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Abstract. A revocable identity-based encryption (RIBE) scheme, pro-
posed by Boldyreva et al, provides a revocation functionality for manag-
ing a number of users dynamically and efficiently. To capture a realistic
scenario, Seo and Emura introduced an additional important security
notion, called decryption key exposure resistance (DKER), where an ad-
versary is allowed to query short-term decryption keys. Although several
RIBE schemes that satisfy DKER have been proposed, all the lattice-
based RIBE schemes, e.g., Chen et al.’s scheme, do not achieve DKER,
since they basically do not have the key re-randomization property, which
is considered to be an essential requirement for achieving DKER. In par-
ticular, in every existing lattice-based RIBE scheme, an adversary can
easily recover plaintexts if the adversary is allowed to issue even a single
short-term decryption key query. In this paper, we propose a new lattice-
based RIBE scheme secure against exposure of a-priori bounded number
of decryption keys (for every identity). We believe that this bounded
notion is still meaningful and useful from a practical perspective. Tech-
nically, to achieve the bounded security without the key re-randomization
property, key updates in our scheme are short vectors whose correspond-
ing syndrome vector changes in each time period. For this approach to
work correctly and for the scheme to be secure, cover free families play
a crucial role in our construction.

1 Introduction

1.1 Background

Identity-based encryption (IBE) is currently one of the central cryptographic
primitives. IBE allows any strings to be used as public keys, and therefore is
an advanced form of public-key encryption (PKE). The first practical IBE was
proposed by Boneh and Franklin [9] from bilinear groups. Since then, several
IBE schemes have been proposed including ones from lattices [1, 6, 10, 11, 14, 20,
24, 38–40]. Lattice-based schemes are believed to resist quantum attacks and the
average-case security is guaranteed by the worst-case lattice assumptions.
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Although IBE is known as an important cryptographic primitive, IBE itself
has not been used that much than PKE in modern society. One main reason
for the situation is inefficient revocation procedures of ordinary IBE schemes.
Revocation functionality is necessary to handle users in cryptographic schemes
since malicious users should be immediately driven out from the schemes, and
even honest users should be revoked if their keys get compromised. In the PKE
setting, the validity of public keys are guaranteed by certificates issued by public-
key infrastructures (PKIs). Therefore, users can be easily revoked by invalidating
the corresponding certificate. On the other hand, IBE does not have such a revo-
cation procedure due to the absence of PKIs. Boneh and Franklin [9] mentioned
the following naive and inefficient revocation procedure: The lifetime of the sys-
tem is divided into discrete time periods. In every time period, a key generation
center (KGC) generates secret keys for each non-revoked user and sends the new
keys to the corresponding users.

Later, Boldyreva et al. [7] proposed a pairing-based IBE scheme with efficient
revocation, which is called a revocable IBE (RIBE) scheme by utilizing the spirit
of fuzzy IBE constructions and a subset cover framework called the complete
subtree (CS) method. They significantly improved the efficiency of revocation
procedures from linear to logarithmic in the number of all users. Specifically, they
considered two kinds of keys: a long-term secret key and a short-term decryption
key. In every time-period, the KGC generates update information called a key
update, and broadcasts it. Each non-revoked user can derive a decryption key
for each time period from his long-term secret key and the key update for the
corresponding time period, while revoked users cannot compute their decryption
keys. After the proposal, Libert and Vergnaud [28] proposed the first adaptively
secure pairing-based RIBE scheme. The first lattice-based RIBE scheme was
proposed by Chen et al. [16] in the selective security model. The idea of these
constructions follow Boldyreva et al.’s one.

Human errors seem never to be eliminated, and therefore a key exposure
problem is unavoidable. In the context of RIBE, Seo and Emura [34] pointed
out that Boldyreva et al.’s security model did not capture such a realistic threat,
and they first realized an RIBE scheme with decryption-key exposure resistance
(DKER) from bilinear groups. An RIBE scheme with DKER, DKER RIBE for
short, guarantees that the security is not compromised even if polynomially many
short-term decryption keys are leaked. Boneh-Franklin’s naive solution captures
DKER, whereas the previous RIBE schemes [7, 28, 16] are vulnerable against de-
cryption key exposure. Hence, DKER seems to be a natural security requirement
for RIBE. Although the construction idea is almost the same as Boldyreva et
al.’s one [7], Seo and Emura [34] made use of the key re-randomization property
for proving the stronger security (i.e., security with DKER). Since the proposal,
DKER has become the standard security notion of RIBE. Indeed, several DKER
RIBE schemes [18, 23, 26, 27, 33, 35, 36] have been proposed.
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However, no lattice-based DKER RIBE schemes have been proposed thus
far; existing lattice-based RIBE schemes [16, 17, 30]4do not satisfy DKER. In
particular, Chen et al.’s RIBE scheme immediately becomes insecure even with
an adversary’s single short-term decryption key query. Hence, the limitation does
not stem from proof techniques. Actually, all the existing DKER RIBE schemes
satisfy the key re-randomization property, which is used for preventing adver-
saries from obtaining critical information from decryption key queries. Since the
current lattice-based RIBE construction does not satisfy the property, we should
explore new approaches to construct DKER RIBE schemes.

1.2 Our Contributions

In this paper, we construct the first lattice-based RIBE scheme that is resilient
to decryption key exposure. To be precise, we should note that our scheme is
secure when adversaries are allowed to query a-priori bounded number of short-
term decryption keys, which is denoted by Q, for the target identity. Therefore,
we call our proposal B-DKER RIBE, where B-DKER stands for bounded DKER.
Decryption key exposure is mainly caused by human errors. The leakage might
happen, however we can assume that it rarely happens. Hence, although the
security of B-DKER RIBE is weaker than DKER RIBE, we believe that our
security model is sufficient for practical use. Even if a number of decryption
keys are exposed, our scheme is secure by setting sufficiently large Q, whereas
Chen et al.’s scheme is insecure in such a case (in particular, even in the case
that Q = 1).

One may think that the notion of B-DKER RIBE is similar to that of
bounded-collusion IBE [21] or k-resilient IBE [22]. However, we emphasize that
there is a major gap between them from the practical aspect. In the bounded-
collusion IBE, the number of secret key extraction queries is a-priori bounded,
whereas our definition allows unbounded collusion, i.e., an adversary can un-
boundedly issue secret key extraction queries and decryption key queries except
for the target identity. Practically, in the bounded-collusion IBE scenario, an ad-
versary might collude with the larger number of users than the a-priori bounded
number. The KGC may be unaware of the behind-the-scenes collusion, and thus
the system would not be refreshed before breaking it. On the one hand, in the
B-DKER RIBE scenario, it would appear that decryption key exposures happen
only through human errors or some accident. That is, the leakage cannot be con-
trolled by adversaries. The KGC may notice the fact of leakage from users who
are honest but leaked their keys, and therefore the KGC can keep the scheme
secure by refreshing it at some point.

