al. [21] point-
ed out that the pairing assumption used in [4] is not intractable, and they
showed a forgery attack on the corresponding IBSAS scheme of [4]. After
that, Boldyreva et al. [5] proposed a new IBSAS scheme by modifying their
previous construction and proved its security in the generic group model. Re-
cently, Gerbush et al. [16] proved the security of the modified IBSAS scheme
of Boldyreva et al. [4] under static assumptions via dual form signatures
framework. In 2012, Dou et al. [14] presented an IBSAS scheme, which is
based on RSA instead of pairings. Although a few of elegant schemes have
been proposed, none of them is based on a standard computational problem
and secure in the standard model.

As an interesting observation, Moni Naor observed that an Identity-Based
Encryption (IBE) scheme can be immediately converted into a public key sig-
nature scheme [9]. The intuition is below. The public key in the signature
scheme is the system public parameters for the IBE scheme. The signer’s pri-
vate key is the master key in the IBE scheme. The signature on a message M
is the IBE decryption key for id = M . To verify a signature, choose a random
message Mr, encrypt Mr using the public key id = M , and then attempt to
decrypt using the given signature on M as the decryption key. If the cipher-
text decrypts correctly, the signature is considered valid. Gentry et al. [18]
noted that an Identity-Based Signature (IBS) scheme can be constructed in
a very similar way via replacing the IBE scheme with a Hierarchical Identity-
Based Encryption (HIBE) scheme. This technique was used by Boneh et al.
[7, 11] to construct short signatures, and likewise by Paterson et al. [29] to
construct specific identity-based signatures in the standard model. Unfortu-
nately, it seems impossible to borrow the idea of Gentry et al. [18] directly
to construct IBSAS schemes, since IBSAS schemes require signatures be ag-
gregated one-by-one while keeping total signature size constant. In spite of
this bottleneck, it’s very meaningful to give a generic method via converting
an HIBE scheme, as there have been many fruits about IBE schemes.
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Note that Galindo et al. [15] studied whether there is a generic construc-
tion of “identity-based signature schemes with additional properties” (such as
aggregate signatures, identity-based blind signatures, . . .) from standard sig-
nature schemes with the same properties. In particular, they concluded that
a secure identity-based aggregate signature scheme can be constructed from
a secure aggregate signature scheme, where the length of an identity-based
aggregate signature depends on the number of different signers. However,
compared with IBE schemes, known aggregate signature schemes are much
less. One main goal of our paper is to find a general construction of IBSAS
schemes from HIBE schemes.

1.1. Our Contribution and Techniques

Motivated by the open problem of Boldyreva et al. [4, 5], i.e., construct-
ing an IBSAS scheme which is based on a standard computational problem
and secure in the standard model, we propose a new generic construction
of IBSAS schemes from 2-level HIBE schemes, which is different from the
counterpart of [15].

We start with borrowing some ideas of constructing an IBS scheme from a
2-level HIBE scheme as follows [18]. The public key is the system parameters
of the 2-level HIBE scheme. The private key of identity id is the counterpart
in the 2-level HIBE scheme. The signature on message M under identity
id is then the private key of the identity tuple (id,M) in the 2-level HIBE
scheme. And verification is performed by selecting a random message Mr,
encrypting Mr with the identity tuple (id,M), and verifying that Mr is the
decryption of the ciphertext via using the given signature as the decryption
key. From this construction, of course we can get a signature σ1 on the
message M1 under identity id1. The difficulty is how to obtain the signature
given the identity-message pairs ((id1,M1), (id2,M2)) and an aggregate-so-
far signature σ1 without increasing the resulting signature size. To achieve
this purpose, we consider the string M2||M1||id1 as a new message, then we
can sign this message under identity id2 after verifying that the signature
σ1 on message M1 under identity id1 is valid. Similarly, we can gain the
signature given the identity-message pairs ((id1,M1), (id2,M2), . . . , (idi,Mi))
and an aggregate-so-far signature σi−1. Furthermore, we obtain the following
general result, which shows that the security of the IBSAS scheme relies on
the security of the corresponding 2-level HIBE scheme.
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General Result. The IBSAS scheme is existentially unforgeable against
adaptively chosen identity-message pairs attack if the corresponding 2-level
HIBE scheme is IND-ID-CPA secure where the messages are chosen from
{0, 1}∗ and the identities are chosen from {0, 1}∗ ∪ ({0, 1}∗ × {0, 1}∗).

Based on this result, we illustrate it with two concrete examples below.

• We present a concrete IBSAS scheme, which is secure under the CDH
assumption (see Definition 1) in the standard model. It’s constructed
from a 2-level HIBE scheme, which is a natural extension of Waters’
IBE scheme [34]. Since the CDH assumption is a standard crypto-
graphic assumption [30], we proposes a solution to the open problem
pointed out by Boldyreva et al. [5].

• We construct a lattice-based IBSAS scheme, which is secure under the
hardness of Learning with Errors (LWE) problem (see Definition 2)
in the random oracle model. It’s constructed from the HIBE scheme
of Agrawal et al. [2]. Note that this is the first lattice-based IBSAS
scheme. It’s well known that lattice-based cryptosystems have recently
acquired much importance because of their probable security against
quantum computing attacks, average-case to worst-case equivalence as
well as simplicity and potential efficiency.

1.2. Organization

The rest of the paper is organized as follows. In the following Section,
we recall some notation and concepts to be used in the paper. In Section
3, we present how to construct an IBSAS scheme via converting a 2-level
HIBE scheme and prove its existential unforgeability against adaptively cho-
sen identity-message pairs attack. In Section 4, we design two concrete IB-
SAS schemes based on the CDH assumption and LWE assumption, and prove
their security. Then in Section 5, we show the performance comparisons be-
tween our schemes and other existing ones. Section 6 concludes the paper.

