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Abstract. We present the first public-key predicate encryption schemes that are provably function
private under standard computational assumptions. Existing function private predicate encryption
schemes in the public-key setting are either secure only in the generic group model, or require
strong assumptions such as indistinguishability obfuscation. Our framework for function privacy
is indistinguishability-based in the sense that it requires a secret-key corresponding to a predicate
sampled from a distribution with min-entropy super logarithmic in the security parameter λ, to
be computationally indistinguishable from another secret-key corresponding to a uniformly and
independently sampled predicate. Within this framework, we develop a novel approach, denoted as
encrypt-augment-recover, that takes an existing predicate encryption scheme and transforms it into
a computationally function private one while retaining its original data privacy guarantees. Our
approach leads to public-key constructions for identity-based encryption (IBE) and inner-product
encryption (IPE) that are fully data private and computationally function private under a family
of weaker variants of the DLIN assumption. Our constructions are secure in the standard model,
and avoid the need for strong assumptions such as indistinguishability obfuscation.
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1 Introduction

Predicate encryption schemes [1–3] in the public-key setting allow a single public-key to be associated
with multiple secret-keys, where each secret-key corresponds to a boolean predicate f : Σ −→ {0, 1} over
a pre-defined set of attributes Σ. A plaintext message in a predicate encryption system is an attribute-
payload message pair (I,M) ∈ Σ × M, with M being the payload message space. A secret-key skf
associated with a predicate f successfully decrypts a ciphertext C corresponding to a plaintext (I,M)
and recovers the payload message M if and only if f(I) = 1. On the other hand, if f(I) = 0, attempting
to decrypt C using skf returns the failure symbol ⊥. A predicate encryption is said to be attribute hiding
if the ciphertext C leaks no information about the underlying plaintext (I,M) to an adversary possessing
benign secret-keys corresponding to predicates that do not trivially identify the attribute I.

Identity-Based Encryption. Identity-based encryption (IBE) [4–6] is the simplest sub-class of public-
key predicate encryption. IBE supports a set of equality predicates of the form fid : Σ −→ {0, 1} defined
as fid(x) = 1 if and only if x = id. The attribute space in this case is a set of identities ID, and each
identity id ∈ ID is associated with its own secret-key skid.

Inner-Product Encryption. Inner-product encryption (IPE) [2, 3, 7, 8] is the most expressive sub-class
of predicate encryption, supporting a set of predicates f−→v : Σ −→ {0, 1} over a vector space of attributes
Σ = Fnq (q being a λ-bit prime). Of particular interest is a specific form of IPE called zero-IPE [3] where
for −→v ,−→x ∈ Σ, we have f−→v (−→x ) = 1 if and only if 〈−→v ,−→x 〉 = 0, where 〈−→v ,−→x 〉 denotes the inner-product of
two vectors −→v and −→x . IPE is powerful enough to encompass IBE and many other predicate encryption
systems [3].



Searchable Encryption and Function Privacy. Predicate encryption provides a generic framework
for searchable encryption supporting a wide range of query predicates including conjunctive, disjunctive,
range and subset queries [9, 1–3]. For instance, a predicate encryption system can be used to realize
a mail gateway that follows some special instructions to route encrypted mails based on their header
information (e.g. if the mail is from the boss and needs to be treated as urgent). The mail gateway is
given the secret-key corresponding to the predicate is-urgent, the mail header serves as the attribute, while
the routing instructions can be used as the payload message. Another application could be a payment
gateway that flags encrypted payments if they correspond to amounts beyond some pre-defined threshold
X. The payment gateway is given the secret-key corresponding to the predicate greater-than-X, the
payment amount itself serves as the attribute, while the flag signal is encoded as the payload message.
The attribute hiding property of the predicate encryption scheme ensures that neither gateway learns
any information about the plaintext data from the entire operation.

A natural question now arises: should the gateways in the aforementioned examples be able to learn
the underlying predicate from the secret-keys given to them? The answer in most scenarios is no - the
secret-key skf should ideally reveal nothing about the predicate f beyond the absolute minimum. This
notion of predicate hiding security is commonly referred to as function privacy, and predicate encryption
scheme satisfying this notion of security are described as function private.

1.1 Function Private Predicate Encryption in the Public-Key Setting

As pointed out by Boneh, Raghunathan and Segev in [10, 11], formalizing a realistic notion of function
privacy in the context of public-key predicate encryption is, in general, not straightforward. Consider, for
example, an adversary against an IBE scheme who is given a secret-key skid corresponding to an identity
id and has access to an encryption oracle. As long as the adversary has some apriori information that the
identity id belongs to a small set S,(e.g. id is sampled distribution with min-entropy at most polynomial
in the security parameter λ), it can fully recover id from skid : it can simply resort to encrypting a
random message M under each identity in S, and decrypting using skid to check for a correct recovery.
Consequently, [10, 11] consider a framework for function privacy under the minimal assumption that any
predicate is sampled from a distribution with min-entropy at least super logarithmic in the security
parameter λ. In this paper, we use the same framework for proving the computational function privacy
of our proposed predicate encryption schemes.

Statistical Function Privacy. Boneh, Raghunathan and Segev introduced a a statistical notion of
function privacy for equality predicates in [10], and subsequently generalized the same for subspace-
membership predicates in [11]. Their approach may be briefly summarized as follows: instead of directly
generating a secret-key skf for a predicate f , a strong randomness extractor Ext is first applied to f using
a randomly chosen seed s, followed by the generation of the secret key skfs , where fs = Ext(f, s). The final
secret-key for the predicate f is the pair (s, skfs). Any such secret-key is thus statistically indistinguishable
from random, as long the underlying predicates are sampled from sufficiently unpredictable distributions.
In this paper, we focus on the alternative notion of computational function privacy, where the indis-
tinguishability of the secret-keys from random can be based on standard computational assumptions,
subject to the same constraint that the underlying predicates are sampled from sufficiently unpredictable
distributions. Concretely realizing this computational notion of function privacy for public-key predicate
encryption was left as an open problem in [11].

Function Privacy from Quasi-Strong Indistinguishability Obfuscation. A generic approach to
achieving function privacy, proposed by Iovino et al. in [12], is to a use a quasi-strong indistinguishability
obfuscation (Quasi-siO) scheme Q-siO over the class of predicates F in the key-generation step of the pred-
icate encryption scheme. In particular, given a predicate encryption system Π = (Setup,KeyGen,Enc,Dec),
one can construct a function-private Π′ =

(
Setup,KeyGen′,Enc,Dec

)
, such that:

KeyGen′ (msk, f) = KeyGen (msk,Q-siO(f))
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While the above approach is generic and applies to a wide class of predicates (more specifically, to the
class of all NC1) circuits), it relies on the use of a Quasi-siO, the existence of which cannot be provably
based on any standard computational assumption to the best of our knowledge.

Function Privacy in the Generic Group Model. Agrawal et al. have recently proposed a public-
key construction for IPE in [13] that achieves a wishful notion of combined data and function privacy
in a simulation-based security framework. Their construction is based on the use of bilinear pairings
over prime order groups, and is secure in the generic group model. Indeed, known impossibilities [14]
rule out the achievability of such a strong notion of security in the standard model. Interestingly, even
while restricting to an indistinguishability-based security framework in the public-key setting, it has
been an open question as to whether one can concretely achieve function private predicate encryption
constructions in the standard model from known computational assumptions.

1.2 Our Contributions

In this paper, we present the first public-key encryption schemes that support a rich class of predi-
cates and are provably function private under standard computational assumptions. Our framework for
function privacy is indistinguishability-based in the sense that it requires a secret-key corresponding
to a predicate sampled from a distribution with min-entropy super logarithmic in the security param-
eter λ, to be computationally indistinguishable from another secret-key corresponding to a uniformly
and independently sampled predicate. Within this framework, we develop a novel approach, denoted as
encrypt-augment-recover, that takes an existing predicate encryption scheme and transforms it into a
computationally function private one while retaining its original data privacy guarantees. Our approach
leads to the following constructions:

• In the standard model, we present a family of computationally function private identity-based en-
cryption (IBE) schemes from bilinear pairings based on the scheme of Boneh, Boyen and Goh [4].
Our schemes retain the selective data privacy of the original scheme, and are computationally func-
tion private under progressively weaker variants of the well-known DLIN assumption. The detailed
constructions of these schemes, along with the proofs of data and function privacy, are presented in
Section 4.

• We then extend our approach to achieve a family of computationally function private inner-product
encryption (IPE) schemes based on the seminal scheme of Katz, Sahai and Waters [3]. Once again,
our schemes retain the selectively attribute hiding property of the underlying scheme, and are compu-
tationally function private under progressively weaker variants of the DLIN assumption. The detailed
constructions of these schemes, along with the proofs of data and function privacy, are presented in
Section 5.

Additionally, both families of constructions avoid the need for strong assumptions such as indistinguisha-
bility obfuscation.

1.3 Overview of Our Approach: Encrypt-Augment-Recover

Our approach for achieving computationally function private predicate encryption schemes consists
of three main steps - encrypt, augment and recover. We briefly describe the main ideas underlying
each step, and exemplify them subsequently using a simple IBE scheme. Given a public-key predi-
cate encryption scheme Π = (Setup,KeyGen,Enc,Dec), and a CPA-secure public-key encryption al-
gorithm PKE = (KeyGen,Enc,Dec), we create a function private predicate encryption scheme Π′ =(
Setup′,KeyGen′,Enc′,Dec′

)
as follows:

• The modified setup algorithm Setup′ invokes PKE.KeyGen and obtains the key pair (PK,SK).
It also invokes Π.Setup and obtains the public parameters pp, along with master secret-key msk.
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It outputs the modified public parameter pp′ = (pp, g (SK)) and the modified master secret-key
msk′ = (msk, PK), where g is a suitably chosen one way function.

