
Towards Practical Obfuscation of General
Circuits

Dingfeng Ye1,2,3, Peng Liu4, and Jun Xu1,2,3

1 School of Cyber Security, University of Chinese Academy of Sciences, China
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093, China
3 Data Assurance and Communications Security Research Center, Chinese Academy

of Sciences, Beijing 100093, China
4 Cyber Security Lab, College of Information Sciences and Technology, Pennsylvania

State University, University Park, PA 16802, USA
ydf@is.ac.cn,pliu@ist.psu.edu,xujun@iie.ac.cn

Abstract. Known approaches for obfuscating a circuit are only feasible
in theory: the complexity polynomially depends on the security param-
eter and circuit measures, but with too large polynomials and/or holds
only with large enough security parameters, which leaves the methods
not implementable for almost all applications at a required security level,
say 128 bits. In this work, we initiate the task of exploiting ideas from
theoretical constructions towards practical obfuscation. The starting con-
cern is: how much do empirical methods help to improve efficiency? We
followed the approach of Zimmerman and Applebaum et al.: obfuscating
the randomized encodings (RE) with Graded Encoding Scheme (GES)
over composites. We gave a new design of RE which is based on a new
pseudorandom function and a new garbled circuit from a pseudorandom
generator, whose obfuscation only needs GES of degree linear with n, the
number of input variables. We also developed various techniques that fur-
ther reduce the degree by a significant constant factor. These resulted a

general obfuscator with code size
(

(28λ|C|+ 2c

c
)10nλ

)
GES(5n

2c
+ 6, λ),

where GES(µ, λ) denotes the size of a single ring element of the Graded
Encoding Scheme with multilinearity µ and security level λ. Based on
our implementation of the required GES with a simplified CLT multi-
linear map, we may assume GES(µ, λ) ≈ µ2λ. When n = 128, we may
get µ = 31; for example, our obfuscated AES will have code size < 1014

bits, whereas no implementable solution is known prior to this work. Our
construction achieves VBB security if our pseudorandom function and
pseudorandom generator and application of the CLT multilinear map are
all secure.

Keywords: Obfuscation, randomized encoding, graded encoding scheme

1 Introduction

Obfuscation of general circuits is a powerful functionality of cryptography [26]
which was regarded infeasible [10] until the celebrated work [17]. But this great

work only addressed the existence problem: the solution is totally impractical
for any instantiation of meaningful examples. Significant improvement of effi-
ciency was obtained in later constructions (e.g. [1, 31, 4, 27, 7, 20, 3, 18, 2, 13, 21]),
but all these works only got that the complexity polynomially depends on the
security parameter and circuit measures: the polynomial (even the degree) is not
explicitly given. Here is the reason: known essential obfuscation methods, called
core obfuscator, can handle only in theory NC1 circuits; to obfuscate a more
complex circuit, it is necessary to transform the task to obfuscating a simpler
bootstrapping circuit which is NC1; the later has huge size (though polynomial)
of complexity measure µ (the multilinearity) as input to the complexity poly-
nomial of the core obfuscator. All known core obfuscators use a mathematical
tool called multilinear map which is highly inefficient according to known con-
structions [17, 16]. A multilinear map noisily encodes integers in a huge ring.
The key complexity measure GES(µ, λ) is the size of a single ring element which
depends on multilinearity µ it supports and the security parameter λ. In current
constructions, GES(µ, λ) is at least µ2λ.

There are 3 kinds of methods to get general obfuscation. The first is based
on obfuscating branching matrix programs: µ is the length of the program, the
translation from circuit to branching matrix programs will result in program
length of polynomial of the circuit size, another major efficiency bottleneck be-
sides the multilinear maps, making it hopeless to be practical. The second kind
makes use of functional encryptions: it needs many steps each of which has to
treat a recursively defined huge circuit where the circuit of the multilinear map
tool itself is only a small unit, and no explicit complexity is available though µ
can be reduced to 2 [20]. The third is the approach of Zimmerman and Apple-
baum et al. [31, 5, 7]: obfuscating the Randomized Encodings (RE) with Graded
Encoding Scheme over Composites: the existing (implicit) constructions of RE
have µ of size polynomial in n, λ which is too huge to be considered, but this
seems the only bottleneck of efficiency.

Given that obfuscation is so wanted and feasible only in theory with current
theoretical approach, it is worthwhile to ask whether there are empirical methods
that make it much more efficient and even practical for specific applications. A
related question is: are there special cases which may be treated without using the
general methods? The answer to the later question is relatively well understood:
the simplest cases are Point Functions or Evasive Families where oracle access
of functionality gives essentially no information, and even in this case some of
the general methods have to be used and no practical solutions are known. As
for the former question, there is no totally new method that seems to work,
which makes us believe that the tools of current theoretical constructions can
not be totally avoided, especially the common tool: multilinear map (abstracted
as Graded Encoding Scheme). So the approach we would like to try is to replace
provably secure components with empirical solutions in existing constructions.
In this work, we follow the approach of Zimmerman and Applebaum et al. by
giving a new design of RE to get around the efficiency bariers.

2

In this work, RE will mean the composition of a circuit garbling algorithm
gc and a pseudorandom function (PF) f (whereas it means just the circuit
garbling algorithm in some literatures). A circuit garbling algorithm gc satisfies:
D(gc(C, x, r)) = C(x) and gc(C, x, r) leaks no information other than C(x), if
r is independently chosen for each x. Our RE will be the circuit that computes
gc(C, x, f(x)) given the input x.

Known constructions of gc [29, 11] and PF f [24, 25, 19, 9, 30] will not work
for an obfuscable RE. The core obfuscator [31, 7] usually works as follows: first
transform the binary circuit to arithmetic (which usually increases the size),
then apply the multilinear map on encoded inputs along the arithmetic circuit,
at each gate, the multilinearity µ for the outwire is the sum of those of the
inwires except for addition gate with inwires of the same level, which is called
free addition gate. The transformation from binary circuit to arithmetic has
the effect that: multiplications are extensively used and additions can hardly be
made free. A small circuit can result a huge µ in general. So our first choice
is a GES with a slot that encode binary values directly so that the binary to
arithmetic transformation is avoided. Now even all addition gates were made
free (which is far from the reality), the circuits of RE with known constructions
of its components still have too enormous µ. The theoretical constructions of gc
[12, 8] and PF f [24, 25, 19, 9] use extensive integer operations which have high
algebraic degree when expressed in binary circuits. The empirical constructions
in the traditional symmetric cryptographic world usually have many rounds of
iterations. Known theoretical and emprical constructions of gc and PF will result
in a µ at a size of a high degree polynomial of n. Thus, the design of obfuscation
friendly gc and PF has not been addressed in previous work.