2. Preliminaries

2.1. Notation and Hardness Assumptions

For a positive integer n, [n] denotes the set {1, 2, . . . , n}. For x ∈ R, ⌊x⌉
denotes the closest integer to x. For any ordered set of linearly independent
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(column) vectors S = {s1, . . . , sk} in Rm, the norm of S is defined by ∥S∥ def
=

maxj∈[k] ∥sj∥, and denote S̃ as the Gram-Schmidt orthogonalization of S. For

any A ∈ Zn×m
q and u ∈ Zn

q , denote Λ⊥
q (A)

def
= {x ∈ Zm : A · x = 0 mod q}

and Λu
q (A)

def
= {x ∈ Zm : A · x = u mod q}. If D is a set, then let d

$← D
represent sampling d according to the uniform distribution over the set D.

For an α ∈ (0, 1) and a prime q, let Ψα be the distribution over Zq of
the random variable ⌊qX⌉ mod q where X is a normal random variable with

mean 0 and standard deviation α/
√
2π. Denote sR

def
=
√
n log q · ω(

√
logm).

Let DZm,sR be the discrete Gaussian distribution over Zm with center 0 and

parameter sR, then we have DZm,sR(y)
def
=

exp(−π∥y∥2/s2R)∑
x∈Zm

exp(−π∥x∥2/s2R)
for all y ∈ Zm.

We say that a matrix R ∈ Zm×m is Zq-invertible if R mod q is invertible as
a matrix in Zm×m

q . Denote Dm×m as the distribution on matrices in Zm×m

defined as (DZm,sR)
m conditioned on the resulting matrix being Zq-invertible.

Definition 1. (see [27]) Consider a cyclic group G of order q. The Compu-
tational Diffie-Hellman (CDH) assumption states that, given (g, ga, gb) for a

randomly chosen generator g and a, b
$← {0, 1, . . . , q − 1}, it is computation-

ally intractable to compute the value gab.

Definition 2. (see [31]) Consider a prime q, a positive integer n, and a
distribution λ over Zq. For a vector s ∈ Zn

q , denote As,λ as the distribution
over Zn

q ×Zq obtained by choosing a uniformly random vector a from Zn
q and

outputting (a, aT s + b) where b is a sample drawn from the distribution λ.
The (Zq, n, λ)−LWE (Learning with Errors) problem is to distinguish, given
oracle access to any desired m = poly(n) samples, between the distribution
As,λ (for constant random secret key s ∈ Zn

q ) and the uniform distribution
over Zn

q × Zq.

Regev [31] showed that if there exists an efficient, possibly quantum,
algorithm for solving the (Zq, n,Ψα)−LWE problem where α ∈ (0, 1) and q >
2
√
n/α, then there exists an efficient quantum algorithm for approximating

the shortest independent vectors problem (SIVP) and the decision version of
the shortest vector problem (GAPSVP), to within Õ(n/α) factors in the l2
norm.
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2.2. The Formal Definition of IBSAS Schemes and Their Security

Now we recall the formal definition of IBSAS schemes and their security.

An identity-based sequential aggregate signature (IBSAS) scheme [4] con-
sists of the following algorithms:

• Setup: This probabilistic algorithm initially runs by the trusted private-
key generator (PKG) that takes as input a security parameter n and
generates the public parameters PP and master secret key msk.

• Extract: This probabilistic algorithm runs by the PKG that takes as
input PP , msk, and a user’s identity id ∈ {0, 1}∗, then outputs the
private key skid for user id (we identify user with his id).

• Sign: This probabilistic algorithm runs by a user id that takes as input
its private key skid, a message M ∈ {0, 1}∗, a list ((id1,M1), . . . , (idi−1,
Mi−1)) of identity-message pairs, and an aggregate-so-far σ, and returns
a new aggregate signature σ′, or ⊥ to indicate that the input was
invalid.

• Vf : This deterministic algorithm takes as input the master public key
mpk, a list ((id1,M1), . . . , (idj,Mj)) of identity-message pairs and an
IBSAS σ, and outputs 1 if σ is a valid identity-based aggregate signa-
ture on identity-message pairs ((id1,M1), . . . , (idj,Mj)), or 0 otherwise.

Correctness of the scheme demands that Pr(Vf(Lj, σj) = 1) = 1 −
negl(n), for all j ∈ N and all {(idi,Mi)|1 ≤ i ≤ j, idi ∈ {0, 1}∗,Mi ∈ {0, 1}∗},
where the probability is over the following experiment.

Experiment:

(mpk,msk)
$← Setup

For all i = 1, . . . , j do

skidi
$← Extract(msk, idi)

σ0, L0 ← ∅
For all i = 1, . . . , j do

σi
$← Sign(skidi ,Mi, Li−1, σi−1)

Li ← ((id1,M1), . . . , (idi,Mi)).
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In the following, we present the security model of IBSAS schemes intro-
duced by Boldyreva et al. [4].

Definition 3. Let AS = (Setup,Extract,Sign,Vf) be an IBSAS scheme.
We consider an experiment with a forger (i.e. adversary) F assumed to be
a probabilistic Turing machine taking as input a security parameter n and
running in three stages.

• Setup: The experiment first takes as input a security parameter n and
generates the public parameters PP and master secret key msk.

• Attack: F runs on input PP with access to private key extraction ora-
cle OExtract(msk, ·) and signing oracle OSign(·, ·, ·, ·). The first operates
according to the above definition of the private-key derivation algorithm
for IBSAS. The second on input an identity idi, a message Mi, a list of
identity-message pairs Li−1 = ((id1,M1), (id2,M2), . . . , (idi−1,Mi−1)),
and an aggregate-so-far σi−1, sets skidi ← OExtract(msk, idi) and returns
Sign(skidi ,Mi, Li−1, σi−1).