• On input a predicate f and the augmented master secret-key msk′ = (msk, PK), the modified key-
generation algorithm KeyGen′ invokes Π.KeyGen to obtain the original secret-key skf . It then outputs
an encrypted secret-key sk′f as PKE.Enc (PK, skf ).

This step allows us to base our function privacy arguments on the same computational assumption
that guarantees the CPA security of the PKE scheme. More specifically, it ensures adaptive function
privacy - the inherently random nature of the augmented key generation algorithm ensures that the
function privacy guarantees hold even when the adversary is allowed to specify predicate distribu-
tions in an adaptive manner after seeing the public parameters of the scheme. We assume that any
adversarially-chosen distribution of predicates is sufficiently unpredictable, so as to rule out a trivial
breach of function privacy as mentioned earlier. This minimal assumption is thus sufficient to trans-
form the original predicate encryption scheme into a computationally function private one.

• An even greater challenge is to synchronize the encryption and decryption algorithms in the mod-
ified scheme. This is achieved as follows. On input the public parameter pp′ = (pp, g (SK)), and a
message M corresponding to an attribute I, the modified encryption algorithm Enc′ first obtains
C = Π.Enc (pp, I,M). It then outputs the augmented ciphertext C ′ = (C, σ (C, SK)), where σ is a
function computable using the knowledge of C and g (SK).

• Finally, Dec′ cleverly uses the additional ciphertext component σ (g (SK)) in C ′ to remove the effect
of PKE from the encrypted secret-key sk′f , and recover the message M . Note that removal here is

not same as decryption, since Dec′ has access to only a one-way function of SK and not SK itself.
It is, in fact, impossible to provide SK to Dec′ in the clear without trivially compromising function
privacy. The challenge is thus to ensure that Dec′ can recover M without a complete decryption of
sk′f .

An Example of Our Approach. We present an example of a computationally function private IBE
scheme in the standard model achieved using our encrypt-augment-decrypt approach. A generalization
of this scheme is presented in greater detail in Section 4, along with proofs for data and function pri-
vacy. Consider a public-key encryption scheme PKE with the key generation, encryption and decryption
algorithms as described below:

• KeyGen: The key-generation algorithm samples x1, x2, x3
R←− Z∗q , where q is a λ-bit prime, and

g1, g2, g3
R←− G, where G is a cyclic group of prime order q. It outputs the secret-key SK and the

public key PK as:

SK = (x1, x2, x3) , PK = (g1, g2, g3, (g
x1
1 · g

x3
3 ) , (gx2

2 · g
x3
3 ))

• Enc: The ciphertext C corresponding to a message M ∈ G is a tuple of the form:

C =
(
gy11 , gy22 , gy1+y2

3 , (gx1
1 · g

x3
3 )

y1 · (gx2
2 · g

x3
3 )

y2 ·M
)

where y1, y2
R←− Z∗q .

• Dec: The decryption algorithm, on input the ciphertext C = (c0, c1, c2, c3) and the secret-key
(x1, x2, x3), recovers the message M as:

M = c3

/
(cx1

0 · c
x2
1 · c

x3
2 )
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The above scheme is a simple variant of the Cramer-Shoup cryptosystem [15], and is CPA-secure under
the DLIN assumption. We now present a computationally function private IBE scheme that is obtained
by applying our encrypt-augment-recover approach to the anonymous IBE scheme proposed by Boneh,
Boyen and Goh [4], which is selectively data private under the decisional bilinear Diffie-Hellman inversion
(BDHI) assumption. For ease of understanding, we focus on the non-hierarchical version of their scheme;
an extension of our techniques to the hierarchical version follows similarly.

• Setup: The setup algorithm in the Boneh-Boyen-Goh scheme samples s1, s2, s3
R←− Z∗q , where q is a

λ-bit prime. The public parameters are (g, gs1 , gs2 , gs3 , h), where h is a randomly sampled generator
of a bilinear group G of prime order q, while the master secret-key is gs1·s2 . Our scheme additionally

samples x1, x2, x3
R←− Z∗q and g1, g2, g3

R←− G. The augmented public parameter pp and master secret-
key msk for our scheme are as follows:

pp =
(
g, gs1 , gs2 , gs3 , h, gx1 , gx2 , gx3

)
msk =

(
gs1·s2 , g1, g2, g3, (g

x1
1 · g

x3
3 ) , (gx2

2 · g
x3
3 )

)
Observe that the additional components in pp are one-way functions of x1, x2, x3 - the secret-key SK
of the PKE scheme. Additionally, the modified msk contains the public-key PK of the PKE scheme.

• KeyGen: The key-generation algorithm in the scheme of Boneh, Boyen and Goh computes a secret-

key for an identity id as skid =
(
gy, gs1·s2 ·

(
hH(id).g3

)y)
, where y

R←− Z∗q and H is a collision resistant

hash function mapping identities onto the group G. In our scheme, we augment the key generation

process as follows. We additionally sample y1, y2
R←− Z∗q , and output:

skid =

(
gy, gy11 , gy22 , gy1+y2

3 , (gx1
1 · g

x3
3 )

y1 · (gx2
2 · g

x3
3 )

y2 · gs1·s2 ·
(
hH(id).g3

)y)
Observe that skid = PKE.Enc

(
PK, gs1·s2 ·

(
hH(id).g3

)y)
. This is an exemplification of the encrypt

step of our approach described above.

• Enc: An encryption of a message M for an identity id in the scheme of Boneh, Boyen and Goh is a

tuple of the form
(
gr,
(
hH(id).g3

)r
,M · e (gs1 , gs2)

r
)

, where r
R←− Z∗q . In our scheme, we augment the

encryption process to produce the ciphertext:

C =
(
gr, (gx1)

r
, (gx2)

r
, (gx3)

r
,
(
hH(id).g3

)r
,M · e (gs1 , gs2)

r
)

Note that the augmented ciphertext in our scheme retains unaltered the ciphertext of the original
scheme.

• Dec: Our decryption algorithm, on input of a ciphertext C = (c0, c1, c2, c3, c4, c5), and a secret-key
skid = (d0, d1, d2, d3, d4), recovers the encrypted message M as:

M = c5 · (c4, d0) ·
(
e (d1, c1) · e (d2, c2) · e (d3, c3)

e (d4, c0)

)
Observe that at the core of the above computation is the original decryption procedure in the scheme
of Boneh, Boyen and Goh, with the additional components in the ciphertext and the secret-key
canceling out each other to recover the effect of the PKE(the reader is referred to Section 4 for the
detailed proof of correctness). It is important to note that this removal is different from directly
decrypting skid, and in particular, does not require the knowledge of the secret-key of the PKE.
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1.4 Other Related Work

Function Privacy in the Private-Key Setting. Computational function privacy for predicate en-
cryption has been widely studied in the private-key setting [16, 17]. The inherent difficulty of achieving
function privacy in the public-key setting does not apply to the private-key setting, where the encryp-
tor and decryptor have a shared secret-key. In this setting, an adversary with access to a searching key
cannot test the same on ciphertexts of its choice since it does not have access to the secret-key. Function
privacy in the private-key setting is thus more natural to achieve. A general solution in this direction
was proposed by Goldreich and Ostrovsky [18] in their construction of an oblivious RAM. More efficient
constructions have been subsequently proposed for equality testing [19–23] and, more recently, for inner
product testing [16, 24, 25]. In particular, the private-key IPE scheme proposed by Agrawal et al. in [26]
achieves the strongest possible notion of combined data and function privacy from the DLIN assumption
in a simulation based framework.

1.5 Paper Organization

The remainder of this paper is organized as follows. Section 2 presents background material on predicate
encryption, and introduces several computational assumptions in bilinear groups. In Section 3, we for-
mally define our framework for the computational function privacy of public-key predicate encryption.
In Section 4, we present a family of adaptively data private and computationally function private IBE
schemes in the random-oracle model. In Section 5, we present a family of selectively attribute hiding and
computationally function private IPE schemes in the standard model. Finally, Section 7 concludes the
paper and enumerates several open problems.

1.6 Notations Used

We write x
R←− χ to represent that an element x is sampled uniformly at random from a set X . The output

a of a deterministic algorithm A is denoted by x ← A and the output a′ of a randomized algorithm A′

is denoted by x′
R←− A′. We refer to λ ∈ N as the security parameter, and denote by exp(λ), poly(λ) and

negl(λ) any generic (unspecified) exponential function, polynomial function and negligible function in λ
respectively. Note that a function f : N→ N is said to be negligible in λ if for every positive polynomial
p, f(λ) < 1/p(λ) when λ is sufficiently large. Finally, for a, b ∈ Z such that a ≤ b, we denote by [a, b] the
set of integers lying between a and b (both inclusive).

