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Abstract. We present a new class of public-key predicate encryption schemes
that are provably function private in the standard model under well-known
cryptographic assumptions, and assume predicate distributions satisfying re-
alistic min-entropy requirements. More concretely, we present public-key con-
structions for identity-based encryption (IBE) and inner-product encryption
(IPE) that are computationally function private in the standard model under
a family of weaker variants of the DLIN assumption. Existing function pri-
vate constructions in the public-key setting impose highly stringent require-
ments on the min-entropy of predicate distributions, thereby limiting their
applicability in the context of real-world predicates. For example, the sta-
tistically function private constructions of Boneh, Raghunathan and Segev
(CRYPTO’13 and ASIACRYPT’13) are inherently restricted to predicate
distributions with min-entropy roughly proportional to λ, where λ is the
security parameter. Our constructions allow relaxing this min-entropy re-
quirement to ω(log λ), while achieving a computational notion of function
privacy against probabilistic polynomial-time adversaries, which suffices for
most real-world applications. Our constructions also avoid the need for strong
assumptions such as indistinguishability obfuscation.
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1 Introduction

Predicate encryption schemes [1–3] in the public-key setting allow a single public-
key to be associated with multiple secret-keys, where each secret-key corresponds
to a Boolean predicate f : Σ −→ {0, 1} over a pre-defined set of attributes Σ. A
plaintext message in a predicate encryption scheme is an attribute-payload message
pair (I,M) ∈ Σ ×M, with M being the payload message space. A secret-key skf
associated with a predicate f successfully decrypts a ciphertext C corresponding to a
plaintext (I,M) and recovers the payload message M if and only if f(I) = 1. On the
other hand, if f(I) = 0, attempting to decrypt C using skf returns the failure symbol



⊥. A predicate encryption is said to be attribute hiding if the ciphertext C leaks no
information about the underlying plaintext (I,M) to an adversary possessing benign
secret-keys corresponding to predicates that do not trivially identify the attribute I.

Identity-Based Encryption. Identity-based encryption (IBE) [4–6] is the simplest
sub-class of public-key predicate encryption. IBE supports a set of equality predicates
of the form fid : Σ −→ {0, 1} defined as fid(x) = 1 if and only if x = id. The attribute
space in this case is a set of identities ID, and each identity id ∈ ID is associated
with its own secret-key skid.

Inner-Product Encryption. Inner-product encryption (IPE) [2, 3, 7, 8] is a highly
expressive sub-class of predicate encryption, supporting a set of predicates f−→v :
Σ −→ {0, 1} over a vector space of attributes Σ = Fnq (q being a λ-bit prime). Of
particular interest is a specific form of IPE called zero-IPE [3] where for −→v ,−→x ∈ Σ,
we have f−→v (−→x ) = 1 if and only if 〈−→v ,−→x 〉 = 0, where 〈−→v ,−→x 〉 denotes the inner-
product of two vectors −→v and −→x . IPE is powerful enough to encompass IBE and
many other predicate encryption systems [3].

Searchable Encryption and Function Privacy. Predicate encryption provides
a generic framework for searchable encryption supporting a wide range of query
predicates including conjunctive, disjunctive, range and subset queries [9, 1–3]. For
instance, a predicate encryption system can be used to realize a mail gateway that
follows some special instructions to route encrypted mails based on their header
information (e.g. if the mail is from the boss and needs to be treated as urgent).
The mail gateway is given the secret-key corresponding to the predicate is-urgent,
the mail header serves as the attribute, while the routing instructions can be used
as the payload message. Another application could be a payment gateway that flags
encrypted payments if they correspond to amounts beyond some pre-defined thresh-
old X. The payment gateway is given the secret-key corresponding to the predicate
greater-than-X, the payment amount itself serves as the attribute, while the flag
signal is encoded as the payload message. The attribute hiding property of the pred-
icate encryption scheme ensures that neither gateway learns any information about
the plaintext data from the entire operation.

A natural question now arises: should the gateways in the aforementioned examples
be able to learn the underlying predicate from the secret-keys given to them? The
answer in most scenarios is no - the secret-key skf should ideally reveal nothing
about the predicate f beyond the absolute minimum. This notion of predicate hid-
ing security is commonly referred to as function privacy, and predicate encryption
scheme satisfying this notion of security are described as function private.

1.1 Function Private Predicate Encryption in the Public-Key Setting

As pointed out by Boneh, Raghunathan and Segev in [10, 11], formalizing a realistic
notion of function privacy in the context of public-key predicate encryption is, in
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general, not straightforward. Consider, for example, an adversary against an IBE
scheme who is given a secret-key skid corresponding to an identity id and has access
to an encryption oracle. As long as the adversary has some apriori information that
the identity id belongs to a set S such that |S| is at most polynomial in the security
parameter λ, it can fully recover id from skid : it can simply resort to encrypting a
random message M under each identity in S, and decrypting using skid to check for
a correct recovery. Consequently, Boneh, Raghunathan and Segev [10, 11] consider
a framework for function privacy under the minimal assumption that any predicate
is sampled from a distribution with min-entropy at least super logarithmic in the
security parameter λ. This rules out trivial attacks and results in a meaningful notion
of function privacy in the public-key setting. However, their work leaves open the
following important issues, which we address in this paper:

• The predicate encryption schemes proposed in [10, 11] are inherently restricted
to satisfying a statistical notion of function privacy against computationally
unbounded adversaries. For a vast majority of applications, a more relaxed com-
putational notion of function privacy against probabilistically polynomial-time
adversaries obviously suffices. Such a relaxation is crucial, since it potentially
enables realizations of function-private predicate encryption based on weaker
computational assumptions.

• Ideally, the function privacy guarantees of any public-key predicate encryption
scheme should hold under the minimal assumption that the predicates are sam-
pled from a distribution with min-entropy k = ω(log λ) (where λ is the security
parameter), so as to rule out trivial attacks. However, the statistically function
private constructions in [10, 11] assume predicate distributions with min-entropy
k ≥ λ. This rather stringent assumption stems from their use of the universal
hash lemma for arguing the statistical indistinguishability of secret-keys against
unbounded adversaries, and limits the applicability of their constructions in the
context of real-world predicates.

In this paper, we propose a new class of public-key predicate encryption schemes
that address both the aforementioned open issues. Our constructions are compu-
tationally function-private in the standard model under well-known cryptographic
assumptions, while making only the bare minimum assumptions on the min-entropy
of the underlying predicate distributions. We believe that our schemes offer a more
relaxed and practically viable view of function privacy in the public-key setting.

1.2 Our Contributions

In this paper, we present the first concrete public-key predicate encryption schemes,
that are computationally function private against probabilistic polynomial-time ad-
versaries in the standard model. Our constructions are based on standard compu-
tational assumptions, and realize a relaxed notion of function privacy as compared
to the constructions of Boneh, Raghunathan and Segev [10, 11], which is sufficient
for most real-world applications. In order to prove function privacy, we adopt an
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indistinguishability-based framework that requires a secret-key corresponding to a
predicate sampled from a distribution with min-entropy super logarithmic in the se-
curity parameter λ, to be computationally indistinguishable from another secret-key
corresponding to a uniformly and independently sampled predicate.

Proposed Constructions. Our main result is a generic framework, denoted as
embed-augment-recover, that takes an existing predicate encryption scheme and
transforms it into a computationally function private one, while retaining its original
data privacy guarantees. The transformation works under the minimal assumption
that the underlying predicates are drawn from distributions with min-entropy at
least poly-logarithmic in the security parameter λ. Our approach leads to the fol-
lowing constructions:

• We present a family of computationally function private identity-based encryp-
tion (IBE) schemes in the standard model. Our IBE constructions are based
on the anonymous IBE scheme proposed by Gentry in [4]. Our schemes retain
the selective data privacy guarantees of the original scheme, and are addition-
ally computationally function private under progressively weaker variants of the
well-known DLIN assumption. The detailed constructions of these schemes, along
with the proofs of data and function privacy, are presented in Section 4.

• We then present a family of computationally function private inner-product en-
cryption (IPE) schemes in the standard model. Our IPE constructions based on
the seminal IPE scheme of Katz, Sahai and Waters [3]. Once again, our schemes
retain the selectively attribute hiding property of the underlying scheme, and
are computationally function private under progressively weaker variants of the
DLIN assumption. The detailed constructions of these schemes, along with the
proofs of data and function privacy, are presented in Section 5.

Advantages of Our Constructions. As compared to existing function private
realizations of predicate encryption, our constructions offer the following advantages:

• Relaxed Min-Entropy Requirements. Our constructions relax the min-
entropy assumptions on the underlying predicate distributions from ω(λ) in the
constructions of Boneh, Raghunathan and Segev [10, 11], to the bare minimum
requirement of ω(log λ) for ruling out trivial breaches of function privacy. This
is essentially enabled by relaxing the function privacy requirements from sta-
tistical privacy against unbounded adversaries to computational privacy against
probabilistic polynomial-time adversaries.

• Security in the Standard Model. Agrawal et al. [12] have recently proposed
a new universal composability-style definition of simulation-security for predi-
cate encryption, capturing both data and function privacy. To the best of our
knowledge, the only known public-key construction satisfying this wishful notion
security is an IPE scheme proposed by Agrawal et al. themselves in [12]. This
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construction is, however, secure in the generic group model; indeed achieving any
public-key predicate encryption scheme satisfying this definition under standard
computational assumptions seems extremely challenging. Our constructions also
offer both data and function privacy, but are based on standard computational
assumptions and are instantiable in the standard model.