To obtain (a kind of) DKER for lattice-based RIBE is the main contribu-
tion of this paper. Our scheme has a different flavor from the template RIBE

4 Cheng and Zhang [17] proposed the first adaptively secure lattice-based RIBE
scheme, however, their security proofs contain unavoidable bugs. Therefore, there
are no adaptively secure lattice-based RIBE schemes even without DKER. See Sec-
tion 6 for the detail.



4

construction due to Boldyreva et al. [7] (and therefore Chen et al. [16]) in the
sense that each key update corresponds to distinct syndrome vectors in each
time period. Although the modification causes several troubles, cover free fam-
ilies (CFFs) enable us to resolve them with longer secret keys (see Section 1.3
for details). For simplicity, we discuss our construction in the selective security
model throughout the paper. We believe that it enables readers to understand
our technique easily. In addition, as side contributions, we obtain the following
improvements although they are not very technical: smaller parameters by uti-
lizing Micciancio-Peikert’s gadget matrix [29], the first semi-adaptively secure
lattice-based RIBE, the first anonymous RIBE scheme that is resilient to de-
cryption key exposure. They will be discussed in Section 6. Notice that in the
semi-adaptive security model, the adversary issues the challenge identity and the
challenge time period just after receiving a public parameter.

1.3 Our Approach

In this section, we show a brief overview of Chen et al.’s lattice-based RIBE con-
struction [16] and our modification to the scheme to achieve B-DKER. The public
parameter of Chen et al.’s RIBE scheme consists of three matrices A0,A1,A2

and a syndrome vector u along with a gadget matrix5 G that was introduced
in [29]. The ciphertext of a plaintext M ∈ {0, 1} for an identity ID and a time
period T is

[A0|A1 +H(ID)G|A2 +H(T)G]
T
s+ noise and uT s+M

⌊q
2

⌋
+ noise

where s is a random secret vector and H() is a public hash function. Each user
has a long-term secret key e′ whereas KGC broadcasts a key update ẽ in each
time period such that

[A0|A1 +H(ID)G] e′ = u′ and [A0|A2 +H(T)G] ẽ = ũ (1)

for some random syndrome vectors u′ and ũ. If the user is non-revoked, these
two syndrome vectors satisfy u′ + ũ = u. The short-term decryption key e for
(ID,T) is their concatenation e := (e′, ẽ).

As opposed to an ordinary IBE, the RIBE simulator should create a long-term
secret key e′ for the target identity ID∗ and a key update ẽ for the challenge time
period T∗. Chen et al. resolved the problem by utilizing a Gaussian sampling
algorithm in a clever way. If we do not care about DKER, the simulator should
create either a secret key e′ for the target identity ID∗ or a key update ẽ for the
target time period T∗. Then, the simulator picks e′ or ẽ in advance and sets u′ or
ũ according to the equation (1). Notice that the simulator can create long-term
secret keys and key updates for all the other ID ̸= ID∗ and T ̸= T∗ since it has
a trapdoor.

5 Although the gadget matrix was not used by Chen et al. [16], it is well known that
the parameters can be reduced by utilizing the matrix.
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In short, to obtain DKER, the challenge ciphertext for the target (ID∗,T∗)
should not be decrypted by using a key update for T∗ and short-term decryp-
tion keys for (ID∗,T) such that T ̸= T∗. However, since Chen et al.’s short-term
decryption key is a simple concatenation, the target decryption key for (ID∗,T∗)
can be recovered even with a single decryption key for (ID∗,T). Since there is a
concrete attack, the limitation is not due to proof techniques but the construc-
tion. In other words, the simulator should create both short-term decryption
keys e′ for (ID∗,T) such that T ̸= T∗ and key updates ẽ for T∗ during the simu-
lation. However, once the simulator uses a Gaussian sampling algorithm and sets
e′, the corresponding syndrome u′ is fixed. Then, the simulator cannot create ẽ
for ũ such that u′ + ũ = u. If lattice-based RIBE scheme supports the key re-
randomization property, we can avoid the problem as Seo-Emura [34], however,
it does not. We will discuss the fact in Section 6.

To resolve the problem, we employ a novel RIBE construction. A starting
point of our modification is that our key update ẽ for a time period T satisfies

[A0|A2 +H(T)G] ẽ = ũT

where the corresponding syndrome vector ũT changes in each time period. The
property directly suggests that decryption keys for (ID∗,T) such that T ̸= T∗

are useless to recover a decryption key for the target (ID∗,T∗). However, a new
problem occurs by the construction. Since a secret key e′ corresponds to a fixed
syndrome vector u′, even non-revoked users cannot derive well-formed decryp-
tion keys such that u′ + ũT = u for all time periods with their secret keys and
key updates. To overcome the issue, in our scheme, each user ID has multiple d
secret keys e′1, . . . , e

′
d such that

[A0|A1 +H(ID)G] e′1 = u′
1, . . . , [A0|A1 +H(ID)G] e′d = u′

d.

A naive approach for the scheme to work correctly is that we use each e′ℓ in each
time period. However, the modification makes the scheme too inefficient since
the number of secret keys d has to be at least larger than the maximum time
period and results in super-polynomial. To reduce the size, we set u − ũT as
a subset sum of u′

1, . . . ,u
′
d so that non-revoked users can produce well-formed

decryption keys with smaller d. The resulting decryption key is a concatenation
of the corresponding subset sum of e′1, . . . , e

′
d and the key update ẽ. The simu-

lator utilizes a Gaussian sampling algorithm to create d− 1 secret key elements
e′1, . . . , e

′
d except e′ℓ∗ for ID∗ and a key update ẽ for T∗ along with their cor-

responding syndrome vectors, then answers decryption key queries for (ID∗,T)
such that T ̸= T∗. The remaining syndrome vector u′

ℓ∗ is directly fixed. If e′ℓ∗ is
not used to answer Q decryption key queries, the approach goes well.

