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Abstract. We solve the open problem of constructing computationally function private public-
key predicate encryption schemes, supporting a rich class of predicates, without relying on strong
assumptions such as indistinguishability obfuscation. Our framework for computational function
privacy is indistinguishability-based. In other words, our notion requires that a secret-key corre-
sponding to a predicate sampled from a distribution with min-entropy super logarithmic in the
security parameter A, is computationally indistinguishable from another secret-key corresponding to
a uniformly and independently sampled predicate. Existing public-key constructions for predicate
encryption either satisfy a statistical notion of function privacy, that was introduced for equality
predicates by Boneh, Raghunathan and Segev in CRYPTO’13, and was generalized for subspace-
membership predicates in ASTACRYPT’13, or use strong assumptions such as the existence of
quasi-strong indistinguishability obfuscation (Iovino et al. in CANS’16). Computational function
privacy for predicate encryption, without the need for strong additional assumptions, has only been
concretely realized in the private-key setting, to the best of our knowledge.

In this paper, we develop a novel approach, denoted as encrypt-augment-recover, that takes
an existing predicate encryption scheme and transforms it into a computationally function private
one while retaining its original data privacy guarantees. Our approach leads to public-key con-
structions for identity-based encryption and inner-product encryption that are fully data private
and computationally function private under a family of weaker variants of the DLIN assumption.
Our constructions, in fact, satisfy an enhanced notion of function privacy, requiring that an adver-
sary learns nothing more than the minimum necessary from a secret-key, even given corresponding
ciphertexts with attributes that allow successful decryption.
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1 Introduction

Predicate encryption systems [1-3] in the public-key setting allow a single public-key to be associated
with multiple secret-keys, where each secret-key corresponds to a boolean predicate f : ¥ — {0,1} over
a pre-defined set of attributes 3. A plaintext message in a predicate encryption system is an attribute-
payload message pair (I,M) € ¥ x M, with M being the payload message space. A secret-key sky
associated with a predicate f successfully decrypts a ciphertext C' corresponding to a plaintext (I, M)
and recovers the payload message M if and only if f(I) = 1. On the other hand, if f(I) = 0, attempting
to decrypt C' using sk returns the failure symbol L. A predicate encryption is said to be attribute hiding
if the ciphertext C' leaks no information about the underlying plaintext (I, M) to an adversary possessing
benign secret-keys corresponding to predicates that do not trivially identify the attribute I.

Identity-Based Encryption. Identity-based encryption (IBE) [4-6] is the simplest sub-class of public-
key predicate encryption. IBE supports a set of equality predicates of the form fig : ¥ — {0,1} defined
as fig(x) = 1 if and only if 2 = id. The attribute space in this case is a set of identities ZD, and each
identity id € ZD is associated with its own secret-key skiq.



Inner-Product Encryption. Inner-product encryption (IPE) [2,3,7, 8] is the most expressive sub-class
of predicate encryption, supporting a set of predicates f : ¥ — {0, 1} over a vector space of attributes
¥ =Ty (g being a A\-bit prime). Of particular interest is a specific form of IPE called zero-IPE [3] where
for ¥, 7 € ¥, we have f (@) = 1 if and only if (¥, Z) = 0 (here (¥, 7) denotes the standard inner-
product of two vectors T and ?) IPE is powerful enough to encompass IBE and many other predicate
encryption systems [3].

Searchable Encryption and Function Privacy. Predicate encryption provides a generic framework
for searchable encryption supporting a wide range of query predicates including conjunctive, disjunctive,
range and subset queries [9,1-3]. For instance, a predicate encryption system can be used to realize
a mail gateway that follows some special instructions to route encrypted mails based on their header
information (e.g. if the mail is from the boss and needs to be treated as urgent). The mail gateway is
given the secret-key corresponding to the predicate is-urgent, the mail header serves as the attribute, while
the routing instructions can be used as the payload message. Another application could be a payment
gateway that flags encrypted payments if they correspond to amounts beyond some pre-defined threshold
X. The payment gateway is given the secret-key corresponding to the predicate greater-than-X, the
payment amount itself serves as the attribute, while the flag signal is encoded as the payload message.
The attribute hiding property of the predicate encryption scheme ensures that neither gateway learns
any information about the plaintext data from the entire operation.

A natural question now arises: should the gateways in the aforementioned examples be able to learn
the underlying predicate from the secret-keys given to them? The answer in most scenarios is no - the
secret-key sk should ideally reveal nothing about the predicate f beyond the absolute minimum. This
notion of predicate hiding security is commonly referred to as function privacy, and predicate encryption
scheme satisfying this notion of security are described as function private.

Function Privacy in the Public-Key Setting. As pointed out by Boneh, Raghunathan and Segev in
[10, 11], formalizing a realistic notion of function privacy in the context of public-key predicate encryption
is, in general, not straightforward. Consider, for example, an adversary against an IBE scheme who is
given a secret-key skijq corresponding to an identity id and has access to an encryption oracle. As long
as the adversary has some apriori information that the identity id belongs to a small set S,(e.g. id is
sampled distribution with min-entropy at most polynomial in the security parameter )), it can fully
recover id from skiq : it can simply resort to encrypting a random message M under each identity in S,
and decrypting using skiq to check for a correct recovery. Consequently, [10, 11] consider a framework for
function privacy under the minimal assumption that any predicate is sampled from a distribution with
min-entropy at least super logarithmic in the security parameter \.

Statistically Function Private Constructions. A class of existing public-key constructions for predi-
cate encryption satisfy a statistical notion of function privacy, that was introduced for equality predicates
in [10], and was subsequently generalized for subspace-membership predicates in [11]. In particular, the
secret-keys in these constructions are statistically indistinguishable from random, as long the underlying
predicates are sampled from sufficiently unpredictable distributions. In fact, designing public-key predi-
cate encryption schemes whose function privacy can be based on well-known computational assumptions,
was left as an open problem in [11].

Function Privacy from Indistinguishability Obfuscation. An alternative approach to achieving
function privacy for more generalized circuits such as NC! circuits was proposed by Iovino et al. in [12].
Their constructions achieve function privacy assuming the existence of quasi-strong indistinguishability
obfuscation (or quasi-siO in short), which are a weakening of the notion of siO originally proposed by
Agrawal et al. in [13]. Their constructions can be used to generate functionally anonymous signatures, as
well as black-box constructions for functional encryption schemes supporting randomized functionalities.
In this paper, we explore the possibility of achieving predicate encryption schemes that can be proven



to be function private under well-known computational assumptions, as opposed to strong assumptions
such as quasi-siO. While such schemes have been concretely realized in the private-key setting [14-17],
there exist no such constructions in the public-key setting to the best of our knowledge.

1.1 Our Contributions

In this paper, we solve the open problem of constructing computationally function private public-key
predicate encryption schemes, supporting a rich class of predicates, without relying on strong assumptions
such as indistinguishability obfuscation. Our framework for computational function privacy, presented
formally in Section 3, is indistinguishability-based. In other words, our notion requires that a secret-key
corresponding to a predicate sampled from a distribution with min-entropy super logarithmic in the
security parameter A, is computationally indistinguishable from another secret-key corresponding to a
uniformly and independently sampled predicate. Within this framework, we develop a novel approach,
denoted as encrypt-augment-recover, that takes an existing predicate encryption scheme and transforms
it into a computationally function private one. Our approach leads to the following constructions:

e In the random-oracle model, we present a family of identity-based encryption schemes from bilinear
pairings based on the scheme of Boneh and Franklin [4]. Our schemes retain the adaptive data privacy
of the underlying scheme (based on the same complexity assumption), and are computationally func-
tion private under progressively weaker variants of the well-known DLIN assumption. The detailed
construction of these schemes, along with the proofs of data and function privacy, is presented in
Section 4.

e In the standard model, we present a family of inner-product encryption schemes from bilinear pairings
based on the scheme of Katz, Sahai and Waters [3]. Once again, our schemes retain the selectively
attribute hiding property of the underlying scheme, and are computationally function private under
progressively weaker variants of the DLIN assumption. The detailed construction of these schemes,
along with the proofs of data and function privacy, is presented in Section 5.

e Our constructions, in fact, satisfy an enhanced notion of function privacy, requiring that an adver-
sary learns nothing more than the minimum necessary from a secret-key, even given corresponding
ciphertexts with attributes that allow successful decryption.

1.2 Overview of OQur Approach: Encrypt-Augment-Remove

Our approach for achieving computationally function private predicate encryption schemes consists
of three main steps - encrypt, augment and recover. We briefly describe the main ideas underlying
each step, and exemplify them subsequently using a simple IBE scheme. Given a public-key predi-
cate encryption scheme IT = (Setup, KeyGen, Enc, Dec), and a CPA-secure public-key encryption al-
gorithm PKE = (KeyGen, Enc,Dec), we create a function private predicate encryption scheme IT' =
(Setup', KeyGen’, Enc/, Dec/) as follows:

e The modified setup algorithm Setup’ invokes PKE.KeyGen and obtains the key pair (PK,SK).
It also invokes II.Setup and obtains the public parameters pp, along with master secret-key msk.
It outputs the modified public parameter pp’ = (pp,g (SK)) and the modified master secret-key
msk’ = (msk, PK), where g is a suitably chosen one way function.

e On input a predicate f and the augmented master secret-key msk’ = (msk, PK), the modified key-
generation algorithm KeyGen' invokes IT1.KeyGen to obtain the original secret-key sk . It then outputs
an encrypted secret-key sk} as PKE.Enc (PK,sky).

This step automatically guarantees computational function privacy - any adversary that can distin-
guish the augmented secret-key from random must break the CPA security guarantee of the PKE



scheme. More specifically, it ensures adaptive function privacy - the inherently random nature of the
augmented key generation algorithm ensures that the function privacy guarantees hold even when
the adversary is allowed to specify predicate distributions in an adaptive manner after seeing the
public parameters of the scheme. We assume that any adversarially-chosen distribution of predicates
is sufficiently unpredictable, so as to rule out a trivial breach of function privacy as mentioned earlier.
This minimal assumption is thus sufficient to transform the original predicate encryption scheme into
a computationally function private one.

e An even greater challenge is to synchronize the encryption and decryption algorithms in the mod-
ified scheme. This is achieved as follows. On input the public parameter pp’ = (pp, g (SK)), and a
message M corresponding to an attribute I, the modified encryption algorithm Enc’ first obtains
C = IL.Enc (pp, I, M). Tt then outputs the augmented ciphertext C' = (C,o (g (SK))), where o is a
randomized function sharing a source of randomness with II.Enc.

e Finally, Dec’ cleverly uses the additional ciphertext component o (g (SK)) in C’ to remove the effect
of PKE from the encrypted secret-key sk’f7 and recovers the message M. Note that removal here is
not same as decryption, since Dec’ has access to only a one-way function of SK and not SK itself.
It is, in fact, impossible to provide SK to Dec’ in the clear without trivially compromising function
privacy. The challenge is thus to ensure that Dec’ can recover M without a complete decryption of
sk

An Example of Our Approach. We present an example of a computationally function private IBE
scheme in the random-oracle model achieved using our encrypt-augment-decrypt approach. A generaliza-
tion of this scheme is presented in greater detail in Section 4, along with proofs for data and function
privacy. Consider a public-key encryption scheme PKE with the key generation, encryption and decryption
algorithms as described below:

e KeyGen: The key-generation algorithm samples z1,x2, T3 s Zy, where q is a A-bit prime, and

g1, 92, 93 & G, where G is a cyclic group of prime order g. It outputs the secret-key SK = (x1, x2, x3)
and the public-key PK = (g1, 92,93, (97" - 95°) , (95° - 95°))-
e Enc: The ciphertext C corresponding to a message M € G is a tuple of the form:

C= (9", 952, 95" "2, (97" - 95°)"* - (952 - 5°)"* - M)

where y1, Y2 £ Ly.

e Dec: The decryption algorithm, on input the ciphertext C' = (c¢1,c¢o,c¢3,¢4) and the secret-key
(1,22, x3), recovers the message M as:

M= f ()

The above scheme is a simple variant of the Cramer-Shoup cryptosystem [18], and is CPA-secure under
the DLIN assumption. We now present a computationally function private IBE scheme that is obtained
by applying our encrypt-augment-recover approach to the anonymous IBE scheme based on bilinear maps
proposed by Boneh and Franklin [4].