• Avoiding Strong Assumptions such as Obfuscation. Certain existing ap-
proaches to achieving function privacy, such as that proposed by Iovino et al. in
[13], are based on strong assumptions such as indistinguishability obfuscation.
In particular, the approach of Iovino et al. assumes the existence of a quasi-
strong indistinguishability obfuscation algorithm over the class of all NC1) cir-
cuits. While this makes more approach more generic, our constructions are based
on practically realizable cryptographic primitives such as bilinear pairings, and
entirely avoid such strong assumptions.

1.3 Overview of Our Approach: Embed-Augment-Recover

We present a three-step approach - embed, augment, recover - for achieving computa-
tionally function private predicate encryption schemes. We briefly describe the main
ideas underlying each step, and exemplify them subsequently using a simple IBE
scheme. We begin by briefly describing a public-key predicate encryption scheme.

Public-key Predicate Encryption. A public-key predicate encryption scheme for
a class of predicates F over an attribute space Σ and a payload-message spaceM is a
quadruple of probabilistic polynomial time algorithms Π = (Setup,KeyGen,Enc,Dec).
The Setup algorithm takes as input the security parameter λ, and generates the pub-
lic parameter pp and the master secret-key msk for the system. The key-generation
algorithm, KeyGen takes as input the public parameter pp, the master secret-key
msk and a predicate f ∈ F , and generates a secret-key skf corresponding to f . The
Enc algorithm takes as input the public parameter pp, an attribute I ∈ Σ and a
payload-message M ∈ M, and outputs the ciphertext C = Enc (pp, I,M). The Dec
algorithm takes as input the public parameter pp, a ciphertext C and a secret-key
skf , and outputs either a payload-message M ∈M or the symbol ⊥.

Embed-Augment-Recover. Given a public-key predicate encryption scheme Π =
(Setup,KeyGen,Enc,Dec), we propose a generalized approach, termed as embed-
augment-recover, to convert the same into a function-private one. The core idea of
our approach is to base the computational function privacy of the modified scheme
on a decisional hard problem. The steps to realize this idea are as follows:

1. Embed: The KeyGen algorithm is modified to embed a randomly sampled in-
stance of the hard problem, along with a corresponding check-point element, in
any secret-key skf . The check-point element ensures that decryption using skf
succeeds if and only if the embedded instance is a valid instance of the hard prob-
lem. The public parameter pp generated by the Setup algorithm is accordingly
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updated with some additional components related to the hardness assumption,
while the master secret-key msk is retained unchanged. The modified KeyGen al-
gorithm uses the updated pp and the original msk to embed a randomly sampled
valid instance of the hard problem in each of the secret-keys.

2. Augment: In order to synchronize encryption and decryption in the pres-
ence of the modified secret-keys, the ciphertext C generated by the Enc algo-
rithm is augmented with additional random elements, derived using the hardness
assumption-related components in the updated public parameter pp. The chal-
lenge here is to ensure that this augmented ciphertext does not weaken the data
privacy guarantees of the original predicate encryption scheme.

3. Recover: Finally, the Dec algorithm cleverly the additional ciphertext com-
ponents to remove the embedding from the secret-key, and either recover the
payload message M or return ⊥.

An Example of Our Approach. We present an IBE scheme ΠIBE
1 , that is

achieved by applying our embed-augment-recover approach to Gentry’s anonymous
IBE scheme [4]. Gentry’s scheme is selectively data private in the standard model,
but not originally function private. Our scheme, on the other hand, is also compu-
tationally function private in the standard model, under the well-known decisional
linear (DLIN) assumption [14]. Let G be a group of prime order q and let g1, g2, g3 be
arbitrary generators for G. The DLIN assumption is that the distribution ensembles:{(

g1, g2, g3, g
a1
1 , ga22 , ga1+a2

3

)}
a1,a2

R←−Z∗q
and {(g1, g2, g3, g

a1
1 , ga22 , ga33 )}

a1,a2,a3
R←−Z∗q

are computationally indistinguishable, where g1, g2, g3
R←− G. We now present the

construction details for ΠIBE
1 .

• ΠIBE
1 .Setup: The setup algorithm in Gentry’s scheme samples s

R←− Z∗q , where
q is a λ-bit prime. The public parameters are (g, gs, h), where g and h are ran-
domly sampled generators of a bilinear group G of prime order q, while the

master secret-key is s. Our scheme additionally samples x1, x2, x3
R←− Z∗q and

g1, g2, g3
R←− G. The modified public parameter pp and master secret-key msk for

our scheme are as follows:

pp = (g, gs, h, gx1 , gx2 , gx3 , gs·x1 , gs·x2 , gs·x3 , g1, g2, g3, (g
x1
1 · g

x3
3 ) , (gx2

2 · g
x3
3 ))

msk = s

Note that the additional components of the public parameter pp are related to
the DLIN assumption.

• ΠIBE
1 .KeyGen: The key-generation algorithm in the Gentry’s scheme computes

a secret-key for an identity id as skid =
(
y, (h · g−y)

1/(s−id)
)

, where y
R←− Z∗q . In
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our scheme, we augment the key generation process as follows. We additionally

sample y1, y2
R←− Z∗q , and output:

skid =
(
y, gy11 , gy22 , gy1+y2

3 , (gx1
1 · g

x3
3 )

y1 · (gx2
2 · g

x3
3 )

y2 ·
(
h · g−y

)1/(s−id)
)

Note that we embed a randomly sampled valid DLIN instance
(
gy11 , gy22 , gy1+y2

3

)
in skid, along with an additional term of the form (gx1

1 · g
x3
3 )

y1 ·(gx2
2 · g

x3
3 )

y2 . This
term serves as a check-point: it allows decryption only if the corresponding DLIN
instance embedded in the secret-key is valid.

• ΠIBE
1 .Enc: An encryption of a message M for an identity id in the Gentry’s

scheme is a tuple of the form
(
gr·(s−id), e (g, g)

r
,M · e (g, h)

−r
)

, where r
R←− Z∗q .

In our scheme, we augment the encryption process to produce the ciphertext:

C =
(
gr·(s−id), gr·x1·(s−id), gr·x2·(s−id), gr·x3·(s−id) , e (g, g)

r
,M · e (g, h)

−r
)

Note that the augmented ciphertext in our scheme retains unaltered the ci-
phertext of the original scheme, with which the remaining components share a
common source of randomness r. This also justifies the inclusion of the addi-
tional elements (gx1 , gx2 , gx3) and (gs·x1 , gs·x2 , gs·x3) in the public parameter pp.

• ΠIBE
1 .Dec: On input of a ciphertext C = (c0, c1, c2, c3, c4, c5), and a secret-key

skid = (d0, d1, d2, d3, d4), the decryption algorithm recovers the encrypted mes-
sage M as:

M =
c5 · cd04 · e (d4, c0)

e (d1, c1) · e (d2, c2) · e (d3, c3)

Observe that at the core of the above computation is the original decryption pro-
cedure in the Gentry’s scheme, with the additional components in the ciphertext
and the secret-key canceling out each other via the pairing property. Note that
this cancellation is subject to the condition that the DLIN instance originally
embedded in skid is valid, which is ensured by the check-point term in d4.

A generalization of the above scheme is presented in greater detail in Section 4, along
with proofs for data and function privacy.

1.4 Potential Extensions of Our Approach

While we present our embed-augment-recover approach in the context of function
privacy for public-key predicate encryption, it readily be extended in the context of
private-key predicate encryption, as well as multi-input predicate encryption.

Function Privacy for Private-Key Predicate Encryption. Our methodol-
ogy is equally applicable for achieving computationally function private predicate
encryption schemes in the private-key setting. In fact, in the private-key setting,
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our approach works even if the underlying predicates are not necessarily sampled
from distributions with at least super-logarithmic min-entropy. In particular, the
core function privacy arguments for our constructions presented in this paper do
not essentially rely on the unpredictability of the predicate distributions; this as-
sumption is additionally made to rule out trivial attacks in the public-key setting.
Consequently, our approach anticipates an expansion to the existing body of work in
designing function private predicate encryption schemes in the private-key setting.

Function Privacy for Multi-Input Predicate Encryption. Multi-input pred-
icate encryption (MIPE) introduced by Goldwasser et al. [15] is a generalization of
functional encryption to the setting of multi-input predicates. An MIPE scheme has
several encryption slots and each decryption key skf for a multi-input predicate f
jointly decrypts the ciphertexts Enc(I1), ...,Enc(In) for all slots to obtain f (I1, ..., In)
without revealing anything more about the encrypted attributes. In particular, this
provides a framework to evaluate bounded-norm multi-input IPE: each predicate is
specified by a collection of vectors −→v 1, · · · ,−→v n, and takes as input a collection of
vectors −→x 1, · · · ,−→x n to output f−→v 1,··· ,−→v n

(−→x 1, · · · ,−→x n) =
∑n
i=1 〈
−→v i,−→x i〉. We point

out that our technique can be easily generalized to obtain function private IPE
schemes in the multi-input setting as follows: we first use our technique to obtain a
function private IPE construction in the single-input setting, and then run n inde-
pendent copies of this construction. The ith copy is used to encrypt −→x i in the ith

slot, while the new secret-key is the ensemble of the n secret-keys corresponding to
−→v 1, · · · ,−→v n. The decryption algorithm computes each inner product individually,
and returns their sum. Although this means that the adversary also learns each in-
dividual inner product, this is an inherent leakage in the public-key setting and does
not weaken the security guarantees.

