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Abstract
Blockchains and more general distributed ledgers are be-
coming increasingly popular as efficient, reliable, and
persistent records of data and transactions. Unfortu-
nately, they ensure reliability and correctness by making
all data public, raising confidentiality concerns that elim-
inate many potential uses.

In this paper we present Solidus, a protocol for confi-
dential transactions on public blockchains, such as those
required for asset transfers with on-chain settlement.
Solidus operates in a framework based on real-world
financial institutions: a modest number of banks each
maintain a large number of user accounts. Within this
framework, Solidus hides both transaction values and
the transaction graph (i.e., the identities of transacting
entities) while maintaining the public verifiability that
makes blockchains so appealing. To achieve strong con-
fidentiality of this kind, we introduce the concept of a
Publicly-Verifiable Oblivious RAM Machine (PVORM).
We present a set of formal security definitions for both
PVORM and Solidus and show that our constructions are
secure. Finally, we implement Solidus and present a set
of benchmarks indicating that the system is efficient in
practice.

1 Introduction
Blockchain-based cryptocurrencies, such as Bitcoin, al-
low users to transfer value quickly and pseudonymously
on a reliable distributed public ledger. This ability to
manage assets privately and authoritatively in a single
ledger is appealing in many settings beyond cryptocur-
rencies. Companies already issue shares on ledgers [22]
and financial institutions are exploring ledger-based sys-
tems for instantaneous financial settlement.

For many of these companies, confidentiality is a ma-
jor concern and Bitcoin-type systems are markedly in-
sufficient. Those systems expose transaction values and

∗Work done at Cornell University.

the pseudonyms of transacting entities, often permitting
deanonymization of services and users [35]. Concerns
over this leakage are driving many financial institutions
to explore solutions where only digests are stored on-
chain and transactions take place elsewhere [1–3]. Such
architectures reduce blockchains to little more than a
timestamping service; by discarding the vision of a cen-
tralized authoritative ledger, they strip blockchains of
many of their key benefits. For instance, off-chain trans-
actions are scattered across multiple databases, compli-
cating auditing and data preservation.

The overall structure of current blockchains addition-
ally misaligns with that of the modern financial system.
The direct peer-to-peer transactions in Bitcoin and sim-
ilar systems are appealing to some, but interfere with
the customer-service role and know-your-customer reg-
ulatory requirements of financial institutions. Instead,
the financial industry is exploring a model that we call
bank-intermediated systems [1, 2]. In such systems a
small number of entities—which we call banks—manage
transactions of some on-chain asset on behalf of a large
number of users. For example, a handful of retail banks
could use a bank-intermediated ledger to authoritatively
record stock purchases by millions of customers. By de-
sign, bank-intermediated systems faithfully replicate as-
set flows within modern financial institutions.

While there is little previous investigation of bank-
intermediated systems, work on coin mixes and the
recently deployed Zcash—based on Zerocash [7]—do
improve confidentiality, but with notable limitations.
Coin mixes provide only partial confidentiality [35].
Zcash, which relies on zero-knowledge Succinct Non-
interactive ARguments of Knowledge (zk-SNARKs) [8]
for anonymity, involves reported proof generation times
of over a minute on a single consumer machine [7].
While such computation is feasible for a single client
performing infrequent transactions, it is prohibitive for
a bank in a bank-intermediated system with hundreds of
transactions per second. zk-SNARKs also require an un-
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desirable trusted setup and introduce engineering com-
plexity and cryptographic hardness assumptions that fi-
nancial institutions are reluctant to embrace [2].

To address these concerns we present Solidus,1 a sys-
tem supporting strong confidentiality and high trans-
action rates for bank-intermediated ledgers. Solidus
not only conceals transaction values, but also pro-
vides the much more technically challenging property
of transaction-graph confidentiality.2 This means that a
transaction’s sender and receiver cannot be publicly iden-
tified, even by pseudonyms. They can be identified by
their respective banks, but other entities learn only the
identities of the banks.

Solidus takes a fundamentally different approach to
transaction-graph confidentiality than previous systems
such as Zcash. As the technical cornerstone of Solidus,
we introduce a new primitive called Publicly-Verifiable
Oblivious RAM Machine or PVORM, an idea derived
from previous work on Oblivious RAM (ORAM). In pre-
viously proposed applications, ORAM is used by a single
client to outsource storage; only that client needs to ver-
ify the integrity of the ORAM. In Solidus, the ORAM
stores user account balances. This means that any entity
in the system must be able to verify (in zero-knowledge)
that bank B’s ORAM reflects precisely the set of valid
transactions involving B. To meet this novel requirement,
a PVORM defines a set of legal application-specific op-
erations and all updates must be accompanied by ZK
proofs of correctness. Correctness includes requirements
that account balances remain non-negative, that each
transaction updates a single account, and so forth. We
offer a formal and general definition of PVORM and de-
scribe an implementation incorporated into Solidus.

The introduction of PVORM provides several benefits
to Solidus. First, Solidus can use efficient NIZK proofs
based on Generalized Schnorr Proofs (GSPs) [14, 16].
GSPs are more efficient to construct that zk-SNARKs
and do not require trusted setup, but are much slower
to verify, so we explore both options. Second, unlike
Zcash, Solidus’s core data structure grows only with
the number of user accounts and not with the number
of transactions over the system’s lifetime. This prop-
erty is especially important in high-throughput systems
and minimizes performance penalties for injecting of
“dummy” transactions to mitigate timing side-channels.
Finally, Solidus maintains all balances as ciphertexts
on the ledger. This approach supports direct on-chain
settlement—something that Zcash, for instance, does not
allow. It additionally permits decryption of balance by

1The solidus was a solid gold coin in the late Roman Empire.
2Pseudonymous cryptocurrencies such as Bitcoin are often viewed

as graphs where nodes represent keys and edges transactions. The term
transaction-graph confidentiality means concealing the graph’s edges
to guard against deanonymization attacks exploiting its structure [35].

authorized parties and allows users to prove their own
balances if, for example, they wish to transfer funds away
from an unresponsive bank.

In addition to the PVORM component, we present
a formal security model for Solidus as a whole in the
form of an ideal functionality. This presentation may be
of independent interest as a specification of the security
requirements of bank-intermediated ledger systems. We
prove the security of Solidus in this model.

Further, while Solidus targets a permissioned ledger
model, it requires only a permissioned group; it is ag-
nostic to the implementation of the underlying ledger,
whether centralized or distributed. Therefore, we use the
generic term ledger to denote a blockchain substrate that
can be instantiated in a wide variety of ways.

Our contributions can be summarized as follows:

• Bank-intermediated ledgers. Our work on Solidus
represents the first formal treatment of bank-
intermediated ledgers—a new architecture that closely
aligns with the settlement process in the modern fi-
nancial system. Our work provides a formal security
model that broadly captures the requirements of finan-
cial institutions migrating assets onto ledgers.

• PVORM. We introduce Publicly-Verifiable Oblivous
RAM Machines, a new construction derived from
ORAM and suitable for enforcing transaction-graph
confidentiality in ledger systems. We offer formal def-
initions and efficient constructions using Generalized
Schnorr Proofs.

• Implementation and Experiments. We report on our
full implementation of Solidus and present the results
of benchmarking experiments.

Our results are not just a new technical approach
to transaction-graph confidentiality on ledgers. They
also demonstrate the practicality of bank-intermediated
ledger systems with full on-chain settlement.

2 Background
We now review existing cryptocurrency schemes and ap-
proaches to their confidentiality. We then explain some
background on the financial system upon which bank-
intermediated systems are modeled and describe the
technical building blocks used to achieve security and
confidentiality in Solidus.

2.1 Existing Cryptocurrencies
Many popular cryptocurrencies are based on the same
general transaction mechanism popularized by Bitcoin.
Any user U may create an account (“address” in Bit-
coin) with a public/private key pair. To transfer money,
U creates a transaction T by signing a request to send
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some quantity of coins to a recipient.3 Miners sequence
transactions and directly publish T to the blockchain, an
authoritative append-only record of transactions. Since
only transactions are recorded, to determine the balance
of U , it is necessary to tally all transactions involving
U in the entire blockchain. As a performance optimiza-
tion, many entities maintain a balance summary—called
an unspent transaction (UTXO) set in Bitcoin.

This setup publicizes all account balances and trans-
action details. The only confidentiality stems from the
pseudonymity of public keys which are difficult—though
far from impossible [35]—to link to real-world identities.

To conceal balances and transaction values, Maxwell
proposed a scheme called Confidential Transactions
(CT) [31]. CT operates in a Bitcoin-like model, but pub-
lishes only Pedersen commitments of balances. Transac-
tion values are similarly hidden and balances are updated
using a homomorphism of the commitments and proven
non-negative using Generalized Schnorr Proofs (see be-
low). Solidus uses a variant of CT that operates on El
Gamal ciphertexts to conceal transaction values.

Another approach is Zcash, which provides a privacy
overlay on Bitcoin. In brief, it maintains a Merkle tree
over commitments to coins. A commitment to a coin
owned by U with a public/private key pair (pk,sk) in-
cludes pk, some randomness r, and a unique serial num-
ber. To spend the coin via an operation called pour, U
proves in zero-knowledge that the commitment is present
in a leaf of the Merkle tree, and that she knows r and sk.
Pour additionally reveals the serial number so the coin
cannot be double-spent. Zcash proofs use zk-SNARKs, a
general-purpose technique for ZK proofs.

Zcash does provide strong confidentiality; balances,
transfer amounts, and the transaction graph all remain
hidden. Unfortunately, it misaligns with financial set-
tlement systems, as discussed below, and has several
serious drawbacks. First, the Merkle tree in Zcash—
the authoritative state—grows linearly with total sys-
tem transaction history. In systems with high transac-
tion throughput this will quickly degrade performance.
Second, practical zk-SNARKs require a trusted setup
which, if subverted, allows proof forgery and theft of
coins. Finally, generating proofs in Zcash is extremely
expensive—reportedly averaging over one minute on
a single consumer machine [7]. This overhead is pro-
hibitive in a bank-intermediated systems such as Solidus.
These drawbacks and a desire to align with financial in-
dustry needs motivate our very different approach.

3This is a simplification and details vary between systems. For ex-
ample, a basic transaction in Bitcoin (“Pay-to-PubkeyHash”), takes a
reference to the output from a previous transaction and includes a small
script restricting the user of outputs and a mining fee.

2.2 Bank-intermediated Systems
Managing assets on ledgers is an appealing option for the
financial industry.

The transfer of assets in financial markets today in-
volves a laborious three-step process. Execution denotes
a legally enforceable agreement between buyer and seller
to swap assets, such as a security for cash. Clearing is
updating a ledger to reflect the transaction results. Settle-
ment denotes the exchange of assets after clearing. Mul-
tiple financial institutions typically act as intermediaries;
when a customer buys a security, a broker or bank will
clear and settle on her behalf via a clearinghouse.

Today, the full settlement process typically takes three
days (T+3) for securities. This delay introduces systemic
risk into the financial sector. Government agencies such
as the Securities and Exchange Commission (SEC) are
trying to reduce this delay and are looking to distributed
ledgers as a long-term option. If asset titles—the author-
itative record of ownership—are represented on a ledger,
then trades could execute, clear, and settle nearly instan-
taneously.

Existing cryptocurrencies such as Bitcoin can be
viewed as titles of a digital asset. Execution takes the
form of digitally signed transaction requests, while clear-
ing and settlement are simultaneously accomplished
when a block containing the transaction is mined4

Today, however, banks intermediate most finan-
cial transactions. Even with Bitcoin, ordinary cus-
tomers often defer account management to exchanges
(e.g. Coinbase). Additionally, a labyrinthine set of regu-
lations, such as Know-Your-Customer [36], favors bank-
intermediated systems. Thus existing cryptocurrencies
do not align well with either financial industry or ordi-
nary customer needs.

Solidus aims to provide fast transaction settlement in a
bank-intermediated ledger-based setting. As in standard
cryptocurrencies, Solidus assumes that each user has a
public/private key pair and digitally signs transactions.
Solidus, however, conceals account balances and trans-
action amounts as ciphertexts. To do so and provide pub-
lic verifiability at the same time, it relies on PVORM.

2.3 Oblivious RAM
As PVORM is heavily inspired by Oblivious RAM
(ORAM), we provide some background here.

An ORAM is a cryptographic protocol that permits
a client to safely and efficiently store data on untrusted
servers. The client maintains a map from logical mem-
ory addresses to remote physical addresses and performs
reads and writes remotely. Ensuring freshness, integrity,

4Strictly speaking, settlement involves an exchange of assets, and
thus two transactions, but this issue lies outside the scope of our work.
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and confidentiality of data in such a setting is straight-
forward using authenticated encryption and minimal lo-
cal state. The key property of ORAM is concealment of
memory access patterns; a polynomially-bounded adver-
sarial server cannot distinguish between two identical-
length sequences of client read/write operations.

These properties provide an appealing building block
for Solidus. Identifying an edge in the system’s transac-
tion graph can easily be reduced to identifying which ac-
count’s balance changed with a transaction. Thus placing
all balances in an ORAM immediately provides trans-
action graph confidentiality. Moreover, recent work has
drastically improved the performance of ORAM. The
most practical ORAM constructions maintain a small lo-
cal cache on the client known as a stash and either orga-
nize the data blocks as a tree allowing logarithmic work
on each access [44, 46], or write to completely random-
ized locations, resulting in constant-time writes but linear
reads (so-called “write-only” ORAM) [11].

Unfortunately, standard ORAM is insufficient for
Solidus. Because ORAM is designed for a client us-
ing an untrusted server, correctness simply means the
ORAM reflects the client’s updates. There is no notion
of “valid” updates, let alone means for a client to prove
an update’s validity. In Solidus, clients (banks) must
prove an application-defined notion of correctness for
each update. Banks also cannot store a local stash, as we
would no longer have all data on the ledger. To address
these concerns we introduce PVORM—detailed in Sec-
tion 4—a new construction inspired by ORAM.

2.4 Generalized Schnorr Proofs
Solidus makes intensive use of Generalized Schnorr
Proofs (GSPs), a class of Σ-protocol for which practical
honest-verifier zero-knowledge arguments (or proofs) of
knowledge can be constructed.