*

e Setup: The setup algorithm in the scheme of Boneh and Franklin samples s il Ly, where q is a
A-bit prime. The public parameters are g and ¢g°, where g is the generator of a bilinear group G of

prime order ¢, while the master secret-key is s. Our scheme additionally samples x1, z2, z3 £ Zy and



91,92, 93 & G. The augmented public parameter pp and master secret-key msk for our scheme are
as follows:

pp = (9,9°, 9", 9%, 9"*)
msk = (s, 91, 92,93, (97" - 95°) , (957 - 95°))

Observe that the additional components in pp are one-way functions of x1, x2, x5 - the secret-key SK
of the PKE scheme. Additionally, the modified msk contains the public-key PK of the PKE scheme.
This is exactly in accordance with our proposed approach.

KeyGen: The key-generation algorithm in the scheme of Boneh and Franklin computes a secret-key
for an identity id as skiy = (H (id))®, where H is a random oracle mapping identities onto the group
G. In our scheme, we augment the key generation process as follows. We sample y1, y2 il Ly, and
output:

skia = (97", 5%, 94" T2, (97" - 93°)"" - (95 - 5°)"* - (H (id))®)

Observe that skig = PKE.Enc (PK, (H (id))), which is a direct exemplification of the encrypt step in
our approach described above for achieving function privacy (the reader is referred to Section 4 for
the detailed proof).

Enc: An encryption of a message M for an identity id in the scheme of Boneh and Franklin is a

tuple of the form (g", M - e (H (id), g*)"), where r £ Zy. In our scheme, we augment the encryption
process to produce the ciphertext:

C=(g"(g"")",(g™)",(g"*)", M -e(H (id) ,g°)")

Note that the augmented ciphertext in our scheme retains unaltered the original ciphertext. The main
technical challenge is to prove that such an augmented ciphertext still provides the same data privacy
guarantees as the original scheme of Boneh and Franklin (the reader is referred to Section 4 for the
proof).

Dec: Our decryption algorithm, on input of a ciphertext C' = (cg,c1,¢2,¢3,¢4), and a secret-key
skig = (do, d1, d2, d3), recovers the encrypted message M as:

e(do,c1) - e(di,c2) - e(da,c3)
6(d3760)

Observe that at the core of the above computation is the original decryption procedure in the scheme
of Boneh and Franklin, with the additional components in the ciphertext and the secret-key canceling
out each other to recover the effect of the PKE(the reader is referred to Section 4 for the detailed
proof of correctness). It is important to note that this removal is different from directly decrypting
skig, and in particular, does not require the knowledge of the secret-key of the PKE.

M:C4'

Comparison with a Deterministic Public-Key Encryption-based Approach. An alternative
approach for designing computationally function private identity-based encryption schemes, suggested
in [10], is as follows: encrypt all identities using a DPKE scheme, and use any existing anonymous IBE
scheme that treats the corresponding ciphertexts of the DPKE scheme as its identities. Since the security
of any deterministic public-key encryption (DPKE) algorithm is also based on the minimal assumption
that its plaintexts are sampled from a distribution with a certain amount of min-entropy, the above
approach seems quite natural. However, this approach suffers from two inherent drawbacks:

1. In the setting of DPKE, the dependency of plaintexts on the public-key of the scheme is essentially lim-

ited. Intuitively, the reason is as follows: in a deterministic encryption setting, plaintext distributions
can be chosen depending on the public-key such that the encryption algorithm acts as a subliminal



channel for leaking information, thus trivially violating all security guarantees [19]. However, this
is too restrictive a security notion to be adopted in the context of IBE, where the key-generation
process is allowed to be randomized. In particular, any realistic function privacy framework for IBE
must allow adversaries to adaptively specify challenge identity distributions, after they have seen the
public parameters of the scheme.

2. The DPKE-based approach is not directly generalizable for functionally richer predicates unless the
underlying encryption scheme is somewhat function-preserving. For example, if the above approach
were to be extended in the context of IPE, it would require the ciphertexts of the DPKE scheme
to preserve the orthogonality of the underlying plaintext vectors. This could potentially weaken the
function privacy guarantees even further.

Our approach overcomes these limitations by focusing on encrypting the secret-key sky of the original
predicate encryption scheme rather than the underlying predicate f. The augmented key-generation pro-
cess uses a PKE instead of a DPKE, and is hence allowed to be non-deterministic. This makes our notion
of function privacy more realistic since it does not restrict adaptive choice of predicate distributions on
part of the adversary. Finally, our approach is generally applicable to a large class of predicate encryption
schemes, including IBE and IPE, without any additional constraints on the properties of the underlying
PKE.

Comparison with a Quasi-Strong Indistinguishability Obfuscation-based Approach. A more
comprehensive extension of the above DPKE approach, described in [12], is to a use a quasi-strong indis-
tinguishability obfuscation (Quasi-siO) scheme Q-siO over the class of predicates F in the key-generation
step. Their approach is as follows: given a predicate encryption system II = (Setup, KeyGen, Enc, Dec),
one can construct a function-private IT' = (Setup, KeyGen', Enc, Dec)7 such that:

KeyGen' (msk, f) = KeyGen (msk, Q-siO(f))

It is easy to see that this scheme is functionally correct assuming the correctness of the underlying
predicate encryption scheme I and the Quasi-siO scheme Q-siQ. The reader is referred to [12] for the
detailed proof of function privacy of this construction.

We point out here that while the above approach is generic and applies to a wide class of predicates
(more specifically, to the class of all NCl) circuits), it is based on the existence of Quasi-siO algorithms,
which is a strong assumption and subject to contention [20]. Our approach, on the other hand, allows us to
construct function-private predicate encryption schemes based on standard computational assumptions.
On the flip side, it is difficult to predict if our approach can be generalized for encryption schemes
supporting a wider class of predicates beyond IPE. However, within the purview of IPE (which by
itself subsumes a very rich class of predicate encryption schemes proposed in the current literature),
our techniques achieve a meaningful notion of function privacy while avoiding the need for very strong
assumptions such as Quasi-siO.

Extension to Private-Key Predicate Encryption. Our methodology is equally applicable for achiev-
ing computationally function private predicate encryption schemes in the private-key setting, even when
the underlying predicates are not necessarily sampled from distributions with at least super-logarithmic
min-entropy. In particular, the core function privacy arguments for our constructions presented in this
paper do not essentially rely on the unpredictability of the predicate distributions; this assumption is
additionally made to rule out trivial attacks in the public-key setting. In the private-key setting, where
the adversary does not have access to an encryption oracle, our approach anticipates an expansion to the
existing body of work in designing function private predicate encryption schemes.

Extension to Multi-Input Predicate Encryption. Multi-input predicate encryption (MIPE) intro-
duced by Goldwasser et al. [21] is a generalization of functional encryption to the setting of multi-input



predicates. An MIPE scheme has several encryption slots and each decryption key sk for a multi-input
predicate f jointly decrypts the ciphertexts Enc(1ly), ..., Enc(l,,) for all slots to obtain f (I3, ..., I,,) without
revealing anything more about the encrypted attributes. In particular, this provides a framework to evalu-
ate bounded-norm multi-input IPE: each predicate is specified by a collection of vectors 71, cee 77,,, and
takes as input a collection of vectors @1, -+, ', to output Joo o (71, e ,?n) =>r, {71, 71}

We point out that our technique can be easily generalized to obtain function private IPE schemes in
the multi-input setting as follows: we first use our technique to obtain a function private IPE construction
in the single-input setting, and then run n independent copies of this construction. The i*" copy is used
to encrypt 7, in the ith slot, while the new secret-key is the ensemble of the n secret-keys corresponding
to 71, e ,7n. The decryption algorithm computes each inner product individually, and returns their
sum. Although this means that the adversary also learns each individual inner product, this is an inherent
leakage in the public-key setting and does not weaken the security guarantees. The data privacy guarantees
of the underlying scheme ensure no further leakage, while the function privacy guarantees of the underlying
scheme continue to hold as long as each 71- is sampled from block sources with sufficient min-entropy,
and is independent of the other n — 1 vectors.

1.3 Other Related Work

Computational function privacy for predicate encryption has been studied in the private-key setting
[22]. The inherent difficulty of achieving function privacy in the public-key setting does not apply to
the private-key setting, where the encryptor and decryptor have a shared secret-key. In this setting, an
adversary with access to a searching key cannot test the same on ciphertexts of its choice since it does not
have access to the secret-key. Function privacy in the private-key setting is thus more natural to achieve.
A general solution in this direction was proposed by Goldreich and Ostrovsky [23] in their construction
of an oblivious RAM. More efficient constructions have been subsequently proposed for equality testing
[24,25, 14, 26, 27] and, more recently, for inner product testing [15-17].

1.4 Paper Organization

The remainder of this paper is organized as follows. Section 2 presents background material on predicate
encryption, and introduces several computational assumptions in bilinear groups. In Section 3, we for-
mally define our framework for the computational function privacy of public-key predicate encryption.
In Section 4, we present a family of adaptively data private and computationally function private IBE
schemes in the random-oracle model. In Section 5, we present a family of selectively attribute hiding and
computationally function private IPE schemes in the standard model. Finally, Section 6 concludes the
paper and enumerates several open problems.

1.5 Notations Used

We write 2 <= X to represent that an element z is sampled uniformly at random from a set X. The output
a of a deterministic algorithm A is denoted by z < A and the output a’ of a randomized algorithm A’

is denoted by z’ & A, We refer to A € N as the security parameter, and denote by exp(}\), poly(A\) and
negl(A) any generic (unspecified) exponential function, polynomial function and negligible function in A
respectively. Note that a function f : N — N is said to be negligible in A if for every positive polynomial
p, f(A) <1/p(A) when A is sufficiently large. Finally, for a,b € Z such that a < b, we denote by [a, b] the
set of integers lying between a and b (both inclusive).

The min-entropy of a random variable Y is denoted as Hy(Y) = —log (max,Pr[Y = y]); a random
variable Y is said to be a k-source if Hyo(Y) > k. A (T, k)-block-source is a random variable Y =
(Y1, ,Yr) where for each i € [1,T] and y1,--- ,y;—1, it holds that:

Ho (YilYi=y,- Yici=yi1) >k



2 Preliminaries

2.1 Public-key Predicate Encryption

A public-key predicate encryption scheme for a class of predicates F over an attribute space % and
a payload-message space M is a quadruple II = (Setup, KeyGen, Enc, Dec) of probabilistic polynomial
time algorithms. The Setup algorithm takes as input the security parameter A\, and generates the public
parameter pp and the master secret-key msk for the system. The key-generation algorithm, KeyGen takes
as input the master secret-key msk and a predicate f € F, and generates a secret-key sky corresponding to
f. The Enc algorithm takes as input the public parameter pp, an attribute I € ¥ and a payload-message
M € M, and outputs the ciphertext C' = Enc (pp, I, M). The Dec algorithm takes as input the public
parameter pp, a ciphertext C' and a secret-key sk, and outputs either a payload-message M € M or the
symbol L.

Functional Correctness. A predicate encryption scheme II = (Setup, KeyGen, Enc, Dec) is said to be
functionally correct if for any security parameter A, for any predicate f € F, for any attribute I € 3 and
any payload-message M € M, the following hold with probability at least 1 — negl()):

1. If f(I) =1, we have Dec (pp, Enc (pp, I, M), KeyGen (msk, f)) = M.
2. If f(I) =0, we have Dec (pp, Enc (pp, I, M), KeyGen (msk, f)) = L.

where the probability is taken over the internal randomness of the algorithms Setup, KeyGen, Enc, and
Dec.

Data Privacy. We briefly recall the notion of indistinguishability-based data privacy for a predicate
encryption scheme under an adaptive chosen-attribute chosen-payload-message attack. Data privacy of
a functional encryption scheme guarantees that any probabilistic polynomial-time adversary can gain no
information about either the attribute I nor the payload-message M associated with a ciphertext C' from
the knowledge of the public parameters pp. We denote this notion of security by DP throughout the rest
of the paper.

Definition 2.1 (Adaptively Data Private Predicate Encryption). A predicate encryption scheme II =
(Setup, KeyGen, Enc, Dec) is said to be adaptively data private if for any probabilistic polynomial-time
adversary A, the following holds:

AdvP () &

Pr {Exptgg’n_’A()\) = 1} —Pr [Exptgg’n’A()\) = 1} ’ < negl(A\)
where for each A € N and each b € {0, 1}, the experiment Exptg)gﬂ)A()\) is defined as follows:

1. (pp, msk) <& Setup (1%).

2. ((Ig, Mg), (IT, M), state) < AKevGen(msk.) (state) where Ig, I; € & and Mg, M; € M, subject
to the restriction that for each predicate f; with which A queries KeyGen (msk, -), we have f; (I§) =
fi (I7).