1.5 Paper Organization

The remainder of this paper is organized as follows. Section 2 presents background
material on predicate encryption and computational assumptions in bilinear groups.
In Section 3, we formally define our framework for the computational function pri-
vacy of public-key predicate encryption. In Section 4, we present a family of adap-
tively data private and computationally function private IBE schemes in the random-
oracle model. In Section 5, we present a family of selectively attribute hiding and
computationally function private IPE schemes in the standard model. Finally, Sec-
tion 6 concludes the paper and enumerates several extensions and open problems.

1.6 Notations Used

We write x
R←− χ to represent that an element x is sampled uniformly at random

from a set X . The output a of a deterministic algorithm A is denoted by x ← A
and the output a′ of a randomized algorithm A′ is denoted by x′

R←− A′. We refer
to λ ∈ N as the security parameter, and denote by exp(λ), poly(λ) and negl(λ)
any generic (unspecified) exponential function, polynomial function and negligible
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function in λ respectively. Note that a function f : N→ N is said to be negligible in λ
if for every positive polynomial p, f(λ) < 1/p(λ) when λ is sufficiently large. Finally,
for a, b ∈ Z such that a ≤ b, we denote by [a, b] the set of integers lying between a
and b (both inclusive). The min-entropy of a random variable Y is called H∞(Y ) and
is evaluated as log (maxyPr[Y = y]); a random variable Y is said to be a k-source if
H∞(Y ) ≥ k. A (T, k)-block-source is a random variable Y = (Y1, · · · , YT ) where for
each i ∈ [1, T ] and y1, · · · , yi−1, it holds that H∞(Yi|Y1 = y1, · · · , Yi−1 = yi−1) ≥ k.

2 Preliminaries

Data Privacy of Public-Key Predicate Encryption. We recall the standard
notion of attribute hiding data privacy for a predicate encryption scheme against an
adaptive probabilistic polynomial-time adversary.

Definition 2.1 (Adaptively Data Private Predicate Encryption). A predicate en-
cryption scheme Π = (Setup,KeyGen,Enc,Dec) is said to be adaptively data private
if for any probabilistic polynomial-time adversary A, the following holds:

AdvDP
Π,A(λ)

def
=

∣∣∣∣Pr
[
Expt

(0)
DP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
DP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and b ∈ {0, 1}, the experiment Expt
(b)
DP,Π,A(λ) is defined as:

1. (pp,msk)
R←− Setup

(
1λ
)
.

2. ((I∗0 ,M
∗
0 ) , (I∗1 ,M

∗
1 ) , state)

R←− AKeyGen(msk,·) (state), where I∗0 , I
∗
1 ∈ Σ and

M∗0 ,M
∗
1 ∈ M, subject to the restriction that for each predicate fi with

which A queries KeyGen (msk, ·), we have fi (I∗0 ) = fi (I∗1 ).

3. C∗
R←− Enc (pp, I∗b ,M

∗
b ).

4. b′
R←− AKeyGen(msk,·) (C∗, state), once again subject to the restriction that for

each predicate fi with which A queries KeyGen (msk, ·), we have fi (I∗0 ) =
fi (I∗1 ).

5. Output b′.

The above notion of adaptive data privacy is referred to as DP throughout the rest of
the paper. There also exists a selective variant of the above security notion, referred
to as sDP throughout the rest of the paper, that requires the adversary to commit
to the challenge pair of attributes (I∗0 , I

∗
1 ) before seeing the public parameters of the

scheme.

The Generalized Decisional k-Linear Assumption (k-DLIN). Let G be a
group of prime order q and let g1, · · · , gk+1, gk+2 be arbitrary generators for G,
for k ≥ 1. The generalized decisional k-linear assumption is that the distribution
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ensembles:{(
g1, · · · , gk+1, gk+2, g

a1
1 , · · · , gak+1

k+1 , g
∑k+1

j=1 aj
k+2

)}
a1,··· ,ak+1

R←−Z∗q
and{(

g1, · · · , gk+1, gk+2, g
a1
1 , · · · , gak+1

k+1 , g
ak+2

k+2

)}
a1,··· ,ak+1,ak+2

R←−Z∗q

are computationally indistinguishable, where g1, · · · , gk+1, gk+2
R←− G.

Note that 1-DLIN is essentially equivalent to the well-known DLIN assumption [14].
Moreover, the k-DLIN assumption implies the (k+1)-DLIN assumption for all k ≥ 1,
but the reverse is not necessarily true. In other words, the k-DLIN assumption family
is a family of progressively weaker assumptions.

3 Computational Function Privacy of Public-Key Predicate
Encryption

In this section, we formally define the indistinguishability-based framework for com-
putational function privacy of predicate encryption in the public-key setting. We
consider adversaries that have access to the public parameters of the scheme, as
well as a secret-key generation oracle. The adversary can also adaptively interact
with a real-or-random function-privacy oracle RoRFP. This oracle takes as input any
adversarially-chosen distribution over the class of predicates F , subject to certain
min-entropy requirements. It outputs a secret-key either for a predicate sampled
from the given distribution, or for a predicate sampled uniformly at random from
F . At the end of the interaction, the adversary should be able to distinguish between
these real and random modes of operation of RoRFP with only negligible probability.

Definition 3.1 (Real-or-Random Function Privacy Oracle). A real-or-random func-
tion privacy oracle RoRFP takes as input triplets of the form (mode,msk,F), where
mode ∈ {real, rand}, msk is the master secret-key of the predicate encryption scheme,
and F is a circuit representing a distribution over the class of predicates F . If

mode = real, the oracle samples f
R←− F, while if mode = rand, it samples f

R←− F .

It then responds with skf
R←− KeyGen (msk, f).

Definition 3.2 (Computational Function Privacy). A predicate encryption scheme
Π = (Setup,KeyGen,Enc,Dec) is said to be computationally function private if for
any probabilistic polynomial-time adversary A, the following holds:

AdvFP
Π,A(λ)

def
=

∣∣∣∣Pr
[
ExptrealFP,Π,A(λ) = 1

]
− Pr

[
ExptrandFP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and mode ∈ {real, rand}, the experiment Exptmode
FP,Π,A(λ) is

defined as follows:

1. (pp,msk)
R←− Setup

(
1λ
)
.
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2. b
R←− ARoRFP(mode,msk,·),KeyGen(msk,·) (1λ, pp), subject to the restriction that

each Fi with which A queries RoRFP (mode,msk, ·) represents a distribution
with min-entropy k = ω (log λ).

3. Output b.

Note that our definitions are generic, and may be suitably adopted for IBE, IPE and
other classes of predicate encryption.

Min-Entropy Requirements. In our definitions for computational function pri-
vacy, the adversary is allowed to adaptively issue a polynomial number of queries
to the RoRFP oracle, as long as the queries correspond to distributions with min-
entropy k = ω (log λ). In the absence of this restriction, an adversary can trivially
distinguish the between the real and random modes of the oracle by encrypting a
message under each f ∈ F, and then using the secret-key skf output by the oracle to
check for successful decryption. In particular, the following restrictions are pertinent
to the forthcoming discussions:

• A function privacy adversary against an IBE scheme is allowed to query the
real-or-random oracle with a circuit ID∗ ∈ ID if and only if ID∗ represents a
k-source such that k = ω (log λ).

• A function privacy adversary against an IPE scheme is allowed to query the real-
or-random oracle with a circuit V∗ = (V ∗1 , · · · , V ∗n ) ∈ Fnq if and only if V∗ is
an (n, k)-block source such that k = ω (log λ). Additionally, the component-wise
distributions {V ∗i }i∈[1,n] should be mutually uncorrelated; otherwise, the adver-
sary can create circuits corresponding to vectorial distributions with arbitrary
inter-component correlations to trivially distinguish the real and random modes
of operation of the oracle [11].

4 Computationally Function Private Identity-Based
Encryption from the k-DLIN Assumption

In this section, we present an IBE scheme, denoted as ΠIBE
k , that is computationally

function private under the k-DLIN assumption. The simplest version of the scheme
(for k = 1) has already been illustrated in Section 1.3. In the forthcoming discussion,
we present the generalized version of the scheme for any k ≥ 1, along with detailed
proofs for data and function privacy. As stated earlier, this scheme is obtained by
applying our embed-augment-recover methodology to the anonymous IBE scheme
proposed by Gentry in [4].

Gentry’s IBE Scheme. We briefly recall the original IBE scheme of Gentry. Let
GroupGen(1λ) be a probabilistic polynomial-time algorithm that takes as input a
security parameter λ, and outputs the tuple (G,GT , q, g, e), where G and GT are
groups of of order q (q being a λ-bit prime), g is a generator for G and e : G×G −→

11



GT is an efficiently computable non-degenerate bilinear map. Gentry’s IBE scheme
ΠIBE

G = (Setup,KeyGen,Enc,Dec) is defined over the identity space ID = Z∗q and
the message space M = {Mλ}λ∈N as follows:

• ΠIBE
G .Setup: The setup algorithm samples (G,GT , q, g, e)

R←− GroupGen(1λ) on

input the security parameter 1λ. It also samples s
R←− Z∗q and h

R←− G, and outputs
the public parameter pp and the master secret-key msk as:

pp = (g, gs, h) , msk = s

• ΠIBE
G .KeyGen: On input the public parameter pp, the master secret-key msk and

an identity id ∈ ID, the key generation algorithm samples y
R←− Z∗q and outputs

the secret-key skid = (d0, d1) where:

d0 = y , d1 =
(
h · g−y

)1/(s−id)

• ΠIBE
G .Enc: On input the public parameter pp, an identity id ∈ ID and a message

M ∈ M, the encryption algorithm samples r
R←− Z∗q and outputs the ciphertext

C = (c0, c1, c2) where:

c0 = gr·(s−id) , c1 = e (g, g)
r

, c2 = M · e (g, h)
−r

• ΠIBE
G .Dec: On input a ciphertext C = (c0, c1, c2) and a secret-key skid = (d0, d1),

the decryption algorithm computes:

M ′ = cd01 · c2 · e (d1, c0)

If M ′ ∈M, the decryption algorithm outputs M ′, else it outputs ⊥.

