CHVote System Specification

Version 1.0

Rolf Haenni, Reto E. Koenig, Philipp Locher, Eric Dubuis \{rolf.haenni, reto.koenig, philipp.locher, eric.dubuis\}@bfh.ch

April 12, 2017

Bern University of Applied Sciences
CH-2501 Biel, Switzerland

Revision History

Revision	Date	Author(s)	Description
0.1	14.07.2016	Rolf Haenni	Initial Draft.
0.2	11.10.2016	Rolf Haenni	Draft to present at meeting.
0.3	17.10.2016	Rolf Haenni, Reto E. Koenig	Vote casting and confirmation algorithms finished.
0.4	24.10.2016	Rolf Haenni, Reto E. Koenig	Update of vote casting and confirmation algorithms.
0.5	18.11.2016	Rolf Haenni, Philipp Locher	Mixing process finished.
0.6	25.11.2016	Rolf Haenni	String conversion introduced, tallying finished.
0.7	07.12.2016	Rolf Haenni	Section 5 finished.
0.8	17.12.2016	Rolf Haenni	RecHash algorithm and cryptographic parameters added.
0.9	10.01.2017	Rolf Haenni	Section 8 finished.
0.10	06.02.2017	Rolf Haenni	Security parameters finished.
0.11	21.02.2017	Rolf Haenni	Section 6 finished, reorganization of Section 7.
0.11	14.03.2017	Rolf Haenni	Section 7 finished.
0.12	21.03.2017	Rolf Haenni	Section 8 finished.
0.13	30.03.2017	Rolf Haenni	Minor corrections. Section 1 finished.
1.0	12.04.2017	Rolf Haenni	Minor corrections. Section 2 finished.

Contents

Contents 3
I. Project Context 7

1. Introduction 8
1.1. Principal Requirements 9
1.2. Goal and Content of Document 10
2. Election Context 12
2.1. General Election Procedure 12
2.2. Election Uses Cases 14
2.2.1. Electorate 14
2.2.2. Type of Elections 15
II. Theoretical Background 17
3. Mathematical Preliminaries 18
3.1. Notational Conventions 18
3.2. Mathematical Groups 19
3.2.1. The Multiplicative Group of Integers Modulo p 19
3.2.2. The Field of Integers Modulo p 20
4. Type Conversion and Hash Algorithms 21
4.1. Byte Arrays 21
4.1.1. Converting Integers to Byte Arrays 22
4.1.2. Converting Byte Arrays to Integers 23
4.1.3. Converting UCS Strings to Byte Arrays 23
4.2. Strings 24
4.2.1. Converting Integers to Strings 24
4.2.2. Converting Strings to Integers 25
4.2.3. Converting Byte Arrays to Strings 25
4.3. Hash Algorithms 26
4.3.1. Hash Values of Integers and Strings 26
4.3.2. Hash Values of Multiple Inputs 26
5. Cryptographic Primitives 28
5.1. ElGamal Encryption 28
5.1.1. Using a Single Key Pair 28
5.1.2. Using a Shared Key Pair 29
5.2. Pedersen Commitment 29
5.3. Oblivious Transfer 30
5.3.1. OT-Scheme by Chu and Tzeng 30
5.3.2. Simultaneous Oblivious Transfers 31
5.3.3. Oblivious Transfer of Long Messages 32
5.4. Non-Interactive Preimage Proofs 34
5.4.1. Composition of Preimage Proofs 34
5.4.2. Applications of Preimage Proofs 35
5.5. Wikström's Shuffle Proof 35
5.5.1. Preparatory Work 36
5.5.2. Preimage Proof 38
III. Protocol Specification 40
6. Protocol Description 41
6.1. Parties and Communication Channels 41
6.2. Adversary Model and Trust Assumptions 43
6.3. System Parameters 44
6.3.1. Security Parameters 44
6.3.2. Election Parameters 48
6.4. Technical Preliminaries 50
6.4.1. Vote Encoding and Encryption 50
6.4.2. Linking OT Queries to ElGamal Encryptions 50
6.4.3. Validity of Encrypted Votes 51
6.4.4. Voter Identification 52
6.5. Protocol Description 53
6.5.1. Pre-Election Phase 53
6.5.2. Election Phase 55
6.5.3. Post-Election Phase 60
7. Pseudo-Code Algorithms 63
7.1. Conventions and Assumptions 63
7.2. General Algorithms 64
7.3. Pre-Election Phase 67
7.4. Election Phase 73
7.5. Post-Election Phase 83
IV. System Specification 92
8. Security Levels and Parameters 93
8.1. Length Parameters 93
8.2. Recommended Group and Field Parameters 94
8.2.1. Level 0 (Testing Only) 94
8.2.2. Level 1 96
8.2.3. Level 2 97
8.2.4. Level 3 99
8.3. Alphabets and Code Lengths 101
8.3.1. Voting and Confirmation Codes 102
8.3.2. Verification and Finalization Codes 103
Nomenclature 104
List of Tables 107
List of Protocols 109
List of Algorithms 110
Bibliography 115

Part I.

Project Context

1. Introduction

The State of Geneva is one of the worldwide pioneers in offering Internet elections to their citizens. The project, which was initiated in 2001, was one of first and most ambitious attempts in the world of developing an electronic voting procedure that allows the submission of votes over the Internet in referendums and elections. For this, a large number of technical, legal, and administrative problems had to be solved. Despite the complexity of these problems and the difficulties of finding appropriate solutions, first legally binding referendums had been conducted in 2003 in two suburbs of the City of Geneva. Referendums on cantonal and national levels followed in 2004 and 2005. In a popular referendum in in 2009, a new constitutional provision on Internet voting had been approved by a 70.2% majority. At more or less the same time, Geneva started to host referendums and elections for other Swiss cantons. The main purpose of these collaborations was-and still is-to provide Internet voting to Swiss citizens living abroad.

While the Geneva Internet voting project continued to expand, concerns about possible vulnerabilities had been raised by security experts and scientists. There were two main points of criticism: the lack of transparency and verifiability and the insecure platform problem [27]. The concept of verifiable elections has been known in the scientific literature for quite some time [9], but the Geneva e-voting system - like most other e-voting systems in the world at that time - remained completely unverifiable. The awareness of the insecure platform problem was given from the beginning of the project [26], but so-called code voting approaches and other possible solutions were rejected due to usability concerns and legal problems [25].
In the cryptographic literature on remote electronic voting, a large amount of solutions have been proposed for both problems. One of the most interesting approaches, which solves the insecure platform problem by adding a verification step to the vote casting procedure, was implemented in the Norwegian Internet voting system and tested in legally binding municipal and county council elections in 2011 and 2013 [$6,18,19,29]$. The Norwegian project was one of the first in the world that tried to achieve a maximum degree of transparency and verifiability from the very beginning of the project. Despite the fact that the project has been stopped in 2014 (mainly due to the lack of increase in turnout), it still serves as a model for future projects and second-generation systems.

As a response to the third report on Vote électronique by the Swiss Federal Council and the new requirements of the Swiss Federal Chancellery [24, 4], the State of Geneva decided to introduce a radical strategic change towards maximum transparency and full verifiability. For this, they invited leading scientific researchers and security experts to contribute to the development of their second-generation system, in particular by designing a cryptographic voting protocol that satisfies the requirements to the best possible degree. In this context, a collaboration contract between the State of Geneva and the Bern University of Applied

Sciences was signed in 2016. The goal of this collaboration is to lay the foundation for an entirely new system, which will be implemented from scratch.

As a first significant outcome of this collaboration, a scientific publication with a proposal for a cryptographic voting protocol was published in 2016 at the 12th International Joint Conference on Electronic Voting [20]. The proposed approach is the basis for the specification presented in this document. Compared to the protocol as presented in the publication, the level of technical details in this document is considerably higher. By providing more background information and a broader coverage of relevant aspects, this text is also more self-contained and comprehensive than its predecessor.

The core of this document is a set of approximately 60 algorithms in pseudo-code, which are executed by the protocol parties during the election process. The presentation of these algorithms is sufficiently detailed for an experienced software developer to implement the protocol in a modern programming language. ${ }^{1}$ Cryptographic libraries are only required for standard primitives such as hash algorithms and pseudo-random generators. For one important sub-task of the protocol-the mixing of the encrypted votes - a second scientific publication was published in 2017 at the 21th International Conference on Financial Cryptography [14]. By facilitating the implementation of a complex cryptographic primitive by non-specialists, this paper created a useful link between the theory of cryptographic research and the practice of implementing cryptographic systems. The comprehensive specification of this document, which encompasses all technical details of a fully-featured cryptographic voting protocol, provides a similar, but much broader link between theory and practice.

1.1. Principal Requirements

In 2013, the introduction of the new legal ordinance by the Swiss Federal Chancellery, Ordinance on Electronic Voting (VEleS), created a new situation for the developers and providers of Internet voting systems in Switzerland [3, 4]. Several additional security requirements have been introduced, in particular requirements related to the aforementioned concept of verifiable elections. The legal ordinance proposes a two-step procedure for expanding the electorate allowed of using the electronic channel. A system that meets the requirements of the first expansion stage may serve up to 50% of the cantonal and 30% of the federal electorate, whereas a system that meets the requirements of the second (full) expansion stage may serve up to 100% of both the cantonal and the federal electorate. Current systems may serve up to 30% of the cantonal and 10% of the federal electorate [4, 5].

The cryptographic protocol presented in this document is designed to meet the security requirements of the full expansion stage. From a conceptual point of view, the most important requirements are the following:

- End-to-End Encryption: The voter's intention is protected by strong encryption along the path from the voting client to the tally. To guarantee vote privacy even after decrypting the votes, a cryptographically secure anonymization method must be part of the post-election process.

[^0]- Individual Verifiability: After submitting an encrypted vote, the voter receives conclusive evidence that the vote has been cast and recorded as intended. This evidence enables the voter to exclude with high probability the possibility that the vote has been manipulated by a compromised voting client. According to [3, Paragraph 4.2.4], this is the proposed countermeasure against the insecure platform problem. The probability of detecting a compromised vote must be 99.9% or higher.
- Universal Verifiability: The correctness of the election result can be tested by independent verifiers. The verification includes checks that only votes cast by eligible voters have been tallied, that every eligible voter has voted at most once, and that every vote cast by an eligible voter has been tallied as recorded.
- Distribution of Trust: Several independent control components participate in the election process, for example by sharing the private decryption key or by performing individual anonymization steps. While single control components are not fully trusted, it is assumed that they are trustworthy as a group, i.e., that at least one of them will prevent or detect any type of attack or failure. The general goal of distributing trust in this way is to prevent single points of failures.

In this document, we call the control components election authorities (see Section 6.1). They are jointly responsible for generating the necessary elements of the implemented cast-as-intended mechanism. They also generate the public encryption key and use corresponding shares of the private key for the decryption. Finally, they are responsible for the anonymization process consisting of a series of cryptographic shuffles. By publishing corresponding cryptographic proofs, they demonstrate that the shuffle and decryption process has been conducted correctly. Checking these proof is part of the universal verification.

While verifiability and distributed trust are mandatory security measures at the full expansion stage, measures related to some other security aspects are not explicitly requested by the legal ordinance. For example, regarding the problem of vote buying and coercion, the legal ordinance only states that the risk must not be significantly higher compared to voting by postal mail [3, Paragraph 4.2.2]. Other problems of lower significance in the legal ordinance are the possibility of privacy attacks by malware on the voting client, the lack of long-term security of today's cryptographic standards, or the difficulty of printing highly confidential information and sending them securely to the voters. We adopt corresponding assumptions in this document without questioning them.

1.2. Goal and Content of Document

The goal of this document is to provide a self-contained, comprehensive, and fully-detailed specification of a new cryptographic voting protocol for the future system of the State of Geneva. The document should therefore describe every relevant aspect and every necessary technical detail of the computations and communications performed by the participants during the protocol execution. To support the general understanding of the cryptographic protocol, the document should also accommodate the necessary mathematical and cryptographic background information. By providing this information to the maximal possible extent, we see this document as the ultimate companion for the developers in charge of implementing the future Internet voting system of the State of Geneva. It may also serve as
a manual for developers trying to implement an independent election verification software. The decision of making this document public will even enable implementations by third parties, for example by students trying to develop a clone of the Geneva system for scientific evaluations or to implement protocol extensions to achieve additional security properties. In any case, the target audience of this document are system designers, software developers, and cryptographic experts.

What is currently entirely missing in this document are proper definitions of the security properties and corresponding formal proofs that these properties hold in this protocol. An informal discussion of such properties is included in the predecessor document [20], but this is not sufficient from a cryptographic point of view. However, the development of proper security proofs, which is an explicit requirement of the legal ordinance, has been excluded from this collaboration. The goal is to outsource the formal proofs to a separate project by an external third party, which will at the same time conduct a review of the specification. Results from this sister project will be published in a separate document as soon as they are available. It is likely that their feedback will lead to a revision of this document.

This document is divided into five parts. In Part I, we describe the general project context, the goal of this work and the purpose of this document (Chapter 1). We also give a first outline of the election procedure, an overview of the supported election types, and a discussion of the expected electorate size (Chapter 2). In Part II, we first introduce notational conventions and some basic mathematical concepts (Chapter 4). We also describe conversion methods for some basic data types and propose a general method for computing hash values of composed mathematical objects (Chapter 3). Finally, we summarize the cryptographic primitives used in the protocol (Chapter 5). In Part III, we first provide a comprehensive protocol description with detailed discussions of many relevant aspects (Chapter 6). This description is the core and the major contribution of this document. Further details about the necessary computations during a protocol execution are given in form of an exhaustive list of pseudo-code algorithms (Chapter 7). Looking at these algorithms is not mandatory for understanding the protocol and the general concepts of our approach, but for developers, they provide a useful link from the theory towards an actual implementation. In Part IV, we propose three security levels and corresponding system parameters, which we recommend to use in an actual implementation of the protocol (Chapter 8). Finally, in ??, we summarize the main achievements and conclusions of this work and discuss some open problem and future work.

2. Election Context

The election context, for which the protocol presented in this document has been designed, is limited to the particular case of the direct democracy as implemented and practices in Switzerland. Up to four times a year, multiple referendums or multiple elections are held simultaneously on a single election day, sometimes on up to four different political levels (federal, cantonal, municipal, pastoral). In this document, we use ,election" as a general term for referendums and elections and election event for an arbitrary combinations of such elections taking place simultaneously. Responsible for conducting an election event are the cantons, but the election results are published for each municipality. Note that two residents of the same municipality do not necessarily have the same rights to vote in a given election event. For example, some canton or municipalities accept votes from residents without a Swiss citizenship, provided that they have been living there long enough. Swiss citizens living abroad are not residents in a municipality, but the are still allowed to voter in federal or cantonal issues.

Since voting has a long tradition in Switzerland and is practiced by its citizens very often, providing efficient voting channels has always been an important consideration for election organizers to increase turnout and to reduce costs. For this reason, some cantons started to accept votes by postal mail in 1978, and later in 1994, postal voting for federal issues was introduced in all cantons. Today, voting by postal mail is the dominant voting channel, which is used by approximately 90% of the voters. Given the stability of the political system in Switzerland and the high reliability of most governmental authorities, concerns about manipulations when voting from a remote place are relatively low. Therefore, with the broad acceptance and availability of information and communications technologies today, moving towards an electronic voting channel seems to be the natural next step. This one of the principal reasons for the Swiss government to support the introduction of Internet voting. The relatively slow pace of the introduction is a strategic decision to limit the security risks.

2.1. General Election Procedure

In the general setting of the CHVote system, voters submit their electronic vote using a regular web browser on their own computer. To circumvent the problem of malware attacks on these machines, some approaches suggest using an out-of-band channel as a trust anchor, over which additional information is transmitted securely to the voters. In the particular setting considered in this document, each voter receives a voting card from the election authorities by postal mail. Each voting card contains different verification codes for every voting option and a single finalization code. These codes are different for every voting card. An example of such a voting card is shown in Figure 2.1. As we will discuss below, the voting card also contains two authentication codes, which the voter must enter during vote
casting. Note that the length of all codes must be chosen carefully to meet the system's security requirements (see Section 6.3.1).

Voting Card Nr. 3587

Question 1: Etiam dictum sem pulvinar elit con vallis vehicula. Duis	Yes	No	Blank
vitae purus ac tortor volut pat iaculis at sed mauris at tempor quam?			

Voting code:
eZ54-gr4B-3pAQ-Zh8q

Confirmation code:
uw4M-QL91-jZ9N-nXA2

Finalization code:
87483172

Figure 2.1.: Example of a voting card for an election event consisting of three referendums. Verification codes are printed as 4 -digit numbers in hexadecimal notation, whereas the finalization code is printed as an 8 -digit decimal number. The two authentication codes are printed as alphanumeric strings.

After submitting the ballot, verification codes for the chosen voting options are displayed by the voting application and voters are instructed to check if the displayed codes match with the codes printed on the voting card. Matching codes imply with high probability that a correct ballot has been submitted. This step - called cast-as-intended verification-is the proposed counter-measure against integrity attacks by malware on the voter's insecure platform, but it obviously does not prevent privacy attacks. Nevertheless, as long as integrity attacks by malware are detectable with probability higher than 99.9%, the Swiss Federal Chancellery has approved this approach as a sufficient solution for conducting elections over the Internet [4, Paragraph 4.2.4]. To provide a guideline to system designers, a description of an example voting procedure based on verification codes is given in [2, Appendix 7]. The procedure proposed in this document follows the given guideline to a considerable degree.

In addition to the verification and finalization codes, voter's are also supplied with two authentication codes called voting code and confirmation code. In the context of this document, we consider the case where authentication, verification, and finalization codes are all printed on the same voting card, but we do not rule out the possibility that some codes are printed on a separate paper. In addition to these codes, a voting card has a unique identifier. If N_{E} denotes the size of the electorate, the unique voting card identifier will simply be an integer $i \in\left\{1, \ldots, N_{E}\right\}$, the same number that we will use to identify voters in the electorate (see Section 6.1).
In the Swiss context, since any form of vote updating is prohibited by election laws, voters cannot re-submit the ballot from a different platform in case of non-matching verification codes. From the voter's perspective, the voting process is therefore an all-or-nothing procedure, which terminates with either a successfully submitted valid vote (success case) or an abort (failure case). The procedure in the success case consists of five steps:

1. The voter selects the allowed number of voting options and enters the voting code.
2. The voting system ${ }^{1}$ checks the voting code and returns the verification codes of the selected voting options for inspection.
3. The voter checks the correctness of the verification codes and enters the confirmation code.
4. The voting system checks the confirmation code and returns the finalization code for inspection.
5. The voter checks the correctness of the finalization code.

From the perspective of the voting system, votes are accepted after receiving the voter's confirmation in Step 4. From the voter's perspective, vote casting was successful after receiving correct verification codes in Step 3 and a correct finalization code in Step 5. In case of an incorrect or missing finalization code, the voter is instructed to contact the election hotline for triggering an investigation. In any other failure case, voters are instructed to immediately abort the process and use postal mail as a backup voting channel.

2.2. Election Uses Cases

The voting protocol presented in this document is designed to support election events consisting of $t \geqslant 1$ simultaneous elections. Every election $j \in\{1, \ldots, t\}$ is modeled as an independent k_{j}-out-of- n_{j} election with $n_{j} \geqslant 2$ candidates, of which (exactly) $k_{j}<n_{j}$ can be selected by the voters. Note that we use candidate as a general term for all types of voting options, in a similar way as using election for various types of elections and referendums. Over all t elections, $n=\sum_{j=1}^{t} n_{j}$ denotes the total number of candidates, whereas $k=\sum_{j=1}^{t} k_{j}$ denotes the number of candidates for voters to select, provided that they are eligible in every election. A single selected candidate is denoted by a value $s \in\{1, \ldots, n\}$.

As stated earlier, we also have to take into account that voters may not be eligible in all t elections of an election event. If N_{E} denotes the size of the electorate, we set $e_{i j}=1$ if voter $i \in\left\{1, \ldots, N_{E}\right\}$ is eligible in election $j \in\{1, \ldots, t\}$ and $e_{i j}=0$ otherwise. These values define the eligibility matrix (an N_{E}-by- t Boolean matrix satisfying $\sum_{j=1}^{t} e_{i j}>0$), which must be specified prior to every election event by the election administration. For voter i, the product $e_{i j} k_{j} \in\left\{0, k_{j}\right\}$ denotes the number of allowed selections in election j, and $k_{i}=\sum_{j=1}^{t} e_{i j} k_{j}$ denotes the total number of selections over all t elections of the given election event. In Section 6.3.2, this general model of an election event will be discussed in further detail.

2.2.1. Electorate

In the political system in Switzerland, all votes submitted in an election event are tallied in so-called counting circles. In smaller municipalities, the counting circle is identical to the municipality itself, but larger cities may consist of multiple counting circles. For statistical

[^1]reasons, the results of each counting circle must be published separately for elections on all four political levels, i.e., the final election results on federal, cantonal, communal, or pastoral issues are obtained by summing of the results of all involved counting circles. Counting circles will typically consist of several hundred or several thousand eligible voters. Even in the largest counting circle, we expect not more than $100^{\prime} 000$ voters.

To comply with this setting, multiple protocol instances will need to be executed in parallel for a given election event, i.e., one protocol run for each counting circle. Depending on the actual constellation, different runs of the protocol may share exactly the same election parameters, for example in different counting circles of the same city. It could also happen that there are no municipal or pastoral elections at all in some cantons, which implies that all counting circle of such a canton could then share exactly the same election parameters. If there are not too many municipal or pastoral elections, it may also be possible to include them in a single election setting for the whole canton and to differentiate between eligibile and ineligible voters by corresponding entries in the eligibility matrix. Since municipal and pastoral elections are relatively rare compared to federal or cantonal elections, this might be the most common setting for the system in practice. As we will see in Section 8.3.2, we limit the total number of candidates in an election event to $n \leqslant 1678$, which should be sufficient to cover all combinations of simultaneous elections on all four political levels and for all municipalities of a given canton. Running exactly the same protocol instance with exactly the same election parameters is a desirable property, since it greatly facilitates the system setup in such a canton.

2.2.2. Type of Elections

In the elections that we consider voters must always select exactly k different candidates from a list of n candidates. At first glance, such k-out-of- n elections may seems too restrictive to cover all necessary election use cases in the given context, but they are actually flexible enough to support more general election types, for example elections with the option of submitting blank votes. In general, it is possible to substitute any ($k_{\min }, k_{\max }$)-out-of-n election, in which voters are allowed to select between $k_{\min }$ and $k_{\max }$ different candidates from the candidate list, by an equivalent k^{\prime}-out-of- n^{\prime} election for $k^{\prime}=k_{\max }$ and $n^{\prime}=n+b$, where $b=k_{\max }-k_{\min }$ denotes the number of additional blank candidates. An important special case of this augmented setting arises for $k_{\min }=0$, in which a completely blank ballot is possible by selecting all $b=k_{\text {max }}$ blank candidates.

In another generalization of basic k-out-of- n elections, voters are allowed to give up to $c \leqslant k$ votes to the same candidate. This is called cumulation. In the most flexible case of cumulation, the k votes can be distributed among the n candidates in an arbitrary manner. This case can be handled by increasing the size of the candidate list from n to $n^{\prime}=c n$, i.e., each candidate obtains c distinct entries in the extended candidate list. This leads to an equivalent k-out-of- n^{\prime} election, in which voters may select the same candidate up to c times by selecting all its entries in the extended list. At the end of the election, an additional accumulation step is necessary to determine the exact number of votes of a given candidate from the final tally. By combining this technique of handling cumulations with the above way of handling blank votes, we obtain k^{\prime}-out-of- n^{\prime} elections with $k^{\prime}=k_{\max }$ and $n^{\prime}=c n+b$.

In Table 2.1 we give a non-exhaustive list of some common election types with corresponding election parameters to handle blank votes and cumulations as explained above. In this list, we assume that blank votes are always allowed up to the maximal possible number. The last entry in the list, which describes the case of party-list elections, is thought to cover elections of the Swiss National Council. This particular election type can be understood as two independent elections in parallel, one 1 -out-of- n_{p} party election and one cumulative k -out-of- n_{c} candidate election, where n_{p} and n_{c} denote the number of parties and candidates, respectively. Cumulation is usally restricted to maximal $c=2$ voter per candidate. Blank votes are allowed for both the party and the candidate election. In some cases, a completely blank candidate ballot is prohibited together with a party vote. This particular case can be covered by reducing the number of blank candidates from $b=k$ to $b=k-1$ and by introducing two blank parties instead of one, one for a blank party vote with at least one non-blank candidate vote and one for an entirely blank vote. In the latter case, candidate votes are discarded inthe final tally.

Election Type	k	n	b	c	k^{\prime}	n^{\prime}
Referendum, popular initia-	1	2	1	1	1	3
tive, direct counter-proposal						
Deciding question	1	2	1	1	1	3
Single non-transferable vote	1	n	1	1	1	$n+1$
Multiple non-transferable vote	k	n	k	1	k	$n+k$
Approval voting	n	n	n	1	n	$2 n$
Cumulative voting	k	n	k	c	k	$c n+k$
Party-list election	$(1, k)$	$\left(n_{p}, n_{c}\right)$	$(1, k)$	$(1,2)$	$(1, k)$	$\left(n_{p}+1,2 n_{c}+k\right)$

Table 2.1.: Election parameters for common types of elections. Party-list elections (last line) are modeled as two independent elections in parallel, one for the parties and one for the candidates.

Part II.

Theoretical Background

3. Mathematical Preliminaries

3.1. Notational Conventions

As a general rule, we use upper-case latin or greek letters for sets and lower-case latin or greek letters for their elements, for example $X=\left\{x_{1}, \ldots, x_{n}\right\}$. For composed sets or subsets of composed sets, we use calligraphic upper-case latin letters, for example $\mathcal{X} \subseteq X \times Y \times Z$ for the set or a subset of triples (x, y, z). $|X|$ denotes the cardinality of a finite set X. For general tuples, we use lower-case latin or greek letters in normal font, for example $t=(x, y, z)$ for triples from $X \times Y \times Z$. For sequences (arrays, lists, strings), we use upper-case latin letters and indices starting from 0 , for example $S=\left\langle s_{0}, \ldots, s_{n-1}\right\rangle \in A^{*}$ for a string of characters $s_{i} \in A$, where A is a given alphabet. We write $|S|=n$ for the length of S and use standard array notation $S[i]=s_{i}$ to select the element at index $i \in\{0, \ldots, n-1\}$. $S_{1} \| S_{2}$ denotes the concatenation of two sequences. For vectors, we use lower-case latin letters in bold font, for example $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ for a vector of length $|\mathbf{x}|=n$. For two-dimensional (or higher-dimensional) matrices, we use upper-case latin letters in bold font, for example

$$
\mathbf{X}=\left(\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, n} \\
\vdots & \ddots & \vdots \\
x_{m, 1} & \cdots & x_{m, n}
\end{array}\right) \in X^{m n}
$$

for an m-by- n-matrix of values $x_{i j} \in X$. We use $\mathbf{X}=\left(x_{i j}\right)_{m \times n}$ as a shortcut notation and write $|\mathbf{X}|=(m, n)$. Similarly, $\mathbf{X}=\left(x_{i j k}\right)_{m \times n \times r} \in X^{m n r}$ is a shortcut notation for a three-dimensional m-by- n-by- r matrix of values $x_{i j k} \in X$.

The set of integers is denoted by $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, the set of natural numbers by $\mathbb{N}=\{0,1,2, \ldots\}$, and the set of positive natural numbers by $\mathbb{N}^{+}=\{1,2, \ldots\}$. The set of the n smallest natural numbers is denoted by $\mathbb{Z}_{n}=\{0, \ldots, n-1\}$, where $\mathbb{B}=\{0,1\}=\mathbb{Z}_{2}$ denotes the special case of the Boolean domain. The set of all prime numbers is denoted by \mathbb{P}. A prime number $p=2 q+1 \in \mathbb{P}$ is called safe prime, if $q \in \mathbb{P}$, and the set of all safe primes is denoted by \mathbb{S}.

For an integer $x \in \mathbb{Z}$, we write abs (x) for the absolute value of x and $\|x\|=\left\lfloor\log _{2}(\operatorname{abs}(x))\right\rfloor+1$ for the bit length of $x \neq 0$ (let $\|0\|=0$ by definition). The set of all natural numbers of a given bit length $l \geqslant 1$ is denoted by $\mathbb{Z}_{\|x\|=l}=\{x \in \mathbb{N}:\|x\|=l\}=\mathbb{Z}_{2^{2}} \backslash \mathbb{Z}_{2^{l-1}}$ and the cardinality of this set is $\left|\mathbb{Z}_{\|x\| \|=l}\right|=2^{l-1}$. For example, $\mathbb{Z}_{\|x\|=3}=\{4,5,6,7\}$ has cardinality $2^{3-1}=4$. Similarly, we write $\mathbb{P}_{\|x\|=l}=\mathbb{P} \cap \mathbb{Z}_{\|x\|=l}$ and $\mathbb{S}_{\|x\|=l}=\mathbb{S} \cap \mathbb{Z}_{\|x\|=l}$ for corresponding sets of prime numbers and safe primes, respectively.

To denote mathematical functions, we generally use one italic or multiple non-italic lowercase latin letters, for example $f(x)$ or $\operatorname{gcd}(x, y)$. For algorithms, we use single or multiple words starting with an upper-case letter in sans-serif font, for example Euclid (x, y) or

ExtendedEuclid (x, y). Algorithms can be deterministic or randomized. We use \leftarrow for assigning the return value of an algorithm call to a variable, for example $z \leftarrow \operatorname{Euclid}(x, y)$. Picking a value uniformly at random from a finite set X is denoted by $x \in_{R} X$.

3.2. Mathematical Groups

In mathematics, a group $\mathcal{G}=(G, \circ$, inv, $e)$ is an algebraic structure consisting of a set G of elements, a (binary) operation $\circ: G \times G \rightarrow G$, a (unary) operation inv : $G \rightarrow G$, and a neutral element $e \in G$. The following properties must be satisfied for \mathcal{G} to qualify as a group:

- $x \circ y \in G$ (closure),
- $x \otimes(y \circ z)=(x \circ y) \circ z$ (associativity),
- $e \circ y=x \circ e=e$ (identity element),
- $x \circ \operatorname{inv}(x)=e$ (inverse element),
for all $x, y, z \in G$.
Usually, groups are written either additively as $\mathcal{G}=(G,+,-, 0)$ or multiplicatively as $\mathcal{G}=$ $\left(G, \times,^{-1}, 1\right)$, but this is just a matter of convention. We write $k \cdot x$ in an additive group and x^{k} in a multiplicative group for applying the group operator $k-1$ times to x. We define $0 \cdot x=0$ and $x^{0}=1$ and handle negative values as $-k \cdot x=k \cdot(-x)=-(k \cdot x)$ and $x^{-k}=\left(x^{-1}\right)^{k}=\left(x^{k}\right)^{-1}$, respectively. A fundamental law of group theory states that if $n=|G|$ is the group order of a finite group, then $n \cdot x=0$ and $x^{n}=1$, which implies $k \cdot x=(k \bmod n) \cdot x$ and $x^{k}=x^{k \bmod n}$. In other words, scalars or exponents such as k can be restricted to elements of the additive group \mathbb{Z}_{n}, in which additions are computed modulo n (see below). Often, the term group is used for both the algebraic structure \mathcal{G} and its set of elements G.

3.2.1. The Multiplicative Group of Integers Modulo p

With $\mathbb{Z}_{p}^{*}=\{1, \ldots, p-1\}$ we denote the multiplicative group of integers modulo a prime $p \in \mathbb{P}$, in which multiplications are computed modulo p. The group order is $\left|\mathbb{Z}_{p}^{*}\right|=p-1$, i.e., operations on the exponents can be computed modulo $p-1$. An element $g \in \mathbb{Z}_{p}^{*}$ is called generator of \mathbb{Z}_{p}^{*}, if $\left\{g^{1}, \ldots, g^{p-1}\right\}=\mathbb{Z}_{p}^{*}$. Such generators always exist for \mathbb{Z}_{p}^{*} if p is prime. Generally, groups for which generators exist are called cyclic.

Let g be a generator of \mathbb{Z}_{p}^{*} and $x \in \mathbb{Z}_{p}^{*}$ an arbitrary group element. The problem of finding a value k such that $x=g^{k}$ is believed to be a hard. The value $k=\log _{g} x$ is called discrete logarithm of x to base g and the problem of finding k is called discrete logarithm problem (DL). It is widely believed that DL is hard in \mathbb{Z}_{p}^{*}. A related problem, called decisional DiffieHellman problem (DDH), consists in distinguishing two triples $\left(g^{a}, g^{b}, g^{a b}\right)$ and $\left(g^{a}, g^{b}, g^{c}\right)$ for random exponents a, b, c. While DDH is known to be easy in \mathbb{Z}_{p}^{*}, it is believed that DDH is hard in large subgroups of \mathbb{Z}_{p}^{*}.

A subset $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ forms a subgroup of \mathbb{Z}_{p}^{*}, if $\left(\mathbb{G}_{q}, \times,{ }^{-1}, 1\right)$ satisfies the above properties of a group. An important theorem of group theory states that the order $q=\left|\mathbb{G}_{q}\right|$ of every such subgroup divides the order of \mathbb{Z}_{p}^{*}, i.e., $q \mid p-1$. If q is a large prime factor of $p-1$, then it is believed that DL in \mathbb{G}_{q} is as hard as in \mathbb{Z}_{p}^{*}. In fact, even DDH seems be hard in a large subgroup \mathbb{G}_{q}, which is not the case in \mathbb{Z}_{p}^{*}.
A particular case arises when $p=2 q+1 \in \mathbb{S}$ is a safe prime. In this case, \mathbb{G}_{q} is equivalent to the group of so-called quadratic residues modulo p, which we obtain by squaring all elements of \mathbb{Z}_{p}^{*}. Since q is prime, it follows that every $x \in \mathbb{G}_{q} \backslash\{1\}$ is a generator of \mathbb{G}_{q}, i.e., generators of \mathbb{G}_{q} can be found easily by squaring arbitrary elements of $\mathbb{Z}_{p}^{*} \backslash\{1, p-1\}$.