For the above construction to become a provably secure practical RIBE
scheme whose adversary is allowed to query Q decryption keys, there are the
following three requirements: (1) the number of secret keys d is at most polyno-
mially bounded, (2) a subset sum of u1, . . . ,ud produces distinct vectors whose
number is larger than the maximum time period, (3) there is at least one secret
key e′ℓ∗ that is not used to answer arbitrary Q decryption key queries. Therefore,
we use CFFs so that the resulting scheme satisfies all the above requirements.
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2 Preliminaries

Notation, “Probabilistic polynomial-time” is abbreviated as “PPT”. We de-
note [a, b] by a set {a, a+1, . . . , b} for any integers a, b ∈ N such that a ≤ b. We
sometimes write [d] as [1, d] for simplicity. Let a bold capital A and a bold lower
a denote a matrix and a column vector respectively. Let AT and aT denote
their transposes. If we write (y1, y2, . . . , ym) ← A(x1, x2, . . . , xn) for an algo-
rithm A having n inputs and m outputs, it means to input x1, x2, . . . , xn into
A and to get the resulting output y1, y2, . . . , ym. We write (y1, y2, . . . , ym) ←
AO(x1, x2, . . . , xn) to indicate that an algorithm A that is allowed to access an
oracle O takes x1, x2, . . . , xn as input and outputs (y1, y2, . . . , ym). If X is a set,

we write x
$←X to mean the operation of picking an element x of X uniformly at

random. We use λ as a security parameter. For sufficiently large λ, a function
negl : R → R is negligible if negl(λ) < 1/p(λ) for any polynomial p(λ). Let X
and Y be two random variables taking values in some finite set Ω. Statistical
distance is defined as ∆(X;Y ), as ∆(X;Y ) := 1

2

∑
s∈Ω |Pr[X = s]− Pr[Y = s]|.

For sets of random variables X and Y , we say that X and Y are statistically
close if ∆(X;Y ) is negligible.

Cover Free Families. We define a cover free family (CFF), which is a core
building block in our construction, as follows.

Definition 1 (Cover Free Families [19]). Let α, d,Q be positive integers,
and F := {Fµ}µ∈[α] be a family of subsets of [d], where every |Fµ| = w. F
is said to be w-uniform Q-cover-free if it holds that

∪Q
j=1 Fij ̸⊃ FiQ+1

for any
Fi1 ,Fi2 , . . . ,FiQ+1

∈ F such that Fik ̸= Fiℓ for any distinct k, ℓ ∈ [Q+ 1].

Lemma 1 ([25]). There is a deterministic polynomial time algorithm CFF.Gen
that, on input of positive integers α and Q, returns d ∈ N and a family
F = {Fµ}µ∈[α], such that F is Q-cover free over [d] and w-uniform, where
d ≤ 16Q2 logα and w = d/4Q.

KUNode Algorithm. To reduce costs of a revocation process, we use a binary
tree structure and apply the following KUNode algorithm as in the previous
RIBE schemes [7, 28, 34]. KUNode(BT,RL,T) takes as input a binary tree BT,
a revocation list RL, and a time period T ∈ T , and outputs a set of nodes.
When η is a non-leaf node, then we write ηL and ηR as the left and right child
of η, respectively. When η is a leaf node, Path(BT, η) denotes the set of nodes
on the path from η to the root. Each user is assigned to a leaf node. If a user
who is assigned to η is revoked on a time period T ∈ T , then (η,T) ∈ RL.
KUNode(BT,RL,T) is executed as follows. It sets X := ∅ and Y := ∅. For any
(ηi,Ti) ∈ RL, if Ti ≤ T then it adds Path(BT, ηi) to X (i.e., X := X∪Path(BT, ηi)).
Then, for any η ∈ X , if ηL /∈ X , then it adds ηL to Y. If ηR /∈ X , then it adds
ηR to Y. Finally, it outputs Y if Y ̸= ∅. If Y = ∅, then it adds root to Y and
outputs Y.
Lattices. An m-dimensional integer lattice is an additive discrete subgroup of
Zm. For positive integers q, n,m, a matrix A ∈ Zn×m

q , and a vector u ∈ Zm
q ,
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the m-dimensional integer (shifted) lattices Λ⊥
q (A) and Λu

q (A) are defined as

Λ⊥
q (A) := {e ∈ Zm : Ae = 0mod q} ,Λu

q (A) := {e ∈ Zm : Ae = umod q} . The
lattice Λu

q (A) is a shift of the lattice Λ⊥
q (A); if t ∈ Λu

q (A) then Λu
q (A) =

Λ⊥
q (A) + t. Let TA ∈ Zm×m be a basis of a lattice Λ⊥

q (A). Then TA ∈ Zm×m

is also a basis of a lattice Λ⊥
q (HA) for a full rank H ∈ Zn×n

q .

Matrix Norms. For a vector u, we let ∥u∥ denote its L2 norm. For a matrix
R ∈ Zk×m, we define the following three norms:

– ∥R∥ denotes the L2 length of the longest column of R.
– ∥R∥GS = ∥R̃∥ where R̃ is the Gram-Schmidt orthogonalization of R.
– ∥R∥2 is defined as ∥R∥2 = sup∥x∥=1 ∥Rx∥.

Note that ∥R∥GS ≤ ∥R∥ ≤ ∥R∥2 ≤
√
k∥R∥ and that ∥R · S∥2 ≤ ∥R∥2 · ∥S∥2.

Gaussian Distributions. Let DΛ,σ,c denote the discrete gaussian distribution
over Λ with center c and a parameter σ. If c = 0, we omit the subscript and
denote DΛ,σ. We summarize some basic properties of discrete Gaussian distri-
butions.

Lemma 2 ([20]). Let Λ be an m-dimensional lattice. Let T be a basis for Λ, and
suppose σ ≥ ∥T∥GS · ω(

√
logm). Then Pr[∥x∥ > σ

√
m : x← DΛ,σ] ≤ negl(m).

Lemma 3 ([20]). Let n and q be positive integers with q prime, and let m ≥
2n log q. Then for all but a 2q−n fraction of all A ∈ Zn×m

q and for any σ ≥
ω(
√
logm), the distribution of u = Ae mod q is statistically close to uniform

over Zn
q where e← DZm,σ. Furthermore, the conditional distribution of e given

Ae = u mod q is exactly DΛu
q (A),σ.

Sampling Algorithms.

Lemma 4. Let n,m, q > 0 be positive integers with q prime. There are proba-
bilistic polynomial time algorithms such that

– ([13]): SampleGaussian(T, σ)→ e
a randomized algorithm that, given a basis T for an m-dimensional lattice
Λ and a parameter σ ≥ ∥T∥GS · ω(

√
logm) as inputs, then outputs e which

is distributed according to DΛ,σ.
– ([4, 5, 29]): TrapGen(q, n,m)→ (A,TA)

a randomized algorithm that, when m ≥ 2n⌈log q⌉, outputs a full rank matrix
A ∈ Zn×m

q and a basis TA ∈ Zm×m for Λ⊥
q (A) such that A is statistically

close to uniform and ∥TA∥GS = O(
√
n log q) with overwhelming probability

in n.
– ([14]): SampleLeft(A,F,u,TA, σ)→ e

a randomized algorithm that, given a full rank matrix A ∈ Zn×m
q , a matrix

F ∈ Zn×m
q , a vector u ∈ Zn

q , a basis TA for Λ⊥
q (A), and a Gaussian pa-

rameter σ > ∥TA∥GS · ω(
√
logm) as inputs, then outputs a vector e ∈ Z2m

q

sampled from a distribution that is statistically close to DΛu
q (A|F),σ.
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– ([1]): SampleRight(A,G,R,u,TG, σ)→ e where F = AR+G
a randomized algorithm that, given full rank matrices A,G ∈ Zn×m

q , a ma-

trix R ∈ Zm×m, a vector u ∈ Zn
q , a basis TG of Λ⊥

q (G), and a Gaussian

parameter σ > ∥TG∥GS · ∥R∥ · ω(
√
logm) as inputs, then outputs a vector

e ∈ Z2m
q sampled from a distribution that is statistically close to DΛu

q (A|F),σ.