While the above scheme is selectively data private, its function privacy cannot be
based on any standard cryptographic assumption to the best of our knowledge.

4.1 Our Function Private IBE Scheme

We now present the construction for our function private IBE scheme ΠIBE
k . For

the ease of understanding, we highlight the principal alterations made to Gentry’s
scheme as per our embed-augment-recover approach.

• ΠIBE
k .Setup: The setup algorithm samples (G,GT , q, g, e)

R←− GroupGen(1λ) on

input the security parameter 1λ. It also samples s, x1, x2, · · · , xk+2
R←− Z∗q as well

as g1, g2, · · · , gk+2, h
R←− G. It outputs the public parameter pp and the master

secret-key msk as:

pp =
(
g, gs, h, {gxj , gs·xj}j∈[1,k+1], g1, · · · , gk+2, {g

xj

j · g
xk+2

k+2 }j∈[1,k+1]

)
msk = s
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• ΠIBE
k .KeyGen: On input the public parameter pp, the master secret-key msk and

an identity id ∈ ID, the key generation algorithm samples y, y1, y2 · · · , yk+1
R←− Z∗q

and outputs the secret-key skid = (d0, d1, · · · , dk+3) where:

d0 = y , dj = g
yj
j for j ∈ [1, k + 1]

dk+2 = g
∑k+1

j=1 yj
k+2 , dk+3 =

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj · (h · g−y)1/(s−id)

Observe that we essentially embed a valid k-DLIN instance in the original secret-
key of Gentry’s scheme.

• ΠIBE
k .Enc: On input the public parameter pp, an identity id ∈ ID and a message

M ∈ M, the encryption algorithm samples r
R←− Z∗q and outputs the ciphertext

C = (c0, c1, · · · , ck+4) where:

c0 = gr·(s−id) , cj = gr·xj ·(s−id) for j ∈ [1, k + 2]

ck+3 = e (g, g)
r

, ck+4 = M · e (g, h)
−r

Observe that the augmented ciphertext retains unaltered the components of the
original ciphertext in Gentry’s scheme.

• ΠIBE
k .Dec: On input a ciphertext C = (c0, · · · , ck+4) and a secret-key skid =

(d0, · · · , dk+3), the decryption algorithm computes:

M =
ck+4 · cd0k+3 · e (dk+3, c0)∏k+2

j=1 e (dj , cj)

If M ′ ∈M, the decryption algorithm outputs M ′, else it outputs ⊥.

Correctness. Consider a ciphertext C = (c0, · · · , ck+4) corresponding to a message
M under an identity id, and a secret-key skid = (d0, · · · , dk+3) corresponding to the
same identity id. Then, we have:

M = M · e (g, h)
−r · e (g, g)

r·y · e
((
h · g−y

)1/(s−id)
, gr·(s−id)

)

·

 e
((∏k+1

j=1

(
g
xj

j · g
xk+2

k+2

)yj)
, gr·(s−id)

)
(∏k+1

j=1 e
(
g
yj
j , (g

xj )
r·(s−id)

))
· e
(
g
∑k+1

j=1 yj
k+2 , (gxk+2)

r·(s−id)

)


= M ·

(∏k+1
j=1 e

(
g
xj ·yj
j , gr·(s−id)

))
· e
(
g
xk+2·

∑k+1
j=1 yj

k+2 , gr·(s−id)

)
(∏k+1

j=1 e
(
g
yj
j , (g

xj )
r·(s−id)

))
· e
(
g
∑k+1

j=1 yj
k+2 , (gxk+2)

r·(s−id)

)
= M
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Therefore as long as the ciphertext and the secret-key correspond to the same iden-
tity, the message is recovered correctly. Again, when the ciphertext and the secret-
key correspond to two different identities, say id and id′ respectively, the decryption
algorithm computes:

M ′ = M · e (g, h)
−r · e (g, g)

r·y · e
((
h · g−y

)1/(s−id′)
, gr·(s−id)

)
We may assume here that M is a small subset of GT , namely |M| < |GT |1/2. This
is not very serious since the space of valid messages in reality is expected to be

significantly smaller than |GT |1/2. This restriction ensures that the probability of

M ′ still lying in M, for y, r
R←− Z∗q , is negligible in the security parameter λ. This

completes the proof of correctness for our generalized IBE scheme ΠIBE
k .

4.2 Security of Our IBE Scheme

In this section, we formally prove the selective data privacy and computational
function privacy of our IBE scheme ΠIBE

k .

Selective Data Privacy. We state the following theorem for the selective data
privacy of ΠIBE

k :

Theorem 4.1 Our IBE scheme ΠIBE
k is selectively data private in the standard

model if Gentry’s scheme ΠIBE
G is selectively data private in the standard model.

Proof. Let A be any probabilistic polynomial-time adversary such that:

AdvsDP
ΠIBE

k ,A(λ) =

∣∣∣∣Pr
[
Expt

(0)

sDP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
Expt

(1)

sDP,ΠIBE
k ,A(λ) = 1

] ∣∣∣∣ = ε

where ε > negl(λ). We construct a polynomial-time algorithm B such that:

AdvsDP
ΠIBE

G ,B(λ) =

∣∣∣∣Pr
[
Expt

(0)

sDP,ΠIBE
G ,B(λ) = 1

]
− Pr

[
Expt

(1)

sDP,ΠIBE
G ,B(λ) = 1

] ∣∣∣∣ = ε

B interacts with A in the selective data privacy experiment as follows:

• Init: A commits to the challenge identity pair (id∗0, id
∗
1). B also commits to the

same identity pair.

• Setup: B begins by obtaining the public parameter pp = (g, gs, h) for ΠIBE
G . It

then samples x1, · · · , xk+2
R←− Z∗q and g1, g2, · · · , gk+2

R←− G and provides A with
the modified public parameter:

pp′ =
(
g, gs, h, {gxj , gs·xj}j∈[1,k+1], g1, · · · , gk+2, {g

xj

j · g
xk+2

k+2 }j∈[1,k+1]

)
14



• Secret-Key Queries: When A issues a secret-key query for idi ∈ ID, B for-
wards the query to the key-generation oracle for ΠIBE

G , and receives skidi =

(d0, d1). It then samples y1, y2, · · · , yk+1
R←− Z∗q and responds to A with the

secret-key:

sk′idi =

d0, g
y1
1 , gy22 , · · · , gyk+1

k+1 , g
∑k+1

j=1 yj
k+2 ,

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj · d1


• Challenge: A outputs the challenge message pair (M∗0 ,M

∗
1 ). B outputs the same

challenge message pair and receives the challenge ciphertext C∗ = (c∗0, c
∗
1, c
∗
2) for

ΠIBE
G . It then computes the challenge ciphertext for A as:

C ′
∗

= (c∗0, (c
∗
0)
x1 , (c∗0)

x2 · · · , (c∗0)
xk+2 , c∗1, c

∗
2)

• Output: Finally, B outputs the same bit b′ as output by A.

It is easy to see that B’s simulation is perfect and hence, it has the same advantage
ε as A in the selective data privacy game. This completes the proof of Theorem 4.1.

Computational Function Privacy. We state the following theorem for the com-
putational function privacy of ΠIBE

k :

Theorem 4.2 Our IBE scheme ΠIBE
k is function private under the k-DLIN as-

sumption for identities sampled uniformly from k-sources with k = ω (log λ).

Proof. The proof follows directly from the following claim:

Claim 4.1 For any probabilistic polynomial-time adversary A, the following holds:∣∣∣∣Pr
[
ExptrealFP,ΠIBE

k ,A(λ) = 1
]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-
time adversary such that:∣∣∣∣Pr

[
ExptrealFP,ΠIBE

k ,A(λ) = 1
]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣ = ε

where ε > negl(λ). We construct an algorithm B that solves an instance of the k-
DLIN problem with non-negligible advantage ε′ ≥ ε/2. B receives as input a k-DLIN
instance

(
g1, · · · , gk+2, g

a1
1 , · · · , gak+2

k+2

)
and interacts with A as follows:

• Setup: B samples s, x1, · · · , xk+2
R←− Z∗q and g1, · · · , gk+2, h

R←− G. It outputs the
public parameter pp and the master secret-key msk as:

pp =
(
g, gs, h, {gxj , gs·xj}j∈[1,k+1], g1, · · · , gk+2, {g

xj

j · g
xk+2

k+2 }j∈[1,k+1]

)
msk = s
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• Secret-Key Queries: When A issues a secret-key query for some identity idi, B
responds with skidi = ΠIBE

k .KeyGen (pp,msk, idi).