3.2.2. The Field of Integers Modulo \mathbf{p}

With $\mathbb{Z}_{n}=\{0, \ldots, n-1\}$ we denote the additive group of integers, in which additions are computed modulo n. This group as such is not interesting for cryptographic purposes (no hard problems are known), but for $n=p-1$, it serves as the natural additive group when working with exponents in applications of \mathbb{Z}_{p}^{*}. The same holds for groups of prime order q, for example for subgroups $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$. In this case, all calculations in the exponent take place in \mathbb{Z}_{q}.

Generally, when \mathbb{Z}_{p} is an additive group modulo a prime $p \in \mathbb{P}$, then $\left(\mathbb{Z}_{p},+, \times,-,^{-1}, 0,1\right)$ is a prime-order field with two binary operations + and \times. This particular field combines the additive group $\left(\mathbb{Z}_{p},+,-, 0\right)$ and the multiplicative group $\left(\mathbb{Z}_{p}^{*}, \times,,^{-1}, 1\right)$ in one algebraic structure with an additional property:

- $x \times(y+z)=(x \times y)+(x \times z)$, for all $x, y, z \in \mathbb{Z}_{p}$ (distributivity of multiplication over addition).

For a given prime-order field \mathbb{Z}_{p}, it is possible to define univariate polynomials

$$
A(X)=\sum_{i=1}^{d} a_{i} X^{i} \in \mathbb{Z}_{p}[X]
$$

of degree $d \geqslant 0$ and with coefficients $a_{i} \in \mathbb{Z}_{p}$ (degree d means $a_{d} \neq 0$). Clearly, such polynomials are fully determined by the list $\mathbf{a}=\left(a_{0}, \ldots, a_{d}\right)$ of all coefficients. Another representation results from picking distinct points $p_{i}=\left(x_{i}, y_{i}\right), y_{i}=A\left(x_{i}\right)$, from the polynomial. Using Lagrange's interpolation method, the coefficients can then be reconstructed if at least $d+1$ such points are available. Reconstructing the coefficient $a_{0}=A(0)$ is of particular interest in many applications. For given points $\mathbf{p}=\left(p_{1}, \ldots, p_{d}\right), p_{i} \in\left(x_{i}, y_{i}\right) \in \mathbb{Z}_{p}^{2}$, we obtain

$$
a_{0}=\sum_{i=0}^{d} y_{i} \cdot\left[\prod_{\substack{0 \leqslant j \leqslant d \\ j \neq i}} \frac{x_{j}}{x_{j}-x_{i}}\right]
$$

by applying Lagrange's general method to $X=0$.

4. Type Conversion and Hash Algorithms

4.1. Byte Arrays

Let $B=\left\langle b_{0}, \ldots, b_{n-1}\right\rangle$ denote an array of bytes $b_{i} \in \mathcal{B}$, where $\mathcal{B}=\mathbb{B}^{8}$ denotes the set of all 256 bytes. We identify individual bytes as integers $b_{i} \in \mathbb{Z}_{256}$ and use hexadecimal or binary notation to denote them. For example, $B=\langle\mathrm{OA}, 23, \mathrm{EF}\rangle$ denotes a byte array containing three bytes $B[0]=0 \mathrm{~A}_{16}=00001010_{2}, B[1]=23_{16}=001000011_{2}$, and $B[2]=\mathrm{EF}_{16}=$ 11101111_{2}.

For two byte arrays B_{1} and B_{2} of equal length $n=\left|B_{1}\right|=\left|B_{2}\right|$, we write $B_{1} \oplus B_{2}$ for the results of applying the XOR operator \oplus bit-wise to B_{1} and B_{2}. For truncating a byte array B of length $n=|B|$ to the first $m \leqslant n$ bytes, and for skipping the first m bytes from B, we write

$$
\begin{aligned}
\operatorname{Truncate}(B, m) & =\langle B[0], \ldots, B[m-1]\rangle, \\
\operatorname{Skip}(B, m) & =\langle B[m], \ldots, B[n-1]\rangle,
\end{aligned}
$$

respectively. Clearly, $B=\operatorname{Truncate}(B, m) \| \operatorname{Skip}(B, m)$ holds for all $B \in \mathcal{B}^{*}$ and all $0 \leqslant m \leqslant$ n.

Another basic byte array operation is needed for generating unique verification codes on every voting card (see Section 6.3.1 and Algs. 7.13 and 7.28). The goal of this operation is similar to a digital watermark, which we use here for making verification codes unique on each voting card. Below we define an algorithm MarkByteArray $\left(B, m, m_{\max }\right)$, which adds an integer watermark $m, 0 \leqslant m \leqslant m_{\max }$, to the bits of a byte array B.

```
Algorithm: MarkByteArray \(\left(B, m, m_{\max }\right.\) )
Input: Byte arrays \(B \in \mathcal{B}^{*}\)
            Watermark \(m, 0 \leqslant m \leqslant m_{\text {max }}\)
            Maximal watermark \(m_{\text {max }},\left\|m_{\text {max }}\right\| \leqslant 8 \cdot|B|\)
\(l \leftarrow\left\|m_{\text {max }}\right\|\)
\(s \leftarrow \frac{8 \cdot|B|}{l}\)
for \(i=0, \ldots, l-1\) do
    \(B \leftarrow \operatorname{SetBit}(B,\lfloor i \cdot s\rfloor, m \bmod 2) \quad / /\) see Alg.4.2
    \(m \leftarrow\lfloor m / 2\rceil\)
return \(B\)
\(/ / B \in \mathcal{B}^{*}\)
```

Algorithm 4.1: Adds an integer watermark m to the bits of a given byte array. The bits of the watermark are spread equally across the bits of the byte array.

```
Algorithm: \(\operatorname{SetBit}(B, i, b)\)
Input: ByteArray \(B \in \mathcal{B}^{*}\)
    Index \(i, 0 \leqslant i<8 \cdot|B|\)
    Bit \(b \in \mathbb{B}\)
\(j \leftarrow\lfloor i / 8\rfloor\)
\(x \leftarrow 2^{i \bmod 8}\)
if \(b=0\) then
    \(B[j] \leftarrow B[j] \wedge(255-x) \quad / / \wedge\) denotes the bitwise AND operator
else
    \(B[j] \leftarrow B[j] \vee x \quad / / \vee\) denotes the bitwise OR operator
return \(B\)
\(/ / B \in \mathcal{B}^{*}\)
```

Algorithm 4.2: Sets the i-th bit of a byte array B to $b \in \mathbb{B}$.

4.1.1. Converting Integers to Byte Arrays

Let $x \in \mathbb{N}$ be a non-negative integer. We use $B \leftarrow \operatorname{ToByte} \operatorname{Array}(x, n)$ to denote the algorithm which returns the byte array $B \in \mathcal{B}^{n}$ obtained from truncating the $n \geqslant \frac{\|x\|}{8}$ least significant bytes from the (infinitely long) binary representation of x in big-endian order:

$$
B=\left\langle b_{0}, \ldots, b_{n-1}\right\rangle, \text { where } b_{i}=\left\lfloor\frac{x}{256^{n-i-1}}\right\rfloor \bmod 256 .
$$

We use $\operatorname{ToByte} \operatorname{Array}(x)$ as a short-cut notation for $\operatorname{ToByte} \operatorname{Array}\left(x, n_{\text {min }}\right)$, which returns the shortest possible such byte array representation of length $n_{\text {min }}=\left\lceil\frac{\|x\|}{8}\right\rceil$. Table 4.1 shows the byte array representations for different integers x and $n \leqslant 4$.

		ToByteArray (x, n)					
n	$n=0$	$n=1$	$n=2$	$n=3$	$n=4$	$n_{\text {min }}$	ToByteArray (x)
0	\rangle	$\langle 00\rangle$	$\langle 00,00\rangle$	$\langle 00,00,00\rangle$	$\langle 00,00,00,00\rangle$	0	\rangle
1	-	$\langle 01\rangle$	$\langle 00,01\rangle$	$\langle 00,00,01\rangle$	$\langle 00,00,00,01\rangle$	1	$\langle 01\rangle$
255	-	$\langle\mathrm{FF}\rangle$	$\langle 00, \mathrm{FF}\rangle$	$\langle 00,00, \mathrm{FF}\rangle$	$\langle 00,00,00, \mathrm{FF}\rangle$	1	$\langle\mathrm{FF}\rangle$
256	-	-	$\langle 01,00\rangle$	$\langle 00,01,00\rangle$	$\langle 00,00,01,00\rangle$	2	$\langle 01,00\rangle$
65,535	-	-	$\langle\mathrm{FF}, \mathrm{FF}\rangle$	$\langle 00, \mathrm{FF}, \mathrm{FF}\rangle$	$\langle 00,00, \mathrm{FF}, \mathrm{FF}\rangle$	2	$\langle\mathrm{FF}, \mathrm{FF}\rangle$
65,536	-	-	-	$\langle 01,00,00\rangle$	$\langle 00,01,00,00\rangle$	3	$\langle 01,00,00\rangle$
$16,777,215$	-	-	-	$\langle\mathrm{FF}, \mathrm{FF}, \mathrm{FF}\rangle$	$\langle 00, \mathrm{FF}, \mathrm{FF}, \mathrm{FF}\rangle$	3	$\langle\mathrm{FF}, \mathrm{FF}, \mathrm{FF}\rangle$
$16,777,216$	-	-	-	-	$\langle 01,00,00,00\rangle$	4	$\langle 01,00,00,00\rangle$

Table 4.1.: Byte array representation for different integers and different output lengths n.
The shortest byte array representation in big-endian byte order, $B \leftarrow \operatorname{ToByteArray}(x)$, is the default byte array representation of non-negative integers considered in this document. It will be used for computing cryptographic hash values for integer inputs (see Section 4.3).

```
Algorithm: ToByteArray \((x)\)
Input: Non-negative integer \(x \in \mathbb{N}\)
\(n_{\text {min }} \leftarrow\left\lceil\frac{\|x\|}{8}\right\rceil\)
\(B \leftarrow \operatorname{ToByteArray}\left(x, n_{\min }\right) \quad / /\) see Alg. 4.4
return \(B \quad / / B \in \mathcal{B}^{*}\)
```

Algorithm 4.3: Computes the shortest byte array representation in big-endian byte order of a given non-negative integer $x \in \mathbb{N}$.

```
Algorithm: ToByteArray \((x, n)\)
Input: Non-negative integer \(x \in \mathbb{N}\)
    Length of byte array \(n \geqslant \frac{\|x\|}{8}\)
for \(i=1, \ldots, n\) do
    \(b_{n-i} \leftarrow x \bmod 256\)
    \(x \leftarrow\left\lfloor\frac{x}{256}\right\rfloor\)
\(B \leftarrow\left\langle b_{0}, \ldots, b_{n-1}\right\rangle\)
return \(B \quad / / B \in \mathcal{B}^{n}\)
```

Algorithm 4.4: Computes the byte array representation in big-endian byte order of a given non-negative integer $x \in \mathbb{N}$. The given length $n \geqslant \frac{\|x\|}{8}$ of the output byte array B implies that the first $n-\left\lceil\frac{\|x\|}{8}\right\rceil$ bytes of B are zeros.

4.1.2. Converting Byte Arrays to Integers

Since ToByteArray (x) from the previous subsection is not bijective relative to \mathcal{B}^{*}, it does not define a unique way of converting an arbitrary byte array $B \in \mathcal{B}^{*}$ into an integer $x \in \mathbb{N}$. Defining such a conversion depends on whether the conversion needs to be injective or not. In this document, we only need the following non-injective conversion,

$$
x=\sum_{i=0}^{n-1} B[i] \cdot 256^{n-i-1}, \text { for } n=|B|,
$$

in which leading zeros are ignored. With $x \leftarrow$ Tolnteger (B) we denote a call to an algorithm, which computes this conversion for all $B \in \mathcal{B}^{*}$. It will be used in non-interactive zeroknowledge proofs to generate integer challenges from Fiat-Shamir hash values (see Alg. 7.4 and Alg. 7.5). Note that $x \leftarrow \operatorname{Tolnteger(ToByteArray~}(x))$ holds for all $x \in \mathbb{N}$, but $B \leftarrow$ ToByteArray (Tolnteger (B)) only holds for byte arrays without any leading zeros (i.e., only when $B[0] \neq 0)$. One the other hand, $B \leftarrow$ ToByteArray $(\operatorname{ToInteger}(B), n)$ holds for all byte arrays $B \in \mathcal{B}^{n}$ of length n.

4.1.3. Converting UCS Strings to Byte Arrays

Let $A_{\text {ucs }}$ denote the Universal Character Set (UCS) as defined by ISO/IEC 10646, which contains about 128,000 abstract characters. A sequence $S=\left\langle s_{0}, \ldots, s_{n-1}\right\rangle \in A_{\text {ucs }}^{*}$ of characters $s_{i} \in A_{\text {ucs }}$ is called $U C S$ string of length n. $A_{\text {ucs }}^{*}$ denotes the set of all UCS strings,

```
Algorithm: Tolnteger ( \(B\) )
Input: Byte array \(B \in \mathcal{B}^{*}\)
\(x \leftarrow 0\)
for \(i=0, \ldots,|B|-1\) do
    \(x \leftarrow 256 \cdot x+B[i]\)
return \(x\)
\(/ / x \in \mathbb{N}\)
```

Algorithm 4.5: Computes a non-negative integer from a given byte array B. Leading zeros of B are ignored.
including the empty string. Concrete string instances are written in the usual string notation, for example "" (empty string), "x" (string consisting of a single character ' x '), or "Hello".

To encode a string $S \in A_{\text {ucs }}^{*}$ as byte array, we use the UTF-8 character encoding as defined in ISO/IEC 10646 (Annex D). Let $B \leftarrow$ UTF8(S) denote an algorithm that computes corresponding byte arrays $B \in \mathcal{B}^{*}$, in which characters use $1,2,3$, or 4 bytes of space depending on the type of character. For example, $\langle 48,65,6 \mathrm{C}, 6 \mathrm{C}, 6 \mathrm{~F}\rangle \leftarrow$ UTF8("Hello") is a byte array of length 5, because it only consists of Basic Latin characters, whereas $\langle 56,6 \mathrm{~F}, 69,6 \mathrm{C}, \mathrm{C3}, \mathrm{~A} 0\rangle \leftarrow$ UTF8("Voilà") contains 6 bytes due to the Latin- 1 Supplement character ' a ' translating into two bytes. UTF-8 is the only character encoding used in this document for general UCS strings. It will be used for computing cryptographic hash values of given input strings (see Section 4.3). Since implementations of UTF-8 character encoding are widely available, we do not provide an explicit pseudo-code algorithm.

4.2. Strings

Let $A=\left\{c_{1}, \ldots, c_{N}\right\}$ be an alphabet of size $N \geqslant 2$. The characters in A are totally ordered, let's say as $c_{1} \prec \cdots<c_{N}$, which we express by defining a ranking function $\operatorname{rank}_{A}\left(c_{i}\right)=i-1$ together with its inverse $\operatorname{rank}_{A}^{-1}(i)=c_{i+1}$. A string $S \in A^{*}$ is a sequence $S=\left\langle s_{0}, \ldots, s_{k-1}\right\rangle$ of characters $s_{i} \in A$.

4.2.1. Converting Integers to Strings

Let $x \in \mathbb{N}$ be a non-negative integer. We use $S \leftarrow \operatorname{ToString}(x, k, A)$ to denote an algorithm that returns the following string of length $k \geqslant \log _{N} x$ in big-endian order:

$$
S=\left\langle s_{0}, \ldots, s_{k-1}\right\rangle, \text { where } s_{i}=\operatorname{rank}_{A}^{-1}\left(\left\lfloor\frac{x}{N^{k-i-1}}\right\rfloor \bmod N\right) .
$$

We will use this conversion in Alg. 7.13 to print long integers in a more compact form. Note that the following algorithm is almost identical to Alg. 4.4 given in Section 4.1.1 to obtain byte arrays from integers.

```
Algorithm: ToString \((x, k, A)\)
Input: Integer \(x \in \mathbb{N}\)
    String length \(k \geqslant \log _{N} x\)
    Alphabet \(A=\left\{c_{1}, \ldots, c_{N}\right\}\)
for \(i=1, \ldots, k\) do
    \(s_{k-i} \leftarrow \operatorname{rank}_{A}^{-1}(x \bmod N)\)
    \(x \leftarrow\left\lfloor\frac{x}{N}\right\rfloor\)
\(S \leftarrow\left\langle s_{0}, \ldots, s_{k-1}\right\rangle\)
return \(S\)
\(/ / S \in A^{k}\)
```

Algorithm 4.6: Computes a string representation of length k in big-endian order of a given non-negative integer $x \in \mathbb{N}$ and relative to some alphabet A.

4.2.2. Converting Strings to Integers

In Algs. 7.18 and 7.30, string representations $S \leftarrow \operatorname{ToString}(x, k, A)$ of length k must be reconverted into their original integers $x \in \mathbb{N}$. In a similar way as in Section 4.1.2, we obtain the inverse of ToString (x, k, A) by

$$
x=\sum_{i=0}^{k-1} \operatorname{rank}_{A}(S[i]) \cdot N^{k-i-1}<N^{k},
$$

in which leading characters with rank 0 are ignored. The following algorithm is an adaptation of Alg. 4.5.

```
Algorithm: Tolnteger \((S, A)\)
Input: String \(S \in A^{*}\)
    Alphabet \(A=\left\{c_{1}, \ldots, c_{N}\right\}\)
\(x \leftarrow 0\)
for \(i=0, \ldots,|S|-1\) do
    \(x \leftarrow N \cdot x+\operatorname{rank}_{A}(S[i])\)
return \(x\)
    \(/ / x \in \mathbb{N}\)
```

Algorithm 4.7: Computes a non-negative integer from a given string S.

4.2.3. Converting Byte Arrays to Strings

Let $B \in \mathcal{B}^{n}$ be a byte array of length n. The goal is to represent B by a unique string $S \in A^{k}$ of length k, such that k is as small as possible. We will use this conversion in Algs. 7.13, 7.28 and 7.37 to print and display byte arrays in human-readable form. Since there are $\left|\mathcal{B}^{n}\right|=256^{n}=2^{8 n}$ byte arrays of length n and $\left|A^{k}\right|=N^{k}$ strings of length k, we derive $k=\left\lceil\frac{8 n}{\log _{2} N}\right\rceil$ from the inequality $2^{8 n} \leqslant N^{k}$. To obtain an optimal string representation of B, let $x_{B} \leftarrow \operatorname{Tolnteger}(B)<2^{8 n}$ be the representation of B as a non-negative integer. This leads to the following length-optimal mapping from \mathcal{B}^{n} to A^{k}.

```
Algorithm: ToString \((B, A)\)
Input: Byte array \(B \in \mathcal{B}^{n}\)
    Alphabet \(A=\left\{c_{1}, \ldots, c_{N}\right\}\)
\(x_{B} \leftarrow \operatorname{Tolnteger}(B) \quad / /\) see Alg. 4.5
\(k \leftarrow\left\lceil\frac{8 n}{\log _{2} N}\right\rceil\)
\(S \leftarrow \operatorname{ToString}\left(x_{B}, k, A\right) \quad / /\) see Alg. 4.6
return \(S \quad / / S \in A^{*}\)
```

Algorithm 4.8: Computes the shortest string representation of a given byte array B relative to some alphabet A.

4.3. Hash Algorithms

A cryptographic hash algorithm defines a mapping $h: \mathbb{B}^{*} \rightarrow \mathbb{B}^{\ell}$, which transforms an input bit array $B \in \mathbb{B}^{*}$ of arbitrary length into an output bit array $h(B) \in \mathbb{B}^{\ell}$ of length ℓ, called the hash value of B. In practice, hash algorithms such as SHA-1 or SHA-256 operate on byte arrays rather than bit arrays, which implies that the length of the input and output bit arrays is a multiple of 8 . We denote such practical algorithms by $H \leftarrow \operatorname{Hash}_{L}(B)$, where $B \in \mathcal{B}^{*}$ and $H \in \mathcal{B}^{L}$ are byte arrays of length $L=\frac{\ell}{8}$. Throughout this document, we do not specify which of the available practical hash algorithms that is compatible with the output bit length ℓ is used. For this we refer to the technical specification in Chapter 8.

4.3.1. Hash Values of Integers and Strings

To compute the hash value of a non-negative integer $x \in \mathbb{N}$, it is first encoded as a byte array $B \leftarrow \operatorname{ToByteArray}(x)$ using Alg. 4.3 and then hashed into $\operatorname{Hash}_{L}(B)$. The whole process defines a mapping $h: \mathbb{N} \rightarrow \mathcal{B}^{L}$. Similarly, for an input string $S \in A_{\mathrm{ucs}}^{*}$, we compute the hash value $\operatorname{Hash}_{L}(B)$ of the byte array $B \leftarrow \operatorname{UTF} 8(S)$ using UTF- 8 character encoding (see Section 4.1.3). In this case, we obtain a mapping $h: A_{\text {ucs }}^{*} \rightarrow \mathcal{B}^{L}$. Both cases are included as special cases in Alg. 4.9.

4.3.2. Hash Values of Multiple Inputs

Let $\mathbf{b}=\left(B_{1}, \ldots, B_{k}\right)$ be a vector of multiple input byte arrays $B_{i} \in \mathcal{B}^{*}$ of arbitrary length. The hash value of \mathbf{b} can be defined recursively by

$$
h(\mathbf{b})=\left\{\begin{array}{l}
h(\langle \rangle), \text { if } k=0, \\
h\left(B_{1}\right), \text { if } k=1, \\
h\left(h\left(B_{1}\right)\|\cdots\| h\left(B_{k}\right)\right), \text { if } k>1 .
\end{array}\right.
$$

We distinguish the special case of $k=1$ to avoid computing $h\left(h\left(B_{1}\right)\right)$ for a single input and to be able to use $h\left(B_{1}, \ldots, B_{k}\right)$ as a consistent alternative notation for $h(\mathbf{b})$.

This definition can be generalized to multiple input values of various types. Let $\left(v_{1}, \ldots, v_{k}\right)$ be such a tuple of general input values, where v_{i} is either a byte array, an integer, a string, or another tuple of general input values. As above, we define the hash value recursively as

$$
h\left(v_{1}, \ldots, v_{k}\right)=\left\{\begin{array}{l}
h(\langle \rangle), \text { if } k=0, \\
h\left(v_{1}\right), \text { if } k=1, \\
h\left(h\left(v_{1}\right)\|\cdots\| h\left(v_{k}\right)\right), \text { if } k>1
\end{array}\right.
$$

Note that an arbitrary tree containing byte arrays, integers, or strings in its leaves can be hashed in this way. Calling such a general hash algorithm is denoted by

$$
H \leftarrow \operatorname{RecHash}_{L}\left(v_{1}, \ldots, v_{k}\right),
$$

where subscript L indicates that the algorithm is instantiated with a cryptographic hash algorithm of output length L. The details of the recursion are given in Alg. 4.9. Note that the special case $k=0$ is included in the general case $k \neq 1$.

```
Algorithm: \(\operatorname{RecHash}_{L}\left(v_{1}, \ldots, v_{k}\right)\)
Input: Input values \(v_{i} \in V_{i}, V_{i}\) unspecified, \(k \geqslant 0\)
if \(k=1\) then
    \(v \leftarrow v_{1}\)
    if \(v \in \mathcal{B}^{*}\) then
        return \(\operatorname{Hash}_{L}(v)\)
    if \(v \in \mathbb{N}\) then
        return \(\operatorname{Hash}_{L}(\operatorname{ToByteArray}(v)) \quad / /\) see Alg. 4.3
    if \(v \in A_{\text {ucs }}^{*}\) then
        return \(\operatorname{Hash}_{L}(\operatorname{UTF} 8(v)) \quad / /\) see Section 4.1.3
    if \(v=\left(v_{1}^{\prime}, \ldots, v_{k^{\prime}}^{\prime}\right)\) then
        return \(\operatorname{RecHash}_{L}\left(v_{1}^{\prime}, \ldots, v_{k^{\prime}}^{\prime}\right)\)
    return \(\perp \quad / /\) type of \(v\) not supported
else
    \(B \leftarrow \|_{i=1}^{k} \operatorname{RecHash}_{L}\left(v_{i}\right)\)
    return \(\operatorname{Hash}_{L}(B)\)
```

Algorithm 4.9: Computes the hash value $h\left(v_{1}, \ldots, v_{k}\right) \in \mathcal{B}^{L}$ of multiple inputs v_{1}, \ldots, v_{k} in a recursive manner.

5. Cryptographic Primitives

5.1. EIGamal Encryption

An ElGamal encryption scheme is a triple (KeyGen, Enc, Dec) of algorithms, which operate on a cyclic group for which the decisional Diffie-Hellman assumption (DDH) holds [15]. The most common choice for such a group is the subgroup of quadratic residues $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ of prime order q, where $p=2 q+1$ is a safe prime large enough to resist index calculus and other methods for solving the discrete logarithm problem. The public parameters of an ElGamal encryption scheme are thus p, q, and a generator $g \in \mathbb{G}_{q} \backslash\{1\}$.

5.1.1. Using a Single Key Pair

An ElGamal key pair is a tuple $(s k, p k) \leftarrow \operatorname{KeyGen}()$, where $s k \in_{R} \mathbb{Z}_{q}$ is the randomly chosen private decryption key and $p k=g^{s k} \in \mathbb{G}_{q}$ the corresponding public encryption key. If $m \in \mathbb{G}_{q}$ denotes the plaintext to encrypt, then

$$
\operatorname{Enc}_{p k}(m, r)=\left(m \cdot p k^{r}, g^{r}\right) \in \mathbb{G}_{q} \times \mathbb{G}_{q}
$$

denotes the ElGamal encryption of m with randomization $r \in_{R} \mathbb{Z}_{q}$. Note that the bit length of an encryption $e \leftarrow \operatorname{Enc}_{p k}(m, r)$ is twice the bit length of p. For a given encryption $e=(a, b)$, the plaintext m can be recovered by using the private decryption key $s k$ to compute

$$
m \leftarrow \operatorname{Dec}_{s k}(e)=a \cdot b^{-s k} .
$$

For any given key pair $(s k, p k) \leftarrow \operatorname{KeyGen}()$, it is easy to show that $\operatorname{Dec}_{s k}\left(\operatorname{Enc}_{p k}(m, r)\right)=m$ holds for all $m \in \mathbb{G}_{q}$ and $r \in \mathbb{Z}_{q}$.
The ElGamal encryption scheme is IND-CPA secure under the DDH assumption and homomorphic with respect to multiplication. Therefore, component-wise multiplication of two ciphertexts yields an encryption of the product of respective plaintexts:

$$
\operatorname{Enc}_{p k}\left(m_{1}, r_{1}\right) \cdot \operatorname{Enc}_{p k}\left(m_{2}, r_{2}\right)=\operatorname{Enc}_{p k}\left(m_{1} m_{2}, r_{1}+r_{2}\right)
$$

In a homomorphic encryption scheme like ElGamal, a given encryption $e \leftarrow \operatorname{Enc}_{p k}(m, r)$ can be re-encrypted by multiplying e with an encryption of the neutral element 1 . The resulting re-encryption,

$$
\operatorname{ReEnc}_{p k}\left(e, r^{\prime}\right)=e \cdot \operatorname{Enc}_{p k}\left(1, r^{\prime}\right)=\operatorname{Enc}_{p k}\left(m, r+r^{\prime}\right),
$$

is clearly an encryption of m with a fresh randomization $r+r^{\prime}$.

5.1.2. Using a Shared Key Pair

If multiple parties generate ElGamal key pairs as described above, let's say $\left(s k_{j}, p k_{j}\right) \leftarrow$ KeyGen() for parties $j \in\{1, \ldots, s\}$, then it is possible to aggregate the public encryption keys into a common public key $p k=\prod_{j=1}^{s} p k_{j}$, which can be used to encrypt messages as described above. The corresponding private keys $s k_{j}$ can then be regarded as key shares of the private key $s k=\sum_{j=1}^{s} s k_{j}$, which is not known to anyone. This means that an encryption $e=e n c_{p k}(m, r)$ can only be decrypted if all parties collaborate. This idea can be generalized such that only a threshold number $t \leqslant s$ of parties is required to decrypt a message, but this property is not needed in this document.

In the setting where s parties hold shares of a common key pair $(s k, p k)$, the decryption of $e \leftarrow \operatorname{Enc}_{p k}(m, r)$ can be conducted without revealing the key shares $s k_{j}$:

$$
\operatorname{Dec}_{s k}(e)=a \cdot b^{-s k}=a \cdot b^{-\sum_{j=1}^{s} s k_{j}}=a \cdot\left(\prod_{j=1}^{s} b^{s_{j}}\right)^{-1}=a \cdot\left(\prod_{j=1}^{s} b_{j}\right)^{-1},
$$

where each partial decryption $b_{j}=b^{s k_{j}}$ can be computed individually by the respective holder of the key share $s k_{j}$.

5.2. Pedersen Commitment

The (extended) Pedersen commitment scheme is based on a cyclic group for which the discrete logarithm (DL) assumption holds. In this document, we use the same q-order subgroup $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ of integers modulo $p=2 q+1$ as in the ElGamal encryption scheme. Let $g, h_{1}, \ldots, h_{n} \in \mathbb{G}_{q} \backslash\{1\}$ be independent generators of \mathbb{G}_{q}, which means that their relative logarithms are provably not known to anyone. For a deterministic algorithm that generates an arbitrary number of independent generators, we refer to the NIST standard FIPS PUB 186-4 [1, Appendix A.2.3]. Note that the deterministic nature of this algorithm enables the verification of the generators by the public.

The Pedersen commitment scheme consists of two deterministic algorithms, one for computing a commitment

$$
\operatorname{Com}(\mathbf{m}, r)=g^{r} h_{1}^{m_{1}} \cdots h_{n}^{m_{n}} \in \mathbb{G}_{q}
$$

to n messages $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}_{q}^{n}$ with randomization $r \in_{R} \mathbb{Z}_{q}$, and one for checking the validity of $c \leftarrow \operatorname{Com}(\mathbf{m}, r)$ when \mathbf{m} and r are revealed. In the special case of a single message m, we write $\operatorname{Com}(m, r)=g^{r} h^{m}$ using a second generator h independent from g. The Pedersen commitment scheme is perfectly hiding and computationally binding under the DL assumption.

In this document, we will also require commitments to permutations $\psi:\{1, \ldots, n\} \rightarrow$ $\{1, \ldots, n\}$. Let $\mathbf{B}_{\psi}=\left(b_{i j}\right)_{n \times n}$ be the permutation matrix of ψ, which consists of bits

$$
b_{i j}= \begin{cases}1, & \text { if } \psi(i)=j \\ 0, & \text { otherwise }\end{cases}
$$

Note that each row and each column in \mathbf{B}_{ψ} has exactly one 1-bit. If $\mathbf{b}_{j}=\left(b_{1, j}, \ldots, b_{n, j}\right)$ denotes the j-th column of \mathbf{B}_{ψ}, then

$$
\operatorname{Com}\left(\mathbf{b}_{j}, r_{j}\right)=g^{r_{j}} \prod_{i=1}^{n} h_{i}^{b_{i j}}=g^{r_{j}} h_{i}, \text { for } i=\psi^{-1}(j)
$$

is a commitment to \mathbf{b}_{j} with randomization r_{j}. By computing such commitments to all columns,

$$
\operatorname{Com}(\psi, \mathbf{r})=\left(\operatorname{Com}\left(\mathbf{b}_{1}, r_{1}\right), \ldots, \operatorname{Com}\left(\mathbf{b}_{n}, r_{n}\right)\right)
$$

we obtain a commitment to ψ with randomizations $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right)$. Note that the size of such a permutation commitment $\mathbf{c} \leftarrow \operatorname{Com}(\psi, \mathbf{r})$ is $O(n)$.

5.3. Oblivious Transfer

An oblivious transfer results from the execution of a protocol between two parties called sender and receiver. In a k-out-of- n oblivious transfer, denoted by OT_{n}^{k}, the sender holds a list $\mathbf{m}=\left(M_{1}, \ldots, M_{n}\right)$ of messages $M_{i} \in \mathbb{B}^{\ell}$ (bit strings of length ℓ), of which $k \leqslant n$ can be selected by the receiver. The selected messages are transferred to the receiver such that the sender remains oblivious about the receiver's selections and that the receiver learns nothing about the $n-k$ other messages. We write $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right)$ for the k selections $s_{j} \in\{1, \ldots, n\}$ of the receiver and $\mathbf{m}_{\mathbf{s}}=\left(M_{s_{1}}, \ldots, M_{s_{k}}\right)$ for the k messages to transfer.

In the simplest possible case of a two-round protocol, the receiver sends a randomized query $\alpha \leftarrow$ Query (\mathbf{s}, \mathbf{r}) to the sender, the sender replies with $\beta \leftarrow \operatorname{Reply}(\alpha, \mathbf{m})$, and the receiver obtains $\mathbf{m}_{\mathbf{s}} \leftarrow$ Open (β, r) by removing the randomization \mathbf{r} from β. For the correctness of the protocol, Open $(\operatorname{Reply}($ Query $(\mathbf{s}, \mathbf{r}), \mathbf{m}), \mathbf{r})=\mathbf{m}_{\mathbf{s}}$ must hold for all possible values of \mathbf{m}, \mathbf{s}, and \mathbf{r}. A triple of algorithms (Query, Reply, Open) satisfying this property is called (two-round) OT_{n}^{k} scheme.

An OT_{n}^{k} scheme is called secure, if the three algorithms guarantee both receiver privacy and sender privacy. Usually, receiver privacy is defined in terms of indistinguishable selections \mathbf{s}_{1} and \mathbf{s}_{2} relative to corresponding queries q_{1} and q_{2}, whereas sender privacy is defined in terms of indistinguishable transcripts obtained from executing the real and the ideal protocols in the presence of a malicious receiver (called simulator). In the ideal protocol, \mathbf{s} and \mathbf{m} are sent to an incorruptible trusted third party, which forwards $\mathbf{m}_{\mathbf{s}}$ to the simulator.

