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Abstract. In this work, we present a new obfuscator using a Graded
Encoding Scheme (GES) with a binary slot. We characterize a class of
circuits taking locally keyed input (each input bit of the circuit is a keyed
function over c > 1 bits of a binary-variable vector X of length n, where
c is called the locality), called ideal functions, such that any function of
algebraic degree d (called d-function) over them, can be obfuscated with
multilinearity µ = (d+1)n/c. Next we show that obfuscation of a general
circuit C can be bootstrapped by O(n)-functions (the circuit (called RE)
composing a garbled circuit (GC) with a pseudorandom function (PRF)),
following an approach similar to that of Zimmerman and Applebaum et
al. [35, 8], assuming PRF (or more precisely RE) exists among d-functions
with constant d.

To instantiate the above scheme, we achieve the following:
– A concrete GC of algebraic degree 3 over its random bits, which

has output size no more than 20λ|C| and random tape length about
10λ|C|, where λ is the security parameter, |C| denotes the number
of gates of the circuit C.

– A candidate d-function construction, where we argue that d = 1
suffices to stop linear distinguishing attacks and d = 2 seems enough
for fully secure PRF.

– Instantiation of the GES with a simplified version of the CLT multi-
linear map, and various techniques that further reduce µ of the core
obfuscator cost-equivalently to dn/(2c) + 1 in cases of our interest.

If we replace the PRF with d-functions, then we get various heuris-
tic obfuscation-friendly REs, and thus general obfuscators with explicit
complexities. For the most optimistic choice, we have µ = 1.5n′/c+ 2.5,
n′ ≈ n + log |C| + log λ, n is the number of input bits of C, and c is a
selectable constant which result in a 2c/c times increase of the key size
of the RE.

Our general obfuscator is VBB secure assuming that our RE is secure
and our simplified CLT map is a secure instantiation of our GES (defined
relative to known attacks). We leave these assumptions with concrete
parameter sets as open challenges.

We illustrate the efficiency of our methods with some examples:

– Our obfuscated AES (c = 13, µ = 20.5) has code size < 1.5 × 1017

bits, whereas no implementable solution is known prior to this work.
– We can practically obfuscate conjunction functions for n = 64, while

the latest implementation [20] can only handle n = 32 with compa-
rable resources. We also verify the security against algebraic attacks
in this example.
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1 Introduction

1.1 Background and Motivation

Obfuscation of general circuits is a powerful functionality in cryptography [30]
which was regarded infeasible [12] until the celebrated work [21]. But this great
work only addressed the existence problem: the solution is infeasible for any
meaningful examples. Significant improvement of efficiency was obtained in later
constructions (e.g. [2, 35, 5, 31, 8, 25, 4, 22, 3, 14, 26]), but all these works only got
that the complexity depends polynomially on the security parameter and circuit
parameters: the complexity polynomial (even the degree) is not explicitly given.
Here is the reason: known essential obfuscation methods, called core obfuscation,
have to use a tool called Graded Encoding Scheme (GES) and can directly
handle only NC1 circuits; to obfuscate a more complex circuit, it is necessary to
transform the task to obfuscating a simpler bootstrapping circuit which is NC1;
the latter needs a GES of huge (though polynomial) multilinearity µ. All known
instantiations of GES need a multilinear map which is highly inefficient according
to known constructions [21, 19]. A multilinear map noisily encodes integers in a
huge ring. The key encoding complexity measure GES(µ, λ) is the size of a single
ring element which depends on µ and the security parameter λ (which means
concrete security strength in this work: any successful attack has complexity no
less than 2λ). In current constructions, GES(µ, λ) is proportional to µ2. These
amount to the status that all known methods for obfuscation of general circuits
cannot be implemented in practice, in fact, the whole input-output table stays
the best solution for not so large n, say n ≤ 128, where n is the number of input
bits.

Given that obfuscation is so wanted, it is worthwhile to investigate the “how
fast” side of the obfuscation notion. In this respect, we do not insist on prov-
able security in the standard model, as “hard to attack” is the second choice
for security assurance when the first is not affordable. In practice, a “hard to
attack” scheme is often obtained by instantiating a scheme secure in an ideal
model (the most popular example is random oracle, later we will define what the
instantiation of our GES is). Another general method to improve efficiency is to
replace the low level primitives with those constructed with heuristic methods:
instead of provable security, we try to defend known attacks. Our guideline to
achieve such practical security is to begin with a sound construction in the ideal
model and instantiate it heuristically in these ways. We think that this kind of
compromise of security is inevitable in the way to get obfuscation to real world
application because such a functionality seems unreachable at a first glance.

Our first task is to obtain a sound construction in the ideal model which is
suitable for modifications as above. There are three kinds of methods to get gen-
eral obfuscation. The first is based on obfuscating branching matrix programs:
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µ is the length of the program, the translation from circuit to branching matrix
programs will result in program length of polynomial of the circuit size, anoth-
er major efficiency bottleneck besides the multilinear maps, making it hopeless
to be practical. The second kind makes use of functional encryptions: it needs
many steps each of which has to treat a recursively defined huge circuit where the
circuit of the multilinear map tool itself is only a small unit, and no explicit com-
plexity is available even when µ is reduced to 2 [25]. The third is the approach
of Zimmerman and Applebaum et al. [35, 6, 8]: using the core obfuscators [35, 8]
to obfuscate the Randomized Encodings (RE) of the circuit to be obfuscated.
The existing (implicit) constructions of RE that work for obfuscation have µ of
size only bounded by a (existential) polynomial in n, λ, but this seems the only
bottleneck of efficiency. So we choose to follow the third approach.

1.2 The Basic Ideas

Since known bootstrapping NC1 circuits cannot be handled by the Zimmerman
and Applebaum et al. core obfuscators [35, 8], it is natural to firstly ask how
they can be improved and what can be efficiently obfuscated directly. The core
obfuscators [35, 8] work as follows: first transform the binary circuit to arithmetic
one (which usually increases the size), and apply the GES encoding (in ElGamal
form) on inputs and key bits: a GES encoding [a, b]v symbolically encodes two
(or more) slots of values [a, b] at a level v; such encodings can be operated as
[a1, b1]v1 [a2, b2]v2 = [a1a2, b1b2]v1+v2 and [a1, b1]v + [a2, b2]v = [a1 + a2, b1 + b2]v;
to enable addition of two encoded values at different levels, values are encoded
in ElGamal form: [a, b] is encoded as ([r, s]v, [ra, sb]v), where [r, s]v is called
ElGamal scalar. Then do GES operations along the arithmetic circuit: at each
gate, the multilinearity µ for the outwire is the sum of those of the inwires except
for addition gate with inwires with the same ElGamal scalar, which is called free
addition gate. The transformation from binary circuit to arithmetic has the effect
that multiplications are extensively used and additions can hardly be made free.
A small circuit can result in a huge µ in general. So our first choice is to use
a GES with the first slot encodes binary values directly so that the binary to
arithmetic transformation is avoided.

As µ must be added at an “and” gate, the best that can be expected is
all “addition” gates are free. The primary subcircuit of such circuits can be
characterized as follows: the level of each input gate xi is indexed by the single
index set {i} (the level group contains the free abelian group with generator set
[n]), the index set of an “and” gate is the disjoint union of those of the two
inwires; and for “addition” gate, the index set of one inwire must be contained
in that of the other (so that there is an ElGamal scalar to compensate the
lower degree one to get the addition free); each output gate is indexed by the
whole set [n]. We call sum of polynomially many of such primary circuits ideal
function because it has the property that each output bit depends all input
bits (a minimal requirement to replace the PRF of RE), and can be obfuscated
with all addition gates free; moreover, all output bits share the same ElGamal
scalar indexed by the whole input vector x, so that any function over it can be
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obfuscated in the ideal way that all “addition” gates are free. A d-function is an
circuit of algebraic degree d over an ideal function. Obfuscation of d-functions
with the core obfuscators [35, 8] will get µ = (d+ 1)n for IO or µ = dn+ n2 for
VBB security. Note that the notion of IO security makes no sense to our task (to
hide the key of RE), the n2 term in µ seems too expensive. Basically we modify
the core obfuscators as follows: instead of encoding individual inputs and key
bits, we encode the values of gates somewhere near the inputs: each such gate
depends on no more than c bits (form a block) of the input. That is, we consider
circuits taking locally keyed input, i.e. each input bit is an output bit (f(k, x))j
of a keyed function f(k, x) which depends on no more than c bits of the input x,
where c is called the locality. To obfuscate such circuits, we encode each input
bit with an ElGamal scalar indexed by the subvector of input x it depends on,
and the level is also indexed by the block name. This simple technique reduces µ
by a factor c, and enables blocks straddling to get VBB security for free, and also
makes the obfuscator (when instantiated) more resilient to algebraic attacks.