The min-entropy of a random variable Y is denoted as H∞(Y ) = − log (maxyPr[Y = y]); a random
variable Y is said to be a k-source if H∞(Y ) ≥ k. A (T, k)-block-source is a random variable Y =
(Y1, · · · , YT ) where for each i ∈ [1, T ] and y1, · · · , yi−1, it holds that:

H∞(Yi|Y1 = y1, · · · , Yi−1 = yi−1) ≥ k

2 Preliminaries

2.1 Public-key Predicate Encryption

A public-key predicate encryption scheme for a class of predicates F over an attribute space Σ and
a payload-message space M is a quadruple Π = (Setup,KeyGen,Enc,Dec) of probabilistic polynomial
time algorithms. The Setup algorithm takes as input the security parameter λ, and generates the public
parameter pp and the master secret-key msk for the system. The key-generation algorithm, KeyGen takes
as input the master secret-key msk and a predicate f ∈ F , and generates a secret-key skf corresponding to
f . The Enc algorithm takes as input the public parameter pp, an attribute I ∈ Σ and a payload-message
M ∈ M, and outputs the ciphertext C = Enc (pp, I,M). The Dec algorithm takes as input the public
parameter pp, a ciphertext C and a secret-key skf , and outputs either a payload-message M ∈M or the
symbol ⊥.
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Functional Correctness. A predicate encryption scheme Π = (Setup,KeyGen,Enc,Dec) is said to be
functionally correct if for any security parameter λ, for any predicate f ∈ F , for any attribute I ∈ Σ and
any payload-message M ∈M, the following hold with probability at least 1− negl(λ):

1. If f(I) = 1, we have Dec (pp,Enc (pp, I,M) ,KeyGen (msk, f)) = M .
2. If f(I) = 0, we have Dec (pp,Enc (pp, I,M) ,KeyGen (msk, f)) = ⊥.

where the probability is taken over the internal randomness of the algorithms Setup,KeyGen, Enc, and
Dec.

Data Privacy. We briefly recall the notion of indistinguishability-based data privacy for a predicate
encryption scheme under an adaptive chosen-attribute chosen-payload-message attack. Data privacy of
a functional encryption scheme guarantees that any probabilistic polynomial-time adversary can gain no
information about either the attribute I nor the payload-message M associated with a ciphertext C from
the knowledge of the public parameters pp. We denote this notion of security by DP throughout the rest
of the paper.

Definition 2.1 (Adaptively Data Private Predicate Encryption). A predicate encryption scheme Π =
(Setup,KeyGen,Enc,Dec) is said to be adaptively data private if for any probabilistic polynomial-time
adversary A, the following holds:

AdvDP
Π,A(λ)

def
=

∣∣∣∣Pr
[
Expt

(0)
DP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
DP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and each b ∈ {0, 1}, the experiment Expt
(b)
DP,Π,A(λ) is defined as follows:

1. (pp,msk)
R←− Setup

(
1λ
)
.

2. ((I∗0 ,M
∗
0 ) , (I∗1 ,M

∗
1 ) , state)

R←− AKeyGen(msk,·) (state), where I∗0 , I
∗
1 ∈ Σ and M∗0 ,M

∗
1 ∈ M, subject

to the restriction that for each predicate fi with whichA queries KeyGen (msk, ·), we have fi (I∗0 ) =
fi (I∗1 ).

3. C∗
R←− Enc (pp, I∗b ,M

∗
b ).

4. b′
R←− AKeyGen(msk,·) (C∗, state), once again subject to the restriction that for each predicate fi with

which A queries KeyGen (msk, ·), we have fi (I∗0 ) = fi (I∗1 ).
5. Output b′.

We also consider a selective variant of the above security notion that requires the adversary to commit to
the challenge pair of attributes before seeing the public parameters of the scheme. We denote this notion
of security by sDP throughout the rest of the paper.

Definition 2.2 (Selectively Data Private Predicate Encryption). A predicate encryption scheme Π =
(Setup,KeyGen,Enc,Dec) is said to be selectively data private if for any probabilistic polynomial-time
adversary A, the following holds:

AdvsDP
Π,A(λ)

def
=

∣∣∣∣Pr
[
Expt

(0)
sDP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
sDP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and each b ∈ {0, 1}, the experiment Expt
(b)
sDP,Π,A(λ) is defined as follows:

1. (I∗0 , I
∗
1 , state)

R←− A
(
1λ
)
, where I∗0 , I

∗
1 ∈ Σ.

2. (pp,msk)
R←− Setup

(
1λ
)
.

3. (M∗0 ,M
∗
1 , state)

R←− AKeyGen(msk,·) (state), where M∗0 ,M
∗
1 ∈ M, subject to the restriction that for

each predicate fi with which A queries KeyGen (msk, ·), we have fi (I∗0 ) = fi (I∗1 ).

4. C∗
R←− Enc (pp, I∗b ,M

∗
b ).

5. b′
R←− AKeyGen(msk,·) (C∗, state), once again subject to the restriction that for each predicate fi with

which A queries KeyGen (msk, ·), we have fi (I∗0 ) = fi (I∗1 ).
6. Output b′.
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Identity-Based Encryption. An identity-based encryption scheme ΠIBE over an identity space ID and
a message spaceM is a public-key predicate encryption scheme supporting the set of equality predicates
fid : ID −→ {0, 1} defined as fid(id

′) = 1 if and only if id′ = id. The secret-key associated with an identity
id ∈ ID is denoted as skid. The notions of anonymity and message indistinguishability security popularly
associated with IBE are equivalent to the notion of adaptive data privacy as described above.

Inner-Product Encryption. An inner-product encryption scheme ΠIPE over an attribute space Σ = Fnq
(q being a λ-bit prime) and a payload message space M is a public-key predicate encryption scheme
supporting the set of vector predicates f−→v : Σ −→ {0, 1}. The secret-key associated with a vector −→v ∈ Σ
is denoted as sk−→v . Zero-IPE is a specific sub-class of IPE where for −→v ,−→x ∈ Σ, we have f−→v (−→x ) = 1 if
and only if 〈−→v ,−→x 〉 = 0.

2.2 Computational Assumptions in Bilinear Groups

The weak decisional bilinear Diffie-Hellman Inversion (DBDHI) assumption. Let GroupGen(1λ)
be a probabilistic polynomial-time algorithm that takes as input a security parameter λ, and outputs
the tuple (G,GT , q, g, e), where G and GT are groups of order q (q being a λ-bit prime), g is a generator
for G and e : G × G −→ GT is an efficiently computable non-degenerate bilinear map. The group G is
popularly referred to as a bilinear group [27]. The weak decisional bilinear Diffie-Hellman assumption,
introduced by Boneh, Boyen and Goh in [4], is that the distribution ensembles:{(

g, h, ga, e(g, h)1/a
)}

a
R←−Z∗q

and {(g, h, ga, Z)}
a

R←−Z∗q ,Z
R←−GT

are computationally indistinguishable, where (G,GT , q, g, e)← GroupGen(1λ).

The decisional linear assumption (DLIN)[28]. Let G be a group of prime order q and let g1, g2, g3

be arbitrary generators for G. The decisional linear assumption is that the distribution ensembles:{(
g1, g2, g3, g

a1
1 , ga22 , ga1+a2

3

)}
a1,a2

R←−Z∗q
and {(g1, g2, g3, g

a1
1 , ga22 , ga33 )}

a1,a2,a3
R←−Z∗q

are computationally indistinguishable, where g1, g2, g3
R←− G.

The DLIN assumption was introduced by Boneh, Boyen and Shacham [28], and was intended to take
the place of the more standard decisional Diffie Hellman (DDH) assumption in groups where the DDH
assumption does not hold. In particular, for bilinear groups as defined above, the DLIN assumption holds
even if the DDH assumption does not, at least in the generic group model.

The generalized decisional k-linear assumption (k-DLIN) [29]. Let G be a group of prime order
q and let g1, · · · , gk, gk+1 be arbitrary generators for G. The generalized decisional k-linear assumption
is that the distribution ensembles:{(

g1, · · · , gk, gk+1, g
a1
1 , · · · , gakk , g

∑k
j=1 aj

k+1

)}
a1,··· ,ak

R←−Z∗q
and{(

g1, · · · , gk, gk+1, g
a1
1 , · · · , gakk , g

ak+1

k+1

)}
a1,··· ,ak,ak+1

R←−Z∗q

are computationally indistinguishable, where g1, · · · , gk+1
R←− G.

Quite evidently, this assumption is a generalization of the DLIN assumption stated above. Note that the
k-DLIN assumption implies the (k+ 1)-DLIN assumption for all k ≥ 1, but the reverse is not necessarily
true, implying that the k-DLIN assumption family is a family of progressively weaker assumptions [29].
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3 Computational Function Privacy of Public-Key Predicate Encryption

We present our definitions for the computational function privacy of predicate encryption in the public-
key setting. We consider adversaries that have access to the public parameters of the scheme, as well as a
secret-key generation oracle. The adversary can also adaptively interact with a real-or-random function-
privacy oracle RoRFP. This oracle takes as input any adversarially-chosen distribution over the class of
predicates F , and outputs a secret-key either for a predicate sampled from the given distribution, or for
an independently and uniformly sampled predicate. At the end of the interaction, the adversary should
be able to distinguish between these real and random modes of operation of RoRFP with only negligible
probability.

Formal Definitions. We now formally present the computational function privacy definitions for public-
key predicate encryption.

Definition 3.1 (Real-or-Random Function Privacy Oracle). The real-or-random function privacy oracle
RoRFP takes as input triplets of the form (mode,msk,F), where mode ∈ {real, rand}, msk is the master
secret-key, and F is a circuit representing a distribution over the class of predicates F . If mode = real, the

oracle samples f
R←− F, while if mode = rand, it samples f

R←− F . It then computes skf
R←− KeyGen (msk, f)

and responds with skf .

Definition 3.2 (Computational Function Privacy). A predicate encryption scheme Π = (Setup,KeyGen,Enc,Dec)
is said to be computationally function private if for any probabilistic polynomial-time adversary A, the
following holds:

AdvFP
Π,A(λ)

def
=

∣∣∣∣Pr
[
ExptrealFP,Π,A(λ) = 1

]
− Pr

[
ExptrandFP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and each mode ∈ {real, rand}, the experiment Exptmode
FP,Π,A(λ) is defined as follows:

1. (pp,msk)
R←− Setup

(
1λ
)
.

2. b
R←− ARoRFP(mode,msk,·),KeyGen(msk,·) (1λ, pp), subject to the restriction that each Fi with which A

queries RoRFP (mode,msk, ·) represents a distribution with min-entropy k = ω (log λ).
3. Output b.