5.3.1. OT-Scheme by Chu and Tzeng

There are many general ways of constructing OT_{n}^{k} schemes, for example on the basis of less complex OT_{n}^{1} or OT_{2}^{1} schemes, but such general constructions are usually not very efficient. In this document, we use the second OT_{n}^{k} scheme presented in [12]. ${ }^{1}$ We instantiate the protocol to the same q-order subgroup $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ of integers modulo $p=2 q+1$ as in the ElGamal encryption scheme. Besides the description of this group, there are several public parameters: a generator $g \in \mathbb{G}_{q} \backslash\{1\}$, an encoding $\Gamma:\{1, \ldots, n\} \rightarrow \mathbb{G}_{q}$ of the possible

[^2]selections into \mathbb{G}_{q}, and a collision-resistant hash function $h: \mathbb{B}^{*} \rightarrow \mathbb{B}^{\ell}$ with output length ℓ. In Prot. 5.1, we provide a detailed formal description of the protocol. The query is a vector $\mathbf{a} \in \mathbb{G}_{q}^{k}$ of length k and the response is a tuple ($\mathbf{b}, \mathbf{c}, d$) consisting of a vector $\mathbf{b} \in \mathcal{G}^{k}$ of length k, a vector $\mathbf{c} \in\left(\mathbb{B}^{\ell}\right)^{n}$ of length n, and a single value $d \in \mathbb{G}_{q}$, i.e.,
\[

$$
\begin{aligned}
\mathbf{a} & \leftarrow \operatorname{Query}(\mathbf{s}, \mathbf{r}), \\
(\mathbf{b}, \mathbf{c}, d) & \leftarrow \operatorname{Reply}\left(\mathbf{a}, \mathbf{m}, r^{\prime}\right), \\
\mathbf{m}_{\mathbf{s}} & \leftarrow \operatorname{Open}(\mathbf{b}, \mathbf{c}, d, \mathbf{r}),
\end{aligned}
$$
\]

where $\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right) \in_{R} \mathbb{Z}_{q}^{k}$ is the randomization vector used in computing the query and $r^{\prime} \in_{R} \mathbb{Z}_{q}$ an additional randomization used in computing the response.

Executing Query and Open requires k fixed-base exponentiations in \mathbb{G}_{q} each, whereas Reply requires $n+k+1$ fixed-exponent exponentiations in \mathbb{G}_{q}. Note that among the $2 k$ exponentiations of the receiver, k can be precomputed, and among the $n+k+1$ exponentiations of the sender, $n+1$ can be precomputed. Therefore, only k online exponentiations remain for both the receiver and the sender, i.e., the protocol is very efficient in terms of computation and communication costs. In the random oracle model, the scheme is provably secure against a malicious receiver and a semi-honest sender. Receiver privacy is unconditional and sender privacy is computational under the chosen-target computational Diffie-Hellman (CT-CDH) assumption, which is a weaker assumption than standard CDH [10].

5.3.2. Simultaneous Oblivious Transfers

The OT_{n}^{k} scheme from the previous subsection can be extended to the case of a sender holding multiple lists $\mathbf{m}_{j}=\left(M_{1, j}, \ldots, M_{n_{j}, j}\right)$ of length n_{j}, from which the receiver selects $k_{j} \leqslant n_{j}$ in each case. If t is the total number of such lists, then $n=\sum_{j=1}^{t} n_{j}$ is the total number of available messages and $k=\sum_{j=1}^{t} k_{j}$ the total number of selections. An oblivious transfer of this kind can be realized in two ways, either by conducting t such k_{j}-out-of- n_{j} oblivious transfers simultaneously, for example using the scheme from the previous subsection, or by conducting a single k-out-of- n oblivious transfer relative to $\mathbf{m}=\mathbf{m}_{1}\|\cdots\| \mathbf{m}_{t}=\left(M_{1}, \ldots, M_{n}\right)$ with some additional constraints relative to the choice of $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right)$.
To define these constraints, let $k_{j}^{\prime}=\sum_{i=1}^{j-1} k_{i}$ and $n_{j}^{\prime}=\sum_{i=1}^{j-1} n_{i}$ for $1 \leqslant j \leqslant t+1$. This determines for each $i \in\{1, \ldots, k\}$ a unique index $j \in\{1, \ldots, t\}$ satisfying $k_{j}^{\prime}<i \leqslant k_{j+1}^{\prime}$, which we can use to define a constraint

$$
\begin{equation*}
n_{j}^{\prime}<s_{i} \leqslant n_{j+1}^{\prime} \tag{5.1}
\end{equation*}
$$

for every selection s_{i} in \mathbf{s}. This guarantees that the first k_{1} messages are selected from \mathbf{m}_{1}, the next k_{2} messages are selected from \mathbf{m}_{2}, and so on. To obtain such a OT $\mathbf{n}_{\mathbf{n}}^{\mathbf{k}}$ scheme, we can generalize the algorithms of the previous subsection into

$$
\begin{aligned}
\mathbf{a} & \leftarrow \operatorname{Query}(\mathbf{s}, \mathbf{r}) \\
(\mathbf{b}, \mathbf{c}, \mathbf{d}) & \leftarrow \operatorname{Reply}\left(\mathbf{a}, \mathbf{m}, \mathbf{r}^{\prime}\right) \\
\mathbf{m}_{\mathbf{s}} & \leftarrow \operatorname{Open}(\mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{r}),
\end{aligned}
$$

where $\mathbf{d}=\left(d_{1}, \ldots, d_{t}\right) \in \mathbb{G}_{q}^{t}$ and $\mathbf{r}^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{t}^{\prime}\right) \in \mathbb{Z}_{q}^{t}$ are now vectors of size t. Note that the algorithm Query is not affected by this change. Reply and Open can be generalized in

Receiver		Sender
knows $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right)$		knows $\mathbf{m}=\left(M_{1}, \ldots, M_{n}\right)$
for $i=1, \ldots, k$		
- pick random $r_{i} \in_{R} \mathbb{Z}_{q}$		
- compute $a_{i}=\Gamma\left(s_{i}\right) \cdot g^{r_{i}}$		
	$\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)$	
		pick random $r^{\prime} \in_{R} \mathbb{Z}_{q}$ for $i=1, \ldots, k$
		$\begin{aligned} & \text { - compute } b_{i}=a_{i}^{r^{\prime}} \\ & \text { for } i=1, \ldots, n \end{aligned}$
		- compute $k_{i}=\Gamma(i){ }^{r^{\prime}}$
		- compute $K_{i}=h\left(k_{i}\right)$
		$\begin{aligned} & \text { - compute } C_{i}=M_{i} \oplus K_{i} \\ & \text { compute } d=g^{r^{\prime}} \end{aligned}$
	$\begin{aligned} \mathbf{b} & =\left(b_{1}, \ldots, b_{k}\right), \\ \mathbf{c} & =\left(C_{1}, \ldots, C_{n}\right), d \end{aligned}$	
for $i=1, \ldots, k$		
- compute $K_{i}=h\left(b_{i} \cdot d^{-r_{i}}\right)$		
- compute $M_{s_{i}}=C_{s_{i}} \oplus K_{i}$		

Protocol 5.1: Two-round OT_{n}^{k} scheme for malicious receiver, where $g \in \mathbb{G}_{q} \backslash\{1\}$ is a generator of $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}, \Gamma:\{1, \ldots, n\} \rightarrow \mathbb{G}_{q}$ an encoding of the selections into \mathbb{G}_{q}, and $h: \mathbb{B}^{*} \rightarrow \mathbb{B}^{\ell}$ a collision-resistant hash function with output length ℓ.
a natural way by introducing an additional loop over $1 \leqslant j \leqslant t$ and by performing the computations with the right values r_{j}^{\prime} and d_{j}, respectively, as shown in Prot. 5.2. It is easy to demonstrate that this generalization of the OT_{n}^{k} scheme by Chu and Tzeng is equivalent to performing t individual oblivious transfers in parallel. Note that the total number of exponentiations in \mathbb{G}_{q} remains the same for both Query and Open (k exponentiations with t different bases), but for Reply the number is slightly increased ($n+k+t$ exponentiations with t different exponents).

5.3.3. Oblivious Transfer of Long Messages

If the output length ℓ of the available hash function $h: \mathbb{B}^{*} \rightarrow \mathbb{B}^{\ell}$ is shorter than the messages M_{i} known to the sender, the methods of the previous subsections can not be applied directly. The problem is the computation of the values $C_{i}=M_{i} \oplus K_{i}$ by the sender, for which equally long values K_{i} are needed. In general, for messages $M_{i} \in \mathbb{B}^{\ell_{m}}$ of length $\ell_{m}>\ell$, we can

```
Receiver
knows \(\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right)\)
knows \(\mathbf{m}=\left(M_{1}, \ldots, M_{n}\right)\)
for \(i=1, \ldots, k\)
- pick random \(r_{i} \in_{R} \mathbb{Z}_{q}\)
- compute \(a_{i}=\Gamma\left(s_{i}\right) \cdot g^{r_{i}}\)
    \(\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)\)
for \(j=1, \ldots, t\)
- pick random \(r_{j}^{\prime} \epsilon_{R} \mathbb{Z}_{q}\)
- for \(l=1, \ldots, k_{j}\)
    - compute \(i=k_{j}^{\prime}+l\)
    - compute \(b_{i}=a_{i}^{r_{j}^{\prime}}\)
- for \(l=1, \ldots, n_{j}\)
    - compute \(i=n_{j}^{\prime}+l\)
    - compute \(k_{i}=\Gamma(i)^{r_{j}^{\prime}}\)
    - compute \(K_{i}=h\left(k_{i}\right)\)
    - compute \(C_{i}=M_{i} \oplus K_{i}\)
- compute \(d_{j}=g^{r_{j}^{\prime}}\)
\(\mathbf{b}=\left(b_{1}, \ldots, b_{k}\right)\)
\(\mathbf{c}=\left(C_{1}, \ldots, C_{n}\right)\)
\(\mathbf{d}=\left(d_{1}, \ldots, d_{t}\right)\)
```

```
for \(j=1, \ldots, t\)
```

for $j=1, \ldots, t$

- for $l=1, \ldots, k_{j}$
- for $l=1, \ldots, k_{j}$
 - compute $i=k_{j}^{\prime}+l$
 - compute $i=k_{j}^{\prime}+l$
 - compute $K_{i}=h\left(b_{i} \cdot d_{j}^{-r_{i}}\right)$
 - compute $K_{i}=h\left(b_{i} \cdot d_{j}^{-r_{i}}\right)$
 - compute $M_{s_{i}}=C_{s_{i}} \oplus K_{i}$

```
    - compute \(M_{s_{i}}=C_{s_{i}} \oplus K_{i}\)
```

Protocol 5.2: Two-round OT $_{\mathbf{n}}^{\mathbf{k}}$ scheme for malicious receiver, where $g \in \mathbb{G}_{q} \backslash\{1\}$ is a generator of $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}, \Gamma:\{1, \ldots, n\} \rightarrow \mathbb{G}_{q}$ an encoding of the selections into \mathbb{G}_{q}, and $h: \mathbb{B}^{*} \rightarrow \mathbb{B}^{\ell}$ a collision-resistant hash function with output length ℓ.
circumvent this problem by applying the counter mode of operation (CTR) from block ciphers. If we suppose that $\ell_{m}=k \ell$ is a multiple of ℓ, we can split each message M_{i} into k blocks $M_{i j} \in \mathbb{B}^{\ell}$ of length ℓ and process them individually using values $K_{i j}=h\left(k_{i}, j\right)$. Here, the index $j \in\{1, \ldots, k\}$ plays the role of the counter. This is identical to computing a single value $K_{i}=h\left(k_{i}, 1\right)\|\cdots\| h\left(k_{i}, k\right)$ of length ℓ_{m} and then applying K_{i} to M_{i}. If ℓ_{m} is not an exact multiple of ℓ, we do the same for $k=\left\lceil\ell_{m} / \ell\right\rceil$, but then truncate the first ℓ_{m} bits from the resulting value K_{i} to obtain the desired length.

5.4. Non-Interactive Preimage Proofs

Non-interactive zero-knowledge proofs of knowledge are important building blocks in cryptographic protocol design. In a non-interactive preimage proof

$$
\operatorname{NIZKP}[(x): y=\phi(x)]
$$

for a one-way group homomorphism $\phi: X \rightarrow Y$, the prover proves knowledge of a secret preimage $x=\phi^{-1}(y) \in X$ for a public value $y \in Y$ [23]. The most common construction of a non-interactive preimage proof results from combining the Σ-protocol with the FiatShamir heuristic [16]. Proofs constructed in this way are perfect zero-knowledge in the random oracle model. In practical implementations, the random oracle is approximated with a collision-resistant hash function h.

Generating a preimage proof $(t, s) \leftarrow \operatorname{GenProof}_{\phi}(x, y)$ for ϕ consists of picking a random value $w \in_{R} X$ and computing a commitment $t=\phi(w) \in Y$, a challenge $c=h(y, t)$, and a response $s=w+c \cdot x \in X$. Verifying a proof includes computing $c=h(y, t)$ and checking $t=y^{-c} \cdot \phi(s)$. For a given proof $\pi=(t, s)$, this process is denoted by $b \leftarrow \operatorname{CheckProof}_{\phi}(\pi, y)$ for $b \in \mathbb{B}$. Clearly, we have

$$
\text { CheckProof }_{\phi}\left(\operatorname{GenProof}_{\phi}(x, y), y\right)=1
$$

for all $x \in X$ and $y=\phi(x) \in Y$.

5.4.1. Composition of Preimage Proofs

Preimage proofs for two (or more) one-way homomorphisms $\phi_{1}: X_{1} \rightarrow Y_{1}$ and $\phi_{2}: X_{2} \rightarrow$ Y_{2} can be reduced to a single preimage proof for $\phi: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$ defined by $\phi\left(x_{1}, x_{2}\right)=\left(\phi_{1}\left(x_{1}\right), \phi_{2}\left(x_{2}\right)\right)$. In this case, $w=\left(w_{1}, w_{2}\right) \in X_{1} \times X_{2}, t=\left(t_{1}, t_{2}\right) \in Y_{1} \times Y_{2}$, and $s=\left(s_{1}, s_{2}\right) \in X_{1} \times X_{2}$ are pairs of values, whereas c remains a singe value. This way of combining multiple preimage proofs into a single preimage proof is sometimes called $A N D$-composition. The following two equivalent notations are therefore equivalent and can be used interchangeably:

$$
\operatorname{NIZKP}\left[\left(x_{1}, x_{2}\right): y_{1}=\phi_{1}\left(x_{1}\right) \wedge y_{2}=\phi_{2}\left(x_{2}\right)\right]=\operatorname{NIZKP}\left[\left(x_{1}, x_{2}\right):\left(y_{1}, y_{2}\right)=\phi\left(x_{1}, x_{2}\right)\right] .
$$

An important special case of an AND-composition arises when $\phi_{1}: X \rightarrow Y_{1}$ and $\phi_{2}: X \rightarrow Y_{2}$ have a common domain X and when the $y_{1}=\phi_{1}(x)$ and $y_{2}=\phi_{2}(x)$ have the same preimage $x \in X$. The corresponding equality proof,

$$
\operatorname{NIZKP}\left[(x): y_{1}=\phi_{1}(x) \wedge y_{2}=\phi_{2}(x)\right]=\operatorname{NIZKP}\left[(x):\left(y_{1}, y_{2}\right)=\phi(x)\right],
$$

shows that y_{1} and y_{2} have an equal preimage. In the special case of two exponential functions $\phi_{1}(x)=g^{x}$ and $\phi_{2}(x)=h^{x}$, this demonstrates the equality of discrete logarithms [11].

5.4.2. Applications of Preimage Proofs

Let us look at some concrete instantiations of the above preimage proof. Each of them will be used later in this document.

Schnorr Identification. In a Schnorr identification scheme, the holder of a private credential $x \in X$ proves knowledge of $x=\phi^{-1}(y)=\log _{g} y$, where g is a generator in a suitable group Y in which the DL assumption holds [28]. This leads to one of the simplest and most fundamental instantiation of the above preimage proof,

$$
\operatorname{NIZKP}\left[(x): y=g^{x}\right],
$$

where $\phi(x)=g^{x}$ is the exponential function to base g. For $w \in_{R} X$, the prover computes $t=g^{w}, c=h(t, y)$, and $s=w+c \cdot x$, and the verifier checks $\pi=(t, s)$ by $t=y^{-c} \cdot g^{s}$.
Proof of Knowledge of ElGamal Plaintext. Another application of a preimage proof results from the ElGamal encryption scheme. The goal is to prove knowledge of the plaintext m and the randomization r for a given ElGamal ciphertext $(a, b) \leftarrow \operatorname{Enc}_{p k}(m, r)$, which we can denote as

$$
\operatorname{NIZKP}\left[(m, r): e=\operatorname{Enc}_{p k}(m, r)\right]=\operatorname{NIZKP}\left[(m, r):(a, b)=\left(g^{r}, m \cdot p k^{r}\right)\right] .
$$

Since $\mathrm{Enc}_{p k}$ defines a homomorphism from $\mathbb{G}_{q} \times \mathbb{Z}_{q}$ to $\mathbb{G}_{q} \times \mathbb{G}_{q}$, both the commitment $t=\left(t_{1}, t_{2}\right) \in \mathbb{G}_{q} \times \mathbb{G}_{q}$ and the response $s=\left(s_{1}, s_{2}\right) \in \mathbb{G}_{q} \times \mathbb{Z}_{q}$ are pairs of values. Generating the proof requires two and verifying the proof four exponentiations in \mathbb{G}_{q}.

ElGamal Decryption Proof. The decryption $m \leftarrow \operatorname{Dec}_{s k}(e)$ of an ElGamal ciphertext $e=$ (a, b) defines a mapping from $\mathbb{G}_{q} \times \mathbb{G}_{q}$ to \mathbb{G}_{q}, but this mapping is not homomorphic. The desired decryption proof,

$$
\operatorname{NIZKP}\left[(s k): m=\operatorname{Dec}_{s k}(e) \wedge p k=g^{s k}\right]=\operatorname{NIZKP}\left[(s k):(m, p k)=\left(a \cdot b^{-s k}, g^{s k}\right)\right]
$$

which demonstrates that the correct decryption key $s k$ has been used, can therefore not be treated directly as an application of a preimage proof. However, since $m=a \cdot b^{-s k}$ can be rewritten as $a / m=b^{s k}$, we can achieve the same goal by

$$
\operatorname{NIZKP}\left[(s k):(a / m, p k)=\left(b^{s k}, g^{s k}\right)\right] .
$$

Note that this proof is a standard proof of equality of discrete logarithms. We will use it to prove the correctness of a partial decryption $b_{j}=b^{s k_{j}}$, where $s k_{j}$ is a share of the private key $s k$ (see Section 5.1.2).

5.5. Wikström's Shuffle Proof

A cryptographic shuffle of a list $\mathbf{e}=\left(e_{1}, \ldots, e_{N}\right)$ of ElGamal encryptions $e_{i} \leftarrow \operatorname{Enc}_{p k}\left(m_{i}, r_{i}\right)$ is another list of ElGamal encryptions $\mathbf{e}^{\prime}=\left(e_{1}^{\prime}, \ldots, e_{N}^{\prime}\right)$, which contains the same plaintexts m_{i} in permuted order. Such a shuffle can be generated by selecting a random permutation $\psi:\{1, \ldots, N\} \rightarrow\{1, \ldots, N\}$ from the set Ψ_{N} of all such permutations (e.g., using Knuth's
shuffle algorithm [22]) and by computing re-encryptions $e_{i}^{\prime} \leftarrow \operatorname{ReEnc}_{p k}\left(e_{j}, r_{j}^{\prime}\right)$ for $j=\psi(i)$. We write

$$
\mathbf{e}^{\prime} \leftarrow \text { Shuffle }_{p k}\left(\mathbf{e}, \mathbf{r}^{\prime}, \psi\right)
$$

for an algorithm performing this task, where $\mathbf{r}^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{N}^{\prime}\right)$ denotes the randomization used to re-encrypt the input ciphertexts.

Proving the correctness of a cryptographic shuffle can be realized by proving knowledge of ψ and \mathbf{r}^{\prime}, which generate \mathbf{e}^{\prime} from \mathbf{e} in a cryptographic shuffle:

$$
N I Z K P\left[\left(\psi, \mathbf{r}^{\prime}\right): \mathbf{e}^{\prime}=\operatorname{Shuffle}_{p k}\left(\mathbf{e}, \mathbf{r}^{\prime}, \psi\right)\right]
$$

Unfortunately, since Shuffle $p k$ does not define a homomorphism, we can not apply the standard technique for preimage proofs. Therefore, the strategy of what follows is to find an equivalent formulation using a homomorphism.

The shuffle proof according to Wikström and Terelius consists of two parts, an offline and an online proof. In the offline proof, the prover computes a commitment $c \leftarrow \operatorname{Com}(\psi, \mathbf{r})$ and proves that c is a commitment to a permutation matrix. In the online proof, the prover demonstrates that the committed permutation matrix has been used in the shuffle to obtain \mathbf{e}^{\prime} from \mathbf{e}. The two proofs can be kept separate, but combining them into a single proof results in a slightly more efficient method. Here, we only present the combined version of the two proofs and we restrict ourselves to the case of shuffling ElGamal ciphertexts.

From a top-down perspective, Wikström's shuffle proof can be seen as a two-layer proof consisting of a top layer responsible for preparatory work such as computing the commitment $\mathbf{c} \leftarrow \operatorname{Com}(\psi, \mathbf{r})$ and a bottom layer computing a standard preimage proof.

5.5.1. Preparatory Work

There are two fundamental ideas behind Wikström's shuffle proof. The first idea is based on a simple theorem that states that if $\mathbf{B}_{\psi}=\left(b_{i j}\right)_{N \times N}$ is an N-by- N-matrix over \mathbb{Z}_{q} and $\left(x_{1}, \ldots, x_{N}\right)$ a vector of N independent variables, then \mathbf{B}_{ψ} is a permutation matrix if and only if $\sum_{j=1}^{N} b_{i j}=1$, for all $i \in\{1, \ldots, N\}$, and $\prod_{i=1}^{N} \sum_{j=1}^{N} b_{i j} x_{i}=\prod_{i=1}^{N} x_{i}$. The first condition means that the elements of each row of \mathbf{B}_{ψ} must sum up to one, while the second condition requires that \mathbf{B}_{ψ} has exactly one non-zero element in each row.

Based on this theorem, the general proof strategy is to compute a permutation commitment $\mathbf{c} \leftarrow \operatorname{Com}(\psi, \mathbf{r})$ and to construct a zero-knowledge argument that the two conditions of the theorem hold for \mathbf{B}_{ψ}. This implies then that \mathbf{c} is a commitment to a permutation matrix without revealing ψ or \mathbf{B}_{ψ}.
For $\mathbf{c}=\left(c_{1}, \ldots, c_{N}\right), \mathbf{r}=\left(r_{1}, \ldots, r_{N}\right)$, and $\bar{r}=\sum_{j=1}^{N} r_{j}$, the first condition leads to the following equality:

$$
\begin{equation*}
\prod_{j=1}^{N} c_{j}=\prod_{j=1}^{N} g^{r_{j}} \prod_{i=1}^{N} h_{i}^{b_{i j}}=g^{\sum_{j=1}^{N} r_{j}} \prod_{i=1}^{N} h_{i}^{\sum_{j=1}^{N} b_{i j}}=g^{\bar{r}} \prod_{i=1}^{N} h_{i}=\operatorname{Com}(\mathbf{1}, \bar{r}) \tag{5.2}
\end{equation*}
$$

Similarly, for arbitrary values $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right) \in \mathbb{Z}_{q}^{N}, \mathbf{u}^{\prime}=\left(u_{1}^{\prime}, \ldots, u_{N}^{\prime}\right) \in \mathbb{Z}_{q}^{N}$, with $u_{i}^{\prime}=\sum_{j=1}^{N} b_{i j} u_{j}=u_{j}$ for $j=\psi(i)$, and $\tilde{r}=\sum_{j=1}^{N} r_{j} u_{j}$, the second condition leads to two equalities:

$$
\begin{align*}
\prod_{i=1}^{N} u_{i}^{\prime} & =\prod_{j=1}^{N} u_{j} \tag{5.3}\\
\prod_{j=1}^{N} c_{j}^{u_{j}} & =\prod_{j=1}^{N}\left(g^{r_{j}} \prod_{i=1}^{N} h_{i}^{b_{i j}}\right)^{u_{j}}=g^{\sum_{j=1}^{N} r_{j} u_{j}} \prod_{i=1}^{N} h_{i}^{\sum_{j=1}^{N} b_{i j} u_{j}}=g^{\tilde{r}} \prod_{i=1}^{N} h_{i}^{u_{i}^{\prime}} \\
& =\operatorname{Com}\left(\mathbf{u}^{\prime}, \tilde{r}\right) \tag{5.4}
\end{align*}
$$

By proving that (5.2), (5.3), and (5.4) hold, and from the independence of the generators, it follows that both conditions of the theorem are true and finally that \mathbf{c} is a commitment to a permutation matrix. In the interactive version of Wikström's proof, the prover obtains $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right) \in \mathbb{Z}_{q}^{N}$ in an initial message from the verifier, but in the non-interactive version we derive these values from the public inputs, for example by computing $u_{i} \leftarrow$ $\operatorname{Hash}\left(\left(\mathbf{e}, \mathbf{e}^{\prime}, \mathbf{c}\right), i\right)$.

The second fundamental idea of Wikström's proof is based on the homomorphic property of the ElGamal encryption scheme and the following observation for values \mathbf{u} and \mathbf{u}^{\prime} defined in the same way as above:

$$
\begin{align*}
\prod_{i=1}^{N}\left(e_{i}^{\prime}\right)^{u_{i}^{\prime}} & =\prod_{j=1}^{N} \operatorname{ReEnc}_{p k}\left(e_{j}, r_{j}^{\prime}\right)^{u_{j}}=\prod_{j=1}^{N} \operatorname{ReEnc}_{p k}\left(e_{j}^{u_{j}}, r_{j}^{\prime} u_{j}\right) \\
& =\operatorname{ReEnc}_{p k}\left(\prod_{j=1}^{N} e_{j}^{u_{j}}, \sum_{j=1}^{N} r_{j}^{\prime} u_{j}\right)=\operatorname{Enc}_{p k}\left(1, r^{\prime}\right) \cdot \prod_{j=1}^{N} e_{j}^{u_{j}} \tag{5.5}
\end{align*}
$$

for $r^{\prime}=\sum_{j=1}^{N} r_{j}^{\prime} u_{j}$. By proving (5.5), it follows that every e_{i}^{\prime} is a re-encryption of e_{j} for $j=\psi(i)$. This is the desired property of the cryptographic shuffle. By putting (5.2) to (5.5) together, the shuffle proof can therefore be rewritten as follows:

$$
\operatorname{NIZKP}\left[\begin{array}{rl}
& \prod_{j=1}^{N} c_{j}=\operatorname{Com}(\mathbf{1}, \bar{r}) \\
\left(\bar{r}, \tilde{r}, r^{\prime}, \mathbf{u}^{\prime}\right): & \wedge \prod_{i=1}^{N} u_{i}^{\prime}=\prod_{j=1}^{N} u_{j} \\
& \wedge \prod_{j=1}^{N} c_{j}^{u_{j}}=\operatorname{Com}\left(\mathbf{u}^{\prime}, \tilde{r}\right) \\
& \wedge \prod_{i=1}^{N}\left(e_{i}^{\prime}\right)^{u_{i}^{\prime}}=\operatorname{Enc}_{p k}\left(1, r^{\prime}\right) \cdot \prod_{j=1}^{N} e_{j}^{u_{j}}
\end{array}\right] .
$$

The last step of the preparatory work results from replacing in the above expression the equality of products, $\prod_{i=1}^{N} u_{i}^{\prime}=\prod_{j=1}^{N} u_{j}$, by an equivalent expression based on a chained list $\hat{\mathbf{c}}=\left\{\hat{c}_{1}, \ldots, \hat{c}_{N}\right\}$ of Pedersen commitments with different generators. For $\hat{c}_{0}=h$ and random values $\hat{\mathbf{r}}=\left(\hat{r}_{1}, \ldots, \hat{r}_{N}\right) \in \mathbb{Z}_{q}^{N}$, we define $\hat{c}_{i}=g^{\hat{r}_{i}} \hat{c}_{i-1}^{u_{i-1}^{\prime}}$, which leads to $\hat{c}_{N}=\operatorname{Com}(u, \hat{r})$ for $u=\prod_{i=1}^{N} u_{i}$ and

$$
\hat{r}=\sum_{i=1}^{N} \hat{r}_{i} \prod_{j=i+1}^{N} u_{j}^{\prime}
$$

Applying this replacement leads to the following final result, on which the proof construction
is based:

$$
N I Z K P\left[\left(\bar{r}, \hat{r}, \tilde{r}, r^{\prime}, \hat{\mathbf{r}}, \mathbf{u}^{\prime}\right): \begin{array}{l}
\\
\prod_{j=1}^{N} c_{j}=\operatorname{Com}(\mathbf{1}, \bar{r}) \\
\\
\wedge \hat{c}_{N}=\operatorname{Com}(u, \hat{r}) \wedge\left[\bigwedge_{i=1}^{N}\left(\hat{c}_{i}=g^{\hat{r}_{i}} \hat{c}_{i-1}^{u_{i}^{\prime}}\right)\right] c_{j}^{u_{j}}=\operatorname{Com}\left(\mathbf{u}^{\prime}, \tilde{r}\right) \\
\\
\end{array} \prod_{i=1}^{N}\left(e_{i}^{\prime}\right)^{u_{i}^{\prime}}=\operatorname{Enc}_{p k}\left(1, r^{\prime}\right) \cdot \prod_{j=1}^{N} e_{j}^{u_{j}}\right] .
$$

To summarize the preparatory work for the proof generation, we give a list of all necessary computations:

- Pick $\mathbf{r}=\left(r_{1}, \ldots, r_{N}\right) \in_{R} \mathbb{Z}_{q}^{N}$ and compute $\mathbf{c} \leftarrow \operatorname{Com}(\psi, \mathbf{r})$.
- For $i=1, \ldots, N$, compute $u_{i} \leftarrow \operatorname{Hash}\left(\left(\mathbf{e}, \mathbf{e}^{\prime}, \mathbf{c}\right), i\right)$, let $u_{i}^{\prime}=u_{\psi(i)}$, pick $\hat{r}_{i} \in_{R} \mathbb{Z}_{q}$, and compute $\hat{c}_{i}=g^{\hat{r}_{i}} \hat{c}_{i-1}^{u_{i}^{\prime}}$.
- Let $\hat{\mathbf{r}}=\left(\hat{r}_{1}, \ldots, \hat{r}_{N}\right)$ and $\hat{\mathbf{c}}=\left(\hat{c}_{1}, \ldots, \hat{c}_{N}\right)$.
- Compute $\bar{r}=\sum_{j=1}^{N} r_{j}, \hat{r}=\sum_{i=1}^{N} \hat{r}_{i} \prod_{j=i+1}^{N} u_{j}^{\prime}, \tilde{r}=\sum_{j=1}^{N} r_{j} u_{j}$, and $r^{\prime}=\sum_{j=1}^{N} r_{j}^{\prime} u_{j}$.

Note that \hat{r} can be computed in linear time by generating the values $\prod_{j=i+1}^{N} u_{j}^{\prime}$ in an incremental manner by looping backwards over $j=N, \ldots, 1$.

5.5.2. Preimage Proof

By rearranging all public values to the left-hand side and all secret values to the righthand side of each equation, we can derive a homomorphic one-way function from the final expression of the previous subsection. In this way, we obtain the homomorphic function

$$
\begin{aligned}
& \phi\left(x_{1}, x_{2}, x_{3}, x_{4}, \hat{\mathbf{x}}, \mathbf{x}^{\prime}\right) \\
& \quad=\left(g^{x_{1}}, g^{x_{2}}, \operatorname{Com}\left(\mathbf{x}^{\prime}, x_{3}\right), \operatorname{ReEnc}_{p k}\left(\prod_{i=1}^{N}\left(e_{i}^{\prime}\right)^{x_{i}^{\prime}},-x_{4}\right),\left(g^{\hat{x}_{1}} \hat{c}_{0}^{x_{1}^{\prime}}, \ldots, g^{\hat{x}_{N}} \hat{c}_{N-1}^{x_{N}^{\prime}}\right)\right)
\end{aligned}
$$

which maps inputs $\left(x_{1}, x_{2}, x_{3}, x_{4}, \hat{\mathbf{x}}, \mathbf{x}^{\prime}\right) \in X$ of length $2 N+4$ into outputs

$$
\left(y_{1}, y_{2}, y_{3}, y_{4}, \hat{\mathbf{y}}\right)=\phi\left(x_{1}, x_{2}, x_{3}, x_{4}, \hat{\mathbf{x}}, \mathbf{x}^{\prime}\right) \in Y
$$

of length $N+5$, i.e., $X=\mathbb{Z}_{q}^{4} \times \mathbb{Z}_{q}^{N} \times \mathbb{Z}_{q}^{N}$ is the domain and $Y=\mathbb{G}_{q}^{3} \times \mathbb{G}_{q}^{2} \times \mathbb{G}_{q}^{N}$ the co-domain of ϕ. Note that we slightly modified the order of the five sub-functions of ϕ for better readability. By applying this function to the secret values ($\bar{r}, \hat{r}, \tilde{r}, r^{\prime}, \hat{\mathbf{r}}, \mathbf{u}^{\prime}$), we get a tuple of public values,

$$
\left(\bar{c}, \hat{c}, \tilde{c}, e^{\prime}, \hat{\mathbf{c}}\right)=\left(\frac{\prod_{j=1}^{N} c_{j}}{\prod_{j=1}^{N} h_{j}}, \frac{\hat{c}_{N}}{h^{u}}, \prod_{j=1}^{N} c_{j}^{u_{j}}, \prod_{j=1}^{N} e_{j}^{u_{j}},\left(\hat{c}_{1}, \ldots, \hat{c}_{N}\right)\right)
$$

which can be derived from the public values $\mathbf{e}, \mathbf{e}^{\prime}, \mathbf{c}, \hat{\mathbf{c}}$, and $p k$ (and from \mathbf{u}, which is derived from $\mathbf{e}, \mathbf{e}^{\prime}$, and \mathbf{c}).