– ([29]): Let m > n⌈log q⌉. Then there is a fixed full rank matrix G ∈ Zn×m
q

such that the lattice Λ⊥
q (G) has a publicly known basis TG ∈ Zm×m

q with

∥TG∥GS ≤
√
5.

We sometimes call G a gadget matrix that enables us to reduce several param-
eters. We use SampleGaussian(T, σ) only for sampling a distribution DZm,σ. For
the purpose, we always use a standard basis for Zm as T. Hence, we omit the
basis and write SampleGaussian(σ) throughout the paper.

To obtain a lower bound of σ, we will use the following fact.

Lemma 5 ([1]). Let R be a m×m matrix chosen at random from {−1, 1}m×m.
Then there is a universal constant C such that Pr [∥R∥ > C

√
m] < e−m.

Randomness Extraction.

Lemma 6 ([1]). Suppose that m > (n + 1) log2 q + ω(log n) and that q > 2
is prime. Let R be an m × k matrix chosen uniformly in {−1, 1}m×k where
k = k(n) is polynomial in n. Let A and B be matrices chosen uniformly in
Zn×m
q and Zn×k

q respectively. Then, for all vectors e ∈ Zm
q , the distribution

(A,AR,RTe) is statistically close to the distribution (A,B,RTe).

Encoding Identities as Matrices.

Definition 2. Let q be a prime and n be a positive integer. We say that a
function H : Zn

q → Zn×n
q is a full-rank difference (FRD) map if:

1. for all distinct u,v ∈ Zn
q , the matrix H(u)−H(v) ∈ Zn×n

q is full rank,
2. H is computable in polynomial time in n log q.

Learning with Errors (LWE). For α ∈ (0, 1) and an integer q > 2, let Ψ̄α

denote the probability distribution over Zq obtained by choosing x ∈ R according
to the normal distribution with mean 0 and standard deviation α/2

√
π, then

output ⌊qx⌉. The security of our RIBE scheme is reduced to the following LWE
assumption.

Assumption 1 (Learning with Errors (LWE) Assumption [32]) For in-
tegers n,m = m(n), α ∈ (0, 1) such that a prime q = q(n) > 2 and αq > 2

√
n,

define the distribution: A
$← Zn×m

q , s
$← Zn

q ,x
$← Ψ̄m

α ,v
$← Zm

q . We as-

sume that for any PPT algorithm A (with output in {0, 1}), AdvLWE
A :=∣∣Pr [A(A,AT s+ x) = 1

]
− Pr [A(A,v) = 1]

∣∣ is negligible in the security param-
eter n.

Regev [32] showed that (through a quantum reduction) the LWE problem is as
hard as approximating the worst-case GapSVP to Õ(n/α) factors. Peikert [31],
Brakerski et al. [13] showed analogous results through classical reductions.
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3 B-DKER RIBE

M, I, and T denote sets of plaintexts, IDs, and time-periods, respectively.
Throughout this paper, we consider a single bit scheme, i.e.,M := {0, 1}.

An RIBE scheme Π consists of seven-tuple algorithms (SetUp, PKG, KeyUp,
DKG, Enc, Dec, Revoke) defined as follows:

– (PP,MK,RL, st)← SetUp(λ,N): A probabilistic algorithm for setup. It takes
a security parameter λ and the number of users N as input and outputs
a public parameter PP, a master secret key MK, an initial revocation list
RL = ∅ and a state st.

– (SKID, st) ← PKG(PP,MK, ID, st): An algorithm for private key generation.
It takes PP, MK, an identity ID ∈ I, and st as input and outputs a secret
key SKID and updated state information st.

– KUT ← KeyUp(PP,MK,T,RL, st): An algorithm for key update generation.
It takes PP, MK, a time-period T ∈ T , a current revocation list RL, and
state st as input, and then outputs a key update KUT.

– DKID,T or ⊥ ← DKG(PP,SKID,KUT): A probabilistic algorithm for decryp-
tion key generation. It takes PP, SKID and KUT as input and then outputs
a decryption key DKID,T at T or ⊥ if ID has been revoked by T.

– CTID,T ← Enc(PP, ID,T,M): A probabilistic algorithm for encryption. It
takes PP, ID ∈ I, and T ∈ T , and a plaintext M ∈ M as input and then
outputs a ciphertext CTID,T.

– M or ⊥ ← Dec(PP,DKID,T,CTID,T): A deterministic algorithm for decryp-
tion. It takes PP, DKID,T and CTID,T as input and then outputs M or ⊥.

– RL ← Revoke(PP, ID,T,RL, st): An algorithm for revocation. It takes
(ID,T) ∈ I × T , the current revocation list RL, and a state st as input
and then outputs an updated revocation list RL.

In the above model, we assume that Π meets the following correctness property:
For all security parameter λ ∈ N, all (PP,MK,RL, st) ← SetUp(λ,N), all M ∈
M, all ID ∈ I, all T ∈ T , if ID has not been revoked by T ∈ T , it holds that M =
Dec(DKG(PP,PKG(PP,MK, ID, st),KeyUp(PP,MK,T,RL, st)),Enc(PP, ID,T,M)).

Throughout this paper, we consider the following security notion called in-
distinguishability from random against selective chosen plaintext attacks and Q-
bounded decryption key exposure (IND-sRID-Q-CPA). That is, we define indis-
tinguishability from random against CPA adversaries taking into account Q-
bounded DKER, which is a weaker notion than original (unbounded) DKER [34].
Q-bounded DKER guarantees that the RIBE scheme is secure even if at most Q
decryption keys per user leaked, whereas unbounded DKER allows any number
of decryption-key leakage. In our security model, a CPA adversary is allowed to
obtain at most Q decryption keys of the target user ID∗, and tries to distinguish
between the challenge ciphertext and a random element in the ciphertext space.
Therefore, our security model also implies anonymity.