Note that our definitions are generic, and may be suitably adopted for IBE, IPE and other classes of
predicate encryption.

Min-Entropy Requirements. In our definitions for computational function privacy, the adversary is
allowed to adaptively issue a polynomial number of queries to the RoRFP oracle, as long as the queries
correspond to distributions with min-entropy k = ω (log λ). As discussed in Section 1.3, such a restriction
is necessary for any definition of function privacy to be meaningful in the public-key setting. In the
context of IBE, for example, the adversary is allowed to query the real-or-random oracle with ID∗ ∈ ID
only if ID∗ represents a k-source such that k = ω (log λ). In the context of IPE, on the other hand,
and adversary can query the real-or-random oracle with V∗ = (V ∗1 , · · · , V ∗n ) ∈ ZnN only of V∗ is an
(n, k)-block source such that k = ω (log λ). Additionally, each component-wise distribution V ∗i for i ∈
[1, n] should be completely uncorrelated with each of the other distributions in V∗. This restriction is
necessary to ensure that the adversary cannot carefully craft vectorial distributions with arbitrary inter-
component correlations to trivially compromise function privacy (see [11] for a detailed explanation).
Finally, note that within the purview of all predicate encryption schemes subsumed by IPE, our definitions
are essentially equivalent to the left-or-right oracle based function privacy definitions proposed by Iovino
et al. in [12].
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Multi-Shot v/s Single-Shot Adversaries. Definition 3.1 considers multi-shot adversaries that are
allowed to query the RoRFP oracle polynomially many times. However, it is polynomially equivalent to
consider single-shot adversaries that can query the RoRFP at most once. This is easily established by a
hybrid argument, where the hybrids are constructed such that only one query is forwarded to the RoRFP

oracle, while the rest are answered by the key generation oracle.

3.1 Computational Function Privacy of Existing Predicate Encryption Schemes

Identity-Based Encryption. To the best of our knowledge, there exist no IBE schemes in literature
that can be proven to be computationally function private under well-known cryptographic assumptions.
The constructions in [27] and [30] have deterministic trapdoors, and are hence trivially not function
private under Definition 3.1. For such schemes, an adversary could easily manufacture a circuit that uni-
formly samples id such that some function of the public parameters pp and the secret-key skid is already
known to the adversary, thus leading to a straightforward attack breaking function privacy [10]. While
such straightforward attacks cannot be demonstrated on the IBE constructions proposed in [5, 31–33], we
are not aware if their function privacy can be based on standard computationally intractable problems.
Finally, the IBE constructions presented in [10] are secure under a different notion of function privacy
called statistical function privacy, that is based on the statistical closeness of adversarially-chosen and
random distributions. Once again, to the best of our knowledge, these constructions are not computation-
ally function private to the best of our knowledge. In Section 4, we present a family of IBE constructions
that are computationally function private under well-known cryptographic assumptions.

Inner-Product Encryption. While computational functional privacy with respect to IPE in the private
key setting is well-studied [16, 24, 25], there exist, to the best of our knowledge, no equivalent public-key
counterparts in literature that can be proven to be function private under well-known cryptographic
assumptions. The authors of [11] present a generic technique to achieve statistical function privacy in
the context of inner-product encryption in the public-key setting; however, they leave the construction of
computationally function private IPE schemes in the public-key setting as an open problem. It also seems
that the function privacy of existing IPE constructions, such as in [2, 3], cannot directly be based on stan-
dard computational assumptions without suitable modifications. In Section 5, we present a family of IPE
constructions that are computationally function private under well-known cryptographic assumptions.

4 Computationally Function private Identity-Based Encryption

In this section, we apply our encrypt-augment-recover approach to the anonymous IBE scheme of Boneh,
Boyen and Goh [4] to achieve a family of computationally function private IBE schemes {ΠIBE

k }k≥1.
The concrete scheme for k = 1, has already been introduced in Section 1.3. We present the generalized
construction here, along with detailed proofs for data and function privacy.

A Generalized PKE Scheme. In keeping with our encrypt-augment-recover approach, at the core of
ΠIBE
k is the following generalized version of the PKE scheme introduced in Section 1.3, which is CPA-secure

under the (k + 1)-DLIN assumption:

• KeyGen: The key-generation algorithm samples x1, · · · , xk+2
R←− Z∗q , where q is a λ-bit prime, and

g1, · · · , gk+2
R←− G, where G is a cyclic group of prime order q. It outputs the secret-key SK and the

public-key PK as:

SK = (x1, · · · , xk+2) , PK =
(
g1, · · · , gk+2, {

(
g
xj

j · g
xk+2

k+2

)
}j∈[1,k+1]

)
• Enc: The ciphertext C corresponding to a message M ∈ G is a tuple of the form:

C =

gy11 , · · · , gyk+1

k+1 , g
∑k+1

j=1 yj
k+2 ,

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj ·M
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where y1, · · · , yk+1
R←− Z∗q .

• Dec: The decryption algorithm, on input the ciphertext C = (c0, · · · , ck+2) and the secret-key
(x1, · · · , xk+2), recovers the message M as:

M = ck+2

/k+2∏
j=1

c
xj

j−1


The Boneh-Boyen-Goh IBE Scheme. We also briefly recall the basic version of the original IBE
scheme of Boneh, Boyen and Goh [4] for clarity of presentation. Let GroupGen(1λ) be a probabilistic
polynomial-time algorithm that takes as input a security parameter λ, and outputs the tuple (G,GT , q, g, e),
where G and GT are groups of prime order q = O(2λ), g is a generator for G and e : G × G −→ GT
is an efficiently computable non-degenerate bilinear map. The Boneh-Boyen-Goh IBE scheme ΠIBE

BB =
(Setup,KeyGen,Enc,Dec) is defined over the identity space ID = {IDλ}λ∈N and the message space
M = {Mλ}λ∈N. Finally, let H : ID −→ G be a publicly available collision-resistant hash function. The
Boneh-Boyen-Goh IBE scheme is as follows:

• Setup: The setup algorithm samples (G,GT , q, g, e)
R←− GroupGen(1λ) on input the security parameter

1λ. It also samples s1, s2, s3
R←− Z∗q and outputs the public parameter pp and the master secret-key msk

as:

pp = (g, gs1 , gs2 , gs3 , h)

msk = gs1·s2

• KeyGen: On input the master secret-key msk and an identity id ∈ ID, the key generation algorithm

samples y
R←− Z∗q and outputs the secret-key skid = (d0, d1) where:

d0 = gy , d1 = gs1·s2 ·
(
hH(id).g3

)y
• Enc: On input the public parameter pp, an identity id ∈ ID and a message M ∈ M, the encryption

algorithm samples r
R←− Z∗q and outputs the ciphertext C = (c0, c1, c2) where:

c0 = gr , c1 =
(
hH(id).g3

)r
, c2 = M · e (gs1 , gs2)

r

• Dec: On input a ciphertext C = (c0, c1, c2) and a secret-key skid = (d0, d1), the decryption algorithm
computes:

M ′ = e (c1, d0) · c2
/
e (d1, c0)

If M ′ ∈M, the decryption algorithm outputs M ′, else it outputs ⊥.

The above scheme is selectively data private under the weak decisional bilinear Diffie-Hellman Inversion
(DBDHI) assumption [4].

4.1 Our Function Private IBE Scheme ΠIBE
k

We now present the construction for our function private IBE scheme ΠIBE
k , which is obtained via a

combination of the PKE algorithm described above with the Boneh-Boyen-Goh IBE scheme using our
encrypt-augment-recover approach. For ease of understanding, we highlight the alterations made to the
Boneh-Boyen-Goh IBE scheme.
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• Setup: The setup algorithm samples (G,GT , q, g, e)
R←− GroupGen(1λ) on input the security parameter

1λ. It also samples s1, s2, s3, x1, x2, · · · , xk+2
R←− Z∗q as well as g1, g2, · · · , gk+2, h

R←− G. It outputs the
public parameter pp and the master secret-key msk as:

pp =
(
g, gs1 , gs2 , gs3 , h, gx1 , gx2 , · · · , gxk+2

)
msk =

(
gs1·s2 , g1, · · · , gk+2,

(
gx1

1 · g
xk+2

k+2

)
, · · · ,

(
g
xk+1

k+1 · g
xk+2

k+2

) )
• KeyGen: On input the master secret-key msk and an identity id ∈ ID, the key generation algorithm

samples y, y1, y2 · · · , yk+1
R←− Z∗q and outputs the secret-key skid = (d0, d1, · · · , dk+3) where:

d0 = gy , dj = g
yj
j for j ∈ [1, k + 1]

dk+2 = g
∑k+1

j=1 yj
k+2 , dk+3 =

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj · gs1·s2 · (hH(id).g3

)y
Observe that skid = PKE.Enc

(
PK, gs1·s2 ·

(
hH(id).g3

)y)
.

• Enc: On input the public parameter pp, an identity id ∈ ID and a message M ∈ M, the encryption

algorithm samples r
R←− Z∗q and outputs the ciphertext C = (c0, c1, · · · , ck+4) where:

c0 = gr , cj = (gxj )
r

for j ∈ [1, k + 2] , ck+3 =
(
hH(id).g3

)r
, ck+4 = M · e (gs1 , gs2)

r

• Dec: On input a ciphertext C = (c0, · · · , ck+4) and a secret-key skid = (d0, · · · , dk+3), the decryption
algorithm computes:

M ′ = e (ck+3, d0) · ck+4 ·

(∏k+2
j=1 e (dj , cj)

e (dk+3, c0)

)
If M ′ ∈M, the decryption algorithm outputs M ′, else it outputs ⊥.