To summarize, we have a homomorphic one-way function $\phi: X \rightarrow Y$, secret values $x=$ $\left(\bar{r}, \hat{r}, \tilde{r}, r^{\prime}, \hat{\mathbf{r}}, \mathbf{u}^{\prime}\right) \in X$, and public values $y=\left(\bar{c}, \hat{c}, \tilde{c}, e^{\prime}, \hat{\mathbf{c}}\right)=\phi(x) \in Y$. We can therefore generate a non-interactive preimage proof

$$
\operatorname{NIZKP}\left[\begin{array}{rl}
& \bar{c}=g^{\bar{r}} \wedge \hat{c}=g^{\hat{r}} \wedge \tilde{c}=\operatorname{Com}\left(\mathbf{u}^{\prime}, \tilde{r}\right) \\
\left(\bar{r}, \hat{r}, \tilde{r}, r^{\prime}, \hat{\mathbf{r}}, \mathbf{u}^{\prime}\right): & \wedge e^{\prime}=\operatorname{ReEnc}_{p k}\left(\prod_{i=1}^{N}\left(e_{i}^{\prime}\right)^{u_{i}^{\prime}},-r^{\prime}\right) \\
& \wedge\left[\bigwedge_{i=1}^{N}\left(\hat{c}_{i}=g^{\hat{r}_{i}} u_{i-1}^{\prime}\right)\right]
\end{array}\right],
$$

using the standard procedure from Section 5.4. The result of such a proof generation, $(t, s) \leftarrow \operatorname{GenProof}_{\phi}(x, y)$, consists of two values $t=\phi(w) \in Y$ of length $N+5$ and $s=$ $\omega+c \cdot x \in X$ of length $2 N+4$, which we obtain from picking $w \in_{R} X$ (of length $2 N+4$) and computing $c=\operatorname{Hash}(y, t)$. Alternatively, a different $c=\operatorname{Hash}\left(y^{\prime}, t\right)$ could be derived directly from the public values $y^{\prime}=\left(\mathbf{e}, \mathbf{e}^{\prime}, \mathbf{c}, \hat{\mathbf{c}}, p k\right)$, which has the advantage that $y=\left(\bar{c}, \hat{c}, \tilde{c}, e^{\prime}, \hat{\mathbf{c}}\right)$ needs not to be computed explicitly during the proof generation.

This preimage proof, together with the two lists of commitments \mathbf{c} and $\hat{\mathbf{c}}$, leads to the desired non-interactive shuffle proof $\operatorname{NIZKP}\left[\left(\psi, \mathbf{r}^{\prime}\right): \mathbf{e}^{\prime}=\operatorname{Shuffle}_{p k}\left(\mathbf{e}, \mathbf{r}^{\prime}, \psi\right)\right]$. We denote the generation and verification of a such proof $\pi=(t, s, \mathbf{c}, \hat{\mathbf{c}})$ by

$$
\begin{aligned}
\pi & \leftarrow \operatorname{GenProof}_{p k}\left(\mathbf{e}, \mathbf{e}^{\prime}, \mathbf{r}^{\prime}, \psi\right) \\
b & \leftarrow \operatorname{CheckProof}_{p k}\left(\pi, \mathbf{e}, \mathbf{e}^{\prime}\right)
\end{aligned}
$$

respectively. Corresponding algorithms are depicted in Alg. 7.44 and Alg. 7.48. Note that generating the proof requires $7 N+4$ and verifying the proof $9 N+11$ modular exponentiations in \mathbb{G}_{q}. The proof itself consists of $5 N+9$ elements $\left(2 N+4\right.$ elements from \mathbb{Z}_{q} and $3 N+5$ elements from $\left.\mathbb{G}_{q}\right)$.

Part III.

Protocol Specification

6. Protocol Description

The goal of this chapter is to describe the cryptographic voting protocol from various perspectives. We introduce the involved parties, describe their roles, and define the communication channels over which they exchange messages during a protocol execution. The protocol itself has various phases - each with multiple sub-phases - which we describe with sufficient technical details for understanding the general protocol design and the most important computational details. A comprehensive list of security and election parameters is introduced beforehand. We also model the adversary and give a list of underlying trust assumptions. Finally, we discuss the security properties that we obtain from applying the adversary model and trust assumptions to the protocol. For further details in form of lowlevel pseudo-code algorithms, we refer to Chapter 7. The protocol itself is an extension of the protocol introduced in [20].

6.1. Parties and Communication Channels

In our protocol, we consider six different types of parties. A party can be a human being, a computer, a human being controlling a computer, or even a combination of multiple human beings and computers. In each of these cases, we consider them as atomic entities with distinct tasks and responsibilities. Here is the list of parties we consider:

- The election administrator is responsible for setting up an election event. This includes tasks such as defining the electoral roll, the number of elections, the set of candidates in each election, and the eligibility of each voter in each election (see Section 6.3.2). At the end of the election process, the election administrator determines and publishes the final election result.
- A group of election authorities guarantees the integrity and privacy of the votes submitted during the election period. They are numbered with indices $j \in\{1, \ldots, s\}$, $s \geqslant 1$. Before every election event, they establish jointly a public ElGamal encryption key $p k$. They also generate the credentials and codes to be printed on the voting cards. During vote casting, they respond to the submitted ballots and confirmations. At the end of the election period, they perform a cryptographic shuffle of the encrypted votes. Finally, they use their private key shares $s k_{j}$ to decrypt the votes in a distributed manner.
- The printing authority is responsible for printing the voting cards and delivering them to the voters. They receive the data necessary for generating the voting cards from the bulletin board and the election authorities.
- The voters are the actual human users of the system. They are numbered with indices $i \in\left\{1, \ldots, N_{E}\right\}, N_{E} \geqslant 0$. Prior to an election event, they receive the voting card from the printing authority, which they can use to cast and confirm a vote during the election period using their voting client.
- The voting client is a machine used by some voter to conduct the vote casting and confirmation process. Typically, this machine is either a desktop, notebook, or tablet computer with a network connection and enough computational power to perform cryptographic computations. The strict separation between voter and voting client is an important precondition for the protocol's security concept.
- The bulletin board is the central communication unit of the system. It implements a broadcast channel with memory among the parties involved in the protocol [21]. For this, it keeps track of all the messages reveived during the protocol execution. The messages from the election administrator and the election authorities are kept in separate dedicated sections, which implies that bulletin board can authenticate them unambiguously. The entire election data stored by the bulletin board defines the input of the verification process.

An overview of the involved parties is given in Figure 6.1, together with the necessary communication channels between them. It depicts the central role of the bulletin board as a communication hub. The election administrator, for example, only communicates with the bulletin board. Since only public messages are sent to the bulletin board, none of its input or output channels is confidential. As indicated in Figure 6.1 by means of a lock, confidential channels only exist from the election authorities to the printing authority and from the printing authority to the voters (and between the voter and the voting client). The channel from the printing authority to the voters consists of sending a personalized voting card by postal mail.

We assume that the election administrator and the election authorities are in possession of a private signature key, which they use to sign all messages sent to the bulletin board. Corresponding output channels are therefore authentic. A special case is the channel between the voter and the voting client, which exists in form of the device's user interface and the voter's interaction with the device. We assume that this channel is confidential. Note that the bandwidth of this channel is obviously not very high. All other channels are assumed to be efficient enough for transmitting the messages sufficiently fast.

Figure 6.1.: Overview of the parties and communication channels.

6.2. Adversary Model and Trust Assumptions

We assume that the general adversarial goal is to break the integrity or secrecy of the votes, but not to influence the election outcome via bribery or coercion. We consider covert adversaries, which may arbitrarily interfere with the voting process or deviate from the protocol specification to reach their goals, but only if such attempts are likely to remain undetected [7]. Voters and authorities are potential covert adversaries, as well as any external party. This includes adversaries trying to spread dedicated malware to gain control over the voting clients or to break into the systems operated by the election administrator, the election authorities, or the bulletin board.

All parties are polynomially bounded and thus incapable of solving supposedly hard problems such as the DDH problem or breaking cryptographic primitives such as contemporary hash algorithms. This implies that adversaries cannot efficiently decrypt ElGamal ciphertexts or generate valid non-interactive zero-knowledge proofs without knowing the secret inputs. For making the system resistant against attacks of that kind, it is necessary to select the cryptographic parameters of Section 6.3 with much care and in accordance with current recommendations (see Chapter 8).

For preparing and conducting an election event, as well as for computing the final election result, we assume that at least one honest election authority is following the protocol faithfully. In other words, we take into account that dishonest election authorities may collude with the adversary (willingly or unwillingly), but not all of them in the same election event. Trust assumptions like this are common in cryptographic voting protocols, but they may be difficult to implement in practice. A difficult practical problem is to guarantee that the authorities act independently, which implies, for example, that they use software written by independent developers and run them on hardware from independent manufacturers. This document does not specify conditions for the election authorities to reach a satisfactory degree of independence.

There are two very strong trust assumptions in our protocol. The first one is attributed to the voting client, which is assumed not to be corrupted by an adversary trying to attack vote privacy. Since the voting client learns the plaintext vote from the voter during the vote casting process, it is obvious that vote privacy can not be guaranteed in the presence of a corrupted device, for instance one that is infiltrated with malware. This is one of the most important unsolved problems in any approach, in which voter's are allowed to prepare and submit their votes on their own (insecure) devices.

The second very strong trust assumption in our protocol is attributed to the printing authority. For printing the voting cards in the pre-election phase, the printing authority receives very sensitive information from the election authorities, for example the credentials for submitting a vote or the verification codes for the candidates. In principle, knowing this information allows the submission of votes on behalf of eligible voters. Exploiting this knowledge would be noticed by the voters when trying to submit a ballot, but obviously not by voters abstaining from voting. Even worse, if check is given access to the verification codes, it can easily bypass the cast-as-intended verification mechanism, i.e., voters can no longer detect vote manipulations on the voting client. These scenarios exemplify the strength of the trust assumptions towards the printing authority, which after all constitutes a single-point-of-failure in the system. Given the potential security impact in case of a failure, it is important to use extra care when selecting the people, the technical infrastructure (computers, software, network, printers, etc.), and the business processes for providing this service. In this document, we will give a detailed functional specification of the printing authority (see ??), but we will not recommend measures for establishing a sufficient amount of trust.

6.3. System Parameters

The specification of the cryptographic voting protocol relies on a number of system parameters, which need to be fixed for every election event. There are two categories of parameters. The first category consists of security parameters, which define the security of the system from a cryptographic point of view. They are likely to remain unchanged over multiple election events until external requirements such as the desired level of protection or key length recommendations from well-known organizations are revised. The second category of election parameters define the particularities of every election event such as the number of eligible voters or the candidate list. In our subsequent description of the protocol, we assume that the security parameters are known to everyone, whereas the election parameters are published on the bulletin board by the election administrator. Knowing the full set of all parameters is an precondition for verifying an election result based on the data published on the bulletin board.

6.3.1. Security Parameters

The security of the system is determined by four principal security parameters. As the resistance of the system against attackers of all kind depends strongly on the actual choice of these parameters, they need to be selected with much care. Note that they impose strict lower bounds for all other security parameters.

- The minimal privacy σ defines the amount of computational work for a polynomially bounded adversary to break the privacy of the votes to be greater or equal to $c \cdot 2^{\sigma}$ for some constant value $c>0$ (under the given trust assumptions of Section 6.2). This is equivalent to brute-force searching a key of length σ bits. Recommended values today are $\sigma=112, \sigma=128$, or higher.
- The minimal integrity τ defines the amount of computational work for breaking the integrity of a vote in the same way as σ for breaking the privacy of the vote. In other words, the actual choice of τ determines the risk that an adversary succeeds in manipulating an election. Recommendations for τ are similar to the above-mentioned values for σ, but since manipulating an election is only possible during the election period or during tallying, a less conservative value may be chosen.
- The deterrence factor $0<\epsilon \leqslant 1$ defines a lower bound for the probability that an attempt to cheat by an adversary is detected by some honest party. Clearly, the higher the value of ϵ, the greater the probability for an adversary of getting caught and therefore the greater the deterrent to perform an attack. There are no general recommendations, but values such as $\epsilon=0.99$ or $\epsilon=0.999$ seem appropriate for most applications.
- The number of election authorities $s \geqslant 1$ determines the amount of trust that needs to be attributed to each of them. This is a consequence of our assumption that at least one election authority is honest, i.e., in the extreme case of $s=1$, full trust is attributed to a single authority. Generally, increasing the number of authorities means to decrease the chance that they are all malicious. On the other hand, finding a large number of independent and trustworthy authorities is a difficult problem in practice. There is no general rule, but $3 \leqslant s \leqslant 5$ authorities seems to be a reasonable choice in practice.

In the following paragraphs, we introduce the complete set of security parameters that can be derived from σ, τ, and ϵ. A summary of all parameters and constraints to consider when selecting them will be given in Table 6.1 at the end of this subsection.

a) Hash Algorithm Parameters

At multiple places in our voting protocol, we require a collision-resistant hash functions $h: \mathbb{B}^{*} \rightarrow \mathbb{B}^{\ell}$ for various purposes. In principle, we could work with different output lengths ℓ, depending on whether the use of the hash function affects the privacy or integrity of the system. However, for reasons of simplicity, we propose to use a single hash algorithm $\operatorname{Hash}_{L}(B)$ throughout the entire document. Its output length $L=8 \ell$ must therefore be adjusted to both σ and τ. The general rule for a hash algorithm to resist against birthday attacks is that its output length should at least double the desired security strength, i.e., $\ell \geqslant 2 \cdot \max (\sigma, \tau)$ bits (resp. $L \geqslant \frac{\max (\sigma, \tau)}{4}$ bytes) in our particular case.

b) Group and Field Parameters

Other important building blocks in our protocol are the algebraic structures (two multiplicative groups, one prime field), on which the cryptographic primitives operate. Selecting
appropriate group and field parameters is important to guarantee the minimal privacy σ and the minimal integrity τ. We follow the current NIST recommendations [8, Table 2], which defines minimal bit lengths for corresponding moduli and orders.

- The encryption group $\mathbb{G}_{q} \subset \mathbb{Z}_{p}$ is a q-order subgroup of the multiplicative group of integers modulo a safe prime $p=2 q+1 \in \mathbb{S}$. Since \mathbb{G}_{q} is used for the ElGamal encryption scheme and the oblivious transfer, i.e., it is only used to protect the privacy of the votes, the minimal bit length of p (and q) depends on σ only. The following constraints are consistent with the NIST recommendations:

$$
\|p\| \geqslant \begin{cases}1024, & \text { for } \sigma=80 \tag{6.1}\\ 2048, & \text { for } \sigma=112 \\ 3072, & \text { for } \sigma=128 \\ 7680, & \text { for } \sigma=192 \\ 15360, & \text { for } \sigma=256\end{cases}
$$

In addition to p and q, two independent generators $g, h \in \mathbb{G}_{q} \backslash\{1\}$ of this group must be known to everyone. The only constraint when selecting them is the independence requirement.

- The identification group $\mathbb{G}_{\hat{q}} \subset \mathbb{Z}_{\hat{p}}$ is a \hat{q}-order subgroup of the multiplicative group of integers modulo a prime $\hat{p}=k \hat{q}+1 \in \mathbb{P}$, where $\hat{q} \in \mathbb{P}$ is prime and $k \geqslant 2$ the co-factor. Since this group is used for voter identification using Schnorr's identification scheme, i.e., it is only used to protect the integrity of the votes, the bit length of \hat{p} and \hat{q} depend on τ only. The constraints for the bit length of \hat{p} are therefore identical to the constraints for the bit length of p,

$$
\|\hat{p}\| \geqslant \begin{cases}1024, & \text { for } \tau=80 \tag{6.2}\\ 2048, & \text { for } \tau=112 \\ 3072, & \text { for } \tau=128 \\ 7680, & \text { for } \tau=192 \\ 15360, & \text { for } \tau=256\end{cases}
$$

but the NIST recommendations also define a minimal bit length for \hat{q}. For reasons similar to those defining the minimal output length of a collision-resistant hash function, the desired security strength τ must be doubled. This implies that $\|\hat{q}\| \geqslant 2 \tau$ is the constraint to consider when choosing \hat{q}. Finally, an arbitrary generator $\hat{g} \in \mathbb{G}_{\hat{q}} \backslash\{1\}$ must be known to everyone.

- A prime field $\mathbb{Z}_{p^{\prime}}$ is required in our protocol for polynomial interpolation during the vote confirmation process. The goal of working with polynomials is to prove the validity of a submitted vote in an efficient way. For maximal efficiency, we connect this proof to Schnorr's identification scheme in the vote confirmation process. This connection requires that the constraint for $\mathbb{G}_{\hat{q}}$ also apply to $\mathbb{Z}_{p^{\prime}}$, i.e., we must consider $\left\|p^{\prime}\right\| \geqslant 2 \tau$ when choosing p^{\prime}. Maximal simplicity can be reached by setting $p^{\prime}=\hat{q}$. An additional parameter that follows directly from p^{\prime} is the length L_{M} of the messages transferred by the OT-protocol. Since each of these messages represents a point in $\mathbb{Z}_{p^{\prime}}^{2}$, we obtain $L_{M}=2 \cdot\left\lceil\frac{\left\|p^{\prime}\right\|}{8}\right\rceil$ bytes.

c) Parameters for Voting and Confirmation Codes

As we will see in Section 6.5.2, Schnorr's identification scheme is used twice in the vote casting and confirmation process. For this, voter i obtains a random pair of secret values $\left(x_{i}, y_{i}\right) \in \mathbb{Z}_{\hat{q}_{x}} \times \mathbb{Z}_{\hat{q}_{y}}$ in form of a pair of fixed-length strings $\left(X_{i}, Y_{i}\right) \in A_{X}^{\ell_{X}} \times A_{Y}^{\ell_{Y}}$, which are printed on the voting card. The values $\hat{q}_{x} \leqslant \hat{q}$ and $\hat{q}_{y} \leqslant \hat{q}$ are the upper bounds for x_{i} and y_{i}, respectively. If $\left|A_{X}\right| \geqslant 2$ and $\left|A_{Y}\right| \geqslant 2$ denote the sizes of corresponding alphabets, we can derive the string lengths of X_{i} and Y_{i} as follows:

$$
\ell_{X}=\left\lceil\frac{\left\|\hat{q}_{x}\right\|}{\log _{2}\left|A_{X}\right|}\right\rceil, \quad \ell_{Y}=\left\lceil\frac{\left\|\hat{q}_{y}\right\|}{\log _{2}\left|A_{Y}\right|}\right\rceil .
$$

For reasons similar to the ones mentioned above, it is critical to choose values \hat{q}_{x} and \hat{q}_{y} satisfying $\left\|\hat{q}_{x}\right\| \geqslant 2 \tau$ and $\left\|\hat{q}_{y}\right\| \geqslant 2 \tau$ to guarantee the security of Schnorr's identification scheme. In the simplest possible case, i.e., by setting $\hat{q}_{x}=\hat{q}_{y}=\hat{q}$, all constraints are automatically satisfied. The selection of the alphabets A_{X} and A_{Y} is mainly a trade-off between conflicting usability parameters, for example the number of character versus the number of different characters to enter. Typical alphabets for such purposes are the sets $\{0, \ldots, 9\},\{0, \ldots, 9, A, \ldots, Z\},\{0, \ldots, 9, A, \ldots, z, a, \ldots, z\}$, or other combinations of the most common characters. Each character will then contribute between 3 to 6 entropy bits to the entropy of x_{i} or y_{i}. While even larger alphabets may be problematical from a usability point of view, standardized word lists such as Diceware 1 are available in many natural languages. These lists have been designed for optimizing the quality of passphrases. In the English Diceware list, the average word length is 4.2 characters, and each word contributes approximately 13 entropy bits. With this, the values x_{i} and y_{i} would by represented by passphrases consisting of at least $\frac{2 \tau}{13}$ English words.

d) Parameters for Verification and Finalization Codes

Other elements printed on the voting card of voter i are the verification codes $R C_{i j}$ and the finalization code $F C_{i}$. Their purpose is the detection of attacks by corrupt voting clients. The length of these codes is therefore a function of the deterrence factor ϵ. They are generated in two steps, first as byte arrays $R_{i j}$ of length L_{R} and F_{i} of length L_{F}, respectively, which are then converted into strings $R C_{i j}$ of length ℓ_{R} and $F C_{i}$ of length ℓ_{F} (for given alphabets A_{R} and A_{F}). To provide the security defined by the deterrence factor, the following general constraints must be satisfied:

$$
8 L_{R} \geqslant \log \frac{1}{1-\epsilon}, \quad 8 L_{F} \geqslant \log \frac{1}{1-\epsilon} .
$$

For $\epsilon=0.999$ (0.001 chance of an undetected attack), for example, $L_{R}=L_{F}=2$ would be appropriate. In the case of the finalization code, the string length ℓ_{F} follows directly from L_{F} and the size of the alphabet A_{F}. For the verification codes, an additional usability constraint needs to be considered, namely that each code should appear at most once on each voting card. This problem can be solved by increasing the length of the byte arrays and to watermark them with $j-1 \in\{0, \ldots, n-1\}$ before converting them into a string (see Alg. 4.1). Note that this creates a minor technical problem, namely that L_{R} is no longer

[^3]independent of the election parameters (see next subsection). We can solve this problem by defining $n_{\max }$ to be the maximal number of candidates in every possible election event and to extend the constraint for L_{R} into
$$
8 L_{R} \geqslant \log \frac{n_{\max }-1}{1-\epsilon} .
$$

For $\epsilon=0.999$ and $n_{\max }=1000$, for example, $L_{R}=3$ would satisfy this extended constraint. For given lengths L_{R} and L_{F}, we can calculate the lengths ℓ_{R} and ℓ_{F} of corresponding strings using the alphabet sizes:

$$
\ell_{R}=\left\lceil\frac{8 L_{R}}{\log _{2}\left|A_{R}\right|}\right\rceil, \quad \ell_{F}=\left\lceil\frac{8 L_{F}}{\log _{2}\left|A_{F}\right|}\right\rceil .
$$

For $L_{R}=3, L_{F}=2$, and alphabet sizes $\left|A_{R}\right|=\left|A_{F}\right|=64$ (6 bits), $\ell_{R}=4$ characters are required for the verification codes and $\ell_{F}=3$ characters for the finalization code.

6.3.2. Election Parameters

A second category of parameters defines the details of a concrete election event. Defining such election parameters is the responsibility of the election administrator. For making them accessible to every participating party, they are published on the bulletin board. This is the initial step of the election preparation phase (see Section 6.5.1). At the end of this subsection, Table 6.2 summarizes the list of all election parameters and constraints to consider when selecting them.

In Chapter 2, we already discussed that our definition of an election event, which constitutes of multiple simultaneous k-out-of- n elections, covers all election use cases in the given context. The most important parameter of an election event is therefore the number t of simultaneous elections. By assuming $t \geqslant 1$, we exclude the meaningless limiting case of an election event with no election. All other election parameters are directly or indirectly influenced by the actual value of t. We use $j \in\{1, \ldots, t\}$ as an identifier for the elections in an election event.

a) Candidates

Let $n_{j} \geqslant 2$ denote the number of candidates in the j-th election of an election event. By requiring at least two candidates, we exclude trivial or meaningless elections with $n=1$ or $n=0$ candidates. The sum of such values, $n=\sum_{j=1}^{t} n_{j}$, represents the total number of candidates in an election event. For each such candidate $i \in\{1, \ldots, n\}$, a candidate description $C_{i} \in A_{\text {ucs }}^{*}$ must be provided. In this document, by assuming that candidate descriptions are given as arbitrary UCS strings, we do not further specify the type and format of the information given for each candidate. Other important parameters of an election event are the numbers of candidates $k_{j}, 0<k_{j}<n_{j}$, which a voter can select in each election j. We exclude the two meaningless limiting cases of $k_{j}=0$ and $k_{j}=n_{j}$. The total number of selections over all elections, $k=\sum_{j=1}^{t} k_{j}$, is limited by a constraint that follows from our particular vote encoding method (see Section 6.4.1).

Parameters		Constraints		
L	Output length of hash function (bytes)	$L \geqslant \frac{\max (\sigma, \tau)}{4}$		
p	Modulo of encryption group \mathbb{G}_{q}	$\operatorname{see}(6.1)$		
g, h	Independent generators of \mathbb{G}_{q}	$g, h \in \mathbb{G}_{q} \backslash 1$		
\hat{p}	Modulo of identification group $\mathbb{G}_{\hat{q}}$	see (6.2)		
\hat{q}	Order of $\mathbb{G}_{\hat{q}}$	$\\|\hat{q}\\| \geqslant 2 \tau$		
\hat{g}	Generator of $\mathbb{G}_{\hat{q}}$	$g \in \mathbb{G}_{\hat{q}} \backslash 1$		
p^{\prime}	Modulo of prime field $\mathbb{Z}_{p^{\prime}}$	$\left\\|p^{\prime}\right\\| \geqslant 2 \tau$		
L_{M}	Length of OT messages (bytes)	$L_{M}=2 \cdot\left\lceil\frac{\left\\|p^{\prime}\right\\|}{8}\right\rceil$		
\hat{q}_{x}	Upper bound of secret voting credential x	$\left\\|\hat{q}_{x}\right\\| \geqslant 2 \tau, \hat{q}_{x} \leqslant \hat{q}$		
A_{X}	Voting code alphabet	$\left\|A_{X}\right\| \geqslant 2$		
ℓ_{X}	Length of voting codes (characters)	$\ell_{X}=\left\lceil\frac{\left\\|\hat{q}_{\chi}\right\\|}{\log _{2}\left\|A_{X}\right\|}\right]$		
\hat{q}_{y}	Upper bound of secret confirmation credential y	$\left\\|\hat{q}_{y}\right\\| \geqslant 2 \tau, \hat{q}_{y} \leqslant \hat{q}$		
A_{Y}	Confirmation code alphabet	$\left\|A_{Y}\right\| \geqslant 2$		
ℓ_{Y}	Length of confirmation codes (characters)	$\ell_{Y}=\left\lceil\frac{\left\\|\hat{q}_{q}\right\\|}{\log _{2}\left\|A_{Y}\right\|}\right]$		
$n_{\text {max }}$	Maximal number of candidates	$n_{\max } \geqslant 2$		
L_{R}	Length of verification codes $R_{i j}$ (bytes)	$8 L_{R} \geqslant \log \frac{n_{\max }-1}{1-\epsilon}$		
A_{R}	Verification code alphabet	$\left\|A_{R}\right\| \geqslant 2$		
ℓ_{R}	Length of verification codes $R C_{i j}$ (characters)	$\ell_{R}=\left\lceil\frac{8 L_{R}}{\log _{2}\left\|A_{R}\right\|}\right]$		
L_{F}	Length of finalization codes F_{i} (bytes)	$8 L_{F} \geqslant \log _{\frac{1}{1-\epsilon}}^{1-\epsilon}$		
A_{F}	Finalization code alphabet	$\left\|A_{F}\right\| \geqslant 2$		
ℓ_{F}	Length of finalization codes $F C_{i}$ (characters)	$\ell_{F}=\left\lceil\frac{8 L_{F}}{\log _{2}\left\|A_{F}\right\|}\right]$		

Table 6.1.: List of security parameters derived from the principal security parameters σ, τ, and ϵ. We assume that these values are fixed and publicly known to every party participating in the protocol.

b) Electorate

A second category of election parameters specifies the details of the electorate. With $N_{E} \geqslant 0$ we denote the number of eligible voters in an election event and use $i \in\left\{1, \ldots, N_{E}\right\}$ as identifier. ${ }^{2}$ For each voter i, a voter description $V_{i} \in A_{\text {ucs }}^{*}$ must be provided. As for the candidate descriptions, we do not further specify the type and format of the given information. Note that in the given election use cases of Section 2.2, voter i is not automatically eligible in every election of an election event. We use single bits $e_{i j} \in \mathbb{B}$ to define whether voter i is eligible in election j or not, and we exclude completely ineligible voters by $\sum_{j=1}^{t} e_{i j} \geqslant 1$. The matrix $\mathbf{E}=\left(e_{i j}\right)_{N_{E} \times t}$ of all such values is called eligibility matrix.

[^4]| Parameters | | Constraints |
| :---: | :---: | :---: |
| t | Number of elections | $t \geqslant 1$ |
| $\mathbf{n}=\left(n_{1}, \ldots, n_{t}\right)$ | Number of candidates in each election | $n_{j} \geqslant 2$ |
| n | Total number of candidates | $n=\sum_{j=1}^{t} n_{j}$ |
| $\mathbf{c}=\left(C_{1}, \ldots, C_{n}\right)$ | Candidate descriptions | $C_{i} \in A_{\text {ucs }}^{*}$ |
| $\mathbf{k}=\left(k_{1}, \ldots, k_{t}\right)$ | Number of selections in each election | $0<k_{j}<n_{j}$ |
| k | Total number of selections | $k=\sum_{j=1}^{t} k_{j}, \prod_{i=1}^{k} p_{n-i+1}<q$ |
| N_{E} | Number of eligible voters | $N_{E} \geqslant 0$ |
| $\mathbf{v}=\left(V_{1}, \ldots, V_{N_{E}}\right)$ | Voter descriptions | $V_{i} \in A_{\text {ucs }}^{*}$ |
| $\mathbf{E}=\left(e_{i j}\right)_{N_{E} \times t}$ | Eligibility matrix | $e_{i j} \in \mathbb{B}, \sum_{j=1}^{t} e_{i j} \geqslant 1$ |

Table 6.2.: List of election parameters.

6.4. Technical Preliminaries

From a cryptographic point of view, our protocol exploits a few non-trivial technical tricks. In order to facilitate the exposition of the protocol in the next section, we introduce them beforehand. Some of them have been used in other cryptographic voting protocols and are well documented.

6.4.1. Vote Encoding and Encryption

In an election that allows votes for multiple candidates, it is usually more efficient to incorporate all votes into a single encryption. In the case of the ElGamal encryption scheme with \mathbb{G}_{q} as message space, we must define an invertible mapping Γ from the set of all possible votes into \mathbb{G}_{q}. A common technique for encoding a selection $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right)$ of k candidates out of n candidates, $1 \leqslant s_{i} \leqslant n$, is to encode each selection s_{i} by a prime number $\Gamma\left(s_{i}\right) \in \mathbb{P} \cap \mathbb{G}_{q}$ and to multiply them into $\Gamma(\mathbf{s})=\prod_{i=1}^{k} \Gamma\left(s_{i}\right)$. Inverting $\Gamma(\mathbf{s})$ by factorization is unique as long as $\Gamma(\mathbf{s})<q$ and efficient when n is small [19]. For optimal capacity, we choose the n smallest prime numbers $p_{1}, \ldots, p_{n} \in \mathbb{P} \cap \mathbb{G}_{q}, p_{j}<p_{j+1}$, and define $\Gamma(j)=p_{j}$ for $j \in\{1, \ldots, n\}$. In this particular case, the uniqueness of the factorization is given if the product of the k largest primes, $\prod_{i=1}^{k} p_{n-i+1}$, is smaller than q. This is an important constraint when choosing the security and election parameters (see Table 6.2 in Section 6.3).

6.4.2. Linking OT Queries to EIGamal Encryptions

If the same encoding $\Gamma:\{1, \ldots, n\} \rightarrow \mathbb{G}_{q}$ is used for the OT_{n}^{k} scheme by Chu and Tseng (see Section 5.3.1) and for encoding plaintext votes, we obtain a natural link between an OT query $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)$ and an ElGamal encryption $(a, b) \leftarrow \operatorname{Enc}_{p k}(\Gamma(\mathbf{s}), r)$. The link arises by replacing the generator $g \in \mathbb{G}_{q} \backslash\{1\}$ in the OT scheme with the public encryption
key $p k$. In this case, we obtain $a_{i}=\Gamma\left(s_{i}\right) \cdot p k^{r_{i}}$ and therefore $a=\prod_{i=1}^{k} a_{i}=\Gamma(\mathbf{s}) \cdot p k^{r}$ for $r=\sum_{i=1}^{k} r_{i}$, i.e., we can derive the right-hand side of the ElGamal encryption $b=g^{r}$ from the randomizations used in the OT query. This simple technical trick is crucial for making our protocol efficient [20]. It means that submitting (\mathbf{a}, b) as part of the ballot solves two problems at the same time: sending an OT query and an encrypted vote to the election authorities and guaranteeing that they contain exactly the same selection of candidates.

6.4.3. Validity of Encrypted Votes

The main purpose of the verification codes in our protocol is to provide evidence to the voters that their votes have been cast and recorded as intended. However, our way of constructing the verification codes solves another important problem, namely to guarantee that every submitted encrypted vote satisfies exactly the constraints given by the election parameters \mathbf{k} and \mathbf{n}, i.e., that every encryption contains a valid vote. Let $R C_{1}, \ldots, R C_{n} \in A_{R}^{\ell_{R}}$ be the verification codes for the n candidates of a given voting card. In our scheme, they are constructed as follows [20]:

- Each authority picks t random polynomials $A_{j}(X) \in_{R} \mathbb{Z}_{p^{\prime}}[X]$ of degree $k_{j}-1$, one for every election $1 \leqslant j \leqslant t$. From each polynomial, the authority selects n_{j} random points $p_{i j}=\left(x_{i j}, A_{j}\left(x_{i j}\right)\right)$ by picking n_{j} distinct random values $x_{i j} \in_{R} \mathbb{Z}_{p^{\prime}}$. The result is a vector of points,

$$
\left(p_{1,1}, \ldots, p_{n_{1}, 1}, \ldots \ldots, p_{1, t}, \ldots, p_{n_{t}, t}\right)
$$

of length $n=\sum_{j=1}^{t} n_{j}$. Over all N_{E} voting cards, each authority generates a N_{E}-by- n matrix of such points. Computing such a matrix is part of the election preparation of every election authority. In the remaining of this document, the matrix generated by authority j will be denoted by \mathbf{P}_{j}.