Definition 3 (IND-sRID-Q-CPA). For any a-priori fixed Q (:= poly(λ)),
an RIBE scheme Π is said to satisfy IND-sRID-Q-CPA security if for all
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PPT adversaries A, AdvIND-Q-CPA
Π,A (λ,N) is negligible in λ. For a PPT ad-

versary A, we define A’s advantage against IND-sRID-Q-CPA security by
AdvIND-Q-CPA

Π,A (λ) := |Pr[ExpIND-Q-CPA
Π,A (λ) = 1]−1/2|, where ExpIND-Q-CPA

Π,A (λ)
is defined by the following experiment:

ExpIND-Q-CPA
Π,A (λ) : (ID∗,T∗, state1)← A(find, λ)

(PP,MK,RL, st)← SetUp(λ,N)

(M∗, state2)← AO(find,PP, state1)

CT0 ← Enc(PP, ID∗,T∗,M∗), CT1
$← Cλ, b

$← {0, 1}
b′ ← AO(guess,CTb, state2)

Return 1 if b′ = b; otherwise, return 0

where Cλ is a ciphertext space which is determined by the security parameter λ.
Here, O is a set of oracles {PKG(·), KeyUp(·), Revoke(·, ·), DKG(·, ·)} defined
as follows.

PKG(·): For a query ID ∈ I, it stores and returns PKG(PP,MK, ID, st).
KeyUp(·): For a query T ∈ T , it stores and returns KeyUp(PP,MK,T,RL, st).
Revoke(·, ·): For a query (ID,T) ∈ I × T , it updates a revocation list RL by

running Revoke(PP, ID,T,RL, st).
DKG(·, ·): For a query (ID,T) ∈ I × T , it returns DKG(PP,SKID,KUT) and

stores it unless it is ⊥.

A is allowed to access the above oracles with the following restrictions.

1. KeyUp(·) and Revoke(·, ·) can be queried at a time period which is later than
or equal to that of all previous queries.

2. Revoke(·, ·) cannot be queried at a time period T after issuing T to KeyUp(·).
3. If ID∗ was issued to PKG(·) at T′, then (ID∗,T) must be issued to Revoke(·, ·)

such that T′ ≤ T ≤ T∗.
4. DKG(·, ·) cannot be queried at T before issuing T to KeyUp(·).
5. (ID∗,T∗) cannot be issued to DKG(·, ·).
6. If (ID∗,T)’s such that T ̸= T∗ were issued to DKG(·, ·) more than Q times,

then (ID∗,T) must be issued to Revoke(·, ·) such that T ≤ T∗.

4 Construction

In this section, we show the construction of our lattice-based B-DKER RIBE
scheme that utilizes CFFs.

– SetUp(λ,N) : On input a security parameter λ and a maximal number N
of users, set the parameters q, n,m, σ, α. Then, use the TrapGen(q, n,m)
algorithm to select A0 ∈ Zn×m

q with a basis TA0
for Λ⊥

q (A0). Select

A1,A2
$← Zn×m

q and u ← Zn
q . Choose an FRD map H as in Definition

2. Run (w, d,F) $← CFF.Gen(|T |, Q) and finally output

PP := (H,A0,A1,A2,u) , MK := TA0
,
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st := BT, and RL := ∅.
– PKG(PP,MK, ID, st): Parse st as BT. Randomly choose an unassigned leaf η
from BT, and store ID ∈ Zn

q in the leaf η. For each node θ ∈ Path(BT, η),
perform the following steps: Recall {u′

θ,ℓ}ℓ∈[d] if it was defined. Otherwise,

choose u′
θ,1, . . . ,u

′
θ,d

$← Zn
q and store them in θ. For every ℓ ∈ [d], sample

e′θ,ℓ ← SampleLeft(A0,FID,u
′
θ,ℓ,TA0

, σ) where FID = A1+H(ID)G ∈ Zn×m
q .

Finally output

SKID =
({

θ, {e′θ,ℓ}ℓ∈[d]

}
θ∈Path(BT,η)

)
.

– KeyUp(PP,MK,T,RL, st): For each node θ ∈ KUNode(BT,RL,T), per-
form the following steps: Recall {u′

θ,ℓ}ℓ∈[d] if it was defined. Other-

wise, choose u′
θ,1, . . . ,u

′
θ,d

$← Zn
q and store them in θ. Sample ẽθ ←

SampleLeft(A0,FT, ũθ,TA0
, σ) where FT = A2 + H(T)G and ũθ = u −∑

ℓ∈FT
u′
θ,ℓ. Output

KUT =
(
{θ, ẽθ}θ∈KUNode(BT,RL,T) ,FT

)
,

where for simplicity we here assume FT is a d-bit string such that ℓ-th bit
is one for ℓ ∈ FT and other bits are zero.

– DKG(PP,SKID,KUT): Parse SKID and KUT as

{
θ,
{
e′θ,ℓ

}
ℓ∈[d]

}
θ∈Θsk

and

{θ, ẽθ}θ∈Θku
, respectively. Output ⊥ if Θsk ∩ Θku = ∅. Otherwise, for some

θ ∈ Θsk ∩Θku, compute eθ =
∑

ℓ∈FT
e′θ,ℓ and output DKID,T = (eθ, ẽθ).

– Enc(PP, ID,T,M): To encrypt a bit M ∈ {0, 1}, it runs the following steps:

Set FID,T = [A0|FID|FT] ∈ Zn×3m
q . Choose s

$← Zn
q and RID,RT

$←
{−1, 1}m×m. Choose noise x ← Ψ̄α and a noise vector y ← Ψ̄m

α and set
zID = RT

IDy ∈ Zm
q , zT = RT

Ty ∈ Zm
q . Set

c0 = uT s+ x+M
⌊q
2

⌋
∈ Zq, c = FT

ID,Ts+

 y
zID
zT

 ∈ Z3m
q .

Output the ciphertext CTID,T := (c0, c) ∈ Zq × Z3m
q .

– Dec(PP,DKID,T,CTID,T): It runs the following steps: Parse c as

c0
c1
c2

 where

ci ∈ Zm
q . Compute c′ = c0 − eTθ

[
c0
c1

]
− ẽTθ

[
c0
c2

]
∈ Zq. Compare c′ and ⌊ q2⌋

treating them as integers in Z. If they are close, i.e., if |c′ − ⌊ q2⌋| < ⌊
q
4⌋,

output 1, otherwise output 0.
– Revoke(ID,T,RL, st): Add (ID,T) to RL, and output the updated RL.

Parameters and Correctness. We use the following lemma to bound the
noise.
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Lemma 7 ([1]). Let e be some vector in Zm and let y← Ψ̄α. Then the quantity
|⟨e,y⟩| when treated as an integer in (−q/2, q/2] satisfies |⟨e,y⟩| ≤ ∥e∥qα ·
ω(
√
logm) + ∥e∥

√
m/2.

We have during decryption,

w = c0 − eTθ

[
c0
c1

]
− ẽTθ

[
c0
c2

]
= M

⌊q
2

⌋
+ x− eTθ

[
y

RT
IDy

]
− ẽTθ

[
y

RT
Ty

]
︸ ︷︷ ︸

error term

.

Then, the error term can be bounded as follows.

Lemma 8. The norm of the error term is bounded by wqσmα · ω(
√
logm) +

O(wσm3/2) with high probability.