Our first contribution is this new core obfuscator for d-functions specified in
the ideal GES model. Ideal functions may be too complex to lie in NC1 and Point
functions and Conjunctions (the only meaningful family feasibly obfuscable in
practice) are ideal functions, our core obfuscator remarkably augments the class
of circuits directly obfuscable.

1.3 Bootstrapping in d-functions

Next we wish to realize RE in d-functions. Our RE has the form gc(k, x, f(k′, x)),
where gc is a garbled circuit, and its random tape is provided by a keyed function,
so that RE becomes keyed function (unlike the meaning of the name in other
literatures). There is a construction [9] of gc with algebraic degree 4 over its
random bits assuming only quadratic minimal pseudorandom generators (PRG).
If f is a pseudorandom function (PRF), then this RE is provably secure. One of
our heuristics is that an f weaker than PRF may still keep RE secure.

We give a reference construction of d−functions, where our cryptanalysis sug-
gests that ideal functions may stop linear distinguishing attacks, and 2-functions
may marginally resist known nonlinear distinguishing attacks. So it is reason-
able to assume that there exists PRF in d−functions for some small constant
d, which concludes that there exists general obfuscators under ideal GES model
with µ = O(n).

We may use d-functions for d = 1, 2, 3 · · · for f to get heuristic REs with
increasing assurance. To give RE candidates with concrete efficiency and security,
we improve the GC in [9] to have degree 3 and also a smaller GC size by giving
a candidate quadratic {0, 1}2λ → {0, 1}(3+)λ PRG. This leads to concrete RE
examples in d-functions for d = 3, 6, · · · , which may serve as targets for further
cryptanalysis.
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1.4 Instantiation of GES

We give a heuristic instantiation of the GES with a simplified version of the
CLT multilinear map. We first show that the level group can be realized. Then
additional optimizations of the core obfuscator are given, which further reduce
µ of the core obfuscator to cost equivalently dn/(2c) + 1 in cases of our interest.
We also illustrate how to set the parameters of the CLT map in our general
obfuscator, where GES(µ, λ)/η2 is taken as the security level which is somewhat
conservative. This leads to concrete general obfuscators (depending on concrete
REs) with explicit complexity.

Then we investigate the security of our instantiation under known attacks.
The first kind of attacks [19] on the original CLT map exploit the same weakness:
multiple encodings lie in the same level, they are called exposed. These attacks
work the same way with our modified version (the slot encoding binary value
seems not harmful), and determine the choice of parameter sizes. The second
kind attacks [18, 16, 17] (called algebraic attack, or zeroizing attack) make use of
the leak of the zero-test: a known polynomial of the initial noises (called zero-test
polynomial) over the field of rational numbers is returned by any acceptable zero-
test. If one can partition the input set so that some set of zero-test polynomials
vary with two input sets like a bilinear form, then CLT map is totally broken.
In our core obfuscator, if the ElGamal scalar of the ideal function output can
be obtained by different polynomials of the initial encodings, then this attack
works. We can avoid this in our general obfuscator: we omit the ElGamal scalar
of some blocks so that there is only one way to form the whole-vector ElGamal
scalar, which means the ideal function is linear with respect to the blocks without
ElGamal scalar. Now zero-test polynomials only come from honest computation,
which factor through a PRF and thus are too complex to allow the input set
partition. But it generally threats simple circuits such as conjunctions [18]. We
use an explicit block straddling to defend our specific example against such
attacks, and give a method to defend general circuit.

In general, we give a definition of “good instantiation” of GES which absorbs
the “hard to verify” part of VBB definition in standard model, so that VBB
security in ideal GES model transforms to VBB security in standard model under
a Legal condition. We conjecture that the Legal condition for our CLT map is
non-existence of the above-said partition of the initial encoding set relative to the
set of testable symbolic polynomials, which excludes known algebraic attacks.
Our obfuscators satisfy this Legal condition.

1.5 Examples

The complexity of our obfuscators only depends on n, |C|, λ. We give an esti-
mation of the cost for n = 128, |C| = 25000, λ = 128, which supersedes that
for obfuscating AES. The result shows that such task is implementable but far
from practical. When our core obfuscator applied to the simplest kinds of ideal
functions (the conjunction functions), the result is much more acceptable: we
can practically handle the case n = 64.
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1.6 Organization of the Paper

The rest of this paper is organized as follows: Section 2 is notations and defini-
tions used in this work. section 3 introduces ideal functions and describes our
core obfuscator. Section 4 gives our GC construction. Section 5 presents our can-
didate d-functions. Section 6 describes our general obfuscation scheme. Section
7 treats the instantiation of the GES. Section 8 gives examples: obfuscated AES,
and obfuscation of conjunctions. Section 9 is some concluding remarks.

2 Preliminaries

2.1 Notations

We let Zl denote the residue integer ring Z/lZ. |A| denotes the number of ele-
ments of a set A. [n] denotes the integer set {i : 1 ≤ i ≤ n}. If x is a vector of
length n, xA means the subvector corresponding to the subset A ⊂ [n]; (x)j is
the jth component while xj means a subvector. If S is a set, we like to use s
(with subscripts) to represent its elements. By abuse of notations, X can refer
to either the input space or the set of input variables, X = Y × Z means X is
partitioned into two parts, i.e. the order of the variables is irrelevant. We use
“A + B = C” to mean (A,B) is a partition of a set C. A = A1 + A2 + · · · is
called a c-partition(Ai c−block), if |Ai| ≤ c ∀i. λ is the security parameter, and
the security strength is in bits. All algorithms are efficient by default.

2.2 Circuits and Obfuscation

A circuit C in this work always means binary and may compute a keyed function
C : (K,X) → {0, 1}l, where K and X are called key space and input space
respectively. For any k ∈ K, Ck denotes the circuit that computes the function
C(k, ·). In other words, the key is hardwired into definition of gates of Ck: each
gate i of Ck is defined by a function gi,k : {0, 1}2 → {0, 1}, and all Cks have the
same topology: each gate i receives inputs from the same gates i0, i1 for all k,
where −1, · · · ,−n index input gates, i > i0 > i1. We call this the keyed circuit
for computing the keyed function C(K,X). A keyed circuit can be obtained from
a universal circuit, by first absorbing gates that do not depend on inputs, and
then absorbing all single inwire gates into definition of their two-inwire receiving
gates.

Obfuscation of a keyed function C(K,X) is pair of PPT algorithms (E,Ob),
such that there exists an evaluation algorithm E(x,Ob(k)) = C(k, x) ∀k, x. The
input to the algorithm Ob is actually the keyed circuit Ck: n the number of
input variables (corresponding to gates −1, · · · ,−n); |C| the number of gates
(labeled with integers 1 ≤ i ≤ |C|); circuit topology {(i, i0, i1) : 1 ≤ i ≤ |C|}
where i0 < i1 < i; and gate definitions gi,k : {0, 1}2 → {0, 1}.

There are two main security notions about obfuscation: IO and VBB. IO
means Ob(k1) is indistinguishable with Ob(k2) if C(k1, ·) = C(k2, ·). VBB means
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Ob(k) reveals nothing beyond the oracle C(k, ·), which cannot be defined mean-
ingfully in the standard model: a simulator based definition would lead to nonex-
istence [12], whereas any other definition capturing this intuitive notion has an
unprovable format (but can be easily falsified by attacks). VBB can be defined
in an ideal model as follows. There is a simulator S such that: for any adversary
A, (ob,O)← Ob(k); ob′ ← S;∣∣∣Pr[AO(ob) = 1]− Pr[AS

C(k,·)
(ob′) = 1]

∣∣∣ < ε

where the oracle is outputted by the obfuscator means it is initialized there. The
oracle we will use is GES defined later. VBB in standard model can be formulated
as: for any predicate leak, any adversary A, there exists an algorithm S, such
that ∣∣∣Pr[A(Ob(k)) = leak(k)]− Pr[SC(k,·) = leak(k)]

∣∣∣ < ε.

This definition of obfuscation is not phrased in circuits but it is equivalent to
the formulation in terms of circuit families.