Correctness. First, consider a message M ∈ M, a ciphertext C = (c0, · · · , ck+4) corresponding to M
under an identity id ∈ ID and a secret-key skid = (d0, · · · , dk+3) corresponding to id. Then, we have:

M ′ = M · e
(
gs1·s2 ·

(
hH(id).g3

)y
, gr
)
·

∏k+1
j=1 e

(
g
yj
j , (g

xj )
r) · e(g∑k+1

j=1 yj , (gxk+2)
r
)

e
((∏k+1

j=1

(
g
xj

j · g
xk+2

k+2

)yj) · gs1·s2 · (hH(id).g3

)y
, gr
)

= M ·

∏k+1
j=1 e

(
g
yj
j , (g

xj )
r) · e(g∑k+1

j=1 yj , (gxk+2)
r
)

∏k+1
j=1 e

(
g
xj

j , g
r
)yj · e (gxk+2

k+2 , g
r
)∑k+1

j=1 yj

= M

Therefore as long as the ciphertext and the secret-key correspond to the same identity, the message is
recovered correctly. Again, when the ciphertext and the secret-key correspond to two different identities,
say id and id′ respectively, the decryption algorithm computes:

M ′ = M · e
(
hH(id)−H(id′), gy

)r
We may assume here thatM is a small subset of GT , namely |M| < |GT |1/2. This is not very serious since

the space of valid messages in reality is expected to be significantly smaller than |GT |1/2. This restriction

ensures that the probability of M ′ still lying in M, for y, r
R←− Z∗q and a collision-resistant hash function

H, is negligible in the security parameter λ. This completes the proof of correctness for our generalized
IBE scheme ΠIBE

k .
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Extension to Function Private Hierarchical IBE. The Boneh-Boyen-Goh IBE scheme naturally
gives rise to hierarchical IBE constructions [4], which can also be transformed into function private ones
using our encrypt-augment-recover approach. The main augmentation from the basic to the hierarchical
IBE scheme of Boneh, Boyen and Goh is the induction of a larger number of components in the secret
key skid corresponding to an identity id. We leave these components untouched in the modified secret-key
generation algorithm, so that they may be used as is in the original scheme during decryption. This
also retains the hierarchical property of the scheme. The ciphertext of the hierarchical scheme of Boneh,
Boyen and Goh is the same as the basic scheme; accordingly, we retain the same augmented ciphertext
for function privacy.

4.2 Security of Our IBE Scheme

Selective Data Privacy. We state the following theorem for the selective data privacy of ΠIBE
k :

Theorem 4.1 Our IBE scheme ΠIBE
k is selectively data private in the standard model if the Boneh-

Boyen-Goh scheme ΠIBE
BB is selectively data private in the standard model.

Proof. Let A be any probabilistic polynomial-time adversary such that:

AdvDP
ΠIBE

k ,A(λ) =

∣∣∣∣Pr
[
Expt

(0)

DP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
Expt

(1)

DP,ΠIBE
k ,A(λ) = 1

] ∣∣∣∣ = ε > negl(λ)

We construct a polynomial-time algorithm B such that:

AdvDP
ΠIBE

BB ,B(λ) =

∣∣∣∣Pr
[
Expt

(0)

DP,ΠIBE
BB ,B(λ) = 1

]
− Pr

[
Expt

(1)

DP,ΠIBE
BB ,B(λ) = 1

] ∣∣∣∣ = ε

B interacts with A in the selective data privacy experiment as follows:

• Init: A commits to the challenge identity pair (id∗0, id
∗
1). B also commits to the same identity pair.

• Setup: B obtains the public parameter pp for ΠIBE
BB . It samples x1, · · · , xk+2

R←− Z∗q and g1, g2, · · · , gk+2
R←−

G and provides A with pp′ = (pp, gx1 , gx2 , · · · , gxk+2).

• Secret-Key Queries: When A issues a secret-key query for idi ∈ ID, B forwards the query to the

key-generation oracle for ΠIBE
BB , and receives skidi = (d0, d1). It then samples y1, y2, · · · , yk+1

R←− Z∗q
and responds to A with the secret-key:

sk′idi =

d0, g
y1
1 , gy22 , · · · , gyk+1

k+1 g
∑k+1

j=1 yj
k+2 ,

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj · d1


• Challenge: A outputs the challenge message pair (M∗0 ,M

∗
1 ). B outputs the same challenge message

pair and receives the challenge ciphertext C∗ = (c∗0, c
∗
1, c
∗
2) for ΠIBE

BB . It then computes the challenge
ciphertext for A as:

C ′
∗

= (c∗0, (c
∗
0)
x1 , (c∗0)

x2 · · · , (c∗0)
xk+2 , c∗1, c

∗
2)

• Guess: At the end of the game, A outputs a bit b′. B outputs the same bit b′.

It is easy to see that B’s simulation is perfect and hence, it has the same advantage ε as A. This
result, together with the fact that the Boneh-Boyen-Goh IBE scheme is selectively data private under
the decisional bilinear Diffie-Hellman inversion (BDHI) assumption [4], completes the proof of selective
data privacy for ΠIBE

k . Note that in this proof, the hash function only needs to be collision-resistant and
hence is not modeled as a random oracle.
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Extension to Adaptive Data Privacy. Our IBE scheme ΠIBE
k can be extended to achieve fully

adaptive data privacy using the concept of hybrid encryption, introduced by Ananth et al. in [34]. Their
technique embeds a hidden execution thread in the decryption keys of the underlying selectively data
private scheme, to be activated within the proof of adaptive data privacy for the resulting scheme. This
approach also does not require any additional assumptions such as obfuscation.

Computational Function Privacy. We state the following theorem for the computational function
privacy of ΠIBE

k :

Theorem 4.2 Our IBE scheme ΠIBE
k is computationally function private under the (k + 1)-DLIN as-

sumption for identities sampled uniformly from k-sources with k = ω (log λ).

Proof. We begin by stating the following claim:

Claim 4.1 For any probabilistic polynomial-time adversary A and for mode
R←− {real, rand}, the following

holds: ∣∣∣∣Pr
[
Exptmode

FP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary such

that for mode
R←− {real, rand}, we have:∣∣∣∣Pr

[
Exptmode

FP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣ = ε > negl(λ)

We assume that the adversary A issues a single query to the real-or-random oracle. As discussed in
Section 3, such a single-shot adversary is polynomially equivalent to its multi-shot variant considered in
Definition 3.1. We construct an algorithm B that solves an instance of the (k + 1)-DLIN problem with
non-negligible advantage ε′ = ε. B is given

(
g1, · · · , gk+2, g

a1
1 , · · · , gak+2

k+2

)
and interacts with A as follows:

• Setup: s1, s2, s3, x1, · · · , xk+2
R←− Z∗q and g1, · · · , gk+2, h

R←− G. It outputs the public parameter pp and
the master secret-key msk as:

pp = (g, gs1 , gs2 , gs3 , h, gx1 , · · · , gxk+2)

msk =
(
gs1·s2 , g1, · · · , gk+2,

(
gx1

1 · g
xk+2

k+2

)
, · · · ,

(
g
xk+1

k+1 · g
xk+2

k+2

))
• Secret-Key Queries: Since B possesses the knowledge of the master secret-key msk, it can answer

any secret-key query issued by A by invoking the KeyGen procedure.

• Real-or-Random Query: Suppose A queries the real-or-random oracle with ID∗ - a circuit repre-

senting a k-source over the identity space ID such that k = ω (log λ). B samples mode
R←− {real, rand}

and does the following:

1. If mode = real, B samples id∗
R←− ID∗, while if mode = rand, it samples id∗

R←− ID.

2. B samples y
R←− Z∗q responds with the secret-key skid∗ as:

skid∗ =

gy, ga11 , · · · , gak+2

k+2 ,

k+2∏
j=1

(
g
aj
j

)xj

 · gs1·s2 · (hH(id∗).g3

)y
where ga11 , · · · , gak+2

k+2 are part of its input instance.

• Guess: At the end of the game, A outputs a bit b′. B outputs the same bit b′.
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It is easy to see that when ak+2 =
∑k+1
j=1 aj , the secret-key skid∗ is well-formed and identically distributed

to the response of the real-or-random oracle in the experiment Exptmode
FP,ΠIBE

k ,A(λ). On the other hand,

when ak+2 is uniformly random in Z∗q , the secret-key skid∗ is uniformly random, and hence identically

distributed to the response of the real-or-random oracle in the experiment ExptrandFP,ΠIBE
k ,A(λ). Now, the

advantage ε′ of B in solving the (k + 1)-DLIN instance (where the probability is taken over all possible

choices of a1, · · · , ak+2
R←− Z∗q and all possible choices of g1, · · · , gk+2

R←− G) may be quantified as:

ε′ =

∣∣∣∣Pr

[
B
(
g1, · · · , gk+2, g

a1
1 , · · · , g

∑k+1
j=1 aj

k+2

)
= 1

]
− Pr

[
B
(
g1, · · · , gk+2, g

a1
1 , · · · , gak+2

k+2

)
= 1
] ∣∣∣∣

=

∣∣∣∣Pr
[
Exptmode

FP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣

= ε

This completes the proof of Claim 4.1. The proof of function privacy for ΠIBE
k now follows from the

following observation:

AdvFP
ΠIBE

k ,A(λ) =

∣∣∣∣Pr
[
ExptrealFP,ΠIBE

k ,A(λ) = 1
]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣

≤ 2

∣∣∣∣Pr
[
Exptmode

FP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣

= 2ε ≤ negl(λ)

5 Computationally Function private Inner-Product Encryption

In this section, we present a family of selectively data private zero-IPE schemes {ΠIPE
k }k≥1 that are also

computationally function private under the generalized family of k-DLIN assumptions in the standard
model. Our schemes are defined over the set of attributes Σ = ZnN (N being a product of three primes q1, q2

and q3), and the class of vectorial predicates F = {f−→v | −→v ∈ ZnN}, such that for I = (I1, · · · , In) ∈ ZnN ,
we have f−→v (I) = 1 if and only if 〈−→v , I〉 = 0 mod N . Once again, our constructions are obtained by
applying our encrypt-augment-recover approach to the zero-IPE scheme of Katz, Sahai and Waters [3].