Notation introduced in [14, 16] offers a powerful spec-
ification language for GSPs that call the PoK language.
Using multiplicative group notation, let G = 〈g〉 be a
cyclic group of prime order p.5 If x∈Zp and y = gx, then
PoK(x : y = gx) represents a ZK proof of knowledge of x
such that y = gx where g and y are known to the verifier.
(This is the Schnorr identification protocol.)

The PoK specification language for GSPs is quite rich;
it supports arbitrary numbers of variables as well as con-
junctions and disjunctions among predicates. It has a set
of corresponding standard tools based on the Schnorr
identification protocol for efficient realization in practice
when G has known order [14]. It is possible, additionally,

5Solidus uses the group for elliptic curve secp256k1. We make this
choice for performance, so despite elliptic curve groups typically using
additive notation, we will use multiplicative notation for simplicity and
generality.

using the Fiat-Shamir heuristic [23], to render GSPs non-
interactive, i.e., to generate NIZK proofs of knowledge.

Solidus uses GSPs in a variety of ways to ensure ac-
count balances and PVORMs are properly updated and
remain valid.

3 Solidus Overview
Before delving into technical details, we give an
overview of Solidus, including basic notation, trust as-
sumptions, and security goals. We also give an architec-
tural sketch. First, however, we give a concrete target ap-
plication as motivation.

Example 1 (TradeWind Markets). TradeWind Markets,
whose use case helped inform the design of Solidus,
offers an example of how Solidus might support man-
agement of asset titles on a ledger [1]. TradeWind is
currently building an electronic communication network
(ECN) for physical gold bullion to be traded electron-
ically using a bank-intermediated ledger for trade set-
tlement and title management. The physical bullion is
managed by a custodian who is trusted to track inflows
and outflows to and from a specifically designated vault.
Each user has an account with a holding bank—generally
a large commercial bank—which manages trades. A user
may additionally buy gold from outside, send it to the
vault, and sell it on the TradeWind ECN, or buy gold on
the TradeWind ECN, remove it from the vault, and sell
it elsewhere. In the former case, the custodian must cre-
ate a record of the new assets in the owner’s account at
her holding bank. In the latter case, the custodian must
destroy the corresponding record.

Holdings are represented on the ledger as asset units—
fractional ounces of gold—held by individual users.
When a user trades gold on the TradeWind ECN, she
authorizes her holding bank to transfer some number of
gold units to another user. A holding bank may also pro-
vide other services based on a user’s account balance,
such as holding the gold as collateral against a loan. In
such cases the bank may freeze some or all of the user’s
assets, for example, until the loan is repaid.

As we shall show, Solidus can support the full asset
lifecycle of a system like the TradeWind ECN while pro-
viding practical performance and strong confidentiality
and verifiability guarantees.

3.1 Design Approach
Solidus has two important features that differ from ex-
isting ledger systems and make it more amenable to the
financial industry.

The first is its bank-intermediated design: Solidus
is the first on-chain transaction settlement system that
aligns with the structure of the modern financial system.
Each bank in Solidus has a set of customers or users who

4



hold shares of some asset (e.g., securities, cryptocur-
rency, or gold) in their accounts. Specially designated en-
tities called asset notaries record the injection of assets
into the system, as we discuss below. Second, Solidus
provides strong confidentiality. It conceals account bal-
ances and transaction details from non-transacting en-
tities, placing them on the ledger as ciphertexts. It is
for these reasons that Solidus uses PVORM. Each bank
mainatins its own PVORM on the ledger to record the
identities and balances of its account.

Each transaction involves a sending user at a sending
bank, and a receiving user at a receiving bank. When a
user (sender) Us signs a transaction and gives it to her
(sending) bank Bs, Bs first verifies the validity of the
transaction—that it is correctly signed and Us possesses
the funds $v to be sent. Then Bs updates its PVORM to
reflect the results of the transaction, deducting $v from
Us’s balance. The receiving bank then performs a simi-
lar update on the receiving user’s account, increasing her
balance by $v.

The confidentiality properties of PVORM ensure that
another entity can learn only the identities of the send-
ing and receiving banks, not $v or the identities of the
transacting users. Indeed, even the sending bank cannot
identify the receiving user nor the receiving bank the
sending user.6 The public verifiability of PVORM en-
sures that any entity with access to the ledger can ver-
ify that each transaction is correctly processed by both
banks. Specifically, verification of a PVORM operation
by the send bank checks three things: the transaction was
validly signed by one of that bank’s users, $v was de-
ducted from the same user’s balance, and that the user’s
resulting balance is non-negative. The receiving bank
performs a PVORM operation to add $v to the receiv-
ing user’s account balance, including a proof of a correct
balance update. PVORM proofs in Solidus are generated
using Generalized Schnorr Proofs.

Solidus is designed to be agnostic to the implemen-
tation of the underlying ledger. While it does require
a mutually-aware group of banks and transaction vali-
dation by the ledger maintainers, those maintainers can
be a “permissioned” (fixed-entity) group, an “unpermis-
sioned” (fully decentralized) ledger (a blockchain), or
any other trustworthy append-only data structure.

3.2 Architectural Model
In Solidus, a predetermined set of banks B1, . . . ,Bm

maintain asset titles on a ledger. Each bank Bi has a pub-
lic/private key pair for each of encrypting and signing. It
also has up to n users {U i

j}n
j=1 each with their own signa-

6It is sometimes desireable for the receiver to be able to verify the
sender’s identity. The sender can easily acquire a receipt by retaining a
proof that she authorized the transaction.

Ledger

PVORM PVORM

pks
1 $bs

1

U s
1

pks
2 $bs

2

U s
2
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1 $br

1

U r
1

pkr
2 $br

2

U r
2

Bs Br

T : U s
2 →U r

1 : $v

pks
1 $bs
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2 $bs

2 pkr
1 $br

1 pkr
2 $br

2

(−$v) (+$v)

T : Bs→Br

+ZK-Proofs

Figure 1: An example transaction T where U s
2 at Bs sends $v to

U r
1 at Br and each bank has two users. The upper boxes are the

logical (plaintext) memory of each bank’s PVORM, and the
lower boxes are the associated public (encrypted) memories.
Entities other than Bs, Br, U s

2, and U r
1 learn only that a user

at Bs sent money to a user at Br and both banks updated their
PVORMs correctly.

ture key pair. Each account is uniquely and publicly asso-
ciated with one bank, so bank(U i

j) = Bi is well-defined.
Each bank Bi maintains its own private data struc-

ture Mi containing each user’s balance and public key.
It maintains a corresponding public data structure Ci,
placed on the ledger, whose elements are encrypted un-
der Bi’s encryption key. Mi and Ci together constitute the
memory in a PVORM, which we describe in Section 4.
Solidus uses this structure to ensure that updates to Ci re-
flect valid transactions processed in Mi while concealing
transaction details and the transaction graph.

A transaction T is a digitally signed request by user U i
j

with balance $bi
j to send some amount $v of asset to an-

other user U i′
j′ . The transaction is valid if $bi

j ≥ $v≥ 0. To
process a transaction, Bi updates Mi to set $bi

j← $bi
j−$v

and Bi′ updates Mi′ to set $bi′
j′ ← $bi′

j′ + $v. They gen-
erate publicly verifiable ZK-proofs that $v ≥ 0 and that
they updated their respective PVORMs correctly using
$v. Figure 1 depicts a simple Solidus transaction.

We treat the ledger as a public append-only memory
which verifies transactions. All banks have asynchronous
authenticated read and write access and the ledger ac-
cepts only well-formed transactions not already present.
We model this by an ideal functionality FLedger, detailed
in Appendix C, which any bank can invoke.

Notarizing New Asset Titles. As described above, all
user transactions must be zero-sum; U i

j sends money
(that she must have) to U i′

j′ . While this makes sense for or-
dinary users, financial systems are generally not closed.
That is, assets can enter and leave the system through
specific channels. To support this, Solidus defines a fixed
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set of asset notaries {U$
1 , . . . ,U$

` }. These are accounts
with no recorded balance. If U$

i sends money to U i
j, there

is no need to check $b$
i (which does not exist). To easy

auditing of this sensitive action and avoid trying to mimic
a regular update for a user with no balance, we simply re-
veal U$

i ’s identity.
Asset notaries clearly must be restricted; it would

make no sense to allow arbitrary users to create and de-
stroy asset titles. In Example 1, Solidus would designate
the custodian as the sole notary that is responsible for
acknowledging receipt and removal of the physical asset
(gold) and guaranteeing its physical integrity.

3.3 Trust Model
Solidus assumes that banks respect their own users con-
fidentiality but otherwise need not behave honestly. They
may attempt to steal money, illicitly give money to oth-
ers, manipulate account balances, falsify proofs, etc.
Banks (respectively, users) can also attempt to violate the
confidentiality of other banks’ users (respectively, other
users) passively or actively. We assume no bound on the
number of corrupted banks or users.

The Ledger. We assume the ledger abstraction given
in Section 3.2. In practice, the ledger can, but need not,
be maintained by the banks themselves. If not main-
tained by the banks, the ledger’s trust model is inde-
pendent from the higher-level protocol. It may be con-
structed using a (crash-tolerant) consensus protocol such
as Paxos [29], ZooKeeper [25], or Raft [38], a Byzantine
consensus protocol such as PBFT [18], a decentralized
consensus protocol such as Nakamoto consensus [37], or
even a single trustworthy entity. We simply assume that
the ledger maintainers satisfy the protocol’s requirements
and the ledger remains correct and available.

We regard the ledger together with the public PVORM
data structures {Ci} as a replicated state machine. De-
spite this, Solidus’s flexible design allows us to treat the
consensus and application layers as entirely separate for
the majority of our discussion.

Availability. We assume that the ledger remains avail-
able at all times; it is not susceptible to denial-of-service
attacks and enough consensus nodes will remain non-
faulty to maintain liveness. A bank, however, can be un-
available in two ways: it can freeze a user’s assets by
rejecting transactions or it can go offline entirely.

Asset freezing can be a feature. For certain types of
assets (e.g. gold, as in Example 1) a user may wish to
use her balance as collateral against a loan. In this case,
the bank must be able to ensure that the asset will re-
main in the user’s account until the loan is repaid. The
user, meanwhile, may still want a record that she owns
the asset [1]. Asset freezing supports this use case.

A bank could, however, maliciously freeze a user’s as-
sets or go offline due to a technical or business failure.
In either case, an auditor with the bank’s decryption key
(see below) could enable a user to prove her balance and
recover funds despite being unable to transact directly.

Auditing. Regulators and auditors play a pivotal role in
the financial sector. While Solidus does not include spe-
cific audit support, it does enable banks to either prove
correct decryption of on-chain data or share their private
decryption key with a trusted third party. In the first case,
the auditor can, on demand, acquire a transaction log and
verify that log’s veracity and completeness. In the second
case, the auditor can directly and proactively monitor ac-
tivity within the bank and its accounts.

3.4 Security Goals
Solidus aims to provide very strong safety and confiden-
tiality guarantees for both individual users and the sys-
tem as a whole.

Safety Guarantees. Solidus provides a very simple but
strong set of safety guarantees. First, no user’s balance
may decrease without explicit permission of that user (in
the form of a signature). Moreover, any authorization to
remove assets from an account can be used only once;
there are no replay attacks. Second, no user can spend
money she does not have. We implement this guarantee
by ensuring that account balances are never negative. Fi-
nally, transactions that do not include asset notaries must
be zero-sum; the sender’s balance always decreases by
exactly the same amount that the recipient’s balance in-
creases.

To ensure the above properties hold, we require
that the correctness of every transaction be proved
in a publicly-verifiable fashion (via ZK-Proof, as de-
scribed above). If the ledger checks these proofs be-
fore accepting—and settling—the transaction, then ev-
ery transaction will maintain these guarantees. Solidus
places all proofs on the ledger, meaning that they can ad-
ditionally be verified offline by an auditor.

Confidentiality Guarantees. In order to facilitate au-
dits and asset recovery against malicious banks, Solidus
places all account balances and transaction details di-
rectly on the ledger. Despite this persistent public record,
Solidus provides a strong confidentiality for all users, as
outlined above. First, account balances are not visible ex-
cept to the user’s bank (and any auditors authorized to
read that bank’s data). Second, while transactions do re-
veal the sending and receiving banks, there is no way to
determine if two transactions involving the same bank
involved the same account. This second feature is often
referred to as transaction graph confidentiality. It pre-
cludes use of the pseudonymous schemes employed by
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Bitcoin and similar systems, and is the challenge specif-
ically addressed by PVORM.

We do not directly address information leaked by the
timing of transactions. Zcash and similar systems also
do not address this concern, but Solidus’s superior per-
formance better positions it to support a range of side-
channel countermeasures. For example, to eliminate the
timing side-channel, Solidus could post transactions at
regular intervals in batches of uniform size which are
padded out by “dummy“ transactions of value 0.

We present a formal model in Section 5 that encom-
passes all of these security and confidentiality goals.

4 PVORM
As discussed in Section 2.3, ORAM presents a means to
conceal the Solidus transaction graph, but lacks the pub-
lic verifiability that Solidus requires. To overcome this
limitation, we introduce the Publicly-Verifiable Oblivi-
ous RAM Machine (PVORM).

As with ORAMs, PVORMs have a private logical
memory M and corresponding encrypted physical mem-
ory C. There are, however, four key differences:

• Constrained Updates. Write operations are con-
strained by a public function f . In Solidus, for exam-
ple, M contains account IDs and balances and f up-
dates a single balance to a non-negative value.

• Publicly Verifiable Updates. Whenever the client mod-
ifies C, it must publicly prove (in zero-knowledge) that
the change reflects a valid application of f .

• Client Maintains All Memory. Instead of a client main-
taining M and a server maintaining C, the client main-
tains both directly. While M remains, C is now pub-
licly visible—such as on a ledger in Solidus.

• No Private Stash. Any data in M not represented
in C would prevent the client from proving correct-
ness of writes. Instead of a variable-size private stash,
PVORM includes a fixed-size public encrypted stash.

To achieve public verifiability, our PVORM construc-
tion relies on public-key cryptography. While traditional
ORAMs uses symmetric-key primitives, this difference
is not fundamental. One could construct a PVORM using
symmetric-key encryption and zk-SNARKs, but as we
see in Section 7.3, such a construction performs poorly.

