
Exploring Potential 6LoWPAN Traffic Side Channels

Yan Yan
Department of Computer Science

University of Bristol

y.yan@bristol.ac.uk

Elisabeth Oswald
Department of Computer Science

University of Bristol

elisabeth.oswald@bristol.ac.uk

Theo Tryfonas
Department of Computer Science

University of Bristol

theo.tryfonas@bristol.ac.uk

Abstract
The Internet of Things (IoT) has become a reality: small

connected devices feature in everyday objects including chil-
drens’ toys, TVs, fridges, heating control units, etc. Sup-
ply chains feature sensors throughout, and significant invest-
ments go into researching next-generation healthcare, where
sensors monitor wellbeing. A future in which sensors and
other (small) devices interact to create sophisticated appli-
cations seems just around the corner. All of these applica-
tions have a fundamental need for security and privacy and
thus cryptography is deployed as part of an attempt to se-
cure them. In this paper we explore a particular type of flaw,
namely side channel information, on the protocol level that
can exist despite the use of cryptography. Our research in-
vestigates the potential for utilising packet length and timing
information (both are easily obtained) to extract interesting
information from a system. We find that using these side
channels we can distinguish between devices, different pro-
grams running on the same device including which sensor is
accessed. We also find it is possible to distinguish between
different types of ICMP messages despite the use of encryp-
tion. Based on our findings, we provide a set of recommen-
dations to efficiently mitigate these side channels in the IoT
context.

Categories and Subject Descriptors
H.5.m [Information interfaces and presentation]: Mis-

cellaneous

General Terms
IoT Privacy and Security

Keywords
LoWPAN; Side Channel Attacks; Traffic Analysis

1 Introduction
The expression ‘Internet of Things’ (IoT) can refer to a

multitude of objects and protocols, which share that they
have been purposefully designed for resource constraint en-
vironments. Whereas the typical TCP/IP network stack pro-
duces considerable overhead to achieve quality of service for
applications that are based on it, the nature of many IoT
‘things’ is such that a full implementation of it would not
be practical. Often ‘things’ are sensor, which are devices
that have to function on little resources (most importantly
power). Thus a whole host of new networking protocols have
been developed over the years to cater for such resource con-
strained devices: 6LoWPAN is the ‘tiny’ version of IPv6,
UDP tends to be used instead of TCP/IP, DTLS can be used
for end-to-end security or one can directly invoke 802.15.4
security which is part of 6LoWPAN, and finally CoAP(s) is
the replacement for HTTP(s). Thus there are two options
(802.15.4, and DTLS) to secure communications between
the ‘things’ and a server/gateway.

Implementing cryptography correctly and securely has
proven to be a massive challenge as evidenced by the multi-
tude of implementation attacks over the years. Triggered off
by research that showed how to utilise additional informa-
tion via timing and power side channels [14], many different
flavours of side channel attacks were discovered over the last
decade. Many attacks use phyiscal information (such as low
level execution timings or power consumption) to recover
secret keys, but many other attacks use protocol level infor-
mation (such as packet lengths, types of packets or protocol
messages) to recover information about plaintexts, devices in
the network, or the network itself. There exists a consider-
able body of work in the context of conventional, i.e. HTTPs
over TCP/IP network, but the applicability of (some) of these
attacks in the context of a typical IoT protocol stack is lack-
ing. This is the gap that we would like to address with this
work.

This paper is structured as follows: after reviewing some
relevant attack paths for HTTPs over TCP/IP in the following
subsection, we briefly explain our experimental network in
Section 2. We discuss the impact of packet length leakage
in Section 3, followed by an analysis of the response time
leakage in Section 4. We summarise our work in Section 5.
1.1 Related Work

Traffic Analysis is well studied in the context of encrypted
Internet traffic, especially for web applications based on



HTTPs and TCP/IP. The landmark study by Chen et al. [1]
discussed different side channel attacks against web applica-
tions and [28] studied the practicability of an attack specifi-
cally targeted Google and Bing search boxes. Later work by
Mather and Oswald [21] proposed the use of Mutual Infor-
mation to pinpoint the potential leakage points in web traffic.
For non-HTTPs applications, the papers [4], [36] and [2] de-
scribed attacks against encrypted text, voice and video traf-
fic respectively. Machine learning is widely used to analyse
the traffic, and behaviours of different classifiers are studied
by [11] and [7]. Based on all these published works we can
conclude that two features, the packet length and response
time, are the most exploited ones among all attacks. Differ-
ent countermeasures were studied by [37], [20] and [8].