• Real-or-Random Query: Suppose A queries the real-or-random oracle with
ID∗ - a circuit representing a k-source over the identity space ID such that k =

ω (log λ). B uniformly samples mode
R←− {real, rand}. If mode = real, it samples

id∗
R←− ID∗; otherwise, it samples id∗

R←− ID. It then responds with the secret-key
skid∗ as:

skid∗ =

y, ga11 , · · · , gak+2

k+2 ,

k+2∏
j=1

(
g
aj
j

)xj

 · (h · g−y)1/(s−id∗)


where ga11 , · · · , gak+2

k+2 are part of its input instance and y
R←− Z∗q .

• Output: Finally, B outputs the same bit b as output by A.

Observe that the requirement that ID∗ is a circuit representing a k-source over
the identity space ID, such that k = ω (log λ), ensures that the polynomial-time
adversary A cannot trivially determine if id∗ ∈ ID∗ by exhaustively encrypting a
random message M under each identity in ID∗, and decrypting using skid∗ to check
for a correct recovery. We now state and prove the following claims:

Claim 4.2 When ak+2 =
∑k+1
j=1 aj, the joint distribution of mode and the secret-key

skid∗ in the simulation by the algorithm B is computationally indistinguishable from
that in the experiment Exptmode

FP,ΠIBE
k ,A(λ).

Proof. Note that the sampling of id∗ from either ID∗ or ID by B is consistent with
its random choice of mode. Additionally, when ak+2 =

∑k+1
j=1 aj , the secret-key skid∗

takes the form:

skid∗ =

y, ga11 , · · · , g
∑k+1

j=1 aj
k+2 ,

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)aj · (h · g−y)1/(s−id∗)


which is exactly what the response of the real-or-random oracle in the experiment
Exptmode

FP,ΠIBE
k ,A(λ) should be. This completes the proof of Claim 4.2.

Claim 4.3 When ak+2 is uniformly random in Z∗q , the distribution of the secret-key
skid∗ is independent of B’s choice of mode.

Proof. Note that B’s choice of mode essentially determines whether the identity id∗

is sampled from the adversarially-chosen distribution ID∗ or uniformly at random
from ID. Consequently, the only component of skid∗ that should be distributed in

accordance with mode is the final component d∗k+3 = δ · (h · g−y)
1/(s−id∗)

, where
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δ =
∏k+2
j=1

(
g
aj
j

)xj
. Now, let gj = gzj for j ∈ [1, k + 2], and let hj = g

xj

j · g
xk+2

k+2 for
j ∈ [1, k + 1]. Now, consider the following system of equations, determined by the
public parameters pp and the secret-key skid∗ :

logg h1 = x1 · z1 + xk+2 · zk+2

...

logg hk+1 = xk+1 · zk+1 + xk+2 · zk+2

logg δ =

k+2∑
j=1

aj · xj · zj

Since ak+2 is uniformly random in Z∗q , with all but negligible probability, we have

that ak+2 6=
∑k+1
j=1 aj , which makes the aforementioned system of equations linearly

independent. Hence, the conditional distribution of δ (where the conditioning is on
B’s choice of mode and everything else in A’s view) is uniform. In other words, δ
acts as a perfect one-time pad in the only component of skid∗ that contains id∗, thus
making it independent of mode 1. This completes the proof of Claim 4.3.

It now follows from Claims 4.2 and 4.3 that the advantage ε′ of B in solving the
k-DLIN instance may be quantified as:

ε′ =

∣∣∣∣Pr

[
B
(
g1, · · · , gk+2, g

a1
1 , · · · , gak+1

k+1 , g
∑k+1

j=1 aj
k+2

)
= 1

]
− Pr

[
B
(
g1, · · · , gk+2, g

a1
1 , · · · , gak+1

k+1 , g
ak+2

k+2

)
= 1
] ∣∣∣∣

=

∣∣∣∣Pr
[
Exptmode

FP,ΠIBE
k ,A(λ) = 1

]
− 1

2

∣∣∣∣
=

1

2

∣∣∣∣Pr
[
ExptrealFP,ΠIBE

k ,A(λ) = 1
]
− 1

2

∣∣∣∣+
1

2

∣∣∣∣Pr
[
ExptrandFP,ΠIBE

k ,A(λ) = 1
]
− 1

2

∣∣∣∣
≥ 1

2

∣∣∣∣ (Pr
[
ExptrealFP,ΠIBE

k ,A(λ) = 1
]
− 1

2

)
−
(

Pr
[
ExptrandFP,ΠIBE

k ,A(λ) = 1
]
− 1

2

) ∣∣∣∣
=

1

2

∣∣∣∣Pr
[
ExptrealFP,ΠIBE

k ,A(λ) = 1
]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣

= ε/2

where the probability is taken over all possible choices of a1, · · · , ak+2
R←− Z∗q and all

possible choices of g1, · · · , gk+2
R←− G. This completes the proof of Theorem 4.2.

1
This is an adaptation of the same argument used in the proof of security for the well-known Cramer-
Shoup cryptosystem [16], albeit in the context of the k-DLIN assumption
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5 Computationally Function Private Inner-Product
Encryption from the k-DLIN Assumption

In this section, we present a zero-IPE scheme, denoted as ΠIPE
k , that is computa-

tionally function private under the k-DLIN assumption. This scheme is obtained
by applying our embed-augment-recover methodology to the zero-IPE scheme of
Katz, Sahai and Waters (KSW)[3]. As in the original scheme, our scheme is de-
fined over the set of attributes Σ = ZnN (N being a product of three primes q1, q2

and q3), and the class of vectorial predicates F = {f−→v | −→v ∈ ZnN}, such that for
I = (I1, · · · , In) ∈ ZnN , we have f−→v (I) = 1 if and only if 〈−→v , I〉 = 0 mod N .

Construction Overview. Let G be a bilinear group of order N = q1q2q3 (each of
q1, q2 and q3 being λ-bit primes), and let G1, G2 and G3 denote the subgroups of
G of order q1, q2 and q3, respectively. Also, let ê : G × G −→ GT be an efficiently
computable non-degenerate bilinear map, where GT is also a group of order N . Note
that if g is the generator for G, then the element g1 = gq2·q3 is a generator for G1, the
element g2 = gq1·q3 is a generator for G2, and the element g3 = gq1·q2 is a generator
for G3. Furthermore, for any elements h1 ∈ G1, h2 ∈ G2 and h3 ∈ G3, we have
ê (h1, h2) = ê (h2, h3) = ê (h1, h3) = 1. Also, let GroupGen′(1λ) be a probabilistic
polynomial-time algorithm that takes as input a security parameter λ, and outputs
the tuple (G,GT , q1, q2, q3, g1, g2, g3, ê). Finally, the payload message space M is

assumed to be a small subset of GT , namely |M| < |GT |1/2. Our function private
zero-IPE scheme uses the three subgroups for three distinct roles:

• The subgroup G2 is used to encode the vectors −→v and I in the secret-key and
the ciphertexts, respectively, and to compute the inner product 〈−→v , I〉 in the
exponent of a bilinear map computation.

• The subgroup G1 serves a dual purpose in our scheme. On one hand, it has
the effect of masking the inner product computation in G2, and preventing the
adversary from improperly manipulating the computation in any way to reveal
information about the underlying attributes. In particular, it is pivotal in en-
suring the non-malleability of the secret-keys and ciphertexts generated by the
scheme. On the other hand, it is in the G1 subgroup that we incorporate our
embed-augment-recover methodology to achieve computational function privacy.

• The subgroup G3 serves as an additional layer of masking for the other sub-
groups. In particular, random elements sampled from G3 are multiplied with
various components in both the secret-keys as well as the ciphertexts to hide
possible information leakages from the subgroups G1 and G2.

Alterations to the KSW Scheme. We apply our embed-augment-recover ap-
proach to the KSW scheme to achieve computational function privacy. We provide
an informal overview of the alterations made to the original scheme; the detailed
construction is presented subsequently:
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• Secret-Key Generation: The KSW scheme generates secret-keys of the form
sk−→v =

(
d0, {d1,i, d2,i}i∈[1,n]

)
, where the tuple (d1,i, d2,i) corresponds to the

ith component of the predicate vector −→v . In our scheme, we modify the key-
generation algorithm to generate secret-keys of the form:

sk′−→v =
(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)
such that for each i ∈ [1, n], the components {dj1,i}j∈[0,k+2] and {dj2,i}j∈[0,k+2]

are obtained by embedding independent and uniformly random valid k-DLIN
instances in the original secret-key components components d1,i and d2,i, re-
spectively. All embeddings are performed in the group G1; consequently, the
function privacy guarantees of our zero-IPE scheme follow from the hardness of
the k-DLIN problem in the group G1.

• Encryption: As in our IBE construction, the modified encryption algorithm in
our IPE construction retains unaltered the original ciphertext components from
the KSW scheme. The ciphertext is augmented to include additional components
that synchronize decryption with the modified secret-keys. These components
naturally belong to the group G1 (same as the k-DLIN instances embedded in
the modified secret-keys), and are additionally masked using uniformly random
elements from G3. The masking ensures that the augmented ciphertexts do not
weaken the data privacy guarantees of the original scheme.

• Decryption: Finally, the decryption algorithm uses the aforementioned addi-
tional ciphertext components to remove the effect of embedding the k-DLIN
instances in the secret-key, and recovers the payload message M or returns ⊥.

5.1 Construction Details for Our Zero-IPE Scheme

We now present the detailed construction for our zero-IPE scheme ΠIPE
k . Due to

space constraints, we avoid presenting the original IPE scheme of Katz, Sahai and
Waters (the reader is referred to [3] for details of the original construction). However,
we highlight the alterations made to the original scheme for ease of understanding.