• Forgery: Eventually, F halts with outputting a list of identity-message
pairs L∗ = ((id∗1,M

∗
1 ), (id

∗
2,M

∗
2 ), . . . , (id

∗
j ,M

∗
j )) and a purported aggre-

gate signature σ∗. This output is considered to be a forgery if (1) all of
id∗1, . . . , id

∗
j are distinct, (2) Vf(L∗, σ∗) = 1 and (3) There exists some

k∗ ∈ {1, . . . , j} such that id∗k∗ was not queried by F to its private key
extraction oracle and F did not query (id∗k∗ ,M

∗
k∗ , ((id

∗
1,M

∗
1 ), (id

∗
2,M

∗
2 ),

. . . , (id∗l ,M
∗
l )), σ

′) to oracle OSign(·, ·, ·, ·) for any σ′ ∈ {0, 1}∗ and any
l ∈ N.

We define F ′s success probability by

IBSAS − AdvUF (F) = Pr(Vf(((id∗1,M
∗
1 ), . . . , (id

∗
j ,M

∗
j )), σ

∗) = 1).

The IBSAS scheme is said to be existentially unforgeable against adap-
tively chosen identity-message pairs attack if IBSAS − AdvUF (F) is negli-
gible in the security parameter n.

2.3. 2-level HIBE Schemes and Their Security

Our new generic construction of IBSAS schemes is based on 2-level HIBE
schemes. Recall that a 2-level hierarchical identity-based encryption (HIBE)
scheme

∏
= (Setup, {KeyGeni}i=1,2, Encrypt, Decrypt) [20] is a tuple

of polynomial-time algorithms as follows.
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• Setup: Input: a security parameter n. Output: the system parameters
PP and master secret key msk.

• KeyGen1: Input: PP , msk and the identity id ∈ {0, 1}∗. Output:
the private key skid of identity id. (It’s called the first level private key
generation oracle.)

• KeyGen2: Input: PP , skid and the identity (id, id′) where id, id′ ∈
{0, 1}∗. Output: the private key sk(id,id′) of identity (id, id′). (It’s called
the second level private key generation oracle.)

• Encrypt: Input: PP , identity id (or (id, id′)) and a message M ∈M.
Output: the corresponding ciphertext.

• Decrypt: Input: PP , identity id (or (id, id′)), a ciphertext, and a
private key skid (or sk(id,id′)). Output: the corresponding plaintext.

Definition 4. The 2-level HIBE security (or indistinguishability from
random) under adaptive chosen-identity and chosen-plaintext attack (IND-
ID-CPA) (see [8]) is defined using the following game between a challenger
and an adversary:

Let
∏

= (Setup, {KeyGeni}i=1,2,Encrypt,Decrypt) be a 2-level HIBE
scheme. Consider the following experiment:

• Setup: The challenger runs Setup and gives the adversary the result-
ing public system parameters PP . It keeps the master secret key msk
to itself.

• Phase 1: The adversary issues any number of private key generation
queries adaptively. For each first level private key generation query,
the adversary submits an identity id and is told skid. For each second
level private key generation query, the adversary submits an identity
id′ and the “child identity” (id′, id′′) and obtains sk(id′,id′′).

• Challenge: Once the adversary decides that Phase 1 is over, it chooses
an arbitrary target identity id∗. The restriction is that it did not issue
a private-key query for id∗ or a prefix of id∗ during phase 1. It outputs
two equal length plaintexts M0,M1 ∈ M on which it wishes to be
challenged. The challenger picks a random bit b ∈ {0, 1} and computes
the challenge ciphertext C = Encrypt(PP, id∗,Mb). It sends C as the
challenge to the adversary.
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• Phase 2: The adversary issues additional private key generation queries
for identities adaptively, except that it now may not ask for identity id∗

or the identity as a prefix of id∗. The challenger responds as in Phase
1.

• Guess: Eventually, the adversary outputs a guess b′ ∈ {0, 1}. The
adversary wins if b = b′.

We refer to such an adversary A as an IND-ID-CPA adversary and define
its advantage in attacking the scheme S = (Setup, {KeyGeni}i=1,2,Encrypt,
Decrypt) as AdvS(A) = |Pr(b = b′)− 1

2
|.

Since there exist much more HIBE schemes than IBSAS schemes, new
IBSAS schemes can be constructed from exiting HIBE schemes.

3. The Generic Construction of IBSAS Schemes

In this section, we firstly present a generic construction of IBSAS schemes
via converting 2-level HIBE schemes, and then give a rigorous proof of it-
s security. Since HIBE schemes have been widely studied, we’ll use HIBE
schemes to construct IBSAS Schemes. Though an IBE scheme can be imme-
diately converted into a public key signature scheme [9] and an IBS scheme
can be constructed in a very similar way via replacing the IBE scheme with
an HIBE scheme [18], it seems impossible to employ the above method to
construct an IBSAS scheme from an HIBE scheme, since IBSAS schemes re-
quire signatures be aggregated one-by-one while keeping total signature size
constant.

3.1. The Generic Construction of IBSAS Schemes

For simplicity, for all positive integer i > 1, Li−1
def
= ((id1,M1), (id2,M2),

. . . , (idi−1,Mi−1)), and L̃i−1
def
= M1||id1||M2||id2|| . . .Mi−1||idi−1 as a con-

catenation of identity-message pairs in the remainder of the paper.

Given a 2-level HIBE scheme, we build an Identity-Based Sequential Ag-
gregate Signature (IBSAS) scheme S=(Setup, Extract, Sign, Vf) as fol-
lows. The system parameters PP and master secret key msk are the same as
the counterparts of the 2-level HIBE scheme. The private key of an identity
id is just that of the first level identity in the 2-level HIBE scheme. To reduce
the signature size, the signature of the current message Mi, given previous
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identity-message pairs ((id1,M1), (id2,M2), . . . , (idi−1,Mi−1)) and current i-

dentity idi, is the private key of the second level identity (idi,Mi||L̃i−1) in
the 2-level HIBE scheme. The verification runs via selecting a random mes-
sage mr, encrypting mr with the identity (idi,Mi||L̃i−1), and verifying that
mr is the decryption of the ciphertext via using the given signature as the
decryption key. The detailed description is shown as follows.