Reflecting on IoT applications, we stipulate that most of
these attacks may still be applicable, as we intend to demon-
strate in this paper. Considering the future vision that IoT
devices could be indeed connected to the Internet with even
more sensitive data flowing over different networks, the task
of designing secure IoT applications becomes increasingly
challenging.

With regard to the aspect of protocol design, the recent
paper [24] summarised some known flaws of 6LoWPAN, in-
cluding its susceptibility to the Fragmentation Attack [13],
Sinkhole Attack [17], Hello Flood Attack [31], Wormhole
Attack [12] and Blackhole Attack [34]. In addition, [27] re-
ported certain problematic designs in 802.15.4 security [10].
However we do not discuss further these particular design
flaws as they touch on a different aspect of the security issues
in 6LoWPAN compared to what we address in this paper.
2 Our Experimental Network

Our experimental network is constructed using two differ-
ent devices. These are a TelosB and a CC2538. The TelosB
is a low cost sensor powered by an MSP430 with an AES
co-processor. It represents typical low-end devices. The
CC2538 is the high end device powered by an ARM Cortex-
M3 with multiple cryptographic processors including AES,
RSA, SHA-2 and ECC, suggesting that it is suitable to de-
velop secure applications.

Both devices are supported by the Contiki OS. We
adopted the default settings of the Contiki OS, except for
enabling 802.15.4 security [10] for some experiments. Note
that the Contiki MAC [5] is chosen by default over TSCH
[32]. For Layer 4 [9] and above protocols, we went with
the widely accepted combination of CoAP [30], and DTLS
[26](optional) over UDP [25]1. Table 1 summarises our
choice of protocol stack.

Table 1. Protocol stack for our experiments(* is optinal)

Physical 802.15.4Link
Network 6LoWPAN

Transmission UDP
DTLS*

Application CoAP / CoAPs*

1CoAPs is equivalent to CoAP over DTLS.

2.0.1 802.15.4 and DTLS
In our setting, there are two standards available for

packet encryption, namely 802.15.4 security [10] and DTLS
[26]. 802.15.4 security is provided by the noncoresec [16]
API, which implements 802.15.4 authenticated encryption
with AES-128 CCM* [6] using a hard-coded key shared
by the whole 6LoWPAN network. We chose tinyDTLS
as library for the DTLS protocols, because it provides a
minimum DTLS implementation that supports two cipher-
suites which are TLS PSK WITH AES 128 CCM 8 [22]
and TLS ECDHE ECDSA WITH AES 128 CCM 8 [22]
respectively. Evidently, they both utilise AES-128 CCM*
as the packet encryption method.

3 Exploiting Packet Length Information
As our brief survey of traffic analysis via exploiting

packet lengths showed in Section 1.1, the packet length has
proven to be a powerful side channel for the classical Internet
protocols. It is worth noting that this side channel is ‘noisy’
in the classical Internet setting: websites or web applications
in this setting typically feature advertisements, which impact
on packet lengths; TCP/IP allows to fragment packets and
then reassembles them, a feature which is not presented in
UDP. Thus, due to the nature of UDP exploiting the packet
length as side channel should be easier in the IoT setting.

Clearly then, any web application style implementations
involving an IoT device will thus be extremely vulnerable to
attacks such as [1]. In the absence of this scenario for state-
of-the art IoT applications, it still sends a cautionary warning
to developers: binary responses (e.g. ‘yes’ vs. ‘no’, or ‘on’
vs. ‘off’) must always be coded via a binary variable and not
via strings because these will have different lengths, which
are directly visible via the packet length.

In the remainder of this section we will highlight further
problems that arise if packet lengths leak information.

3.1 Distinguishing ICMP Messages
The Internet Control Message Protocol(ICMP) [3] per-

forms the management tasks in a network, such as link es-
tablishment and routing information exchange. As explained
before we utilise the open source system Contiki, which sup-
ports a (sub)set of the ICMP standard (we list the supported
ICMP messages in Table 2). Many ICMP messages are ideal
for network discovery and exploration, although the purpose
of ICMP is to send error messages to the source IP address
if standard IP packets fail to be transmitted correctly.