• ΠIPE
k .Setup: The setup algorithm samples the following:

• (G,GT , q1, q2, q3, g1, g2, g3, ê)
R←− GroupGen′(1λ)

• {x1,j , x2,j
R←− Z∗q1}j∈[1,k+2] and {g1,j , g2,j

R←− G1}j∈[1,k+2]

• {h1,i, h2,i
R←− G1}i∈[1,n] and {Rj1,i, R

j
2,i

R←− G3}i∈[1,n],j∈[0,k+2]

• h R←− G1, γ
R←− Z∗q1 and R3

R←− G3

Next, it sets:

Q = g2 ·R3

S0
1,i = h1,i ·R0

1,i , S0
2,i = h2,i ·R0

2,i for i ∈ [1, n]

Sj1,i = h
x1,j

1,i ·R
j
1,i , Sj2,i = h

x2,j

2,i ·R
j
2,i for i ∈ [1, n], j ∈ [1, k + 2]
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and outputs the public parameter pp and the master secret-key msk as:

pp =

(
g1, g3, Q, {Sj1,i, S

j
2,i}i∈[1,n],j∈[0,k+2], ê (g1, h)

γ
,

{g1,j , g2,j}j∈[1,k+2], {g
x1,j

1,j · g
x1,k+2

1,k+2 , g
x2,j

2,j · g
x2,k+2

2,k+2 }j∈[1,k+1]

)
msk =

(
q1, q2, q3, g2, {h1,i, h2,i}i∈[1,n], h

γ
)

• ΠIPE
k .KeyGen: On input the public parameter pp, the master secret-key msk and

a vector −→v = (v1, · · · , vn), the key generation algorithm samples the following:

• {z1,i, z2,i
R←− Z∗q1}i∈[1,n]

• {yj1,i, y
j
2,i

R←− Z∗q1}i∈[1,n],j∈[1,k+1]

• Q4
R←− G2, R5

R←− G3

• f1, f2
R←− Z∗q2

As in the original scheme, it first sets:

d0 = Q4 ·R5

/(
hγ ·

n∏
i=1

h
z1,i
1,i · h

z2,i
2,i

)

Next, it sets:

d0
1,i = g

z1,i
1 · gf1·vi2

/k+1∏
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i for i ∈ [1, n]

d0
2,i = g

z2,i
1 · gf2·vi2

/k+1∏
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i for i ∈ [1, n]

Finally, it sets the following additional components:

dj1,i = g
yj1,i
1,j , dj2,i = g

yj2,i
2,j for i ∈ [1, n], j ∈ [1, k + 1]

dk+2
1,i = g

∑k+1
j=1 y

j
1,i

1,k+2 , dk+2
2,i = g

∑k+1
j=1 y

j
2,i

2,k+2 for i ∈ [1, n]

and outputs the secret-key sk−→v as:

sk−→v =
(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)
Note that the additional embeddings

(∏k+1
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i)
and

(∏k+1
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i)
serve as check-points for the validity of the corresponding k-DLIN instances.

• ΠIPE
k .Enc: On input the public parameter pp, an attribute I = (I1, · · · , In) ∈ ZnN

and a payload message M ∈M, the encryption algorithm samples the following:
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• r, α, β R←− Z∗N

• {Qj6,i, Q
j
7,i

R←− G2}i∈[1,n],j∈[1,k+2]

• {Rj8,i, R
j
9,i

R←− G3}i∈[1,n],j∈[0,k+2]

where the Qj6,i and Qj7,i values are sampled using Q from the public parameter.
It then sets the following:

c0 = gr1

c01,i =
(
S0

1,i

)r ·Qα·Ii ·R0
8,i , c02,i =

(
S0

2,i

)r ·Qβ·Ii ·R0
9,i for i ∈ [1, n]

cj1,i =
(
Sj1,i

)r
·Qj6,i ·R

j
8,i , cj2,i =

(
Sj2,i

)r
·Qj7,i ·R

j
9,i for i ∈ [1, n], j ∈ [1, k + 2]

Finally, it sets c3 = M · (ê (g1, h)
γ
)
r

and outputs the ciphertext C as:

C =
(
c0, {cj1,i, c

j
2,i}i∈[1,n],j∈[0,k+2], c3

)

Observe that the augmented ciphertext retains unaltered the ciphertext compo-
nents of the original scheme. Also, notice that the additional ciphertext compo-
nents {cj1,i, c

j
2,i}i∈[1,n],j∈[1,k+2] are masked using random elements from both G2

and G3. The double masking is necessary to ensure data privacy, as will be ex-
plained in the subsequent discussion.

• ΠIPE
k .Dec: On input a ciphertext C =

(
c0, {cj1,i, c

j
2,i}i∈[1,n],j∈[0,k+2]

)
and a secret-

key sk−→v =
(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)
, the decryption algorithm computes:

M ′ = c3 · ê (d0, c0) ·

 n∏
i=1

k+2∏
j=0

ê
(
dj1,i, c

j
1,i

)
· ê
(
dj2,i, c

j
2,i

)

If M ′ ∈M, the decryption algorithm outputs M ′, else it outputs ⊥.
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Correctness. To see that correctness holds for our zero-IPE scheme, let C and sk−→v
be as described in Section 5. Then we have:

M ′ = c3 · ê (d0, c0) ·

 n∏
i=1

k+2∏
j=0

ê
(
dj1,i, c

j
1,i

)
· ê
(
dj2,i, c

j
2,i

)
= M ·

(
n∏
i=1

ê
(
gf1·vi2 , gα·Ii2

)
· ê
(
gf2·vi2 , gβ·Ii2

))

·

(
(ê (g1, h)

γ
)
r ·
∏n
i=1 ê

(
g
z1,i
1 , hr1,i

)
· ê
(
g
z2,i
1 , hr2,i

)
ê (hγ , gr1) · ê

(∏n
i=1 h

z1,i
1,i · h

z2,i
2,i , g

r
1

) )

·
n∏
i=1


(∏k+1

j=1 ê

(
g
yj1,i
1,j ,

(
h
x1,j

1,i

)r)) · ê(g∑k+1
j=1 y

j
1,i

1,k+2 ,
(
h
x1,k+2

1,i

)r)
ê

(∏k+1
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i
, hr1,i

)


·
n∏
i=1


(∏k+1

j=1 ê

(
g
yj2,i
2,j ,

(
h
x2,j

2,i

)r)) · ê(g∑k+1
j=1 y

j
2,i

2,k+2 ,
(
h
x2,k+2

2,i

)r)
ê

(∏k+1
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i
, hr2,i

)


= M ·
n∏
i=1

ê (g2, g2)
(αf1+βf2)·vi·Ii

= M · ê (g2, g2)
(αf1+βf2 mod q2)·〈−→v ,I〉

where α, β are uniformly random in Z∗N and f1, f2 are uniformly random in Z∗q2 .
Now, if 〈−→v , I〉 = 0 mod N , then we have M ′ = M . If 〈−→v , I〉 6= 0 mod N , there
are two cases: if 〈−→v , I〉 6= 0 mod q2, then with all but negligible probability (over
random choice of α, β, f1, f2), M ′ does not lie in GT (since M is a small subset of
GT ). Otherwise, we have 〈−→v , I〉 = 0 mod q2, in which case M ′ will always be equal
to M . However, this would amount to revealing a non-trivial factor of N , and hence,
must occur with negligible probability.

5.2 Security of Our IPE Scheme

In this section, we formally prove the selective data privacy and computational
function privacy of our zero-IPE scheme ΠIPE

k .

Selective Data Privacy. The original KSW scheme was proven to be selectively
data private in [3]. We state the following theorem for the data privacy of ΠIPE

k :

Theorem 5.1 Our zero-IPE scheme ΠIPE
k retains the selective data privacy guar-

antees of the original KSW scheme.
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Proof. Suppose there exists a probabilistic polynomial-time adversary A against
ΠIPE
k with non-negligible advantage ε in the selective data privacy game. We con-

struct a polynomial-time selective data privacy adversary B against the original
KSW zero-IPE scheme with the same advantage ε. B interacts with A as follows:

• Init: A commits to the challenge vector pair
(−→
v∗0,
−→
v∗1

)
. B also commits to the

same challenge vector pair.

• Setup: B obtains the public parameter pp from the challenger for the original
KSW scheme, and modifies it by including the additional components related to
the k-DLIN problem, as highlighted in the construction of ΠIPE

k . In particular,
observe that the S0

1,i and S1
1,i values for i ∈ [1, n] are already provided to B by the

challenger as part of pp. B now additionally samples {x1,j , x2,j}j∈[1,k+2]
R←− G1.

For i ∈ [1, n] and j ∈ [1, k + 2], it samples Rj1,i, R
j
2,i

R←− G3 and sets Sj1,i =(
S0

1,i

)x1,j ·Rj1,i and Sj2,i =
(
S0

2,i

)x2,j ·Rj2,i, respectively. To simulate the remaining

components, B samples {g1,j , g2,j}j∈[1,k+2]
R←− G1, and appropriately combines

them with the set of values {x1,j , x2,j}j∈[1,k+2] sampled earlier. In other words,
B can ensure that the modified public parameter has the same distribution as
in the real world from A’s point of view, without the knowledge of the master-
secret-key of the original KSW scheme. The modified public parameter is then
provided to A.