We also leverage the fact that PVORM is designed for
public verifiability and not storage outsourcing to im-
prove efficiency. In ORAM, reads incur a cost as the
client must retrieve data from the server. In PVORM,
reads are “free” in that they require only reading pub-
lic state—the ledger in Solidus—which leaks nothing.
Writes, however, are still publicly visible. Second, since
PVORM does not aim to reduce local memory usage, we
assume that the client locally maintains a full copy of

the PVORM including private data and metadata. This
allows clients to perform updates much more efficiently
by avoiding unnecessary decryption.

These features are nearly identical to those leveraged
by write-only ORAM, but we cannot use them in the
same way. In fact, we base our construction on a general
purpose ORAM (Circuit ORAM) as it allows us to im-
plement updates as read-update-write operations. If we
used a basic write operation—as would be required with
write-only ORAM—we could not prove critical proper-
ties about the difference between the old and new values.

4.1 Formal Definition
We now present a formal definition of PVORM. We let
M represent a private array of values from a publicly-
defined space (e.g. N) and C be the public (encrypted)
representation of M, as above. U is the space of update
specifications (e.g., account ID, balance change pairs).

Definition and Correctness. We first define the public
interface of a PVORM its correct operation. A PVORM
consists of the following operations.

• Init(1λ ,n,m0,U)
$−→ (pk,sk,C), a randomized function

that initializes the PVORM with security parameter
1λ , n data elements, initial memory M = (m0, . . . ,m0),
and a set of valid update values U .

• An update constraint function f (u,M)→ M′ that up-
dates M according to update u∈U . Note that f may be
undefined on some inputs (invalid updates), and must
be undefined if u /∈U .

• Update(sk,u,C)
$−→ (C′,e,proof ), a randomized up-

date function that takes an update u and a public mem-
ory and emits a new public memory, a ciphertext e of
u, and a zero-knowledge proof of correct application.

• Ver(pk,C,C′,e,proof )→{true, false}, a deterministic
update verification function.

We also define Read(sk,C)→M and Dec(sk,e)→ u, two
deterministic functions that read every value from a C as
a plaintext memory M and decrypt an update ciphertext,
respectively. We employ these operations only in our cor-
rectness and security definitions; they are not part of the
core PVORM interface.

We define correctness of a PVORM with respect to
valid update sequences. An update sequence {u0}k

i=1
is valid for m0 if, when M0 = (m0, . . . ,m0) and Mi =
f (ui,Mi−1), then Mi is defined for all 0≤ i≤ k.

A PVORM is correct if for all initial values m0 and all
update sequences {ui}k

i=1 valid for m0,

Pr[ExpCorrect(λ ,n,m0,{ui}k
i=1)] = 1
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where ExpCorrect(λ ,n,m0,{ui}k
i=1) is defined as

Experiment ExpCorrect(λ ,n,m0,{ui}k
i=1):

(pk,sk,C0)
$←− Init(1λ ,n,m0,U)

if Read(sk,C0) 6= M0,return false

for i = 1 to k :

(Ci,ei,proof i)
$←− Update(sk,ui,Ci−1)

if
[
(Read(sk,Ci) 6= Mi)∨ (Dec(sk,ei) 6= ui)

∨¬Ver(pk,Ci−1,Ci,ei,proof i)
]

return false

return true

with {M0, . . . ,Mk} defined as above. In other words, the
PVORM is correct if Update correctly transforms C as
defined by f and Ver verifies these updates.

Obliviousness. Solidus requires a structure that can re-
alize ORAM guarantees in a new setting against even an
adaptive adversary. Intuitively, we require the PVORM
to gaurantee that any two adaptively-chosen valid update
sequences result indistinguishable output. Formally, we
say that a PVORM is oblivious if for all PPT adversaries
A, there is a negligible negl(λ ) such that for all n ∈ N,
m0, and U ,∣∣∣Pr

[
ExpObliv(0,A,λ ,n,m0,U) = 1

]
−Pr

[
ExpObliv(1,A,λ ,n,m0,U) = 1

]∣∣∣≤ negl(λ )

where ExpObliv(b,A,λ ,n,m0,U) is defined by

Experiment ExpObliv(b,A,λ ,n,m0,U):

(pk,sk,C)
$←− Init(1λ ,n,m0,U)

return AOb,sk,C(·,·)(1λ ,pk,C)

where Ob,sk,C(·, ·) is a stateful oracle with initial
state S ← C. On input (u0,u1), Ob,sk,C executes
(C′,e,proof ) $←− Update(sk,ub,S), updates S← C′, and
returns (C′,e,proof ). The experiment aborts if any C′ is
ever undefined.

This definition is an adaptive version of those pre-
sented in the ORAM literature [43, 44, 46].

Public Verifiability. The final piece of our security def-
inition is that of public verifiability. Intuitively, we re-
quire that each update produce a proof that the update
performed was valid and is the one claimed. Formally, a
PVORM is publicly verifiable if for all PPT adversaries
A,

Pr[ExpPubVer(A,λ ,n)]≤ negl(λ )

· · ·Stash
Fixed
block

· · · ··
·

··
·

· · ·

· · · · · · · · ·

eUpdate
cipher

Buckets

Figure 2: An update for a Circuit ORAM-based PVORM with
buckets of size 2. Colors indicate the blocks involved in each
operation of the read-update-write structure. Read moves one
block from the read path (shaded) into the distinguished fixed
block. Then update combines it (homomorphically) with the
update ciphertext (dashed). Finally write evicts the resulting
value into the tree along two eviction paths (thick bordered).

where ExpPubVer(A,λ ,n) is defined as

Experiment ExpPubVer(A,λ ,n):

(pk,sk, )
$←− Init(1λ ,n, , );

(C,C′,e,proof ) $←−A(1λ ,n,pk,sk);

return Ver(pk,C,C′,e,proof )

∧
(

f (Dec(sk,e),Read(sk,C)) 6= Read(sk,C′)
)

This corresponds to the soundness of the ZK-proof that
an update was performed correctly.

4.2 Solidus Instantiation
In Solidus we instantiate a PVORM by combining the
structure of Circuit ORAM [46] with several GSPs. Cir-
cuit ORAM places data blocks into buckets organized
into a binary tree. It performs updates (evictions) by
swapping pairs of blocks along paths in that tree. This
structure leads to good performance for two reasons:
update operations are logarithmic in the number of ac-
counts, and pairwise swaps of public-key ciphertext ad-
mit efficient ZK-proofs of correctness. Figure 2 shows
how Solidus’s PVORM is structured and updated.

Each data block holds an account’s unique identifier
and balance. This pair of values must move in tandem as
blocks are shuffled, so Solidus employs a verifiable swap
algorithm for El Gamal ciphertexts [27] augmented to
swap ordered pairs of ciphertexts (see Appendix A.4).

Solidus constrains each update to modify one account
balance and requires that balances remain in a fixed range
[0,N]. To make updates publicly verifiable, a bank first
moves the desired account to a deterministic fixed block
by swapping that position with each block along the Cir-
cuit ORAM access path. With the data in a deterministic
position, the bank updates the account balance and gen-
erates a set inclusion proof on the resulting ciphertext to
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prove it is in the legal range (see Appendix A.5). Finally,
the bank performs Circuit ORAM’s eviction algorithm to
reinsert the updated account. This again requires swap-
ping the fixed block with a set of tree paths.

In Appendix B we detail this construction and prove
that it is correct, oblivious, and publicly verifiable.

Stash Overflow. Circuit ORAM assumes a stash of
bounded size, but data loss is possible if the stash over-
flows. This results in a probabilistic definition of correct-
ness; correct behavior occurs only when data is not lost.
Since the probability of data loss is negligible in the size
of the stash, the definition is reasonable for the setting.

Solidus also employs an bounded stash. The stash
must be placed on the ledger, so changing its size would
leak information about account locations and thus the
transaction graph. In Solidus, however, data loss is catas-
trophic no matter how infrequent, so we take a different
approach to stash overflow. When the stash would over-
flow, instead of losing data we insert one account deeper
into the tree. This insertion is public, so it leaks that reg-
ular eviction was insufficient and the location of a single
real account (though not the identity of that account).

Solidus inherits the stash overflow probability of Cir-
cuit ORAM which is negligible in the stash size [46].
As we show in Section 7, the performance of PVORM
updates is linear in the stash size, which gives Solidus
a direct performance-privacy trade-off. Moreover, only
modest stash sizes make overflow exceedingly unlikely.
With buckets of size 3, a stash of size 25 reduces over-
flow probability to around 2−64.

5 Solidus Protocol
We now present the Solidus protocol. This description re-
lies heavily on cryptographic primitives whose details we
defer to Appendix A. We make this choice both to sim-
plify the explanation and to leave operations with several
instantiations—such as range proofs—abstract.

Bank State. The state of a bank Bi consists of an
encryption key pair (ePKi,eSKi), a signing key pair
(sPKi,sSKi), and a set of accounts. Each account U j has
a unique account identifier and a balance. For simplicity,
we use U j’s public key pk j as its identifier.

Each bank maintains its own PVORM, updated on ev-
ery transaction, containing the information of each of its
accounts. Section 4.2 describes the PVORM structure.

Requesting Transactions. As Solidus is bank-
intermediated, Us at Bs must send a request to Bs in
order to send $v to Ur at Br. The request consists of:
• A unique ID txid

• Enc(ePKs,$v), $v encrypted under Bs’s public key

• Enc(ePKr,pkr), a ciphertext of Ur’s ID under Br’s
public key

Ledger

Us Bs Br

Transaction from Us to Ur

Request

Verify &
Prepare

PVORM
Update

PVORM
Update

Sign Sign

Settle

...

...
Tim

e

Figure 3: The life cycle of a transaction in Solidus. An arrow
from one operation to another means the second depends on the
first. Note that Ur does not appear. The receiving user plays no
role in settling transactions.

• A hidden-public-key signature signed with sks (see
Appendix A.3).

On receipt of a request, Bs must validate the request—
check that txid is globally unique and 0≤ $v≤ $bs—and
initiate the transaction settlement process.

Settling Transactions. Figure 3 shows the struc-
ture of settling a transaction. Bs generates a proof
that $v ≥ 0, reencrypts $v under ePKr, and sends
(txid,Enc(ePKr,$v),Enc(ePKr,pkr)) to Br. Then both
banks (concurrently) update their respective PVORMs,
signs their updates, and posts all associated proofs and
signatures onto the ledger. Once the full transaction is
accepted by the ledger, the assets have been transferred
and the transaction has settled.

Transaction IDs. To guard against replay attacks,
Solidus requires that each transaction have a globally
unique transaction ID. If this ID were simply a random
bit string, this would require every bank to check each
transaction’s ID against the IDs of every previous trans-
action over the lifetime of the system. To avoid this grow-
ing cost, Solidus uses a two-part transaction ID: a times-
tamp and a random number. Transactions are then only
valid within a specific window of size T∆. For a transac-
tion with txid= (T, id), if the transaction is processed at
time Tnow, it is only valid if Tnow−T∆ < T < Tnow. The
timestamp must be in the past, but not by more than T∆.
This allows a verifying bank to only look back T∆ when
searching for id to guard against replay attacks.
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Opening and Closing Accounts. Banks are constantly
opening new accounts, so Solidus must support this. To
create an account, bank Bi must insert the account into
its PVORM. Our construction makes this simple. Bi pub-
lishes the new ID with a verifiable encryption of the ID
and balance 0. It then inserts this ciphertext pair into its
PVORM by replacing a dummy value. To close an ac-
count Bi simply publicly verifies the identity of an ac-
count and replaces it in the PVORM with a dummy value.

5.1 Security Definition
We define the security of Solidus in terms of the ideal
functionality FSol presented in Figure 4. We define the
protocol itself in a hybrid world with an ideal ledger
FLedger (see Appendix C). For an adversary A and en-
vironment Z , we let HybridA,Z(λ ) denote the hybrid
world transcript of A and IdealS,Z(λ ) be the transcript
produced by a simulator S run in the ideal world.

Definition 1. We say that Solidus securely emulatesFSol
if for all real-world PPT adversaries A and all environ-
ments Z , there exists a simulator S such that for all PPT
distinguishers D,∣∣Pr

[
D
(
HybridA,Z(λ )

)
= 1
]

−Pr [D (IdealS,Z(λ )) = 1]
∣∣≤ negl(λ ).

We assume Solidus employs only universally compos-
able (UC) NIZKs. Prior work [5] demonstrates that GSPs
can be transformed into UC-NIZKs by using the Fiat-
Shamir heuristic and including a ciphertext of the wit-
ness under a public key provided by a common initial-
izer. As Solidus already employs this trusted initializa-
tion and includes ciphertexts of most operations anyway,
the performance impact of ensuring UC-NIZKs is min-
imal. This allows us to prove security in the Universal
Composability (UC) framework [17].

Theorem 1. The Solidus protocol satisfies Definition 1
assuming a DDH-hard group in the ROM.

We provide a proof of Theorem 1 in Appendix C.

6 Optimizations
We now present a few optimizations to make Solidus
more practical. Some of these optimizations are only ap-
propriate for certain use cases, but they may result in sig-
nificant speedups when applicable. We include the sim-
pler optimizations in our evaluation in Section 7.