Generally, ICMP messages can be protected by either us-
ing the secure ICMP messages as described in [3], or relying
on the lower layer encryption provided by 802.15.4. Contiki
OS does not have the former implemented, hence 802.15.4
security is the only option currently. We simulated a 6LoW-
PAN network with 802.15.4 security enabled (with strongest
encryption and authentication). We configured the nodes to
also generate random UDP packets. Despite the fact that all
ICMP messages were encrypted, our experiments show that
several ICMP messages can be identified by their packet size
and MAC destination. Table 2 summarises the packet fea-
tures. The value x denotes the size of user defined data in
bytes.



Table 2. Metadata of Contiki Supported Packets

Packet Size (bytes) MAC Destination
DIS 85 broadcast
DIO 118/123 broadcast/unicast
DAO 97 unicast
NS 87 broadcast/unicast
NA 87 unicast

PING 101+ x unicast
UDP Multicast 85+ x broadcast
UDP Unicast 107+ x unicast

Among the unicast packets, PING and UDP have at least
101 and 108 bytes2. Therefore, DAO can be uniquely iden-
tified as the shorter unicast packet of 97 bytes. For the same
reason NA and unicast NS can also be distinguished from
other packets by filtering packets of 87 bytes. Considering
that NA is sent as a response to NS according to the proto-
col, one can always identify the first being NS and second
being NA.

Similarly, unicast DIO can be identified as the 123 bytes
packet followed by DIS, where the later has a unique 85 byte
size. However, there is a potential of false positive induced
by PING or UDP packets with user defined data crafted to
have the same packet length3. PING could be recognised by
its pair-wised appearance, as the response would have nearly
the same meta data as the original request, except the ex-
changed source and destination. For broadcast packets, DIS
can be easily identified by its unique 85 bytes packet size.
Others like broadcast NS can be identified by the followed
characteristic NA response; and packets of 118 bytes those
are periodically broadcasted are likely to be DIOs.

In summary, among all the packets, DAO, NA, NS, DIS
can be identified with certainty. DIO and PING cannot be
certainly identified but they both have significant characters.
Notice that the above contained all ICMPv6 messages sup-
ported by Contiki; therefore UDP packets can be reversely
filtered, although in some cases they get mixed with DIO
and PING.

Although leakage in ICMP messages does not directly
lead to any breach of application data, it would still be harm-
ful by providing the adversary with information about the
state of the network, including which nodes recently joined
etc. Specifically DAO is always sent from a child to its par-
ent and can be uniquely identified; therefore together with
MAC addresses the adversary may exploit it to draw a graph
that shows the parental relations in the network. In addition,
these information can also be exploited by attacks as in [19].

3.2 Distinguishing Different Devices
In the classical Internet world, ICMP has been well

known for its use for OS fingerprinting [33]. In the case of
the IoT, this could be possible as well (as different OS sup-
port different subsets of ICMP), however an additional at-
tack vector exists. This is because different IoT devices have

2PING can be sent without user defined data and UDP packets requires
at least 1 byte.

322 bytes for PING and 16 bytes for UDP.

different hardware limitations or drivers. We noticed that
our TelosB [23] discards all packets exceeding 127 bytes4

whereas our CC2538 handles packets even up to 160 bytes.
Therefore an adversary can immediately rule out TelosB
whenever a packet larger than 127 bytes processed by the
target.
4 Exploiting Response Time Information

The response time is another major feature that has been
previously exploited in Internet traffic analysis attacks. Like
in the case of exploiting packet lengths, we would expect
that the same attacks (as in the classical Internet setting) can
be applied to 6LoWPAN traffic. Indeed, like in the previous
section, we would expect that they will work even better be-
cause the accuracy of timing measurements can be greatly
improved for 6LoWPAN traffic: this is because there are
fewer noise sources in the traffic, the devices are physically
close to each other and uses RF to communicate, the adver-
sary can remove the RTT noises by measure the packets on
the server side, and the performance of the constrained de-
vices is low and hence gives a better resolution of the execu-
tion time.
4.1 Distinguishing Different Sensors

The first application of timing analysis that we describe
is to distinguish between different sensors that are accessed
on a device. For this purpose we set up an experiment on a
CC2538, which has three on-board sensors: Vdd, tempera-
ture, and an Ambient Light Sensor (short ALS). We access
these via CoAP [30], which is a protocol designed for con-
strained devices that provides an universal interface for ac-
cessing resources. CoAPs is the secure version which stands
for CoAP with DTLS.