Definition 1. A Randomized Encoding (RE) of C(k,X) is a keyed function
RE(k̃, k,X), such that there exist algorithms D,S such that D(RE(k̃, k, x)) =
C(k, x) ∀x and for all adversary A,∣∣∣∣Pr[ARE(k̃,k,)̇ = 1]− Pr[AS(k̃)

C(k,)̇

= 1]

∣∣∣∣ < ε.

It is easily seen that VBB obfuscation of any RE of C(k,X) gives a VBB
obfuscation of C(k,X).

Definition 2 ([13]). A garbled circuit of C(k,X) is a function gc(k, x, r) such
that there is an algorithm D: Pr[D(gc(k, x, r)) = C(k, x)] > 1− ε and there is a
simulator S: for all adversary A,∣∣Pr[A(gc(k, x, r)) = 1]− Pr[A(S(C(k, x)) = 1]

∣∣ < ε

Our RE will have the form gc(k, x, f(k̃, x)), where gc(k, x, r) is a garbled
circuit with a simulator S(·, r′) such that r, r′ share a substring r0. When we
say f(k̃, x) is secure in this RE, we mean the simulator S(·, r′), when r0 is the
corresponding substring of f(k̃, x), works as the simulator of RE(it is called the
composition of S(·, r′) and f(k̃, x)). A PRF is obviously secure in RE, but a
weaker f(k̃, x) may still be secure.

2.3 The Ideal GES Model

The ideal GES in this work is similar as the MRG model of [8], it is used to
encode values by the obfuscator and allow public operations of the encodings to
manipulate the encoded values homomorphically and secretly in rules specified
by levels and also to zero-test at a test-level. The encoded value lies in two slots:
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the first slot for binary values (in Z2), and the second for a big ring U which is
universal for an allowable (defined later) family P of polynomials in the sense:
for any p ∈ P of m variables:

Pr[p(α1, · · · , αm) = 0 : αi ←R U ] < 2−λ

where←R means “sampled uniformly randomly from”. The boolean slot is used
for circuit evaluation and the other one for authentication of the computing
process. An encoded value will take the form [b, α]. The levels that a value can
be encoded are in an abelian group V, that is, a set of generators {vj} and a
set of relations {Ri = 0} over {vj}, where Ri is a linear combination of {vj}
with integer coefficients. Each encoding has a degree d > 0 (to keep track of
noise size). So a GES encoding takes the form [b, α]v(d), where the content [b, α]
is secret, but v, d is assumed to be known by the adversary. The adversary can
only perform symbolic operations “+”, “−” and “×” to obtain new encodings:

[b1, α1]v(d1) + [b2, α2]v(d2) ∼ [b1 ⊕ b2, α1 + α2]v(max(d1, d2)),

[b1, α1]v(d1)− [b2, α2]v(d2) ∼ [b1 ⊕ b2, α1 − α2]v(max(d1, d2)),

[b1, α1]v1(d1)× [b2, α2]v2(d2) ∼ [b1&b2, α1 × α2]v1+v2(d1 + d2)

where ∼ stands for having the same content and level. The degree may be
dropped if it is not stressed on. An ElGamal form for a bit b is a pair(

[1, r]v(d), [b, rα]v(d)
)
,

where [1, r]v(d) is called the ElGamal scalar. In the ElGamal forms, any two
encodings can be added,(

[1, r1]v1(d1), [b1, r1α1]v1(d1)
)

+
(
[1, r2]v2(d2), [b2, r2α2]v2(d2)

)
=
(
[1, r1r2]v1+v2(d1 + d2), [b1 + b2, r1r2α1α2]v1+v2(d1 + d2)

)
but the price is that degrees are also added. If scalars are the same, two ElGamal
forms can be added without increasing the degree, this is called free addition.
There is also a private interface

[b, α]v(d)← Encode(b, α, v, d)

and a public function ZeroTest([b, α]v(d)) = b if v = vzt, α = 0, and d ≤ µ,
otherwise it is rejected, where the multilinearity µ is the maximal degree d that
is allowed in an encoding [b, α]v(d); the test level vzt is the only level at which
the adversary can zero-test.

The formal definition of our GES is a state machine which works as follows. It
maintains a list of elements of the form (h, h1, h2, oh, Eh), where h > h1 > h2 are
integers (called handles), oh is one of the operators, Eh is the encoding pointed
by handle h, and such a tuple means Eh = Eh1

ohEh2
. In the encoding stage,

it responses to all encode requests and puts the results in a table {Eh,−1 ≥
h ≥ −l}, and is initialized with h = 0 and the list empty. Then it can response
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to the operator requests. Each request is of form (h1, h2, o): it first checks if
the operation is allowed, then it checks if the result as a formal polynomial
of the initial encodings coincides with some entry of the list: if yes, returns
that handle; otherwise puts (h, h1, h2, o, Eh) on the list, and augments h by 1.
Note that the list defines a symbolic circuit C̃h for each h ≥ 0, where the initial
encodings are input gates, so each h points to a symbolic polynomial P̃h over the
initial encodings defined by C̃h. To check if two such polynomials are identical,
it only needs to compute their circuits over random inputs. This model means
the encode function has different responses to requests of the same contents.

A GES can be used to obfuscate a circuit C(k, x) by taking it as symbolic
and encoding each input and key bit in initial encodings [35, 8]. We allow C to
take locally keyed input, i.e. we can evaluate C(f(k, x)), where each output bit
(f(k, x))j of f(k, x) depends on no more than c bits xj ∈ Xj of x, where Xj

denotes a space consisting of at most a constant c components of the input space
X. Given a set of initial encodings {[bi, riαi]vi(di) : 1 ≤ i ≤ l}, where the keyed
input is encoded in {bi}, and {αi} is independent input, such that there is a
symbolic circuit C̃j satisfying

C̃j
(
{[bi, riαi]vi(di) : 1 ≤ i ≤ l}|x

)
∼
[
(C(f(k, x)))j , 0

]
vzt

(µ)

where |x means a selection (subset) indexed by x, and (y)j means the component

of a vector y indexed by j. Now the zero test reveals C(f(k, x)). For such a C̃ to
be constructed, the set of initial encodings should contain at least: the ElGamal
forms {(

[1, rxj ]vxj , [g(k, xj), rxjαj ]vxj

)
: xj ∈ Xj

}
for each bit (f(k, x))j = g(k, xj) of f(k, x) that depends on Xj , and a check
value for each output bit Cj of C. A check value for an output bit Cj of C is
an encoding whose content is a multiple of [0, Cj({αi})], which is used to cancel
the second slot of the content resulted from symbolic computing along Cj to

form the testable symbolic circuit C̃j . This generalization of the GES computing
model [8] reduces the multilinear degree µ by a factor c when the circuit factors
through a c-local input function.

Definition 3. An obfuscator Ob in the GES model is an algorithm that works
as follows: on getting the description of the circuit family C(k, ·), it sets up the
ring U and group A, and makes public its strategy: a distribution of K × (Z2 ×
U ×A×Z)l; On getting k, it draws a sample of this distribution to get the GES
initialized and output the l initial encodings as the obfuscated code Ob(k).

– Correctness: There is a symbolic circuit Ẽ, such that ẼGES(Ob(k), x) =
C(k, x) for all x.

– VBB security: There is a simulator S, such that for any adversary A∣∣∣Pr[AGES(Ob(k)) = 1]− Pr[AS
C(k,·)

(Ob(0)) = 1]
∣∣∣ < ε.

It is known from [8] that
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Lemma 1 (Algebraic Security). VBB security holds if

– (IO security) For any admissible (accepted by zerotest) symbolic circuit C,

P̃C ∼
∑
x

cxP̃Ẽ(·,x)

where ∼ means differing by a polynomial encoding 0 content, P̃ stands for
symbolic polynomial of a symbolic circuit, and cx is an integer, Ẽ(·, x) de-
notes the symbolic circuit of honest computation over input x.

– There is an efficient algorithm to list all x such that cx 6= 0.

2.4 Symmetric Key Primitives

The bias of a boolean variable b is defined as ∆(b) = |2Pr[b = 1]− 1|. The Piling
lemma says ∆(b1 ⊕ b2) = ∆(b1)∆(b2) if b1, b2 are independent. To distinguish b
with uniform distribution for sure, the number of samples is about 1/∆(b)2.