3. C* <% Enc(pp, I}, M;).

b L AKeyGen(msk.) (C*, state), once again subject to the restriction that for each predicate f; with
which A queries KeyGen (msk, -), we have f; (I§) = f; (IT).

5. Output ¥'.

We also consider a selective variant of the above security notion that requires the adversary to commit to
the challenge pair of attributes before seeing the public parameters of the scheme. We denote this notion
of security by sDP throughout the rest of the paper.



Definition 2.2 (Selectively Data Private Predicate Encryption). A predicate encryption scheme II =
(Setup, KeyGen, Enc, Dec) is said to be selectively data private if for any probabilistic polynomial-time
adversary A, the following holds:

AdviPP (n) 4

Pr [BxptBh 4 (V) = 1] = Pr [Exptlph 4 (V) = 1] ’ < negl())
where for each A € N and each b € {0, 1}, the experiment Exptgg)P’m 4(A) is defined as follows:

1. (I3, If,state) <& A (1), where I, I7 € 3.
(pp, msk) <& Setup (1%).
(Mg, My, state) & AKeyGen(msk,") (state), where M, My € M, subject to the restriction that for
each predicate f; with which A queries KeyGen (msk, -), we have f; (I§) = fi (I7).

4. C* <& Enc(pp, I, M;).

5. b <& AKeyGen(msk.) (C*, state), once again subject to the restriction that for each predicate f; with
which A queries KeyGen (msk, -), we have f; (I§) = fi (I7).

6. Output b'.

Identity-Based Encryption. An identity-based encryption scheme IT'"BF over an identity space ZD and

a message space M is a public-key predicate encryption scheme supporting the set of equality predicates
fid : ID — {0, 1} defined as fiq(id’) = 1 if and only if id" = id. The secret-key associated with an identity
id € ID is denoted as skjq. The notions of anonymity and message indistinguishability security popularly
associated with IBE are equivalent to the notion of adaptive data privacy as described above.

Inner-Product Encryption. An inner-product encryption scheme II'P'F over an attribute space ¥ = Fy

(¢ being a A-bit prime) and a payload message space M is a public-key predicate encryption scheme
supporting the set of vector predicates f— : ¥ — {0, 1}. The secret-key associated with a vector Tex
is denoted as sk . Zero-IPE is a specific sub-class of IPE where for T, 7 €%, we have f= (7) =1if
and only if (7', 2') = 0.

2.2 Computational Assumptions in Bilinear Groups

The decisional bilinear Diffie-Hellman assumption (DBDH). Let GroupGen(1*) be a proba-
bilistic polynomial-time algorithm that takes as input a security parameter A, and outputs the tuple
(G,Gr,q,9,¢), where G and Gr are groups of order ¢ (¢ being a A-bit prime), g is a generator for G
and e : G x G — Gy is an efficiently computable non-degenerate bilinear map. The group G is pop-
ularly referred to as a bilinear group [4]. The decisional bilinear Diffie-Hellman assumption is that the
distribution ensembles:

ay az as a)-az-ag al as as
{(9,9"",9", 9", e(g,9) Vo anagetin, 24,9079 20 | s,

are computationally indistinguishable, where (G, Gz, ¢, g,€) < GroupGen(1*).

The decisional linear assumption (DLIN)[28]. Let G be a group of prime order ¢ and let g1, g2, g3
be arbitrary generators for G. The decisional linear assumption is that the distribution ensembles:

aitaz

{(913927937.9?179;2793 and {(9179239379(11179527.9;3)}

)} " "
a1,a2<—Z; al,az,a3<—ZZ

are computationally indistinguishable, where g1, g2, g3 & G.

The DLIN assumption was introduced by Boneh, Boyen, and Shacham [28], and was intended to take
the place of the more standard decisional Diffie Hellman (DDH) assumption in groups where the DDH
assumption does not hold. In particular, for bilinear groups as defined above, the DLIN assumption holds
even if the DDH assumption does not, at least in the generic group model.



The generalized decisional k-linear assumption (k-DLIN) [29]. Let G be a group of prime order
q and let g1,--- , gk, gk+1 be arbitrary generators for G. The generalized decisional k-linear assumption
is that the distribution ensembles:

ay ay Z?:l a;j d
g1, 9k 9k+1591 5 5 G 7gk+1 " an
1 aR$—Z;

q
AR+1

ay ag
1,°°° ks 9k+1 R
{(g ) y9k> 9k+1,91 " » 9k angrl )}a1,-~,ak,ak+1<—23

are computationally indistinguishable, where g1, - , gx+1 £ 6.

Quite evidently, this assumption is a generalization of the DLIN assumption stated above. Note that the
k-DLIN assumption implies the (k4 1)-DLIN assumption for all k¥ > 1, but the reverse is not necessarily
true, implying that the k-DLIN assumption family is a family of progressively weaker assumptions [29].

3 Computational Function Privacy of Public-Key Predicate Encryption

We present our definitions for the computational function privacy of predicate encryption in the public-
key setting. We consider adversaries that have access to the public parameters of the scheme, as well as a
secret-key generation oracle. The adversary can also adaptively interact with a real-or-random function-
privacy oracle RoR™". This oracle takes as input any adversarially-chosen distribution over the class of
predicates F, and outputs a secret-key either for a predicate sampled from the given distribution, or for
an independently and uniformly sampled predicate. At the end of the interaction, the adversary should
be able to distinguish between these real and random modes of operation of RoRFP with only negligible
probability.

Formal Definitions. We now formally present the computational function privacy definitions for public-
key predicate encryption.

Definition 3.1 (Real-or-Random Function Privacy Oracle). The real-or-random function privacy ora-
cle for predicate encryption RoR™” takes as input triplets of the form (mode, msk,F), where mode €
{real, rand}, msk is the master secret-key, and F is a circuit representing a distribution over the class of
predicates F. If mode = real, the oracle samples f £ F, while if mode = rand, it samples f Ern

then computes sk & KeyGen (msk, f) and responds with sk;.

Definition 3.2 (Computational Function Privacy). A predicate encryption scheme IT = (Setup, KeyGen, Enc, Dec)
is said to be computationally function private if for any probabilistic polynomial-time adversary A, the
following holds:

AdviP, () 9

Pr [ExptrFeSEmA(/\) = 1] —Pr [ExptrFaF'?fiH,A()\) = 1} ‘ < negl(\)
where for each A € N and each mode € {real, rand}, the experiment Expt?ﬁfjﬁ,A()\) is defined as follows:

1. (pp, msk) <% Setup (1%).
2. b <L ARoR™(mode,msk,.) KeyGen(msk, ) (1A7 pp), subject to the restriction that each F; with which A

queries RoRP (mode, msk, -) represents a distribution with min-entropy k& = w (log A).
3. Output b.

Note that our definitions are generic, and may be suitably adopted for IBE, IPE and other classes of
predicate encryption.
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Min-Entropy Requirements. In our definitions for computational function privacy, the adversary is
allowed to adaptively issue a polynomial number of queries to the RoR™ oracle, as long as the queries
correspond to distributions with min-entropy & = w (log \). As discussed in Section 1.2, such a restriction
is necessary for any definition of function privacy to be meaningful in the public-key setting. In the
context of IBE, for example, the adversary is allowed to query the real-or-random oracle with ID* € ZD
only if ID* represents a k-source such that & = w (log A). In the context of IPE, on the other hand, and
adversary can query the real-or-random oracle with V* = (Vi*,--- | V.*) € Z% only of V* is an (n, k)-block
source such that k = w (log A). Additionally, each component-wise distribution V;* for ¢ € [1,n] should
be completely uncorrelated with each of the other distributions in V*. This restriction is necessary to
ensure that the adversary cannot carefully craft vectorial distributions with arbitrary inter-component
correlations to trivially compromise function privacy (see [11] for a detailed explanation).

Multi-Shot v/s Single-Shot Adversaries. Definition 3.1 considers multi-shot adversaries that are
allowed to query the RoRFP oracle polynomially many times. However, it is polynomially equivalent to
consider single-shot adversaries that can query the RoRFP at most once. This is easily established by a
hybrid argument, where the hybrids are constructed such that only one query is forwarded to the RoR?
oracle, while the rest are answered by the key generation oracle.

3.1 Computational Function Privacy of Existing Predicate Encryption Schemes

Identity-Based Encryption. To the best of our knowledge, there exist no IBE schemes in literature
that can be proven to be computationally function private under well-known cryptographic assumptions.
The constructions in [4] and [30] have deterministic trapdoors, and are hence trivially not function private
under Definition 3.1. For such schemes, an adversary could easily manufacture a circuit that uniformly
samples id such that some function of the public parameters pp and the secret-key skjq is already known
to the adversary, thus leading to a straightforward attack breaking function privacy [10]. While such
straightforward attacks cannot be demonstrated on the IBE constructions proposed in [5,31-33], we are
not aware if their function privacy can be based on standard computationally intractable problems. Fi-
nally, the IBE constructions presented in [10] are secure under a different notion of function privacy called
statistical function privacy, that is based on the statistical closeness of adversarially-chosen and random
distributions. Once again, to the best of our knowledge, these constructions are not computationally
function private to the best of our knowledge. In Section 4, we present a family of IBE constructions that
are computationally function private under well-known cryptographic assumptions.

Inner-Product Encryption. While computational functional privacy with respect to IPE in the pri-
vate key setting is well-studied [15-17], there exist, to the best of our knowledge, no equivalent public-key
counterparts in literature that can be proven to be function private under well-known cryptographic
assumptions. The authors of [11] present a generic technique to achieve statistical function privacy in
the context of inner-product encryption in the public-key setting; however, they leave the construction of
computationally function private IPE schemes in the public-key setting as an open problem. It also seems
that the function privacy of existing IPE constructions, such as in [2, 3], cannot directly be based on stan-
dard computational assumptions without suitable modifications. In Section 5, we present a family of IPE
constructions that are computationally function private under well-known cryptographic assumptions.

3.2 Enhanced Computational Function Privacy for Predicate Encryption

Boneh, Raghunathan and Segev put forth a stronger notion of function privacy in [10] with respect to
IBE, referred to as enhanced function privacy. Informally, this notion requires that the function privacy
guarantees of an IBE scheme hold even if the adversary can obtain, in addition to the secret-key skiq
corresponding to an identity id, an encryption of an arbitrary message M under id. We formally extend
their notion of enhanced computational function privacy to address a more generalized class of predicates.
We assume that the adversary, in addition to interacting with the key generation and real-or-random
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function privacy oracles, also interacts with a function-privacy encryption oracle EncFP. This oracle shares
a state with the real-or-random function privacy oracle. For a multi-shot adversary, let f be the predicate
sampled by the real-or-random function privacy oracle when responding to the j*! query made by the
adversary to the real-or-random function privacy oracle. The Enct™ oracle takes as input a payload
message M and j, uniformly samples an attribute I7 such that f7 (I 5 ) = 1, and responds with CJ* =
Enc (pp, (I M )) The equivalent definition for a single-shot adversary follows similarly.

Definition 3.3 (Enhanced Computational Function Privacy for Predicate Encryption). A predicate en-
cryption scheme IT = (Setup, KeyGen, Enc, Dec) is said to be computationally enhanced function private if
for any probabilistic polynomial-time adversary A, the following holds:

AdvE () 9

Pr [ExptEFP ma(A) = 1} Pr [EXPtEFP ma(d) = 1} ’ < negl(})
where for each A € N and each mode € {real, rand}, the experiment ExptEFp m,4()) is defined as follows:

1. (pp, msk) £ Setup (1)‘).
2. b & AROR™ (mode,msk,-),Enc™(-),KeyGen(msk,-) (1/\,pp), subject to the restriction that each F; with

which A queries RoRFF (mode, msk, -) represents a distribution with min-entropy k& = w (log \).
3. Output b.