Construction Overview. Let G be a bilinear group of order N = q1q2q3 (each of q1, q2 and q3 being
λ-bit primes), and let G1, G2 and G3 denote the subgroups of G of order q1, q2 and q3, respectively. Also,
let ê : G×G −→ GT be an efficiently computable non-degenerate bilinear map, where GT is also a group
of order N . Note that if g is the generator for G, then the element g1 = gq2·q3 is a generator for G1, the
element g2 = gq1·q3 is a generator for G2, and the element g3 = gq1·q2 is a generator for G3. Furthermore,
for any elements h1 ∈ G1, h2 ∈ G2 and h3 ∈ G3, we have ê (h1, h2) = ê (h2, h3) = ê (h1, h3) = 1. Also,
let GroupGen′(1λ) be a probabilistic polynomial-time algorithm that takes as input a security parameter
λ, and outputs the tuple (G,GT , q1, q2, q3, g1, g2, g3, ê). Finally, the payload message spaceM is assumed

to be a small subset of GT , namely |M| < |GT |1/2. Our function private zero-IPE scheme uses the three
subgroups for three distinct roles:

• The subgroup G2 is used to encode the vectors −→v and I in the secret-key and the ciphertexts, re-
spectively, and to compute the inner product 〈−→v , I〉 in the exponent of a bilinear map computation.

• The subgroup G1 serves a dual purpose in our scheme. On the one hand, it has the effect of masking
the inner product computation in G2, and preventing the adversary from improperly manipulating
the computation in any way to reveal information about the underlying attributes. In particular, it is
pivotal in ensuring the non-malleability of the secret-keys and ciphertexts generated by the scheme.
On the other hand, it is in the G1 subgroup that we incorporate our encrypt-augment-recover method-
ology to achieve computational function privacy.
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• The subgroup G3 serves as an additional layer of masking for the other subgroups. In particular,
random elements sampled from G3 are multiplied with various components in both the secret-keys
as well as the ciphertexts to hide possible information leakages from the subgroups G1 and G2.

Encrypt-Augment-Recover. We apply our encrypt-augment-recover approach to the zero-IPE scheme
of Katz, Waters and Sahai to achieve computational function privacy. At the core of our approach is the
public-key encryption algorithm PKE = (KeyGen,Enc,Dec) that is CPA-secure under the (k + 1)-DLIN
assumption (the reader is referred to Section 4 for recalling the PKE scheme). The PKE essentially oper-
ates in the subgroup G1 of prime order q1, and its outputs are suitably masked before being incorporated
in our scheme. We modify the algorithms of the original scheme as follows:

• The modified setup algorithm runs (SK,PK)
R←− PKE.KeyGen. It incorporates PK in the master

secret-key of the original scheme, and modifies the public parameter to include a one way function of
SK.

• The original zero-IPE scheme of Katz, Sahai and Waters comprises of secret-keys of the form sk−→v =(
d0, {d1,i, d2,i}i∈[1,n]

)
. The modified key-generation algorithm in our scheme generates a secret-key of

the form sk′−→v =
(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)
such that for i ∈ [1, n], we have:(

{dj1,i}j∈[0,k+2]

)
= PKE.Enc (PK, d1,i)(

{dj2,i}j∈[0,k+2]

)
= PKE.Enc (PK, d2,i)

along with suitable masking as necessary. Observe that this naturally ensures that each component
of the modified secret-key is independent and identically distributed. In the proof of function privacy,
we argue the indistinguishability of a well-formed secret-key component from a uniformly random
one by relating it to the hardness of solving a (k + 1)-DLIN instance in G1.

• The modified encryption algorithm generates an augmented ciphertext that retains the ciphertext of
the original scheme unaltered as one of its components. The additional ciphertext components are
used by the modified decryption algorithm subsequently to remove the effect of PKE and recover the
payload message M . The additional components are also in the group G1, and are suitably masked
using uniformly random elements from G3. The masking ensures that the data privacy guarantees of
the original scheme are not weakened.

5.1 Construction Details for Our Zero-IPE Scheme ΠIPE
k

We now present the construction for ΠIPE
k in details.

• Setup: The setup algorithm samples (G,GT , q1, q2, q3, g1, g2, g3, ê)
R←− GroupGen′(1λ). It also samples

{x1,j , x2,j
R←− Z∗q1}j∈[1,k+2], {g1,j , g2,j

R←− G1}j∈[1,k+2], {h1,i, h2,i
R←− G1}i∈[1,n] and {Rj1,i, R

j
2,i

R←−
G3}i∈[1,n],j∈[0,k+2]. It additionally samples h

R←− G1, γ
R←− Z∗q1 and R3

R←− G3, and sets:

Q = g2 ·R3

S0
1,i = h1,i ·R0

1,i , S0
2,i = h2,i ·R0

2,i for i ∈ [1, n]

Sj1,i = h
x1,j

1,i ·R
j
1,i , Sj2,i = h

x2,j

2,i ·R
j
2,i for i ∈ [1, n], j ∈ [1, k + 2]

It outputs the public parameter pp and the master secret-key msk as:

pp =
(
g1, g3, Q, {Sj1,i, S

j
2,i}i∈[1,n],j∈[0,k+2], ê (g1, h)

γ
)

msk =
(
q1, q2, q3, g2, {g1,j , g2,j}j∈[1,k+2], {g

x1,j

1,j · g
x1,k+2

1,k+2 , g
x2,j

2,j · g
x2,k+2

2,k+2 }j∈[1,k+1], {h1,i, h2,i}i∈[1,n], h
γ
)
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• KeyGen: On input the master secret-key msk and a vector −→v = (v1, · · · , vn), the key generation

algorithm samples {z1,i, z2,i
R←− Z∗q1}i∈[1,n], {yj1,i, y

j
2,i

R←− Z∗q1}i∈[1,n],j∈[1,k+1], Q4
R←− G2, R5

R←− G3 and

f1, f2
R←− Z∗q2 . It then sets d0 = Q4 ·R5

/(
hγ ·

∏n
i=1 h

z1,i
1,i · h

z2,i
2,i

)
. It also sets:

d0
1,i = g

z1,i
1 · gf1·vi2

/k+1∏
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i for i ∈ [1, n]

d0
2,i = g

z2,i
1 · gf2·vi2

/k+1∏
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i for i ∈ [1, n]

Finally, it sets the following additional components:

dj1,i = g
yj1,i
1,j , dj2,i = g

yj2,i
2,j for i ∈ [1, n], j ∈ [1, k + 1]

dk+2
1,i = g

∑k+1
j=1 y

j
1,i

1,k+2 , dk+2
2,i = g

∑k+1
j=1 y

j
2,i

2,k+2 for i ∈ [1, n]

and outputs the secret-key sk−→v as:

sk−→v =
(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)

• Enc: On input the public parameter pp, an attribute I = (I1, · · · , In) ∈ ZnN and a payload message

M ∈M, the encryption algorithm samples r, α, β
R←− Z∗N and {Rj6,i, R

j
7,i

R←− G3}i∈[1,n],j∈[0,k+2]. It then
sets c0 = gr1. It also sets :

c01,i =
(
S0

1,i

)r ·Qα·Ii ·R0
6,i , c02,i =

(
S0

2,i

)r ·Qβ·Ii ·R0
7,i for i ∈ [1, n]

cj1,i =
(
Sj1,i

)r
·Rj6,i , cj2,i =

(
Sj2,i

)r
·Rj7,i for i ∈ [1, n], j ∈ [1, k + 2]

Finally, it sets c3 = M · (ê (g1, h)
γ
)
r

and outputs the ciphertext C as:

C =
(
c0, {cj1,i, c

j
2,i}i∈[1,n],j∈[0,k+2], c3

)

• Dec: On input a ciphertext C =
(
c0, {cj1,i, c

j
2,i}i∈[1,n],j∈[0,k+2]

)
and a secret-key sk−→v =

(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)
,

the decryption algorithm computes:

M ′ = c3 · ê (d0, c0) ·

 n∏
i=1

k+2∏
j=0

ê
(
dj1,i, c

j
1,i

)
· ê
(
dj2,i, c

j
2,i

)
If M ′ ∈M, the decryption algorithm outputs M ′, else it outputs ⊥.
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Correctness. To see that correctness holds for our zero-IPE scheme, let C and sk−→v be as described in
Section 5. Then we have:

M ′ = c3 · ê (d0, c0) ·

 n∏
i=1

k+2∏
j=0

ê
(
dj1,i, c

j
1,i

)
· ê
(
dj2,i, c

j
2,i

)
= M · (ê (g1, h)

γ
)
r ·

( ∏n
i=1 ê

(
g
z1,i
1 , hr1,i

)
· ê
(
g
z2,i
1 , hr2,i

)
ê (hγ , gr1) · ê

(∏n
i=1 h

z1,i
1,i · h

z2,i
2,i , g

r
1

)) ·( n∏
i=1

ê
(
gf1·vi2 , gα·Ii2

)
· ê
(
gf2·vi2 , gβ·Ii2

))

·
n∏
i=1


∏k+1
j=1

(
ê

(
g
yj1,i
1,j ,

(
h
x1,j

1,i

)r) · ê(gyj2,i2,j ,
(
h
x2,j

2,i

)r)) · ê(g∑k+1
j=1 y

j
1,i

1,k+2 ,
(
h
x1,k+2

1,i

)r) · ê(g∑k+1
j=1 y

j
2,i

2,k+2 ,
(
h
x2,k+2

2,i

)r)
ê

(∏k+1
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i
, hr1,i

)
· ê
(∏k+1

j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i
, hr2,i

)


= M ·
n∏
i=1

ê (g2, g2)
(αf1+βf2)·vi·Ii

= M · ê (g2, g2)
(αf1+βf2 mod q2)·〈−→v ,I〉

where α, β are uniformly random in Z∗N and f1, f2 are uniformly random in Z∗q2 . If 〈−→v , I〉 = 0 mod N ,
then we have M ′ = M . If 〈−→v , I〉 6= 0 mod N , there are two cases: if 〈−→v , I〉 6= 0 mod q2, then with all
but negligible probability (over random choice of α, β, f1, f2), M ′ does not lie in GT (since M is a small
subset of GT ). Otherwise, we have 〈−→v , I〉 = 0 mod q2, in which case M ′ will always be equal to M ;
however, this would reveal a non-trivial factor of N , and so this too occurs with negligible probability.
In fact, the data privacy property of this zero-IPE construction relies on a set of assumptions in bilinear
groups that imply the hardness of finding a non-trivial factor of N .