Definition 4. A function g : {0, 1}n → {0, 1}m is called a (n,m) Pseudorandom
Generator (PRG), where m > n, if for any adversary A runs in time tA, and
let ∣∣Pr[A(g(Un)) = 1]− Pr[A(Um) = 1]

∣∣ = 1/2 + ε

we have tA/ε
2 ≥ 2λ, where U denotes uniform distribution.

We need quadratic PRGs with this definition of concrete security. There are
many constructions [27, 7] of this kind, though the security level is only bounded
by linear distinguishing attacks, it is widely believed that such bounds also holds
for other attacks. A linear distinguishing attack tries to find a linear combination
of the outputs with largest bias ε. To keep ε < 2−λ/2, the key length is at least
2λ in these constructions.

Lemma 2. [27] There exist (2λ, 2δλ) generators with ε < 2−λ/2+δ for δ < λ/2,
and each output bit is a quadratic function of all input bits.

But the one-wayness does not hold in this construction. We cut half of its
output to get the following candidate PRG: k 7→ ((k1+2i)−)1≤i≤δ, where k ∈
GF22λ , ()− stands for taking half of the bits (to achieve one-wayness). For a
small constant δ such as δ = 3, the bias ε is bounded by above lemma, so the
security of the PRG is not a big problem. We have a more optimistic conjecture:
this candidate is secure for δ ≤ λ. We leave the cryptanalysis of this candidate
PRG as an open problem.

Definition 5. A pseudorandom function (PRF) f : K × X → R : (k, x) 7→
f(k, x) ∈ R satisfies: when k is randomly chosen, then for any adversary A.∣∣∣Pr[Af(k,·) = 1]− Pr[ARO = 1]

∣∣∣ < ε

where RO is a random oracle with range R.

When R = {0, 1}l, we call such a PRF a (X, l) PRF by omitting specification
of the key space. Note that (X × {0, 1}m, l) PRF f implies (X, l2m) PRF f ′:
f ′(x) = (f(x, t))t∈{0,1}m , i.e. the position of output can be specified by m input
variables.
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2.5 Distinguishing Attacks

Traditional constructions of PRFs [28, 29, 24, 10, 34] are too complex to be used
in this work. We give a new candidate using design principles in applied cryptog-
raphy. This means that we aim to defend known attacks. Our PRF will have a
wide and shallow circuit, most of the attacks making use of the simple structure
of a round function do not apply here. The linear distinguishing attacks remain
relevant. It seems that the most effective one with respect to our construction is
the Cube Attack: summation over a cube; some algebraic structure of the result-
ed function remains handleable. Let DAf =

∑
xA∈XA f(x), where A is a subset

of input variables, and xA denotes the subvector of x. Let xA =
∏
i∈A(x)i, then

f = xADAf + f0, where deg(f0) over XA is less than |A|. It is obvious that

Lemma 3.
DA(fg) =

∑
A=B+C

DBfDCg;

and if f does not depend on variables in B, and g does not depend on variables
in A, there is

DA+B(fg) = DAfDBg.

From an algebraic point of view, if a function has considerably less number
of terms than a random one, it is obviously not a PRF. But this may not be
detected by only black box access of f . One method to detect this is based on the
following observation: given m > n secret vectors v1, · · · , vm of a linear space of
dimension n, then it is easy to distinguish the source (L(v1), · · · , L(vm)) from
a truly random source where L is a random linear function, given more than
n samples. The distinguisher computes rank of a matrix (Li(vj)) of dimension
m×m (so it is a nonlinear distinguishing attack). To distinguish a function f(X)
with a random one, one tries to write

X = Y × Z and f(y, z) =
∑

1≤i≤m

gi(y)hi(z),

i.e. f can be seen as a bilinear form over a space of dimension m. If |Y |, |Z| > m

and m < 2
λ
3 , we may say the attack succeeds. We denote ω(f) as the minimal

m for which such expression of f exists with respect to this partition. We do
not define ω(f) to be smallest with respect to all partitions, because in practice
we cannot find that partition but just try random partitions. In general, we fix
a partition of the input variable set in form [n] = A + B + A′ with |A| = |A′|,
where variables in B are taken as constants.

3 Ideal Functions and the Core Obfuscator

For a locally keyed circuit C(f(k,X)), each input gate of C is associated with
a subset Xj(called an input block) of the variable set X on which fj(K,X)
depends; where |Xj | ≤ c, c is called the locality.

11



Definition 6. A locally keyed circuit is called an ideal function, if it is a sum of
polynomially many primary circuits. A locally keyed circuit C(f(k,X)) is called
primary if: the set of input blocks form a partition of X, each gate of C is indexed
by a subpartition and the following conditions are satisfied:

1. each input gate j of C is indexed by the set {Xj}.
2. for each “and” gate: the index sets of two inwires must be disjoint. The index

set of this gate is the union of the two.
3. for “⊕” gate: if the index sets of the two inwires are different, then one is

the index set of some predating gate of the other. The index set of this gate
is the larger one.

4. for each output gate, the index set is maximal: the whole partition of input
blocks.

Roughly speaking, the index set (if not maximal) of each gate of an ideal
function is formed in a unique way, which is needed to keep uniqueness of ElGa-
mal scalars. It is obvious that primary functions are ideal functions with only
one input block partition, and a vector function is ideal if and only if so are the
components.

Example of ideal functions: the conjunction function f , f(k, x) = 1 if and
only if x0 = k, where x0 is a subvector of x at a secret index subset. As a keyed
circuit, it is just a product of n bits. We can choose any c to make it a product
of n/c bits by tabling the computation over the c−blocks of the input variables.

Definition 7. A function is called d-function if it is of the form g ◦C(f(k,X)),
where the degree d = deg(g) is over binary variables, and C(f(k,X)) is an ideal
function.

Next we will show how to obfuscate d-functions in the GES model by first
giving a basic obfuscator and then some variations. We encode each primary
component locally and independently but we need the following global variables:{

ri,b, vi,b : 1 ≤ i ≤ n, b ∈ {0, 1}
}

where ri,b ∈ U ,vi,b ∈ V are independent random samples. Given input x, for any
subvector xj of index set Xj , we use the following notations:

rxj =
∏
i∈Xj

ri,(xj)i and vxj =
∑
i∈Xj

vi,(xj)i

.
Within each primary component, there are some constants:

– for each input bit j: αj ∈ U ;
– for each input block j : vj ∈ V;

At each input bit j, the initial encodings are:{
Ej,xj = (Sj,xj , Tj,xj ) =

(
[1, rxj ]vj+vxj , [fj(k, xj), rxjαj ]vj+vxj

)
: xj ∈ Xj

}
12



where j is also abused as the block name: Sj,xj is the same for js in the same
block.

Now we can evaluate a primary component over an input x as follows:

1. at each input gate j of C: the value of the gate is Ej,xj ;
2. for each “and” gate: if the value of two inwires are E1 = (S1, T1), E2 =

(S2, T2), the value of this gate is E1E2 = (S1S2, T1T2).
3. for “⊕” gate: for two maximal inwires with values E1 = (S1, T1), E2 =

(S2, T2), the value of this gate is (S1, T1 + T2); otherwise, if S1 is larger,
there exists an S′ such that S1 = S′S2, value of this gate is (S1, T1 + S′T2).

4. at each output gate i, its value (Si, Ti) is if of the form (Sx, Ti), where
Sx = [1, rx]v+vx , v =

∑
j vj .

Note that some ElGamal scalars may be missing and the value of the output
gate is still reachable as long as in every addition gate the required patching S′

exists. Now the level the output gates of all primary components must be same,
which gives relations over the generators with block names.

Note that there might be many maximal ElGamal scalars equivalent to Sx.
This does no harm in the ideal GES model, but makes the CLT map instantiation
insecure because of the algebraic attacks. To make it work for the CLT map
instantiation, there should be only one maximal ElGamal scalar. This gives a
restriction on the structure of the ideal function circuit C: it is linear with respect
to some blocks whose ElGamal scalars can be deleted from the initial encodings
so that only one maximal ElGamal scalar can be obtained. This condition is
enforced at our candidate ideal function structure for RE.

Now any d−function g ◦ C(f(k,X)) can be evaluated as follows:

1. define the degree of the input gates of g to be 1;
2. for each “and” gate: if the value of two inwires are T1, T2, the value of this

gate is T1T2, and the degree is the sum of those of the two inwires.
3. for “⊕” gate: for two inwires of degree d1 ≥ d2, the value of this gate is
T1 + Sd1−d2x T2, and the degree is d1.