• Setup(1n): The step Setup is the same as Setup of the 2-level HIBE
scheme in Section 2.3.

• Extract(PP,msk, id): The step Extract is the same as KeyGen1 of
the 2-level HIBE scheme in Section 2.3.

• Sign(skidi , Mi, Li−1, σi−1): The algorithm first checks that σi−1 is a
valid aggregate signature (according to the verification algorithm be-
low) and returns ⊥ if not. (This step is skipped for a first signer.) If so,

let id′i = (idi,Mi||L̃i−1) and compute σi = skid′i = KeyGen2(skidi , id
′
i).

• Vf(PP , Li, σi): The algorithm first checks that all of id1, id2, . . . , idi

are distinct and outputs 0 if not. Let id′i = (idi,Mi||L̃i−1), M ′ $←
M. Compute C ′ = Encrypt(PP, id′i,M

′). If Decrypt(PP, skid′i =
σi, C

′) = M ′, then the algorithm returns 1; else it returns 0.

It can be easily checked that the above scheme satisfies the correctness.

3.2. The Security of the Generic Construction

Now we prove existential unforgeability of our IBSAS scheme under the
assumption that the original 2-level HIBE scheme is IND-ID-CPA secure.
Given an adversary that breaks the IBSAS scheme, we construct an adversary
that simulates the IBSAS scheme. By Definition 4, this adversary can in turn
successfully break the 2-level HIBE scheme. An algorithm is introduced to
overcome the difficulty of obtaining the target identity in the Challenge
step of the IND-ID-CPA game. We now give the theorem as follows.

Theorem 1. The IBSAS scheme is existentially unforgeable against adap-
tively chosen identity-message pairs attack if the corresponding 2-level HIBE
scheme is IND-ID-CPA secure where the messages are chosen from {0, 1}∗
and the identities are chosen from {0, 1}∗ ∪ ({0, 1}∗ × {0, 1}∗).
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Proof. Let F be an adversary as in Definition 3. We construct simulator
F ′ as in Definition 4 against the 2-level HIBE scheme. Assume F ′ maintains
three lists in its local storage, called E − list, V − list, and S − list. They
are set to empty initially. Simulator F ′ interacts with F as follows.

Setup: Simulator F ′ runs F supplying it with the public parameters.

Private Key Extraction Queries: Considering a query for the pri-
vate key of an identity id, simulator F ′ asks its own first level private key
generation oracle, returns the result skid to F , and puts (id, skid) into the
E − list.

Signing Queries: Algorithm F requests a sequential aggregate signa-
ture by supplying an identity idi, a message Mi, a list of identity-message
pairs Li−1 = ((id1,M1), (id2,M2), . . . , (idi−1,Mi−1)), and an aggregate-so-far
σi−1. F first checks whether σi−1 is a valid signature. If it’s invalid, F out-
puts ⊥. Otherwise, F ′ puts (Li−1, σi−1) into the V − list, queries its own

second level private key generation oracle with input PP and (idi,Mi||L̃i−1),

sends the resulting private key sk(idi,Mi||L̃i−1)
of identity (idi,Mi||L̃i−1) to F ,

and puts (Li, sk(idi,Mi||L̃i−1)
) into the S − list.

Output: Finally, F halts, outputting a list of identity-message pairs

L∗
j

def
= ((id∗1,M

∗
1 ), (id

∗
2,M

∗
2 ), . . . , (id

∗
j ,M

∗
j )) and a purported aggregate signa-

ture σ∗
j .

Assume that the output of F is a valid forgery, then there exists some k∗ ∈
{1, 2, . . . , j} such that id∗k∗ was not queried by F to its private key extraction
oracle and F did not query (id∗k∗ ,M

∗
k∗ , ((id

∗
1,M

∗
1 ), (id

∗
2,M

∗
2 ), . . . , (id

∗
k∗ ,M

∗
k∗)),

σ′) to oracle OSign(·, ·, ·, ·) for any σ′ ∈ {0, 1}∗.

Algorithm 1:
i← j + 1
repeat

i← i− 1
if (L∗

i , σ
∗
i ) is not in the S − list

if (id∗i , skid∗i ) is not in the E − list
then k∗ ← i, output k∗ and (L∗

k∗ , σ
∗
k∗), and halt

else we infer that (L∗
i−1, σ

∗
i−1) is in the S − list, thus (L∗

i−2, σ
∗
i−2)

is in the V − list. i← i− 1
else we infer that (L∗

i−1, σ
∗
i−1) is in the V − list.

13



For simplicity, denote L∗
i

def
= ((id∗1,M

∗
1 ), (id

∗
2,M

∗
2 ), . . . , (id

∗
i ,M

∗
i )) for all

i ∈ {1, 2, . . . , j}. We propose an algorithm (Algorithm 1) to show how to find
the corresponding k∗.

Since (L∗
j , σ

∗
j ) is a valid forgery, the above algorithm must halt at a certain

step. From the above simulation, we have that (1) σ∗
k∗ can be considered to be

the private key of the “child” identity id∗
def
= (id∗k∗ ,M

∗
k∗||M∗

1 ||id∗1||M∗
2 ||id∗2|| . . .

||M∗
k∗−1||id∗k∗−1) in the 2-level HIBE scheme; (2) id∗k∗ was not queried by F ′

to its own first level private key generation oracle; (3) F ′ did not query its
own second level private key generation oracle with input PP , identity id∗k∗ ,
and the “child identity” id∗.