Our construction of gc is based on pseudorandom generators which can be
heuristically realized by quadratic functions according to [23, 6]. To hide the
value of inwires of a gate, some permutations on 2 or 4 elements are needed.
This makes the total algebraic degree of our gc be 5, so the multiplicative factor
it contributes to the multilinear degree µ is at least 5. Our construction of PF
is inductive: a PF on X × Y is a quadratic function on PFs over X and Y . If
we begin with spaces of c bits, then a PF on {0, 1}n can be computed by an
algebraic function of degree n

c .
The heuristic security assumptions behind our RE construction can be stated

as follows. A function pg : {0, 1}n → {0, 1}m is called a (n,m) Pseudorandom
Generator (PG), if pg(K) is pseudorandom when K is random.

Conjecture 1. There exsits quadratic (2λ, 6λ) PG (each output bit is a quadrat-
ic function of input bits).

A Pseudorandom Function (PF) F : X × K → R : (x, k) 7→ F (x, k) ∈ R
satisfies: when k is random, F (x, k)s are independently pseudorandom in the
range R for different xs. When R = {0, 1}m, we call such a PF a (X,m) PF.

Conjecture 2. Let F = (f1, f2, · · · , ft), G = (g1, g2, · · · , gt) be (X, t), (Y, t)
PFs respectively, then

∑
1≤i≤t

figi is (X × Y, 1) PF if t ≥ 2λ.

3

Conjecture 3. Let F = (f1, f2, · · · , ft). If any linear combination of fis is
(X, 1) PF, then F is (X, t) PF.

Note that the circuit of RE we need to obfuscate has algebraic degree 5n
c .

We will give an GES encoding strategy which makes all additions free (this is
remarkable and only possible for the special structure of our RE): it is easy to
make all additions in the PF circuit free and the ElGamal scalars of PF outputs
which enter the gc circuit are all same. Now it seems that the multilinear degree
should be at least 2 times of the algebraic degree 5n

c because another piece of
the same degree is needed to unify the zerotest level, according to the straddling
techniques of current core obfuscators. We will explain the ideas which improves
the result over this. To unify the final level, we let the level of PF outputs for
different inputs differ only by a group element of exponent 5 (that is, our levels
are in an abelian group), which makes the honest computations automatically
result in the same level for all inputs. Another 2 times improvement on the
multilinear degree µ comes from a special property of the CLT multilinear map
which instantiates our GES. The Coppersmith type attack [22] seems decisive
for choice of parameter sizes for the CLT multilinear map. Let z1z

−1
2 be a ring

element the adversary can observe, such that zi has smallest degree d, where zis
are encoded noise. Let N =

∏
0≤i≤m pi be the CLT modulus. The Coppersmith

type attack works when m < µ
d , and correctness of GES functionality requires

that bit length of each pi is greater than µ
dρ, where ρ is the unit size of noise.

That is, the equivalent (with respect to ring size) multilinear degree is µ
d . In our

obfuscator, we can achieve d = 2 by a simple straddling technique, or equivalently
we allow some initial GES encodings have degree 1

2 . This explains the main part
of the multilinear degree, the other 6 comes from the additional inputs of the
PF for catering long output, and also from the secret of the circuit C.

Our construction can be proved to be VBB secure in the Ideal GES model
under the heuristic assumptions that the PF and PG we used are secure. The
proof follows similar procedures as in [31, 7]. The striking point is that our VBB
security is obtained at no extra cost over the IO notion of security, this again
benefits from the specific details of our RE.

In summary, our main contributions are:

– A novel design of RE which is based on a new garbled circuit and a pseudo-
random function, which has low multilinearity for obfuscation.

– Techniques to improve the efficiency of the kind [7] of core obfuscators.

– A general obfuscation scheme with explicit complexity.

The rest of this paper is organized as follows: Section 2 is preliminaries and
overview of our scheme. Section 3 gives our construction of a garbled circuit.
Section 4 presents our PF. Section 5 describes our obfuscation scheme. Section
6 gives examples: obfuscated AES and a public random oracle. Section 7 is some
concluding remarks.

4

2 Preliminaries and Overview of our approach

2.1 Circuits and Obfuscation

A circuit C in this work is always binary and may compute a keyed function
F (K,X), where K and X are called key space and input space respectively. For
any k ∈ K, Ck denotes the circuit that computes the function F (k, ·). In other
words, the key information is hardwired into definition of gates of Ck: each gate
i of Ck is defined by a function gi,k : {0, 1}2 → {0, 1}, and all Cks have the same
topology: each gate i receives inputs from the same gates i0, i1 for all k. We call
this the keyed circuit for computing the keyed function F (K,X). A keyed circuit
can be obtained from a universal circuit by absorbing all single inwire gates into
definition of their two-inwire receiving gates.

Obfuscation of a keyed function F (K,X) is pair of PPT algorithms (E,Ob),
such that E(x,Ob(k)) = F (k, x) ∀k, x. There are two main security notions
about obfuscation: VBB means Ob(k) can be simulated given only oracle ac-
cess to F (k, ·), whereas IO means Ob(k1) is indistinguishable with Ob(k2) if
F (k1, ·) = F (k2, ·). This definition of obfuscation is not phrased in circuits but
seems sufficient for all known application of the notion in cryptography. It is
known [10] that VBB secure obfuscation is impossible for general functions in
standard model, but heuristic solutions in some ideal models are not excluded
and would be useful in practice.

The input to the algorithm Ob is actually the keyed circuit Ck: n the number
of input variables (corresponding to gates −1, · · · ,−n); |C| the number of gates
(labeled with integers 1 ≤ i ≤ |C|); circuit topology {(i, i0, i1) : 1 ≤ i ≤ |C|}
where i0 < i1 < i; and gate definitions gi,k.