4. to add 1 to a value T of degree d′, just do T + Sd
′

x .

Now we get the encodings of the output bits {bi} of g ◦C(f(k,X)) of the form:

Bi =
[
bi, pi({αj})rdx

]
d(v+vx)

where pi is the polynomial defined by the output gate i.
To get to zero-test, we need a check value for each output gate to cancel the

second slot, and also some encodings called patches to get to the unique zero-test
level vzt. The check values are given by{

CHKi = [0, rpi({αj})]w : i
}
.

Choose a suitable (explained later) c−partition X =
∑
iXi, the patches are:{

Pxi = [1, ri]wi−vxi : xi ∈ Xi, i
}

13



where r =
∏
i ri, w =

∑
i wi and w + dv = vzt. To complete the evaluation, we

just zero-test

Bi
∏
j

Pxj − CHKiS
d
x

The output of our basic obfuscator consists of: the initial encodings, the check
values and the patches. Assuming all these encodings have degree 1, then we get
µ = (d + 1)n/c. This completes the description of the obfuscated code and its
evaluation on a given input.

The VBB security of the above obfuscator in the ideal GES model can be
proved as follows.

Lemma 4. The first condition (IO security) is satisfied.

Proof. Any monomial (degree no more than µ) over the initial encodings which
has level vzt must have degree µ and indexed by unique (each patching block
appears exactly once) x, and has a content of the form [b, rdxr

′
xα∗], where α∗

stands for something depending only on α-type variables. Now given a testable
symbolic polynomial P̃ =

∑
x P̃x, we can write its U part as

∑
x r

d
xα∗x (which

defines the allowable family). Since {rdx : x ∈ X} is a linearly independent
set over the polynomial ring of {αj}, we must have α∗x = 0 ∀x. α∗x = 0

means P̃x ∼ cxẼx, where Ẽx means the symbolic polynomial of the Evaluation
algorithm on input x.

To validate the second condition for VBB security, we need a more notion.
We say that two partitions of a set are a straddling set [11] if no subset admits
subpartition of the two partitions. There exists a straddling set consisting of
2-partition, so given any c-partition of a set X, there exists a c-partition to pair
it into a straddling set for c ≥ 2.

Choose the partition of the patching to be the partner of the partition of
some primary component to form a straddling set. Choose an monomial of this
primary with maximal degree. This allows us to prove the VBB security: To
complete this monomial with any number of inputs, any symbolic circuit must
use at least the same number of “addition” gates, and by inspecting these gates,
all x with cx 6= 0 can be identified. This leads to the first main theorem of this
work:

Theorem 1. The obfuscator above is VBB secure in the ideal GES model which
obfuscates d-functions of the locality c with µ = (d+ 1)n/c.

Next we give some variations of the basic obfuscator.

– The case where g is keyed, and has degree 1 over the key bits: encodes each
key bit in ElGamal form with a common ElGamal scalar S0 = [1, r]w, and
in the patchings let 1 =

∏
i ri, 0 =

∑
i wi.

– For d > 1, no patchings: let the levels {vi,b : i, b} lie in a subgroup of exponent
d, i.e. satisfying dvi,b = 0∀i, b; the zero-test encoding changes to

BiS0 − CHKiS
d
x
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if g is keyless, or
Bi − CHKiS

d
x

if g is keyed as above.
– Twisting ElGamal form: in the ElGamal values of the initial encodings, vj

is replaced with v′j , and again the relations on these generators are defined
by the additions of encodings.

– The conjunction function case: no ElGamal scalars and only 1 output bit.
Suppose the check value encode β in the second slot, choose a new c−partition
X =

∑
i Yi, the original ElGamal scalars and check value are replaced by{

Sxi = [1, ryiβi]v′i+vyi : yi ∈ Yi, i
}

where β =
∏
i βi; and the zero-test encoding changes to(∏

j

Txj −
∏
i

Tyi
)∏

i

Pxi

The security of these variations remains unchanged except the no-patching
version. The security proof goes through if there is a pair of primary components
whose partitions form a straddling set: choose the maximal monomial given by
a product

∏
αj over all blocks in the straddling set that appears (divides some

monomial) in the check values. In this case, we get µ = dn/c.

4 The Garbled Circuit gc

A garbled circuit gc(k, x, r) is an encryption of a circuit C(k, ·) and input x that
only reveals C(k, x). Most constructions only concern the efficiency requirement
that gc(k, x, r) be a local function over (C, x), and thus leave gc(k, x, r) a com-
plex function over r. In this work we additionally require that it be of smallest
possible algebraic degree d over the random bits r. There is a construction [9]
which achieves d = 4 assuming existence of quadratic minimal PRG (stretching
the input by only 1 bit), we will improve the result to d = 3 under the same
assumption. Moreover using our candidate PRGs with linear stretch, we also
reduce the output size and random tape length.

The only crypto-ingredient of the construction is one-time encryption of ar-
bitrarily long message, where the security is defined as that the ciphertext is
pseudorandom for only one encryption. This primitive Ek() can be realized by
any PRG g as follows:

Ek(m, {ri}) =
(
g(k)⊕ r1, g(r1)⊕ r2, · · · , g(rs)⊕m

)
that is, the key is repeatedly refreshed and stretched until it is enough to cover
the long message. Note that the ciphertext is quadratic over key and random
bits if so is g, and affine over m. Its size decreases with larger stretch of the
PRG, can be the same as |m| if g has enough stretch.
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We also use four functions {CKa,b : a, b ∈ {0, 1}} over two strings:

CKa,b(W
0
0 ||W 1

0 ,W
0
1 ||W 1

1 ) = W b
0 ⊕W a

1

where || means string catenation, that is, each function choose parts of the input
to add up. They satisfy the property: for 4 independent strings

{Wa,b : a, b ∈ {0, 1}}, {CKa,b(W0,a,W1,b) : a, b ∈ {0, 1}}

are independent.
The construction of GC in [9] encrypts each gate independently but shares

some random bits among some gates. The value vi of a gate i is encrypted by a
random bit ei, and the ciphertext bi = vi⊕ei is revealed along the computation.
There are 4 strings {W b

a : a, b ∈ {0, 1}}, they stand for values of the two inwires.
The encryption of gate i is a table{

E
CKa⊕e0,b⊕e1 (W

a⊕e0
0 ,W

b⊕e1
1 )

(Tga,b⊕ei ||ga,b ⊕ ei) : a, b = 0, 1
}

where e0, e1 stand for the key bits of the two inwires, ga,b is the gate defini-
tion, and Tb is the catenation of the corresponding W b of all next stop gates.
At output gate i, ei = 0; and an input gate is given by a Tb. Gate i can be
evaluated as follows: suppose two inwire values are (W0, a), (W1, b), we can use
key CKa,b(W0,W1) to decrypt the (a, b) entry of the table to provide the input
needed by next stop gates.

Note that the encryption key CKa⊕e0,b⊕e1(W a⊕e0
0 ,W b⊕e1

1 ) is quadratic over
the random bits W, e, this makes the GC have degree 4. We modify the table as{

CKa,b(EWa
0

(0), EW b
1
(0))⊕ (Tga,b⊕ei ||MARK) : a, b = 0, 1

}
.

That is, we do not make use of bi = vi ⊕ ei in decryption, and use a constant
string MARK of length λ to allow correct decryption. At output gate, MARK is
replaced by True or False to indicate the output value. Now the degree is given
by the term Tga,b⊕ei , which is 3. Note that the output size and random tape
length is also reduced compared to the original construction: the length of Tb
is cut to half. Note that if a gate has large fan-out, then Tb is long and tabling
4 such elements is a waste. Additional improvement to address this issue is as
follows: at gate i with fan-out > 2, two additional keys Rb : b = 0, 1 are included.
In the table, Tb is replaced with Rb, and a table {ERb(Tb+ei ||MARK) : b = 0, 1}
is added.

To see this GC is secure, we give a specific simulator S as follows. S has
bi,W

b0
0 ,W b1

1 , (Rbi) as part of its random tape at gate i, we treat these as the
same as in GC, where the gate values are defined by a random fixed key, and the
simulator compute the part of the GC output defined by these quantities and
leave the other part random. This simulator works as long as Ek is secure. We
say {ei,W b0

0 ,W b1
1 (Rbi) : i} is the part of S’s random tape shared with GC.