• Secret-Key Queries: Suppose A issues a secret-key query for −→v ∈ ZnN . B for-
wards the same query vector to the key-generation oracle for the KSW scheme,
and receives sk−→v =

(
d0, {d0

1,i, d
0
2,i}i∈[1,n]

)
as response. It then uses the pub-

lic parameter components {g1,j , g2,j}j∈[1,k+2], and the values {x1,j , x2,j}j∈[1,k+2]

sampled during setup, to create and embed a pair of independent and uniformly
random valid k-DLIN instances in sk−→v , along with the corresponding check-
pointing elements (as described in the key-generation procedure for ΠIPE

k ). The
modified secret-key has the same distribution from A’s point of view as in the
real world.

• Challenge: A outputs the challenge message pair (M∗0 ,M
∗
1 ). B queries the

the challenger for the KSW scheme with the same challenge message pair, and
receives the challenge ciphertext C∗ =

(
c∗0, {c∗

0
1,i, c

∗0
2,i}i∈[1,n], c

∗
3

)
. The challenge

ciphertext for A retains each of these components as is. It remains to simulate
the additional ciphertext components {c∗j1,i, c∗

j
2,i}i∈[1,n],j∈[1,k+2]. B samples

• {Q∗j1,i, Q∗
j
2,i

R←− G2}i∈[1,n],j∈[1,k+2]

• {R∗j1,i, R∗
j
2,i

R←− G3}i∈[1,n],j∈[1,k+2]

and sets:

c∗j1,i =
(
c∗01,i

)x1,j

·Q∗j1,i ·R∗
j
1,i for i ∈ [1, n], j ∈ [1, k + 2]

c∗j2,i =
(
c∗02,i

)x1,j

·Q∗j2,i ·R∗
j
2,i for i ∈ [1, n], j ∈ [1, k + 2]
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Since the additional ciphertext components generated by ΠIPE
k .Enc in the real

world are also masked using random elements from both G2 and G3, the ci-
phertext simulated by B is indistinguishable from a real world ciphertext, in A’s
view. This in turn justifies double masking the additional ciphertext components
in ΠIPE

k .Enc.

• Output: Finally, B outputs the same bit b′ as output by A.

It is easy to see that B’s simulation is perfect and hence, it has the same advantage
ε as A in the selective data privacy game. This completes the proof of Theorem 5.1.

Computational Function Privacy. We state the following theorem for the com-
putational function privacy of ΠIPE

k :

Theorem 5.2 Our zero-IPE scheme ΠIPE
k is computationally function private un-

der the k-DLIN assumption for predicate vectors sampled uniformly from (n, k)-block
sources with k = ω (log λ).

Proof . We present the detailed proof for the above theorem. Our aim is to show
that any probabilistic poly-time adversary A cannot distinguish between the real
and random modes of operation of the function privacy oracle, provided that the
oracle is queried with circuits that sample sufficiently unpredictable distributions
over the space of predicates. In particular, such distributions should be (n, k)-block
sources over ZnN , such that each component of a vector −→v sampled from an adver-
sarially chosen distribution has a min-entropy of k = ω (log λ), and is uncorrelated
with all other components.

We define a series of hybrid experiments Exptmode,m
FP,ΠIPE

k ,A(λ) for mode ∈ {real, rand}
and m ∈ [0, n] as follows:

• Exptmode,0
FP,ΠIPE

k ,A(λ) is identical to Exptmode
FP,ΠIPE

k ,A(λ).

• Exptmode,m
FP,ΠIPE

k ,A(λ) for m ∈ [1, n] is identical to Exptmode
FP,ΠIPE

k ,A(λ) except that, in

the secret-key sk−→
v∗

=
(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
generated by the real-or-

random oracle, the distribution of the components {d∗j1,i, d∗
j
2,i}i∈[1,m],j∈[0,k+2] is

statistically independent of mode.

Quite evidently, for m = n, the entire secret-key sk−→
v∗

is independent of mode. In
other words, the following holds:∣∣∣∣Pr

[
Exptreal,n

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptrand,n

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ = 0

We now state and prove the following claim:
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Claim 5.1 For any probabilistic polynomial-time adversary A, for mode ∈ {real, rand}
and for m ∈ [0, n− 1], the following holds:∣∣∣∣Pr

[
Exptmode,m

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,m+1

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-
time adversary such that:∣∣∣∣Pr

[
Exptmode,m

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,m+1

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ = ε > negl(λ)

for some m ∈ [0, n − 1]. Also, let G be a bilinear group of order N = q1q2q3 (each
of q1, q2 and q3 being λ-bit primes), and let G1, G2 and G3 denote the subgroups of
G of order q1, q2 and q3, respectively. Also, let ê : G × G −→ GT be an efficiently
computable non-degenerate bilinear map, where GT is also a group of order N . We
construct an algorithm B that can distinguish between the ensembles:((
{g1,j}j∈[1,k+2], {g

aj
1,j}j∈[1,k+1], g

∑k+1
j=1 aj

1,k+2

)
,

(
{g2,j}j∈[1,k+2], {g

a′j
2,j}j∈[1,k+1], g

∑k+1
j=1 a

′
j

2,k+2

))
and

((
{g1,j}j∈[1,k+2], {g

aj
1,j}j∈[1,k+2]

)
,
(
{g2,j}j∈[1,k+2], {g

a′j
2,j}j∈[1,k+2]

))
with probability 1/2 + ε, where the probability is over random choice of {aj , a′j

R←−
Z∗q1}j∈[1,k+2], and over random choice of {g1,j , g2,j

R←− G1}j∈[1,k+2]. Observe that B
can in turn be trivially used to construct another algorithm that has advantage at
least ε in solving a given instance of the k-DLIN problem in the group G1.

• Setup: B uniformly samples {x1,j , x2,j
R←− Z∗q1}j∈[1,k+2], {h1,i, h2,i

R←− G1}i∈[1,n]

and {Rj1,i, R
j
2,i

R←− G3}i∈[1,n],j∈[0,k+2]. It additionally samples h
R←− G1, γ

R←− Z∗q1
and R3

R←− G3, and sets:

Q = g2 ·R3

S0
1,i = h1,i ·R0

1,i , S0
2,i = h2,i ·R0

2,i for i ∈ [1, n]

Sj1,i = h
x1,j

1,i ·R
j
1,i , Sj2,i = h

x2,j

2,i ·R
j
2,i for i ∈ [1, n], j ∈ [1, k + 2]

Finally, it sets the public parameter pp and the master secret-key msk as:

pp =

(
g1, g3, Q, {Sj1,i, S

j
2,i}i∈[1,n],j∈[0,k+2], ê (g1, h)

γ
,

{g1,j , g2,j}j∈[1,k+2], {g
x1,j

1,j · g
x1,k+2

1,k+2 , g
x2,j

2,j · g
x2,k+2

2,k+2 }j∈[1,k+1]

)
msk =

(
q1, q2, q3, g2, {h1,i, h2,i}i∈[1,n], h

γ
)

B provides pp to A. Observe that pp is distributed exactly as in the real world.

25



• Secret-Key Queries: When A issues a secret-key query for −→v ∈ ZnN , B responds
with sk−→v = ΠIPE

k .KeyGen (pp,msk,−→v ).

• Real-or-Random Query: Suppose A queries the real-or-random oracle with an
(n, k)-block source V∗ = (V ∗1 , · · · , V ∗n ) over ZnN such that k = ω (log λ). B samples

mode
R←− {real, rand}. For each i ∈ [1, n], B samples v∗i

R←− V ∗i if mode = real, or

v∗i
R←− ZN if mode = rand. The vector

−→
v∗ = (v∗1 , · · · , v∗n) is the challenge vector

that B uses to respond to the query from A. B now sets the various components
of the secret-key sk−→

v∗
as described next.

Recall that in both the experiments Exptmode,m
FP,ΠIPE

k ,A(λ) and Exptmode,m+1

FP,ΠIPE
k ,A(λ), the

secret-key elements corresponding to the first m components of
−→
v∗ should be

statistically independent of mode, while the elements corresponding to the last

(n−m− 1) components of
−→
v∗ should be well-formed with respect to mode. We

present the details of how this may be achieved by B. B samples {z1,i, z2,i
R←−

Z∗q1}i∈[1,n], {yj1,i, y
j
2,i

R←− Z∗q1}i∈[1,n],j∈[1,k+2], Q4
R←− G2, R5

R←− G3 and f1, f2
R←−

Z∗q2 . It then sets the following:

d∗0 = Q4 ·R5

/(
n∏
i=1

h
z1,i
1,i · h

z2,i
2,i

)

d∗01,i = g
z1,i
1 · gf1·vi2

/k+2∏
j=1

(
g
x1,j

1,j

)yj1,i for i ∈ [1,m]

d∗02,i = g
z2,i
1 · gf2·vi2

/k+2∏
j=1

(
g
x2,j

2,j

)yj2,i for i ∈ [1,m]

d∗01,i = g
z1,i
1 · gf1·vi2

/k+1∏
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i for i ∈ [m+ 2, n]

d∗02,i = g
z2,i
1 · gf2·vi2

/k+1∏
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i for i ∈ [m+ 2, n]

B then sets the remaining secret-key components as:

d∗j1,i = g
yj1,i
1,j , d∗j2,i = g

yj2,i
2,j for i ∈ [1, n] \ {m+ 1}, j ∈ [1, k + 1]

d∗k+2
1,i = g

yk+2
1,i

1,k+2 , d∗k+2
2,i = g

yk+2
2,i

2,k+2 for i ∈ [1,m]

d∗k+2
1,i = g

∑k+1
j=1 y

j
1,i

1,k+2 , d∗k+2
2,i = g

∑k+1
j=1 y

j
2,i

2,k+2 for i ∈ [m+ 2, n]