4 Computationally Function private Identity-Based Encryption

In this section, we apply our encrypt-augment-recover approach to the anonymous IBE scheme of Boneh
and Franklin [4] to achieve a family of computationally function private IBE schemes {ITI:PE},~;. At the
core of H}CBE is the following generalized version of the PKE scheme introduced in Section 1.2, which is
CPA-secure under the (k + 1)-DLIN assumption:

o KeyGen: The key-generation algorithm samples z1,- -, g2 & 7 q» Where ¢ is a A-bit prime, and

g1, 5 Jk+2 £ G, where G is a cyclic group of prime order g. It outputs the secret-key SK and the
public-key PK as:

SK = (z1, -+ ,Tky2) , PK = (917'-' ,9k+27{(9;c'7 'glfigz)}je[l,kﬂ])

e Enc: The ciphertext C corresponding to a message M € G is a tuple of the form:

y Y PO A z; = Y;
_ 1 k+1 1 j k+2\Yi
C= 91 a"‘agk+1,gk+]2 s H(gjj'gk.;_g) M
j=1
R 7«

where y1, -+, Yk+1 < Zyg.
e Dec: The decryption algorithm, on input the ciphertext C' = (¢1,--- ,ck+3) and the secret-key

(1, ,Zgt2), recovers the message M as:

k41
Lj
= Ck+3 ¢

The IBE scheme IT!BE which is built by combining the Boneh-Franklin IBE scheme with the above
PKE scheme, is adaptively data private under the DBDH assumption and function private under the
(k + 1)-DLIN assumption. We present the construction for the same next.
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The Construction. Let GroupGen(1*) be a probabilistic polynomial-time algorithm that takes as input
a security parameter A\, and outputs the tuple (G,Gr,q,g,e¢), where G and Gr are groups of prime
order ¢ = O(2%), g is a generator for G and e : G x G — Gy is an efficiently computable non-
degenerate bilinear map. The IBE scheme II; = (Setup, KeyGen, Enc, Dec) is defined over the identity
space ZD = {ID,} en and the message space M = { M} ren. We assume that M is a small subset of
Gr, namely M| < |GT|1/ %, While the reason for this restriction will become clear eventually, we note
that it is not very serious since the space of valid messages in reality is expected to be significantly smaller
than |GT\1/ 2, Finally, let H : ZD — G be a publicly available collision-resistant hash function.

e Setup: The setup algorithm samples (G, Gr,q,g,¢€) £ GroupGen(1*) on input the security parameter

1M, It also samples s, 1, -+ , Thio il Zy and g1, -+, Gk+2 LG 1t outputs the public parameter pp
and the master secret-key msk as:

pp = (gmgsagrla U 7gmk+2)

msk = (5,91, ge+2, (97" - 90i %) >+ (9h - 9hs)
e KeyGen: On input the master secret-key msk and an identity id € ZD, the key generation algorithm
samples Y1, , Yra1 na Z;; and outputs the secret-key skig = (do, " - - , dg12) where:
dj—1 = g;-/] for j € [Lk"‘ 1] s dp1 = gku:2:1 L diyo = H (g;?a ,gzrr;)y; - (H (id))é
j=1

Observe that skiy = PKE.Enc (PK, (H (id))").

e Enc: On input the public parameter pp, an identity id € ZD and a message M € M, the encryption
algorithm samples r £ Zy, and outputs the ciphertext C' = (co, ,Crts3) where:

COZQT ) Cj = (ng)'f" fOI‘jE [17k+2] ) ck+3:M'e(H(id)7gs)T

e Dec: On input a ciphertext C' = (¢g, -+ ,cr43) and a secret-key skiq = (do, -+ , dg+2), the decryption
algorithm computes:

k
[ e(dj-1.c))
e (dy+2, o)

If M’ € M, the decryption algorithm outputs M’, else it outputs L.

/
M = Ck+3 -

Correctness. First, consider a message M € M, a ciphertext C' = (cg, - - , ck+3) corresponding to M
under an identity id € ZD and a secret-key skig = (do, - - , dgt2) corresponding to id. Then, we have:

I e (02 (6)) e (4=, g7roe)')
e (T4 (a7 - gi55)™) - (H ()" g7)
15 e (g (97)7) - (60717, (g7+2)")

k T; j kg, . s
[ e (g7, 97)" - e (gi2,97) = - e ((H (id))* L g7)

M' =M -e(H(id),g*)" -

=M -e(H(d),g°)" -

=M

Therefore as long as the ciphertext and the secret-key correspond to the same identity, the message is
recovered correctly. Again, when the ciphertext and the secret-key correspond to two different identities,
say id and id" respectively, the decryption algorithm computes:

M= M e(H(d) (H (id) ")

13



Now, the restriction that M is a small subset of G of size less than |GT|1/ ? ensures that the probability

of M’ still lying in M, for s, £ Zy and a collision-resistant hash function H, is negligible in the security
parameter . This completes the proof of correctness for our generalized IBE scheme H}CBE.

4.1 Security of Our IBE Scheme
Data Privacy. We state the following theorem for the data privacy of TI}BE:

Theorem 4.1 Our IBE scheme HiBE is adaptively data private under the DBDH assumption.

Proof Overview. We begin by providing a brief overview of the proof idea here. The proof considers a
probabilistic polynomial-time that has access to the public parameters of our scheme, and can determine
from a challenge ciphertext whether it is associated with either of two identity-message pairs (idg, Mg)
or (id], M;) with non-negligible advantage. The adversary can request for secret-keys corresponding to
identities of its choice, subject to the restriction that the requested identities differ from both idj and id7.

In order to provide adaptive data privacy under the DBDH assumption, the proof considers a simulator

that receives the DBDH instance (g, 9%, g2, ¢, Z) as input and chooses 1, -+ , 12 £ Zy as input.
The public parameters are set up as (g, g%, g**, -, g% +2), where x1, -+, Tr12o i Zy. The simulator
simulates the hash function H as a random oracle. On receiving a hash query for some identity id;, The

simulator responds with either either g or (g?2)** for £ Zy, and remembers the response for future
queries.

The simulator also simulates the secret-key generation oracle. On receiving a secret-key query for id;,
the simulator looks up H (id;), and either aborts if H (id;) = (¢g®2)®’, or chooses y1, - , Yr+1 £ Zy and
responds with:

k42
k+1
_ Y1 Yk+1 >itivs T Tr+2)\ Y5 ay\
Skid,:_ 91 5592 7g]g+J2 ) H(ng'gk+2) (g 1) ’
Jj=1

It is easy to see when the simulator does not abort, the distribution of skq, is exactly as in the real world.

Finally, in the challenge phase, the simulator chooses b - {0,1} and looks up H (id}). It aborts if
H (idy) is of the form ¢®" for some a* £ Zy. Otherwise, it must be the case that H (idy) is of the form
g®®" . In this case, it embeds the DBDH challenge in the challenge ciphertext C* as follows:

€ = ((g) (g DT gy DT g 2)

This ciphertext is either well-formed or uniform and independent in the adversary’s view depending on
the DBDH instance received by the simulator as input. This allows us to relate the advantage of the
simulator in solving the DBDH instance to the advantage of the adversary in breaking the adaptive
data privacy of our scheme. Finally, the abort condition in the secret-key query phase and the challenge
phase is mutually opposite, so that the overall probability of abortion can be suitably minimized. This is
essentially a a modification of the original proof idea in [4] to fit our function private scheme.

Detailed Proof. We now present the detailed proof. Let A be any probabilistic polynomial-time adversary.
The proof aims to show the following:

0 1
Adv?I'I:BEA(A) = |Pr [Expté@yHLBE’A(/\) = 1] —Pr [EXPtE,F),’HLBEVA(A) = 1] ' < negl(})
We define a second experiment Expt(b) (M) that is identical to Expt(b) (M) except in Step 3,

rand,DP,ITIBE, A DP,ITIBE, 4
where the challenge ciphertext C* is generated uniformly and independent of the challenge pair (id;, M;).
Then, the following is obvious to see:

Pr {Exptfn)d’DP}HIkBE,A(A) = 1} —Pr {EXptSzd,DP,H}CBE,A()\) - 1} ’ =0
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We now state and prove the following claim:

Claim 4.1 For any probabilistic polynomial-time adversary A and for b € {0,1}, the following holds:

Pr [Expt(Dg e, AN = } Pr |:EXpt£abz1d,DP,H}33E,A()\) = 1} ‘ < negl(\)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary such
that:

DP,IIIBE, 4

(b)
‘PI‘ [Expt rand,DP IT}BE, A

A\ = } Pr {Expt(b) A\ = 1} ‘ =€ > negl(\)

Also, let Qx = poly(A) be the maximum number of secret-key queries made by A in either of the
experiments EXptg)g,nchE’A()‘) and EXptE:r)md,DP,H}cBE,A()\)' We construct an algorithm B that solves an
instance of the DBDH problem with non-negligible advantage ¢ > ¢/ (exp(1) - (Qx + 1)). B is given
(g,9%,9%, g%, 7Z) and interacts with A as follows:

e Setup: B samples x1, -+, £ Zy and g1, , grt2 L G Tt sets pp = (g,9%, g™, -+, g"+2) and
provides pp to A. Observe that the distribution of pp is exactly as in the real world.

o H — Queries: B maintains a list of tuples of the form (id;, H (id;) , o, 8;) such that H (id;) € G,
a;j € Zy and B € {0,1}. When A issues a hash query for id; € ZD, B responds as follows:

1. B searches the list for a matching tuple of the form (id;, H (id;) , a;, 5;). If such a tuple is found, it
returns H (id;) to A.
2. Otherwise, B samples a; <— Zj; and 3; «+ {0,1} such that Pr[5; =0 =1-1/(Qxk + 1).
o If 3, =0, it sets H (id;) = g™
o If B; =1, it sets H (id;) = (g?2)™*, where g2 is a part of its input instance.
3. B now adds the tuple (id;, H (id;)) to 1ts existing list, and returns H (id;) to A.

e Secret-Key Queries: When A issues a secret-key query for id; € ZD, B responds as follows:

1. B runs the aforementioned procedure to look up H (id;) and obtains the tuple (id;, H (id;) , «;, ;).
2. If B; =1, B aborts by outputting a uniformly sampled bit.

3. If 8; = 0, we must have H (id;) = g%; hence, B chooses y1, - , Yk+1 £ Zy and responds with:
skt k+2
skia, = [ g, 08 g | T (9 o)™ | - (9
=1

Once again, observe that the distribution of skiq, is exactly as in the real world.

e Challenge: A outputs the challenge pair ((idg, M), (id7, M7)). B samples b £ {0,1} and does the
following:

1. B runs the aforementioned procedure to look up H (id;) and obtains the tuple (id;, H (id;) , a;, 55).
2. If By =0, B aborts by outputting a uniformly sampled bit.

3. If B =1, we must have H (id;) = (ga"‘)az. B accordingly responds with the challenge ciphertext
C* as: ( *)71 ( *)71 ( *)—1
0 = (1)@ gy @ (g gy 7)

where g% and Z are part of its input instance.

e Guess: At the end of the game, A outputs a bit &’. B outputs the same bit b'.
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It is easy to see that when Z = e (g, g)*" **"*®, the ciphertext C* is well-formed and identically distributed

to the challenge in the experiment Expt(b)

DP,H}CBE,A()\) . To see this, set s = a; and r = ag - (af)” " and

observe that:

as\(ep)™t _ r azy\zj-(ap) ™t _ TV for i€ k49
(9*) 9" 5 (9") (g")" for j € [Lk +2]

az-(ap) "

Z=e(g,9)"" " =e ((9‘““)“Z ,g‘“) =e(H (idy),g°)"

On the other hand, if Z is uniform random in Gp, then C* is independent of b and hence identically

distributed to the challenge in the experiment EXPtSr)]d DP [IBE A()\).

It remains to bound the probability that B aborts either during a secret-key query or during the
challenge phase, denoted as Pr[Abort]. It is easy to see that the probability that B aborts during a given
secret-key query is 1/ (Qx + 1). Assuming that B makes at most Qx secret-key queries, the probability
that t never aborts for any of these queries is thus lower bounded as (1 — 1/ (Q + 1))9*. The probability
that B does not abort during the challenge phase is lower bounded as 1/(Qg + 1). Thus the overall
probability that B does not abort during the entire game (equivalently Pr Abort]) is lower bounded as

(1= 1/(Qx + 1) / (Qx +1).
Finally, the advantage € of B in solving the DBDH instance (where the probability is taken over all

possible choices of a1, as, as s Z;) and all possible choice of Z s Gr) may be quantified as:

Pr[B(g,9", 9%, 9", e(g,9)" ***) =1] — Pr[B(g,9", 9", 9%, Z) = 1] ’

= [Pr [B(g,9™,9%,9%,e(g,9)" ***) = 1|Abort] - Pr [Abort] —
Pr [B (9,9°',9",9%,7) = 1|Abort] - Pr [Abort] |

Pr [Expt(Db;H}CBE’A(/\) = 1] - Pr [Abort] — Pr [ExptfsdeP’H?E,A(/\) = 1] - Pr [Abort

>e (1-1/(Qx +1)°% /(Qx +1)
> ¢/ (exp(1) - (Qx +1))

The above derivation uses the fact that the abort condition for B is independent of the view of the
adversary A. This completes the proof of Claim 4.1. The proof of data privacy for II}*" now follows from
the following observation:

AdvngE’A()\) = |Pr {Exptg)g’H}CBE’A()\) = 1} —Pr [EXpt(Dlg’H}CBEyA(A) = 1} ’
< |Pr {EXPtI(DOFz,HLBE,A()\) = 1} —Pr [EXptfgzd,DP,HLBE,A(A) = 1] ’—i—
Pr {Exptgg,n}cBE,A()\) = 1} —Pr [EXptfszd,DP,HLBE,A(A) = 1} ‘+
Pr {EXptSzd,DP,H}CBE,A()‘) = 1} —Pr {Ethfalzd,DP,n}cBE,A()‘) = 1} ‘
< 2[Pr [Exptd) e (V) = 1] = Pr [ExptD), o e () = 1] ' (from Equation 1)

= 2¢ < negl()\)

The above proof reinforces the fact that applying our encrypt-augment-cancel approach does not affect
the adaptive data privacy of the original IBE scheme of Boneh and Franklin.
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Computational Function Privacy. We state the following theorem for the computational function
privacy of IT}PE;

Theorem 4.2 Our IBE scheme IIBF is computationally function private under the (k+ 1)-DLIN as-
sumption for identities sampled uniformly from k-sources with k = w (log ).