Known essential obfuscating algorithms, called core obfuscators, can only
handle NC1 circuits directly. To be able to obfuscate a general circuit C, it is
necessary to transform it into NC1, a highly paralleled form RE(C) of C, called
Randomized Encoding (RE) of C: there is an evaluating algorithm D, such that
D(RE(C)(x)) = C(x), and the oracle RE(C)() leaks no information other than
the oracle C(). Now OB(C) = Ob(RE(C)) is an obfuscation of C, and if Ob is
VBB secure [31, 7], so is OB.

RE can be constructed using a circuit garbling algorithm gc and and a pseu-
dorandom function (PF) f . A circuit garbling algorithm gc satisfies:D(gc(C, x, r))
= C(x) and gc(C, x, r) leaks no information other than C(x), if the randomness
r is independently chosen for each x. Our RE will be the circuit that computes
gc(C, x, f(x)) where x is the input of the circuit C, that is, RE is the compo-
sition of a gc and a pseudorandom function f . Note that we need f supports
long output to cater for long randomness needed by gc, whereas a pseudorandom
generator is needed to stretch the output of the pseudorandom function as in
the implicit RE construction of [5].

2.2 Graded Encoding Schemes

Obfuscation is so amazing that it is only achievable with the help of a magic tool
called Graded Encoding Scheme (GES). The definition of GES in this work is

5

almost the same as the MRG model of [7]. The differences are specified as follows.
The values to be encoded are in a ring Z2 × G, where Z2 denotes the boolean
ring (or called the binary field), G denotes a universal ring: for any nonzero
polynomial p (formed by a polynomial sized circuit) of integer coefficients in m
variables:

Prob[p(α1, · · · , αm) = 0 : αi ←R G] < 2−λ

where ←R means ”sampled uniformly randomly from”. That is, there are two
slots to encode values: the boolean one for circuit evaluation and the universal
one for authentication of the computing process. An encoded value will take the
form [b, α]. The levels that a value can be encoded are in an abelian group A,
that is, a set of elements {vj} and a set of relations {Ri = 0} over {vj} defines
the abelian group A, where Ri is a linear combination of {vj} with integer
coefficients.

The expression of the multilinearity is also different. Each encoding has a
degree d > 0 to keep track of noise size. So a GES encoding takes the form
[b, α]v(d), where the content [b, α] is secret, but v, d is assumed to be known by
the adversary. The adversary can only perform symbolic operations “ + ”, “− ”
and “× ” to obtain new encodings:

[b1, α1]v(d1) + [b2, α2]v(d2) ∼ [b1 ⊕ b2, α1 + α2]v(max(d1, d2))

[b1, α1]v(d1)− [b2, α2]v(d2) ∼ [b1 ⊕ b2, α1 − α2]v(max(d1, d2))

[b1, α1]v1(d1)× [b2, α2]v2(d2) ∼ [b1&b2, α1 × α2]v1+v2(d1 + d2)

where ∼ stands for having the same content and level. A symbolic circuit is
a circuit whose inputs are encodings and whose gates are symbolic operations.
The multilinearity µ of the GES is the maximal degree d that is allowed in an
encoding [b, α]v(d). In addition, there is a test level vzt, at which the adversary
can query (zero test) if the content of an encoding is zero.

A GES can be used to evaluate a public circuit C where each input and key
bit is encoded in initial encodings [31, 7]; we allow C taking locally keyed input
(output of a keyed local function f(k, x): each output bit of f(k, x) depends on no
more than c bits of x): given a set of initial encodings {[bi, riαi]vi(di) : 1 ≤ i ≤ l},
where the keyed input is encoded in {bi}, and {αi} is input independent, such
that there is a symbolic circuit C̃j satisfying

C̃j({[bi, riαi]vi(di) : 1 ≤ i ≤ l}|x) ∼ [(C(f(k, x)))j , 0]vzt(µ)

where |x means a selection (subset) indexed by x, and (y)j means the jth com-

ponent of a vector y. Now the zero test reveals C(f(k, x)). For such a C̃ to be
constructed, the set of initial encodings should contain at least: an ElGamal form
for each bit (f(k, x))j of f(k, x) and a check value for each output bit Cj of C.
An ElGamal form for a bit b is a pair ([1, r]v(d), [b, rα]v(d)), where [1, r]v(d) is
called the ElGamal scalar. In ElGamal form, any two encodings can be added,
but the price is that degrees are also added. If scalars are the same, two ElGamal
forms can be added without increasing the degree, this is called free addition. A

6

check value for an output bit Cj of C is an encoding whose content is a multi-
ple of [0, Cj({αi})], which should be subtracted from the content resulted from

symbolic computing along Cj to form the testable symbolic circuit C̃j . This gen-
eralization of the GES computing model [7] reduces the multilinear degree µ by
a factor of c in cases where the circuit factors through a c-local input function,
as in our RE circuit.

The formal definition of our GES is composed of the following algorithms
and oracles:

(sk, pk,G, vzt)← KeyGen(1λ, µ,A)

where pk is the public parameter which enables anyone to access the public
oracles “ + ”, “− ” and “× ”;

[b, α]v(d)← Encode(sk, b, α, v, d)

ZeroTest([b, α]v(d)) = b if v = vzt, α = 0, and d ≤ µ, otherwise it is undefined.
An obfuscator has sk and G and thus can use the Encode oracle to provide

the set of initial encodings for the above circuit evaluation. We always let the
set {αi} be independently uniform samples of G, and the set {ri} be obtained
by a set of algebraic operations on a set of independently uniform samples of G,
this set of operations is known to the adversary, but the samples are secret. The
security is defined as that no symbolic circuit C̃ ′ exists such that

C̃ ′({[bi, riαi]vi(di) : 1 ≤ i ≤ l}) ∼ [b′, 0]vzt(d)

and d ≤ µ and b′ is not derivable from the oracle C(f(k, ·)). If this can be verified
efficiently [7], the scheme is VBB secure; it is called IO otherwise.

It is easy to see that µ will be exponential in the depth of the circuit C given
constant degrees of initial encodings if C is quite general. Known instantiations
of GES has complexities proportional with µ2, so obfuscation of general circuits
can not directly apply a GES as above. Instead, GES is applied to the RE circuit
which is NC1 (having depth O(log λ)) for several known constructions of gc and
PF [9]. However, the µ of these constructions is a high degree polynomial of
λ, n that is too huge to be considered even feasible in practice. We gives the
first construction of RE in this work with µ = 5n

2c + 6, where the constant c can
be chosen such that 2c is not too huge. For example, for n = 128, we can let
c = 13 which results µ = 31. That is, all circuits with input boolean variables
≤ 128 can be VBB obfuscated using a GES of degree 31. The details of our RE
construction and its obfuscation will be described in the following sections.