The Need for Two Sub-Systems. Note that our zero-IPE scheme uses two parallel sub-systems (in
the key generation and encryption algorithms) that are apparently redundant since they perform the
same functions. Indeed, our scheme inherits this feature from the original zero-IPE scheme of Katz, Sahai
and Waters [3]. Eliminating one of the sub-systems from our scheme would retain functional correctness
as well as computational function privacy, while also improving performance and efficiency. However, the
proof methodology in [3] for data privacy relies on the existence of the parallel sub-systems in an essential
way. Since our aim is to retain the same data privacy guarantees as in the original scheme, we stick to
the use of two parallel sub-systems in our augmented zero-IPE scheme.

5.2 Security of Our IPE Scheme

Data Privacy. We state the following theorem for the data privacy of ΠIPE
k :

Theorem 5.1 Our zero-IPE scheme ΠIPE
k retains the selective data privacy guarantees of the original

zero-IPE scheme of Katz, Sahai and Waters [3].

Proof Overview. We provide a brief overview of the proof technique for our scheme, which essentially
follows the proof technique presented in [3]. We consider a probabilistic polynomial-time adversary that
tries to determine whether the challenge ciphertext is associated with either of the two attributes I0
or I1. The proof proceeds via a sequence of hybrid games in which an entire attribute used in the
challenge ciphertext is changed in one step, instead of changing them component by component for
reasons mentioned in the proof of the original scheme in [3]. This is facilitated by the presence of the two
parallel sub-systems, which allows the hybrid games to use ill-formed ciphertexts that are encrypted with
respect to two different attributes I and I ′ and in the two sub-systems. Let such a ciphertext be denoted
informally as (I, I ′). The proof establishes indistinguishability between the well-formed ciphertexts (I0, I0)

and (I1, I1) via a sequence of intermediate hybrid games using the ill-formed ciphertexts
(
I0,
−→
0
)

, (I0, I1)
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and
(−→

0 , I1

)
. The zero vector is used since it orthogonal to any other vector. The simulator in our

proof works in one sub-system independent of what happens in the other one. In each hybrid game, the
simulator embeds a subgroup-decision like assumption in the challenge ciphertext, and the structure of
the challenge determines whether a sub-system embeds a given vector or a zero vector. This is essentially
an adoption of the proof technique originally presented in [3] to our function private scheme.

An additional requirement in our proof is that the simulator should be able to embed the (k + 1)-
DLIN instances when responding to the key generation queries from the adversary. As demonstrated in
the proof of Theorem 4.1, this is straightforward to achieve: since the simulator in the data privacy game
is allowed to set up the (k + 1)-DLIN instances entirely on its own, it can easily augment the secret-key
generation process in the proof of the original scheme by appropriately embedding these instances where
necessary. Moreover, since the (k + 1)-DLIN instances are sampled uniformly at random, the resulting
distribution of secret-keys is exactly as in the real world from the point of view of the adversary. Similarly,
in the challenge phase, the simulator generates the additional components in the augmented ciphertext
uniformly at random, without altering the nature of the ciphertext distribution from the adversary’s
point of view.

Extension to Adaptive Data Privacy. Once again, our zero-IPE scheme ΠIPE
k can also be extended

to achieve fully adaptive data privacy using the concept of hybrid encryption, introduced by Ananth et
al. in [34].

Computational Function Privacy. We state the following theorem for the computational function
privacy of ΠIPE

k :

Theorem 5.2 Our zero-IPE scheme ΠIPE
k is computationally function private under the (k + 1)-DLIN

assumption for predicate vectors sampled uniformly from (n, k)-block sources with k = ω (log λ).

Proof . We present a proof for the above theorem. Our aim is to show that any probabilistic poly-
time adversary A cannot distinguish between the real and random modes of operation of the function
privacy oracle, provided that the oracle is queried with circuits that sample sufficiently unpredictable
distributions over the space of predicates. In particular, such distributions should be (n, k)-block sources
over ZnN , such that each component of a vector −→v sampled from an adversarially chosen distribution has
a min-entropy of k = ω (log λ), and is uncorrelated with all other components. Additionally, the proof
shows that the simulator B can additionally simulate the function privacy encryption oracle, and that
the real and random modes of operation of the function privacy oracle are indistinguishable even in the
presence of the encryption oracle.

We define a series of hybrid experiments Exptmode,m
EFP,ΠIPE

k ,A(λ) for mode ∈ {real, rand} and m ∈ [0, n] as

follows:

• Exptmode,0
EFP,ΠIPE

k ,A(λ) is exactly identical to Exptmode
EFP,ΠIPE

k ,A(λ).

• Exptmode,m
EFP,ΠIPE

k ,A(λ) for m ∈ [1, n] is identical to Exptmode
EFP,ΠIPE

k ,A(λ) except that the secret-key sk−→
v∗

=(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
generated by the real-or-random oracle is such that the set of com-

ponents {d∗j1,i, d∗
j
2,i}i∈[1,m],j∈[0,k+2] are uniformly random and independent of the underlying vector

−→
v∗. In addition, the ciphertext C∗ for a message M generated by the function privacy encryption

oracle is uniformly random and independent of
−→
v∗; it, however, produces M upon decryption using

the sk−→
v∗

generated by the real-or-random oracle.

Quite evidently, the following holds:∣∣∣∣Pr
[
Exptreal,n

EFP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptrand,n

EFP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ = 0

We now state and prove the following claim:
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Claim 5.1 For any probabilistic polynomial-time adversary A, for mode ∈ {real, rand} and for m ∈
[0, n− 1], the following holds:∣∣∣∣Pr

[
Exptmode,m

EFP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,m+1

EFP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary such
that: ∣∣∣∣Pr

[
Exptmode,m

EFP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,m+1

EFP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ = ε > negl(λ)

for some m ∈ [0, n− 1]. Also, let G be a bilinear group of order N = q1q2q3 (each of q1, q2 and q3 being
λ-bit primes), and let G1, G2 and G3 denote the subgroups of G of order q1, q2 and q3, respectively. Also,
let ê : G×G −→ GT be an efficiently computable non-degenerate bilinear map, where GT is also a group
of order N . We construct an algorithm B such that:∣∣∣∣Pr

[
B
((

g1,1, · · · , g1,k+2, g
a1
1,1, · · · , g

∑k+1
j=1 aj

1,k+2

)
,

(
g2,1, · · · , g2,k+2, g

a′1
2,1, · · · , g

∑k+1
j=1 a

′
j

2,k+2

))
= 1

]
−

Pr
[
B
((
g1,1, · · · , g1,k+2, g

a1
1,1, · · · , g

ak+2

1,k+2

)
,
(
g2,1, · · · , g2,k+2, g

a′1
2,1, · · · , g

a′k+2

2,k+2

))
= 1
] ∣∣∣∣ = ε

where the probability is over random choice of {aj , a′j
R←− Z∗q1}j∈[1,k+2], and over random choice of

{g1,j , g2,j
R←− G1}j∈[1,k+2]. Observe that B can in turn be trivially used to construct another algorithm

that has advantage at least ε in solving a given instance of the (k + 1)-DLIN problem in the group G1.

• Setup: B uniformly samples {x1,j , x2,j
R←− Z∗q1}j∈[1,k+2], {h1,i, h2,i

R←− G1}i∈[1,n] and {Rj1,i, R
j
2,i

R←−
G3}i∈[1,n],j∈[0,k+2]. It additionally samples h

R←− G1, γ
R←− Z∗q1 and R3

R←− G3, and sets:

Q = g2 ·R3

S0
1,i = h1,i ·R0

1,i , S0
2,i = h2,i ·R0

2,i for i ∈ [1, n]

Sj1,i = h
x1,j

1,i ·R
j
1,i , Sj2,i = h

x2,j

2,i ·R
j
2,i for i ∈ [1, n], j ∈ [1, k + 2]

Finally, it sets the public parameter pp and the master secret-key msk as:

pp =
(
g1, g3, Q, {Sj1,i, S

j
2,i}i∈[1,n],j∈[0,k+2], ê (g1, h)

γ
)

msk =
(
q1, q2, q3, g2, {g1,j , g2,j}j∈[1,k+2], {g

x1,j

1,j · g
x1,k+2

1,k+2 , g
x2,j

2,j · g
x2,k+2

2,k+2 }j∈[1,k+1], {h1,i, h2,i}i∈[1,n], h
γ
)

B provides pp to A. Observe that pp is distributed exactly as in the real world.

• Secret-Key Queries: When A issues a secret-key query for −→v ∈ ZnN , B responds with sk−→v =
KeyGen (msk,−→v ).