To get concrete instantiation, we set the key length of one-time encryption
to 2λ, and choose the PRG to be our candidate PRG. For the most optimistic
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choice, we assume the one-time encryption does not need additional random bits
(the stretch of the PRG is enough), then it is not hard to formulate that output
size of GC is no more than 20λ|C| and random tape length is no more than
10λ|C|.

5 The Pseudorandom Function

Traditional constructions of PRFs [28, 29, 24, 10, 34] are too complex to be ob-
fuscated directly, so we want to realize PRFs in d-functions (constant d). Since
natural arithmetic circuits are difficult to be expressed in d-functions, there
seems little hope to base the security on well known problems. Instead we follow
the empirical approach of applied cryptography: design and analysis. We give a
candidate construction and apply the distinguishing attacks to it.

Note that the class of ideal functions is closed under ⊕ and under permuta-
tions on input variables, we consider the following huge key and parallel compo-
nents strategy:

Fd(k, x) = gd
(
{f(ki, τix) : 1 ≤ i ≤ td}

)
where f is a primary subcircuit, τis are known random permutations on compo-
nents of input x, kis are independent subkeys, and gd is a fixed simple function
over td variables: the sum of t terms each of which is a product of different d
variables, seen as elements of GF2l . Note that F1 is an ideal function, and Fd is
a d-function.

A reference candidate for f can be simply described as follows. The secret key
for f is n/c PRFs (given as n/c tables each of 2c entries) on subblocks {Xi : i}:
fXi : Xi −→ {0, 1}l where X =

∑
iXi is a c-partition. We inductively merge

functions over blocks to form functions over larger blocks:

fU+V = fUfV + 1,

where the multiplication is in the finite field GF2l and we index each function
with its block name. Except for the last block U whereas it should be kept linear

fU+V = fU (fV + 1)

at each round of merges. The inductive steps go in parallel rounds: each round
gets (nearly) double-sized blocks and half number of blocks (the last block is not
merged when the number of blocks is odd in that round). Finally we get f = fX
defined on the whole X. If we let l = λ, it is seen that ideal functions may not
be in NC1.

5.1 Security Analysis

Next is some cryptanalysis of Fd, for some parameter choice of t, l, d. Unlike the
weak PRF of [1], Fd is too complex for linear approximations:t = λ/2 seems
to make F1 immune even for l = 1. Similar is the case for learning attacks: Fd
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has exponentially many terms. By intuition we suppose that t acts as the round
number of block ciphers, l stops linear distinguishing attacks, and d enhance the
nonlinearity. We only consider distinguishing attacks.

First consider the case d = 1. The best linear distinguishing attack seems to
be the Cube Attack. Observe that

DA+B(fUfV ) = (DAfU )(DBfV )

for A ⊂ U , B ⊂ V , so

DAf = h
∏
Ai 6=∅

DAifXi

for some h, where Ai = Xi ∩A, which is 0 with probability about k/2l (k << λ
is number of terms in the product), when k << 2l, and translates to that the
bias of each bit is about (ln k)/l < (lnλ)/l, which suggests that the F1 stops
linear undistinguishing attack when l ≥ 2 log λ and t = λ/2.

Now we consider the nonlinear distinguishing attack. If t = 1, we partition
X = A+B +A′ as A = U,A′ = V if f = fX is the merge of fU , fV , and we get
ω(f) = 1. This can be generalized to t = o(log n) with a partition X = A+B+A′

where |A| = |A′| > log t and ω(F1) = t. When t ≥ λ/2 >> log n, we guess that
any partition strategy would make ω(F1) a sum of some ω(f)s with respect to
random partitions. So it is reasonable to estimate ω(f) with respect to a random
partition. Note that

ω(fU ) ≤ 2min(|U∩A|,|U∩A′|)

for any U . Also note that ω(gh) ≤ ω(g)ω(h) for any function g, h. We see that

logω(DV f) ≤ |A| − ∆

2

where V ⊂ B is some set for Cube attack, where ∆ is the sum of differences
|(|Xi ∩ A| − |Xi ∩ A′|)| such that V ∩ Xi 6= ∅; which is in general too big to
be compensated by the number of twisted copies and indicates a distinguishing
attack. Note that such a complex distinguishing attack has little hope to be
exploited in attacking RE.

Now we consider the case d = 2. Let us fix a g =
∑

1≤i≤τ/2 figi, where fi, gi
are independent copies of f . First we show that Cube attack works much harder
now. Let h = f0g0 be a product of two bits of two copies of f . Let D denote a
DV with |V | = 1. We should ensure that Pr[D(h) 6= 0] ≥ 1/4. Note that Df0 is a
product of log(n/c) random variables in GF2l . We assume each random variable
in GF2l vanishes with probability 2−l. So we have

ρ = Pr[Df 6= 0] =
(
1− 2−l

)log(n/c) ≈ 1− log(n/c)/2l

and Df0 as a component of Df does not vanish with probability 1− (1/ρ)1/l ≈
1− (log(n/c))1/l/2. By the following

Lemma 5. Let a, b be two independent random boolean variable with Pr[a =

1] = Pr[b = 1] = pδ, then Pr[a⊕ b = 1] ≥ p if p ≤ 1
4 , δ ≥ 2− 2

1
2

18



Proof. Pr[a⊕ b = 1] = 2(pδ)(1− pδ) ≥ (2δ)(1− (1/4)δ)p, and 2δ(1− (1/4)δ) ≥ 1

when δ ≥ 2− 2
1
2 .

Assuming that D(f0g0) = f0Dg0 + g0Df0 is a sum of two independent vari-
ables, to ensure Pr[D(h) = 1] ≥ 1

4 , it is enough that

2− (log(n/c))1/l ≥ 2− 2
1
2

that is l ≥ log log(n/c). For |V | > 1, DV can be composed by D and a lower
|V |, and the above arguments go through. This suggests that Cube attack can
hardly go through when l ≥ log log(n/c).

Now we consider the nonlinear distinguishing attack when d = 2. Since the
operation DV is not useful in this case (exponentially increases the number of
terms), we would directly estimate ω(g0f0)s as ω(f)2. We expect that logω(f) ≥
|A|
2 for a random partition to have a marginal security. We assume ω(fXi) =

2min(|Xi∩A|,|Xi∩A′|). We first estimate

∆ =
∑
i

∣∣(|Xi ∩A| − |Xi ∩A′|)
∣∣.

Let h = |A|, z be a random variable with Pr[z = 1] = 1
d′ , Pr[z = 0] = 1 − 1

d′ ,
where d′ = n/c is the number of blocks. We can model |Xi∩A|, |Xi∩A′| as sum
of h independent copies of z. Then the expected value of (|Xi ∩A| − |Xi ∩A′|)2
is

2

(
h2 − h
d′2

+
h

d′
− h2

d′2

)
=

2(d′ − 1)h

d′2
,

so the expected value of ∆ is

d′
(2(d′ − 1)h

d′2
) 1

2 = (2(d′ − 1)h)
1
2 ,

which is ≤ h when h ≥ 2(d′−1). This means that one cannot apply the nonlinear
distinguishing attack with h ≥ 2(d′−1). For very small d′, this is already enough.
For h < 2(d′ − 1), each |Xi ∩ A| is expected to be < 2, and the lower terms of
the merge operations give a significant additional number of terms compared to
the simple product, we don’t know how to estimate ω(f). But we guess that the
nonlinear distinguishing attack cannot be mounted in this case either. There are
much more complex 2-functions than our example, so we guess that “hard to
attack” PRFs exists among 2-functions.

In summary, we have given a candidate d-function which seems suitable to
replace the PRF in RE for d = 1, 2. A more conservative choice would be d-
functions of larger d. Observe that a weaker PRF does not mean an insecure
RE, so we believe that our 2−function PRF is secure in our application in RE.
A more aggressive candidate RE is the composition of our candidate GC gc and
F1 (with l = log n and t = λ/2). We define a simulator for this RE to be the
composition of the simulator of the gc and F1, and leave it as a challenge to
invalidate this simulator.
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6 The Obfuscator for General Circuits

Our general obfuscator is an application of our core obfuscator (with no-patching,
twisting ElGamal form and keyed g) to the RE circuit gc(C(k,X), X,PRF′(X)
of the circuit C(k,X) (to be obfuscated). Recall that the garbled circuit gc has
a long random tape, which should be provided by a PRF′ on input space X. Our
PRF has output length l which is small. We need a set T = {0, 1}m and a PRF
f on T ×X such that l|T | is no less than the length of gc ’s random tape, and
PRF’ is formed by evaluating f(t, x) for all t ∈ S ⊂ T , where S is a specified
set: each element t ∈ S specifies a position where f(t, x) lies in PRF′(x). The
main problems and solutions (modifications of the core obfuscator) are as follows
(assume f is a d-function, and deg(gc) = d′):

– To guarantee no computations other than honest evaluation can be done:
Each block of f has the form Tj ×Xj , the α type variable should depend on
tj ∈ Tj . Therefore the encodings of this block are{(

[1, rxjrtj ]vj+vtj+vxj , [fj(k, tj , xj), rxjrtjαj,tj ]v′j+vtj+vxj
)

: tj ∈ Tj , xj ∈ Xj

}
At (except for one) the last blocks of the twisted copies of the primary
subcircuit, the ElGamal Scalars are not given. Therefore there is a unique
St,x for any (t, x).