6.1 Precomputing Randomization Factors
A large computational expense in Solidus is re-
randomizing ciphertexts while updating a PVORM. For-
tunately, the homomorphic properties of El Gamal al-
low us to re-randomize ciphertexts by combining them

FSol

[{
Bi
}k

i=1,
{
Ui
}n

i=1,
{
U$

i
}`

i=1

]
Init

Initialize T to empty
Initialize V [Ui]← 0 for i ∈ [1,n]

On receive (“requestTxn”,Ur,$v) from Us:
assert $v≥ 0
Generate unique txid

T [txid]← (Us,Ur,$v,“req”)
send txid to Us
send (“req”,txid,Us,bank(Ur),$v) to bank(Us)

On receive (“approveSendTxn”,txid) from Bs:
Retrieve (Us,Ur,$v, f )← T [txid]
assert f = “req” and Bs = bank(Us)

T [txid]← (Us,Ur,$v,“aprv”)
send (“aprv”,txid,Bs,Ur,$v) to bank(Ur)

On receive (“approveRecvTxn”,txid) from Br:
Retrieve (Us,Ur,$v, f )← T [txid]
assert f = “aprv” and Br = bank(Ur)

Remove T [txid] mapping
Retrieve $bs←V [Us], $br ←V [Ur]

assert $bs ≥ $v or Us = U$
i for some i

V [Us]← $bs−$v
V [Ur]← $br +$v
// Reveal identities of asset notaries and banks

Let Ps = Us if Us = U$
i , bank(Us) otherwise

Let Pr = Ur if Ur = U$
j , bank(Ur) otherwise

broadcast (“postTxn”,txid,Ps→Pr) to all banks

On receive (“abortTxn”,txid) from B:
if txid has been seen before // Can “abort” nonexistent transactions

Retrieve (Us,Ur, , )← T [txid]
assert B = bank(Us) or B = bank(Ur)

Remove T [txid] mapping
broadcast (“abortTxn”,txid,B) to all banks

Figure 4: Ideal functionality for the Solidus system with banks
{Bi}, users {Ui}, and asset notaries {U$

i }. For simplicity we
assume a fixed set of accounts for each bank.

with fresh encryptions of the group identity. That is, in a
group G = 〈g〉 of size p, given a public/private key pair
(pk= gsk,sk) and a ciphertext c = (α,β ), we can gener-
ate a re-randomized c′ by picking a random r← Zp and
letting c′ = (α ·pkr,β ·gr).

Conveniently, computing (pkr,gr) only requires
knowledge of the group G, the generator g, and the public
key pk, all of which are static for a given bank across the
lifetime of the system. This means we can precompute
these unit ciphertexts and re-randomize by multiplying
in a precomputed value.

As the system admits an unbounded number of trans-
actions over its lifetime, we must continuously gener-
ate these randomization factors. Many financial systems
have very predictable high and low load times (e.g.,
traffic is often very light at night), so they can utilize
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otherwise-idle hardware to compute randomization fac-
tors during low traffic times. If the precomputation pro-
cess can generate more randomization pairs than the ap-
plication consumes over a modest time frame (e.g. a
day), we can drastically improve performance.

6.2 Reducing Verification Overhead
As we see in Section 7, proof verification is quite expen-
sive. In the basic protocol, the ledger consensus nodes
must each verify every transaction. As more banks join
the system this increases the load on the consensus
nodes—which may be the banks. By strengthening trust
assumptions slightly, we can omit much of this online
verification and increase performance. We present two
strategies that rely on different assumptions.

Threshold Verification. In the financial industry, there
is often a group of entities (e.g., large banks and regula-
tors) who are generally trusted. If a threshold number of
these entities verify a transaction, this could give all other
consensus nodes—often other banks—confidence that
the transaction is valid, allowing them to accept it with-
out further verification. Once the threshold is reached,
each other node need only verify the signatures of the
trusted entities that verified the transaction, which is far
faster than performing a full verification. If the group of
trusted entities is significantly larger than the threshold
or those entities have much more capacity than others,
this strategy will improve system scaling.

Full Offline Verification. In some cases banks can be
trusted to function as covert, rather than malicious, ad-
versaries. That is, they will attempt to learn extra infor-
mation, but they will subvert the protocol only if attribu-
tion is impossible. This situation could arise if, for exam-
ple, each Solidus bank is controlled by a large commer-
cial bank. While the bank may wish to learn as much in-
formation as possible—including by deviating from the
protocol—the cost of being caught misbehaving is high
enough to deter attributable protocol deviations.

Under these assumptions, we can omit online verifica-
tion entirely. If any bank submits an invalid transaction
or proof, post hoc identification of the faulty transaction
and offending bank is trivial. Thus, in this covert adver-
sary model, banks will only submit valid transactions and
proofs, meaning that the ledger can accept transactions
without first verifying the associated proofs first.

6.3 Transaction Pipelining
In a setting where failures of any form are rare (even if
Byzantine failures are possible), we can optimize further.
Again, this setting is very reasonable in the case of large
commercial banks.

Solidus requires sequential processing of transactions
at a single bank because PVORM updates must be se-

quential to generate valid proofs. Given transactions T1
followed by T2, in order for B to process T2 it needs the
PVORM state following T1. It does not, however, need
the associated proofs. Therefore, if B assumes T1 will
settle, it can start processing T2 early while generating
proofs for T1. When faults are rare, this is a reasonable
assumption. While this technique will not reduce transac-
tion latency, it can drastically increase throughput. More-
over, determining the updated PVORM state requires
primarily re-randomizing ciphertexts, making this opti-
mization particularly effective when combined with pre-
computation (Section 6.1).

When failures do occur, it impacts performance but
not correctness. If T1 aborts for any reason, T2 will not
yet have settled since T1 would have to settle first. This
means B can immediately identify the problem and re-
process T2—and any following transactions—without T1.
This reprocessing may lead to significant, but temporary,
performance degradation making this optimization ap-
propriate only when failures are rare.

7 Experiments
We now present performance results for our PVORM and
Solidus implementations. For all experiments we ran on
c4.8xlarge Amazon EC2 instances and employed the
precomputation optimization discussed in Section 6.1.
These benchmarks do not include time to compute new
encryption randomization factors.

7.1 PVORM Performance
We measured the concrete performance of PVORM
Update and Ver operations under different parameteri-
zations and levels of parallelism.

Bucket and Stash Size. Figure 5 shows the single-
threaded performance of our PVORM as we vary bucket
and stash sizes. As expected, larger buckets are slower
and runtime grows linearly with the stash size. As the
bucket and stash sizes determine the likelihood of stash
overflow, this provides a performance-privacy tradeoff.

Tree Depth. Figure 6 shows the single-threaded perfor-
mance of our PVORM as the capacity scales. As ex-
pected, the binary tree structure results in clearly loga-
rithmic scaling.

Parallelism. Our PVORM construction lends itself to
highly parallel operation. A single update contains a
large number of NIZKs which can be created or verified
independently. Figure 7 shows the performance for a sin-
gle PVORM with a varying number of worker threads. In
each test there is exactly one coordination thread which
does very little work.

Because the proof of each pairwise swap can be com-
puted or verified independently, we expect performance
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Figure 5: PVORM performance with capacity 215 for buckets
of size B = 2 and B = 3 as stash size varies.
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Figure 6: PVORM capacity scaling with buckets of size 3 and
stash of size 25.

to scale well beyond 10 threads—possibly as high as 100.
We stop at 10 for a combination of two reasons. First,
PVORM operations are CPU-bound, so adding threads
beyond the number of CPU cores produces no mean-
ingful speedup. Second, our prototype implementation
does not distribute to multiple hosts and scales poorly
to multi-CPU architectures. Since c4.8xlarge EC2 in-
stances have two 10-core CPUs, we present scaling to
only 10 worker threads. Note that with 10 worker threads
there are 11 total threads, so some work may not be effec-
tively parallelized on the same CPU. This likely explains
some of the reduced scaling in that case.

Proof Size and Memory Usage. For a PVORM with
size 3 buckets, a size 25 stash, and capacity 215, a sin-
gle PVORM update with proofs is 196 KB (or 117 KB if
compressed7). To generate an update, our prototype re-
quires a complete copy of the PVORM in memory. De-
spite this, memory consumption peaks at only 880 MB.

7Normally an elliptic curve point is an ordered pair of elements of
Fp. Points can be compressed to a single bit and a field element. De-
compression, however, requires nontrivial overhead.
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Figure 7: Parallel PVORM performance using size 3 buckets,
a size 25 stash, and capacity of 215. Dashed lines show perfect
scaling where all computation is parallelized with no overhead.

7.2 Solidus System Performance
We now present the performance of fully distributed
Solidus system tests with 2 to 12 banks. Each bank runs
on its own c4.8xlarge EC2 instance and maintains a
PVORM with size 3 buckets, as size 25 stash, and ca-
pacity 215. These parameters allow for reasonable test-
ing and give a stash overflow probability of around 2−64.
We maintain the ledger by having each bank’s host also
run a ZooKeeper [25] node. We make no attempt to tune
ZooKeeper or optimize off-ledger communication.

We test this configuration with each bank fully loaded
with both incoming and outgoing transactions. As ex-
plained in Section 6.2, it is often reasonable to perform
some or all transaction verification offline, so we also test
performance with online verification turned off.

Figure 8 contains the results of these tests. With reg-
ular online verification, performance improves until all
CPUs are saturated verifying third-party transactions, af-
ter which point scaling slows. Using offline verification,
transactions settle faster and additional banks impose
lower overhead on existing banks, improving scaling.

These results could be further improved by hav-
ing each bank distribute transaction verification cross
multiple machines, improving capacity and increasing
throughput. Pipelinig transactions (as described in Sec-
tion 6.3) could improve throughput substantially if banks
also distributed proof generation across multiple hosts.
(Such distribution is unlikely to provide any benefit with-
out pipelining.) We did not benchmark these options as
our prototype does not support distributing a single bank
to multiple hosts.

7.3 zk-SNARK Comparison
We finally compare our prototype’s performance to that
of a PVORM implemented with zk-SNARKs. This ap-
proach benefits from succinct proofs and short verifica-
tion times, but proof generation is very costly.
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Figure 8: Solidus performance distributed using ZooKeeper.
Each bank is a ZooKeeper node and maintains a PVORM with
size 3 buckets, a size 25 stash, and capacity 215.

Number of Threads
1 4 36

Proof Time (sec) 65.45 24.53 13.76
Verification Time 0.0065 sec

Proof Size 288 bytes
Peak Memory Use 7.2 GB

Table 1: Performance of PVORM using zk-SNARKs.

Simply taking our Circuit ORAM PVORM construc-
tion and converting all proofs to zk-SNARKs would re-
quire needless and expensive cryptographic operations.
As zk-SNARKs can prove correct application of an arbi-
trary circuit [8], we use a compact Merkle tree structure
which we describe in detail in Appendix D.1.

We implemented this construction using an equivalent
security level to that of our GSP-based PVORM.8 Table 1
shows its performance running on a c4.8xlarge EC2
instance. We see that, while verification is extremely fast,
even highly parallel proof generation is more than 200
times slower than the GSP PVORM. For this to improve
overall system throughput, the system would need to ver-
ify every proof around 200 times. In our expected use-
case, at most tens of banks would maintain the ledger,
so this is significantly slower. Moreover, additional hard-
ware can allow banks to verify numerous GSP transac-
tions in parallel but provides little benefit to zk-SNARKs.

8 Related Work
We compare our work with several other anonymous dig-
ital currencies. As we discussed ORAM in Sections 2.3
and 4, we do not do so again here.

8Both hash with SHA-256. The GSP-based PVORM uses El Gamal
with the secp256k1 elliptic curve and the SNARK-based PVORM uses
RSA-3072. Each provides 128 bits of security.

Anonymous e-cash. Anonymous e-cash was originally
proposed by Chaum [19, 20] and later improved by oth-
ers [13, 15, 24]. Known e-cash schemes rely on central-
ized trust, meaning that a single authority must be in-
volved in every transaction. In some schemes, a trustee
can revoke anonymity from a user or transaction using
a private key; this feature permits tracing of illicit activ-
ity. Our design goal in Solidus is different. Rather than
having to trust a central bank, Solidus users can choose
which bank they trust, and anonymity is preserved with
respect to all other entities in the system. Solidus users
trust their respective banks only for privacy and avail-
ability. While a malicious bank can prevent a user from
transacting, the requirement for digital signatures from
users prevents a bank from abusing users’ resources. Ad-
ditionally, as noted above, a user can prove asset posses-
sion with the help of an auditor and move her account to
another bank should her funds be inappropriately frozen.

Anonymous Decentralized Cryptocurrencies. Zcash
and its antecedent Zerocash [7] provide an anonymous
decentralized cryptocurrency. Specifically, it relies on
preprocessing zk-SNARKs to ensure conservation of
money, prevent double spending, and hide both the trans-
action value and transaction graph. In Hawk, Kosba
et al. point out flaws in the security definitions and
proofs in Zerocash and construct their own, similar de-
centralized anonymous cryptocurrency (with privacy-
preserving smart contracts) [28].

Both Zcash and Hawk rely on preprocessing zk-
SNARKs, and therefore the system requires trusted
setup. While Ben-Sasson et al. point out that trusted
setup can be decentralized through multiparty compu-
tation [9], this is a complicated process not yet per-
formed in any significant fielded system. Moreover, as
we showed in our exploration of a zk-SNARK variant
of Solidus in Section 7.3, zk-SNARKs are far more ex-
pensive to generate (by two orders of magnitude) than
the GSPs used in Solidus. Additionally, Zcash and Hawk
do not aim to provide auditability as Solidus does; as
designed, they do not record assets on-chain and only
record commitments.

Besides Zcash and Hawk, other schemes [6, 32, 41]
provide various forms of mixing for decentralized cryp-
tocurrencies (cryptographic or non-cryptographic) to en-
hance the anonymity and help obscure the transaction
graph. These systems do not provide full security, how-
ever, and it may still be possible to break anonymity
through statistical analysis. It is not well-understood how
much mixing is needed to resist statistical analysis and
achieve the levels of anonymity desired in practice. In
comparison, Solidus achieves much stronger anonymity
guarantees; the source and destination banks are re-
vealed, but no other transaction information is leaked.
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Confidential Transactions. A class of schemes of-
ten called Confidential Transactions [30, 31, 33] hide
transaction amounts, but do not aim to provide trans-
action graph privacy. (A subset of these schemes using
unorthodox cryptographic tools without accompanying
proofs has been shown to be flawed and has been go-
ing through a “build, break, fix” cycle—e.g., incarnations
of [30] were broken twice.) Solidus employs a Confiden-
tial Transaction scheme to hide transaction amounts; this
scheme is similar to [31], but makes more direct use of
and inherits the provable security properties of GSPs.