Proof. We begin by stating the following claim:

Claim 4.2 For any probabilistic polynomial-time adversary A and for mode & {real, rand}, the following
holds:

Pr [Exptsdime 4 (\) = 1] = Pr [Exptifums 4(\) = 1] ’ < negl())

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary such
R
that for mode <— {real, rand}, we have:

Pr [Expt?s’dﬁ}faﬂ(k) = 1] —Pr [Expt'Fa,Q’dH}CBE’A(A) = 1} ’ =€ > negl(}\)

We assume that the adversary A issues a single query to the real-or-random oracle. As discussed in
Section 3, such a single-shot adversary is polynomially equivalent to its multi-shot variant considered in
Definition 3.1. We construct an algorithm B that solves an instance of the (k4 1)-DLIN problem with

non-negligible advantage ¢ = e. B is given (g1, -+, gkt2, 97", - ,g,(;f;) and interacts with A as follows:

o Setup: B samples s,x1, -, Tpio £ Zy and g & G. Tt sets pp = (9,9°,9**, -, g"**2) and provides
pp to A. Observe that the distribution of pp is exactly as in the real world.

e H — Queries: B maintains a list of tuples of the form (id;, H (id;)) such that H (id;) € G. When A
issues a hash query for id; € ZD, B responds as follows:

1. B searches the list for a matching tuple of the form (id;, H (id;)). If such a tuple is found, it returns
H (Idl) to .A

2. Otherwise, B samples H (id;) &£ G and adds the tuple (id;, H (id;)) to its existing list. It returns
H (id;) to A.

o Secret-Key Queries: When A issues a secret-key query for id; € ZD, B responds as follows:
1. B runs the aforementioned procedure to look up H (id;).

2. B samples y1,- -+, Yr+1 £ Zy and responds with:
S, k-+1
i—1 Y5 ZT; xT Yi .
skig, = | 91", ,gz’fﬁl,gké ", H (gjj 'Qkk++22> 7| - (A (idy))?
j=1
where g1,--- ,gr+o are part of its input instance. Once again, observe that the distribution of ski4, is

exactly as in the real world.

e Real-or-Random Query: Suppose A queries the real-or-random oracle with ID* - a circuit repre-

senting a k-source over the identity space ZD such that k = w (log \). B samples mode £ {real, rand}
and does the following:

1. If mode = real, B samples id* £ ID*, while if mode = rand, it samples id* & ID. Tt then runs the
aforementioned procedure to look up H (id*).
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2. B responds with the secret-key skjq+ as:

k+2
skia- = | g%, gy | T] (g57) | - (H (id"))*
j=1
where g, -, gZT; are part of its input instance.

e Guess: At the end of the game, A outputs a bit b’'. B outputs the same bit b'.

It is easy to see that when agi2 = Z;Cill a;, the secret-key skiq~ is well-formed and identically distributed

to the response of the real-or-random oracle in the experiment Expt?,gfiﬁ'im’ 4(A). On the other hand,
when ay.o is uniformly random in Z7, the secret-key skig- is uniformly random, and hence identically
distributed to the response of the real-or-random oracle in the experiment EXpt?g:iHLBE, 4(A). Now, the
advantage € of B in solving the (k + 1)-DLIN instance (where the probability is taken over all possible
choices of a1, -+ ,ak42 £ Zy and all possible choices of g1, -+, gr+2 £ G) may be quantified as:

k41
Z]il aj

6/ = ‘PI‘ |:B <gl7"' agk+27g?17"' agk_;'_é ) - ].:| —Pr [B (gl,"' 7gk+27g?17"' ,gg’_c:;) = 1]

Pr [Exptpgj‘giBE,A(A) = 1} —Pr [Expt}ang£BE7A(A) = 1} ’

=€

This completes the proof of Claim 4.2. The proof of function privacy for H}CBE now follows from the
following observation:

AdVlEIF}:BE’A(A) = |Pr [Exptlr:e;!H}CBE,A()‘) = 1} —Pr [EXptLaQ:jH}CBEyA(A) = 1} ’

< 2|Pr {Expt?ﬁfjﬁ}csq A = 1} —Pr [Expt[f:agfjHLBQ A = 1} ‘

= 2¢ < negl(\)

Enhanced Computational Function Privacy. We state the following theorem for the enhanced
computational function privacy of TI}EE:

Theorem 4.3 Our IBE scheme IIPE is computationally enhanced function private under the (k+ 1)-
DLIN assumption for identities sampled uniformly from k-sources with k = w (log ).

Proof Overview. The proof is very similar to that of Theorem 4.2; we begin by providing a proof overview
here. An important component of the proof is to show that the challenger B can additionally simulate
the function privacy encryption oracle, and that the real and random modes of operation of the real-or-
random function privacy oracle are indistinguishable even in the presence of the encryption oracle. The
first part is easy to demonstrate. Let skig- = (dg, ceey dz+2) be the response of the real-or-random function
privacy oracle to the adversary A. On receiving a function-privacy encryption oracle query for a payload

message M, B responds as follows: it samples r i Zy and outputs the ciphertext C* = (cé, RN +3)
where:
=9 ,¢ =(g") forjelk+2]

and
e (d,’;+2, c(")‘)

[ e (d; y.ch)

* —
Cry3 =
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For the second part, observe that when the input (k 4+ 1)-DLIN challenge for B is valid, the ciphertext C*
is well-formed and identically distributed to the response of the function privacy encryption oracle in the
experiment Exptgﬁgfnigg 4(A). On the other hand, when the input (k + 1)-DLIN challenge for B is invalid,
the ciphertext C* is uniformly random, and hence identically distributed to the response of the function
privacy encryption oracle in the experiment Expt?ﬁgfn}vm, A(A). In either case, decrypting C* using skig-
correctly retrieves M. Hence, for the real and random modes of operation of the function privacy oracle,
the response of the encryption oracle is also indistinguishable under the (k 4+ 1)-DLIN assumption. This
completes the proof overview for the enhanced computational function privacy of IT}BE.

Detailed Proof. We now present the detailed proof. We begin by stating the following claim:

Claim 4.3 For any probabilistic polynomial-time adversary A and for mode £ {real, rand}, the following
holds:

Pr [ExptrE"ﬁng}cBE’A(A) = 1} —Pr [ExptrEagng}CBEyA()\) = 1] ‘ < negl(})

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary such
R
that for mode «— {real,rand}, we have:

Pr {Expt?ﬁngLBE’A(A) = 1] —Pr [ExptE‘,?S’HLBE’A()\) = 1} ‘ =€ > negl(\)

We assume that the adversary A issues a single query to the real-or-random oracle. As discussed in
Section 3, such a single-shot adversary is polynomially equivalent to its multi-shot variant considered in
Definition 3.1. We construct an algorithm B that solves an instance of the (k + 1)-DLIN problem with

non-negligible advantage ¢’ = €. B is given (gl, gk, 91, ,ggff) and interacts with A as follows:
e Setup: B samples s,x1,  ,Tg1o £ Zy and a generator g & G. 1t sets pp = (g,9°, 9%, -+, g*r+2)

and provides pp to A. Observe that the distribution of pp is exactly as in the real world.

e H — Queries: B maintains a list of tuples of the form (id;, H (id;)) such that H (id;) € G. When A
issues a hash query for id; € ZD, B responds as follows:

1. B searches the list for a matching tuple of the form (id;, H (id;)). If such a tuple is found, it returns
H (id;) to A.

2. Otherwise, B samples H (id;) &£ G and adds the tuple (id;, H (id;)) to its existing list. It returns
H (id;) to A.

e Secret-Key Queries: When A issues a secret-key query for id; € ZD, B responds as follows:
1. B runs the aforementioned procedure to look up H (id;).

2. B samples y1,- -, Yrt1 £ Zy and responds with:
S, k-+1
i—1 Y5 ZT; xT Y .
skig, = | 91", ’ngﬁlvgké ", H (gjj '9ki+22> 7| - (H (idy))”
=1
where g1, -, gr+2 are part of its input instance. Once again, observe that the distribution of ski4, is

exactly as in the real world.

e Real-or-Random Query: Suppose A queries the real-or-random oracle with ID* - a circuit repre-

senting a k-source over the identity space ZD such that k = w (log \). B samples mode £ {real, rand}
and does the following:
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1. If mode = real, B samples id* £ ID*, while if mode = rand, it samples id* & ID. 1t then runs the
aforementioned procedure to look up H (id").
2. B responds with the secret-key sk~ as:

k+2
Skid* = 9(1117' o 5921527 H (gjj) ! : (H (ld ))g
j=1
where g1*, -+, gZTQQ are part of its input instance.

o Function Privacy Encryption Oracle Query: Suppose A queries the function privacy encryption
oracle with a message M. Let skjg» = (dé7 e ,d,’;+2) be the response of the real-or-random function
privacy oracle to the adversary A. On receiving a function-privacy encryption oracle query for a payload
message M, B responds as follows: it samples r £ Zy and outputs the ciphertext C* = (03, cee,Cp +3)
where:

=9 ,c = (g%)" forjel[lk+2]
and
e (d,”; iy c(";)
[ e (d50c)
e Guess: At the end of the game, A outputs a bit &’. B outputs the same bit b'.

*
Crpz = M-

It is now easy to see the following:

o When agio = Zfill a;, the secret-key skig+ is well-formed and identically distributed to the response

of the real-or-random oracle in the experiment ExptmOCIe e 4(A). Additionally, the ciphertext C* is
EFP,ITIBE, A

also well-formed and identically distributed to the response of the function privacy encryption oracle

in the experiment ExptgﬁgeH}CBE A(N).

e On the other hand, when aj2 is uniformly random in Zj, the secret-key skig- is uniformly ran-
dom, and hence identically distributed to the response of the real-or-random oracle in the exper-
iment ExptrEa,?gﬂ}CBE) 4(A). Correspondingly, the ciphertext C* is also uniformly random, and hence
identically distributed to the response of the function privacy encryption oracle in the experiment
EXptEFOS?H}CBE,A()‘)'

e In cither case, decrypting C* using skiq= correctly retrieves M. This essentially implies that they
correspond to the same underlying identity, which is either id* sampled by B when apio = Zfill aj,
or some other uniformly random identity in ZD when ay2 is uniformly random in Z.

Now, the advantage ¢’ of B in solving the (k + 1)-DLIN instance (where the probability is taken over all

possible choices of ay,--- ,aki2 £ Zy and all possible choices of g1, -+, gk42 £ G) may be quantified
as:

Sk a;
\P W""’gkwvg%%mgkg; DN 21| = Pr[B g g g gl = 1]

Pr [EXptElgg?HLBE,A()\) = 1:| —Pr {EXPtEFS7H£BE7A(A) = 1} ’
=e¢

This completes the proof of Claim 4.3. The proof of enhanced function privacy for TI:EE now follows from
the following observation:

Advrise 4(N) =

Pr {Expt?,?,';’HLBEyA()\) = 1} —Pr [ExptEQS,H}CBE,A()‘) = 1} ‘

<2

Pr [EXptEES?H}CBE,A(/\) = 1} —Pr |:EXptrEa;g7H£BE7A(>\) = 1:| ‘

= 2¢ < negl(\)
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5 Computationally Function private Inner-Product Encryption

In this section, we present a family of selectively data private zero-IPE schemes {H}CPE}kzl that are also
computationally function private under the generalized family of k-DLIN assumptions in the standard
model. Our schemes are defined over the set of attributes ¥ = Z%, (N being a product of three primes g1, g2
and ¢s3), and the class of vectorial predicates F = {f= | 7 e Z%} '}, such that for I = (Iy,--- ,1I,) € Z%;,
we have f- (I) = 1 if and only if (¥/,I) = 0 mod N. Once again, our constructions are obtained by
applying our encrypt-augment-recover approach to the zero-IPE scheme of Katz, Sahai and Waters [3].