- During vote casting, every authority $j \in\{1, \ldots, s\}$ transfers exactly k points from \mathbf{P}_{j} obliviously to the voting client, i.e., the voting client receives a k-by-s matrix $\mathbf{P}_{\mathbf{s}}=\left(p_{i j}\right)_{k \times s}$ of such points, which depends on the voter's selection \mathbf{s}. The verification code $R C_{s_{i}}$ for the selected candidate s_{i} is derived from the points $p_{i, 1}, \ldots, p_{i, s}$ by truncating corresponding hash values $h\left(p_{i j}\right)$ to the desired length L_{R}, combining them with an exclusive-or into a single value, and finally converting this value into a string $R C_{s_{i}}$ of length ℓ_{R}. The same happens simultaneously for all of the voter's k selections, which leads to a vector $\mathbf{r c}_{\mathbf{s}}=\left(R C_{s_{1}}, \ldots, R C_{s_{k}}\right)$. During the printing of the voting card, exactly the same calculations are performed for the verification codes of all n candidates.
- By obtaining $k=\sum_{j=1}^{t} k_{j}$ points from a particular election authority, the voting client can reconstruct the polynomial $A_{j}(X)$ of degree $k_{j}-1$, if at least k_{j} distinct points from $A_{j}(X)$ are available (see Section 3.2.2). Consequently, in order to reconstruct all t polynomials, exactly k_{j} distinct points must be available for every $A_{j}(X)$. If this is the case, the simultaneous $\mathrm{OT}_{\mathrm{n}}^{\mathbf{k}}$ query must have been formed properly under the constraints given by \mathbf{k} and \mathbf{n}. The voting client can therefore prove the validity of the encrypted vote by proving knowledge of these polynomials. For this, it evaluates the polynomials for $X=0$ and merges corresponding values $y_{j}=A_{j}(0)$ into a single hash value $h=h\left(y_{1}, \ldots, y_{t}\right)$, which can not be guessed efficiently without knowing
each of the t polynomials. In this way, the voting client obtains a hash value from every authority. Their integer sum is incorporated into the voter's public confirmation credential \hat{y} by adding it to the secret confirmation credential y derived from the conformation code Y (see next subsection). Knowing the correct hash values is therefore a prerequisite for the voting client to successfully confirm the vote.

The finalization code $F C \in A_{F}^{\ell_{F}}$ of a given voting card is also derived from the random points generated by each authority. The procedure is similar to the generation of the verification codes. First, election authority j computes the hash value of the voter's n points in \mathbf{P}_{j} and truncates it to the desired length L_{F}. The resulting s hash values-one from every authority - are combined with an exclusive-or into a single value, which is then converted into a string of length ℓ_{F}. These last steps are the same for the printing authority during the election preparation and for the voting client at the end of the vote casting process.

6.4.4. Voter Identification

During the vote casting process, the voter needs to be identified twice as an eligible voter, first to submit the initial ballot and to obtain corresponding verification codes, and second to confirm the vote after checking the verification codes. A given voting card contains two secret codes for this purpose, the voting code $X \in A_{X}^{\ell_{X}}$ and the confirmation code $Y \in A_{Y}^{\ell_{Y}}$. By entering these codes into the voting client, the voter expresses the intention to proceed to the next step in the vote casting process. In both cases, a Schnorr identification is performed between the voting client and the election authorities (see Section 5.4.2). Without entering these codes, or by entering incorrect codes, the identification fails and the process stops.

The voting code X is a string representation of a secret value $x \in \mathbb{Z}_{\hat{q}}$ called secret voting credential. This value is generated by the election authorities in a distributed way, such that no one except the printing authority learns it. For this, each election authority contributes a random value $x_{j} \in_{R} \mathbb{Z}_{\hat{q}}$, which the printing authority combines into $x=\sum_{j=1}^{s} x_{j} \bmod \hat{q}$. The corresponding public voting credential $\hat{x} \in \mathbb{G}_{\hat{q}}$ is derived from the values $\hat{x}_{j}=\hat{g}^{x_{j}} \bmod \hat{p}$, which are published by the election authorities:

$$
\hat{x}=\prod_{j=1}^{s} \hat{x}_{j} \bmod \hat{p}=\prod_{j=1}^{s} \hat{g}^{x_{j}} \bmod \hat{p}=\hat{g}^{\sum_{j=1}^{s} x_{j}} \bmod \hat{p}=\hat{g}^{x} \bmod \hat{p}
$$

For a given pair $(x, \hat{x}) \in \mathbb{Z}_{\hat{q}} \times \mathbb{G}_{\hat{q}}$ of secret and public voting credentials, performing the Schnorr identification corresponds to computing a non-interactive zero-knowledge proof $\operatorname{NIZKP}\left[(x): \hat{x}=\hat{g}^{x} \bmod \hat{p}\right]$. In our protocol, we combine this proof with a proof of knowledge of the plaintext vote contained in the submitted ballot (see Section 5.4.2).

The generation of the confirmation code Y is very similar. It is a string representation of the secret confirmation credential $y \in \mathbb{Z}_{\hat{q}}$, which is generated by the election authorities in exactly the same way as x. However, for the corresponding public confirmation credential $\hat{y} \in \mathbb{G}_{\hat{q}}$, the method is slightly different. After picking $y_{j} \in_{R} \mathbb{Z}_{\hat{q}}$ at random, the authority computes the hash value $h_{j}=h(\mathbf{y})$ of $\mathbf{y}=\left(y_{1}, \ldots, y_{t}\right)$ and adds it to y_{j}. By publishing $\hat{y}_{j}=\hat{g}^{y_{j}+h_{j}} \bmod \hat{p}$, the public credential can be computed by

$$
\hat{y}=\prod_{j=1}^{s} \hat{y}_{j} \bmod \hat{p}=\prod_{j=1}^{s} \hat{g}^{y_{j}+h_{j}} \bmod \hat{p}=\hat{g}^{\sum_{j=1}^{s} y_{j}+h_{j}} \bmod \hat{p}=\hat{g}^{y+h} \bmod \hat{p},
$$

for $y=\sum_{j=1}^{s} y_{j} \bmod \hat{q}$ and $h=\sum_{j=1}^{s} h_{j} \bmod \hat{q}$. Therefore, performing a Schnorr identification relative to \hat{y} requires knowledge of $y+h$. The corresponding zero-knowledge proof, $\operatorname{NIZKP}\left[(y, h): \hat{y}=\hat{g}^{y+h} \bmod \hat{p}\right]$, is more efficient than conducting two separate proofs for y and h.

6.5. Protocol Description

Based on the preceding sections about parties, channels, adversaries, trust assumptions, system parameters, and technical preliminaries, we are now ready to present the cryptographic protocol in greater detail. As mentioned earlier, the protocol itself has three phases, which we describe in corresponding subsections with sufficient technical details for understanding the general protocol design. By exhibiting the involved parties in each phase and sub-phase, a first overview of the protocol is given in Table 6.3. This overview illustrates the central role of the bulletin board as a communication hub and the strong involvement of the election authorities in almost every step of the whole process.

Phase	Election Admin.	Election Printing Authority Authority	Voter	Voting Client	Bulletin Board	Protocol Nr.	
1. Pre-Election	\bullet	\bullet	\bullet	\bullet		\bullet	
1.1 Election Preparation	\bullet	\bullet				\bullet	6.1
1.2 Printing of Voting Cards		\bullet	\bullet	\bullet		\bullet	6.2
1.3 Key Generation		\bullet				\bullet	6.3
2. Election		\bullet	\bullet	\bullet	\bullet		
2.1 Candidate Selection			\bullet	\bullet	\bullet	6.4	
2.2 Vote Casting		\bullet		\bullet	\bullet	6.5	
2.3 Vote Confirmation		\bullet	\bullet	\bullet	\bullet	6.6	
3. Post-Election	\bullet	\bullet			\bullet		
3.1 Mixing		\bullet		\bullet	6.7		
3.2 Decryption		\bullet			\bullet	6.8	
3.3 Tallying				\bullet	6.9		

Table 6.3.: Overview of the protocol phases and sub-phases with the involved parties.
In each of the following subsections, we provide comprehensive illustrations of corresponding protocol sub-phases. The illustrations are numbered from Prot. 6.3 to Prot. 6.9. Each illustration depicts the involved parties, the information known to each party prior to executing the protocol sub-phase, the computations performed by each party during the protocol sub-phase, and the exchanged messages. Together, these illustration define a precise and complete skeleton of the entire protocol. The details of the algorithms called by the parties when performing their computations are given in Chapter 7.

6.5.1. Pre-Election Phase

The pre-election phase of the protocol involves all necessary tasks to setup an election event. The main goal is to equip each eligible voter with a personalized voting card, which
we identify with an index $i \in\left\{1, \ldots, N_{E}\right\}$. Without loss of generality, we assume that voting card i is sent to voter i. We understand a voting card as a string $S_{i} \in A_{\mathrm{ucs}}^{*}$, which is printed on paper by the printing authority. This string contains the voter index i, the voter description $V_{i} \in A_{\text {ucs }}^{*}$, the voting code $X_{i} \in A_{X}^{\ell_{X}}$, the confirmation code $Y_{i} \in A_{Y}^{\ell_{Y}}$, the finalization code $F C_{i} \in A_{F}^{\ell_{F}}$, and the candidate descriptions $C_{j} \in A_{\text {ucs }}^{*}$ with corresponding verification codes $R C_{i j} \in A_{R}^{\ell_{R}}$ for each candidate $j \in\{1, \ldots, n\}$. The information printed on voting card i is therefore a tuple

$$
\left(i, V_{i}, X_{i}, Y_{i}, F C_{i},\left\{\left(C_{j}, R C_{i j}\right)\right\}_{j=1}^{n}\right) .
$$

a) Election Preparation

The codes printed on the voting cards are generated by the s election authorities in a distributed manner (see Sections 6.4.2 and 6.4.3 for technical background). For this, each election authority j calls an algorithm GenElectorateData $(\mathbf{n}, \mathbf{k}, \mathbf{E})$ with the election parameters \mathbf{n}, \mathbf{k}, and \mathbf{E}, which are published beforehand by the election administrator. The result obtained from calling this algorithm consists of a private part \mathbf{d}_{j}, a public part $\hat{\mathbf{d}}_{j}$, and the matrix of random points \mathbf{P}_{j}. The matrix \mathbf{K} is a combination of \mathbf{k} and \mathbf{E}, which is precomputed for later use. Further details of the algorithm are given in Alg. 7.6. These first steps are depicted in the upper part of Prot.6.1.

The public part $\hat{\mathbf{d}}_{j}$, which contains the authority's partial information for deriving the public voter credentials \hat{x}_{i} and \hat{y}_{i}, is submitted via the bulletin board to all other election authorities. At the end of this process, every election authority knows the public data of the whole electorate, $\hat{\mathbf{D}}=\left(\hat{\mathbf{d}}_{1}, \ldots, \hat{\mathbf{d}}_{s}\right)$, which they can use for calling GetPublicCredentials($\left.\hat{\mathbf{D}}\right)$. This algorithm outputs the two lists $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ of all public credentials, which are used to identify the voters during the vote casting and vote confirmation phases (see Section 6.4.4 and Alg. 7.12 for further details).

b) Printing of Code Sheets

The private part \mathbf{d}_{j} of the electorate data generated by authority j contains the authority's partial information about the secret voting, confirmation, finalization, and verification codes of every voting card. This information is very sensitive and can only be shared with the printing authority. The process of sending \mathbf{d}_{j} to the printing authority (over a secure channel) is depicted in Prot.6.2. The actual voting cards can then be generated from the collected private data $\mathbf{D} \leftarrow\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{s}\right)$ and the elections parameters $\mathbf{v}, \mathbf{c}, \mathbf{n}, \mathbf{k}$, and \mathbf{E}. The printing authority uses them as inputs for calling the algorithm GetVotingCards(v, $\mathbf{c}, \mathbf{n}, \mathbf{k}, \mathbf{E}, \mathbf{D})$, which produces corresponding strings $\mathbf{s}=\left(S_{1}, \ldots, S_{N_{E}}\right), S_{i} \in A_{\text {ucs }}^{*}$ (see Alg. 7.13). A printout of such a string is sent to every voter, for example using a trusted postal service.

c) Key Generation

In the last step of the election preparation, a public ElGamal encryption key $p k \in \mathbb{G}_{q}$ is generated jointly by the election authorities. As shown in Prot.6.3, this is a simple process between the election authorities and the bulletin board. At the end of the protocol, $p k$ is

Election Administrator		Bulletin Board		Election Authority $j \in\{1, \ldots, s\}$
knows $\mathbf{v}, \mathbf{c}, \mathbf{n}, \mathbf{k}, \mathbf{E}$				
	$\mathbf{v}, \mathbf{c}, \mathbf{n}, \mathbf{k}, \mathbf{E}$			
			$\mathrm{n}, \mathrm{k}, \mathrm{E}$	
				$\left(\mathbf{d}_{j}, \hat{\mathbf{d}}_{j}, \mathbf{P}_{j}, \mathbf{K}\right) \leftarrow$ GenElectorateData $(\mathbf{n}, \mathbf{k}, \mathbf{E})$
			$\hat{\mathbf{d}}_{j}$	
		$\hat{\mathbf{D}} \leftarrow\left(\hat{\mathbf{d}}_{1}, \ldots, \hat{\mathbf{d}}_{s}\right)$		
			D	
				$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \leftarrow$ GetPublicCredentials $(\hat{\mathbf{D}})$

Protocol 6.1: Election Preparation.
known to every authority, and each of them holds a share $s k_{j} \in \mathbb{Z}_{q}$ of the corresponding private key. It involves calls to two algorithms GenKeyPair() for generating the key shares and GetPublicKey $(\mathbf{p k})$ for combining the resulting public keys. For details of these algorithms, we refer to Section 5.1.2 and Algs. 7.15 and 7.16.

6.5.2. Election Phase

The election phase is the core of the cryptographic voting protocol. The start and end of this phase are given by the official election period. These are two very critical events in every election. To prevent or detect the submission of early or late votes, it is very important to handle these events accurately. Since there are multiply ways for dealing with this problem, we do not propose a solution in this document. We only assume that the bulletin board and the election authorities will always agree whether a particular vote (or vote confirmation) has been submitted within the election period, and only accept it if this is the case.

The main actors of the election phase are the voters and the election authorities, which communicate over the bulletin board. The main goal of the voters is to submit a valid vote for the selected candidates using the untrusted voting client, whereas the goal of the election authorities is to collect all valid votes from eligible voters. The submission of a single vote takes place in three subsequent steps.

a) Candidate Selection

The first step for the voter is the selection of the candidates. In an election event with t simultaneous elections, voter i must select exactly $e_{i j} k_{j}$ candidates for each election $j \in$

Protocol 6.2: Printing of Voting Cards.
Election Authority Bulletin
$j \in\{1, \ldots, s\} \quad$ Board
$\left(s k_{j}, p k_{j}\right) \leftarrow$ GenKeyPair ()
\qquad
$\mathrm{pk} \leftarrow\left(p k_{1}, \ldots, p k_{s}\right)$
pk
$p k \leftarrow \operatorname{GetPublicKey}(\mathbf{p k})$

Protocol 6.3: Key Generation
$\{1, \ldots, t\}$ and $k=\sum_{j=1}^{t} e_{i j} k_{j}$ candidates in total. These values can be derived from the election parameters \mathbf{k} and \mathbf{E}, which the voting client retrieves from the bulletin board together with the candidate descriptions \mathbf{c} and the number of candidates \mathbf{n}. This preparatory step is shown in the upper part of Prot. 6.4.

By calling GetVotingPage $\left(i, \mathbf{c}, \mathbf{n}, \mathbf{k}_{i}\right)$ for $\mathbf{k}_{i}=\left(e_{i, 1} k_{1}, \ldots, e_{i, t} k_{t}\right)$, the voting client then generates a voting page $P_{i} \in A_{\mathrm{ucs}}^{*}$, which represents the visual interface displayed to the voter for selecting the candidates (see Alg. 7.17). The voter's selection $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right)$ is a vector of values s_{i} satisfying the constraint in (5.1) from Section 5.3.2. The voter enters these values together with the voting code X_{i} from the voting card.

b) Vote Casting

Based on the voter's selection $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right)$, the voting client generates a ballot $\alpha=$ $\left(\hat{x}_{i}, \mathbf{a}, b, \pi\right)$ by calling an algorithm $\operatorname{GenBallot}\left(X_{i}, \mathbf{s}, p k\right)$. The ballot contains both an ElGamal encryption $(a, b) \in \mathbb{G}_{q}^{2}$ of the voter's selection \mathbf{s} and an $\mathrm{OT}_{\mathbf{n}}^{\mathbf{k}}$ query $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{G}_{q}^{k}$ for corresponding verification codes. The values a and \mathbf{a} are linked over $a=\prod_{i=1}^{k} a_{i} \bmod p$, which results from using the public encryption key $p k$ in the oblivious transfer as a generator of the group \mathbb{G}_{q} (see Section 6.4.2). The ballot α also contains the voter's public credential

Protocol 6.4: Candidate Selection
\hat{x}_{i}, which is derived from the secret voting code X_{i}, and a non-interactive zero-knowledge proof

$$
\pi_{\alpha}=\operatorname{NIZKP}\left[\left(x_{i}, \mathbf{s}, r\right): \hat{x}_{i}=\hat{g}^{x_{i}} \bmod \hat{p} \wedge(a, b)=\operatorname{Enc}_{p k}(\Gamma(\mathbf{s}), r)\right],
$$

that demonstrates the well-formedness of the ballot. This proof includes all elements of a Schnorr identification relative to \hat{x}_{i} (see Section 6.4.4).

The ballot is submitted to the election authorities via the bulletin board. Each authority checks its validity by calling CheckBallot $(i, \alpha, p k, \mathbf{K}, \hat{\mathbf{x}}, B)$. This algorithm verifies that the size of \mathbf{a} is exactly $k=\sum_{j=1}^{t} e_{i j} k_{j}$, that the public voting credential \hat{x} is included in $\hat{\mathbf{x}}$, that the zero-knowledge proof π_{α} is valid (which implies that the voter is in possession of a valid voting code X_{i}), and that the same voter has not submitted a valid ballot before. Recall that the matrix $\mathbf{K}=\left(e_{i j} k_{j}\right)_{N_{E} \times t}$ has been precomputed during the election preparation. To detect multiple ballots from the same voter, each authority keeps track of a list B_{j} of valid ballots submitted so far. If one of the above checks fails, the ballot is rejected and the process aborts.

If the ballot α passes all checks, the election authorities respond to the OT query a included in α. Each of them computes its OT response β_{j} by calling GenResponse $\left(i, \mathbf{a}, p k, \mathbf{n}, \mathbf{K}, \mathbf{P}_{j}\right)$. The selected points from the matrix \mathbf{P}_{j} are the messages to transfer obliviously to the voter via the bulletin board (see Section 6.4.3). By calling GetPointMatrix $\left(\boldsymbol{\beta}_{i}, \mathbf{k}_{i}, \mathbf{s}, \mathbf{r}\right)$, the voting client derives the k-by-s matrix $\mathbf{P}_{\mathbf{s}}$ of selected points from every β_{j}. Finally, by calling GetReturnCodes $\left(\mathbf{s}, \mathbf{P}_{\mathbf{s}}\right)$, it computes the verification codes $\mathbf{r c}_{\mathbf{s}}=\left(R C_{s_{1}}, \ldots, R C_{s_{k}}\right)$ for the selected candidates. This whole procedure is depicted in Prot.6.5.

Protocol 6.5: Vote Casting

c) Vote Confirmation

The voting client displays the verification codes $\mathbf{r c}_{\mathbf{s}}=\left(R C_{s_{1}}, \ldots, R C_{s_{k}}\right)$ for the selected candidates to the voter for comparing them with the codes $\mathbf{r c}_{i}$ printed on voting card i. We describe this process by an algorithm call CheckReturnCodes $\left(\mathbf{r c}_{i}, \mathbf{r c}_{\mathbf{s}}, \mathbf{s}\right)$, which is executed by the human voter. In case of a match, the voter enters the confirmation code Y_{i}, from which the voting client computes the confirmation $\gamma=\left(\hat{y}_{i}, \pi_{\beta}\right)$ consisting of the voter's public confirmation credential \hat{y}_{i} and a non-interactive zero-knowledge proof

$$
\pi_{\beta}=\operatorname{NIZKP}\left[\left(y_{i}, h_{i}\right): \hat{y}_{i}=\hat{g}^{y_{i}+h_{i}} \bmod \hat{p}\right] .
$$

In this way, the voting client proves knowledge of a sum $y_{i}+h_{i}$ o values y_{i} (derived from Y_{i}) and h_{i} (derived from $\mathbf{P}_{\mathbf{s}}$). The motivation and details of this particular construction have been discussed in Section 6.4.4.

After submitting γ via the bulletin board to every authority, they check the validity of the zero-knowledge proof included. In the success case, they respond with their finalization $\delta_{j}=\left(F_{i j}, \mathbf{r}_{i j}\right)$. The voting client retrieves the finalization code $F C$ from the values $\left(F_{i, 1}, \ldots, F_{i, s}\right)$ included in $\boldsymbol{\delta}_{i}=\left(\delta_{1}, \ldots, \delta_{s}\right)$ by calling GetFinalizationCode $\left(\boldsymbol{\delta}_{i}\right)$ and displays it to the voter for comparison. As above, we describe this process by an algorithm call CheckFinalization $\operatorname{Code}\left(F C_{i}, F C\right)$ executed by the human voter. The whole process is depicted in Prot. 6.6. Note that the randomizations ($\mathbf{r}_{i, 1}, \ldots, \mathbf{r}_{i, s}$) included in $\boldsymbol{\delta}_{i}$ are not needed for computing the finalization code. But their publication enables the verification of the OT responses by external verifiers [20].

Protocol 6.6: Vote Confirmation

6.5.3. Post-Election Phase

In the post-election phase, all $N \leqslant N_{E}$ submitted and confirmed ballots are processed through a mixing and decryption process. The main actors are the election authorities, which perform the mixing in a serial and the decryption in a parallel process. For the decryption, they require their shares $s k_{j}$ of the private encryption key, which the have generated during the pre-election phase. Before applying their key shares to the output of the mixing, they verify all previous steps by checking the validity of every ballot collected during the election phase and the correctness of the shuffle proofs. In addition to performing the decryption, they need to demonstrate its correctness with a non-interactive zero-knowledge proof. The very last step of the entire election process is the computation and announcement of the final election result by the election administrator.

a) Mixing

The mixing is a serial process, in which all election authorities are involved. Without loss of generality, we assume that the first mix is performed by the Auhoritiy 1, the second by Auhoritiy 2, and so on. The process is the same for everyone, except for the first authority, which needs to extract the list of encrypted votes from the submitted ballots. Recall that during vote casting, each authority keeps track of all submitted ballots and confirmation. In case of Authority 1 , corresponding lists are denoted by B_{1} and C_{1}, respectively. By calling GetEncryptions $\left(B_{1}, C_{1}\right)$, the first authority retrieves the list \mathbf{e}_{0} of encrypted votes, and by calling GenShuffle $\left(\mathbf{e}_{0}, p k\right)$, this list is shuffled into $\mathbf{e}_{1} \leftarrow \operatorname{Shuffle}_{p k}\left(\mathbf{e}_{0}, \mathbf{r}_{1}, \psi_{1}\right)$, where \mathbf{r}_{1} denotes the re-encryption randomizations and ψ_{1} the random permutation. These values are the secret inputs for a non-interactice proof

$$
\pi_{1}=\operatorname{NIZKP}\left[\left(\psi_{1}, \mathbf{r}_{1}\right): \mathbf{e}_{1}=\operatorname{Shuffle}_{p k}\left(\mathbf{e}_{0}, \mathbf{r}_{1}, \psi_{1}\right)\right]
$$

which proves the correctness of the shuffle. This proof results from calling the algorithm GenShuffleProof $\left(\mathbf{e}_{0}, \mathbf{e}_{1}, \mathbf{r}_{1}, \psi_{1}, p k\right)$. The results from conducting the first schuffle - the shuffled list of encryptions \mathbf{e}_{1} and the zero-knowledge proof π_{1}-are sent to the bulletin board. This is depicted in the upper part of Prot.6.7.

Exactly the same shuffling procedure is repeated s times, where the output list \mathbf{e}_{j-1} of the shuffle performed by Authority $j-1$ becomes the input list for the shuffle $\mathbf{e}_{j} \leftarrow$ Shuffle $_{p k}\left(\mathbf{e}_{j-1}, \mathbf{r}_{j}, \psi_{j}\right)$ performed of Authority j. The whole process over all s authorities realizes the functionality of a re-encryption mix-net. The final result of the mix-net consists of s lists of encryption $\mathbf{E}=\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{s}\right)$ with corresponding shuffle proofs $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{s}\right)$.

b) Decryption

After the mixing, every authority retrieves the complete output of the mix-net - the shuffled lists of encryptions \mathbf{E} and the shuffle proofs $\boldsymbol{\pi}$-from the bulletin board. The input \mathbf{e}_{0} of the first shuffle is retrieved from the submitted ballots by calling GetEncryptions $\left(B_{j}, C_{j}\right)$. Before starting the decryption, CheckShuffleProofs $\left(\boldsymbol{\pi}, e_{0}, \mathbf{E}, p k, j\right)$ is called the to verify the correctness of all shuffles. For authority j, this algorithm loops over all shuffle proofs π_{i},

```
Election Authority
Bulletin
\(j=1\)
Board
knows \(p k, B_{1}, C_{1}\)
\(\mathbf{e}_{0} \leftarrow\) GetEncryptions \(\left(B_{1}, C_{1}\right)\)
\(\left(\mathbf{e}_{1}, \mathbf{r}_{1}, \psi_{1}\right) \leftarrow\) GenShuffle \(\left(\mathbf{e}_{0}, p k\right)\)
\(\pi_{1} \leftarrow\) GenShuffleProof \(\left(\mathbf{e}_{0}, \mathbf{e}_{1}, \mathbf{r}_{1}, \psi_{1}, p k\right)\)
Election Authority
\(j \in\{2, \ldots, s\}\)
knows \(p k\)
    \(\mathbf{e}_{j-1}\)
\(\left(\mathbf{e}_{j}, \mathbf{r}_{j}, \psi_{j}\right) \leftarrow \operatorname{GenShuffle}\left(\mathbf{e}_{j-1}, p k\right)\)
\(\pi_{j} \leftarrow\) GenShuffleProof \(\left(\mathbf{e}_{j-1}, \mathbf{e}_{j}, \mathbf{r}_{j}, \psi_{j}, p k\right)\)
```

\qquad

```
\[
\begin{aligned}
& \mathbf{E} \leftarrow\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{s}\right) \\
& \boldsymbol{\pi} \leftarrow\left(\pi_{1}, \ldots, \pi_{s}\right)
\end{aligned}
\]
```

Protocol 6.7: Mixing
$i \neq j$, and checks them individually. As shown in Prot. 6.8, the process aborts in case any of these check fails.

In the success case, the encryptions $\mathbf{e}_{s}=\left(\left(a_{1}, b_{1}\right), \ldots\left(a_{n}, b_{n}\right)\right)$ obtained from authority s (the last mixer in the mix-net) are partially decrypted using the share $s k_{j}$ of the private decryption key. Calling GetPartialDecryptions $\left(\mathbf{e}_{s}, s k_{j}\right)$ returns a list $\mathbf{b}_{j}^{\prime}=\left(b_{1, j}^{\prime}, \ldots, b_{n, j}^{\prime}\right)$ of partial decryptions $b_{i j}^{\prime}=b_{i}^{s k_{j}}$, which are published on the bulletin board. To guarantee the correctness of the decryption, a non-interactive decryption proof

$$
\pi_{j}^{\prime}=\operatorname{NIZKP}\left[\left(s k_{j}\right):\left(b_{1, j}^{\prime}, \ldots, b_{n, j}^{\prime}, p k_{j}\right)=\left(b_{1}^{s k_{j}}, \ldots, b_{n}^{s k_{j}}, g^{s k_{j}}\right)\right]
$$

is computed by calling GenDecryptionProof $\left(s k_{j}, p k_{j}, \mathbf{e}_{s}, \mathbf{b}_{j}^{\prime}\right)$ and published along with \mathbf{b}_{j}^{\prime}. Note that this is a proof of equality of multiple discrete logarithms (see Section 5.4.2). At the end of this process, the partial decryptions and the decryption proofs from all election authorities are available on the bulletin board.

c) Tallying

To conclude an election, the election administrator retrieves the partial decryptions of every election authority from the bulletin board. The attached decryption proofs are checked

Election Authority $j \in\{1, \ldots, s\}$		Bulletin Board
knows $s k_{j}, p k_{j}, p k, B_{j}, C_{j}$		knows $\mathbf{E}=\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{s}\right), \boldsymbol{\pi}$
	E, $\boldsymbol{\pi}$	
$\mathrm{e}_{0} \leftarrow \operatorname{GetEncryptions}\left(B_{j}, C_{j}\right)$		
if \neg CheckShuffleProofs $\left(\boldsymbol{\pi}, e_{0}, \mathbf{E}, p k, j\right)$ abort		
$\mathbf{b}_{j}^{\prime} \leftarrow$ GetPartialDecryptions $\left(\mathbf{e}_{s}, s k_{j}\right)$		
$\pi_{j}^{\prime} \leftarrow \operatorname{GenDecryptionProof~}\left(s k_{j}, p k_{j}, \mathbf{e}_{s}, \mathbf{b}_{j}^{\prime}\right)$		
	$\mathrm{b}_{j}^{\prime}, \pi_{j}^{\prime}$	
		$\mathbf{B}^{\prime} \leftarrow\left(\mathbf{b}_{1}^{\prime}, \ldots, \mathbf{b}_{s}^{\prime}\right)$
		$\boldsymbol{\pi}^{\prime} \leftarrow\left(\pi_{1}^{\prime}, \ldots, \pi_{s}^{\prime}\right)$

Protocol 6.8: Decryption
by calling CheckDecryptionProofs $\left(\boldsymbol{\pi}^{\prime}, \mathbf{p k}, \mathbf{e}_{s}, \mathbf{B}^{\prime}\right)$. The process aborts if one or more than one check fails. Otherwise, by calling GetDecryptions $\left(\mathbf{e}_{s}, \mathbf{B}^{\prime}\right)$, the partial decryptions are assembled and the plaintexts are determined. Recall from Section 6.4.2 that every such plaintext is an encoding $\Gamma(\mathbf{s}) \in \mathbb{G}_{q}$ of some voter's selection of candidates, and that the individual votes can be retrieved by factorizing this number. By calling GetVotes (\mathbf{m}, n), this process is performed for all plaintexts. The whole tallying process is depicted in Prot. 6.9. The resulting election result matrix $\mathbf{V}=\left(v_{i j}\right)_{N \times n}$ represents the outcome of the election. The value $v_{i j} \in \mathbb{B}$ is set to 1 , if plaintext vote i contains a vote for candidate j, and to 0 , if this is not the case. Computing $\sum_{i=1}^{N} v_{i j}$ yields the total number of votes for candidate j.

Protocol 6.9: Tallying

7. Pseudo-Code Algorithms

To complete the formal description of the cryptographic voting protocol from the previous chapter, we will now present all necessary algorithms in pseudo-code. This will provide an even closer look at the details of the computations performed during the entire election process. The algorithms are numbered according to their appearance in the protocol. To avoid code redundancy and for improved clarity, some algorithms delegate certain tasks to sub-algorithms. An overview of all algorithms and sub-algorithms is given at the beginning of every subsection. Every algorithm is commented in the caption below the pseudo-code, but apart from that, we do not give further explanations. In Section 7.2, we start with some general algorithms for specific tasks, which are needed at multiple places. In Sections 7.3 to 7.5 , we specify the algorithms of the respective protocol phases.

7.1. Conventions and Assumptions

With respect to the names attributed to the algorithms, we apply the convention of using the prefix „Gen" for non-deterministic algorithms, the prefix „Get" for general deterministic algorithms, and the prefixes „Is", „Has", or "Check" for predicates. In the case of nondeterministic algorithms, we assume the existence of a cryptographically secure pseudorandom number generator (PRNG) and access to a high-entropy seed. We require such a PRNG for picking elements $r \in_{R} \mathbb{Z}_{q}, r \in_{R} \mathbb{G}_{q}, r \in_{R} \mathbb{Z}_{\hat{q}}, r \in_{R} \mathbb{Z}_{p^{\prime}}$, and $r \epsilon_{R}[a, b]$ uniformly at random. Since implementing a PRNG is a difficult problem on its own, it cannot be addressed in this document. Corresponding algorithms are usually available in standard cryptographic libraries of modern programming languages.

The public security parameters from Section 6.3 .1 are assumed to be known in every algorithm, i.e., we do not pass them explicitly as parameters. Most numeric calculations in the algorithms are performed modulo p, q, \hat{p}, \hat{q}, or p^{\prime}. For maximal clarity, we indicate the modulus in each individual case. We suppose that efficient algorithms are available for computing modular exponentiations $x^{y} \bmod p$ and modular inverses $x^{-1} \bmod p$. Divisions $x / y \bmod p$ are handled as $x y^{-1} \bmod p$ and exponentiations $x^{-y} \bmod p$ with negative exponents as $\left(x^{-1}\right)^{y} \bmod p$ or $\left(x^{y}\right)^{-1} \bmod p$. We also assume that readers are familiar with mathematical notations for sums and products, such that implementing expressions like $\sum_{i=1}^{N} x_{i}$ or $\prod_{i=1}^{N} x_{i}$ is straightforward.

An important precondition for every algorithm is the validity of the input parameters, for example that an ElGamal encryption $e=(a, b)$ is an element of $\mathbb{G}_{q} \times \mathbb{G}_{q}$ or that a given input lists has the desired length. We specify all preconditions for every algorithm, but we do not give explicit code to perform corresponding checks. However, as many attacks-for example on mix-nets - are based on infiltrating invalid parameters, we stress the importance of conducting such checks in an actual implementation. For an efficient way of testing group memberships $x \in \mathbb{G}_{q}$, we refer to Alg. 7.2.

7.2. General Algorithms

We start with some general algorithms that are called by at least two other algorithms in at least two different protocol phases. They are all deterministic. In Table 7.1 we give an overview. The algorithm $\operatorname{IsMember}(x)$, which is called by $\operatorname{GetPrimes}(n)$ for checking the set membership of values $x \in \mathbb{Z}_{p}$, can also be used for checking the validity of such parameters in other algorithms. As mentioned before, our algorithms do not contain explicit codes for making such checks.