Due to the different physical characteristics of the sen-
sors, there could be a variance of time that is required for
reading the measurements. We investigated whether such
variances could be observed through the packet response la-
tency. If this was the case, then an adversary could learn the
nature/purpose of sensors on a network by observing their
response time.

We thus set up an experiment on CC2538, using all three
sensors from “cc2538-demo”. We used CoAP from the “er-
rest-example” in the Contiki OS source code, as there is no
CoAPs implementation available. Although DTLS process-
ing would definitely have an impact on the response latency,
we argue that such impact would be independent to the sen-
sors being accessed; hence similar result can be equally ex-
pected for CoAPs. We carefully controlled other factors, in-
cluding URIs, data representation and code flow, to be uni-
form for all three sensors in order to guarantee a controlled
environment.

Table 3 summarises the result. It shows that ALS takes
about 2ms longer and hence can be easily distinguished. Vdd
and temperature have much more strongly overlapping distri-
butions, and thus are more difficult to distinguish. Neverthe-
less these results confirm our hypothesis: different sensors
have different latencies and these leak through the response
time. An adversary who is interested in finding out informa-
tion about devices on a network might thus be able to match

4MTU specified by 802.15.4 standard.



Table 3. CoAP Response Latency for Sensor Readings on
CC2538

Average (ms) Range(ms)
Vdd 9.622 [9.388, 10.318]

Temperature 9.835 [9.525, 10.318]
ALS 11.651 [11.338, 12.031]

Table 4. PING Response Latency

CC2538 TelosB
Average(ms) 9.56 17.03
Range(ms) [9.16, 10.06] [16.49, 17.68]

the (known) behaviour of ‘interesting’ sensors to what they
observe on the network. We remark that this could be use-
ful even in the setting where the sensors transmit their data
unencrypted: after all they might return only some reading
without a unit of measurement; thus seeing their return data
might not as such reveal their nature.

4.2 Distinguishing Different Devices
As we observed before, different devices have differ-

ent underlying hardware and thus different computational
power. This implies that there could be the potential that
different devices take different amounts of time to process
the same message. Because ICMP messages are standard-
ised, they are particularly suitable for this purpose. Among
the different ICMP messages, PING is especially ideal for
two reasons:

1. It is mandatory in the ICMP standard.

2. It only swaps the source and destination address of the
packet; thus minimises different code path in protocol
processing.

Table 4 shows the PING response latency on CC2538 and
TelosB. The result confirms that these devices can be distin-
guished by PING response latency.

4.3 Distinguishing Programs
We remarked before that the functionality of a sensor is

potentially valuable information. For instance some sensors
might be predominantly passive, e.g. they might read the
temperature and report it back periodically, whereas some
sensors might control something upon receiving commands.
Thus knowing the functionality enables an adversary to make
(more) sense of the observed traffic in the network. This
could be done if a ‘fingerprint’ could be produced for differ-
ent programs. From an adversary’s perspective a positive re-
sult would imply that they could ‘fingerprint’ products which
are on the market and thus use this information to infer what
program is running on a target device.

To illustrate why this might work, we now look at Fig-
ure 1. It illustrates two sensors receiving the same service
request. In our example, at the time of receiving the request,
Sensor Node 1 was idle and hence responded immediately,
whilst Sensor Node 2 postponed the request for reading a
sensor. Clearly, the response time on Sensor Node 2 would
appear longer than that of Sensor Node 1.

Figure 1. Variations in Response Time

In real life, most sensors are programmed in a loop; there-
fore the same code fragments are repeated through the life
time of a sensor. Each code fragment takes different time to
execute and hence the response times vary. This behaviour
could be statistically analysed and the resulting distribution
could be stored as a ‘fingerprint’ .

For this fingerprinting scenario, we must assume the ad-
versary has the pre-knowledge of potential programs and can
fingerprint them (or that they have access to a database that
contains this information). To identify an unknown program
running on target sensor, the adversary collects a new finger-
print and then matches it to available fingerprints. Clearly, to
effectively launch the attack, the adversary needs to be able
to send the request to a targeted sensor (requests with short
predictable processing time are preferable as they induce less
noise).

In practice, the request can be instantiated by several
messages defined in the sensor network protocols. PING
is exceptionally ideal as it is mandatory in the ICMP stan-
dard [18] and has only negligible computation. Other op-
tions but not excluded are Heartbeat in DTLS [29], Reset in
CoAP [30], etc.