The only known instantiation of GES we need is obtained from the following
simplified version of the CLT multilinear map of [16], where a symbolic encoding
is just an element of a huge ring, and symbolic operations are just ring operations.
The public key is N =

∏
0≤i≤m pi, where pis are relatively prime integers. G =∏

1≤i≤m Zgi , gis are different primes and we let Zl denote the residue integer
ring Z/lZ. A level v corresponds to an element zv ∈ ZN . Let ρ be the unit size
of noise. Then

Encode(sk, b, α, v, d) = [b, α]v(d) = z−1v CRT(pi)(b+2s0, a1+s1g1, · · · , am+smgm)

7

where α = (a1, · · · , am), sis are random integers such that −2dρ < ai + sigi <
2dρ, and CRT(pi)(zi) denotes the number z ∈ ZN satisfying z = zi (mod pi)
for all i. The map v 7→ zv is a random injective homomorphism from A to the
multiplicative group of ZN .

Finally the test number

zt = zvztCRT(pi)(2
−1N

p0
, g−11

N

p1
, · · · , g−1m

N

pm
)

is used to recover the encoded boolean value of an encoding [b, 0]vzt(d):

zt[b, 0]vzt(d) =
∑

0≤i≤m

ti
N

pi
+ b

p0 + 1

2

N

p0

which should have disjoint distributions (easily distinguishable) between the case
b = 0 and b = 1 when d ≤ µ. A sufficient condition for this is | tipi | <

1
4(m+1) ∀i.

We will call this the correctness requirement.
To enforce the correctness requirement at minimal cost, it is necessary to

consider the minor extra noise caused by free additions. Let δ(C̃) denote the bit
length of this extra noise (In our scheme, we have δ(C̃) < µ(log λ + 2)), and
let gi have bit length ρ

2 + 1 for 1 ≤ i ≤ m (the largest to support the required
algebraic relations among contents of the initial encodings), then we have

Lemma 1. log pi ≥ (µ− 1
2)ρ+δ(C̃)+log(m+1)+1 for 1 ≤ i ≤ m and log p0 ≥

µρ+ δ(C̃) + log(m+ 1) + 1 is sufficient to fulfill the correctness requirement.

Proof. Suppose zt[b, 0]vzt(µ) =
∑
i

ti
N
pi

+ bp0+1
2

N
p0

, we have log |ti| ≤ (µ− 1
2)ρ +

δ(C̃)−1 and log |t0| ≤ µρ+ δ(C̃)−1, that is, |ti Npi | <
N

4(m+1) for 0 ≤ i ≤ m .

Since surely we have log(m + 1) + 1 < ρ
2 , we will set log pi = µρ + δ(C̃) for

i ≥ 1, and log p0 = log p1 + ρ
2 in the following security analysis.

Let the exposed degree be scaled to 1, µ and ρ also correspondingly scaled.
That is, the adversary can observe CRT(pi)(ziz

′−1
i), where −2ρ < zi, z

′
i < 2ρ,

which seems to be the essential leak of secret information of the obfuscator.
There are two kinds of attacks making use of this leakage: one is to guess zi, z

′
i

by birthday paradox [15] and the other is the Coppersmith method [22]. The
complexity of the birthday attack is about 2ρ multiplications of modulus N ,
where logN ≈ µ2λ. We could let ρ = λ − 2(log λ + 2) to stop birthday at-
tacks, assuming each multiplication of modulus N has complexity ≥ 16λ2. The
Coppersmith method may recover pis if (m + 2)(m + 1)ρ < logN, or may re-
cover some pi if log(ziz

′
i) <

logN
(m+1)2 . Since logN ≤ (m+ 1)(µρ+ δ(C̃)) + ρ

2 , and

δ(C̃) < µ(log λ+ 2) in our scheme, we could let m ≥ µ(1 + log λ+2
ρ) + 1

2(m+1) − 2,

that is, m is just slightly bigger than µ is enough to invalidate the first con-

dition. For the second, noting that by trying 2l

m times, we would get a sample

with log(ziz
′
i) ≈ 2ρ− l. If the adversary could tolerate less than 2λ

m(4λ)3
tries, we

8

would assume log(ziz
′
i) > 2ρ + 3(log λ + 2) − λ = ρ + (log λ + 2), which means

m ≥ µ is sufficient to avoid the attack based on the second condition. Hence, we
can let m = dµ(1 + log λ+2

ρ) + 1
2(µ+1) − 2e.

In summary, we will let ρ = λ − 2(log λ + 2), log gi = ρ
2 + 1, log pi = µ(ρ +

log λ+ 2) for i > 0, log p0 = log p1 + ρ
2 , and m = dµ(1 + log λ+2

ρ) + 1
2(µ+1)e−2 in

our CLT multilinear map. In our AES example, µ = 31, λ = 128; we get m = 32
and GES(31, 128) = 33×31×119+55. Similarly, we could have GES(16, 128) =
17× 16× 119 + 55.

3 The Garbled Circuit gc

A function pg : {0, 1}n → {0, 1}m is called a (n,m) Pseudorandom Generator
(PG), where m > n, if pg(k) is pseudorandom when k is random. The following
conjecture is based on [23, 6], where we assume the so called ”ε-biased” means
secure strength 1/ε2.

Conjecture 1. There exists quadratic (2λ, 6λ) PG (each output bit is a quadratic
function of input bits).

In fact, the construction of [23] subjects that quadratic (2λ, 2eλ) PG exists
for e = o(λ); the above conjecture is sufficient for our gc construction though
larger stretch PG would yield slightly more efficient gc.