9 Conclusion
We have introduced Solidus, a system that addresses
a major impediment to broad use of blockchain trans-
action systems, their critical lack of transaction-graph
confidentiality. Unlike previous approaches (e.g. Zcash),
Solidus is specifically geared towards the structural and
performance requirements of modern financial trans-
action and settlement systems. The key innovation in
Solidus is the Publicly-Verifiable Oblivious RAM Ma-
chine (PVORM), a generalization of ORAM. A PVORM
supports publicly verifiable outsourcing of computation
over memory, enabling a completely new approach to
blockchain transaction system design. Solidus employs
a PVORM with data structure size linear in the number
of accounts—rather than the number of transactions in
the system, as in Zcash—and proof computation times
two orders of magnitude faster than zk-SNARKs. We
define the security of Solidus as an ideal functionality
and prove its security in the UC framework. Finally,
we present a series of optimizations and experiments
running the complete Solidus protocol on a distributed
ledger (ZooKeeper), which demonstrate the ability of
Solidus to scale to the throughputs required for real-
world workloads. We believe that Solidus is the first vi-
able approach to building strongly verifiable and fully
auditable bank-intermediated ledger transaction systems.
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A Crypto Primitives
We now describe the basic cryptographic primitives used
in Solidus. These primitives operate over a multiplic-
tive cyclic group G = 〈g〉 of order p determined by (lin-
ear in) security parameter λ . As we explain, our build-
ing blocks require that the Decisional Diffie-Hellman as-
sumption hold for G. (To prevent sub-group attacks us-
ing the Pohlig-Hellman algorithm, p is typically prime.)
In our implementation of Solidus, G is the secp256k1 el-
liptic curve group.

A.1 El Gamal Encryption and Account-
Balance Representation

The El Gamal cryptosystem (Gen,Enc,Dec) is as fol-
lows:

• Gen: x $←− Zq, sk← x, pk← gx, output (pk,sk)

• Enc(pk,m): if ¬(m,pk ∈ G), output ⊥; r $←− Zq, α ←
m ·pkr, β = gr, output c = (α,β )

• Dec(sk,(α,β )): if ¬(sk ∈ Zp ∧ α,β ∈ G), output ⊥;
output α/β sk

If the Decisional Diffie-Hellman (DDH) problem is
hard for G, then El Gamal encryption is semantically se-
cure. El Gamal ciphertexts are malleable, however, a use-
ful feature in our constructions. Specifically, El Gamal
has a few useful homomorphisms. Let (α,β ) 7→ m mean
that (α,β ) decrypts to m, i.e., (α,β ) = (m · pkr,gr) for
r ∈ Zp. Then the following hold:
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• Multiplicative homomorphism: (α,β ) 7→ m,
(α ′,β ′) 7→ m′ implies (αα ′,ββ ′) 7→ mm′.

• Additive homomorphism in exponent space: (α,β ) 7→
gm, (α ′,β ′) 7→ gm′ implies (αα ′,ββ ′) 7→ gm+m′ .

• Multiplicative homomorphism in exponent space:
(α,β ) 7→ gm implies (αk,β k) 7→ gmk.

Observe that re-encryption of a ciphertext (α,β ) 7→m
without knowledge of sk is achievable using the multi-
plicative homomorphism: Let r $←− Zp, compute a fresh
ciphertext (α ′,β ′) = (pkr,gr) 7→ 1, and then let (A,B) =
(αα ′,ββ ′). Observe that (A,B) 7→ (m×1) = m.

Account-Balance Representation. The cryptographic
primitives in Solidus rely on a representation of account
balances in the exponent space in order to leverage the
additive homomorphism in the exponent space illustrated
above. Thus an account balance $v is encoded in the
form g$v and represented in an El Gamal ciphertext as
(g$vpkr,gr) for some r ∈ Zp. Decrypting an account bal-
ance thus requires solving the discrete log problem on
g$v. While in general this is hard in G, if $v is known
to be relatively small (e.g., 0 ≤ $v < 230), then the bal-
ance can be decrypted using a lookup table of manage-
able size.

A.2 Generalized Schnorr Proofs (GSPs)
Generalized Schnorr Proofs [14] are a type of Σ-
protocol, that is, 3-move honest-verifier zero-knowledge
(HVZK) proofs (often more specifically defined as spe-
cial 3-move HVZK proofs with special soundness) [21].
GSP specifically operate over groups for which the dis-
crete log problem and variants are hard. We note that here
we consider GSPs only in a cyclic group of prime order,
avoiding the caveats of [14] regarding composite-order
groups.

Given x $←−Zp and y← gx, there is a simple Σ-protocol
to prove knowledge of x to a verifier that knows only
y = gx:

• Prover P selects r $←− Zp and sends e = gr to Verifier V

• V selects c $←− Zp

• P replies with s = cx+ e.

Verifier V then checks that gs = eyc. This protocol is
specified in the language of GSPs using notation intro-
duced in [16] as:

PoK(x : y = gx) ,

and is a form of the Schnorr identification protocol.
A more general GSP is possible of the form:

PoK(x1, . . . ,xk : Pred(y,(x1, . . . ,xk),(y1, . . . ,yk))) ,

where Pred is a predicate y= yx1
1 · · ·y

xk
k for a collection of

values y,y1, . . . ,yk ∈ G known to the verifier and where
the prover aims to prove knowledge of x1, . . . ,xk ∈ Zp.

It is possible to construct efficient GSPs that combine
such predicates conjunctively and disjunctively, and effi-
cient constructions for other predicates have been shown
as well. Additionally, GSPs may be converted in the
Random Oracle Model (ROM) into NIZKs using the
Fiat-Shamir heuristic [23], which involves hashing the
prover’s message in the first move of the Σ-protocol. It
is also possible to append a supplementary value, which
we call a tag, to the message to be hashed. The NIZK
version of PoK(x : y = gx), with tag m, for example, is
a Schnorr signature on m. In Solidus, all ZPKs are such
NIZKs, and we leave this fact implicit in the remainder
of the appendix.

A.3 Hidden-Public-Key Signatures
In order to authenticate transactions without revealing
the sending user, Solidus employs a hidden-public-key
(HPK) signature scheme. This simple scheme allows a
signer to sign with respect to a signing public key pk that
is (El Gamal) encrypted under a bank’s public key ePK,
i.e., a ciphertext (α,β )

$←− Enc(ePK,pk). An HPK signa-
ture scheme (hGen,hSign,hVer) with public key ePK is
as follows:

• hGen: sk $←− Zq, pk← gsk, output (pk,sk)

• hSign(sk,ePK,m): r $←− Zp, (α,β )← (pk · ePKr,gr).
Construct a NIZK

pf = PoK
(
(sk,r) :

(
gsk · ePKr = α

)
∧ (gr = β )

)
with tag m. Output σ = ((α,β ),pf ).

• hVer(ePK,m,σ): Parse σ = ((α,β ),pf ) and verify pf
with ePK, m, (α,β ).

An HPK of this form is not terribly useful in and of
itself, as the receiver knows only that a valid signature
was generated with respect to some key, but learns noth-
ing about the key.

The fact that (α,β ) is an El Gamal ciphertext of pk un-
der ePK, however, makes such signatures useful in two
ways. First, when U requests a transaction, it allows B to
decrypt pk and identify U . Second, it allows B to gener-
ate a plaintext equivalence proof on (α,β ) and the en-
crypted account key associated with the balance B is up-
dated in its PVORM. This second property verifies that
the user whose balance is updated knows sk, which thus
makes this a valid signature.

A.4 El Gamal Swaps
The vast majority of the computation required for proof
generation and verification in Solidus is devoted to what
we call El Gamal swaps. The operation ElGamal-Swap
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takes as input an ordered pair of El Gamal ciphertexts
(c0,c1) =

(
(α0,β0),(α1,β1)

)
, a corresponding public

key pk, and a value s ∈ {Swap,NoSwap}. It outputs
a fresh ordered pair

(
(α ′0,β

′
0),(α

′
1,β

′
1)
)
, re-encrypted

under pk, with the same underlying plaintexts. If s =
NoSwap, the plaintext order is the same as the original
ciphertexts, otherwise it is swapped. The algorithm is as
follows:

Algorithm ElGamal-Swap((c0,c1),pk,s):

parse (c0,c1) =
(
(α0,β0),(α1,β1)

)
;

r0
$←− Zp,r1

$←− Zp;

if s = NoSwap

c′0 = (α ′0,β
′
0)← (α0pk

r0 ,β0gr0);

c′1 = (α ′1,β
′
1)← (α1pk

r1 ,β1gr1)

else // s = Swap

c′0 = (α ′0,β
′
0)← (α1pk

r1 ,β1gr1);

c′1 = (α ′1,β
′
1)← (α0pk

r0 ,β1gr0);

output (c′0,c
′
1)

It is possible to prove correct execution of ElGamal-
Swap for an input / output pair (c0,c1) and (c′0,c

′
1) via a

GSP specified in [27].
In Solidus, due to the fact that an account is repre-

sented by a pair of ciphertexts on the public key of an
account and the account balance, we in fact need per-
form double El Gamal swaps, meaning that two pairs of
ciphertexts are swapped using the same value of s. The
proof of correctness involves a straightforward extension
of the GSP for a single swap.

A double swap proof requires 13 elliptic curve multi-
plications, while verification requires 18.

A.5 Range Proofs

There are a number of protocols (e.g., [12]) for proving
statements of the form PoK(x : y = gx ∧ l0 ≤ x≤ lp).

In Solidus, drawing on the conceptually simple Con-
fidential Transactions approach [31], we use a GSP to
prove of an El Gamal ciphertext c=(α,β )= (g$vpkr,gr)
that represents an account balance 0 ≤ $v. Specifically,
to preclude modular wraparound, we prove that the in-
teger $v ∈ [0,2t) for parameter t, which determines the
upper bound on account balances. In our prototype, we
set t = 30.

We now describe the GSP we use accomplishes this
range proof in a bitwise manner. First, we observe that to
show for ciphertext (αi,βi) that (αi,βi) 7→ $vi ∈ {g0,g2i}
under public key pk, it suffices to prove:

PoK
(

ri :
(
(αi/g2i

= pkri)∨ (αi = pkri)
)
∧βi = gri

)
.

Thus the GSP

PoK

(
{ri}t

i=1 :
t−1∧
i=0

((
αi/g2i

= pkri
)
∨
(
(αi = pkri)

)
∧ (βi = gri)

))

proves for (α,β ) =

(
t

∏
i=1

αi,
t

∏
i=1

βi

)
that (α,β ) 7→ g$v

such that $v ∈ [0,2t), i.e., that (α,β ) is a ciphertext on
account balance $v ∈ [0,2t).

This range proof requires 5+10t elliptic curve multi-
plications and t encryptions (requiring 2 multiplications
each unless precomutation is employed), while verifica-
tion requires 7+12t multiplications.

We denote such a proof that ciphertext c encrypts a
value in [0,2t) (in exponential space) by RangePf(c, t).

A.6 Circuit ORAM
Solidus’s primary data structure used to store account
balances on the ledger is a PVORM based on the struc-
ture of Circuit ORAM [46]. PVORM, however, aims to
provide very different guarantees than classical ORAM.
An ORAM enables a client with limited local memory
to maintain a piece of large virtual memory M in a data
structure C outsourced to a more powerful external de-
vice generically called a server. The goal is to enable the
client to store M confidentially with as little local storage
as possible.

An ORAM ensures access-pattern confidentiality; de-
spite its ability to observe the client’s accesses to C,
the server learns nothing (no non-negligible) information
about the client’s pattern of access to blocks in M. Blocks
in C are encrypted using a symmetric-key cipher to en-
sure data confidentiality. But note that encryption alone
does not conceal access patterns. M is structured as a set
of blocks M[1],M[2], . . . ,M[N]. Were C[idx] simply an
encryption of the current value of M[idx], for instance,
then the server would know every time the client reads
from or writes to M[idx], as it would see the client ac-
cess C[idx].

Thus, to achieve access-pattern confidentiality,
ORAM implementations require a more sophisticated
approach.

In this approach, C is represented as a tree of depth
L = logN + 1 (N is assumed to be a power of 2). Each
node in the tree contains a bucket that has B slots for
storage of blocks, where B is a system parameter. Most
of these slots are empty at a given time, an important fact,
as we shall see below.

A block takes the form idx‖label‖data, where idx
is the index of a block—the value idx corresponding to
its virtual memory slot M[idx], label identifies a leaf in
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the tree along the path to which from the root the block
is located in C, and data stores the block contents.

The client maintains a small amount of local mem-
ory called a stash, which is a buffer to handle overflow
from C. The client also stores a position map PosMap,
a data structure such that PosMap[idx] = label. That
is, PosMap maps a given block’s index idx in M to its
corresponding leaf value label. (PosMap can be stored
recursively in a separate ORAM on the server to re-
duce storage overhead, a feature that is not relevant to
PVORM.)

Reads and writes involve the same basic operation
Access by the client on C, which is as follows.

Algorithm Access(op):
// Note: op= (“read′′,idx) or (“write′′,idx,data∗)

label← PosMap[idx];

{idx||label||data}← ReadAndRm(idx,label);

PosMap[idx]
$←− [0,N−1];

if op= “read′′ then data∗← data;

stash.add({idx‖PosMap[idx]‖data∗});
Evict();

output data

Here, ReadAndRm reads the full path in C contain-
ing the target block and removes the block (re-encrypting
blocks along the path), while stash.add performs the ob-
vious operation of adding a block to the stash. Evict
can be implemented either randomly or deterministically.
The random approach picks two leaves leaf l and leaf r
uniformly at random from the left and right halves of the
three, respectively, and performs what is called an evic-
tion pass in the root-to-leaf paths they define. The deter-
ministic approach (which we adopt in our PVORM con-
struction) does the same, but it selects leaf l and leaf r in
a rotating deterministic order designed to place eviction
passes on consecutive accesses as far away from each
other as possible while still rotating through every leaf
over enough accesses.

An eviction pass on a given path involves performing
swaps on pairs of adjacent path elements one by one from
the top to bottom of the tree, with the stash treated as a
special “level 0,” i.e., sitting above the root. These swaps
aim to move blocks down the path to the lowest possi-
ble levels. A block is “picked up” and moved through
successive swaps to the lowest point such that it remains
on the path defined by label and there is an empty slot
available for it. At this point it is “dropped”—inserted
into the bucket at that level. A block may be picked up
from the slot into which the last one was dropped or
swapping may continue until another block is reached
that can be pushed further down the path. The reason for
performing evictions on two paths rather than one is to

ensure that blocks remain deep enough globally in C to
prevent substantial overflow into the stash.