During the Challenge step of the IND-ID-CPA game, adversary F ′

chooses the target identity as id∗ and outputs two equal length plaintexts
M0,M1 ∈ M on which it wishes to be challenged. The challenger pick-
s a random bit b ∈ {0, 1} and computes the challenge ciphertext C =
Encrypt(PP, id∗,Mb). It sends C as the challenge to the adversary F ′. Adver-
sary F ′ skips the Phase 2 step of the IND-ID-CPA game without doing any
private key queries. Then adversary F ′ computes Decrypt(PP, skid∗ , C) =
Decrypt(PP, σ∗

k∗ , C) = Mb. Thus adversary F ′ can successfully get b′ = b.

Consequently, F ′ is successful whenever F is. Algorithm F ′ makes as
many first level private key generation queries as F makes private key ex-
traction queries. And F ′ makes as many second level private key generation
queries as F makes signing queries. 2

4. Two Concrete IBSAS Schemes from the generic construction

In this section, two concrete IBSAS schemes are proposed by instantiating
the generic contraction of IBSAS, the first one is secure in the standard model
based on the hardness of the CDH problem, and the second one is the first
lattice-based IBSAS scheme.

4.1. The First Concrete IBSAS Scheme Based on the CDH Assumption

Now we present the first concrete IBSAS scheme, then prove its security
in the standard model based on the hardness of the CDH problem, thus
solving the open problem proposed by Boldyreva et al. [4, 5].

To construct an IBSAS scheme which allows identities and messages of ar-
bitrary lengths, like [4, 5, 29], collision-resistant hash functionsH1 : {0, 1}∗ →

14



{0, 1}l and H2 : {0, 1}∗ → {0, 1}n can be defined and used to create iden-
tities and the concatenation of identities and messages with desired length
respectively. The scheme is constructed as follows:

Scheme 1:

Denote Uid ⊆ {1, 2, . . . , l} to be the set of indices such that for all i ∈ Uid,
H1(id)[i] = 1, where H1(id)[i] is the ith bit of H1(id). Similarly, denote VV ⊆
{1, 2, . . . , n} to be the set of indices such that for all k ∈ VV , H2(V )[k] = 1.

• Setup: Let G and GT be two groups with prime order p respectively,
for which there exists an efficiently computable bilinear pairing: e :
G×G→ GT (see Appendix A). Choose a random generator g ofG, pick

a secret α
$← Zp, and compute g1 = gα. Choose g2 randomly from G.

Moreover, it chooses random values u′, v′ fromG. LetU = (u1 u2 . . . ul)
and V = (v1 v2 . . . vn), whose elements are all chosen at random from
G. The public parameters are PP = (G,GT , g, g1, g2, u

′, v′,U,V). The
master secret key is msk = gα2 .

• Extract: To construct the private key skid of identity id, choose rid
$←

Zp and compute skid = (gα2 (u
′ ∏
i∈Uid

ui)
rid , grid).

• Sign: The input is skidi , Mi, Li−1 = ((id1,M1), (id2,M2), . . . , (idi−1,

Mi−1)), σi−1. For i ≥ 2, the algorithm checks that σi−1 = (σ
(1)
i−1, σ

(2)
i−1, σ

(3)
i−1)

is a valid aggregate signature (according to the verification algorithm

below) and returns ⊥ if not. If so, denote Vi = Mi||L̃i−1 and choose

rVi

$← Zp. σi = (gα2 · (u′ ∏
i∈Uidi

ui)
rid · (v′

∏
j∈VVi

vj)
rVi , grid , grVi ).

• Vf : On input PP , Li, σi = (σ
(1)
i , σ

(2)
i , σ

(3)
i ). The algorithm first checks

that all of id1, id2, . . . , idi are distinct and outputs 0 if not. It then
checks if

e(σ
(1)
i , g) = e(g2, g1)e(u

′
∏

i∈Uidi

ui, σ
(2)
i )e(v′

∏
j∈VVi

vj, σ
(3)
i ).

If so, the algorithm returns 1; else it returns 0.
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Now we prove that existential unforgeability of the identity-based signature
scheme in [29] implies existential unforgeability of Scheme 1. Given an adver-
sary that breaks the IBSAS scheme, we construct an adversary that simulates
the IBSAS scheme and successfully break the identity-based signature scheme
in [29]. Similar to the proof of Theorem 1, we use an algorithm to obtain
a valid forgery in the existential unforgeability game of the identity-based
signature scheme in [29]. We give the following theorem.

Theorem 2. Scheme 1 is existentially unforgeable against adaptively chosen
identity-message pairs attack in the standard model if the identity-based
signature scheme in [29] is existentially unforgeable against adaptively chosen
identity and message attack in the standard model.

In particular, let F be a polynomial-time adversary as in Definition 3 that
makes qk private key extraction queries and qs signing queries. Then there
exists a polynomial-time adversary F ′ in the existential unforgeability game
of the identity-based signature scheme (see Section 2.1 of [29]) that makes qk
private key extraction queries and qs signing queries, such that

IBSAS − AdvUF (F) ≤ IBS − AdvUF (F ′).

Proof. Let F be an adversary as in Definition 3 that makes at most qk
queries to its private key extraction oracle, and at most qs queries to its
signing oracle, and succeeds with advantage ϵ. We construct simulator F ′ to
play the existential unforgeability game of [29]. Simulator F ′ interacts with
F as follows.

Assume F ′ maintains three lists in its local storage, called E − list, V −
list, and S − list. They are set to empty initially.

Setup: Simulator F ′ runs F supplying it with the public parameters.