The input to gc is x and the keyed circuit Ck: n the number of input variables
(corresponding to gates −1, · · · ,−n); |C| the number of gates (labeled with
integers 1 ≤ i ≤ |C|); circuit topology {(i, i0, i1) : 1 ≤ i ≤ |C|} where i0 < i1 < i
and gate definitions gi,k. The definition of gi,k is given by 4 bits

{ei(a, b) = gi,k(a, b) : a, b ∈ {0, 1}}

(a stands for inwire from gate i0). Let i−1 < · · · < i−li be all gates next to i. The
random r is composed of: for each gate i, li pairs of strings {(ri,j,0, ri,j,1) : 1 ≤ j ≤
li} of length 2λ to represent value 0, 1 respectively, and 4 bits ti,0, ti,1, si,0, si,1
for defining permutations.

A bit b defines a permutation τb on two elements (a0, a1) as:

τb(a0, a1) = ((1− b)a0 + ba1, ba0 + (1− b)a1).

By composition, 2 bits can define a permutation on 4 elements:

τa,b(a1, a2, a3, a4) = τb(τa(a1, a2), τa(a3, a4)).

Note that if a, b is random, then ai goes to the jth position with equal probability
for any pair (i, j). We also use notation (A,B)[0] = A, (A,B)[1] = B. Let pgi be
a PG that maps strings of 2λ to those of length 2(2li + 1)λ, which can be seen
as two elements of length (2li + 1)λ (li = 0 at output gate i). The output of our
gc consists of:

– At each input gate i: (ri,i−j ,xi)1≤j≤li

9

– At gate i: 4 strings of length (2li + 1)λ:

τsi,0,si,1((R0,0||Valid)⊕ T0,0, (R0,1||Valid)⊕ T0,1,
(R1,0||Valid)⊕ T1,0, (R1,1||Valid)⊕ T1,1))

where Ra,b = (1 − ei(a, b))(||1≤j≤liri,i−j ,0) + ei(a, b)(||1≤j≤liri,i−j ,1), Valid
is a constant string of length λ for checking correctness, || means string
catenation; and

Ta,b = τti,0(pgi(ri0,i,a))[b]⊕ τti,1(pgi(ri1,i,b))[a]

for a, b ∈ {0, 1}; which means the other part of the PG output is used when
the other input changes.

– At each output gate i : a vector of 4 strings of length λ:

τsi,0,si,1(R0,0 ⊕ T0,0, R0,1 ⊕ T0,1, R1,0 ⊕ T1,0, R1,1 ⊕ T1,1)

where Ra,b = (1 − ei(a, b))False + ei(a, b)True), and True and False are
constant strings of length λ standing for the output value, and

Ta,b = τti,0(pgi(ri0,i,a))[b]⊕ τti,1(pgi(ri1,i,b))[a]

Lemma 2. The above gc is secure.

Proof. Given input x, C(x) and topology of C, the above output of gc(C, x, r)
can be simulated as:

– At each input gate i: (ri,i−j)1≤j≤li .
– At gate i having input gates i0, i1 with ri0,i, ri1,i defined: randomly choose

2 bits b0, b1; randomly choose k ∈ [4]; and for 1 ≤ j ≤ li: choose ri,i−j ←R

{0, 1}4λ. Compute

((||1≤j≤liri,i−1
)||Valid)⊕ pgi(ri0,i)[b0]⊕ pgi(ri1,i)[b1]

and put it at the kth position of the vector; the other 3 elements of the
vector are randomly chosen.

– At each output gate i with input gate i0, i1: randomly choose k ∈ [4], and
randomly choose 2 bits b0, b1; compute

C(x)⊕ pgi(ri0,i)[b0]⊕ pgi(ri1,i)[b1]

(where C(x) is in form True or False) and put it at the kth position of the
vector, the other 3 elements are randomly chosen.

It is a standard hybrid argument to prove that the two distributions are
computationally indistinguishable.

Note that gc needs (8λ+ 4)|C| bits of randomness, and it has 20λ|C| output
bits. If all pgi are quadratic, then each output bit is a polynomial of degree ≤ 5
over the random bits. It is possible that some li is so large that no quadratic

10

(2λ, 2(2li + 1)λ) PG exists. In this case, we can insert some virtual single inwire
gates to make enough output copies. For example, given only quadratic (2λ, 6λ)
PG, we can cope with any li > 1 as follows. Let ri,b denote the output of gate
i, pg be a quadratic (2λ, 6λ) PG, bi be random in {0, 1}. The first virtual gate
after gate i will have two outwires holding values {ri,i0,b : i0 = 1, 2}, and the gc
output at this virtual gate is

τbi((ri,1,0||ri,2,0||Valid)⊕ pg(ri,0)−, (ri,1,1||ri,2,1||Valid)⊕ pg(ri,1)−)

where T− means T cut to suitable length. Each ri,i0,b can further multiply into
{ri,i0,i1,b : i1 = 1, 2, 3} at virtual gate (i, i0) whose gc output is:

τbi((ri,i0,1,0||ri,i0,2,0||ri,i0,3,0)⊕ pg(ri,i0,0), (ri,i0,1,1||ri,i0,2,1||ri,i0,3,1)⊕ pg(ri,i0,1))

The procedure can go on until enough copies are obtained. Note that the number
of the extra (compared with the no virtual gates case) random bits is less than
4λ|C|, and the number of extra output bits is also less than 4λ|C|.

4 The Pseudorandom Function

A Pseudorandom Function (PF) F : X×K → R : (x, k) 7→ F (x, k) ∈ R satisfies:
when k is random, F (x, k)s are independently pseudorandom in the range R for
different xs. When R = {0, 1}m, we call such a PF a (X,m) PF by omitting
specification of the key space. Note that (X×{0, 1}km) PF implies (X, km) PF:
the position of output can be specified by k input variables.

Traditional constructions of PFs [24, 25, 19, 9, 30] are so complex to be ob-
fuscated directly. We will give a novel concrete construction using empirical
methods: i.e. we will not base security on well-known assumption, but only aim
to prevent known attacks; which follows the paradigm in traditional design of
symmetric cryptographic algorithms. For efficiency, we need the circuit be wide
and shallow and have low algebraic degree. For security, we need the whole input
bits be thoroughly mixed. The intuition is that huge key space may be helpful
to achieve both goals simultaneously. We let the key space be PFs on constan-
t size small spaces and use inductive method to construct the PF we need:
{0, 1}n → {0, 1}m, where m = (16λ+ 4)|G|) ≤ 2λt. Let T be a set of t elements
which is just enough to index the outputs, what we want is a (T × {0, 1}n, 2λ)
PF. Let c be a constant such that n can be written as sum of a d pairs of integers,
each of which is c or c − 1. The key of the target PF consists of: a (T, 2λ) PF;
2d ({0, 1}c, 10λ) or ({0, 1}c−1, 10λ) PFs.