• Real-or-Random Query: The crux of the proof lies in how B embeds its input (k+1)-DLIN instance
in its response to the real-or-random query issued by A. Suppose A queries the real-or-random oracle

with an (n, k)-block source V∗ = (V ∗1 , · · · , V ∗n ) over ZnN such that k = ω (log λ). B samples mode
R←−

{real, rand}. For each i ∈ [1, n], B samples v∗i
R←− V ∗i if mode = real, or v∗i

R←− ZN if mode = rand. The

vector
−→
v∗ = (v∗1 , · · · , v∗n) is the challenge vector that B uses to respond to the query from A. B now

sets the various components of the secret-key sk−→
v∗

as follows:

1. The secret-key elements corresponding to the first m components of
−→
v∗ are crafted by B to be

uniformly random, while the elements corresponding to the last n − m − 1 components of
−→
v∗

are crafted to be well-formed. We present the details of how this may be achieved. B samples

20



{z1,i, z2,i
R←− Z∗q1}i∈[1,m], {yj1,i, y

j
2,i

R←− Z∗q1}i∈[1,m],j∈[1,k+1], Q4
R←− G2, R5

R←− G3 and f1, f2
R←− Z∗q2 .

It then sets the following:

d∗0 = Q4 ·R5

/(
n∏
i=1

h
z1,i
1,i · h

z2,i
2,i

)

d∗01,i = g
z1,i
1 · gf1·vi2

/k+1∏
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i for i ∈ [1, n] \ {m+ 1}

d∗02,i = g
z2,i
1 · gf2·vi2

/k+1∏
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i for i ∈ [1, n] \ {m+ 1}

Now, B additionally samples {yk+2
1,i , y

k+2
2,i

R←− Z∗q1}i∈[1,m], and sets:

d∗j1,i = g
yj1,i
1,j , d∗j2,i = g

yj2,i
2,j for i ∈ [1, n] \ {m+ 1}, j ∈ [1, k + 1]

d∗k+2
1,i = g

yk+2
1,i

1,k+2 , d∗k+2
2,i = g

yk+2
2,i

2,k+2 for i ∈ [1,m]

d∗k+2
1,i = g

∑k+1
j=1 y

j
1,i

1,k+2 , d∗k+2
2,i = g

∑k+1
j=1 y

j
2,i

2,k+2 for i ∈ [m+ 2, n]

Observe that B uses a randomly sampled yk+2
1,i instead of

∑k+1
j=1 y

j
1,i, and a randomly sampled yk+2

2,i

instead of
∑k+1
j=1 y

j
2,i, for i ∈ [1,m]. This step ensures that secret-key elements corresponding to the

first m components of
−→
v∗ are indeed uniformly random, as desired. Also, it is straightforward to

observe that the secret-key elements corresponding to the last (n−m− 1) components are well-
formed.

2. B now embeds its input (k + 1)-DLIN-instance pair in the secret key elements corresponding to

the (m+ 1)
th

component of
−→
v∗. In particular, it sets:

d∗01,m+1 = g
z1,m+1

1 · gf1·vm+1

1

/k+2∏
j=1

(
g
aj
1,j

)x1,j


d∗02,m+1 = g

z2,m+1

1 · gf2·vm+1

2

/k+2∏
j=1

(
g
a′j
2,j

)x2,j


d∗j1,m+1 = g

aj
1,j , d∗j2,m+1 = g

a′j
2,j for j ∈ [1, k + 2]

where {gaj1,j}j∈{1,k+2} and {ga
′
j

2,j}j∈{1,k+2} are parts of its input instances.

B finally responds to A with the secret-key sk−→
v∗

as:

sk−→
v∗

=
(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
• Guess: At the end of the game, A outputs a bit b′. B outputs the same bit b′.

It is easy to see that when ak+2 =
∑k+1
j=1 aj and a′k+2 =

∑k+1
j=1 a

′
j , the secret-key sk−→

v∗
is identically dis-

tributed to the response of the real-or-random oracle in the experiment Exptmode,m
EFP,ΠIPE

k ,A(λ). On the other

hand, when either or both of ak+2 and a′k+2 are uniformly random in Z∗q , the secret-key sk−→
v∗

is identically

distributed to the response of the real-or-random oracle in the experiment Exptmode,m+1

EFP,ΠIPE
k ,A(λ). It follows

readily that B has the same advantage ε as A in solving its input instance pair. This completes the proof
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of Claim 5.1.

We now make the following observation:

|Pr
[
Exptmode

EFP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,n

EFP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣
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≤ negl(λ) (from Claim 5.1) for n = poly(λ)

Consequently, for mode
R←− {real, rand}, we have:
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= 2ε′ ≤ negl(λ)

This hybrid argument completes the proof of enhanced function privacy for ΠIPE
k .

6 Feasible Extensions and Applications of Our Techniques

Our work proposes the first public-key predicate encryption schemes that are provably indistinguish-
able function private under standard computational assumptions. Existing function private predicate
encryption schemes in the public-key setting are either secure only in the generic group model, or require
strong assumptions such as indistinguishability obfuscation. We develop a novel approach, denoted as
encrypt-augment-recover, that takes an existing predicate encryption scheme and transforms it into a
computationally function private one while retaining its original data privacy guarantees. Our approach
yields constructions for IBE in the random oracle model that are function private under weaker variants
of the DLIN assumption. Our approach also yields public-key IPE constructions in the standard model
that are also function private under the same family of assumptions. Our constructions do not require
additional assumptions such as indistinguishability obfuscation. In this section, we present some feasible
extensions and applications of our techniques.

Function Privacy for Private-Key Predicate Encryption. Our methodology is equally applica-
ble for achieving computationally function private predicate encryption schemes in the private-key set-
ting, even when the underlying predicates are not necessarily sampled from distributions with at least
super-logarithmic min-entropy. In particular, the core function privacy arguments for our constructions
presented in this paper do not essentially rely on the unpredictability of the predicate distributions; this
assumption is additionally made to rule out trivial attacks in the public-key setting. Consequently, our
approach anticipates an expansion to the existing body of work in designing function private predicate
encryption schemes in the private-key setting.
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Function Privacy for Multi-Input Predicate Encryption. Multi-input predicate encryption (MIPE)
introduced by Goldwasser et al. [35] is a generalization of functional encryption to the setting of multi-
input predicates. An MIPE scheme has several encryption slots and each decryption key skf for a multi-
input predicate f jointly decrypts the ciphertexts Enc(I1), ...,Enc(In) for all slots to obtain f (I1, ..., In)
without revealing anything more about the encrypted attributes. In particular, this provides a frame-
work to evaluate bounded-norm multi-input IPE: each predicate is specified by a collection of vectors
−→v 1, · · · ,−→v n, and takes as input a collection of vectors −→x 1, · · · ,−→x n to output f−→v 1,··· ,−→v n

(−→x 1, · · · ,−→x n) =∑n
i=1 〈
−→v i,−→x i〉.

We point out that our technique can be easily generalized to obtain function private IPE schemes in
the multi-input setting as follows: we first use our technique to obtain a function private IPE construction
in the single-input setting, and then run n independent copies of this construction. The ith copy is used
to encrypt −→x i in the ith slot, while the new secret-key is the ensemble of the n secret-keys corresponding
to −→v 1, · · · ,−→v n. The decryption algorithm computes each inner product individually, and returns their
sum. Although this means that the adversary also learns each individual inner product, this is an inherent
leakage in the public-key setting and does not weaken the security guarantees. The data privacy guarantees
of the underlying scheme ensure no further leakage, while the function privacy guarantees of the underlying
scheme continue to hold as long as each −→v i is sampled from block sources with sufficient min-entropy,
and is independent of the other n− 1 vectors.

7 Open Problems

In this section, we discuss some interesting open problems that arise from our work.

Hidden Vector Encryption and Polynomial Evaluation. Boneh and Waters [1] proposed hid-
den vector encryption (HVE), a pre-cursor to IPE, that supports search using conjunctive, range and
comparison-based query predicates. In HVE, attributes correspond to vectors over an alphabet Σ, while
secret-keys correspond to predicate vectors over the augmented alphabet Σ? = Σ∪{?} containing the wild
card character ?. Decryption succeeds if the attribute matches the predicate vector in every coordinate
that is not ?. We note that although IPE can be used to realize HVE [3], our computational function
privacy definitions do not naturally extend to HVE. In particular, the presence of the wild card character
? in the predicate vectors of HVE trivially violates our min-entropy requirements, making it difficult to
hide their presence in the secret-key. It is still an open problem, however, to formalize a stronger func-
tion privacy definition for HVE, and to realize function private constructions satisfying this definition.
This would also provide insight into the limits of function privacy for searchable encryption schemes
supporting comparison and range queries. Finally, it is also open to formalize security definitions and re-
alize constructions for function private encryption schemes that support arbitrary polynomial evaluation
predicates [3].

Generalization of Our Approach. In this work, we have applied our encrypt-augment-recover ap-
proach to transform certain existing public-key predicate encryption schemes that are not function private,
into computationally function private ones. An interesting open problem is to explore whether our ap-
proach can be generalized for any public-key predicate encryption scheme, or if there are any specific
properties of existing predicate encryption schemes that make them amenable to transformation using
our approach. A starting point in this direction could be to explore the applicability of our approach to
public-key predicate encryption schemes based on lattices, such as the IPE scheme in [2]. It would also be
interesting to explore if our approach can be used to design public-key encryption schemes supporting a
set of predicates beyond inner-products. Iovino et al. [12] have demonstrated that computational function
privacy from standard assumptions seems unattainable for a very generalized class of predicates, such as
the class of all NC1) circuits. This motivates exploring the limits of our techniques in terms of the range
of predicates for which they are applicable.
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