This processing step in Circuit ORAM is in fact quite
complicated. The client does not have full local informa-
tion about where blocks reside in C, and therefore must
plan swaps using metadata. (This complication does not
arise in PVORM, however, as we explain below.)

Other tree-based ORAMs, such as Path ORAM [44],
differ primarily in their use of alternative eviction strate-
gies. The use of swaps in Circuit ORAM is especially
conducive to efficient NIZK production in Solidus, how-
ever, which is the reason it is used in the Solidus
PVORM.

B Solidus PVORM Construction
We now present the details of the PVORM construction
used in Solidus and prove that it is a correct, oblivious,
and publicly verifiable PVORM. We note that it is possi-
ble to construct a PVORM from any ORAM, ZK proof
system, and encryption scheme (symmetric or public-
key). Our PVORM in Solidus, however, is constructed
to ensure highly efficient proof computations in support
of high throughputs. For this purpose, we use Circuit
ORAM, non-interactive Generalized Schnorr Proofs, and
El Gamal encryption.

Recall from above that Circuit ORAM consists of a
binary tree of buckets, each containing a fixed number
of data blocks. Each location contains an encryption of
either a data block or a dummy value. Each logical data
block is associated with a single leaf in the tree and phys-
ically resides somewhere along the path to that leaf. In
order to access a logical data block (read or write), the
client reads all blocks along the path to the associated
leaf. The client then associates the accessed logical block
with a new random leaf, and writes out new encryptions
of all blocks along the accessed path and two other deter-
ministic paths in the tree. During these writes, the client
evicts existing data blocks towards leaves as possible
while maintaining the invariant that each real data blocks
remains on the path to its associated leaf. These evictions
can be done with a number of pairwise swaps of physi-
cal memory locations linear in the depth of the tree. We
take advantage of the ability to do evictions via pairwise
swaps in our PVORM construction.

B.1 Construction
In Solidus, each bank maintains its own PVORM to store
user account balances. Since the PVORM is uniquely as-
sociated with a single bank, we a simple El Gamal key
pair for the key pair specified in Section 4. Each logi-
cal address is specified by an account ID and each data
block is itself an account balance. To store these, each
data block contains a pair of El Gamal encryptions: one
of the account ID and one of the balance. We limit the
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maximum balance to a relatively small value (e.g. 230 or
240). This allows us to encrypt balances in exponential
space, creating an additive homomorphism, while still
permitting decryption (using a lookup table). Let t de-
note the binary log of the maximum balance.

Thus we interpret M as a map from account IDs to ac-
count balances. We define the PVORM update function
f ((id,$v),M) that replaces M[id] with M[id]+$v if id ex-
ists as a key in M and (M[id] + $v) ∈ [0,2t). Otherwise
f ((id,$v),M) is undefined. Intuitively, f updates a single
account balance to any value within the valid range.

As noted in Section 4, we use a fixed-size public stash
instead of the dynamic private one assumed by Circuit
ORAM. For simplicity, we merge this stash into the root
node of the tree. Each data block in the stash is of the
same form as those in the tree. We additionally employ
a single distinguished fixed block. This block is simply
a single deterministic block that exists on every path. It
may be part of the root bucket/stash or it may be its own
separate location.

We now describe the implementation of each opera-
tion defined in Section 4. Let (Gen,Enc,Dec) be the stan-
dard El Gamal cryptosystem.

Construction 1 (Solidus PVORM). We always initialize
all balances to 0. The update space U consists of account
ID/transaction value pairs, with values being between the
max balance and its negative. Initialization proceeds as
follows:

Init(1λ ,{idi}n
i=1,0,U):

(pk,sk)
$←− Gen(1λ )

for i ∈ [1,n]

Insert (idi,0) into a Circuit ORAM tree

Set all unused blocks to (0,0)

for each block (id,0)

Set C at that location to (Enc(pk, id),Enc(pk,0))

Let (α,β ) be the encryption of 0

pf = PoK(x : (α = β
x)∧ (pk= gx))

return (pk,sk,C,{pf})

Let M = Read(sk,C). We note that Update(sk,u,C) is
only defined when f (u,M) is defined. Given u, sk, and
C, this property is easy to check, so our definition simply
assumes Update is defined on the inputs and does not
check explicitly. Let BF be the distinguished fixed block.
For simplicity assume that the pk associated with sk is
available (either by being stored as part of sk or derivable
from sk).

Update(sk,u,C):

e = (eid,ev)
$←− (Enc(pk, id),Enc(pk,$v))

for each block Bi along the path associated with id:

Let s = Swap if the ID in B is id and NoSwap otherwise.

(BF ,B′i)
$←− ElGamal-Swap((BF ,Bi),pk,s)

pf i = proof of correct swap

Let (cid,cv)← BF

rangePf = RangePf(cv− ev, t) // (see Appendix A.5)

Let (α,β ) = (cid− eid)

idPf = PoK(x : (α = β
x)∧ (pk= gx))

BF ← (cid,cv− ev)

for each block Bi along the eviction paths in Circuit ORAM

Let s = Swap or NoSwap as per Circuit ORAM

(BF ,B′i)
$←− ElGamal-Swap((BF ,Bi),pk,s)

pf i = proof of correct swap

return (C′,e,({B′i},{pf i},rangePf , idPf ))

Verification is performed simply by verifying all
NIZKs included in the output of Update and by verifying
that the updated BF was computed correctly between the
two sets of swaps.

B.2 Security Proofs
We now prove the security of the construction given in
the previous section.

Theorem 2 (PVORM Correctness). Construction 1 is a
correct PVORM.

Proof. The following properties ensure correctness.

• Circuit ORAM is correct when the stash does not over-
flow and Construction 1 modifies Circuit ORAM to
leak transaction graph information instead of lose data
on overflows.

• El Gamal is correct and includes a multiplicative ho-
momorphism, while we encrypt account balances in
exponential space, thus making the homomorphism
additive.

• Construction 1 employs correct NIZKs and only at-
tempts to prove true statements.

To prove obliviousness, we provide a hardness reduc-
tion to the Decisional Diffie-Hellman (DDH) problem.
We do this through a series of reductions. First we con-
sider the following classic definition of CPA security that
a cryptosystem (Gen,Enc,Dec) is CPA secure if for all
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PPT adversaries A there is a negligible function negl
such that∣∣∣Pr

[
ExpCPA(0,A,λ ) = 1

]
−Pr

[
ExpCPA(1,A,λ ) = 1

]∣∣∣≤ negl(λ ).

where ExpCPA(b,A,λ ) is defined as

Experiment ExpCPA(b,A,λ ):

(sk,pk)
$←− Gen(1λ )

(m0,m1)
$←−A(1λ ,pk)

c $←− Enc(pk,mb)

return A(1λ ,c)

It is well known that El Gamal (which Solidus uses)
is CPA-secure in a DDH-hard group. We further define
double-CPA security which we will use to prove oblivi-
ousness of our PVORM construction.

Definition 2 (Double-CPA Security). A cryptosystem
(Gen,Enc,Dec) is double-CPA secure if for all PPT ad-
versaries A there is a negligible negl such that∣∣∣Pr

[
Exp2CPA(0,A,λ ) = 1

]
−Pr

[
Exp2CPA(1,A,λ ) = 1

]∣∣∣≤ negl(λ ).

where Exp2CPA(0,A,λ ) is defined as

Experiment Exp2CPA(b,A,λ ):

(sk,pk)
$←− Gen(1λ )

((m0,m′0),(m1,m′1))
$←−A(1λ ,pk)

c $←− Enc(pk,mb)

c′ $←− Enc(pk,m′b)

return A(1λ ,c,c′)

We now prove by a hybrid argument that any public-
key cryptosystem that is CPA secure (e.g. El Gamal) is
double-CPA secure.

Lemma 1 (Double-CPA Security). Let (Gen,Enc,Dec)
be a CPA secure public-key cryptosystem. Then it is also
a double-CPA secure cryptosystem.

Proof. Assume for contradiction that there is some A
and non-negligible ε(λ ) such that∣∣∣Pr

[
Exp2CPA(0,A,λ ) = 1

]
−Pr

[
Exp2CPA(1,A,λ ) = 1

]∣∣∣≥ ε(λ ).

We now consider a set of hybrid experiments. Let H0 =
Exp2CPA(0,A,λ ), H2 = Exp2CPA(1,A,λ ), and

Experiment H1:

(sk,pk)
$←− Gen(1λ )

((m0,m′0),(m1,m′1))
$←−A(1λ ,pk)

c $←− Enc(pk,m0)

c′ $←− Enc(pk,m′1)

return A(1λ ,c,c′)

Note that we encrypt m0 (as in H0) and m′1 (as in H2). By
the standard hybrid argument A must have advantage at
least ε(λ )/2 in distinguishing either between H0 and H1
or between H1 and H2.

We now construct an adversary B to break the CPA
security of (Gen,Enc,Dec). On input (1λ ,pk), B first
runs A to get (m0,m′0),(m1,m′1). It then picks a random
i $←− {0,1}. We handle these cases separately.
• i = 0: In this case B outputs (m0,m1). On receipt of

challenge c it computes c′ $←− Enc(pk,m′1), submits
(1λ ,c,c′) to A and returns the result.

• i = 1: In this case B outputs (m′0,m
′
1). On receipt of

challenge c′, it computes c $←−Enc(pk,m0) and submits
(1λ ,c,c′) to A and returns the result.
In the first case, if c encrypts m0 then this is exactly

experiment H1 and if c encrypts m1, this is experiment
H2. For the second case, B has similarly generated ei-
ther experiment H0 or H1. B will succeed exactly when
A succeeds. Since A has advantage at least ε(λ )/2 in
one of these experiments and B randomly selects which
experiment to run, it must be the case that B succeeds
with advantage at least ε(λ )/4, which is non-negligible.
By assumption, however, (Gen,Enc,Dec) is CPA-secure,
so this contradicts our assumption that A exists. Thus
(Gen,Enc,Dec) is double-CPA secure.

Theorem 3 (PVORM Obliviousness). Construction 1 is
oblivious in the ROM assuming a DDH-hard group.

Proof. Assume for contradiction that there exists some
PPT adversary A and non-negligible ε(λ ) such that∣∣∣Pr

[
ExpObliv(0,A,λ ,n,m0,U) = 1

]
−Pr

[
ExpObliv(1,A,λ ,n,m0,U) = 1

]∣∣∣≥ ε(λ ).

We now construct an adversary B that breaks the game
Exp2CPA, as defined in Lemma 1, for El Gamal.

First we argue that A cannot distinguish based solely
on observing the pattern of data blocks touched within
the Circuit ORAM structure. As noted by Wang, Chan,
and Shi [46], each access consists first of accessing a uni-
formly random path independent from all previous ac-
cesses, followed by eviction along two paths chosen in-
dependently from the access. Thus A can only hope to
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distinguish in this manner by forcing the stash to over-
flow. Wang, Chan, and Shi additionally note that the
probability of stash overflow is negligible in the size of
the stash even for a worst-case access pattern. Therefore
A gains at most negligible advantage by observing the
Circuit ORAM access structure.

This means that A must either break the semantic se-
curity of El Gamal or the zero-knowledge property of
an NIZK. We now assume that A will make at most
p(λ ) queries the PVORM oracle for some polynomial
p. Using this, we construct a series of hybrid distribu-
tions H0, . . . ,Hp(λ )+1 modifying how the ExpObliv oracle
works.

In hybrid H0, the O operates exactly as O1,sk,C. In H1,
O operates the same way except it leverages the fact that
we are in the ROM to forge all NIZKs. For Hi with i≥ 1,
on input (u0,u1) from A, the oracle applies update u1
as in H1 for the first i− 1 queries, after which it applies
u0 instead. Though this may result in invalid updates, the
new oracle does not check the validity and applies the up-
date anyway with forged proofs. Because the proofs are
forged, it will always succeeded in making this (forged)
update. Since, by the definition of the game,A could not
rely on submitting invalid updates in order to distinguish,
this cannot improve the advantage at all.

Because we are working in the ROM and all NIZKs
are GSPs,A receives the same view in H0 and H1. When-
ever the PVORM oracle needs to generate a proof, it first
picks a random challenge c and a response. It then com-
putes the commitment com to ensure that the tuple is
from the correct distribution, and modifies A’s random
oracle so that it receives c when querying that oracle on
com. As long as the random oracle has not previously
been queried on com, this strategy will work and produce
exactly the same distribution as in H1.

If there is a collision—the random oracle has been
queried on com—then the experiment H1 simply aborts.
Fortunately this happens with negligible probability.
Specifically, A makes at most q(λ ) independent queries
to its random oracle for some polynomial q, and O
must forge some constant k number of proofs for each
PVORM update. This bounds the probability of collision
to ν(λ ) = k·p(λ )+q(λ )

2λ
, a negligible function.

We can apply the same argument to Hp(λ )+1 and the
(unnamed) hybrid that corresponds to O0,sk,C with real
proofs. Thus A can distinguish between H1 and Hp(λ )+1
with advantage at least ε(λ )− 2ν(λ ). So by a standard
hybrid argument, there must be some i ∈ [1, p(λ )] such
that A can distinguish between Hi and Hi+1 with advan-
tage at least ε(λ )−2ν(λ )

p(λ ) . This too is non-negligible. For
simplicity, we will denote this advantage ε ′(λ ).

Next we recall that the secret key is only used to gen-
erate NIZKs in Update, meaning an adversary with only

the public key can run A with an oracle that generates
any of H1, . . . ,Hp(λ )+1. B is exactly such an adversary.

On input (1λ ,pk), B first guesses a uniformly ran-
dom i ∈ [1, p(λ )] and then runs A. B then handle’s A’s
PVORM oracle queries as follows. For the first i− 1
queries (u0,u1), B applies u1 with forged proofs—as
in both Hi and Hi+1. Because Update uses sk only for
proofs and B is forging proofs, it can perform the rest of
Update properly with only pk. Recall that an update u
consists of two plaintexts: an account ID id and a trans-
action value $v. So to generate its chosen plaintext pairs,
B outputs the updates specified for A’s ith PVORM or-
acle query. Upon receiving a challenge pair of cipher-
texts e = (cid,cv), B performs the rest of Update using
that update ciphertext (and forging proofs). For all future
PVORM oracle queries after the ith, B uses update re-
quest u0—as in both Hi and Hi+1. When A terminates
with an output, B outputs the same value.