We need the following assumptions:

Conjecture 2. Let F = (f1, f2, · · · , ft), G = (g1, g2, · · · , gt) be (X, t), (Y, t) PFs
respectively, then

∑
1≤i≤t

figi is (X × Y, 1) PF if t ≥ 2λ.

Conjecture 3. Let F = (f1, f2, · · · , ft). If any linear combination of fis is (X, 1)
PF, then F is (X, t) PF.

11

Known attacks on PFs are of linear type: use a linear combination of outputs
over some distribution of inputs to form a distinguisher. The conjectures seem
hold in this respect. The number 2λ is the birthday bound. If X,Y are small,
λ/2 (the linear distinguishing bound) seems enough. Our inductive methods are:

Lemma 3. Let F = (f1, f2, · · · , f10λ), G = (g1, g2, · · · , g10λ) be (X, 10λ), (Y, 10λ)
PFs respectively, randomly choose 2λ linear functions h1, h2, · · · , h2λ of weight
2λ over {0, 1}10λ, then (h1(f1g1, · · · , f10λg10λ), · · · , h2λ(f1g1, · · · , f10λg10λ)) is
(X × Y, 2λ) PF.

Proof. According to coding theory [28], the minimal weight of any linear com-
bination of h1, h2, · · · , h2λ is about 2λ, the assertion follows Conjecture 3.

Lemma 4. Let F = (f1, f2, · · · , f2λ), G = (g1, g2, · · · , g2λ) be (X, 2λ), (Y, 2λ)
PFs respectively, Ai : 1 ≤ i ≤ 2λ be matrices such that any linear combina-
tion of them is invertible, let hi = FAiG

t (Gt means a column vector), then
(h1, h2, · · · , h2λ) is (X × Y, 2λ) PF. To construct such {Ai}, consider any basis
of GF22λ over Z2, the set of matrices of the linear maps: multiplications by the
basis elements, has the desired property. Note that we can make Ai very sparse:
consider the polynomial basis where the irreducible polynomial has 3 or 5 nonzero
terms.

Starting with the key, the 2d PFs of output length 10λ are first combined
into d PFs of output length 2λ. The reason behind this step is for applying the
technique of halving µ. Then these d PFs are combined in arbitrary but fixed
order to form a ({0, 1}n, 2λ) PF f0, which is finally combined with the T part
key to get the desired (T × {0, 1}n, 2λ) PF.

5 The Obfuscator

Our obfuscator is a variation of the Simple Ob of [7], originated from [31]. The
basic idea is evaluating the circuit on encrypted variables with two slots un-
der a GES: one for functionality and the other for authentication. Obfusca-
tion of a keyed function C(K,X) is pair of PPT algorithms (E,Ob), such that
E(x,Ob(k)) = C(k, x) ∀k, x.

The input to the algorithm Ob is actually the RE for computing C(k, ·): the
garbled circuit gc(C(k, ·)) composed with the (T ×{0, 1}n, 2λ) PF f . The input
of the RE is x ∈ {0, 1}n which is divided into d pairs of length c or c− 1 blocks
whose spaces are denoted as (Xj , Yj) : 1 ≤ j ≤ d; and the key variables include
key of the PF f and all bits for defining gates of C(k, ·). We will use a GES with
a universal ring G for authentication and an abelian group A for levels.

We assume there is large subgroup U of A of exponent 5: 5u = 0 ∀u ∈ U .
The output of Ob are initial encodings which include:

– Encoding of the (T, 2λ) PF: [1, rT]vT (1) and

{[bt,j , rTαt,j]vT (1) : t ∈ T, 1 ≤ j ≤ 2λ}.

12

– Encoding of the (Xj , 10λ) PF and (Yj , 10λ) PF: for 1 ≤ j ≤ d,

{[1, rxj]vj+uxj (1/2) : xj ∈ Xj} and {[1, r′yj]v′j+u′yj (1/2) : yj ∈ Yj}

{[bxj ,i, rxjαj,i]wj,i+uxj (1/2) : xj ∈ Xj , 1 ≤ i ≤ 10λ}
and

{[b′yj ,i, r
′
yjα
′
j,i]w′j,i+u′yj

(1/2) : yj ∈ Yj , 1 ≤ i ≤ 10λ}

where wj,i + w′j,i = wj ∀i,
∑
j

(vj + v′j) =
∑
j

wj , and all u, u′s are in U . Let

Sj , S
′
j be the subsets of [n] corresponding to Xj , Yj , we set rxj =

∏
i∈Sj

ri,(x)i ,

r′yj =
∏
i∈S′j

ri,(x)i , where {ri,b : i ∈ [n], b = 0, 1} is a set of independent

samples; uxj s and u′yj s are independent random variables in U . Note that
the ElGamal forms are at twisted levels, so that the exposed noise degree
will be twice of their degree.

– Encoding of gate definitions: [1, r]v(1) and {[ei(a, b), rαi,a,b]v(1) : 1 ≤ i ≤
|G|, a, b ∈ {0, 1}.

– Encoding of check values for gc outputs on gates:

{CHKt,j = [0, rpt,j(α∗)]v(1) : t ∈ T, 1 ≤ j ≤ 2λ}

where α∗ means all α type variables, and pt,j is the polynomial defined by
that output position: Evaluating the initial encodings along the RE circuit
to the output bit of gc indexed by (t, j) would result in:

[gct,j(x), r(rT
∏
i

(rxir
′
yi))

5pt,j(α∗)]vzt(µ).

– Encoding of check values for gc output for input variables:

{CHKt,j = {[0, r(ri,(x)i)
−1ft,j(α∗)]v(1) : t ∈ T, 1 ≤ j ≤ 2λ}.

Here the index (t, j) indicates that the ith input variable takes value (x)i. For
tb ∈ T pointing to (x)i = b, set αtb,j = (ri,b)

−1α′t∗,j . ft,j is the polynomial
defined by f(t, x)’s jth output bit. Then only if we choose the right pairs
tb, (x)i = b, we can make use of the check values at gc outputs for the input
variable (x)i. This is the mechanism in our scheme to prevent double-use of
the gc randomness.