Proof. Let eθ = (eθ,1|eθ,2) and ẽθ = (ẽθ,1|ẽθ,2) with eθ,1, eθ,2, ẽθ,1, ẽθ,2 ∈ Zm.
Then the error term is

x− eTθ

[
y

RT
IDy

]
− ẽTθ

[
y

RT
Ty

]
= x− (eθ,1 + ẽθ,1 +RIDeθ,2 +RTẽθ,2)

T
y.

From Lemma 2, we have ∥e′θ,ℓ∥ ≤ σ
√
2m and ∥ẽθ∥ ≤ σ

√
2m with high prob-

ability. The former bounds imply that ∥eθ∥ ≤
∑

ℓ∈FT
∥e′θ,ℓ∥ ≤ wσ

√
2m. Here,

we use the fact that CFF is w-uniform. By Lemma 5, ∥RID∥ ≤ O(
√
m) and

∥RT∥ ≤ O(
√
m) with high probability. Then, ∥eθ,1+ ẽθ,1+RIDeθ,2+RTẽθ,2∥ ≤

∥eθ,1∥+∥ẽθ,1∥+∥RIDeθ,2∥+∥R2ẽθ,2∥ ≤ O(wσm). Then, by Lemma 7, the error
term is bounded by

|x|+
∣∣(eθ,1 + ẽθ,1 +RIDeθ,2 +R2ẽθ,2)

Ty
∣∣ ≤ wσmqα · ω(

√
logm) +O(wσm3/2).

⊓⊔

Now, for the scheme to work correctly, the following conditions should hold,
taking n to be the security parameter:

– the error term is less than q/5 with high probability, i.e., α < [wσm ·
ω(
√
logm)]−1 and q = Ω(wσm3/2),

– that TrapGen can operate, i.e., m > 2n log q,
– that σ is sufficiently large for SampleLeft and SampleRight, i.e., σ > ∥TG∥GS ·
∥RID∥ · ω(

√
logm) =

√
m · ω(

√
logm),

– that Regev’s reduction applies, i.e., q > 2
√
n/α,

Hence, we set the parameters (q,m, σ, α) as follows:

m = 2n1+δ, q = wm2 · ω(
√

log n),

σ =
√
m · ω(

√
log n), α =

[
wm3/2 · ω(

√
log n

)
]−1,

and round up m to the nearest larger integer and q to the nearest larger prime.
Here we assume that δ is such that nδ > ⌈log q⌉ = O(log n).
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5 Security

In this section, we prove the security of our scheme in Section 4.

Theorem 1. If the LWE assumption holds and the underlying CFF is Q-cover-
free and w-uniform, then the proposed RIBE scheme in Section 4 with the pa-
rameters set as above is IND-sRID-Q-CPA secure. In particular, if there ex-
ists an adversary A attacking IND-sRID-Q-CPA security of the RIBE scheme,
then there exists an adversary B against the LWE assumption with advantage
AdvLWE

B ≥ 1
wAdvIND-Q-CPA

Π,A (λ)− negl(λ).

Due to the page limitation, we omit some detailed discussion of the following
proof. Especially, we focus on the part that differs from Chen et al.’s proof [16].

Proof. The proof proceeds in a sequence of games where the first game is the
same as IND-sRID-Q-CPA game. In the last game, the challenge ciphertext is a
uniform random element in the ciphertext space, hence, the advantage of a PPT
adversary A is zero. Let Ei denote the event that A wins the game, i.e., b′ = b,
in Game i. Then, A’s advantage in Game i is

∣∣Pr[Ei]− 1
2

∣∣.
Let ID∗ denote the challenge identity. The simulator B guesses an adversarial

type among the following two types:

– Type-I adversary: ID∗ will be revoked before T∗. Hence, A may issue a
secret key extraction query for SKID∗ or decryption key queries DKID∗,T for
T ̸= T∗ more than Q times.

– Type-II adversary: ID∗ will not be revoked before T∗. Hence, A may issue
decryption key queries DKID∗,T for T ̸= T∗ at most Q times.

B guesses the types of the adversary with probability 1/2. If the guess is not
correct, B aborts the game and output a random bit. We separate the description
of Game 2 against the Type-I and Type-II adversary. Other games are the same
for both types of the adversary.

Gamereal: This is the original IND-sRID-Q-CPA game between an adversary
A against our scheme and an IND-RID-Q-CPA challenger.

Game 0: The game is the same as Gamereal except that at the beginning of the
game, the challenger guesses an index ℓ∗ ∈ FT∗ such that the secret key element
e′θ,ℓ∗ is not used to answer the first Q decryption key queries DKID∗,T by A, and
assume that the guess is right. If the guess is not correct, B aborts the game and
output a random bit.

Obviously, the challenger’s guess is right with probability 1/w. In other
words, the reduction loss is w, which is polynomial in the security parameter.
Note that in the rest of the proof, the challenger knows the index ℓ∗. The guess is
crucial to answer ID’s decryption keys in Game 2 against the Type II adversary.

Game 1: In Game 0, the PP contains random matrices A0,A1,A2 in Zn×m
q . At

the challenge phase, the challenger generates a ciphertext CTID∗,T∗ . We let RID∗

and RT∗ denote random matrices generated for the creation of the challenge
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ciphertext. As the proof of Agrawal et al. [1], Game 1 is the same as Game
0 except that we change the creations of A1 and A2 in the PP. The challenger
chooses RID∗ and RT∗ , which will be used to create the challenge ciphertext
CTID∗,T∗ , at the setup phase and construct matrices A1 and A2 as

A1 ← A0RID∗ −H(ID∗)G and A2 ← A0RT∗ −H(T∗)G.

The remainder of the game is unchanged. In A’s view, Game 1 and Game 0
are statistically indistinguishable from Lemma 6.

Game 2: In Game 1, {u′
θ,ℓ}ℓ∈[d] are independently random vectors in Zn

q ,
and the challenger samples {e′θ,ℓ}ℓ∈[d] and ẽθ using SampleLeft. Game 2 is the
same as Game 1 except that, for each node θ, we change the distributions of
{u′

θ,ℓ}ℓ∈[d], the secret key {e′θ,ℓ}ℓ∈[d] for ID∗, and the key update ẽθ for T∗ so
that B can create the keys without using the trapdoor TA0 . In this game, the
distributions differ against the type of adversaries. We use Game 2-I and Game
2-II to denote the games.