It is straightforward to see that the secret-key elements corresponding to the last

(n−m− 1) components of
−→
v∗ are distributed exactly as in the real world. We now
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demonstrate that the secret-key elements corresponding to the first m components
are distributed independent of mode. Since mode essentially determines the dis-
tribution of each v∗i , it is enough to show that the components d∗01,i and d∗02,i for

i ∈ [1,m] are distributed independent of v∗i . Let g1,j = g
z′1,j
1 for j ∈ [1, k + 2], and

let h′1,j = g
x1,j

1,j · g
x1,k+2

1,k+2 for j ∈ [1, k + 1]. Also, let δ1,i =
∏k+2
j=1

(
g
x1,j

1,j

)yj1,i in the

secret-key component d∗01,i for i ∈ [1,m]. Now, consider the following system of

equations, determined by the public parameters pp and d∗01,i for i ∈ [1,m]:

logg1 h
′
1,1 = x1,1 · z′1,1 + x1,k+2 · z′1,k+2

...

logg1 h
′
1,k+1 = x1,k+1 · z′1,k+1 + x1,k+2 · z′1,k+2

logg1 δ1,i =

k+2∑
j=1

yj1,i · x1,j · z′1,j

Since each yk+2
1,i for i ∈ [1,m] is uniformly random, the event that yk+2

1,i 6=
∑k+1
j=1 y

j
1,i

occurs except with negligible probability, which makes the aforementioned system
of equations linearly independent. Hence, the conditional distribution of δ1,i (where
the conditioning is on B’s choice of mode and everything else in A’s view) is uni-
form. In other words, δ1,i acts as a perfect one-time pad in d∗01,i for i ∈ [1,m]. A

similar argument is applicable in the case of d∗02,i when each yk+2
2,i for i ∈ [1,m] is

uniformly random.

B now embeds its input k-DLIN-instance pair in the secret key elements corre-

sponding to the (m+ 1)
th

component of
−→
v∗. In particular, it sets:

d∗01,m+1 = g
z1,m+1

1 · gf1·vm+1

1

/k+2∏
j=1

(
g
aj
1,j

)x1,j


d∗02,m+1 = g

z2,m+1

1 · gf2·vm+1

2

/k+2∏
j=1

(
g
a′j
2,j

)x2,j


d∗j1,m+1 = g

aj
1,j , d∗j2,m+1 = g

a′j
2,j for j ∈ [1, k + 2]

where {gaj1,j}j∈{1,k+2} and {ga
′
j

2,j}j∈{1,k+2} are parts of its input instances. B finally
responds to A with the secret-key sk−→

v∗
as:

sk−→
v∗

=
(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
• Output: Finally, B outputs the same bit b as output by A.

It is again easy to see that when ak+2 =
∑k+1
j=1 aj and a′k+2 =

∑k+1
j=1 a

′
j , the com-

ponents of the secret-key sk−→
v∗

corresponding to v∗m+1 are well-formed. On the other
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hand, when both ak+2 and a′k+2 are uniformly random in Z∗q1 , the components of
the secret-key sk−→

v∗
corresponding to v∗m+1 are statistically independent of mode.

To see this, again let g1,j = g
z′1,j
1 for j ∈ [1, k + 2], and let h′1,j = g

x1,j

1,j · g
x1,k+2

1,k+2 for

j ∈ [1, k+1]. Also, let δ1,m+1 =
∏k+2
j=1

(
g
aj
1,j

)x1,j
in the secret-key component d∗01,m+1.

If ak+2 is uniformly random in Z∗q1 , we may assume that ak+2 6=
∑k+1
j=1 aj , since this

occurs except with negligible probability. Then, the following system of equations,
determined by the public parameters pp and d∗01,m+1, is linearly independent:

logg1 h
′
1,1 = x1,1 · z′1,1 + x1,k+2 · z′1,k+2

...

logg1 h
′
1,k+1 = x1,k+1 · z′1,k+1 + x1,k+2 · z′1,k+2

logg1 δ1,m+1 =

k+2∑
j=1

aj · x1,j · z′1,j

Hence, the conditional distribution of δ1,m+1 (where the conditioning is on B’s choice
of mode and everything else in A’s view) is uniform. In other words, δ1,m+1 acts as
a perfect one-time pad in d∗01,m+1. A similar argument is applicable in the case of

d∗02,m+1 when a′k+2 is uniformly random.

The final distribution of the secret-key sk−→
v∗

=
(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
, gen-

erated by B as the response to the real-or-random oracle query from A, may be
summarized as follows:

• When ak+2 =
∑k+1
j=1 aj and a′k+2 =

∑k+1
j=1 a

′
j , the distribution of the compo-

nents {d∗j1,i, d∗
j
2,i}i∈[1,m],j∈[0,k+2] is statistically independent of mode, while the

remaining components are well-formed with respect to mode. In other words,
sk−→
v∗

is identically distributed to the response of the real-or-random oracle in the

experiment Exptmode,m
FP,ΠIPE

k ,A(λ).

• When both ak+2 and a′k+2 are uniformly random in Z∗q1 , the distribution of the

components {d∗j1,i, d∗
j
2,i}i∈[1,m+1],j∈[0,k+2] is statistically independent of mode,

while the remaining components are well-formed with respect to mode. In other
words, sk−→

v∗
is identically distributed to the response of the real-or-random oracle

in the experiment Exptmode,m+1

FP,ΠIPE
k ,A(λ).

It follows readily that B has the same advantage ε as A in solving its input k-DLIN
instance pair. This completes the proof of Claim 5.1.
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Consequently, for mode
R←− {real, rand}, we have:

AdvFP
ΠIPE

k ,A(λ) =

∣∣∣∣Pr
[
ExptrealFP,ΠIPE

k ,A(λ) = 1
]
− Pr

[
ExptrandFP,ΠIPE

k ,A(λ) = 1
] ∣∣∣∣

≤
∣∣∣∣Pr
[
ExptrealFP,ΠIPE

k ,A(λ) = 1
]
− Pr

[
Exptreal,n

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣
+

∣∣∣∣Pr
[
ExptrandFP,ΠIPE

k ,A(λ) = 1
]
− Pr

[
Exptrand,n

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣
+

∣∣∣∣Pr
[
Exptreal,n

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptrand,n

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣
≤ 2

∣∣∣∣Pr
[
Exptmode

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,n

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣
≤ 2

n−1∑
m=0

∣∣∣∣Pr
[
Exptmode,m

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,m+1

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣
≤ negl(λ)

This completes the proof of Theorem 5.2.

6 Extensions and Open Problems

In this paper, we presented a new class of public-key predicate encryption schemes
that are provably function private in the standard model, under well-known crypto-
graphic assumptions. A large class of existing function private constructions in the
public-key setting impose highly stringent requirements on the min-entropy of pred-
icate distributions, thereby limiting their applicability in the context of real-world
predicates. Our constructions, on the other hand, are function private for predicate
distributions that satisfy more realistic min-entropy requirements. Our main result
is a generic framework, denoted as embed-augment-recover, that takes an existing
predicate encryption scheme and transforms it into a computationally function pri-
vate one while retaining its original data privacy guarantees. Our approach leads
to public-key constructions for identity-based encryption (IBE) and inner-product
encryption (IPE) that are computationally function private in the standard model
under a family of weaker variants of the DLIN assumption. In this section, we present
some interesting open problems that arise from our work.

Hidden Vector Encryption and Polynomial Evaluation. Boneh and Waters
[1] proposed hidden vector encryption (HVE), a pre-cursor to IPE, that supports
search using conjunctive, range and comparison-based query predicates. In HVE,
attributes correspond to vectors over an alphabet Σ, while secret-keys correspond
to predicate vectors over the augmented alphabet Σ? = Σ∪ {?} containing the wild
card character ?. Decryption succeeds if the attribute matches the predicate vector
in every coordinate that is not ?. We note that although IPE can be used to realize
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HVE [3], our computational function privacy definitions do not naturally extend
to HVE. In particular, the presence of the wild card character ? in the predicate
vectors of HVE trivially violates our min-entropy requirements, making it difficult
to hide their presence in the secret-key. It is thus open to formalize function privacy
definitions for HVE, and to achieve constructions satisfying such definitions. It is also
open to formalize security definitions and realize constructions for function private
encryption schemes that support arbitrary polynomial evaluation predicate.

Generalization of Our Approach. In this work, we have applied our embed-
augment-recover approach to transform certain existing public-key predicate en-
cryption schemes that are not function private, into computationally function pri-
vate ones. An interesting open problem is to explore whether our approach can be
generalized for any public-key predicate encryption scheme, or if there are any spe-
cific properties of existing predicate encryption schemes that make them amenable
to transformation using our approach. A starting point in this direction could be to
explore the applicability of our approach to public-key predicate encryption schemes
based on lattices, such as the IPE scheme in [2]. It would also be interesting to ex-
plore if our approach can be used to design public-key encryption schemes supporting
a set of predicates beyond inner-products. Iovino et al. [13] have demonstrated that
computational function privacy from standard assumptions seems unattainable for
a very generalized class of predicates, such as the class of all NC1) circuits. This
motivates exploring the limits of our techniques in terms of the range of predicates
for which they are applicable. It also remains open to construct public-key predicate
encryption schemes satisfying the wishful notion of simulation security introduced
by Agrawal et al. in [12] from standard computational assumptions.
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