The test level is vzt = v + 5(vT +
∑
j

(vj + v′j)), and the multilinearity of the

scheme is µ = 5d+ 6.
Evaluation of the obfuscated circuit on input x can be done as:

– Computing the encodings of f0(x): They have a common ElGamal scalar
Ex = [1, rx]vx(d), and look like:

[(f0(x))i, rxpi({αj,iα′j,i})]vx(d), 1 ≤ i ≤ 2λ,

where rx =
∏
j

rxjryj , vx =
∑
j

wj +
∑
j

(uxj + u′yj), and pi is a polynomial.

13

– Computing encodings of outputs of the PF: choose ts in T standing for input
variables, and compute the encodings of f(t, x):

Ft,j = [(f(t, x))j , rT rxqj({pi, αt,i})]vx+vT (d+ 1).

– Computing gc outputs for input variables: choose ts in T standing for input
variables, then

([1, rxrT]vx+vT (d+ 1))4[1, r]v(1)Ft,j − ([1, rxrT]vx+vT (d+ 1))5CHKt,j

∼ [f(t, x)j , 0]vzt(µ),

so (ft,x)j can be obtained by zero test.

– Computing gc outputs for gates: Denote the jth bit of gc output at gate i as
gci,j , which is a polynomial pt,j over some (f(t, x))js and the gate definition
bits. Evaluating pt,j over corresponding encoding of its inputs will get to:
GCi,j = [gci,j , r(rT rx)5qt,j(α∗)]vzt(µ), where qt,j is some polynomial; and

GCi,j − [1, (rT rx)5]5vT+5vx(5d+ 5)CHKt,j ∼ [gci,j , 0]vzt(µ),

where adding a constant 1 to an ElGamal form ([1, r]v(d), [b, rα]v(d)) is done
as ([1, r]v(d), [b, rα]v(d)+[1, r]v(d)); adding of two ElGamal forms always use
the ”least common multiple” of their ElGamal scalar.

– Evaluating gc to get C(k, x).

Lemma 5. The above scheme has perfect correctness in the ideal GES model.

Lemma 6. There are no two different available encodings at the same level such
that one of them has degree 1

2 .

Theorem 1. The above scheme is VBB secure in the ideal GES model.

Proof. According to [7], it is enough to give an efficient algorithm for verifying
if evaluating a given symbolic circuit C̃ or polynomial p on the initial encodings
gets to a testable encoding. This verification is done as follows:

– Classifying monomials: it is easy to see that the level straddling guarantees
that no two different subscripts xj , x

′
j or yj , y

′
j can appear as factors of a

monomial of level vzt. This means each legal monomial is indexed by a unique
x.

– If no check values are used, then no nonzero testable polynomial exists:
grouping monomials by xs results p =

∑
x px, where px has content at the

second slot r(rT rx)5qx(α∗). Since rxs are linearly independent (with respect
to α-type variables) and α∗ is a set of algebraic independent variables, p
evaluates to 0 at the second slot would force all qx = 0 and thus p = 0. This
fact can be checked by evaluating p on random evaluations of the symbolic
variables in a universal ring, say Zl for a large prime l [31].

14

– The general case can be reduced to the “no check value” case with the help of
the oracle RE(): write p as a sum of two parts: one is a linear combination of
check values and the other is free of check values. The legal multiple of a check
value is of the form:

∑
x[1, (rT rx)5]vzt−v(5d+ 5); where each x must appear

in the “no check value” part whose size bounds the number of such xs (this
needs a little detail of the circuit). Now by subtracting the corresponding
honest computation on these xs from the two parts of an testable polynomial
would make the two parts evaluate to 0 which can be efficiently tested as
above. Then oracle RE() can be used to decide the output of the zero test
oracle.

It is easy to count the number of initial encodings when no virtual gates in
gc are needed:

(28λ+ 4)|C|+ 2cd× 10λ ≈ 28λ|C|+ 10× 2c−1
n

c
λ.

Suppose GES(µ, λ) ≈ µ2λ, the optimal choice for c is the one which minimize

(28|C| + 102c−1

c)(n2c + 6)2 which is irrelevant to λ. The computational cost (in
number of GES multiplications) is also easy to estimate, the main parts are:
d × 10λ + 2d × (2λ)2 for computing f0(x); 8λ|C| × 2λ for computing the PF
outputs; 4|C| × 2λ2 for computing gc outputs; all these sum to ≈ (32|C| +
8d)λ2 multiplications of GES encodings. When virtual gates are introduced, the
complexity multiplies by a factor no larger than 9

7 .
The GES we required can be instantiated with our simplified CLT map,

where the level subgroup U can be realized by choosing pi as product of primes
congruent to 1 mod 5 ∀i. If the total number of prime factors of N is l, then
|U | = 5l. Since some mismatched-inputs computation can be conducted with
probability 1

|U | , we should choose l such that |U | > 2λ. On the other hand,

samller divisors would make factoring N easier, we should ensure that each
prime factor is large enough so that factoring N is hard. For example, when
m = 32, λ = 128, we can let each pi be a product of two primes so that the
minimal prime factor has size over 1800 bits which is enough to prevent factoring
N .

To enforce the correctness requirement at minimal cost, it is necessary to
estimate the minor extra noise caused by free additions. For a homogeneous
addition where all summands have the same level of noise, if l is the number
of summands, then the extra noise produced by the addition is log l for perfect
correctness, and 1

2 log l for probabilistic correctness. We use the later in this

work. The extra noise for computing f0 expands to 5d log λ+1
2 +5(d−1) log λ+2

2 at
gc outputs: the second term is an estimation of the extra noise when combining
the d (·, 2λ) PFs; combining a pair with homogeneous components will result a
PF with inhomogeneous components with respect to the extra noise; to make
it more even, the heavy components will be placed in light positions at next
round of merging; this will result the heuristic estimation. Computing f(t, x)

contributes another 5(log λ+1)
2 . The gc circuit produces another log λ+ 2. All of

these amounts no larger than µ(λ+ 2).