Type-I Adversary: The modification of Game 2-I is similar to Chen et al.’s
one [16]. By definition, the challenger should answer SKID∗ and DKID∗,T queries
only for the nodes θ ∈ Path(η∗), where η∗ is a randomly selected leaf which
ID∗ will be assigned to. By definition of Type-I adversary, since ID∗ will be
revoked before T∗, the challenger should answer KUT∗ queries only for the nodes
θ /∈ Path(η∗). Hence, there are no nodes θ that the challenger should answer key
queries for both ID∗ and T∗. Then, in Game 2-I, we change the distributions as
follows:

– Sample independently random e′θ,ℓ ← SampleGaussian(σ) and set u′
θ,ℓ =

[A0|FID∗ ]eθ,ℓ for ℓ ∈ [d] and θ ∈ Path(η∗),
– Sample ẽθ ← SampleGaussian(σ) and set ũθ = [A0|FT∗ ]ẽθ for θ /∈ Path(η∗).
Set u′

θ,ℓ for ℓ ∈ [d] \ {ℓ∗} as independently random vectors in Zn
q . Then, set

u′
θ,ℓ∗ = u− ũθ −

∑
ℓ∈FT∗\{ℓ∗} u

′
θ,ℓ.

Although we use ℓ∗, which the challenger guessed in Game 0, to create
{u′

θ,ℓ}ℓ∈[d] for θ /∈ Path(η∗), the role can be replaced by any ℓ ∈ FT∗ . Then,
the challenger responds to A’s key queries as follows:

– SKID queries for ID ̸= ID∗ and KUT queries for T ̸= T∗ are unchanged,

– answers SKID∗ queries using the above
{
e′θ,ℓ

}
ℓ∈[d]

,

– answers KUT∗ queries using the above ẽθ,
– answers DKID,T queries by using the above SKID and KUT.

Notice that we do not use the trapdoor TA0
to create SKID∗ and KUT∗ .

As Chen et al. [16], we can show that Game 2-I is statistically indistin-
guishable from Game 1 with high probability. In Game 1, {u′

θ,ℓ}ℓ∈[d] are
independently random vectors in Zn

q , and since {e′θ,ℓ}ℓ∈[d] for ID∗ and ẽθ
for T∗ are sampled from eθ,ℓ ← SampleLeft(A0,FID∗ ,u′

θ,ℓ,TA0
, σ) and ẽθ ←

SampleLeft(A0,FT∗ , ũθ,TA0
, σ) where ũθ = u −

∑
ℓ∈FT∗

u′
θ,ℓ, the distributions
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are statistically close to D
Λ

u′
θ,ℓ

q ([A0|FID∗ ]),σ
and D

Λ
ũθ
q ([A0|FT∗ ]),σ

, respectively. In

Game 2-I, {eθ,ℓ}ℓ∈[d] for ID∗ and ẽθ for T∗ are sampled from DZ2m,σ from
the property of SampleGaussian. Hence, by Lemma 3, the distribution of each
{u′

θ,ℓ}ℓ∈[d] and ũθ in Game 2-I is statistically close to uniform over Zn
q , respec-

tively. Furthermore, the conditional distribution of each {e′θ,ℓ}ℓ∈[d] and ẽθ given
{u′

θ,ℓ}ℓ∈[d] and ũθ is statistically close to D
Λ

u′
θ,ℓ

q ([A0|FID∗ ]),σ
and D

Λ
ũθ
q ([A0|FT∗ ]),σ

,

respectively. Hence, Game 2-I is statistically indistinguishable from Game 1 in
A’s view.

Type-II adversary. The modification of Game 2-II is the most technical part
of this paper. In this game, the distributions of u′, {e′θ,ℓ}ℓ∈[d], and ẽθ for θ /∈
Path(η∗) are the same as Game 2-I, however, we change the distributions of
those for θ ∈ Path(η∗). As opposed to the case of Game 2-I, the challenge ID∗

will not be revoked in the challenge time period T∗. Since there are nodes θ
which the simulator should create both the secret key {eθ,ℓ}ℓ∈[d] for ID

∗ and the
key update ẽθ for T∗, the previous approach is insufficient. In Game 2-II, we
change the distributions for θ ∈ Path(η∗) as follows:

– Sample independently random e′θ,ℓ ← SampleGaussian(σ) and set u′
θ,ℓ =

[A0|FID∗ ]e′θ,ℓ for ℓ ∈ [d] \ {ℓ∗},
– Sample ẽθ ← SampleGaussian(σ) and set ũθ = [A0|FT∗ ]ẽθ. It immediately
means that u′

θ,ℓ∗ = u− ũθ −
∑

ℓ∈FT∗\{ℓ∗} u
′
θ,ℓ.

Then, the challenger responds to A’s key queries as follows:

– SKID queries for ID ̸= ID∗ and KUT queries for T ̸= T∗ are unchanged,
– answers KUT∗ queries using the above ẽθ,
– answers DKID,T queries for ID ̸= ID∗ by using the above SKID and KUT,
– answers DKID∗,T queries using the above {e′θ,ℓ}ℓ∈[d] and KUT.

The challenger can respond to all key queries by A using the key creation algo-
rithms. Although the challenger can create all the other keys, it cannot create
the secret key element e′θ,ℓ∗ for ID∗. However, it does not matter since the maxi-
mum number of DKID∗,T queries by A is bounded up to Q times by the definition
of Type II adversary. Moreover, thanks to the property of CFFs and the guess
ℓ∗ in Game 0, we know that eθ,ℓ∗ is not used to respond to DKID∗,T queries. As
in Game 2-I, Game 2-II is statistically indistinguishable from Game 1 in A’s
view by Lemma 3.

Game 3: In Game 2, a matrix A0 is generated by TrapGen and its trapdoor
TA0

is used to respond to A’s key queries for ID ̸= ID∗ and T ̸= T∗. Game
3 is the same as Game 2 except that we sample A0 as a random matrix in
Zn×m
q . From the property of TrapGen, matrices generated by the algorithm are

statistically close to random matrices in Zn×m
q . Hence, the distributions of PP

between Game 2 and Game 3 are statistically indistinguishable. Observe that

[A0|FID] := [A0|A1 +H(ID)G] = [A0|A0RID∗ + (H(ID)−H(ID∗))G] ,
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[A0|FT] := [A0|A2 +H(T)G] = [A0|A0RT∗ + (H(T)−H(T∗))G] .

Due to the property of gadget matrix, we know a trapdoor TG which is also a
trapdoor for (H(ID)−H(ID∗))G and (H(T)−H(T∗))G if ID ̸= ID∗ and T ̸= T∗,
sinceH(ID)−H(ID∗) andH(T)−H(T∗) in Zn×n

q are full rank. Since the trapdoor
is public, one may think that it can be used by anyone, however, the knowledge
of secret RID∗ and RT∗ are required to use SampleRight.

Then, the challenger responds to A’s key queries as follows:

– SKID∗ queries and KUT∗ queries are unchanged,
– answers SKID queries for ID ̸= ID∗ by e′θ,ℓ where e′θ,ℓ ←

SampleRight(A0,G,RID∗ ,u′
θ,ℓ,TG, σ),

– answers KUT queries for T ̸= T∗ by ẽθ where ẽθ ←
SampleRight(A0,G,RT∗ , ũθ,TG, σ),

– answers DKID,T queries by using the above SKID and KUT.