– To make all output bits of PRF′ have the same ElGamal form: there is a
new block T with the following encodings: {Pt = [1, r−dt ]wT−vt : t ∈ S}, and
the ElGamal encodings of the output bits of f(t, x) should be multiplied by
Pt before going into gc.

– To block illegal inputs at some output bits: we should prevent (x)i = 0 at
the output bits for input of the garbled circuit that refers to (x)i = 1. This is
solved by a straddling of the corresponding Check value and Patching value:

the Check value at this position is replaced by CHK = [0, r−d
′d

i,(x)irpd
′ ({α})]w,

and a new Patching P ′t = [1, r−di,(x)ir
−d
t ]wT−vt is added. The zero-test encoding

at this position is

(P ′tBi)
d′ − (Sdt,xPt)

d′(CHK)

where Bi stands for , where the gate values are defined by a random fixed
key the encoding of the output value. If the input changes (x)i, then the
Check value is useless, and the computation gets nothing.

The proofs of correctness and security of the core obfuscator can be routinely
repeated on this general obfuscator. This results in the main theorem of this
work:

Theorem 2. Assume that there exist d-function PRFs for constant d, we have
a general obfuscator with VBB security using an ideal GES of degree µ = O(n),
where n is number of input bits of the circuit to be obfuscated.
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The remarkable side of this theorem is that it is easy to be instantiated:
the building blocks PRG and PRF are the most elementary primitives and have
potential to be optimized; instantiation of the ideal GES seems reasonable with
known tools. We will first define what is an instantiation of an ideal GES, just
called GES.

A real world GES has the same interfaces as those of an ideal GES, and should
be stateless, and the public oracles of the ideal GES should be realized with
public algorithms. The encodings are no longer symbolic, they are samples from
predetermined distributions. These distributions are indexed in the same way
as in the ideal case. The correctness requirements are: encodings with different
contents at the same level have disjoint support, the operators map given samples
to samples of distributions specified by the ideal GES. The security of GES is
not so meaningful to define: on one side, the security guarantee of ideal GES
is impossible to totally achieve, on the other side, the objective (VBB security)
is hard to define in a easy-to-prove way. So we just put the easy-to-invalidate
definition of VBB into that of GES.

Definition 8 (Security of GES). Given any Legal set of initial encodings
ob = {[bi, ui]vi : 1 ≤ i ≤ l}, where ui = Ui({β}) is obtained by evaluating
polynomial Ui on the set (common to all i) of independent variables, and for
any predicate p on {bi}, there exist a set {P̃j} of polynomially many admissible
(Pj({Ui}) = 0, and level-respect) symbolic polynomials, and simulator S, such
that for any adversary A:

Pr[A(ob) = p] ≤ Pr[S({P̃j({bi})}) = p].

Lemma 6. Our obfuscators (core and general) are VBB secure when the ideal
GES is replaced by a secure GES if the obfuscated code is Legal.

Proof. The only admissible polynomials are honest evaluations. This means any
adversary gets information no more than the black box.

What is Legal is specific to the GES tool. For our simplified CLT map,
known attacks only show that this concept depends on the set P = {Pj : j} of
admissible symbolic polynomials (Pj({Ui}) = 0, and level-respect) over initial
encodings, where Legal requires the set of admissible symbolic polynomials over
the set of initial encodings does not admit any t-form for t ≥ m, where m
is a parameter of the CLT map. A t-form of the set P = {Pj : j} is matrix
{P bi,j ∈ P : i, j ∈ [tm], b = 0, 1}, and there exist {Qbk : k ∈ [t], b = 0, 1},
{Si,k : i, k}, {Tk,j : k, j}; such that

P bi,j =
∑
k

Si,kQ
b
kTk,j .

Note that in our obfuscators, the simplest admissible polynomial is associated
with a single input x, the fixed polynomials {Qk : k ∈ [t]} means part of the
input variables are fixed. So a [t] form gives a partition of X. See [18] for details
of the attack given such a t-form.

We conjecture that excluding of t-forms (for polynomially large t) in the set
of admissible symbolic polynomials is also sufficient for the Legal definition.
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7 Instantiations

7.1 The Simplified CLT Map

The only known instantiation of GES that we need is obtained from the following
simplified version of the CLT multilinear map of [19], where a symbolic encoding
is just an element of a huge ring, and symbolic operations are just ring operations.
Let N =

∏
1≤i≤m pi, where pis are prime integers of η bits. G =

∏
1<i≤m Zgi ,

gis are random small primes of 2 log(λ + µ) bits (a small number to make G
universal for polynomials of degree no larger than µ, and so some gis may be
the same). A level v corresponds to an element zv ∈ ZN . Let ρ be the unit size
of noise. Then

Encode(sk, b, α, v, d) = [b, α]v(d) = z−1v CRT(pi)(b+2s1, a2+s2g2, · · · , am+smgm)

where α = (a2, · · · , am), sis are random integers such that −2dρ < ai + sigi <
2dρ, and CRT(pi)(zi) denotes the number z ∈ ZN satisfying z = zi (mod pi)
for all i. The map v 7→ zv is a random injective homomorphism from A to the
multiplicative group of ZN . Finally the test number

zt = zvztCRT(pi)

(
2−1

N

p1
, g−12

N

p2
, · · · , g−1m

N

pm

)
is used to recover the encoded boolean value of an encoding [b, 0]vzt(d):

zt[b, 0]vzt(d) =
∑

1≤i≤m

ti
N

pi
+ b

p1 + 1

2

N

p1

which should have disjoint distributions (easily distinguishable) between the case
b = 0 and b = 1 when d ≤ µ. A sufficient condition for this is (lnλ)1/2| tipi | <
1/(4m)1/2) ∀i. We will call this the correctness requirement.

First we we will show that

Lemma 7. Any level group V can be realized in some ZN .

Proof. Given any finite set {vi} of generators and a set of {
∑
i ai,jvi = 0 : j}

relations, by an elementary theorem [23] on structure of abelian groups, there is
an efficient procedure to find another set {ei : i}, and integers d1 | d2 | · · · | dl
such that

– vi =
∑
j bi,jej

– the relation set {diei = 0 : 1 ≤ 1 ≤ l} defines the same group.

So we implement the group in an Zp as follows: choose prime p such that dl|(p−1),
for each i ∈ [l], randomly choose r ∈ Zp, let zei = r(p−1)/di ; for each i > l,

randomly choose r ∈ Zp, let zei = r. Finally, let Zvi =
∏
j z

bi,j
ej . Do this for

enough number of such p to form N , and use CRT to get zvi s in ZN .
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7.2 Security Analysis

The first kind of attacks [19] on the original CLT map is related to parameter
sizes, which go the same way despite our modifications. The attacks exploit the
same weakness: multiple encodings lie in the same level, they are called exposed.
The complexity of these attacks depends on the noise size ρ, prime factor size η,
and modulus size γ = mη. The brute force attack (guess noise) has complexity 2ρ.
The second attack (solving the related Approximate Common Divisor Problem
[32, 33, 19]) requires that m ≥ ηλ, the detailed analysis of which is very similar
to [32, Appendix B.1]) and [19, Section 5.1]. The third (to find the level factor)
[19] is also stopped by the parameter choice of the second attack. None of these
attacks is related to choice of G and our Z2 slot.