15

6 Examples

The AES encryption algorithm may serve as a testbed for practicality of obfus-
cation. The cost of our scheme only depends on the number of input variables
n and the circuit size |C|. In fact, our circuit size is smaller than usual mea-
sure: firstly all key operations are absorbed, so our obfuscation of AES is not
burdened by the key scheduling part. Secondly, our gate can be any binary
function, so it should be smaller than known counts after optimized by some
automatic tool [14]. We did not conduct this optimization because it is not so
crucial to the result: this work only shows that obfuscation is implementable, but
still far from practical use. So a safe estimation of |C| < 25000 is used. Virtual
gates are not needed. We choose c = 13, and get µ = 31. The GES ring size is
< 33×31×119+55 ≈ 1.2×105 bits. The code size of the obfuscated AES is thus
≈ (28× 25000× 128 + 213 × 9× 1280)× 1.2× 105 < 2.2× 1013 bits. To evaluate
the obfuscated AES once would cost about 1.3 × 1010 modular multiplications
with 1.2× 105 bits modulus, which is still far from practical.

Note that just obfuscating the PF is more efficient, which can be used as a
public random oracle. In this case we need to unify to the zero test level which
would make µ doubled, and the group U is not needed. To get minimal code size,
the µ halving technique does not profit. So we would have µ = 2n

c . The code size

of the obfuscated PF will be 2c× n
c ×2λ×(2n

c)2λ = 2c+2

c3 n3λ2, the optimal choice
for c is 4. To implement a public random oracle for query of any length would
require n = 2λ, so the minimal code size is about 8× λ5, and in which case the
computation cost for one query is about 8λ3 modular multiplications of about λ3

bits modulus. In this example, reducing the computational cost is more desirable.
So we would exploit the µ halving technique and use a bigger c. When λ = 128,
c = 16, we have µ = n

c = 16, m = 17, and GES(16, 128) ≤ 17× 16× 119 + 55 <
3.3×104. The code size will be under 16×216×10×128×GES(16, 128) ≈ 4.2×1013

bits, which may be put on a data center; but the computation cost will reduce
to 8× 10× 128 + 7× 4× 1282 < 5× 105 modular multiplications of < 3.3× 104

bits modulus, which is handleable on personal computers.

7 Concluding Remarks

We have made general obfuscation implementable, but still not practical. Now
the degree of the multilinear map is not the main barrier, the huge number of
modular multiplications of big modulus is more prohibitive. It is possible to relax
requirements on PF and gc to get more efficient schemes. We expect that more
empirical methods will take obfuscation closer to practical use.

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfus-
cation and applications. IACR Cryptology ePrint Archive 2013 (2013) 689

16

2. Ananth, P., Jain, A., Sahai, A.: Robust transforming combiners from indistin-
guishability obfuscation to functional encryption. Cryptology ePrint Archive, Re-
port 2017/127 (2017) http://eprint.iacr.org/2017/127.

3. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indis-
tinguishability obfuscation from degree-5 multilinear maps. Cryptology ePrint
Archive, Report 2016/1097 (2016) http://eprint.iacr.org/2016/1097.

4. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: Avoiding
barrington’s theorem. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, Scottsdale, AZ, USA, November 3-7,
2014. (2014) 646–658

5. Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In:
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II. (2014) 162–172

6. Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-bias gener-
ators. J. Cryptology 29(3) (2016) 577–596

7. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II. (2015) 528–
556

8. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for boolean and arithmetic
circuits. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ACM (2016) 565–577

9. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings. (2012) 719–737

10. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Advances in Cryp-
tology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings. (2001) 1–18

11. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the 2012 ACM conference on Computer and communications security,
ACM (2012) 784–796

12. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit abe and compact garbled circuits. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Springer (2014) 533–
556

13. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based snargs and their application
to more efficient obfuscation. Cryptology ePrint Archive, Report 2017/240 (2017)
http://eprint.iacr.org/2017/240.

14. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Experimental Algorithms, 9th International Sym-
posium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010. Proceedings.
(2010) 178–189

15. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors:
Breaking fully-homomorphic-encryption challenges over the integers. In: Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Springer (2012) 502–519

17

16. Coron, J., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers.
In: Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I. (2013) 476–493

17. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings. (2013) 1–17

18. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing bp-
obfuscation using graph-induced encoding. Cryptology ePrint Archive, Report
2017/104 (2017) http://eprint.iacr.org/2017/104.

19. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional
linear assumption and weaker variants. In: Proceedings of the 2009 ACM Con-
ference on Computer and Communications Security, CCS 2009, Chicago, Illinois,
USA, November 9-13, 2009. (2009) 112–120

20. Lin, H.: Indistinguishability obfuscation from ddh on 5-linear maps and locality-5
prgs. Cryptology ePrint Archive, Report 2016/1096 (2016) http://eprint.iacr.

org/2016/1096.
21. Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps and

block-wise local prgs. Cryptology ePrint Archive, Report 2017/250 (2017) http:

//eprint.iacr.org/2017/250.
22. Lu, Y., Zhang, R., Peng, L., Lin, D.: Solving linear equations modulo unknown

divisors: Revisited. In: Advances in Cryptology - ASIACRYPT 2015 - 21st Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings,
Part I. (2015) 189–213

23. Mossel, E., Shpilka, A., Trevisan, L.: On ε-biased generators in NC0. In: 44th
Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October
2003, Cambridge, MA, USA, Proceedings. (2003) 136–145

24. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th Annual Symposium on Foundations of Computer Science, FOCS
’97, Miami Beach, Florida, USA, October 19-22, 1997. (1997) 458–467

25. Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring. Elec-
tronic Colloquium on Computational Complexity (ECCC) 8(064) (2001)

26. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable en-
cryption, and more. In: Proceedings of the Forty-sixth Annual ACM Symposium
on Theory of Computing. STOC ’14, New York, NY, USA, ACM (2014) 475–484

27. Sahai, A., Zhandry, M.: Obfuscating low-rank matrix branching programs. IACR
Cryptology ePrint Archive 2014 (2014) 773

28. Van Lint, J.H.: Introduction to coding theory. Volume 86. Springer Science &
Business Media (2012)

29. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd An-
nual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982. (1982) 160–164

30. Yu, Y., Steinberger, J.P.: Pseudorandom functions in almost constant depth from
low-noise LPN. In: Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. (2016) 154–183

31. Zimmerman, J.: How to obfuscate programs directly. In: Advances in Cryptolo-
gy - EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part II. (2015) 439–467

18