Nr.	Algorithm	Called by	Protocol
7.1	GetPrimes (n)	Algs. $7.19,7.25$ and 7.54	$6.5,6.9$
7.2	$\rightarrow \operatorname{IsMember}(x)$		
7.3	GetGenerators (n)	Algs. 7.44 and 7.48	$6.7,6.8$
7.4	GetNIZKPChallenge (y, t, κ)	Algs. $7.21,7.24,7.33,7.36$,	$6.5,6.6,6.7,6.8,6.9$
		$7.44,7.48,7.50$ and 7.52	
7.5	GetNIZKPChallenges (n, y, κ)	Algs. 7.44 and 7.48	$6.7,6.8$

Table 7.1.: Overview of general algorithms for specific tasks.
Other general algorithms have been introduced in the Chapter 4 for converting integers, strings, and byte arrays and for hash value computations. We do not repeat them here. There are four algorithms in total, for which we not give explicit pseudo-code: $\operatorname{Sort}_{\leq}(S)$ for sorting a list S according to some total order \leq, UTF8(S) for converting a string S into a byte array according to the UTF-8 character encoding, $\operatorname{Hash}_{L}(B)$ for computing the hash value of length L (bytes) of an input byte array B (see Section 8.1), and JacobiSymbol (x, p) for computing the Jacobi symbol $\left(\frac{x}{p}\right) \in\{-1,0,1\}$ for two integers x and p. A proposal for $\operatorname{Hash}_{L}(B)$ based on the SHA-256 hash algorithm is given in Section 8.1.

For the first three algorithms, standard implementations are available in most modern programming languages. Algorithms to compute the Jacobi symbol are not so widely available, but GMPLib ${ }^{1}$, one of the fastest and most widely used libraries for multiple-precision arithmetic, provides an implementation of the Kronecker symbol, which includes the Jacobi symbol as special case. If no off-the-shelf implementation is available, we refer to existing pseudo-code algorithms such as [1, pp. 76-77].

[^5]```
Algorithm: GetPrimes(\(n\))
Input: Number of primes \(n \geqslant 2\)
\(x \leftarrow 1\)
for \(i=1, \ldots, n\) do
 repeat
 if \(x \leqslant 2\) then
 \(x \leftarrow x+1\)
 else
 \(x \leftarrow x+2\)
 if \(x \geqslant p\) then
 return \(\perp \quad / / n\) is incompatible with \(p\)
 until IsPrime \((x)\) and \(\operatorname{IsMember}(x) \quad / /\) see Alg. 7.2
 \(p_{i} \leftarrow x\)
\(\mathbf{p} \leftarrow\left(p_{1}, \ldots, p_{n}\right)\)
return \(p\)
\(/ / \mathbf{p} \in\left(\mathbb{G}_{q} \cap \mathbb{P}\right)^{n}\)
```

Algorithm 7.1: Computes the first $n$ prime numbers from $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$. The computation possibly fails if $n$ is too large or $p$ is too small, but this case is very unlikely in practice. In a more efficient implementation of this algorithm, the list of resulting primes is accumulated in a cache or precomputed for the largest expected value $n_{\max } \geqslant n$.

```
Algorithm: IsMember \((x)\)
Input: Number to test \(x \in \mathbb{N}\)
if \(1 \leqslant x<p\) then
 \(j \leftarrow \operatorname{JacobiSymbol}(x, p) \quad / / j \in\{-1,0,1\}\)
 if \(j=1\) then
 return true
return false
```

Algorithm 7.2: Checks if a positive integer $x \in \mathbb{N}$ is an element of $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$. The core of the algorithm is the computation of the Jacobi symbol $\left(\frac{x}{p}\right) \in\{-1,0,1\}$, for which we refer to existing algorithms such as [1, pp. 76-77] or implementations in libraries such as GMPLib.

```
Algorithm: GetGenerators(\(n\))
Input: Number of independent geneators \(n \geqslant 0\)
for \(i=1, \ldots, n\) do
 \(x \leftarrow 0\)
 repeat
 \(x \leftarrow x+1\)
 \(h_{i} \leftarrow\) Tolnteger \(\left(\operatorname{RecHash}_{L}(\right.\) "chVote" \(\left., i, x)\right) \bmod p \quad / /\) see Algs. 4.5 and 4.9
 \(h_{i} \leftarrow h_{i}^{2} \bmod p\)
 until \(h_{i} \notin\{0,1, g, h\} \cup\left\{h_{1}, \ldots, h_{i-1}\right\} \quad / /\) these cases are very unlikely
\(\mathbf{h} \leftarrow\left(h_{1}, \ldots, h_{n}\right)\)
return \(\mathbf{h} \quad / / \mathbf{h} \in\left(\mathbb{G}_{q} \backslash\{1\}\right)^{n}\)
```

Algorithm 7.3: Computes $n$ independent generators of $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$. The algorithm is an adaption of the NIST standard FIPS PUB 186-4 [1, Appendix A.2.3]. The string "chVote" guarantees that the resulting values are specific to the chVote project. In a more efficient implementation of this algorithm, the list of resulting generators is accumulated in a cache or precomputed for the largest expected value $n_{\max } \geqslant n$.

```
Algorithm: GetNIZKPChallenge \((y, t, \kappa)\)
Input: Public value \(y \in Y, Y\) unspecified
 Commitment \(t \in T, T\) unspecified
 Soundness strength \(1 \leqslant \kappa \leqslant 8 L\)
\(c \leftarrow \operatorname{Tolnteger}\left(\operatorname{RecHash}_{L}(y, t)\right) \bmod 2^{\kappa}\)
// see Algs. 4.5 and 4.9
return \(c\)
 \(/ / c \in \mathbb{Z}_{2^{\kappa}}\)
```

Algorithm 7.4: Computes a NIZKP challenge $0 \leqslant c<2^{\kappa}$ for a given public value $y$ and a public commitment $t$. The domains $Y$ and $T$ of the input values are unspecified.

```
Algorithm: GetNIZKPChallenges \((n, y, \kappa)\)
Input: Number of challenges \(n \geqslant 0\)
 Public value \(y \in Y, Y\) unspecified
 Soundness strength \(1 \leqslant \kappa \leqslant 8 L\)
\(H \leftarrow \operatorname{RecHash}_{L}(y) \quad\) // see Alg. 4.9
for \(i=1, \ldots, n\) do
 \(I \leftarrow \operatorname{RecHash}_{L}(i) \quad / /\) see Alg. 4.9
 \(c_{i} \leftarrow \operatorname{Tolnteger}\left(\operatorname{Hash}_{L}(H \| I)\right) \bmod 2^{\kappa} \quad / /\) see Alg. 4.5
\(\mathbf{c} \leftarrow\left(c_{1}, \ldots, c_{n}\right)\)
return \(\mathbf{c}\)
\(/ / \mathbf{c} \in \mathbb{Z}_{2^{\kappa}}^{n}\)
```

Algorithm 7.5: Computes $n$ challenges $0 \leqslant c_{i}<2^{\kappa}$ for a given of public value $y$. The domain $Y$ of the input value is unspecified. The results in $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ are identical to $c_{i}=\operatorname{Tolnteger}\left(\operatorname{RecHash}_{L}(y, i)\right) \bmod 2^{\kappa}$, but precomputing $H$ makes the algorithm more efficient, especially if $y$ is a complex mathematical object.

### 7.3. Pre-Election Phase

The main actors in the pre-election phase are the election authorities. For the given election definition consisting of values $\mathbf{n}, \mathbf{k}$, and $\mathbf{E}$, each election authority generates a share of the electorate data by calling Alg. 7.6. This is the main algorithm of the election preparation, which invokes several sub-algorithms for more specific tasks. Table 7.2 gives an overview of all algorithms of the pre-election phase. The public parts of the electorate data from every authority, which are exchanged using the bulletin board, are assembled by the election authorities by calling Alg. 7.12. The private parts of the electorate data, which are sent to the printing authority over a confidential channel, are assembled to create the voting cards by calling Alg. 7.13. The corresponding sub-task for creating a single voting card is delegated to Alg. 7.14, but the formating details are not specified explicitly. Two other algorithms are required for generating shares of the encryption key and for assembling the shares of the public key. For a more detailed description of the pre-election phase, we refer to Section 6.5.1.

| Nr. | Algorithm | Called by | Protocol |
| :---: | :---: | :---: | :---: |
| 7.6 | GenElectorateData(n, k, E) | Election authority | 6.1 |
| 7.7 | $\checkmark$ GenPoints( $\mathbf{n}$, k) |  |  |
| 7.8 | $\hookrightarrow$ GenPolynomial ( $d$ ) |  |  |
| 7.9 | $\hookrightarrow$ GetYValue ( $x, \mathbf{a}$ ) |  |  |
| 7.10 | $\hookrightarrow$ GenSecretVoterData(p) |  |  |
| 7.11 | $\hookrightarrow$ GetPublicVoterData ( $x, y, \mathbf{y}$ ) |  |  |
| 7.12 | GetPublicCredentials( $\hat{\mathbf{D}}$ ) | Election authority |  |
| 7.13 | GetVotingCards(v, c, n, k, E, D) | Printing authority | 6.2 |
| 7.14 | $\hookrightarrow \operatorname{GetVotingCard}(i, V, \mathbf{c}, \mathbf{n}, \mathbf{k}, X, Y, F C, \mathbf{r c})$ |  | 6.2 |
| 7.15 | GenKeyPair() | Election authority | 6.3 |
| 7.16 | GetPublicKey(pk) | Election authority |  |

Table 7.2.: Overview of algorithms and sub-algorithms of the pre-election phase

```
Algorithm: GenElectorateData(n, \(\mathbf{k}, \mathbf{E}\))
Input: Number of candidates \(\mathbf{n}=\left(n_{1}, \ldots, n_{t}\right), n_{j} \geqslant 2\)
 Number of selections \(\mathbf{k}=\left(k_{1}, \ldots, k_{t}\right), 0<k_{j}<n_{j}\)
 Eligibility matrix \(\mathbf{E}=\left(e_{i j}\right)_{N_{E} \times t}, e_{i j} \in \mathbb{B}\)
for \(i=1, \ldots, N_{E}\) do
 for \(j=1, \ldots, t\) do
 \(k_{i j} \leftarrow e_{i j} k_{j}\)
 \(\mathbf{k}_{i} \leftarrow\left(k_{i, 1}, \ldots, k_{i, t}\right)\)
 \(\left(\mathbf{p}_{i}, \mathbf{y}_{i}\right) \leftarrow \operatorname{GenPoints}\left(\mathbf{n}, \mathbf{k}_{i}\right) \quad / / \mathbf{p}_{i}=\left(p_{i, 1}, \ldots, p_{i, n}\right)\), see Alg. 7.7
 \(d_{i} \leftarrow\) GenSecretVoterData \(\left(\mathbf{p}_{i}\right) \quad / / d_{i}=\left(x_{i}, y_{i}, F_{i}, \mathbf{r}_{i}\right)\), see Alg. 7.10
 \(\hat{d}_{i} \leftarrow\) GetPublicVoterData \(\left(x_{i}, y_{i}, \mathbf{y}_{i}\right) \quad / / \hat{d}_{i}=\left(\hat{x}_{i}, \hat{y}_{i}\right)\), see Alg. 7.11
\(\mathbf{d} \leftarrow\left(d_{1}, \ldots, d_{N_{E}}\right)\)
\(\hat{\mathbf{d}} \leftarrow\left(\hat{d}_{1}, \ldots, \hat{d}_{N_{E}}\right)\)
\(\mathbf{P} \leftarrow\left(p_{i j}\right)_{N_{E} \times n}\)
\(\mathbf{K} \leftarrow\left(k_{i j}\right)_{N_{E} \times t}\)
\(\operatorname{return}(\mathbf{d}, \hat{\mathbf{d}}, \mathbf{P}, \mathbf{K}) \quad / / \mathbf{d} \in\left(\mathbb{Z}_{\hat{q}_{x}} \times \mathbb{Z}_{\hat{q}_{y}} \times \mathcal{B}^{L_{F}} \times\left(\mathcal{B}^{L_{R}}\right)^{n}\right)^{N_{E}}, \hat{\mathbf{d}} \in\left(\mathbb{G}_{\hat{q}}^{2}\right)^{N_{E}}\),
\(/ / \mathbf{P} \in\left(\mathbb{Z}_{p^{\prime}}^{2}\right)^{N_{E} n}, \mathbf{K} \in \mathbb{N}^{N_{E} t}\)
```

Algorithm 7.6: Generates the voting card data for the whole electorate. For this, the algorithm loops over all voters and computes for each voter $i$ the permitted number $k_{i j}=e_{i j} k_{j}$ of selections in each of the $t$ elections of the current election event. Alg. 7.10 and Alg. 7.11 are called to generate the voter data for each single voter. At the end, the responses of these calls are grouped into a secret part $\mathbf{d}$ sent to the voters prior to an election event via the printing authority (see Prot.6.2), a public part $\hat{\mathbf{d}}$ sent to the bulletin board to allow voter identification during vote casting (see Prot.6.1 and Prot.6.5), and the matrix $\mathbf{P}=\left(p_{i j}\right)_{N_{E} \times n}$ of random points $p_{i j}=\left(x_{i j}, y_{i j}\right)$, of which some will be transferred obliviously to the voters during vote casting (see Prot. 6.5). The matrix $\mathbf{K}=\left(k_{i j}\right)_{N_{E} \times t}$ derived from $\mathbf{k}$ and $\mathbf{E}$ is returned for later use.

## Algorithm: GenPoints( $\mathbf{n}, \mathbf{k}$ )

Input: Number of candidates $\mathbf{n}=\left(n_{1}, \ldots, n_{t}\right), n_{j} \geqslant 2, n=\sum_{j=1}^{t} n_{j}$
Number of selections $\mathbf{k}=\left(k_{1}, \ldots, k_{t}\right), 0 \leqslant k_{j}<n_{j} \quad / / k_{j}=0$ means ineligible
$i \leftarrow 1 \quad / /$ loop over $i=1, \ldots, n$
for $j=1, \ldots, t$ do
$\mathbf{a}_{j} \leftarrow \operatorname{GenPolynomial}\left(k_{j}-1\right) \quad / / \mathbf{a}_{j}=\left(a_{j, 1}, \ldots, a_{j, k_{j}}\right)$, see Alg. 7.8
$X \leftarrow \varnothing$
for $l=1, \ldots, n_{j}$ do
$x \in_{R} \mathbb{Z}_{p^{\prime}} \backslash X \quad / /$ different from values picked previously
$X \leftarrow X \cup\{x\}$
$y \leftarrow \operatorname{GetYValue}\left(x, \mathbf{a}_{j}\right) \quad / /$ see Alg. 7.9 $p_{i} \leftarrow(x, y)$ $i \leftarrow i+1$
$y_{j} \leftarrow \operatorname{GetYValue}\left(0, \mathbf{a}_{j}\right) \quad / /$ see Alg. 7.9
$\mathbf{p} \leftarrow\left(p_{1}, \ldots, p_{n}\right)$
$\mathbf{y} \leftarrow\left(y_{1}, \ldots, y_{t}\right)$
$\operatorname{return}(\mathbf{p}, \mathbf{y}) \quad / / \mathbf{p} \in\left(\mathbb{Z}_{p^{\prime}}^{2}\right)^{n}, \mathbf{y} \in \mathbb{Z}_{\hat{q}}^{t}$
Algorithm 7.7: Generates a list of $n=\sum_{j=1}^{t} n_{j}$ random points picked from $t$ random polynomials $A_{j}(X) \in_{R} \mathbb{Z}_{p^{\prime}}[X]$ of degree $k_{j}-1$ (by picking $n_{j}$ different random points from each polynomial). The random polynomials are obtained from calling Alg.7.8. Additionally, using Alg. 7.9, the values $y_{j}=A_{j}(0)$ are computed for all random polynomials and returned together with the random points.

## Algorithm: GenPolynomial(d)

Input: Degree $d \geqslant-1$
if $d=-1$ then
$\mathbf{a} \leftarrow(0)$
else
for $i=0, \ldots, d-1$ do $a_{i} \in_{R} \mathbb{Z}_{p^{\prime}}$
$a_{d} \in_{R} \mathbb{Z}_{p^{\prime}} \backslash\{0\}$
$\mathbf{a} \leftarrow\left(a_{0}, \ldots, a_{d}\right)$
return a
$/ / \mathbf{a} \in \mathbb{Z}_{p^{\prime}}^{d+1}$
Algorithm 7.8: Generates the coefficients $a_{0}, \ldots, a_{d}$ of a random polynomial $A(X)=$ $\sum_{i=0}^{d} a_{i} X^{i} \bmod p^{\prime}$ of degree $d \geqslant 0$. The algorithm also accepts $d=-1$ as input, which we interpret as the polynomial $A(X)=0$. In this case, the algorithm returns the coefficient list $\mathbf{a}=(0)$.

```
Algorithm: GetYValue (\(x, \mathbf{a}\))
Input: Value \(x \in \mathbb{Z}_{p^{\prime}}\)
 Coefficients \(\mathbf{a}=\left(a_{0}, \ldots, a_{d}\right), a_{i} \in \mathbb{Z}_{p^{\prime}}, d \geqslant 0\)
if \(x=0\) then
 \(y \leftarrow a_{0}\)
else
 \(y \leftarrow 0\)
 for \(i=d, \ldots, 0\) do
 \(y \leftarrow a_{i}+x \cdot y \bmod p^{\prime}\)
return \(y\)
\(/ / y \in \mathbb{Z}_{p^{\prime}}\)
```

Algorithm 7.9: Computes the value $y=A(x) \in \mathbb{Z}_{p^{\prime}}$ obtained from evaluating the polynomial $A(X)=\sum_{i=0}^{d} a_{i} X^{i} \bmod p^{\prime}$ at position $x$. The algorithm is an implementation of Horner's method.

```
Algorithm: GenSecretVoterData(p)
Input: Points \(\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), p_{i} \in \mathbb{Z}_{p^{\prime}}^{2}\)
\(\hat{q}_{x}^{\prime} \leftarrow\left\lfloor\hat{q}_{x} / s\right\rfloor, \hat{q}_{y}^{\prime} \leftarrow\left\lfloor\hat{q}_{y} / s\right\rfloor\)
\(x \in_{R} \mathbb{Z}_{\hat{q}_{x}^{\prime}}, y \in_{R} \mathbb{Z}_{\hat{q}_{y}^{\prime}}\)
\(F \leftarrow \operatorname{Truncate}\left(\operatorname{RecHash}_{L}(\mathbf{p}), L_{F}\right) \quad / /\) see Alg. 4.9
for \(i=1, \ldots, n\) do
 \(R_{i} \leftarrow \operatorname{Truncate}\left(\operatorname{RecHash}_{L}\left(p_{i}\right), L_{R}\right) \quad / /\) see Alg. 4.9
\(\mathbf{r} \leftarrow\left(R_{1}, \ldots, R_{n}\right)\)
\(d \leftarrow(x, y, F, \mathbf{r})\)
return \(d\)
\(/ / d \in \mathbb{Z}_{\hat{q}_{x}} \times \mathbb{Z}_{\hat{q}_{y}} \times \mathcal{B}^{L_{F}} \times\left(\mathcal{B}^{L_{R}}\right)^{n}\)
```

Algorithm 7.10: Generates an authority's share of the secret data for a single voter, which is sent to the voter prior to an election event via the printing authority.

Algorithm: GetPublicVoterData $(x, y, \mathbf{y})$
Input: Secret voting credential $x \in \mathbb{Z}_{\hat{q}}$
Secret confirmation credential $y \in \mathbb{Z}_{\hat{q}}$
Values $\mathbf{y} \in \mathbb{Z}_{p^{\prime}}^{t}$
$h \leftarrow \operatorname{Tolnteger}\left(\operatorname{RecHash}_{L}(\mathbf{y})\right) \bmod \hat{q} \quad / /$ see Algs. 4.5 and 4.9
$\hat{x} \leftarrow \hat{g}^{x} \bmod \hat{p}, \hat{y} \leftarrow \hat{g}^{y+h} \bmod \hat{p}$
$\hat{d} \leftarrow(\hat{x}, \hat{y})$
return $\hat{d}$
$/ / \hat{d} \in \mathbb{G}_{\tilde{q}}^{2}$
Algorithm 7.11: Generates an authority's share of the public data for a single voter, which is sent to the bulletin board.

```
Algorithm: GetPublicCredentials(\(\hat{\mathbf{D}}\))
Input: Public voter credentials \(\hat{\mathbf{D}}=\left(\hat{d}_{i j}\right)_{N_{E} \times s}, \hat{d}_{i j}=\left(\hat{x}_{i j}, \hat{y}_{i j}\right), \hat{x}_{i j} \in \mathbb{G}_{\hat{q}}, \hat{y}_{i j} \in \mathbb{G}_{\hat{q}}\)
for \(i=1, \ldots, N_{E}\) do
 \(\hat{x}_{i} \leftarrow \prod_{j=1}^{s} \hat{x}_{i j} \bmod \hat{p}\)
 \(\hat{y}_{i} \leftarrow \prod_{j=1}^{s} \hat{y}_{i j} \bmod \hat{p}\)
\(\hat{\mathbf{x}} \leftarrow\left(\hat{x}_{1}, \ldots, \hat{x}_{N_{E}}\right)\)
\(\hat{\mathbf{y}} \leftarrow\left(\hat{y}_{1}, \ldots, \hat{y}_{N_{E}}\right)\)
return \((\hat{\mathbf{x}}, \hat{\mathbf{y}})\)
\(/ / \hat{\mathbf{x}} \in \mathbb{G}_{\hat{q}}^{N_{E}}, \hat{\mathbf{y}} \in \mathbb{G}_{\hat{q}}^{N_{E}}\)
```

Algorithm 7.12: Computes lists $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ of public voter credentials, which are obtained by multiplying corresponding values from the public parts of the electorate data generated by the election authorities. The values in $\hat{\mathbf{x}}$ are used in Prot. 6.5 to verify if a submitted ballot belongs to an eligible voter, whereas the values in $\hat{\mathbf{y}}$ are used in Prot. 6.6 to verify that the vote confirmation has been invoked by the same eligible voter.

## Algorithm: GetVotingCards(v, c, n, k, E, D)

Input: Voter descriptions $\mathbf{v}=\left(V_{1}, \ldots, V_{N_{E}}\right), V_{i} \in A_{\text {ucs }}^{*}$
Candidate descriptions $\mathbf{c}=\left(C_{1}, \ldots, C_{n}\right), C_{i} \in A_{\text {ucs }}^{*}$
Number of candidates $\mathbf{n}=\left(n_{1}, \ldots, n_{t}\right), n_{j} \geqslant 2, n=\sum_{j=1}^{t} n_{j}$
Number of selections $\mathbf{k}=\left(k_{1}, \ldots, k_{t}\right), 0<k_{j}<n_{j}$
Eligibility matrix $\mathbf{E}=\left(e_{i j}\right)_{N_{E} \times t}, e_{i j} \in \mathbb{B}$
Voting card data $\mathbf{D}=\left(d_{i j}\right)_{N_{E} \times s}, d_{i j}=\left(x_{i j}, y_{i j}, F_{i j}, \mathbf{r}_{i j}\right), x_{i j} \in \mathbb{Z}_{\hat{q}_{x}}$,
$\sum_{j=1}^{s} x_{i j}<\hat{q}_{x}, y_{i j} \in \mathbb{Z}_{\hat{q}_{y}}, \sum_{j=1}^{s} y_{i j}<\hat{q}_{y}, F_{i j} \in \mathcal{B}^{L_{F}}, \mathbf{r}_{i j}=\left(R_{i, j, 1}, \ldots, R_{i, j, n}\right)$,
$R_{i j k} \in \mathcal{B}^{L_{R}}$
for $i=1, \ldots, N_{E}$ do
$\mathbf{k}_{i}=\left(e_{i, 1} k_{1}, \ldots, e_{i, t} k_{t}\right)$
$X \leftarrow \operatorname{ToString}\left(\sum_{j=1}^{s} x_{i j}, \ell_{X}, A_{X}\right) \quad / /$ see Alg. 4.6
$Y \leftarrow \operatorname{ToString}\left(\sum_{j=1}^{s} y_{i j}, \ell_{Y}, A_{Y}\right) \quad / /$ see Alg. 4.6
$F C \leftarrow \operatorname{ToString}\left(\oplus_{j=1}^{s} F_{i j}, A_{F}\right) \quad / /$ see Alg. 4.8
for $k=1, \ldots, n$ do
$R \leftarrow \operatorname{MarkByteArray}\left(\oplus_{j=1}^{s} R_{i j k}, k-1, n_{\max }\right) \quad / /$ see Alg. 4.1
$R C_{k} \leftarrow \operatorname{ToString}\left(R, A_{R}\right) \quad / /$ see Alg. 4.8
$\mathrm{rc} \leftarrow\left(R C_{1}, \ldots, R C_{n}\right)$
$S_{i} \leftarrow \operatorname{Get} \operatorname{Voting} \operatorname{Card}\left(i, V_{i}, \mathbf{c}, \mathbf{n}, \mathbf{k}_{i}, X, Y, F C, \mathbf{r c}\right) \quad / /$ see Alg. 7.14
$\mathbf{s} \leftarrow\left(S_{1}, \ldots, S_{N_{E}}\right)$
return s
$/ / \mathbf{s} \in\left(A_{\mathrm{ucs}}^{*}\right)^{N_{E}}$
Algorithm 7.13: Computes the list $\mathbf{s}=\left(S_{1}, \ldots, S_{N_{E}}\right)$ of voting cards for every voter. A single voting card is represented as a string $S_{i} \in A_{\mathrm{ucs}}^{*}$, which is generated by Alg. 7.14.

```
Algorithm: GetVotingCard \((i, V, \mathbf{c}, \mathbf{n}, \mathbf{k}, X, Y, F C, \mathbf{r c})\)
Input: Voter index \(i \in \mathbb{N}\)
 Voter description \(V \in A_{\text {ucs }}^{*}\)
 Candidate descriptions \(\mathbf{c}=\left(C_{1}, \ldots, C_{n}\right), C_{i} \in A_{\text {ucs }}^{*}\)
 Number of candidates \(\mathbf{n}=\left(n_{1}, \ldots, n_{t}\right), n_{j} \geqslant 2, n=\sum_{j=1}^{t} n_{j}\)
 Number of selections \(\mathbf{k}=\left(k_{1}, \ldots, k_{t}\right), 0 \leqslant k_{j}<n_{j} \quad / / k_{j}=0\) means ineligible
 Voting code \(X \in A_{X}^{\ell_{X}}\)
 Confirmation code \(Y \in A_{Y}^{\ell_{Y}}\)
 Finalization code \(F C \in A_{F}^{\ell_{F}}\)
 Verification codes \(\mathbf{r c}=\left(R C_{1}, \ldots, R C_{n}\right), R C_{i} \in A_{R}^{\ell_{R}}\)
\(S \leftarrow \cdots \quad / /\) compose string to be printed on voting card
return \(S\)
\(/ / S \in A_{\mathrm{ucs}}^{*}\)
```

Algorithm 7.14: Computes a string $S \in A_{\text {ucs }}^{*}$, which represent a voting card that can be printed on paper and sent to voter $i$. Specifying the formatting details of presenting the information on the printed voting card is beyond the scope of this document.

```
Algorithm: GenKeyPair()
\(s k \in_{R} \mathbb{Z}_{q}\)
\(p k \leftarrow g^{s k} \bmod p\)
return \((s k, p k) \quad / /(s k, p k) \in \mathbb{Z}_{q} \times \mathbb{G}_{q}\)
```

Algorithm 7.15: Generates a random ElGamal encryption key pair $(s k, p k) \in \mathbb{Z}_{q} \times \mathbb{G}_{q}$ or a shares of such a key pair. This algorithm is used in Prot. 6.3 by the authorities to generate private shares of a common public encryption key.

Algorithm: GetPublicKey(pk)
Input: Public keys $\mathbf{p k}=\left(p k_{1}, \ldots, p k_{s}\right), p k_{j} \in \mathbb{G}_{q}$
$p k \leftarrow \prod_{j=1}^{s} p k_{j} \bmod p$
return $p k$
$/ / p k \in \mathbb{G}_{q}$
Algorithm 7.16: Computes a public ElGamal encryption key $p k \in \mathbb{G}_{q}$ from given shares $p k_{j} \in \mathbb{G}_{q}$.

### 7.4. Election Phase

The election phase is the most complex part of the cryptographic protocol, in which each of the involved parties (voter, voting client, election authorities) calls several algorithms. An overview of all algorithms is given in Table 7.3. To submit a ballot containing the voter's selections s, the voting client calls Alg. 7.17 to obtain the voting page that is presented to the voter and Alg. 7.16 to obtain the public encryption key. Using the voter's inputs $X$ and $\mathbf{s}$, the ballot is constructed by calling Alg. 7.18, which internally invokes several sub-algorithms. The authorities call Alg. 7.22 to check the validity of the ballot and Alg. 7.25 to generate the response to the OT query included in the ballot. The voting client unpacks the responses by calling Alg. 7.26 and assembles the resulting point matrix into the verification codes of the

| Nr. | Algorithm | Called by | Protocol |
| :---: | :---: | :---: | :---: |
| 7.17 | GetVotingPage( $i, \mathbf{c}, \mathbf{n}, \mathbf{k}$ ) | Voting client | 6.4 |
| 7.16 | GetPublicKey (pk) | Voting client |  |
| 7.18 | GenBallot ( $X$, s, pk) | Voting client |  |
| 7.19 | $\longrightarrow$ GetSelectedPrimes(s) |  |  |
| 7.20 | $\longrightarrow$ GenQuery ( $\mathbf{q}, p k$ ) |  |  |
| 7.21 | $\rightarrow$ GenBallotProof ( $x, m, r, \hat{x}, a, b, p k$ ) |  |  |
| 7.22 | CheckBallot ( $i, \alpha, p k, \mathbf{K}, \hat{\mathbf{x}}, B)$ | Election authority | 6.5 |
| 7.23 | $\rightarrow$ HasBallot $(i, B)$ |  |  |
| 7.24 | $\rightarrow$ CheckBallotProof $(\pi, \hat{x}, a, b, p k)$ |  |  |
| 7.25 | GenResponse ( $i, \mathbf{a}, p k, \mathbf{n}, \mathbf{K}, \mathbf{P}$ ) | Election authority |  |
| 7.26 | GetPointMatrix ( $\boldsymbol{\beta}, \mathbf{k}, \mathbf{s}, \mathbf{r})$ | Voting client |  |
| 7.27 | $\rightarrow \operatorname{GetPoints}(\beta, \mathbf{k}, \mathbf{s}, \mathbf{r})$ |  |  |
| 7.28 | GetReturnCodes(s, $\mathbf{P}_{\mathbf{s}}$ ) | Voting client |  |
| 7.29 | CheckReturnCodes( $\mathbf{r c}$, $\mathbf{r c}^{\prime}$, s) | Voter |  |
| 7.30 | GenConfirmation( $\left.Y, \mathbf{P}^{\prime}, \mathbf{k}\right)$ | Voting client |  |
| 7.31 | $\longrightarrow$ GetValues (p, k) |  |  |
| 7.32 | $\rightarrow$ GetValue(p) |  |  |
| 7.33 | $\longrightarrow$ GenConfirmationProof $(y, \hat{y})$ |  |  |
| 7.34 | CheckConfirmation ( $i, \gamma, \hat{\mathbf{y}}, B, C$ ) | Election authority | 6.6 |
| 7.23 | $\rightarrow$ HasBallot $(i, B)$ |  |  |
| 7.35 | $\rightarrow$ HasConfirmation ( $i, C$ ) |  |  |
| 7.36 | $\longrightarrow$ CheckConfirmationProof $(\pi, \hat{y})$ |  |  |
| 7.37 | GetFinalization ( $i, \mathbf{P}, B$ ) | Election authority |  |
| 7.38 | GetFinalizationCode( $\boldsymbol{\delta}$ ) | Voting client |  |
| 7.39 | CheckFinalizationCode( $F C, F C^{\prime}$ ) | Voter |  |

Table 7.3.: Overview of algorithms and sub-algorithms of the election phase
selected candidates by calling Alg. 7.28. The voter then compares the displayed verification codes with the ones on the voting card and enters the confirmation code $Y$. We describe the (human) execution of this task by a call to Alg. 7.29. The voting client then generates the confirmation message using Alg. 7.30, which invokes several sub-algorithms. By calling Algs. 7.34 and 7.37 , the authorities check the confirmation and return their shares of the finalization code. Using 7.38 , the voting client assembles the finalization code and displays it to the voter, which finally executes Alg. 7.39 to compare it with the finalization code printed on the voting card. Section 6.5.2 describes the election phase in more details.

```
Algorithm: GetVotingPage(\(i, \mathbf{c}, \mathbf{n}, \mathbf{k}\))
Input: Voter index \(i \in \mathbb{N}\)
 Candidate descriptions \(\mathbf{c}=\left(C_{1}, \ldots, C_{n}\right), C_{i} \in A_{\text {ucs }}^{*}\)
 Number of candidates \(\mathbf{n}=\left(n_{1}, \ldots, n_{t}\right), n_{j} \geqslant 2, n=\sum_{j=1}^{t} n_{j}\)
 Number of selections \(\mathbf{k}=\left(k_{1}, \ldots, k_{t}\right), 0 \leqslant k_{j}<n_{j} \quad / / k_{j}=0\) means ineligible
// Compose string to be displayed to the voter
\(P \leftarrow \ldots\)
return \(P\)
// \(P \in A_{\mathrm{ucs}}^{*}\)
```

Algorithm 7.17: Computes a string $P \in A_{\mathrm{ucs}}^{*}$, which represents the voting page displayed to voter. Specifying the details of presenting the information on the voting page is beyond the scope of this document.