Due to the property of SampleRight, the distributions of e′θ,ℓ and ẽθ, which
are the differences from Game 2, are statistically close to D

Λ
u′
θ,ℓ

q ([A0|FID∗ ]),σ

and D
Λ

ũθ
q ([A0|FT∗ ]),σ

. As a result, Game 3 is statistically indistinguishable from

Game 2 in A’s view.

Gamefinal:Gamefinal is the same asGame 3 except that the challenge cipher-
text CTID∗,T∗ is always chosen as a random independent element in the ciphertext
space Zq×Z3m

q . Since the challenge ciphertext is always a fresh random element
in the ciphertext space, A’s advantage in this game is zero.

If there exists a PPT adversary A to distinguish between Gamefinal and
Game 3, then there exists another adversary B to solve LWE problem. There-
fore,

∣∣Pr[E3]− 1
2

∣∣ = |Pr[E3]− Pr[Efinal]| ≤ AdvLWE
B . Since the proof is the

standard technique of lattice-based cryptography, we omit it.
Thus, we complete the proof. ⊓⊔

6 Discussion

To conclude this paper, we give some further comments and open questions of
this research.
Key Re-randomization. As mentioned in the introduction, the key re-
randomization property is crucial for constructing all the previous (pairing-
based) DKER RIBE schemes. One may think that lattice-based RIBE schemes
can be easily modified to support the key re-randomization property with
T[A0|FID], which is a short basis of Λ⊥

q ([A0|FID]), as secret keys or T[A0|FT],

which is a short basis of Λ⊥
q ([A0|FT]), as key updates. These bases are used to

support delegation in the context of hierarchical IBE [2, 14]. Indeed, the bases
enable any users of RIBE scheme to re-randomize their decryption keys and the
scheme to be decryption key exposure resistant. However, the approach is not
applicable to the RIBE setting. If a user ID has his own secret key T[A0|FID], he
can produce the well-formed decryption key e such that [A0|FID|FT]e = u for
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any time periods T without key updates. Hence, KGC cannot revoke any users.
For the same reason, constructing lattice-based revocable hierarchical IBE is a
major open problem that seems very hard to be solved.

Insecurity of Cheng-Zhang’s RIBE Scheme [17]. Cheng and Zhang
claimed that their proposed RIBE scheme with the subset difference (SD)
method is the first adaptively secure one with smaller key updates. However,
there are critical bugs in their security proof, i.e., Game 3 in the proof of their
Theorem 1. Here, we follow the notation from [17], e.g., id and t. In their Game
3, the simulator aborts the game if hid∗ = 0, where h() is a certain function, to
answer secret key extraction queries. In addition, the simulator also aborts the
game if hid∗ ̸= 0 to create a challenge ciphertext. Hence, the game never ends.
Note that the same holds for the target time period t∗.

One may think that Chen et al.’s Gaussian sampling technique [16], which we
also used, can be used to fix the bugs. However, it is not the case. Furthermore,
Cheng-Zhang’s RIBE scheme is not secure even in the selective security model.
The difficulty comes from the SD method which they used to revoke users. The
SD method is another subset cover framework and it enables us to reduce the size
of key updates. Notice that the subset cover framework which Chen et al. [16]
and we used in this paper is the CS method. If we modify Cheng-Zhang’s RIBE
scheme in the selective security model, the secret key e′ and the key update ẽ
satisfy the following equations:

[A0|A1 +H(id)G] e′ = u′ and [A0|A2 +H(t)G] ẽ = ũ.

The main difference between the SD method and the CS method is the restriction
of syndrome vectors u′ and ũ. In the security proof, the simulator should create
both the secret key e′ for the target id∗ and the key update ẽ for the target
t∗. As opposed to the CS method case, if we use the SD method, the simulator
should create both e′ and ẽ for the same syndrome vector u′ = ũ even without
DKER. Since we cannot create the keys by using the trapdoor TG, we try
to create them by using a Gaussian sampling algorithm. Once the simulator
uses a Gaussian sampling algorithm to sample e′ for the target id∗, then the
corresponding syndrome vector u′ = ũ is fixed. Therefore, the simulator cannot
create ẽ for the target t∗ by using a Gaussian sampling algorithm. Therefore,
a construction of lattice-based RIBE with the SD method even in the selective
security model and even without DKER is an interesting open problem.

Gadget Matrix. If we do not use CFFs in our scheme, i.e., w = d = 1, then the
scheme is an RIBE scheme without DKER. However, our parameters are better
than Chen et al.’s [16]. Notice that q and σ in our scheme are smaller than those
in [16]. The improvement stems from the gadget matrix G due to Micciancio
and Peikert [29], hence it is not the technical contribution of this paper.

Semi-adaptive Security. If we replace the hash function FID = A1 +H(ID)G
of Agrawal et al. [1] by that of adaptively secure schemes [6, 10, 11, 14, 20, 24,
38–40], our scheme achieves semi-adaptive security6, where an adversary issues
6 Notice that we do not have to replace FT = A2 + H(T)G by adaptively secure
ones. Since the maximum time period is polynomially bounded, |T | security loss
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the target (ID∗,T∗) in advance of any key queries. What is required to prove the
security of lattice-based RIBE is trapdoors that can sample short vectors e′θ,ℓ for
ID ̸= ID∗ and ẽ for T ̸= T∗ according to discrete Gaussian distributions, where
all the lattice-based IBE schemes have. However, it is insufficient to construct
adaptively secure RIBE even without DKER. In the RIBE setting, we have to
set all u′

θ,ℓ in advance of any key queries, then we use FID∗ , or equivalently ID∗,
for the computations. It means that the simulator has to know ID∗ at that time.
To avoid the obstacle, we should develop new lattice-based RIBE constructions,
which are different from Chen et al.’s [16], or it may be equivalent to new lattice-
based fuzzy IBE constructions, which are different from Agrawal et al.’s [3].

One may think that adaptively secure IBE is more than enough to construct
semi-adaptively secure RIBE. However, we do not know how to construct semi-
adaptively secure lattice-based IBE that is more efficient than adaptively secure
ones. We think that the construction should be an interesting open problem in
this research topic.

Anonymous (B-)DKER RIBE. Our scheme is the first anonymous (B-
)DKER RIBE that is resilient to decryption key exposure. As in lattice-based
IBE schemes (e.g., [1]) and Chen et al.’s RIBE scheme [16], since pairing-based
anonymous IBE [12] does not support the key re-randomization property, an
existing anonymous RIBE scheme [15] is insecure if an adversary is allowed to
query even a single decryption key. Since the spirit of our construction is the use
of distinct ũ’s for each time period and the concrete construction with CFFs,
we did not use specific techniques for lattices. Therefore, we believe that our
approach enables one to construct pairing-based anonymous B-DKER RIBE.
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