The second kind of attacks [18, 16, 17] (called algebraic attack, or zeroizing
attack) makes use of the leak of the zero-test: a known polynomial of the initial
noises (called zero-test polynomial) over the field of rational numbers is returned
by any acceptable zero-test. If one can partition the input set to get an m-form
of set of the zero-test polynomials, then CLT map is totally broken. In our core
obfuscator, if the ElGamal scalar of the ideal function output can be obtained
by different polynomials of the initial encodings, then this attack works. We can
avoid this in our general obfuscator by the explicit structure of our ideal function:
there is only one copy of f that has the whole-vector ElGamal scalar. Now zero-
test polynomials only come from honest computation, and the polynomials factor
through a PRF which make the input set not partitionable. But it generally
threats simple circuits such as conjuncts [18], but it also works harder when the
locality c gets larger. We will give an explicit block straddling to defend our
example of conjunct (n = 64,c = 8), where with a little overhead, we also give
the general method to stop algebraic attacks for any circuit.

7.3 More Optimizing

The first improvement is about the testing. Since the test vector plays the same
roles as a level, we can treat it as a block level, and use the definition of the level
group to absorb it in, so that the resulted final level zero-test automatically. Then
we do not need a test vector any more. The second improvement only concerns
the general obfuscator: let the primary subcircuit of the PRF be defined as
follows. The first round of merges of the blocks does not use field multiplications,
uses component wise “and not” instead. The resulted initial encodings of the
PRF key bits have twisted ElGamal form, so they can have half size noises. This
reduce µ by half cost-equivalently.

7.4 Reference Instantiations

We choose gc to be our candidate GC which is of degree 3. There are 2 choices
for the PRF:

– F2 with l = log log n′ and t = λ/2, which results in µ = 3n′/c+ 2.5.
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– F1 with l = log n′ and t = λ/2, which results in µ = 1.5n′/c+ 2.5.

where n′ = n+ log λ+ log |C|. The number of GES encodings is about
(
20|C|+

n′(l+ 1)2c/2c
)
λ. The second choice will be used in our AES example, where the

number of GES multiplications in one evaluation is about (20 + 5l)λ2|C| (by
tabling intermediate results, each PRF bit evaluation costs about lλ/2 multipli-
cations).

8 Examples

8.1 Obfuscating AES

For AES, |C| is smaller than usual measure: firstly all key operations are ab-
sorbed, so our obfuscation of AES is not burdened by the key scheduling part.
Secondly, our gate can be any binary function, so it should be smaller than
known counts after optimized by some automatic tool [15]. We did not conduct
this optimization because it is not so crucial to the result: this work only shows
that general obfuscation is implementable now, but still far from practical use. So
a safe estimation of |C| < 25000 is used: each S-box costs less than 110 gates, the
linear layer costs less than 600 gates, so the total is less than 10×(16×110+600).
We choose c = 13, and get µ = 20.5. We choose l = 8.

The remaining part is to decide the concrete parameters for the CLT map.
To get a smaller η, we need give a good estimate of the noise size. The final
noise is modeled as a sum of 22δ products, each has length µρ (much smaller in
fact). δ is about the bit length of this extra noise caused by addition. Therefore
η ≥ µρ+ δ + logm+ 2 is sufficient to fulfill the correctness requirement. In our
example, we have µ = 20.5, δ < 100, λ = 128; and we let ρ = 114, and η ≈ 2440.
The GES ring size is

η2 × 128 ≈ 7.8× 108.

The code size of the obfuscated AES is thus about

(20× 25000 + 213 × 12× 9)× 128× 7.8× 108 < 1.5× 1017 bits.

To evaluate the obfuscated AES once would cost about

(20 + 5× 8)× 25000× 1282 ≈ 2.5× 1010

modular multiplications with 7.8 × 108 bits modulus, which is still far from
practical.

8.2 Conjunction

We have n = λ and µ = n/c. For n = 64, c = 8, the GES ring size is about
(58× 8)2 × 64 < 1.5× 107. The obfuscated code size is 3× 28 × 8 ≈ 6000 GES
encodings or about 9 × 1010 bits. The evaluation only costs 22 multiplications
under 1.5 × 107 bits modulus. This can be regarded practical, while the latest
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implementation [20] only made it for n = 32, but its security is based on standard
assumptions.

We will illustrate with this example how to defend against algebraic attacks.
Recall the CLT map entities: {gi, pi : i}. A noise is of the form z = {zi : 1 ≤ i ≤
m}, seen as a vector. The initial encodings encode the following sets of noises:

– At ElGamal scalars, [64] = A1 + A2 + · · · + A8 is an 8-partition: {zAj ,xAj :

xAj ∈ {0, 1}8} for 1 ≤ j ≤ 8.

– At ElGamal values, [64] = A′1 + A′2 + · · · + A′8 is an 8-partition: {zA′j ,xA′j :

xA′j ∈ {0, 1}
8} for 1 ≤ j ≤ 8.

– At Patchings, [64] = B1 + B2 + · · · + B8 is an 8-partition: {zBj ,xBj : xBj ∈
{0, 1}8} for 1 ≤ j ≤ 8.

The zero test on input x will return a polynomial over the secret noises:∏
j

zAj ,xAj −
∏
j

zA′j ,xA′j

∏
j

zBj ,xBj

 · ({ 1

gipi
: i

})

where multiplication is component wise, and “·” is inner product. The algebraic
attack is to find a partition [64] = V +V ′+W , such that |V | = |V ′| ≥ log 2m ≥
13, and for each of the partitions A, ,A′, B, no block intersect V, V ′ at the same
time. If this can be done, then the zero-test polynomial can be seen as a bilinear
form of dimension 2m with respect to quantities varying with variable in V, V ′

respectively, so that the attack of [18] works. The following block straddling
make this impossible: [64] ∼ Z2

8 = {(a, b, c) : a + b + c = 0}, the partitions
A, ,A′, B correspond the coordinates a, b, c respectively (a partition correspond-
ing a coordinate means elements of a block have the same coordinate value).
The verification can be done by excluding the cases for t = 1, 2, 3 respectively,
where t is the minimal number of blocks of a partition that intersects V . If V
intersects each coordinate in 4, then the only solution for V ’s coordinate sets are
(e, e, e), (o, o, e) where e, o stands for even or odd respectively. But the solution
for V ′ does not exist in these cases.

In general, algebraic attacks can be stopped by sharing the Check value in l
additive shares, by straddling these l partitions (randomly) it is easy to defeat
any input set partitions if l is large enough.

9 Concluding Remarks

We have made general obfuscation implementable, but still far from practical.
Now the degree of the multilinear map is not the main barrier, the huge number
of modular multiplications (resulted from the RE circuit) of big modulus (caused
by the CLT map) is more prohibitive. The lack of efficient GES instantiation is
the main obstacle for making obfuscation practical.

25



9.1 Acknowledgements

We thank anonymous referees for pointing to us the nonlinear distinguishing
attack, the work of [9] and valuable suggestions on presentations.

References

1. Akavia, A., Bogdanov, A., Guo, S., Kamath, A., Rosen, A.: Candidate weak pseu-
dorandom functions in AC0 o MOD2. Electronic Colloquium on Computational
Complexity (ECCC) 21 (2014) 33

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfus-
cation and applications. IACR Cryptology ePrint Archive 2013 (2013) 689

3. Ananth, P., Jain, A., Sahai, A.: Robust transforming combiners from indistin-
guishability obfuscation to functional encryption. In: Advances in Cryptology -
EUROCRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part I. (2017) 91–121

4. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Advances in Cryptol-
ogy - EUROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I. (2017) 152–181

5. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: Avoiding
barrington’s theorem. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, Scottsdale, AZ, USA, November 3-7,
2014. (2014) 646–658

6. Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In:
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II. (2014) 162–172

7. Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-bias gener-
ators. J. Cryptology 29(3) (2016) 577–596

8. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II. (2015) 528–
556

9. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. In: 20th Annual IEEE Conference on Com-
putational Complexity (CCC 2005), 11-15 June 2005, San Jose, CA, USA. (2005)
260–274

10. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings. (2012) 719–737

11. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings. (2014) 221–238

26



12. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Advances in Cryp-
tology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings. (2001) 1–18

13. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the 2012 ACM conference on Computer and communications security,
ACM (2012) 784–796

14. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their appli-
cation to more efficient obfuscation. In: Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings,
Part III. (2017) 247–277

15. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Experimental Algorithms, 9th International Sym-
posium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010. Proceedings.
(2010) 178–189

16. Cheon, J.H., Fouque, P., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the new
CLT multilinear map over the integers. In: Advances in Cryptology - EUROCRYP-
T 2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I.
(2016) 509–536

17. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
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