```
Algorithm: GenBallot \((X, \mathbf{s}, p k)\)
Input: Voting code \(X \in A_{X}^{\ell_{X}}\)
 Selection \(\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right), 1 \leqslant s_{1}<\cdots<s_{k}\)
 Encryption key \(p k \in \mathbb{G}_{q} \backslash\{1\}\)
\(x \leftarrow \operatorname{Tolnteger}(X) \quad / /\) see Alg. 4.7
\(\hat{x} \leftarrow \hat{g}^{x} \bmod \hat{p}\)
\(\mathbf{q} \leftarrow\) GetSelectedPrimes(s) \(\quad / / \mathbf{q}=\left(q_{1}, \ldots, q_{k}\right)\), see Alg. 7.19
\(m \leftarrow \prod_{i=1}^{k} q_{i}\)
if \(m \geqslant p\) then
 return \(\perp \quad / /(k, n)\) is incompatible with \(p\)
\((\mathbf{a}, \mathbf{r}) \leftarrow \operatorname{GenQuery}(\mathbf{q}, p k) \quad / / \mathbf{a}=\left(a_{1}, \ldots, a_{k}\right), \mathbf{r}=\left(r_{1}, \ldots, r_{k}\right)\), see Alg. 7.20
\(a \leftarrow \prod_{i=1}^{k} a_{i} \bmod p\)
\(r \leftarrow \sum_{i=1}^{k} r_{i} \bmod q\)
\(b \leftarrow g^{r} \bmod p\)
\(\pi \leftarrow \operatorname{GenBallotProof}(x, m, r, \hat{x}, a, b, p k) \quad / / \pi=(t, s)\), see Alg. 7.21
\(\alpha \leftarrow(\hat{x}, \mathbf{a}, b, \pi)\)
return \((\alpha, \mathbf{r}) \quad / / \alpha \in \mathbb{Z}_{\hat{q}} \times \mathbb{G}_{q}^{k} \times \mathbb{G}_{q} \times\left(\left(\mathbb{G}_{\hat{q}} \times \mathbb{G}_{q}^{2}\right) \times\left(\mathbb{Z}_{\hat{q}} \times \mathbb{G}_{q} \times \mathbb{Z}_{q}\right)\right), \mathbf{r} \in \mathbb{Z}_{q}^{k}\)
```

Algorithm 7.18: Generates a ballot based on the selection s and the voting code $X$. The ballot includes an OT query a and a NIZKP $\pi$. The algorithm also returns the randomizations $\mathbf{r}$ of the OT query, which are required in Alg. 7.27 to derive the transferred messages from the OT response.

```
Algorithm: GetSelectedPrimes(s)
Input: Selections \(\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right), 1 \leqslant s_{1}<\cdots<s_{k}\)
\(\mathbf{p} \leftarrow \operatorname{GetPrimes}\left(s_{k}\right) \quad / /\) see Alg. 7.1
for \(i=1, \ldots, k\) do
 \(q_{i} \leftarrow p_{s_{i}}\)
\(\mathbf{q} \leftarrow\left(q_{1}, \ldots, q_{k}\right)\)
return q
\(/ / \mathbf{q} \in\left(\mathbb{G}_{q} \cap \mathbb{P}\right)^{k}\)
```

Algorithm 7.19: Selects $k$ prime numbers from $\mathbb{G}_{q}$ corresponding to the given indices $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right)$. For example, $\mathbf{s}=(1,3,7)$ means selecting the first, the third, and the seventh prime from $\mathbb{G}_{q}$.

```
Algorithm: GenQuery (\(\mathbf{q}, p k\))
Input: Selected primes \(\mathbf{q}=\left(q_{1}, \ldots, q_{k}\right)\)
 Encryption key \(p k \in \mathbb{G}_{q} \backslash\{1\}\)
for \(i=1, \ldots, k\) do
 \(r_{i} \in_{R} \mathbb{Z}_{q}\)
 \(a_{i} \leftarrow q_{i} \cdot p k^{r_{i}} \bmod p\)
\(\mathbf{a} \leftarrow\left(a_{1}, \ldots, a_{k}\right), \mathbf{r} \leftarrow\left(r_{1}, \ldots, r_{k}\right)\)
return (\(\mathbf{a}, \mathbf{r}\))
\(/ / \mathbf{a} \in \mathbb{G}_{q}^{k}, \mathbf{r} \in \mathbb{Z}_{q}^{k}\)
```

Algorithm 7.20: Generates an OT query a from the prime numbers representing the voter's selections and a for a given public encryption key (which serves as a generator of $\mathbb{Z}_{p}$ ).

Algorithm: GenBallotProof $(x, m, r, \hat{x}, a, b, p k)$
Input: Voting credentials $(x, \hat{x}) \in \mathbb{Z}_{\hat{q}} \times \mathbb{G}_{\hat{q}}$
Product of selected primes $m \in \mathbb{G}_{q}$
Randomization $r \in \mathbb{Z}_{q}$
ElGamal encryption $(a, b) \in \mathbb{G}_{q} \times \mathbb{G}_{q}$
Encryption key $p k \in \mathbb{G}_{q}$
$\omega_{1} \in_{R} \mathbb{Z}_{\hat{q}}, \omega_{2} \in_{R} \mathbb{G}_{q}, \omega_{3} \in_{R} \mathbb{Z}_{q}$
$t_{1} \leftarrow \hat{g}^{\omega_{1}} \bmod \hat{p}, t_{2} \leftarrow \omega_{2} \cdot p k^{\omega_{3}} \bmod p, t_{3} \leftarrow g^{\omega_{3}} \bmod p$
$y \leftarrow(\hat{x}, a, b), t \leftarrow\left(t_{1}, t_{2}, t_{3}\right)$
$c \leftarrow \operatorname{GetNIZKPChallenge}(y, t, \tau) \quad / /$ see Alg. 7.4
$s_{1} \leftarrow \omega_{1}+c \cdot x \bmod \hat{q}, s_{2} \leftarrow \omega_{2} \cdot m^{c} \bmod p, s_{3} \leftarrow \omega_{3}+c \cdot r \bmod q$
$s \leftarrow\left(s_{1}, s_{2}, s_{3}\right)$
$\pi \leftarrow(t, s)$
return $\pi$

$$
/ / \pi \in\left(\mathbb{G}_{\hat{q}} \times \mathbb{G}_{q}^{2}\right) \times\left(\mathbb{Z}_{\hat{q}} \times \mathbb{G}_{q} \times \mathbb{Z}_{q}\right)
$$

Algorithm 7.21: Generates a NIZKP, which proves that the ballot has been formed properly. This proof includes a proof of knowledge of the secret voting credential $x$ that matches with the public voting credential $\hat{x}$. Note that this is equivalent to a Schnorr identification proof [28]. For the verification of this proof, see Alg. 7.24.

Algorithm: CheckBallot $(i, \alpha, p k, \mathbf{K}, \hat{\mathbf{x}}, B)$
Input: Voter index $i \in\left\{1, \ldots N_{E}\right\}$
Ballot $\alpha=(\hat{x}, \mathbf{a}, b, \pi), \hat{x} \in \mathbb{Z}_{\hat{q}}, \mathbf{a}=\left(a_{1}, \ldots, a_{k_{i}}\right), a_{j} \in \mathbb{G}_{q}, b \in \mathbb{G}_{q}$, $\pi \in\left(\mathbb{G}_{\hat{q}} \times \mathbb{G}_{q}^{2}\right) \times\left(\mathbb{Z}_{\hat{q}} \times \mathbb{G}_{q} \times \mathbb{Z}_{q}\right)$
Encryption key $p k \in \mathbb{G}_{q}$
Number of selections $\mathbf{K}=\left(k_{i j}\right)_{N_{E} \times t}, 0 \leqslant k_{i j}, k_{i}=\sum_{j=1}^{t} k_{i j}$
Public voting credentials $\hat{\mathbf{x}}=\left\{\hat{x}_{1}, \ldots, \hat{x}_{N_{E}}\right\}, \hat{x}_{i} \in \mathbb{G}_{\hat{q}}$
Ballot list $B=\left\langle\left(i_{j}, \alpha_{j}, \mathbf{r}_{j}\right)\right\rangle_{j=0}^{N_{B}-1}, i_{j} \in\left\{1, \ldots, N_{E}\right\}$
if $\neg$ HasBallot $(i, B)$ and $\hat{x}=\hat{x}_{i}$ then
// see Alg. 7.23
$a \leftarrow \prod_{j=1}^{k_{i}} a_{j} \bmod p$
if CheckBallotProof $(\pi, \hat{x}, a, b, p k)$ then // see Alg. 7.24 _ return true
return false
Algorithm 7.22: Checks if a ballot $\alpha$ obtained from voter $i$ is valid. For this, voter $i$ must not have submitted a valid ballot before, $\pi$ must be valid, and $\hat{x}$ must be the public voting credential of voter $i$. Note that parameter checking $|\mathbf{a}|=k_{i}$ for $k_{i}=\sum_{j=1}^{t} k_{i j}$ is a very important initial step of this algorithm.

```
Algorithm: HasBallot \((i, B)\)
Input: Voter index \(i \in \mathbb{N}\)
 Ballot list \(B=\left\langle\left(i_{j}, \alpha_{j}, \mathbf{r}_{j}\right)\right\rangle_{j=0}^{N_{B}-1}, i_{j} \in \mathbb{N}\)
for \(j=0, \ldots, N_{B}-1\) do \(\quad / /\) use binary search or hash table for better performance
 \(\left(i_{j}, \alpha_{j}, \mathbf{r}_{j}\right) \leftarrow B[j]\)
 if \(i=i_{j}\) then
 return true
return false
```

Algorithm 7.23: Checks if the ballot list $B$ contains an entry for $i$.

```
Algorithm: CheckBallotProof \((\pi, \hat{x}, a, b, p k)\)
Input: Ballot proof \(\pi=(t, s), t=\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{G}_{\hat{q}} \times \mathbb{G}_{q}^{2}, s=\left(s_{1}, s_{2}, s_{3}\right) \in \mathbb{Z}_{\hat{q}} \times \mathbb{G}_{q} \times \mathbb{Z}_{q}\)
 Public voting credential \(\hat{x} \in \mathbb{Z}_{\hat{q}}\)
 ElGamal encryption \((a, b) \in \mathbb{G}_{q} \times \mathbb{G}_{q}\)
 Encryption key \(p k \in \mathbb{G}_{q}\)
\(y \leftarrow(\hat{x}, a, b)\)
\(c \leftarrow\) GetNIZKPChallenge \((y, t, \tau) \quad / /\) see Alg. 7.4
\(t_{1}^{\prime} \leftarrow \hat{x}^{-c} \cdot \hat{g}^{s_{1}} \bmod \hat{p}\)
\(t_{2}^{\prime} \leftarrow a^{-c} \cdot s_{2} \cdot p k^{s_{3}} \bmod p\)
\(t_{3}^{\prime} \leftarrow b^{-c} \cdot g^{s_{3}} \bmod p\)
return \(\left(t_{1}=t_{1}^{\prime}\right) \wedge\left(t_{2}=t_{2}^{\prime}\right) \wedge\left(t_{3}=t_{3}^{\prime}\right)\)
```

Algorithm 7.24: Checks the correctness of a NIZKP $\pi$ generated by Alg. 7.21. The public values of this proof are the public voting credential $\hat{x}$ and the ElGamal encryption $(a, b)$.

Algorithm: GenResponse $(i, \mathbf{a}, p k, \mathbf{n}, \mathbf{K}, \mathbf{P})$
Input: Voter index $i \in \mathbb{N}$
Queries $\mathbf{a}=\left(a_{1}, \ldots, a_{k_{i}}\right), a_{i} \in \mathbb{G}_{q}$
Encryption key $p k \in \mathbb{G}_{q} \backslash\{1\}$
Number of candidates $\mathbf{n}=\left(n_{1}, \ldots, n_{t}\right), n_{j} \geqslant 2, n=\sum_{j=1}^{t} n_{j}$
Number of selections $\mathbf{K}=\left(k_{i j}\right)_{N_{E} \times t}, 0 \leqslant k_{i j}, k_{i}=\sum_{j=1}^{t} k_{i j}$
Points $\mathbf{P}=\left(p_{i j}\right)_{N_{E} \times n}, p_{i j}=\left(x_{i j}, y_{i j}\right), x_{i j} \in \mathbb{Z}_{p^{\prime}}, y_{i j} \in \mathbb{Z}_{p^{\prime}}$
$\ell_{M} \leftarrow\left\lceil L_{M} / L\right\rceil$
$\mathbf{p} \leftarrow \operatorname{GetPrimes}(n) \quad / / \mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$, see Alg. 7.1
$u \leftarrow 1, v \leftarrow 1 \quad / /$ loop over $u=1, \ldots, k_{i}$ and $v=1, \ldots, n$
for $j=1, \ldots, t$ do
$r_{j} \in_{R} \mathbb{Z}_{q}$
for $l=1, \ldots, k_{i j}$ do
$b_{u} \leftarrow a_{u}^{r_{j}} \bmod p$
$u \leftarrow u+1$
for $l=1, \ldots, n_{j}$ do
$M \leftarrow \operatorname{ToByteArray}\left(x_{i, v}, \frac{L_{M}}{2}\right) \|$ ToByteArray $\left(y_{i, v}, \frac{L_{M}}{2}\right) \quad$ // see Alg. 4.4
$k \leftarrow p_{v}^{r_{j}} \bmod p$
$K \leftarrow \operatorname{Truncate}\left(\left\|\|_{i=1}^{\ell_{M}} \operatorname{RecHash}_{L}(k, i), L_{M}\right) \quad\right.$ // see Alg. 4.9
$C_{v} \leftarrow M \oplus K$
$v \leftarrow v+1$
$d_{j} \leftarrow p k^{r_{j}} \bmod p$
$\mathbf{b} \leftarrow\left(b_{1}, \ldots, b_{k_{i}}\right), \mathbf{c} \leftarrow\left(C_{1}, \ldots, C_{n}\right), \mathbf{d} \leftarrow\left(d_{1}, \ldots, d_{t}\right), \mathbf{r} \leftarrow\left(r_{1}, \ldots, r_{t}\right)$
$\beta \leftarrow(\mathbf{b}, \mathbf{c}, \mathbf{d})$
return ( $\beta, \mathbf{r}$ )
$/ / \beta \in \mathbb{G}_{q}^{k_{i}} \times\left(\mathcal{B}^{L_{M}}\right)^{n} \times \mathbb{G}_{q}^{t}, \mathbf{r} \in \mathbb{Z}_{q}^{t}$
Algorithm 7.25: Generates the response $\beta$ for the given OT query $\mathbf{a}$. The messages to transfer are byte array representations of the $n$ points $\mathbf{p}_{i}=\left(p_{i, 1}, \ldots, p_{i, n}\right)$. Along with $\beta$, the algorithm also returns the randomizations $\mathbf{r}$ used to generate the response.

```
Algorithm: GetPointMatrix \((\boldsymbol{\beta}, \mathbf{k}, \mathbf{s}, \mathbf{r})\)
Input: OT responses \(\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{s}\right), \beta_{j} \in \mathbb{G}_{q}^{k} \times\left(\mathcal{B}^{L_{M}}\right)^{n} \times \mathbb{G}_{q}^{t}\)
 Number of selections \(\mathbf{k}=\left(k_{1}, \ldots, k_{t}\right), k_{j} \geqslant 0, k=\sum_{j=1}^{t} k_{j}\)
 Selection \(\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right), 1 \leqslant s_{1}<\cdots<s_{k} \leqslant n\)
 Randomizations \(\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right), r_{i} \in \mathbb{Z}_{q}\)
for \(j=1, \ldots, s\) do
 \(\mathbf{p}_{j} \leftarrow \operatorname{GetPoints}\left(\beta_{j}, \mathbf{k}, \mathbf{s}, \mathbf{r}\right) \quad / / \mathbf{p}_{j}=\left(p_{1, j}, \ldots, p_{k, j}\right)\), see Alg. 7.27
\(\mathbf{P}_{\mathbf{s}} \leftarrow\left(p_{i j}\right)_{k \times s}\)
return \(\mathbf{P}_{\mathrm{s}} \quad / / \mathbf{P}_{\mathrm{s}} \in\left(\mathbb{Z}_{p}^{2}\right)^{k s}\)
```

Algorithm 7.26: Computes the $k$-by- $s$ matrix $\mathbf{P}_{\mathbf{s}}=\left(p_{i j}\right)_{k \times s}$ of the points obtained from the $s$ authorities for the selection $\mathbf{s}$. The points are derived from the messages included in the OT responses $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{s}\right)$.

```
Algorithm: GetPoints \((\beta, \mathbf{k}, \mathbf{s}, \mathbf{r})\)
Input: OT response \(\beta=(\mathbf{b}, \mathbf{c}, \mathbf{d}), \mathbf{b}=\left(b_{1}, \ldots, b_{k}\right), \mathbf{c}=\left(C_{1}, \ldots, C_{n}\right), \mathbf{d}=\left(d_{1}, \ldots, d_{t}\right)\),
 \(b_{i} \in \mathbb{G}_{q}, C_{i} \in \mathcal{B}^{L_{M}}, d_{i} \in \mathbb{G}_{q}\)
 Number of selections \(\mathbf{k}=\left(k_{1}, \ldots, k_{t}\right), k_{j} \geqslant 0, k=\sum_{j=1}^{t} k_{j}\)
 Selection \(\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right), 1 \leqslant s_{1}<\cdots<s_{k} \leqslant n\)
 Randomizations \(\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right), r_{i} \in \mathbb{Z}_{q}\)
\(\ell_{M} \leftarrow\left\lceil L_{M} / L\right\rceil\)
\(i \leftarrow 1 \quad / /\) loop over \(i=1, \ldots, k\)
for \(j=1, \ldots, t\) do
 for \(l=1, \ldots, k_{j}\) do
 \(k \leftarrow b_{i} \cdot d_{j}^{-r_{i}} \bmod p\)
 \(K \leftarrow \operatorname{Truncate}\left(\|_{i=1}^{\ell_{M}} \operatorname{RecHash}_{L}(k, i), L_{M}\right)\)
 \(M \leftarrow C_{s_{i}} \oplus K\)
 \(x \leftarrow \operatorname{Tolnteger}\left(\operatorname{Truncate}\left(M, \frac{L_{M}}{2}\right)\right) \quad / /\) see Alg. 4.5
 \(y \leftarrow \operatorname{Tolnteger}\left(\operatorname{Skip}\left(M, \frac{L_{M}}{2}\right)\right) \quad / /\) see Alg. 4.5
 if \(x \geqslant p^{\prime}\) or \(y \geqslant p^{\prime}\) then
 return \(\perp \quad / /\) point not in \(\mathbb{Z}_{p^{\prime}}^{2}\)
 \(p_{i} \leftarrow(x, y)\)
 \(i \leftarrow i+1\)
\(\mathbf{p} \leftarrow\left(p_{1}, \ldots, p_{k}\right)\)
return \(\mathbf{p}\)
\(/ / \mathbf{p} \in\left(\mathbb{Z}_{p^{\prime}}^{2}\right)^{k}\)
```

Algorithm 7.27: Computes the $k$ transferred points $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$ from the OT response $\beta$ using the random values $\mathbf{r}$ from the OT query and the selection $\mathbf{s}$.

```
Algorithm: GetReturnCodes(\(\mathbf{s}, \mathbf{P}_{\mathbf{s}}\))
Input: Selection \(\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right), 1 \leqslant s_{1}<\cdots<s_{k} \leqslant n\)
 Points \(\mathbf{P}_{\mathbf{s}}=\left(p_{i j}\right)_{k \times s}, p_{i j} \in \mathbb{Z}_{p^{\prime}}^{2}\)
for \(i=1, \ldots, k\) do
 for \(j=1, \ldots, s\) do
 \(R_{j} \leftarrow \operatorname{Truncate}\left(\operatorname{RecHash}_{L}\left(p_{i j}\right), L_{R}\right) \quad / /\) see Alg. 4.9
 \(R \leftarrow \operatorname{MarkByte} \operatorname{Array}\left(\oplus_{j=1}^{s} R_{j}, s_{i}-1, n_{\max }\right) \quad / /\) see Alg. 4.1
 \(R C_{s_{i}} \leftarrow \operatorname{ToString}\left(R, A_{R}\right) \quad / /\) see Alg. 4.8
\(\mathbf{r c}_{\mathbf{s}} \leftarrow\left(R C_{s_{1}}, \ldots, R C_{s_{k}}\right)\)
return \(\mathrm{rc}_{\mathrm{s}}\)
\(/ / \mathbf{r c} \in\left(A_{F}^{\ell_{F}}\right)^{k}\)
```

Algorithm 7.28: Computes the $k$ verification codes $\mathbf{r c}_{\mathbf{s}}=\left(R C_{s_{1}}, \ldots, R C_{s_{k}}\right)$ for the selected candidates by combining the hash values of the transferred points $p_{i j} \in \mathbf{P}_{\mathbf{s}}$ from different authorities.

```
Algorithm: CheckReturnCodes(\(\mathbf{r c}, \mathbf{r c}^{\prime}, \mathbf{s}\))
Input: Printed verification codes \(\mathbf{r c}=\left(R C_{1}, \ldots, R C_{n}\right), R C_{i} \in A_{R}^{\ell_{R}}\)
 Displayed verification codes \(\mathbf{r c}^{\prime}=\left(R C_{1}^{\prime}, \ldots, R C_{k}^{\prime}\right), R C_{i}^{\prime} \in A_{R}^{\ell_{R}}\)
 Selections \(\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right), 1 \leqslant s_{1}<\cdots<s_{k} \leqslant n\)
return \(\bigwedge_{i=1}^{k}\left(R C_{s_{i}}=R C_{i}^{\prime}\right)\)
```

Algorithm 7.29: Checks if every displayed verification code $R C_{i}^{\prime}$ matches with the verification code $R C_{s_{i}}$ of the selected candidate $s_{i}$ as printed on the voting card. Note that this algorithm is executed by humans.

```
Algorithm: GenConfirmation \(\left(Y, \mathbf{P}^{\prime}, \mathbf{k}\right)\)
Input: Confirmation code \(Y \in A_{Y}^{\ell_{Y}}\)
 Points \(\mathbf{P}^{\prime}=\left(p_{i j}^{\prime}\right)_{k \times s}, p_{i j}^{\prime} \in \mathbb{Z}_{p^{\prime}}^{2}\)
 Number of selections \(\mathbf{k}=\left(k_{1}, \ldots, k_{t}\right), k_{j} \geqslant 0, k=\sum_{j=1}^{t} k_{j}\)
for \(j=1 \ldots, s\) do
 \(\mathbf{p}_{j}^{\prime} \leftarrow\left(p_{1, j}^{\prime}, \ldots, p_{k, j}^{\prime}\right)\)
 \(\mathbf{y}_{j} \leftarrow \operatorname{GetValues}\left(\mathbf{p}_{j}^{\prime}, \mathbf{k}\right) \quad / /\) see Alg. 7.31
 \(h_{j} \leftarrow \operatorname{Tolnteger}\left(\operatorname{RecHash}_{L}\left(\mathbf{y}_{j}\right)\right) \bmod \hat{q} \quad / /\) see Algs. 4.5 and 4.9
\(y \leftarrow\left(\operatorname{Tolnteger}(Y)+\sum_{j=1}^{s} h_{j}\right) \bmod \hat{q} \quad / /\) see Alg. 4.7
\(\hat{y} \leftarrow \hat{g}^{y} \bmod \hat{p}\)
\(\pi \leftarrow \operatorname{GenConfirmationProof}(y, \hat{y}) \quad / / \pi=(t, s)\), see Alg. 7.33
\(\gamma \leftarrow(\hat{y}, \pi)\)
return \(\gamma\)
 \(/ / \gamma \in \mathbb{G}_{\hat{q}} \times\left(\mathbb{G}_{q} \times \mathbb{Z}_{\hat{q}}\right)\)
```

Algorithm 7.30: Generates the confirmation $\gamma$, which consists of the public confirmation credential $\hat{y}$ and a NIZKP of knowledge $\pi$ of the secret confirmation credential $y$.

```
Algorithm: GetValues(\(\mathbf{p}, \mathbf{k}\))
Input: Points \(\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right), p_{i} \in \mathbb{Z}_{p^{\prime}}^{2}\)
 Number of selections \(\mathbf{k}=\left(k_{1}, \ldots, k_{t}\right), k_{j} \geqslant 0, k=\sum_{j=1}^{t} k_{j}\)
\(i \leftarrow 1\)
// loop over \(i=1, \ldots, k\)
for \(j=1, \ldots, t\) do
 \(\mathbf{p}_{j} \leftarrow\left(p_{i}, \ldots, p_{i+k_{j}-1}\right)\)
 \(y_{j} \leftarrow \operatorname{Get} \operatorname{Value}\left(\mathbf{p}_{j}\right) \quad / /\) see Alg. 7.32
 \(i \leftarrow i+k_{j}\)
\(\mathbf{y} \leftarrow\left(y_{1}, \ldots, y_{t}\right)\)
return y
\(/ / \mathbf{y} \in \mathbb{Z}_{p^{\prime}}^{t}\)
```

Algorithm 7.31: Computes the values $y_{j}=A_{j}(0)$ of the $t$ polynomials $A_{j}(X)$ of degree $k_{j}-1$ interpolated from $k=\sum_{j=1}^{t} k_{j}$ points $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$.

```
Algorithm: GetValue(p)
Input: Points \(\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right), p_{i}=\left(x_{i}, y_{i}\right) \in \mathbb{Z}_{p^{\prime}}^{2}, k \geqslant 0\)
\(y \leftarrow 0\)
for \(i=1, \ldots, k\) do
 \(n \leftarrow 1, d \leftarrow 1\)
 for \(j=1, \ldots, k\) do
 if \(i \neq j\) then
 \(n \leftarrow n \cdot x_{j} \bmod p^{\prime}\)
 \(d \leftarrow d \cdot\left(x_{j}-x_{i}\right) \bmod p^{\prime}\)
 \(y \leftarrow y+y_{i} \cdot \frac{n}{d} \bmod p^{\prime}\)
return \(y\)
\(/ / y \in \mathbb{Z}_{p^{\prime}}\)
```

Algorithm 7.32: Computes a polynomial $A(X)$ of degree $k-1$ from given points $\mathbf{p}=$ ( $p_{1}, \ldots, p_{k}$ ) using Lagrange's interpolation method and returns the value $y=A(0)$.

```
Algorithm: GenConfirmationProof \((y, \hat{y})\)
Input: Secret confirmation credential \(y \in \mathbb{Z}_{\hat{q}}\)
 Public confirmation credential \(\hat{y} \in \mathbb{G}_{\hat{q}}\)
\(\omega \in_{R} \mathbb{Z}_{\hat{q}}\)
\(t \leftarrow \hat{g}^{\omega} \bmod \hat{p}\)
\(c \leftarrow \operatorname{GetNIZKPChallenge}(\hat{y}, t, \tau) \quad / /\) see Alg. 7.4
\(s \leftarrow \omega+c \cdot y \bmod \hat{q}\)
\(\pi \leftarrow(t, s)\)
return \(\pi\)
\(/ / \pi \in \mathbb{G}_{\hat{q}} \times \mathbb{Z}_{\hat{q}}\)
```

Algorithm 7.33: Generates a NIZKP of knowledge of the secret confirmation credential $y$ that matches with a given public confirmation credential $\hat{y}$. Note that this proof is equivalent to a Schnorr identification proof [28]. For the verification of $\pi$, see Alg. 7.36.

Algorithm: CheckConfirmation $(i, \gamma, \hat{\mathbf{y}}, B, C)$
Input: Voter index $i \in\left\{1, \ldots, N_{E}\right\}$
Confirmation $\gamma=(\hat{y}, \pi), \hat{y} \in \mathbb{G}_{\hat{q}}, \pi \in \mathbb{G}_{\hat{q}} \times \mathbb{Z}_{\hat{q}}$
Public confirmation credentials $\hat{\mathbf{y}}=\left(\hat{y}_{1}, \ldots, \hat{y}_{N_{E}}\right), \hat{y}_{i} \in \mathbb{G}_{\hat{q}}$
Ballot list $B=\left\langle\left(i_{j}, \alpha_{j}, \mathbf{r}_{j}\right)\right\rangle_{j=0}^{N_{B}-1}, i_{j} \in\left\{1, \ldots, N_{E}\right\}$
Confirmation list $C=\left\langle\left(i_{j}, \gamma_{j}\right)\right\rangle_{j=0}^{N_{C}-1}, i_{j} \in\left\{1, \ldots, N_{E}\right\}$
if HasBallot $(i, B)$ and $\neg$ HasConfirmation $(i, C)$ and $\hat{y}=\hat{y}_{i}$ then // see Alg. 7.23, 7.35
if CheckConfirmationProof $(\pi, \hat{y})$ then // see Alg. 7.36 $L$ return true
return false
Algorithm 7.34: Checks if a confirmation $\gamma$ obtained from voter $i$ is valid. For this, voter $i$ must have submitted a valid ballot before, but not a valid confirmation. The check then succeeds if $\pi$ is valid and if $\hat{y}$ is the public confirmation credential of voter $i$.

```
Algorithm: HasConfirmation(i,C)
Input: Voter index }i\in\mathbb{N
 Confirmation list C = < (ij, ,
for j=0,\ldots,N}\mp@subsup{N}{C}{}-1\mathrm{ do // use binary search or hash table for better performance
 (ij, 访)\leftarrowC[j]
 if i=ij}\mathrm{ then
 return true
return false
```

Algorithm 7.35: Checks if the confirmation list $C$ contains an entry for $i$.

Algorithm: CheckConfirmationProof $(\pi, \hat{y})$
Input: Confirmation proof $\pi=(t, s), t \in \mathbb{G}_{\hat{q}}, s \in \mathbb{Z}_{\hat{q}}$
Public confirmation credential $\hat{y} \in \mathbb{G}_{\hat{q}}$
$c \leftarrow \operatorname{GetNIZKPChallenge}(\hat{y}, t, \tau) \quad / /$ see Alg. 7.4
$t^{\prime} \leftarrow \hat{y}^{-c} \cdot \hat{g}^{s} \bmod \hat{p}$
return $\left(t=t^{\prime}\right)$
Algorithm 7.36: Checks the correctness of a NIZKP $\pi$ generated by Alg. 7.33. The public value of this proof is the public confirmation credential $\hat{y}$.

Algorithm: GetFinalization $(i, \mathbf{P}, B)$
Input: Voter index $i \in \mathbb{N}$
Points $\mathbf{P}=\left(p_{i j}\right)_{N_{E} \times n}, p_{i j} \in \mathbb{Z}_{p^{\prime}}^{2}$
Ballot list $B=\left\langle\left(i_{j}, \alpha_{j}, \mathbf{r}_{j}\right)\right\rangle_{j=0}^{N_{B}-1}, i_{j} \in\left\{1, \ldots, N_{E}\right\}$
$\mathbf{p}_{i} \leftarrow\left(p_{i, 1}, \ldots, p_{i, n}\right)$
$F_{i} \leftarrow \operatorname{Truncate}\left(\operatorname{RecHash}_{L}\left(\mathbf{p}_{i}\right), L_{F}\right) \quad / /$ see Alg. 4.9
$\delta \leftarrow\left(F_{i}, \mathbf{r}_{i}\right)$
return $\delta$
$/ / \delta \in \mathcal{B}^{L_{F}} \times \mathbb{Z}_{q}^{t}$
Algorithm 7.37: Computes the finalization code $F_{i}$ for voter $i$ from the given points $\mathbf{p}_{i}$ and returns $F_{i}$ together with the randomizations $\mathbf{r}_{i}$ used in the OT response.

Algorithm: GetFinalizationCode( $\boldsymbol{\delta}$ )
Input: Finalizations $\boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{s}\right), \delta_{j}=\left(F_{j}, \mathbf{r}_{j}\right), F_{j} \in \mathcal{B}^{L_{F}}, \mathbf{r}_{j} \in \mathbb{Z}_{q}^{t}$
$F C \leftarrow \operatorname{ToString}\left(\oplus_{j=1}^{s} F_{j}, A_{F}\right) \quad / /$ see Alg. 4.8
return $F C \quad / / F C \in A_{F}^{\ell_{F}}$
Algorithm 7.38: Computes a finalization code $F C$ by combining the values $F_{j}$ received from the authorities.