Construction Overview. Let G be a bilinear group of order N = ¢1¢2¢3 (each of ¢1, g2 and g3 being
A-bit primes), and let G1, G2 and Gs denote the subgroups of G of order ¢, g2 and gs, respectively. Also,
let € : G x G — G be an efficiently computable non-degenerate bilinear map, where G is also a group
of order N. Note that if g is the generator for G, then the element g, = ¢g92'% is a generator for Gq, the
element g, = g9''% is a generator for Gs, and the element g3 = g?''% is a generator for G3. Furthermore,
for any elements h; € Gy, hy € Go and hsy € Gs, we have é (hy,ha) = € (ha, hs) = é(h1,hs) = 1. Also,
let GroupGen’(1*) be a probabilistic polynomial-time algorithm that takes as input a security parameter
A, and outputs the tuple (G, Gr, q1, 92,43, 91, g2, g3, €). Finally, the payload message space M is assumed
to be a small subset of Gp, namely M| < \GT\1/2
subgroups for three distinct roles:

. Our function private zero-IPE scheme uses the three

e The subgroup Gy is used to encode the vectors 7 and I in the secret-key and the ciphertexts, re-
spectively, and to compute the inner product (7, I) in the exponent of a bilinear map computation.

e The subgroup G; serves a dual purpose in our scheme. On the one hand, it has the effect of masking
the inner product computation in G, and preventing the adversary from improperly manipulating
the computation in any way to reveal information about the underlying attributes. In particular, it is
pivotal in ensuring the non-malleability of the secret-keys and ciphertexts generated by the scheme.
On the other hand, it is in the G; subgroup that we incorporate our encrypt-augment-recover method-
ology to achieve computational function privacy.

e The subgroup Ggs serves as an additional layer of masking for the other subgroups. In particular,
random elements sampled from Gg are multiplied with various components in both the secret-keys
as well as the ciphertexts to hide possible information leakages from the subgroups G; and Go.

Encrypt- Augment- Recover. We apply our encrypt-augment-recover approach to the zero-IPE scheme
of Katz, Waters and Sahai to achieve computational function privacy. At the core of our approach is the
public-key encryption algorithm PKE = (KeyGen, Enc, Dec) that is CPA-secure under the (k + 1)-DLIN
assumption (the reader is referred to Section 4 for recalling the PKE scheme). The PKE essentially oper-
ates in the subgroup G; of prime order ¢;, and its outputs are suitably masked before being incorporated
in our scheme. We modify the algorithms of the original scheme as follows:

e The modified setup algorithm runs (SK, PK) ia PKE.KeyGen. It incorporates PK in the master
secret-key of the original scheme, and modifies the public parameter to include a one way function of
SK.

e The original zero-IPE scheme of Katz, Sahai and Waters comprises of secret-keys of the form (do, {d1,, d27i}ie[1,n]).
The modified key-generation algorithm in our scheme generates a secret-key of the form sk =

(do, {d‘iﬂ;’d%’i}ie[l,n],j€[07k+2]) SUCh that ({d]l,i}jG[O,kJr?]) = PKEEnc (PK, dl,i) and ({dg,i}je[O,kJﬂ]) =
PKE.Enc (PK,dsy,;) for i € [1,n] (along with suitable masking as necessary). Observe that this nat-
urally ensures that each component of the modified secret-key is independent and identically dis-
tributed. In the proof of function privacy, we argue the indistinguishability of a well-formed secret-key
component from a uniformly random one by relating it to the hardness of solving a (k + 1)-DLIN
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instance in Gy.

e The modified encryption algorithm generates an augmented ciphertext that retains the ciphertext of
the original scheme unaltered as one of its components. The additional ciphertext components are
used by the modified decryption algorithm subsequently to remove the effect of PKE and recover the
payload message M. The additional components are also in the group Gi, and are suitably masked
using uniformly random elements from G3. The masking ensures that the data privacy guarantees of
the original scheme are not weakened.

Construction Details. We now present the construction for H}CPE in details.

e Setup: The setup algorithm samples (G, Gr, g1, 2, g3, 91, g2, g3, €) £ GroupGen’(1%). It also samples
{z1,4,22,; il Ly, Yie k+2)s 1915924 £ G1}jen k2 thi hei il G1}ien,n and {R{,ing,i &£
G3}ie[1,n],je[0,k+2]' It additionally samples h il Gy, v s Z;, and Rs il Gs, and sets:

Q=92 R3
S?,i:hli 127521—h21 Rglforze[ln]
S{,=hiy Rl S}, =h5 R}, forie[l,n),je[lk+2

It outputs the public parameter pp and the master secret-key msk as:

pp = (917937Q {51 i 2@}16[1 n],j€10, k+2]a (gl7h) )

T1,k+2 x2,j

msk = (fh, 42,43, 92, {gl,j,QQ,j}jE[l,k—i-Q]v {9173 g “ 91 k42 7927] g;?k:f; }j€[17k+1]a {hl,i, hQ,i}iE[l,n]v h7>

e KeyGen: On input the master secret-key msk and a vector v = (v1,- -+ ,vn), the key generation
. R i i R R R
algorithm samples {214, 20, <= Zj, Yic(1,nls \Y1.5 Y2, < L, Yieltnljelkt1]s Qa ¢ Gz, Rs <= Gy and

fi, f2 £ Zy,. Tt then sets do = Q4 -R5/ (h’y T, h'ilj h2 ; ) It also sets:

E
+
[y

. yj,z'
) =gi - gf" ”‘/ (gff/ gf},:g) Y| forie [1,n]

<
Il
—

ol
¥
=

&, =g g / (957/ gﬁi‘iﬁ) for i € [1,7]
J

I
-

Finally, it sets the following additional components:

Ha= g =gy el g€ k]
ket k+
dii? = ﬁ;;y“ L= gn " i L)

and outputs the secret-key sk as:

sky = (d07 {d{ﬂ'vdg7i}i€[1,n],j6[0,k+2]>

e Enc: On input the public parameter pp, an attribute I = (I, - ,I,) € Z% and a payload message

M € M, the encryption algorithm samples r, «, 8 £ Z and {RG i R%-’i s G3}ie,n],jef0,k+2)- It then
sets co = ¢7. It also sets :

A= (80)" QT RY, , 3, =(89,) -Q°% - RY, fori e [1,n]
0]1,1:<S{,) RG@ ) Cj,z

/N

s ) “RI, fori € [1,n],j € [1,k+2]
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Finally, it sets c3 = M - (¢ (g1, h)”)" and outputs the ciphertext C as:
C= (Coa{C{,iaCg,i}ie[l,n},je[o,kwpC3>

e Dec: On input a ciphertext C' = (co, {c{l, C%7i}ie[1)n]7je[07k+2]) and a secret-key sk—» = (do, {d{-’i, d%’i}ie[l,n]Je[o,Hg]),
the decryption algorithm computes:

n k+2

M' = c3-¢é(do,co) - HHB( 1,00 12) 'é(dg,iﬂcg,i)

=1 35=0

If M’ € M, the decryption algorithm outputs M’, else it outputs L.

Correctness. To see that correctness holds for our zero-IPE scheme, let C' and sk be as described in
Section 5. Then we have:

n k42

M’ = c3-¢é(dg,co) - HH€<d1ij“) é(d%,wcjz)

=1 35=0

—M~<é<ghh>7>r'é<Q4'R5/ (h th“ 5“)ng>

k+1 j
Z1,i f1vi T1,5 T1 k42 Yii SO r a-I; RO
91" 93 91,5 " 91, k42 ) ( 1,1‘) Q " LG 4

j=1

>

— =
>
Y N/
Dy
Jl\;’
Q
o
N
g

i pass T2,5 T2 k+2 y;‘ 0 \" B-1; 0
H (92,3 “92 k12 ) ) (Sz,i) Q Ry,

i=1 j=1
n k41 Y ) Y o )
A 1,i A 2,i
! H € <gl,] ’ (S{ z) ’ Ré,i) : <92] ) <Sg,i ’ R%,i)
i=1j=1

k+1

n
VD D A kt2) A [ 55Ul ckt2\T k42
He(91,15+5 ' (S +> RGI €| 9 k]+§ ’ (52,?) 'R7,Jir
Hn—lé(gfldah{ ) A( o hgz “ I ; I;
= M- (@ (g, h)) - | S e e (gbmgst) e (o a8™)
PN g et ey (L
kil [ vl J YRS '““y'l POLAEETA ,
T (e (alf ) -2 (o 32 )) e (ama ) e (e ey
i k+1 k+1 Uéb .
e (Tt (o o)™ o) e (e (g;"zf g;i:fg) ,h;,i)
n
- M- H (g . g )(thlJrﬁfz)'vi'Iz‘

=M-eé (92792)(af1+’6f2 mod q2)-(¥,1)

where «, 8 are uniformly random in Z}; and fi, f2 are uniformly random in Zj,. If (7 I) =0 mod N,
then we have M’ = M. If (¥, 1) # 0 mod N, there are two cases: if (7, 1) # 0 mod gz, then with all
but negligible probability (over random choice of a, 8, f1, f2), M’ does not lie in G (since M is a small
subset of Gr). Otherwise, we have <7,I> = 0 mod ¢, in which case M’ will always be equal to M;
however, this would reveal a non-trivial factor of IV, and so this too occurs with negligible probability.
In fact, the data privacy property of this zero-IPE construction relies on a set of assumptions in bilinear
groups that imply the hardness of finding a non-trivial factor of N.
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The Need for Two Sub-Systems. Note that our zero-IPE scheme uses two parallel sub-systems (in
the key generation and encryption algorithms) that are apparently redundant since they perform the
same functions. Indeed, our scheme inherits this feature from the original zero-IPE scheme of Katz, Sahai
and Waters [3]. Eliminating one of the sub-systems from our scheme would retain functional correctness
as well as computational function privacy, while also improving performance and efficiency. However, the
proof methodology in [3] for data privacy relies on the existence of the parallel sub-systems in an essential
way. Since our aim is to retain the same data privacy guarantees as in the original scheme, we stick to
the use of two parallel sub-systems in our augmented zero-IPE scheme.

5.1 Security of Our IPE Scheme
Data Privacy. We state the following theorem for the data privacy of II}F'E:

Theorem 5.1 Our zero-IPE scheme HiPE retains the selective data privacy guarantees of the original
zero-IPE scheme of Katz, Sahai and Waters [3].

Proof Overview. We provide a brief overview of the proof technique for our scheme, which essentially
follows the proof technique presented in [3]. We consider a probabilistic polynomial-time adversary that
tries to determine whether the challenge ciphertext is associated with either of the two attributes I
or I;. The proof proceeds via a sequence of hybrid games in which an entire attribute used in the
challenge ciphertext is changed in one step, instead of changing them component by component for
reasons mentioned in the proof of the original scheme in [3]. This is facilitated by the presence of the two
parallel sub-systems, which allows the hybrid games to use ill-formed ciphertexts that are encrypted with
respect to two different attributes I and I’ and in the two sub-systems. Let such a ciphertext be denoted
informally as (I, I’). The proof establishes indistinguishability between the well-formed ciphertexts (I, Ip)

_)
and (I, 1) via a sequence of intermediate hybrid games using the ill-formed ciphertexts (Io7 0 ), (I, I1)

and (O ,Il). The zero vector is used since it orthogonal to any other vector. The simulator in our

proof works in one sub-system independent of what happens in the other one. In each hybrid game, the
simulator embeds a subgroup-decision like assumption in the challenge ciphertext, and the structure of
the challenge determines whether a sub-system embeds a given vector or a zero vector. This is essentially
an adoption of the proof technique originally presented in [3] to our function private scheme.

An additional requirement in our proof is that the simulator should be able to embed the (k + 1)-
DLIN instances when responding to the key generation queries from the adversary. As demonstrated in
the proof of Theorem 4.1, this is straightforward to achieve: since the simulator in the data privacy game
is allowed to set up the (k + 1)-DLIN instances entirely on its own, it can easily augment the secret-key
generation process in the proof of the original scheme by appropriately embedding these instances where
necessary. Moreover, since the (k + 1)-DLIN instances are sampled uniformly at random, the resulting
distribution of secret-keys is exactly as in the real world from the point of view of the adversary. Similarly,
in the challenge phase, the simulator generates the additional components in the augmented ciphertext
uniformly at random, without altering the nature of the ciphertext distribution from the adversary’s
point of view.