Figure 2 shows an example of PING packets captured on
an CC2538 running Contiki OS. The response time, which
refers to PING Response Interval, PRI, is defined to be the
time between a PING response and its last paired request.

Figure 2. Example PRI

Figure 3a shows the histogram of PRIs collected on the
“helloworld” example from Contiki OS. Values ≥12ms are
collected at 12ms. The result shows that most PRIs are clus-
tered around 9.5ms which consists with our result in Table 4.
The majority, roughly ranged [9.0, 10.3]ms, corresponds to
the usual response time as depicted by Sensor Node 1 in Fig-
ure 1.

We further plotted the upper outliers, mostly ranged [12,
2000]ms, in Figure 3b. Unfortunately we do not have a solu-



(a) PRIs of helloworld

(b) PRIs outliers of helloworld

Figure 3. helloworld PRIs

tion to investigate the exact cause of such delay, as we were
unable to control the code execution that requires environ-
mental interaction within a timing critical context. Never-
theless, we suppose these outliers correspond to the extended
response time as depicted by Sensor Node 2 in Figure 1. The
distribution described by Figure 3b is the fingerprint of the
“helloworld” example.

The result in Figure 3 shows a clear gap between the usual
PRIs and extended PRIs. In fact other applications we exper-
imented also showed the same property. This implies that an
adversary can easily draw a threshold by observing the whole
PRI distribution and then filter out the fingerprint. In our ex-
periments the threshold is set to 12ms but any other values
within the gap would also work.

We collected the fingerprints for three programs taken
from the Contiki OS examples:
broadcast This program periodically broadcasts a constant

message.

powertrace This program records the power consumption

and broadcasts a constant message.

Sensorpayload This program is based on the “er-rest-
example” embedded together with sensor accesses
taken from “cc2538-demo”. It captures a real case sce-
nario where three different sensors, namely Tempera-
ture, Vdd and ALS, are being accessed through CoAP.

Specifically for “Sensorpayload” we collected finger-
prints for 8 different scenarios where different sensors are
being accessed. For each program we independently col-
lected 2 fingerprints for comparison.

During the experiments we realised that most of the fin-
gerprints do not adhere to common distributions; therefore
we used a non parametric test, the Kolmogorov-Smirnov
Distance [15], as our test statistic. This is a well understood
statistic with previous uses in side channel analysis [35].

By adapting our distinguisher to utilise the minimum KS
distance, we were able to identify 13 out of 20 fingerprints
successfully. The ‘overlapping’ fingerprints are mainly due
to the “Sensorpayload” program, which access different sen-
sors, but otherwise has identical program code. Thus we did
expect that the different instantiations of it would lead to very
similar fingerprints.

5 Conclusion
In this paper we explore, for the first time, the use of

packet lengths and response times, which are protocol level
side channels, as means to recover information about IoT
‘things’. We do this experimentally, which we base on two
extremely popular devices running on a popular open source
OS, with a typical stack of protocols. Whilst we do not cover
a wide range of devices, the fact that two of the most popular
devices show the characteristics that we hypothesise, gives
credibility to our results. Our results show that it is possi-
ble (in principle) to recover information about a device and
its function (i.e. the hardware and the software that runs
on it) via inspecting encrypted traffic that it produces. We
also point out that ICMP messages can be distinguished from
each other despite the use of encryption.

Although 6LoWPAN is a relatively experimental standard
and most smart devices today are still based on WiFi, we
reasonably argue that the same attacks could be mounted
on these devices as well since WiFi packets contains all the
same leakage. For instance, in IFTTT based applications,
such as WeMo, such leakage may reveal the user specified
“receipts” which results into a severe privacy and security
issue.

In order to mitigate the leakage that is given by packet
lengths, previous works recommend padding [7]. We echo
this recommendation. Whilst padding to MTU is considered
inefficient for the Internet, it is in fact highly appropriate for
6LoWPAN because:

• It completely hides the length of original plaintext.

• 6LoWPAN has only a low MTU of 127 bytes; therefore
the overhead is acceptable.

• It induces negligible computational overhead.
With regard to the leaking information about the device or

OS, we suggest strictly applying the standard MTU to elim-
inate the differences in drivers. Although there is a potential



of performance downgrade, it will also improve the compat-
ibility among different devices.