Hash Queries: When F queries the value of H1(id), the simulator F ′

makes its own identity hash oracle and returns HID(id) to F . When F
queries the value of H2(Mi||L̃i−1), the simulator F ′ makes its message hash

oracle and returns HM(Mi||L̃i−1) to F .
Private Key Extraction Queries: Considering a query for the private

key of an identity id, simulator F ′ asks its own private key extraction oracle
and returns the result to F , and puts (id, skid) into the E − list.
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Signing Queries: Algorithm F requests a sequential aggregate signa-
ture by supplying an identity idi, a message Mi, a list of identity-message
pairs Li−1 = ((id1,M1), (id2,M2), . . . , (idi−1,Mi−1)), and an aggregate-so-far
σi−1. Simulator F ′ first checks whether σi−1 is a valid signature of the identi-

ty idi on message Mi||L̃i−1. If it’s invalid, simulator F ′ transmits reject to F ,
and F outputs ⊥. Otherwise, F ′ puts (Li−1, σi−1) into the V − list, queries

its own signing oracle for identity idi and message Mi||L̃i−1, and sends the
resulting signature σi to F , and puts (Li, σi) into the S − list.

Output: Finally, F halts, outputting a list of identity-message pairs

L∗
j

def
= ((id∗1,M

∗
1 ), (id

∗
2,M

∗
2 ), . . . , (id

∗
j ,M

∗
j )) and a purported aggregate signa-

ture σ∗
j .

Assume that the output of F is a valid forgery, then there exists some k∗ ∈
{1, 2, . . . , j} such that id∗k∗ was not queried by F to its private key extraction
oracle and F did not query (id∗k∗ ,M

∗
k∗ , ((id

∗
1,M

∗
1 ), (id

∗
2,M

∗
2 ), . . . , (id

∗
k∗−1,M

∗
k∗−1)),

σ′) to oracle OSign(·, ·, ·, ·) for any σ′ ∈ {0, 1}∗.

For simplicity, denote L∗
i

def
= ((id∗1,M

∗
1 ), (id

∗
2,M

∗
2 ), . . . , (id

∗
i ,M

∗
i )) for all

i ∈ {1, 2, . . . , j}. We employ Algorithm 1 in the proof of Theorem 1 to get
the corresponding k∗ and (L∗

k∗ , σ
∗
k∗). Algorithm F ′ outputs the signature σ∗

k∗

of identity id∗k∗ on messageM∗
A

def
= M∗

k∗||M∗
1 ||id∗1||M∗

2 ||id∗2|| . . . ||M∗
k∗−1||id∗k∗−1.

Without loss of generality, we assume that id∗k∗ and M∗
A have been re-

quested in the Hash Queries step. Parse σ∗
k∗ as (σ∗

1, σ
∗
2, σ

∗
3). Then we have

e(σ∗
1, g) = e(g2, g1)e(u

′
∏

i∈Uid∗
k∗

ui, σ
∗
2)e(v

′
∏

l∈VM∗
A

vl, σ
∗
3).

Moreover, from the above simulation, we have that (1) id∗k∗ was not queried
by F ′ to its own private key extraction oracle; (2) F ′ did not make a signing
query of identity id∗k∗ on message M∗

A. Therefore, σ∗
k∗ is a valid forgery of

identity id∗k∗ on message M∗
A in the existential unforgeability game against

the scheme of [29].

Consequently, F ′ is successful whenever F is. Algorithm F ′ makes as
many private key extraction queries (resp. signing queries) as F does.

2

Corollary 1. Scheme 1 is existentially unforgeable against adaptively chosen
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identity-message pairs attack in the standard model based on the hardness
of the CDH problem.

Proof. Since the identity-based signature scheme in [29] is existentially un-
forgeable against adaptively chosen identity and message attack in the stan-
dard model based on the hardness of the CDH problem, we obtain this corol-
lary from Theorem 2. 2 2

Therefore, we make a solution to the open problem of Boldyreva et al.
[4, 5].

Remark 1. Essentially, Scheme 1 is constructed via transforming the 2-level
HIBE scheme as an extension of Waters’ IBE scheme [34]. From [34], we have
that the 2-level HIBE scheme is secure in the standard model assuming the
decisional Bilinear Diffie-Hellman (BDH) assumption holds. Therefore, from
Theorem 1, we immediately get that Scheme 1 is secure in the standard model
based on the hardness of the decisional BDH problem. However, Paterson
et al. [29] proved that the identity-based signature scheme, obtained from a
modification of Waters’ proposed IBE scheme [34], is secure in the standard
model under the CDH assumption. The CDH assumption seems more natural
than many of the hardness assumptions recently introduced to pairing based
cryptography. Thus, in this section, we reduce the security of Scheme 1 to
the security of the identity-based signature scheme of Paterson et al. [29].

4.2. The Second Concrete IBSAS Scheme Based on the LWE Assumption

In this section, we propose the first lattice-based IBSAS scheme. Com-
pared with other existing IBSAS schemes, the lattice-based scheme has sev-
eral advantages: its probable security against quantum computing attacks,
average-case to worst-case equivalence as well as simplicity and potential ef-
ficiency. We employ the HIBE scheme of Agrawal et al. [2] rather than Cash
et al. [13] in order to keep the size of private keys and signatures in the
corresponding IBSAS scheme short (Please see Table 1 of [2] for the com-
parison.). The size of the signature is kept constant regardless of how many
signers and messages.

Lemma 1. (see [2, 17]) Let e be some vector in Zm and let y
$← Ψ

m

α .
Then the quantity |eTy| treated as an integer in [0, q − 1] satisfies |eTy| ≤
∥e∥qα · ω(

√
logm) + ∥e∥

√
m/2 with all but negligible probability in m.
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Lemma 2. (see [2]) Let q be an integer. There is a fixed constant C > 1
and a probabilistic polynomial-time algorithm GenBasis(1n; 1m; q) that, for
poly(n)−bounded m ≥ Cnlgq, outputs A ∈ Zn×m

q and T ∈ Zm×m such that:
• the distribution of A is within negl(n) statistical distance of uniform,
• T is a basis of Λ⊥

q (A), and

• ∥T̃∥ ≤ L̃ = O(
√
n log q).