Computational Function Privacy. We state the following theorem for the computational function
privacy of II:

Theorem 5.2 Our zero-IPE scheme I[PE is computationally function private under the (k + 1)-DLIN
assumption for predicate vectors sampled uniformly from (n, k)-block sources with k = w (log A).

Proof. The proof aims to show that any probabilistic poly-time adversary A cannot distinguish between
the real and random modes of operation of the function privacy oracle, provided that the oracle is
queried with circuits that sample sufficiently unpredictable distributions over the space of predicates.

24



In particular, such distributions should be (n, k)-block sources over Z%, such that each component of a
vector ¥ sampled from an adversarially chosen distribution has a min-entropy of k¥ = w (log A), and is

uncorrelated with all other components. We define a series of hybrid experiments Expt?ﬁfﬁ’}?E’ AN for

mode € {real,rand} and m € [0, n] as follows:

mode,0

° EXptFP,H}fE,A

(M) is exactly identical to Expt?@f’ﬁi’pEvA(/\).

mode

(M) for m € [1,n] is identical to EXptFP7H}CPE)A()\) except that the secret-key sk— =

mode,m

. EXptFP,H}CPE,A

(d(*J, {d*{ﬂ-, d*g’i}ie[lﬁn]’je[o’k+2]) generated by the real-or-random oracle is such that the set of com-

ponents {d*{_i, d*é,i}ie[l,m],je[o,k-m] are uniformly random and independent of the underlying vector

v,

Quite evidently, the following holds:

Pr [Exptfgfgﬁ L) = 1} —Pr [Expt;a;fﬁzm’ A = 1] ‘ -0 (1)

We now state and prove the following claim:
Claim 5.1 For any probabilistic polynomial-time adversary A, for mode € {real,rand} and for m €

[0,n — 1], the following holds:

‘Pr [Expt?ﬁjﬁ’;ﬂ%ﬂ()\) = 1} —Pr [Expt?ﬁj.e[?Ef;()\) = 1} ‘ < negl(\)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary such

that:
‘Pr [Expt?;jf[?E7A()\) = 1] —Pr [Expt:‘;’dre[?]i;()\) = 1} ‘ =€ > negl(\)

for some m € [0,n — 1]. We construct an algorithm B such that:

a KL, o S
1 J= 1 J= —
Pr|B{ (g1, y91,k+2:9115 " 5 91 k42 y | 92,150 5 92,642,921 " 592 kg2 =1|-

’
)

Pr |:B ((gl,lv e 791,]6—‘1—279?7117 e 7gik]::i2) ) <92,17 e 592,k+27g;7117 e 7g27k+2>) = 1:| ‘ =€

e . R .
where the probability is over random choice of {aj,a} <= Zj }jc1 k42, and over random choice of

{915, 92, s G1}jen,k+2 (G1 being a group of prime order ¢;). Observe that B can in turn be trivially
used to construct another algorithm that has advantage at least € in solving a given instance of the
(k + 1)-DLIN problem. B interacts with A as follows:

e Setup: B uniformly samples two other A-bit primes ¢s, g3 apart from g; which is the order of the group
G in its input instance. It also sets N = ¢1¢2q3, and then sets up the groups G, Gy and Gs of order

N, g2 and g3 respectively, along with é : G x G — Gy. It then samples {1 ;, z2 ; il Ly, Yiel kr2)s
R j i R - R R
{P1ishai <= Giliepm) and {RY;, Ry <— Gslicpin jejo,k+2)- It additionally samples h <~ Gy, v <—

Zy, and R £ G3, and sets:

Q=g2-R3
S%i = hl,i . R?,i s Sg,i = hg,i . Rg,z for ¢ e [1, TL]

S{,=hiy Ry, Sy, =hyy R}, foriel[ln]jel[lk+2]

25



Finally, it sets the public parameter pp as:

pp = (917935 Q7 {Sii? S;i}iG[l,n],jG[O,k%»Z] 5 é (917 h)’y)
and provides the same to A. Observe that pp is distributed exactly as in the real world.

e Secret-Key Queries: When A issues a secret-key query for v e Z%};, B samples {21,722, s
i j R R R R
Zy Yienn) AW Y2.0 < Ly, Yiennljekr1]s @4 <= Ga, Rs <= Gz and fy, fo <= Z;,. Tt then sets:

d0:Q4'R5/ (th“ Z2’>

k+1 j
Yi,4
42, =gi g ”‘/ 11 (gflj’ gf},;igz) " fori e [1,n)

j=1

J

+
Y24
d3; =g - g m/ H <9§2]J ;2kigz) “) forie[1,n)
Finally, it sets the following additional components:

d{i:gilj"' , d%z—gzr“forze[l n),j €1,k +1]

k+1 k+1
k+2 ik yl,i k+2 ik y2,i .
dy 11§+2 , ds 921§+2 for i € [1,n)

and outputs the secret-key sk as:

sk = (d07 {d{,i7d%,i}ieu,n],je[mkm])

e Real-or-Random Query: Suppose A queries the real-or-random oracle with an (n, k)-block source

= (V{*,---,V.¥) over Z} such that k = w (log\). B samples mode gia {real,rand} and does the
following:
1. For each i € [1,n], B samples v} £ V.* if mode = real, or v} & 7y if mode = rand. The vector
v—‘2 = (v}, -+ ,v}) is the challenge vector that B uses to respond to the query from A.

2. As in the response to the secret-key queries, B samples {z1 4,22, s Zy Yielin)» {y{z,y%Z s
X R R R

Ly, Yien\{m+1},jeLk+1]> Q4 < Ga, Rs < G?, and fl,fg < Zy,. It also samples {y’ffz,yfﬁ —

Zj Yiep,m)- Observe that B does not sample y{ ..y or y5 . for j € [1,k 4 2]. This is because B

embeds the its input pair of (k+ 1)-DLIN instances in its response by formally setting y{7m+1 =aj

and y;mﬂ = aj for each j € [1,k + 2] as described next.

3. B now sets the various components of the secret-key as follows:

dg:Q4-Rs/ (Hh )

k+
d*?’i =gt .ggl'”»/ H (gfljj .gflk”f;> ! for i € [1,n] \ {m + 1}

j=1

—

J

+
0y, = g .ggz‘vrz/ H (635 - a332) ™| forie (L] \ fm 41}
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It also sets the following additional components:

d*{l—gf;ﬂ , d*ZZ—gzj’ forie [1,n]\{m+1},je[l,k+1]

wk+2 yl i k+2 _ y2 i .
d*1; glkJr2 , dy 92k+2 for i € [1,m]
j K+l g
*k+2 PRPREETN *k+2 i—1 Y2, .
d*] 9115+2 s d'5i =Gt for i € [m + 2,n)]

Observe that the first m components of the secret-key are crafted to be uniformly random, while
the last (n — m — 1) components are well-formed.

4. Finally, B embeds its input pair of (k 4+ 1)-DLIN instances in the (m+ 1)"" component of the
secret-key by setting:

+
*0 21, m+1 f1-Vm1 ml,j
Al me1 = G "91 / | I 91,3
k42 S\ To
%0 _ Z2m41 fo vmy1 j 7
d 2m+1 — 91 D) / | I (92,J>

d*l m+l = giljj , d* %m+1 for Jje[l,k+2]

B responds to A with the secret-key skvj as:

sk— (dm {d,, d*é,i}ie[l,n],je[o,k+2])

’U

e Guess: At the end of the game, A outputs a bit b’'. B outputs the same bit v'.

It is easy to see that when agyo = Z?;l aj and aj_ , = Z;Hll a}, the secret-key sk— is identically dis-
tributed to the response of the real-or-random oracle in the experiment ExptmOde v 4(A). On the other

FP,IIPE A
hand, when either or both of aj2 and aj, 1o are uniformly random in Zj, the secret-key sk;z is identically

distributed to the response of the real-or-random oracle in the experiment Expt::";dg}?;j()\). It follows
IR S

readily that B has the same advantage € as A in solving its input instance pair. This completes the proof
of Claim 5.1.

We now make the following observation:

|Pr {Expth(ﬁlpg ) = 1} —Pr [Expt;‘gfg;kﬁla, L) = 1} ‘

35

m=0

< negl(A) (from Claim 5.1) for n = poly()\)

FP,ITIPE A FP,IIIPE 4

Pr [Exptmode’m \) = 1} —Pr {Expt"m'e’”wrl \) = 1] '
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Consequently, for mode £ {real, rand}, we have:

AdVlEIF}:PE7A ()\) =

Pr [EXptLe;!H}CPE,A()\) e 1} —Pr {Exptggﬁdnif’E’A(A) = 1}

Pr [Expt';;fnim, AN = 1} _Pr {Exptreal’" (\) = 1} ‘

< FP,ITIPE 4
+ |Pr [Expt'FaS:iH}cpE,A()\) = 1} —Pr [Expt?;fiﬁsz,A()\) = 1} ‘
+ ‘Pr [ExptrFe;:’l_'prEA()\) = 1] —Pr [Expt?;:iﬁszA()\) = 1} ‘
<2/Pr [Expt?ﬁfﬁ?g )= 1} —Pr [Expt?;’fﬁg];, L= 1} ‘ (from Equation 1)

= 2¢ < negl()\)

This completes the proof of function privacy for III'E. Note that the proof does not essentially rely on
the presence of two parallel sub-systems in our scheme. In fact, eliminating one of the subsystems gives
a simpler proof. However, the two sub-system version allows us to adopt the proof of data privacy in [3]
for our scheme.

Enhanced Computational Function Privacy. We state the following theorem for the enhanced
computational function privacy of Il:

Theorem 5.3 Our zero-IPE scheme IIIPE is computationally enhanced function private under the (k + 1)-
DLIN assumption for predicate vectors sampled uniformly from (n, k)-block sources with k = w (log ).

Proof Overview. Once again, the proof is very similar to that of Theorem 5.2; we begin by providing
a proof overview here. The proof basically shows that the simulator B can additionally simulate the
function privacy encryption oracle, and that the real and random modes of operation of the function
privacy oracle are indistinguishable even in the presence of the encryption oracle. We again consider
a series of hybrid experiments that gradually randomize the secret-key sk— generated by the real-or-
random function privacy oracle component by component. The challenge is to simulate the function
privacy encryption oracle such that its behavior does not provide the adversary with any additional
distinguisher between two consecutive experiments.

Let sk— = (d;‘;, {d*{,ivd*g,i}ie[l,n],je[o,k+2]> be the response of the real-or-random function privacy
oracle to the adversary A. On receiving a function-privacy encryption oracle query for a payload message
M, B responds as follows: it samples I* = (I}, ---, ) such that <vj,]*> = 0. It then samples r, o, 8 il

N and {Rgﬂ-, Rj“ il Gs}icp,n]jefo,k+2) and sets c¢j = g7. It also sets:

c*?,i — (S?,i)r . QO“U .Rgi , c*%i (Sgi)r . QB'U .R%i for i € [1,n)
c*{,i = (S{,z) ’ Ré,z ’ c*‘gfi = (S%,l) : R]’?,z for i € [Ln]aj € [Lk + 2]

Finally, it sets:
n k+2

¢ = M/é (d,es) - | TTTT e (a9 ed) e (a4 ¢'4)

i=15=0

and outputs the ciphertext C* = (cg, {C*JM7 C*%)i}ie[lm],je[o,kﬁ-Q],C§).
Clearly, the ciphertext C'* is dependent solely on sk;g and the input message M, and is hence in-

dependent of the vector vj . In addition, it produces M upon decryption using sk;g irrespective of B’s
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input challenge. Consequently, the distribution of C* in the two experiments is indistinguishable from A’s
point of view. This in turn implies that the adversary’s advantage in distinguishing between two hybrid
experiments is the same as B’s advantage in solving its input (k 4+ 1)-DLIN challenge pair.