In order to mitigate the leakage given by response times,
the natural countermeasure is to write time-constant code,
which is known to be notoriously difficult. But two ap-
proaches are available to a software developer:

• Randomly delay the response. This essentially adds
noise to the measurements of the adversary.

• Use a threshold response time, i.e. a request is either
responded at a predefined time or not responded at all.

Within the context of 6LoWPAN the second method is rec-
ommended as most 6LoWPAN application would tolerate
missing packets and timer is available on most platforms.
However, the threshold must be carefully chosen to preserve
the functionality of the 6LoWPAN application.
6 Acknowledgements and Disclaimer

This work was in part supported by EPSRC via grant
EP/N011635/1 (LADA). No research data was created for
this paper.
7 References

[1] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel leaks in web
applications: A reality today, a challenge tomorrow. In Security and
Privacy (SP), 2010 IEEE Symposium on, pages 191–206. IEEE, 2010.

[2] R. B. Chris Wampler, A. Selcuk Uluagac. Information leakage in en-
crypted ip video traffic. ieee-globecom 2015, 2015.

[3] A. Conta, S. Deering, and M. Gupta. Internet Control Message Proto-
col (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification.
RFC 4443 (Draft Standard), Mar. 2006. Updated by RFC 4884.

[4] S. Coull and K. Dyer. Privacy failures in encrypted messaging ser-
vices: Apple imessage and beyond. arXiv preprint arXiv:1403.1906,
2014.

[5] A. Dunkels. The contikimac radio duty cycling protocol. SICS Report,
2011.

[6] M. J. Dworkin. Sp 800-38c. recommendation for block cipher modes
of operation: The ccm mode for authentication and confidential-
ity. Technical report, National Institute of Standards & Technology,
Gaithersburg, MD, United States, 2004.

[7] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-boo,
i still see you: Why efficient traffic analysis countermeasures fail. In
Proceedings of the 2012 IEEE Symposium on Security and Privacy,
SP ’12, pages 332–346, Washington, DC, USA, 2012. IEEE Computer
Society.

[8] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Protocol
misidentification made easy with format-transforming encryption. In
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 61–72. ACM, 2013.

[9] I. O. for Standardization ISO. ISO/IEC 7498-1Information technology
- Open Systems Interconnection - Basic Reference Model: The Basic
Model. Technical report, ISO, June 1994.

[10] I. . W. Group. IEEE Standard for Information Technology- Telecom-
munications and Information Exchange Between Systems- Local and
Metropolitan Area Networks- Specific Requirements Part 15.4: Wire-
less Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications for Low-Rate Wireless Personal Area Networks (WPANs).
Technical report, IEEE 802.15.4 Working Group, 2006.

[11] D. Herrmann, R. Wendolsky, and H. Federrath. Website fingerprint-
ing: attacking popular privacy enhancing technologies with the multi-
nomial naı̈ve-bayes classifier. In Proceedings of the 2009 ACM work-
shop on Cloud computing security, pages 31–42. ACM, 2009.

[12] Y.-C. Hu, A. Perrig, and D. B. Johnson. Wormhole attacks in wire-
less networks. Selected Areas in Communications, IEEE Journal on,
24(2):370–380, 2006.

[13] R. Hummen, J. Hiller, H. Wirtz, M. Henze, H. Shafagh, and K. Wehrle.
6lowpan fragmentation attacks and mitigation mechanisms. In Pro-
ceedings of the Sixth ACM Conference on Security and Privacy in

Wireless and Mobile Networks, WiSec ’13, pages 55–66, New York,
NY, USA, 2013. ACM.

[14] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Ad-
vances in cryptologyCRYPTO99, pages 789–789. Springer, 1999.

[15] A. N. Kolmogorov. Sulla determinazione empirica di una legge di
distribuzione. na, 1933.

[16] K.-F. Krentz, H. Rafiee, and C. Meinel. 6lowpan security: Adding
compromise resilience to the 802.15.4 security sublayer. In Proceed-
ings of the International Workshop on Adaptive Security, ASPI ’13,
pages 1:1–1:10, New York, NY, USA, 2013. ACM.

[17] I. Krontiris, T. Giannetsos, and T. Dimitriou. Launching a sinkhole at-
tack in wireless sensor networks; the intruder side. In Networking and
Communications, 2008. WIMOB’08. IEEE International Conference
on Wireless and Mobile Computing,, pages 526–531. IEEE, 2008.