Furthermore, suppose R ∈ Zm×m is sampled from Dm×m and s satisfies
s > ∥T̃∥·sR

√
m·ω(log3/2m). Then there is an algorithmBasisDel(A,R,T, s)

that outputs a basis T′ of Λ⊥
q (AR−1). Let Tar be an arbitrary basis of

Λ⊥
q (AR−1) satisfying ∥T̃ar∥ < s/ω(

√
logm). Then T′ is distributed statisti-

cally close to the distributionRandBasis(Tar, s), whereRandBasis(Tar, s)
is a probabilistic polynomial-time algorithm that outputs a basis T′′ satisfy-
ing ∥T̃′′∥ ≤ s

√
m with overwhelming probability. Moreover, if R is a product

of l matrices sampled from Dm×m, then s > ∥T̃∥ · (sR
√
m · ω(log1/2m))l ·

ω(logm).

Lemma 3. (see [17]) Let q ≥ 2 and A ∈ Zn×m
q where m > n. Let T be a

basis of Λ⊥
q (A) and τ ≥ ∥T̃∥ · ω(

√
logm). Then for u ∈ Zn

q , there is a PPT
algorithm SamplePre(A,T,u, τ) that returns d ∈ Λu

q (A) sampled from a
distribution statistically close to DΛu

q (A),τ , whenever Λ
u
q (A) is not empty.

Now we present the IBSAS scheme based on the LWE problem via con-
verting the 2-level HIBE scheme of Agrawal et al. [2].

Scheme 2:

Assuming there exists a hash function H : ({0, 1}∗)≤2 → Zm×m satisfying
that over the choice of the random oracle H, the output H(id) is distributed
as Dm×m.

• Setup(1n): On input a security parameter n, get the public param-

eters params = (q,m, n, L̃, sR, s, s
′, α,D) where prime q = poly(n),

dimension m ≥ 2n lg q, L̃ = O(
√
n log q), sR =

√
n log q · ω(

√
logm),

s > ∥T̃∥·sR
√
m·ω(log3/2 m), s′ > ∥T̃∥·(sR

√
m·ω(log1/2m))2 ·ω(logm),

where T is the output of GenBasis(1n; 1m; q), D = {T′ ∈ Zm×m :

∥T̃′∥ < s′
√
m}.

To keep the correctness of the scheme, the parameters should be as
follows (see Section 4.2 of [2] for the detailed analysis). nδ > ⌈log q⌉ =
O(2 log n), m = ⌈6n1+δ⌉ = O(2n log n), q = m5 · ω(log5 n), s = m2 ·
ω(log2 n), s′ = m7/2 · ω(log4 n), α = [s′m · ω(log n)]−1.
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Invoke GenBasis(1n; 1m; q) to generate a uniformly random matrix
A ∈ Zn×m

q together with a short basis T ∈ Zm×m for Λ⊥
q (A). Generate

a uniformly random vector u0 ∈ Zn
q . It returns (A,u0) as the public

parameters PP and T as the master secret key msk.

• Extract(msk, id): Compute skid ← BasisDel(A, H(id),T, s). Re-
turn skid.

• Sign(Li−1, skidi , σi−1, Mi): For i ≥ 2, the algorithm checks that σi−1

is a valid aggregate signature (according to the verification algorithm

below) and returns ⊥ if not. If so, denote id′i ← (idi,Mi||L̃i−1), and
compute

σi ← BasisDel(AH(idi)
−1, H(idi,Mi||L̃i−1), skidi , s

′).

Return σi.

• Vf(PP , Li, σi): The algorithm first checks that all of id1, id2, . . . , idi
are distinct and outputs 0 if not. Let id′i = (idi,Mi||L̃i−1). Choose noise

vectors x
Ψα← Zq and y

Ψ
m
α← Zm

q . Let τ = s′
√
m · ω(

√
logm)(≥ ∥s̃kid′i∥ ·

ω(
√
logm)). Set did′i

← SamplePre(AH(idi)
−1H(idi,Mi||L̃i−1)

−1,
σi,u0, τ).

Check if σi ∈ D and |x − dT
id′i
y| < q

5
. If so, the algorithm returns 1;

else it returns 0.

It should be noted that the above verification step is equivalent to the
counterpart in Section 3.1 via replacing the “Encrypt” and “Decrypt”
algorithms with the concrete counterparts in [2]. Without confusion, we
denote the letter as Vf ′(PP , Li, σi). In the following, we first show the
concrete form of Vf ′(PP , Li, σi), and then prove the equivalence.

Vf ′(PP , Li, σi): The algorithm first checks that all of id1, id2, . . . , idi are

distinct and outputs 0 if not. Let id′i = (idi,Mi||L̃i−1) and M ′ $← {0, 1}.
1. Compute C ′ = Encrypt(PP, id′i,M

′):

Pick uniformly random vector s
$← Zn

q and noise vectors x
Ψα← Zq and y

Ψ
m
α←

Zm
q . Using Regev’s dual public key encryption (as defined in [17]), we get the
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ciphertext (c0 = u0
T s+ x+M ′⌊ q

2
⌋, c1 = (AH(idi)

−1H(idi,Mi||L̃i−1)
−1)T s+

y).
2. Compute Decrypt(PP, skid′i = σi, C

′):

(a) Let τ = s′
√
m · ω(

√
logm) (≥ ∥s̃kid′i∥ · ω(

√
logm)).

(b) Set did′i
← SamplePre(AH(idi)

−1H(idi,Mi||L̃i−1)
−1, σi,u0, τ).

(c) Compute w = c0−dT
id′i
c1 ∈ Zq. Compare w and ⌊ q

2
⌋. If they are close,

i.e., if |w − ⌊ q
2
⌋| < ⌊ q

4
⌋ in Z, then the algorithm returns 1; else it returns 0.

3. Check whetherDecrypt(PP, skid′i = σi, C
′) = M ′. If so, the algorithm

returns 1; else it returns 0.

Corollary 2. Vf ′(PP , Li, σi) and Vf(PP , Li, σi) are equivalent.