We now claim that B has non-negligible advantage
in the Exp2CPA experiment defined above. With prob-
ability at least 1

p(λ ) , B will pick some i where A has
non-negligible advantage ε ′(λ ) distinguishing between
Hi and Hi+1. If B receives a challenge encryption of u1,
then A is playing exactly the game in Hi. Similarly, if B
is challenged with an encryption of u0, then A sees ex-
actly distribution Hi+1. In either case B will output the
correct value exactly when A does. This means that B
must succeed with advantage at least ε ′(λ )

p(λ ) , which is non-
negligible.

By assumption we are working with a DDH-hard
group and using El Gamal as our cryptosystem. Thus
our cryptosystem is CPA secure, so by Lemma 1 no
such B exists. This contradicts our assumption that A
exists and therefore Construction 1 must be an oblivious
PVORM.

Theorem 4 (PVORM Public Verifiability). Construc-
tion 1 is publicly verifiable in the ROM.

Proof. This result follows directly from the fact that our
Update specification includes a proof of every operation
as well as a range proof. By definition Ver simply verifies
all NIZKs produced by Update. Therefore, if an adver-
sary were able to fool Ver, it must be able to forge (at
least) one of the proofs produced by Update.

Assume for contradiction that there exists some PPT
adversary adversaryA and non-negligible ε(λ ) such that

Pr
[
ExpPubVer(A,λ ,n)

]
≥ ε(λ ).

We note that Update produces three types of proofs.
Thus we construct three new PPT adversaries BR, BE ,
andBS that attempt to forge range proofs, proofs of plain-
text equivalence on El Gamal ciphertexts, and proofs of
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correct El Gamal swaps, respectively. They operate as
follows.

• BR: On input (pk,sk), BR runs A and outputs the re-
sulting range proof with associated ciphertexts.

• BE : On input (pk,sk), BE runs A and outputs the re-
sulting plaintext equivalence proof and associated ci-
phertexts.

• BS: On input (pk,sk), BS runs A, picks a uniformly
random El Gamal swap proof from the output, and out-
puts that proof and the associated ciphertexts.

WheneverA forges the one range proof or the one plain-
text equivalence proof, BR or BE succeed, respectively.
For BS, the number of El Gamal swaps executed by
Update is fixed for a given PVORM configuration (tree
depth, bucket size, and stash size), so if A forges any
El Gamal swap correctness proof, BS will succeed with
constant probability.

By inspection of the specification of Update and a
standard hybrid argument, A must succeed in forging
at least one type of proof with non-negligible probabil-
ity, hence one BR, BE , and BS must succeed with non-
negligible probability. As we describe in Appendix A,
prior work shows that each of the associated proofs have
negligible soundness error in the ROM. Thus no such ad-
versary A can exist so the Solidus PVORM construction
is publicly verifiable in the ROM.

C Solidus Security Proof
In order to prove the security of Solidus, we prove that
we can securely simulate FSol in a hybrid world with a
trusted initializer, an ideal ledger, and real-world applica-
tion layer. We describe the trusted initializer in Figure 9
and the ideal ledger FLedger in Figure 10. For bank-level
signatures we employ Schnorr signatures [14, 42] which
we denote by (sGen,Sign,sVer).

We assume several simple pieces of behavior not di-
rectly specified by the protocol. First, each honest bank
will have only one pending transaction at a time. That
means that it will not approve a request (as sending or
receiving bank) while there is another transaction it has
approved that has not yet cleared. In the FLedger-hybrid
world, this is codified within ProtSol, but we simply as-
sume this property in the ideal world. Second, we as-
sume that an honest bank will reply immediately upon
receiving a transaction approval request. It may approve
or abort the transaction, but it will reply in some fash-
ion. Note that an honest bank may abort a transaction
it has already approved in order to maintain availability.
Finally, we assume that for an honest bank, whenever an
assertion fails, the bank acts exactly as if the message it
failed to process was never received.
FLedger uses the VerTxn function to verify full

transactions. A transaction posted to FLedger contains

FInit

[
λ ,
{
Bi
}k

i=1,
{
Ui
}n

i=1

]
Init

for i ∈ [1,n]:
Generate key pair (pki,ski)

$←− hGen(1λ )

send pki to each user and bank and (pki,skk) to Ui
for i ∈ [0,k]:

Generate key pair (sPKi,sSKi)
$←− sGen(1λ )

(ePKi,eSKi,Ci)
$←− Init(1λ , |Bi|,0,U)

send (“initBank”,ePKi,sPKi,Ci) to each user and bank
send all five values to Bi

Figure 9: Ideal functionality for Solidus initialization with
banks {Bi} and users {Ui}.

a transaction request, a PVORM update from each
bank, and a set of other proofs as described in Fig-
ure 11. Verifying all proofs requires this information
as well as the previous PVORM state of each bank.
Thus VerTxn(Bs,Br, txn,Cs,Cr) performs this verifica-
tion given prior PVORM states Cs and Cr and returns the
result. Note that we use the notation LEDGER[Bs,Br] to
denote retrieving the most recent PVORM states for Bs

and Br according to the current state of LEDGER.
We do not describe in detail how to implement FInit or

FLedger. Instead we note that FInit can be realized rela-
tively simply using an existing PKI system. Once public
keys are distributed, it remains only to distribute initial
PVORM states with associated proofs of correct initial-
ization.

To realize FLedger, it is simple to modify a variety of
existing consensus algorithms to perform the necessary
validation. For a centralized ledger, verification is trivial.
For distributed consensus, when a node receives a pro-
posed transaction, it verifies all proofs and ignores the
message if they fail to verify. For byzantine fault toler-
ant algorithm, this is just a malformed message which
the consensus can already handle. Consensus algorithms
that cannot tolerate byzantine faults should only be used
when banks will not submit invalid transactions, in which
case this verification has no affect.

For simplicity, we omit asset notaries from our proof.
Adding them requires only small modification. Initial-
ization must publicly distribute asset notary identities,
FLedger must check for valid asset notary signatures, and
ProtSol must properly reveal asset notary identities.

Figure 11 describes the FLedger-hybrid protocol
ProtSol for Solidus. We prove security of this protocol
by constructing a simulator for it in the FSol world.

Theorem 1. The Solidus protocol ProtSol satisfies Defi-
nition 1 assuming a DDH-hard group in the ROM.

Proof. We prove that IdealS,Z(λ ) and HybridA,Z(λ ) are
indistinguishable using a sequence of hybrids. In the fol-
lowing, a probability is negligible if it is a negligible
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FLedger

[{
Bi
}k

i=1,
{
Ui
}n

i=1

]
On receive (“approveRecvTxn”,txid,txn):

assert txid /∈ TXID
Parse txn→ (Bs,Br,txdatas,σs,txdatar,σr)

assert sVer(Bs,txdatas,σs)

∧ sVer(Br,txdatar,σr)

∧ VerTxn(Bs,Br,txn,LEDGER[Bs,Br])

TXID← TXID∪{txid}
LEDGER← LEDGER‖(txid,txn)
broadcast (“postTxn”,txid,txn) to all banks

On receive (“abortTxn”,abort) from B:
Parse abort→ (txid,(C,e,proof ),pf ?)
assert txid /∈ TXID
assert Ver(ePK,LEDGER[B],C,e,proof )
assert pf ? proves e is a no-op
TXID← TXID∪{txid}
LEDGER← LEDGER‖(abort)
broadcast (“abortTxn”,abort) to all banks

Figure 10: Ideal functionality for the Solidus ledger with banks
{Bi} and users {Ui}.

function of the security parameter λ .
We define hybrids H0, . . . ,H7. H0 is the FLedger-hybrid

world with S being a “dummy” simulator that passes all
messages through unchanged. H1 allows S to simulate
FLedger. H2 replaces all proofs generated by honest par-
ties with forgeries and H3 to replaces the contents of re-
quests and PVORMs with arbitrary values. In H4 S sim-
ulates the trusted initializer and controls all keys. H5 iso-
lates A’s set of transaction IDs and H6 drops any invalid
messages from A. Finally H7 is equivalent to an ideal
execution.

Hybrid H0 contains a dummy simulator that passes mes-
sages between A and honest parties unchanged. This is
identical to the FLedger-hybrid world.

Hybrid H1 is the same as H0 except that S maintains its
own simulated copy of FLedger that behaves as FLedger
except for the initialization, which it does not emulate.
During initialization, S passes the actual values sent by
FLedger to A without modification. All other operations
are emulated faithfully. We note that all non-initialization
operations require only public information (including
public keys). When an honest bank posts to FLedger, S
copies the message to its own copy, and when A posts
to FLedger, S first simulates the behavior on its copy, and
if the post is accepted, it forwards the post to the real
FLedger.

Since all posts to FLedger are either dropped silently or
broadcast in their entirety to all banks, S’s faithful sim-
ulation of a copy will result in a view that is identical to
real execution.

Hybrid H2 proceeds as in H1 except whenever S re-

ceives any proofs or signatures constructed by an hon-
est party—as part of a request, PVORM update, or
“postTxn” message from FLedger—it stores the real
proofs and signatures and replaces them with forgeries. S
sends the forgeries toA (or the simulated FLedger), and if
a message containing those proofs would be sent back to
an honest party (or forwarded to the real FLedger), S puts
the original (real) proofs and signatures back in place.

Note that this forgery and replacement only applies to
the specific proofs and signatures constructed by honest
parties. Messages from honest parties containing proofs
and signatures from A-controlled parties—such as the
request signature from an A-controlled user at an honest
bank included with the final transaction—have only the
honest signatures and proofs replaced. The values com-
puted by A are left exactly in-tact.

As all proofs in the system are cSE NIZKs, S can forge
proofs that A will accept and A still cannot forge proofs
with non-negligible probability. Since the only thing that
has changed from H1 is these forged proofs, H1 and H2
are computationally indistinguishable.

Hybrid H3 is much like H2, but S also replaces the val-
ues of all encryptions generated by honest parties under
honest-party keys, including PVORM values. S replaces
these values with randomly-selected values encrypted
under the same keys. Again, it saves the real values and
real proofs when communicating with honest parties, but
it uses the random values with A. Since S only replaces
values that A did not generate and are encrypted under
public keys for which A does not know the secret key,
the semantic security of the encryption scheme guaran-
tees that H3 is indistinguishable from H2. The proofs do
not present a concern as they were already forged (for the
real values) in H2, so they remain forged (for the random
values) in H3.

Hybrid H4 differs from H3 in that S now emulates
the initialization in FInit. It generates fake keys and
PVORMs—from the correct distribution—for all parties
and sends those to A instead of those generated by FInit.
Any encrypted values written byA will be encrypted un-
der the new (fake) keys for which S knows the secret key,
and any values intended to be read by A and written by
an honest party will be encrypted under a key given to S
by the real FInit. In either case, S can decrypt the cipher-
text and re-encrypt the plaintext under the other set of
keys before passing an honest message to A or A’s mes-
sage to an honest party. The same is true for signatures
and proofs created by A.

For encryptions under honest-party keys written by
honest parties as well as proofs and signatures created
by honest parties, S already replaced those in H3 with
random values and forgeries, respectively, so it simply
does the same but under the new (fake) keys.
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ProtSol

[{
Bi
}k

i=1,
{
Ui
}n

i=1

]
User Ui:
On input (“beginTxn”,U j ,$v) from environment Z:

Let Bi = bank(Ui) and B j = bank(U j)

Generate random unique txid

Encrypt cr = Enc(ePK j ,pk j)

cv = Enc(ePKi,$v)
σ = hSign(ski,ePK j ,(txid,cr,cv))

send (“requestTxn”,txid,ePK j ,cr,cv,σ) to Bi

Bank Bi:
On receive (“initBank”,ePK j ,sPK j ,C j) from FInit:

assert B[B j ] is not set
B[B j ]← (ePK j ,sPK j ,C j)

On receive (“postTxn”,txid,txn) from FLedger:
Retrieve (Bs,C′s) and (Br,C′r) from txn

if (Bi = Bs or Bi = Br), then Pend←⊥
Update B[Bs]← (ePKs,sPKs,C′s)

B[Br]← (ePKr,sPKr,C′r)

On input (“abortPend”) from environment Z:
assert Pend 6=⊥
Retrieve Ui at Bi from Pend
Update (C′i ,e,proof )← Update(eSKi,(Ui,0),Ci)

Generate a ZK-proof pf ? that e encrypts a 0-value change.
send (“abortTxn”,(txid,Bi,(C′i ,e,proof ),pf ?) to FLedger

On receive (“abortTxn”,abort) from FLedger:
Parse (txid,B j ,(C′j,e,proof ),pf ?)← abort

if B j = Bi
assert Pend = (txid, )

Pend←⊥
B[B j ]← (ePK j ,sPK j ,C′j)
if Pend 6=⊥ and B j is the other bank in Pend

Execute “abortPend” as described above

On receive (“requestTxn”,txid,ePKs,cv,cr,σ) from Us:
assert Pend =⊥ ∧ txid is unique

∧ hVer(ePKi,(txid,cv,cr),σ)

∧ If σ = ((α,β ),pf ), then Dec(eSKi,(α,β )) = pks
Decrypt $v =Dec(eSKi,cv)

assert 0≤ $v≤Mi[Us]

Update (C′i ,es,proof s)← Update(eSKi,(Us,−$v),Ci)

Let c′v = Enc(ePK j ,$v)
Generate txdatas containing:
• (txid,(cv,cr),σ ,c′v)
• (C′i ,es,proof s)
• RangePf(ev, t)
• Proof that es updates Us by amount in cv
• Proof that cv and c′v encrypt the same value

Pend← txdatas
σs = Sign(sSKi,txdatas)

send (“approveSendTxn”,txid,txdatas,σs) to B j

On receive (“approveSendTxn”,txid,txdatas,σs) from B j :
assert Pend =⊥ ∧ txid is unique

∧ sVer(sPK j ,txdatas,σs)

∧ all proofs in txdatas are valid
Retrieve (txid,(cv,cr),σ ,c′v) from txdatas
Decrypt $v←Dec(eSKi,c′v)
assert txid is unique and $v≥ 0
Decrypt pkr =Dec(eSKi,cr)

Update (C′i ,er,proof r)← Update(eSKi,(Ur,$v),Ci)
Generate txdatar containing:
• (txid,(cv,cr),σ ,c′v)
• (C′i ,er,proof r)
• Proof that er updates account cr by value c′v

Pend← (txid,txdatar)
σr ← Sign(sSKi,txdatar)

Let txn= (B j ,Bi,txdatas,σs,txdatar,σr)

send (“approveRecvTxn”,txid,txn) to FLedger

Figure 11: FLedger-hybrid protocol for Solidus with banks {Bi} and users {Ui}.