[18] M. Kulkarni, A. Patel, and K. Leung. Mobile IPv4 Dynamic Home
Agent (HA) Assignment. RFC 4433 (Proposed Standard), Mar. 2006.

[19] V. Kumar, G. Oikonomou, and T. Tryfonas. Traffic forensics for ipv6-
based wireless sensor networks and the internet of things. In Internet
of Things (WF-IoT), 2016 IEEE 3rd World Forum on, pages 633–638.
IEEE, 2016.

[20] X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang, and R. Perdisci.
Httpos: Sealing information leaks with browser-side obfuscation of
encrypted flows. In NDSS, 2011.

[21] L. Mather and E. Oswald. Pinpointing side-channel information leaks
in web applications. Journal of Cryptographic Engineering, 2(3):161–
177, 2012.

[22] D. McGrew and D. Bailey. AES-CCM Cipher Suites for Transport
Layer Security (TLS). RFC 6655 (Proposed Standard), July 2012.

[23] Online: http://www.willow.co.uk/html/telosb_mote_
platform.php.

[24] P. Pongle and G. Chavan. A survey: Attacks on rpl and 6lowpan in
iot. In Pervasive Computing (ICPC), 2015 International Conference
on, pages 1–6. IEEE, 2015.

[25] J. Postel. User Datagram Protocol. RFC 768 (INTERNET STAN-
DARD), Aug. 1980.

[26] E. Rescorla and N. Modadugu. Datagram Transport Layer Security
Version 1.2. RFC 6347 (Proposed Standard), Jan. 2012. Updated by
RFCs 7507, 7905.

[27] N. Sastry and D. Wagner. Security considerations for ieee 802.15.4
networks. In Proceedings of the 3rd ACM Workshop on Wireless Se-
curity, WiSe ’04, pages 32–42, New York, NY, USA, 2004. ACM.

[28] A. Schaub, E. Schneider, A. Hollender, V. Calasans, L. Jolie, R. Touil-
lon, A. Heuser, S. Guilley, and O. Rioul. Attacking suggest boxes
in web applications over https using side-channel stochastic algo-
rithms. In Risks and Security of Internet and Systems, pages 116–130.
Springer, 2014.

[29] R. Seggelmann, M. Tuexen, and M. Williams. Transport Layer Secu-
rity (TLS) and Datagram Transport Layer Security (DTLS) Heartbeat
Extension. RFC 6520 (Proposed Standard), Feb. 2012.

[30] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application
Protocol (CoAP). RFC 7252 (Proposed Standard), June 2014.

[31] V. P. Singh, A. S. A. Ukey, and S. Jain. Signal strength based hello
flood attack detection and prevention in wireless sensor networks. In-
ternational Journal of Computer Applications, 62(15), 2013.

[32] P. Thubert, T. Watteyne, M. R. Palattella, X. Vilajosana, and Q. Wang.
Ietf 6tsch: Combining ipv6 connectivity with industrial performance.
In L. Barolli, I. You, F. Xhafa, F.-Y. Leu, and H.-C. Chen, editors,
IMIS, pages 541–546. IEEE Computer Society, 2013.

[33] F. Veysset, O. Courtay, O. Heen, I. Team, et al. New tool and tech-
nique for remote operating system fingerprinting. Intranode Software
Technologies, 4, 2002.

[34] M. Wazid, A. Katal, R. Singh Sachan, R. Goudar, and D. P. Singh.
Detection and prevention mechanism for blackhole attack in wireless
sensor network. In Communications and Signal Processing (ICCSP),
2013 International Conference on, pages 576–581. IEEE, 2013.

[35] C. Whitnall, E. Oswald, and L. Mather. An exploration of the
kolmogorov-smirnov test as a competitor to mutual information anal-
ysis. In International Conference on Smart Card Research and Ad-
vanced Applications, pages 234–251. Springer, 2011.

[36] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Mas-
son. Spot me if you can: Uncovering spoken phrases in encrypted



voip conversations. In Security and Privacy, 2008. SP 2008. IEEE
Symposium on, pages 35–49. IEEE, 2008.

[37] C. V. Wright, S. E. Coull, and F. Monrose. Traffic morphing: An
efficient defense against statistical traffic analysis. In NDSS, 2009.