Detailed Proof. We now present the detailed proof. The proof aims to show that any probabilistic poly-
time adversary A cannot distinguish between the real and random modes of operation of the function
privacy oracle, provided that the oracle is queried with circuits that sample sufficiently unpredictable
distributions over the space of predicates. In particular, such distributions should be (n, k)-block sources
over Z%, such that each component of a vector o sampled from an adversarially chosen distribution
has a min-entropy of k = w (log A), and is uncorrelated with all other components. We define a series of
hybrid experiments EXptE;S?ﬁ?PE,A(A) for mode € {real,rand} and m € [0,n] as follows:

mode,0

* Exptepp e 4

(\) is exactly identical to ExptEﬁS?HLPEA(A).

mode,m

* Exptepp mee 4

(A) for m € [1,n] is identical to ExptEﬁS?HLpE,A()\) except that the secret-key sk— =
(d;;, {d*{,w d*éyi}ie[l,n]’je[ovkﬁ}) generated by the real-or-random oracle is such that the set of com-
ponents {d*{,p d*é7i}ie[1,m]7je[07k+2] are uniformly random and independent of the underlying vector

=

v*. In addition, the ciphertext C* for a message M generated by the function privacy encryption
oracle is uniformly random and independent of v*; it, however, produces M upon decryption using
the sk;g generated by the real-or-random oracle.

Quite evidently, the following holds:

EFP,IIIPE A EFP,IIIPE A

Pr {Exptreal’” \) = 1} —Pr [Exptrand’" \) = 1} ’ =0 (2)

We now state and prove the following claim:

Claim 5.2 For any probabilistic polynomial-time adversary A, for mode € {real,rand} and for m €
[0,n — 1], the following holds:

EFP,IIIPE, 4 EFP,ITIPE, A

Pr [Exptmc’de’m (\) = 1} —Pr [Exptmc’de’mH (\) = 1] ’ < negl(\)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary such
that:

Pr [Bxptigeciie o0 = 1] = Pr [Bxptzeesit! (0 = 1] ’ = ¢ > negl(})

for some m € [0,n — 1]. We construct an algorithm B such that:

a S a a PRy
Pr|B 91,1, 791,]@-&-2;91}17"' 591’1512 y | 92,15 792,’6-’1—2792,11?..' ’g2’]g;2 ! =1| -

’ /
a A2 a Pt _ _
Pr [B((gl,la"' >gl,k+27gl711a"' 7gl’k+2) ’ (.92,17"' 592,k+27927117"' 7927k+2)) = 11| ‘ =€

e . R .
where the probability is over random choice of {aj,a;- — Zy, }ien,k+2), and over random choice of

{91.5,92,; £ G1}jen,k+2 (G1 being a group of prime order ¢;). Observe that B can in turn be trivially
used to construct another algorithm that has advantage at least € in solving a given instance of the
(k + 1)-DLIN problem. B interacts with A as follows:
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e Setup: B uniformly samples two other A-bit primes ¢s, g3 apart from g; which is the order of the group
G in its input instance. It also sets N = ¢1¢2q3, and then sets up the groups G, Gy and Gj of order

N, g2 and g3 respectively, along with the bilinear map é : G x G — Gr. It then samples {1 ;, z2 ; i
R i i R -
Zy Yienkr2)s {h1ishai < Gitiepnn) and {le,zWR%,i < Gs}icp,n),jefo,k+2- It additionally samples

h & G, vy & Ly, and Rj £ G3, and sets:

Q=g2-R3
S%i = hl,i . R(lJ,i s S%i = hgﬂ' . Rg,z for i e [1, n]

S{,=hi¥ Ry, Sy, =hyy R}, forielln]jel[lk+2]
Finally, it sets the public parameter pp as:
pp = (91,93, Q, {S{,i, Sg,i}ie[l,n],je[o,k+2]aé (91, h)’y>
and provides the same to A. Observe that pp is distributed exactly as in the real world.

e Secret-Key Queries: When A issues a secret-key query for v e LY, B samples {21, 22, i
i i R . R R R
Zy Yienn) W16 Y2.0 < Ly, Yiennljeht1]s @4 <= Go, Rs <= Gz and fy, fo <= Z;,. Tt then sets:

do = Q4 - R5/ (H hilz : héi)
=1

k+1 j

;=g - gf™ / (g1 -giis) ™ | forie [Ln)
j=1
k+1 ;

d9; =g ~g§2'”i/ (95,2/ 'gg,zkiéz)yz’i for i € [1,7]
j=1

Finally, it sets the following additional components:

&, =gl =gy foric[l,n],jelk+1]

1,5
k+1 5 k+1 7
k+2 _ Ej:l Y1, k+2 _ Ej:l Y2, .
dii” =91 hte s dyy” =955k for i € [1,n]

and outputs the secret-key sk as:

sky = (dov {d{,i7d%,i}ie[l,n],jG[O,k+2])

e Real-or-Random Query: Suppose A queries the real-or-random oracle with an (n, k)-block source
V= (V- , V) over Z%, such that k = w(log\). B samples mode %id {real,rand} and does the
following:

1. For each ¢ € [1,n], B samples v} £ V.* if mode = real, or v & Zy if mode = rand. The vector
v* = (vf,---,v}) is the challenge vector that B uses to respond to the query from .A.

2. As in the response to the secret-key queries, B samples {z1 4,22, il Ly, Yietn)s {y{z,y%Z il
X R R R ., R
qu}ie[l,n]\{m+1},j€[17k+1], Q4+ Go, Rs +— G; and f1, fo < Z,. It also samples {y’ff{yéf —
7} Yien,m)- Observe that B does not sample y{ .y or 3 .. for j € [1,k 4 2]. This is because B
embeds the its input pair of (k+ 1)-DLIN instances in its response by formally setting y{vm 11 =04

and y%7m+1 = aj for each j € [1,k + 2] as described next.
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3. B now sets the various components of the secret-key as follows:

d;Q4~R5/ (Hh >

k+1 J
Yi,i
=g f/ H(gf;’ gris) | fori e [Ln)\ {m+1}

k+1 j
Ys Vi .
=g o [ TT (os - a3i) ™ ) fori e o\ s 1)
j=1

It also sets the following additional components:

d*{q—gflj , d*éz—g;‘forze[l n)\{m+1},j € [1,k+1]
*xk+2 y i *k+2 y i .
d*y + gllkJr2 , At —922k+2 for i € [1,m]

k+1 k+1 g
xk+2 E =1 yl i xk+2 Ej:l yz,i .
i =915 s d T =9 for i € [m + 2, n]

Observe that the first m components of the secret-key are crafted to be uniformly random, while
the last (n — m — 1) components are well-formed.

4. Finally, B embeds its input pair of (k + 1)-DLIN instances in the (m -+ 1)™ component of the
secret-key by setting:

+
* _ Z1,m+1 f1vm41 a; Il,j
d1m+1—91 g " / H J

k42 )\ Ta
%0 22, m41 forvmi1 a; 7
A"y mi1 = 91 gy " / H (92,2‘)

d*{,m-‘,—l = gijj ) d 2m+1 fOI' j € [1 k -+ 2}

B responds to A with the secret-key sk;z as:

v

sk— = (dSa {d*{,i7 d*é,i}i€[1,n],j€[o,k+2})

Function Privacy Encryption Oracle Query: Let sk—g = (do, {d*1 i d™y z}ZG[l nl,j€0, quz]) be the
response of the real-or-random function privacy oracle to the adversary A. Suppose A queries the
function privacy encryption oracle with a message M. B responds as follows: it samples I* = (I7, -+, I)
such that <v—‘z,l*> = 0. It then samples 7, a, 3 & Z3 and {RG Z,Rg’i s G3}icp,n),jefo,k+2] and sets

¢y = g7. It also sets:

C*(l),i - ( ) QL 61 7 C*g,i (Sg,i)r QP .R%i for i € [1,n]
c*{,i = (S{z) -R%J , C*%z (ng) R%7 forie[l,n],j€[l,k+2]

Finally, it sets:

n k+2 _ ) ) _
* A k% A *J * ] ~ *J *J
C3 = M/e(do,co)~ I | I | e (d 1,i0 € 171‘) € (d 2,ir € 2,i)



and outputs the ciphertext C* = (co, {c 1,i0C"2 z}le[l n],GE[0,k+2]5 03) Clearly, for m = 0, the ciphertext

C* is well-formed, while for m € [1,n] independent of v—*z and is crafted by B solely based on skv—; to
produce the correct output M upon decryption.

e Guess: At the end of the game, A outputs a bit &’. B outputs the same bit b'.

It is easy to see that when agyo = Zfill aj and ap_ o, = Zerll a;, the secret-key sk— is identically dis-
tributed to the response of the real-or-random oracle in the experiment ExptTedem (A). On the other

PE
hand, when either or both of a2 and aj_, , are uniformly random in Z;, the ;gcpr’gck—ke’; sk? is identically
distributed to the response of the real-or-random oracle in the experiment Exptg':s’er’gpzlv A(/\). In either
case, the ciphertext C'* is dependent solely on sk;z and the input message M, and is hence indepen-
dent of the vector 17*? . In addition, it produces M upon decryption using sk—; irrespective of whether

Api2 = Zfill aj and aj , = Z;Hll aj. Consequently, the distribution of C* in the two experiments is

indistinguishable from A’s point of view. It follows readily that B has the same advantage ¢ as A in
solving its input instance pair. This completes the proof of Claim 5.2.

We now make the following observation:
d de,
[Pr [ExptZegre o(\) = 1] = Pr [Exptieesiios (V) =1] ’
n—1
<2

< negl(/\) (from Claim 5.2)for n = poly(\)

EFP,IIIPE, 4 EFP,ITIPE A

Pr {Exp’cmode’m N\ = 1} —Pr {Exptmc}de’m"'1 N\ = 1} ‘

Consequently, for mode £ {real, rand}, we have:

AdVHIPE A(A)

[Expt;FP s 4 () = 1} [ExptEFnP s 4 (M) = 1}

< |Pr {ExptrEel?ll;,)H}cpE)A()\) = 1} —Pr {ExptrEelfll;jlnipE’A()\) = 1}
+ |Pr {Expt?ﬁs e .A()\) = 1:| —Pr {EXPtE;S’IT}IIPE A(A) = ]-:| ‘
? 4 Etd ™) El
real,n o rand,n _
o |Pr [Bxptgip e () = 1] = Pr [Exptrs e, () = 1] ‘
< 2|Pr ExptEFP TP AN = } Pr [ExptE:S?%PEA()\) = 1] ’ (from Equation 2)

= 2¢ < negl()\)

This completes the proof of function privacy for IIIPE. Note that the proof does not essentially rely on
the presence of two parallel sub-systems in our scheme. In fact, eliminating one of the subsystems gives
a simpler proof. However, the two sub-system version allows us to adopt the proof of data privacy in [3]
for our scheme.

6 Extensions and Open Problems
Our work solves the open problem of constructing computationally function private public-key predicate

encryption schemes, supporting a rich class of predicates without relying on strong assumptions such as
indistinguishability obfuscation. Our approach, denoted as encrypt-augment-recover, offers a methodology
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for converting an existing public-key predicate encryption scheme into a computationally function private
one, without compromising the data privacy guarantees of the original scheme. Our approach yields the
first fully data private and computationally function private constructions for IBE and public-key IPE,
and, in general, for searchable encryption schemes supporting a wide range of predicates. In this section,
we discuss some interesting extensions and open problems that arise from our work.

Generalization of Our Approach. In this work, we have demonstrated concrete constructions for
function private IBE and IPE in the public-key setting based on existing constructions in the literature.
An interesting open problem is to explore whether our approach can be generalized so as to be applicable
to any public-key predicate encryption scheme, particularly those based on lattices [2], without compro-
mising on their data privacy guarantees. It would also be interesting to identify the properties (if any) of
existing predicate encryption schemes that make them amenable to modification using our approach.

Hidden Vector Encryption and Polynomial Evaluation. Boneh and Waters [1] proposed hid-
den vector encryption (HVE), a pre-cursor to IPE, that supports search using conjunctive, range and
comparison-based query predicates. In HVE, attributes correspond to vectors over an alphabet X, while
secret-keys correspond to predicate vectors over the augmented alphabet ¥, = YU{*} containing the wild
card character . Decryption succeeds if the attribute matches the predicate vector in every coordinate
that is not . We note that although IPE can be used to realize HVE [3], our computational function
privacy definitions do not naturally extend to HVE. In particular, the presence of the wild card character
* in the predicate vectors of HVE trivially violates our min-entropy requirements, making it difficult to
hide their presence in the secret-key.

A weaker notion of function privacy for HVE, that our framework can realistically incorporate, is
to ask that the secret-key reveals nothing more about the the predicate vector than the locations of
the wild card character x. We believe that HVE schemes satisfying this weaker notion of computational
function privacy can be achieved using our encrypt-augment-recover approach. It is still an open problem,
however, to formalize a stronger function privacy definition for HVE, and to realize function private
constructions satisfying this definition. This would also provide insight into the limits of function privacy
for searchable encryption schemes supporting comparison and range queries. Finally, it is also open
to formalize security definitions and realize constructions for function private encryption schemes that
support arbitrary polynomial evaluation predicates [3].
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