In this manner, all values, proofs, and signatures
viewed byA in H4 are the same as those in H3, but using
different encryption/signing keys and different random-
ness. All encryptions, proofs, and signatures generated
by S to an honest party are similarly the same, but with
different randomness. Since the keys and randomness are
selected faithfully from exactly the original distributions,
H3 and H4 are identically distributed.

Hybrid H5 proceeds as H4, but S separates the transac-
tion IDs used by A from those used by honest parties.
Whenever a new request comes from A with transac-
tion ID txidA, S generates a new unique txidF to as-
sociate with the transaction with honest parties. When-
ever a message with a previously-unseen transaction ID
txidF comes in from an honest party (or FLedger), S gen-
erates a new unique txidA before forwarding toA (or the
simulated FLedger). If, for an incoming message in either
direction, S has seen the ID before, there must be an as-

sociated ID in the other set, so it simply uses that.
Since only the transaction IDs have changed and the

new IDs are drawn independently from the old IDs us-
ing the same methodology, H4 and H5 are identically dis-
tributed.

Hybrid H6 is the same as H5 except S verifies all proofs
and signatures generated by A on all messages. If any
proof or signature fails to verify, S drops the message
and does not forward it. Because all proofs are verified
in ProtSol (either by the receiving party or by FLedger)
before any other processing is done, and Z dictates that
if an assertion fails, the honest party behaves as if the as-
sociated message had never arrived, this will not change
any message received by A or the behavior of any hon-
est parties. Similarly, H6 drops all messages contain-
ing transaction IDs which have already been posted to
FLedger, which honest parties will similarly drop. By the
simulation soundness of the NIZKs employed, A has a
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negligible probability of forging a proof and thus there
is a negligible probability of passing through a message
that will be ignored anyway. Hence H5 and H6 are com-
putationally indistinguishable.

Hybrid H7 is the most complex step, as we now replace
all honest-party communication with FSol. We now de-
scribe what S does in H7 whenever it would send a mes-
sage to an honest party in H6 and whenever it receives a
message from FSol in H7.

• When S would send a “requestTxn” request to an hon-
est bank B on behalf of a compromised user Us in H6,
S instead decrypts the values supplied by A to get
the plaintext value $v and receiving user Ur and sends
(“requestTxn”,Ur,$v) to FSol on behalf of Us. Instead
of creating its own txidF to link to the txidA for this
transaction, it uses the one returned by FSol.

• When S would send an “approveSendTxn” message
to and honest bank in H6, it first checks if there
is an associated txidF from FSol, or if the message
is coming unprompted from A. In the first case it
sends (“approveSendTxn”, txidF ) to FSol. In the sec-
ond case, it first decrypts the request included with
the transaction data, which must be from a compro-
mised user U at a compromised bank B—otherwise
the request would have come through FSol or the
proofs would fail to verify and H6 would already have
dropped it. It then submits the associated “requestTxn”
message to FSol from U . Upon receiving an asso-
ciated txidF and (“req”, txidF ,Us,Br,$v), S sends
(“approveSendTxn”, txidF ) to FSol.

• When S would send an “approveRecvTxn” message
to the real FLedger (after passing through the simu-
lated one), it again checks for an associated txidF from
FSol. If none is found, then the transaction must en-
tirely be executed by compromised entities for same
reason described above. In this case, S decrypts the
transaction details and executes the entire transaction
on FSol.

If an txidF is found and S has seen a “req” re-
sponse from FSol but not a “aprv” message, then
it must be the case that both banks are compro-
mised. As with above, S finishes the transaction in or-
der, first sending (“approveSendTxn”, txidF ) and then
(“approveRecvTxn”, txidF ).

Finally, if txidF is found and S has seen a “aprv”
message from FSol for txidF , then it simply sends
(“approveRecvTxn”, txidF ).

• When S would send an “abortTxn” message to the
real FLedger, it again checks if there is an associ-
ated txidF . If there is, it sends (“abortTxn”, txidF )
to FSol. If not, it generates a random txid and sends
(“abortTxn”, txid) to FSol.

Note that with negligible probability this new txid will
conflict with an existing transaction ID and the abort
will not be received, but except with negligible proba-
bility this will appropriately create an abort for a non-
existent transaction.

• We handle S receiving (“req”, txidF ,Us,Br,$v) from
FSol in two cases.

1. If Br is honest, then S acts as it
would in H6 upon receiving a valid
(“requestTxn”, txidF ,ePKs,cv,cr,σ) from Us,
noting that in that case it can decrypt the identity
of Us and $v, but not the identity of the receiving
user.

2. If Br is compromised, while S would have for-
warded a “requestTxn” message in H6, it does
not have sufficient information to create the de-
tails of that request correctly. To acquire that in-
formation, S immediately replies to FSol with
(“approveSendTxn”, txidF ).

• When S receives (“aprv”, txidF ,Bs,Ur,$v) from FSol,
we again have three cases.

1. If Bs is compromised, then we must have been in
case 2 above. Thus S now has sufficient informa-
tion to create a complete “requestTxn” message as
it would in H6, so it does so and submits that re-
quest to A.

2. If Bs is honest but the user who originally re-
quested this transaction Us is not, then there must
be some txidA associated with txidF and an
associated request. S can thus manufacture an
“approveSendTxn” message to submit to A. As in
H6, S uses the stored request for values created by
Us and falsifies values created by the honest Bs.

3. If Bs and the sending user Us are both honest, then
S must create a new unique txidA and create an
“approveSendTxn” message as in H6. Note that the
values S could decrypt in H6 were the identity of
Ur and $v, so it encrypts the correct values for those
and falsifies other values.

• When S receives (“postTxn”, txidF ,Ps → Pr) from
FSol, Since this proof does not handle asset notaries,
we can assume Ps and Pr are both banks. There are
three cases to consider.

First we consider the simplest case: when Pr is a com-
promised bank. In this case the transaction will only
clear through FSol after S successfully posts it to (the
simulated) FLedger. Thus there is nothing to do.

Next we consider the case where Ps is a compromised
bank but Pr is honest. Here txidF must correspond
to txidA for the pending transaction in S’s simulation
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of Pr. In order for the transaction to be approved by
the sender in FSol, S must have received and verified
(“signRecvTxn”, txidA, txdatas) fromA. At this point
S updatesPr’s simulated PVORM with random values
and forged proofs (as in H6) and posts the full trans-
action to FLedger. We note that A cannot have already
submitted a transaction to FLedger with ID txidA since
honest banks respond instantly, so this must be in re-
sponse to approving the sending of a transaction and
H6 would have dropped that message if txidA had al-
ready been posted to FLedger.

Finally, we consider the case where Ps and Pr are both
honest. In this case S manufactures random updates
to the respective PVORMs and forges all associated
proofs. If txidF already corresponds to some txidA,
that means the requesting user was compromised, and
S simply uses that request. Otherwise S selects a new
unique txidA and creates a request specification (again
with random values and forged proofs). It then posts
the result to the simulated FLedger. We note that this is
precisely the value that would have been posted to the
simulated FLedger in H6.

• When S receives (“abortTxn”, txidF ,B) from FSol, it
first checks of B is compromised. If so, this must be
the response after sending an abort to FSol and there
is nothing to do. If not, S checks if there is a known
txidA already linked to txidF and generates a new
unique txidA otherwise. It then generates an abort op-
eration using random values and forged proofs, as in
H6 and posts it to FLedger. It also clears the simulated
pending transactions for B (which will only happen if
txidA already existed).

Thus we see that each hybrid is computationally in-
distinguishable from the next, H0 corresponds to the
FLedger-hybrid world, and H7 corresponds to the ideal
world. Thus ProtSol achieves the desired security.

D Variants
We now present three variants on the Solidus system
based on different architectural primitives. They provide
different guarantees and features which we believe are
relevant.

D.1 zk-SNARK PVORM
Though GSPs are highly efficient to construct, they can
be quite large and expensive to verify. In circumstances
where the size of proofs or the verification time is more
important than generation time, zk-SNARKs provide a
good alternative. While we could implement the Circuit
ORAM-based PVORM described in Section 4 and Ap-
pendix B using zk-SNARKs, the large numbers of reen-
cryptions would result in very expensive proofs, even
if we were to use symmetric-key primitives. Instead, in

Section 7.3 we evaluated a different construction, based
on a Merkle tree, which is much more efficient for zk-
SNARKs than use of Circuit ORAM.

In this zk-SNARK-friendly PVORM, each account (or
other data) is stored at the leaf of a standard Merkle hash
tree. The root of the tree, but no other nodes, is posted
to the ledger. Upon receiving a signed update request,
a bank updates one account to a valid value and modi-
fies the Merkle tree accordingly. It then produces a zk-
SNARK that it performed the update properly and that
it properly verified the request’s signature. The root of
the new Merkle tree is the new PVORM state and the
zk-SNARK is the proof.

Our evaluation in Table 1 shows the performance
for a single bank update at 128-bit security level, us-
ing libsnark [10] as the back end for computing the
zk-SNARK proofs. The Merkle tree has depth 15 giv-
ing the PVORM a capacity of 215 (the same as in our
GSP tests). Our implementation includes zk-SNARK-
optimized SHA-256 circuits for the Merkle tree, and
optimized circuits for RSA-3072 encryption (RSAES-
PKCS1-v1 5) and signatures (RSASSA-PKCS1-v1 5
with SHA-256). We used PKCS #1 v1.5 primitives in-
stead of the more up-to-date PKCS #1 v2.2 primitives
and alternative public-key schemes for three reasons:
they yield less expensive zk-SNARK circuits, they are
still used in practice, and they provide a conservative (i.e.
competitive) comparison point for GSPs.

As may be seen from our results in Section 7, this
construction involves proof generation times two orders
of magnitude slower than those for GSPs. For single-
threaded execution, or GSP PVORM with a conserva-
tive 3-bucket parameterization and 215 accounts requires
0.4 seconds to generate proofs, while the zk-SNARK
PVORM requires 65.5 seconds for and equivalent setup
on the same machine (Amazon EC2 c4.8xlarge in-
stance). For single-threaded execution, our GSP PVORM
takes 0.4 sec to generate proofs with a conserva-
tive 3-bucket parameterization and 215 accounts on a
c4.8xlarge Amazon EC2 instance. Conversely, veri-
fication time for the zk-SNARK PVORM is about two
orders of magnitude faster (0.0065 sec vs 0.56 sec) and
proofs are quite compact (288 bytes).

When used in Solidus, the zk-SNARK PVORM con-
struction has the clear drawback that the ledger does not
contain each user’s account balance, even in encrypted
form. To compute a user’s balance, an auditor would
need to parse the transaction ciphertexts, decrypt them
and perform all the operations. To reduce such overhead
in practice, however, the bank may periodically check-
point balances. Specifically, it may submit an encrypted
version of the Merkle tree leaves, and prove that the en-
cryptions are consistent with a published Merkle tree
digest using another zk-SNARK proof. Such a proof is
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quite expensive to construct, and could only be done pe-
riodically, e.g., once per day, without significantly af-
fecting the system throughput. But as transactions are
accompanied by ciphertexts, an auditor can start at a
checkpoint and then decrypt all subsequent transactions
to learn current account balances.

Of course, proof generation times are more important
in the applications targeted by Solidus, and in our dis-
cussions with blockchain industry technologists, the en-
gineering complexity of zk-SNARKs and trusted setup
make them less viable than GSPs today. But zk-SNARKs
offer an interesting alternative construction and illustrate
what could ultimately be a valuable point in the PVORM
design space.

D.2 Use of Trusted Hardware
Using Intel Software Guard Extensions (SGX) it is pos-
sible to construct a much more efficient PVORM. SGX
provides a new set of instructions that permits execution
of an application inside an enclave [4, 34, 40], which
protects the application’s control-flow integrity and con-
fidentiality against even a hostile operating system. SGX
additionally enables generation of attestations that prove
to a remote party that an enclave is running a particular
application (identified as a hash of its build memory).

To reduce the expense of attestations, an enclave can
generate a signing key pair and attest to the integrity of
the public key [26, 47]. It can then generate the equiv-
alent of a NIZK by simply signing an assertion that it
knows a witness to the statement. Trust in SGX then
translates to trust in the application and thus its asser-
tions. Verifying an assertion requires only a single digital
signature verification.

Using an SGX-based approach, we can build an ex-
tremely fast PVORM. We replace the public-key encryp-
tion with symmetric-key encryption and all NIZKs with
SGX-signed assertions. We can even employ write-only
ORAM to further improve performance. Additionally, a
PVORM constructed in the Sealed-Glass Proof (SGP)
model [45] provides security against arbitrarily strong
side-channel attacks, provided that the secret signing
key remains protected—such as by using a side-channel-
resistant crypto library.

While several complications remain to be address
(e.g., the need to share keys across enclaves on different
hosts in case of failure), we believe that this approach is
eminently practical—albeit under the (strong) assump-
tion of trust in Intel and its implementation of SGX.

D.3 Use of Pedersen Commitments
One of the important features of Solidus is auditability,
which is greatly aided by having all account balances en-
crypted on the ledger. Many financial companies and reg-
ulatory agencies are, however, wary to include this infor-

mation, even in encrypted form [1–3]. While we believe
it would degrade the functionality significantly to omit
these encryptions, it is not particularly difficult.

Instead of including encrypted balances on the ledger,
banks could instead represent PVORM elements as Ped-
ersen commitments [39]. Unlike El Gamal ciphertexts,
Pedersen commitments are perfectly hiding and compu-
tationally binding. To implement this, banks would need
to retain witnesses for each commitment, which consists
of both the account balance and the randomization factor.
The bank could then reveal this witness to an auditor in
order to prove an account balance, and the proof schemes
in Appendix A would require only slight modification to
prove information about the known witnesses.
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