Proof. If Vf(PP , Li, σi) outputs 1, then |x − dT
id′i
y| < q

5
and |w − ⌊ q

2
⌋| =

|x+M ′⌊ q
2
⌋−dT

id′i
y−⌊ q

2
⌋|. Hence, M ′ = 1 iffDecrypt(PP, skid′i = σi, C

′) = 1,

that is, Vf ′(PP , Li, σi) outputs 1. On the other hand, if Vf ′(PP , Li, σi)
outputs 1, from the analysis of [2], we have |x−dT

id′i
y| < q

5
, and σi ∈ D. Thus,

Vf(PP , Li, σi) outputs 1. 2

Theorem 3. Scheme 2 is existentially unforgeable against adaptively chosen
identity-message pairs attack in the random oracle model under the hardness
of the LWE problem.

Proof. From Theorem 5 of [2], we have that the 2-level HIBE scheme
is IND-ID-CPA secure in the random oracle model under the hardness of
the LWE problem. Combining it with Theorem 1, we obtain this result.

2

5. Performance Comparisons of IBSAS Schemes

Table 1 shows the details of the performance comparisons between our
schemes and previous IBSAS schemes [5, 14]. We assume there are Q cosign-
ers involved. The efficiency is considered to include the private key extrac-
tion cost, signing cost, verification cost, aggregate signature size, hardness
assumption, resistance to quantum computing based attacks and security
model. For simplicity, we have the following notations:

M : multiplication in G;
E: exponentiation in G;
P : bilinear pairing in G;
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M ′: multiplication in GT ;
|G|: the bit-length of an element in the group G;
TBasisDel: the time of the algorithm BasisDel(·, ·, ·, ·);
Ts: the time of choosing a sample from Ψ̄α;
Tmv: the time of matrix-vector multiplication in Zm×m

q × Zm
q ;

EN : exponentiation in Z∗
N ;

MN : multiplication in Z∗
N .

Moreover, we let RQA denote resistance to quantum-computer-based at-
tacks, ROM denote random oracle model, and SM denote standard model,
respectively. For simplicity, we employ the upper bound of the Gram-Schmidt
norm of the aggregate signature to represent the size of aggregate signature
in Scheme 2.

Schemes
Cost of

Extract

Cost of

Sign

Cost of

Verify

Size of

Aggregate Signature

Hardness

Assumption
RQA

ROM/

SM

Scheme 1 lM + 2E nM + 2E
4P + 2M′+

(n + l)M
3|G| CDH No SM

Scheme 2 TBasisDel TBasisDel (m + 1)Ts + Tmv m7/2 · ω(log4 n)
√

m LWE Yes ROM

[5] 2E 5E + 6M
4P + 2M′+

2(Q − 1)M + QE
3|G| IBSAS-CDH No ROM

[14] EN 2EN + 2MN (Q + 1)EN (Q + 1) logN RSA No ROM

Table 1: Performance Comparisons of IBSAS Schemes.

Compared to previous constructions, our schemes have several advan-
tages. Firstly, Scheme 1 is the first secure IBSAS scheme in the standard
model, as others are secure in the random oracle model. Secondly, Scheme 1 is
based on the CDH assumption, which is more standard than the IBSAS-CDH
problem adopted in [5]. Thirdly, Scheme 2 is based on the lattice problem
(i.e., the LWE problem), for which there are currently no known quantum
algorithms, while all previous constructions are based on the IBSAS-CDH
problem and RSA problem, both of which can be solved by efficient quantum
algorithms [30]. Although large-scale quantum computers are not expected
to exist in the near future, it’s meaningful to construct cryptosystems which
are resistant to quantum-computer-based attacks. Finally, unlike Scheme 1
and the IBSAS scheme of [5], no bilinear pairing operation is needed during
the verification step of Scheme 2, the operations of Scheme 2 are simpler.
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6. Conclusion

In this paper, we firstly presented a generic construction of IBSAS schemes,
and proved that an IBSAS scheme is existential unforgeable against adap-
tively chosen identity-message pairs attack under the assumption that the
original 2-level HIBE scheme is IND-ID-CPA secure. Afterwards, we initiat-
ed the generic construction to obtain two concrete IBSAS schemes. Note that
the first concrete IBSAS scheme is a solution to the open problem pointed out
by Boldyreva et al. in CCS’ 2007, since the security of this scheme can be re-
duced to the hardness of CDH problem in the standard model. Additionally,
the second concrete scheme is the first lattice-based IBSAS scheme. We also
compared our schemes with previous ones. We believe that our constructions
may be applied to secure network routing and sensor networks.
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Appendix A.

Definition 5 Suppose that G and GT are two multiplicative groups of prime
order p and g is a generator of G, where all group operations can be computed
efficiently. An efficiently computational map e : G × G → GT is called
an efficiently computational bilinear pairing, if it satisfies the following two
properties:

• Non-degeneracy: e(g, g) ̸= 1 and is thus a generator of GT ;

• Bilinearity: ∀u, v ∈ G and ∀a, b ∈ Z: e(ua, vb) = e(u, v)ab holds.

Appendix B.

Definition 6 (see [26, 32]) Let G and GT be two multiplicative groups of
prime order p and g be a generator of G. Let X, Y ∈ G such that X = gx and
Y = gy for some x, y ∈ Zp. Denote ρ := (p,G,GT , g, e, X, Y ) and let OX,Y be
an oracle that on input a value M ∈ Zp outputs a triplet (a, ay, ax+Mxy) for
a randomly chosen a ∈ G. The LRWS assumption states that for all efficient
algorithms AOX,Y , the following holds:

Pr[x← Zp; y ← Zp;X ← gx;Y ← gy; (Q,M, a, b, c)← AOX,Y (ρ) :
M /∈ Q ∧ a ∈ G ∧ b = ay ∧ c = ax+Mxy] = negl(1n),

where Q is the set of oracle queries.
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