```
Algorithm: CheckFinalizationCode(FC,FC')
Input: Printed finalization code FC\in A
 Displayed finalization code F\mp@subsup{C}{}{\prime}\in\mp@subsup{A}{F}{\mp@subsup{\ell}{F}{}}
return FC=FC'
```

Algorithm 7.39: Checks if the displayed finalization code $F C^{\prime}$ matches with the finalization code $F C$ from the voting card. Note that this algorithm is executed by humans.

### 7.5. Post-Election Phase

The main actors in the process at the end of an election are the election authorities. Corresponding algorithms are shown in Table 7.4. To initiate the mixing process, the first election authority calls Alg. 7.40 to cleanse the list of submitted ballots and to extract a sorted list of encrypted votes to shuffle. By calling Algs. 7.41 and 7.44 , this list is shuffled according to a random permutation and a NIZKP of shuffle is generated. This step is repeated by every election authority. The final result obtained from the last shuffle is the list of encrypted votes that will be decrypted. Before computing corresponding partial decryptions, each election authority calls Alg. 7.47 to check the correctness of the whole shuffle process. The partial decryptions are then computed using Alg. 7.49 and corresponding decryption proofs are generated using Alg. 7.50. The information exchange during this whole process goes over the bulletin board. After terminating all tasks, the process is handed over from the election authorities to the election administrator, who calls Alg. 7.51 to check all decryption proofs and Alg. 7.54 to obtain the final election result. We refer to Section 6.5.3 for a more detailed description of this process.

| Nr. | Algorithm | Called by | Protocol |
| :---: | :---: | :---: | :---: |
| 7.40 | GetEncryptions( $B, C$ ) | Election authority |  |
| 7.35 | $\hookrightarrow$ HasConfirmation ( $i, C$ ) |  |  |
| 7.41 | GenShuffle(e, $p k$ ) | Election authority |  |
| 7.42 | $\hookrightarrow$ GenPermutation( $N$ ) |  | 6.7 |
| 7.43 | $\hookrightarrow$ GenReEncryption ( $e, p k$ ) |  |  |
| 7.44 | GenShuffleProof (e, $\left.\mathbf{e}^{\prime}, \mathbf{r}^{\prime}, \psi, p k\right)$ | Election authority |  |
| 7.45 | $\llcorner$ GenPermutationCommitment ( $\psi, \mathbf{h}$ ) |  |  |
| 7.46 | $\hookrightarrow$ GenCommitmentChain ( $c_{0}, \mathbf{u}$ ) |  |  |
| 7.40 | GetEncryptions( $B, C$ ) | Election authority |  |
| 7.47 | CheckShuffleProofs ( $\left.\boldsymbol{\pi}, e_{0}, \mathbf{E}, p k, j\right)$ | Election authority |  |
| 7.48 | $\checkmark \operatorname{CheckShuffleProof~(~} \pi$, e, $\mathbf{e}^{\prime}, p k$ ) |  | 6.8 |
| 7.49 | GetPartialDecryptions(e, $s k_{j}$ ) | Election authority |  |
| 7.50 | GenDecryptionProof ( $s k_{j}, p k_{j}, \mathbf{e}, \mathbf{b}^{\prime}$ ) | Election authority |  |
| 7.51 | CheckDecryptionProofs ( $\left.\boldsymbol{\pi}^{\prime}, \mathbf{p k}, \mathbf{e}, \mathbf{B}^{\prime}\right)$ | Election administrator |  |
| 7.52 | $\checkmark$ CheckDecryptionProof ( $\left.\pi^{\prime}, p k_{j}, \mathbf{e}, \mathbf{b}^{\prime}\right)$ |  | 6.9 |
| 7.53 | GetDecryptions(e, $\mathbf{B}^{\prime}$ ) | Election administrator |  |
| 7.54 | GetVotes(m, $n$ ) | Election administrator |  |

Table 7.4.: Overview of algorithms and sub-algorithms of the post-election phase

```
Algorithm: GetEncryptions \((B, C)\)
Input: Ballot list \(B=\left\langle\left(i_{j}, \alpha_{j}, \mathbf{r}_{j}\right)\right\rangle_{j=0}^{N_{B}-1}, i_{j} \in \mathbb{N}, \alpha_{j}=\left(\hat{x}_{i_{j}}, \mathbf{a}_{j}, b_{j}, \pi_{j}\right)\),
 \(\mathbf{a}_{j}=\left(a_{j, 1}, \ldots, a_{j, k}\right)\)
 Confirmation list \(C=\left\langle\left(i_{j}, \gamma_{j}\right)\right\rangle_{j=0}^{N_{C}-1}, i_{j} \in \mathbb{N}\)
\(i \leftarrow 1\)
 \(/ /\) loop over \(i=1, \ldots, N_{C}\)
for \(j=0, \ldots, N_{B}-1\) do
 \(\left(i_{j}, \alpha_{j}, \mathbf{r}_{j}\right) \leftarrow B[j]\)
 if HasConfirmation \(\left(i_{j}, C\right)\) then // see Alg. 7.35
 \(a_{j} \leftarrow \prod_{l=1}^{k} a_{j, l} \bmod p\)
 \(e_{i} \leftarrow\left(a_{j}, b_{j}\right)\)
 \(i \leftarrow i+1\)
\(\mathbf{e} \leftarrow \operatorname{Sort}_{\leq}\left(e_{1}, \ldots, e_{N_{C}}\right)\)
return e
\(/ / \mathbf{e} \in\left(\mathbb{G}_{q}^{2}\right)^{N_{C}}\)
```

Algorithm 7.40: Computes a sorted list of ElGamal encryptions from the list of submitted ballots, for which a valid confirmation is available. Sorting this list is necessary to guarantee a unique order. For this, we define a total order over $\mathbb{G}_{q}^{2}$ by $e_{i} \leq e_{j} \Leftrightarrow\left(a_{i}<a_{j}\right) \vee\left(a_{i}=a_{j} \wedge b_{i} \leqslant b_{j}\right)$, for $e_{i}=\left(a_{i}, b_{i}\right)$ and $e_{j}=\left(a_{j}, b_{j}\right)$.

Algorithm: GenShuffle(e, $p k$ )
Input: ElGamal encryptions $\mathbf{e}=\left(e_{1}, \ldots, e_{N}\right), e_{i} \in \mathbb{G}_{q}^{2}$
Encryption key $p k \in \mathbb{G}_{q}$
$\psi \leftarrow \operatorname{GenPermutation}(N) \quad / / \psi=\left(j_{1}, \ldots, j_{N}\right) \in \Psi_{N}$, see Alg. 7.42
for $i=1, \ldots, N$ do
$\left(e_{i}^{\prime}, r_{i}^{\prime}\right) \leftarrow \operatorname{GenReEncryption}\left(e_{i}, p k\right) \quad / /$ see Alg. 7.43
$\mathbf{e}^{\prime} \leftarrow\left(e_{j_{1}}^{\prime}, \ldots, e_{j_{N}}^{\prime}\right)$
$\mathbf{r}^{\prime} \leftarrow\left(r_{1}^{\prime}, \ldots, r_{N}^{\prime}\right)$
return $\left(\mathbf{e}^{\prime}, \mathbf{r}^{\prime}, \psi\right) \quad / / \mathbf{e}^{\prime} \in\left(\mathbb{G}_{q}^{2}\right)^{N}, \mathbf{r}^{\prime} \in \mathbb{Z}_{q}^{N}, \psi \in \Psi_{N}$
Algorithm 7.41: Generates a random permutation $\psi \in \Psi_{N}$ and uses it to shuffle a given list $\mathbf{e}=\left(e_{1}, \ldots, e_{N}\right)$ of ElGamal encryptions $e_{i}=\left(a_{i}, b_{i}\right) \in \mathbb{G}_{q}^{2}$. With $\Psi_{N}=\left\{\left(j_{1}, \ldots, j_{N}\right)\right.$ : $\left.j_{i} \in\{1, \ldots, N\}, j_{i_{1}} \neq j_{i_{2}}, \forall i_{1} \neq i_{2}\right\}$ we denote the set of all $N$ ! possible permutations of the values $\{1, \ldots, N\}$.

```
Algorithm: GenPermutation \((N)\)
Input: Permutation size \(N \in \mathbb{N}\)
\(I \leftarrow\langle 1, \ldots, N\rangle\)
for \(i=0, \ldots, N-1\) do
 \(k \in_{R}\{i, \ldots, N-1\}\)
 \(j_{i+1} \leftarrow I[k]\)
 \(I[k] \leftarrow I[i]\)
\(\psi \leftarrow\left(j_{1}, \ldots, j_{N}\right)\)
return \(\psi \quad / / \psi \in \Psi_{N}\)
```

Algorithm 7.42: Generates a random permutation $\psi \in \Psi_{N}$ following Knuth's shuffle algorithm [22, pp. 139-140].

```
Algorithm: GenReEncryption \((e, p k)\)
Input: ElGamal encryption \(e=(a, b), a \in \mathbb{G}_{q}, b \in \mathbb{G}_{q}\)
 Encryption key \(p k \in \mathbb{G}_{q}\)
\(r^{\prime} \in_{R} \mathbb{Z}_{q}\)
\(a^{\prime} \leftarrow a \cdot p k^{r^{\prime}} \bmod p\)
\(b^{\prime} \leftarrow b \cdot g^{r^{\prime}} \bmod p\)
\(e^{\prime} \leftarrow\left(a^{\prime}, b^{\prime}\right)\)
return \(\left(e^{\prime}, r^{\prime}\right)\)
\(/ / e^{\prime} \in \mathbb{G}_{q}^{2}, r^{\prime} \in \mathbb{Z}_{q}\)
```

Algorithm 7.43: Generates a re-encryption $e^{\prime}=\left(a \cdot p k^{r^{\prime}}, b \cdot g^{r^{\prime}}\right)$ of the given ElGamal encryption $e=(a, b) \in \mathbb{G}_{q}^{2}$. The re-encryption $e^{\prime}$ is returned together with the randomization $r^{\prime} \in \mathbb{Z}_{q}$.

```
Algorithm: GenShuffleProof(\(\left.\mathbf{e}, \mathbf{e}^{\prime}, \mathbf{r}^{\prime}, \psi, p k\right)\)
Input: ElGamal encryptions \(\mathbf{e}=\left(e_{1}, \ldots, e_{N}\right), e_{i}=\left(a_{i}, b_{i}\right) \in \mathbb{G}_{q}^{2}\)
 Shuffled ElGamal encryptions \(\mathbf{e}^{\prime}=\left(e_{1}^{\prime}, \ldots, e_{N}^{\prime}\right), e_{i}^{\prime}=\left(a_{i}^{\prime}, b_{i}^{\prime}\right) \in \mathbb{G}_{q}^{2}\)
 Re-encryption randomizations \(\mathbf{r}^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{N}^{\prime}\right), r_{i}^{\prime} \in \mathbb{Z}_{q}\)
 Permutation \(\psi=\left(j_{1}, \ldots, j_{N}\right) \in \Psi_{N}\)
 Encryption key \(p k \in \mathbb{G}_{q}\)
\(\mathbf{h} \leftarrow\) GetGenerators \((N)\)
 // see Alg. 7.3
\((\mathbf{c}, \mathbf{r}) \leftarrow \operatorname{GenPermutationCommitment}(\psi, \mathbf{h}) \quad / / \mathbf{c}=\left(c_{1}, \ldots, c_{N}\right)\), see Alg. 7.45
\(\mathbf{u} \leftarrow \operatorname{GetNIZKPChallenges}\left(N,\left(\mathbf{e}, \mathbf{e}^{\prime}, \mathbf{c}\right), \tau\right) \quad / / \mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)\), see Alg. 7.5
for \(i=1, \ldots, N\) do
 \(u_{i}^{\prime} \leftarrow u_{j_{i}}\)
\(\mathbf{u}^{\prime} \leftarrow\left(u_{1}^{\prime}, \ldots, u_{N}^{\prime}\right)\)
\((\hat{\mathbf{c}}, \hat{\mathbf{r}}) \leftarrow \operatorname{GenCommitmentChain}\left(h, \mathbf{u}^{\prime}\right) \quad / / \hat{\mathbf{c}}=\left(\hat{c}_{1}, \ldots, \hat{c}_{N}\right)\), see Alg. 7.46
for \(i=1, \ldots, 4\) do
 \(\omega_{i} \in_{R} \mathbb{Z}_{q}\)
for \(i=1, \ldots, N\) do
 \(\hat{\omega}_{i} \in_{R} \mathbb{Z}_{q}, \omega_{i}^{\prime} \in_{R} \mathbb{Z}_{q}\)
\(t_{1} \leftarrow g^{\omega_{1}} \bmod p\)
\(t_{2} \leftarrow g^{\omega_{2}} \bmod p\)
\(t_{3} \leftarrow g^{\omega_{3}} \prod_{i=1}^{N} h_{i}^{\omega_{i}^{\prime}} \bmod p\)
\(\left(t_{4,1}, t_{4,2}\right) \leftarrow\left(p k^{-\omega_{4}} \prod_{i=1}^{N}\left(a_{i}^{\prime}\right)^{\omega_{i}^{\prime}} \bmod p, g^{-\omega_{4}} \prod_{i=1}^{N}\left(b_{i}^{\prime}\right)^{\omega_{i}^{\prime}} \bmod p\right)\)
\(\hat{c}_{0} \leftarrow h\)
for \(i=1, \ldots, N\) do
 \(\hat{t}_{i} \leftarrow g^{\hat{\omega}_{i}} \hat{c}_{i-1}^{\omega_{i}^{\prime}} \bmod p\)
\(t \leftarrow\left(t_{1}, t_{2}, t_{3},\left(t_{4,1}, t_{4,2}\right),\left(\hat{t}_{1}, \ldots, \hat{t}_{N}\right)\right)\)
\(y \leftarrow\left(\mathbf{e}, \mathbf{e}^{\prime}, \mathbf{c}, \hat{\mathbf{c}}, p k\right)\)
\(c \leftarrow \operatorname{GetNIZKPChallenge}(y, t, \tau) \quad / /\) see Alg. 7.4
\(\bar{r} \leftarrow \sum_{i=1}^{N} r_{i} \bmod q, s_{1} \leftarrow \omega_{1}+c \cdot \bar{r} \bmod q\)
\(v_{N} \leftarrow 1\)
for \(i=N-1, \ldots, 1\) do
 \(v_{i} \leftarrow u_{i+1}^{\prime} v_{i+1} \bmod q\)
\(\hat{r} \leftarrow \sum_{i=1}^{N} \hat{r}_{i} v_{i} \bmod q, s_{2} \leftarrow \omega_{2}+c \cdot \hat{r} \bmod q\)
\(\tilde{r} \leftarrow \sum_{i=1}^{N} r_{i} u_{i} \bmod q, s_{3} \leftarrow \omega_{3}+c \cdot \tilde{r} \bmod q\)
\(r^{\prime} \leftarrow \sum_{i=1}^{N} r_{i}^{\prime} u_{i} \bmod q, s_{4} \leftarrow \omega_{4}+c \cdot r^{\prime} \bmod q\)
for \(i=1, \ldots, N\) do
 \(\hat{s}_{i} \leftarrow \hat{\omega}_{i}+c \cdot \hat{r}_{i} \bmod q, s_{i}^{\prime} \leftarrow \omega_{i}^{\prime}+c \cdot u_{i}^{\prime} \bmod q\)
\(s \leftarrow\left(s_{1}, s_{2}, s_{3}, s_{4},\left(\hat{s}_{1}, \ldots, \hat{s}_{N}\right),\left(s_{1}^{\prime}, \ldots, s_{N}^{\prime}\right)\right)\)
\(\pi \leftarrow(t, s, \mathbf{c}, \hat{\mathbf{c}})\)
return \(\pi\)
\(/ / \pi \in\left(\mathbb{G}_{q}^{3} \times \mathbb{G}_{q}^{2} \times \mathbb{G}_{q}^{N}\right) \times\left(\mathbb{Z}_{q}^{4} \times \mathbb{Z}_{q}^{N} \times \mathbb{Z}_{q}^{N}\right) \times \mathbb{G}_{q}^{N} \times \mathbb{G}_{q}^{N}\)
```

Algorithm 7.44: Generates a NIZKP of shuffle relative to ElGamal encryptions e and $\mathbf{e}^{\prime}$, which is equivalent to proving knowledge of a permutation $\psi$ and randomizations $\mathbf{r}^{\prime}$ such that $\mathbf{e}^{\prime}=$ Shuffle $_{p k}\left(\mathbf{e}, \mathbf{r}^{\prime}, \psi\right)$. The algorithm implements Wikström's proof of a shuffle [31, 30], except for the fact that the offline and online phases are merged. For the proof verification, see Alg. 7.48. For further background information we refer to Section 5.5.

```
Algorithm: GenPermutationCommitment \((\psi, \mathbf{h})\)
Input: Permutation \(\psi=\left(j_{1}, \ldots, j_{N}\right) \in \Psi_{N}\)
 Independent generators \(\mathbf{h}=\left(h_{1}, \ldots, h_{N}\right), h_{i} \in \mathbb{G}_{q} \backslash\{1\}\)
for \(i=1, \ldots, N\) do
 \(r_{j_{i}} \in_{R} \mathbb{Z}_{q}\)
 \(c_{j_{i}} \leftarrow g^{r_{j_{i}}} \cdot h_{i} \bmod p\)
\(\mathbf{c} \leftarrow\left(c_{1}, \ldots, c_{N}\right)\)
\(\mathbf{r} \leftarrow\left(r_{1}, \ldots, r_{N}\right)\)
return (c, r)
```

$/ / \mathbf{c} \in \mathbb{G}_{q}^{N}, \mathbf{r} \in \mathbb{Z}_{q}^{N}$

Algorithm 7.45: Generates a commitment $\mathbf{c}=\operatorname{com}(\psi, \mathbf{r})$ to a permutation $\psi$ by committing to the columns of the corresponding permutation matrix. This algorithm is used in Alg. 7.44.

```
Algorithm: GenCommitmentChain \(\left(c_{0}, \mathbf{u}\right)\)
Input: Initial commitment \(c_{0} \in \mathbb{G}_{q}\)
 Public challenges \(\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right), u_{i} \in \mathbb{Z}_{q}\)
for \(i=1, \ldots, N\) do
 \(r_{i} \in_{R} \mathbb{Z}_{q}\)
 \(c_{i} \leftarrow g^{r_{i}} \cdot c_{i-1}^{u_{i}} \bmod p\)
\(\mathbf{c} \leftarrow\left(c_{1}, \ldots, c_{N}\right)\)
\(\mathbf{r} \leftarrow\left(r_{1}, \ldots, r_{N}\right)\)
return (c, r)
```

$/ / \mathbf{c} \in \mathbb{G}_{q}^{N}, \mathbf{r} \in \mathbb{Z}_{q}^{N}$

Algorithm 7.46: Generates a commitment chain $c_{0} \rightarrow c_{1} \rightarrow \cdots \rightarrow c_{N}$ relative to a list of public challenges $\mathbf{u}$ and starting with a given commitment $c_{0}$. This algorithm is used in Alg. 7.44.

Algorithm: CheckShuffleProofs $\left(\boldsymbol{\pi}, e_{0}, \mathbf{E}, p k, j\right)$
Input: Shuffle proofs $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{s}\right), \pi_{j} \in\left(\mathbb{G}_{q}^{3} \times \mathbb{G}_{q}^{2} \times \mathbb{G}_{q}^{N}\right) \times\left(\mathbb{Z}_{q}^{4} \times \mathbb{Z}_{q}^{N} \times \mathbb{Z}_{q}^{N}\right) \times \mathbb{G}_{q}^{N} \times \mathbb{G}_{q}^{N}$
ElGamal encryptions $\mathbf{e}_{0}=\left(e_{1,0}, \ldots, e_{N, 0}\right), e_{i, 0} \in \mathbb{G}_{q}^{2}$
Shuffled ElGamal encryptions $\mathbf{E}=\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{s}\right), \mathbf{e}_{j}=\left(e_{1, j}, \ldots, e_{N, j}\right), e_{i j} \in \mathbb{G}_{q}^{2}$
Encryption key $p k \in \mathbb{G}_{q}$
Authority index $j \in\{1, \ldots, s\}$
for $i=1, \ldots, s$ do
if $i \neq j$ then // check proofs from others only
if $\neg$ CheckShuffleProof $\left(\pi_{i}, \mathbf{e}_{i-1}, \mathbf{e}_{i}, p k\right)$ then // see Alg. 7.48 return false
return true
Algorithm 7.47: Checks if a chain of shuffle proofs generated by $s$ different authorities is correct.

```
Algorithm: CheckShuffleProof \(\left(\pi, \mathbf{e}, \mathbf{e}^{\prime}, p k\right)\)
```

Input: Shuffle proof $\pi=(t, s, \mathbf{c}, \hat{\mathbf{c}}), t=\left(t_{1}, t_{2}, t_{3},\left(t_{4,1}, t_{4,2}\right),\left(\hat{t}_{1}, \ldots, \hat{t}_{N}\right)\right)$, $s=\left(s_{1}, s_{2}, s_{3}, s_{4},\left(\hat{s}_{1}, \ldots, \hat{s}_{N}\right),\left(s_{1}^{\prime}, \ldots, s_{N}^{\prime}\right)\right), \mathbf{c}=\left(c_{1}, \ldots, c_{N}\right), \hat{\mathbf{c}}=\left(\hat{c}_{1}, \ldots, \hat{c}_{N}\right)$ ElGamal encryptions $\mathbf{e}=\left(e_{1}, \ldots, e_{N}\right), e_{i} \in \mathbb{G}_{q}^{2}$
Shuffled ElGamal encryptions $\mathbf{e}^{\prime}=\left(e_{1}^{\prime}, \ldots, e_{N}^{\prime}\right), e_{i}^{\prime} \in \mathbb{G}_{q}^{2}$
Encryption key $p k \in \mathbb{G}_{q}$
$\mathbf{h} \leftarrow \operatorname{GetGenerators}(N) \quad / /$ see Alg. 7.3
$\mathbf{u} \leftarrow \operatorname{GetNIZKPChallenges}\left(N,\left(\mathbf{e}, \mathbf{e}^{\prime}, \mathbf{c}\right), \tau\right) \quad / / \mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)$, see Alg. 7.5
$y \leftarrow\left(\mathbf{e}, \mathbf{e}^{\prime}, \mathbf{c}, \hat{\mathbf{c}}, p k\right)$
$c \leftarrow \operatorname{GetNIZKPChallenge}(y, t, \tau) \quad / /$ see Alg. 7.4
$\bar{c} \leftarrow \prod_{i=1}^{N} c_{i} / \prod_{i=1}^{N} h_{i} \bmod p$
$u \leftarrow \prod_{i=1}^{N} u_{i} \bmod q$
$\hat{c} \leftarrow \hat{c}_{N} / h^{u} \bmod p$
$\tilde{c} \leftarrow \prod_{i=1}^{N} c_{i}^{u_{i}} \bmod p$
$\left(a^{\prime}, b^{\prime}\right) \leftarrow\left(\prod_{i=1}^{N} a_{i}^{u_{i}} \bmod p, \prod_{i=1}^{N} b_{i}^{u_{i}} \bmod p\right)$
$t_{1}^{\prime} \leftarrow \bar{c}^{-c} \cdot g^{s_{1}} \bmod p$
$t_{2}^{\prime} \leftarrow \hat{c}^{-c} \cdot g^{s_{2}} \bmod p$
$t_{3}^{\prime} \leftarrow \tilde{c}^{-c} \cdot g^{s_{3}} \prod_{i=1}^{N} h_{i}^{s_{i}^{\prime}} \bmod p$
$\left(t_{4,1}^{\prime}, t_{4,2}^{\prime}\right) \leftarrow\left(\left(a^{\prime}\right)^{-c} \cdot p k^{-s_{4}} \prod_{i=1}^{N}\left(a_{i}^{\prime}\right)^{s_{i}^{\prime}} \bmod p,\left(b^{\prime}\right)^{-c} \cdot g^{-s_{4}} \prod_{i=1}^{N}\left(b_{i}^{\prime}\right)^{s_{i}^{\prime}} \bmod p\right)$
for $i=1, \ldots, N$ do
$\hat{t}_{i}^{\prime} \leftarrow \hat{c}_{i}^{-c} \cdot g^{\hat{s}_{i}} \cdot \hat{c}_{i-1}^{s_{i}^{\prime}} \bmod p$
return $\left(t_{1}=t_{1}^{\prime}\right) \wedge\left(t_{2}=t_{2}^{\prime}\right) \wedge\left(t_{3}=t_{3}^{\prime}\right) \wedge\left(t_{4,1}=t_{4,1}^{\prime}\right) \wedge\left(t_{4,2}=t_{4,1}^{\prime}\right) \wedge\left[\bigwedge_{i=1}^{N}\left(\hat{t}_{i}=\hat{t}_{i}^{\prime}\right)\right]$
Algorithm 7.48: Checks the correctness of a NIZKP of a shuffle $\pi$ generated by Alg. 7.44. The public values are the ElGamal encryptions $\mathbf{e}$ and $\mathbf{e}^{\prime}$ and the public encryption key $p k$.

```
Algorithm: GetPartialDecryptions(e, \(s k_{j}\))
Input: ElGamal encryptions \(\mathbf{e}=\left(e_{1}, \ldots, e_{N}\right), e_{i}=\left(a_{i}, b_{i}\right), a_{i}, b_{i} \in \mathbb{G}_{q}\)
 Decryption key share \(s k_{j} \in \mathbb{Z}_{q}\)
for \(i=1, \ldots, N\) do
 \(b_{i}^{\prime} \leftarrow b_{i}^{s k_{j}} \bmod p\)
\(\mathbf{b}^{\prime} \leftarrow\left(b_{1}^{\prime}, \ldots, b_{N}^{\prime}\right)\)
return \(\mathrm{b}^{\prime}\)
\(/ / \mathbf{b}^{\prime} \in \mathbb{G}_{q}^{N}\)
```

Algorithm 7.49: Computes the partial decryptions of a given input list e of ElGamal encryption using a share $s k_{j}$ of the private decryption key.

```
Algorithm: GenDecryptionProof \(\left(s k_{j}, p k_{j}, \mathbf{e}, \mathbf{b}^{\prime}\right)\)
Input: Decryption key share \(s k_{j} \in \mathbb{Z}_{q}\)
 Encryption key share \(p k_{j} \in \mathbb{G}_{q}\)
 ElGamal encryptions \(\mathbf{e}=\left(e_{1}, \ldots, e_{N}\right), e_{i}=\left(a_{i}, b_{i}\right), a_{i}, b_{i} \in \mathbb{G}_{q}\)
 Partial decryptions \(\mathbf{b}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{N}^{\prime}\right), b_{i}^{\prime} \in \mathbb{G}_{q}\)
\(\omega \in_{R} \mathbb{Z}_{q}\)
\(t_{0} \leftarrow g^{\omega} \bmod p\)
for \(i=1, \ldots, N\) do
 \(t_{i} \leftarrow b_{i}^{\omega} \bmod p\)
\(t \leftarrow\left(t_{0},\left(t_{1}, \ldots, t_{N}\right)\right)\)
\(\mathbf{b} \leftarrow\left(b_{1}, \ldots, b_{N}\right)\)
\(y \leftarrow\left(p k_{j}, \mathbf{b}, \mathbf{b}^{\prime}\right)\)
\(c \leftarrow \operatorname{GetNIZKPChallenge}(y, t, \tau) \quad / /\) see Alg. 7.4
\(s \leftarrow \omega+c \cdot s k_{j} \bmod q\)
\(\pi \leftarrow(t, s)\)
return \(\pi \quad / / \pi \in\left(\mathbb{G}_{q} \times \mathbb{G}_{q}^{N}\right) \times \mathbb{Z}_{q}\)
```

Algorithm 7.50: Generates a decryption proof relative to ElGamal encryptions e and partial decryptions $\mathbf{b}^{\prime}$. This is essentially a NIZKP of knowledge of the private key share $s k_{j}$ satisfying $b_{i}^{\prime}=b_{i}^{s k_{j}}$ for all input encryptions $e_{i}=\left(a_{i}, b_{i}\right)$ and $p k_{j}=g^{s k_{j}}$. For the proof verification, see Alg. 7.52.

```
Algorithm: CheckDecryptionProofs \(\left(\boldsymbol{\pi}^{\prime}, \mathbf{p k}, \mathbf{e}, \mathbf{B}^{\prime}\right)\)
Input: Decryption proofs \(\boldsymbol{\pi}^{\prime}=\left(\pi_{1}^{\prime}, \ldots, \pi_{s}^{\prime}\right), \pi_{j} \in\left(\mathbb{G}_{q} \times \mathbb{G}_{q}^{N}\right) \times \mathbb{Z}_{q}\)
 Encryption key shares \(\mathbf{p k}=\left(p k_{1}, \ldots, p k_{s}\right), p k_{j} \in \mathbb{G}_{q}\)
 ElGamal encryptions \(\mathbf{e}=\left(e_{1}, \ldots, e_{N}\right), e_{i} \in \mathbb{G}_{q}^{2}\)
 Partial decryptions \(\mathbf{B}^{\prime}=\left(\mathbf{b}_{1}^{\prime}, \ldots, \mathbf{b}_{s}^{\prime}\right), \mathbf{b}_{j}^{\prime}=\left(b_{1, j}^{\prime}, \ldots, b_{N, j}^{\prime}\right), b_{i j}^{\prime} \in \mathbb{G}_{q}\)
for \(j=1, \ldots, s\) do
 if \(\neg\) CheckDecryptionProof \(\left(\pi_{j}^{\prime}, p k_{j}, \mathbf{e}, \mathbf{b}_{j}^{\prime}\right)\) then // see Alg. 7.52
 return false
return true
```

Algorithm 7.51: Checks if the decryption proofs generated by $s$ different authorities are correct.

```
Algorithm: CheckDecryptionProof \(\left(\pi^{\prime}, p k_{j}, \mathbf{e}, \mathbf{b}^{\prime}\right)\)
Input: Decryption proof \(\pi^{\prime}=(t, s), t=\left(t_{0},\left(t_{1}, \ldots, t_{N}\right)\right), t_{i} \in \mathbb{G}_{q}, s \in \mathbb{Z}_{q}\)
 Encryption key share \(p k_{j} \in \mathbb{G}_{q}\)
 ElGamal encryptions \(\mathbf{e}=\left(e_{1}, \ldots, e_{N}\right), e_{i}=\left(a_{i}, b_{i}\right), a_{i}, b_{i} \in \mathbb{G}_{q}\)
 Partial decryptions \(\mathbf{b}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{N}^{\prime}\right), b_{i}^{\prime} \in \mathbb{G}_{q}\)
\(\mathbf{b} \leftarrow\left(b_{1}, \ldots, b_{N}\right)\)
\(y \leftarrow\left(p k_{j}, \mathbf{b}, \mathbf{b}^{\prime}\right)\)
\(c \leftarrow \operatorname{GetNIZKPChallenge}(y, t, \tau) \quad / /\) see Alg.7.4
\(t_{0}^{\prime} \leftarrow p k_{j}^{-c} \cdot g^{s} \bmod p\)
for \(i=1, \ldots, N\) do
 \(t_{i}^{\prime} \leftarrow\left(b_{i}^{\prime}\right)^{-c} \cdot b_{i}^{s} \bmod p\)
return \(\left(t_{0}=t_{0}^{\prime}\right) \wedge\left[\bigwedge_{i=1}^{N}\left(t_{i}=t_{i}^{\prime}\right)\right]\)
```

Algorithm 7.52: Checks the correctness of a decryption proof $\pi$ generated by Alg. 7.50. The public values are the ElGamal encryptions e, the partial decryptions $\mathbf{b}^{\prime}$, and the share $p k_{j}$ of the public encryption key.

```
Algorithm: GetDecryptions(e, \(\left.\mathbf{B}^{\prime}\right)\)
Input: ElGamal encryptions \(\mathbf{e}=\left(e_{1}, \ldots, e_{N}\right), e_{i}=\left(a_{i}, b_{i}\right), a_{i}, b_{i} \in \mathbb{G}_{q}\)
 Partial decryptions \(\mathbf{B}^{\prime}=\left(b_{i j}^{\prime}\right)_{N \times s}, b_{i j}^{\prime} \in \mathbb{G}_{q}\)
for \(i=1, \ldots, N\) do
 \(b_{i}^{\prime} \leftarrow \prod_{j=1}^{s} b_{i j}^{\prime} \bmod p\)
 \(m_{i} \leftarrow \frac{a_{i}}{b_{i}} \bmod p\)
\(\mathbf{m} \leftarrow\left(m_{1}, \ldots, m_{N}\right)\)
return \(m\)
\(/ / \mathbf{m} \in \mathbb{G}_{q}^{N}\)
```

Algorithm 7.53: Computes the list of decryptions $\mathbf{m}=\left(m_{1}, \ldots, m_{N}\right)$ by assembling the partial decryptions $b_{i j}^{\prime}$ obtained from $s$ different authorities.

Algorithm: GetVotes(m, $n$ )
Input: Products of encoded selections $\mathbf{m}=\left(m_{1}, \ldots, m_{N}\right), m_{i} \in \mathbb{G}_{q}$
Number of candidates $n \geqslant 2$
$\mathbf{p} \leftarrow \operatorname{GetPrimes}(n) \quad / / \mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$, see Alg. 7.1
for $i=1, \ldots, N$ do
for $j=1, \ldots, n$ do if $m_{i} \bmod p_{j}=0$ then
$v_{i j} \leftarrow 1$
else
$v_{i j} \leftarrow 0$
$\mathbf{v}_{i} \leftarrow\left(v_{i, 1}, \ldots, v_{i, n}\right)$
$\mathbf{V} \leftarrow\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{N}\right)$
return V
Algorithm 7.54: Computes the election result matrix $\mathbf{V}=\left(v_{i j}\right)_{N \times n}$ from the products of encoded selections $\mathbf{m}=\left(m_{1}, \ldots, m_{N}\right)$ by retrieving the prime factors of each $m_{i}$. Each resulting vector $\mathbf{v}_{i}$ represents somebody's vote, and each value $v_{i j}=1$ represents somebody's vote for a specific candidate $j \in\{1, \ldots, n\}$.

## Part IV.

## System Specification

## 8. Security Levels and Parameters

In this chapter, we introduce three different security levels $\lambda \in\{1,2,3\}$, for which default security parameters are given. An additional security level $\lambda=0$ with very small parameters is introduced for testing purposes. Selecting the „right" security level is a trade-off between security, efficiency, and usability. The proposed parameters are consistent with the general constraints listed in Table 6.1 of Section 6.3.1. In Section 8.1, we define general length parameters for the hash algorithms and the mathematical groups and fields. Complete sets of recommended group and field parameters are listed in Section 8.2. We recommend that exactly these values are used in an actual implementation. In Section 8.3, we specify various alphabets and code lengths for the voting, confirmation, finalization, and verification codes.

### 8.1. Length Parameters

For each security level, an estimate of the achieved security strengths $\sigma$ (privacy) and $\tau$ (integrity) is shown in Table 8.1. We measure security strength in the number of bits of a space, for which an exhaustive search requires at least as many basic operations as breaking the security of the system, for example by solving related mathematical problems such as DL or DDH . Except for $\lambda=0$, the values and corresponding bit lengths given in Table 8.1 are in accordance with current NIST recommendations [8, Table 2]. Today, $\lambda=1$ ( 80 bits security) is no longer considered to be sufficiently secure (DL computations for a trapdoored 1024-bit prime modulo have been reported recently [17]). Therefore, we recommend at least $\lambda=2$ (112 bits security), which is considered to be strong enough until at least 2030. Note that a mix of security levels can be chosen for privacy and integrity, for example $\sigma=128$ $(\lambda=3)$ for improved privacy in combination with $\tau=112(\lambda=2)$ for minimal integrity.

| Security <br> Level $\lambda$ | Security <br> Strength $\sigma, \tau$ | Hash Length <br> $\ell(L)$ | $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ |  | $\mathbb{G}_{\hat{q}} \subset \mathbb{Z}_{\hat{p}}^{*}$ |  | $\mathbb{Z}_{p^{\prime}}$ | $L_{M}$ | Crypto- <br> period | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  | $\\|p\\|$ | $\\|q\\|$ | $\\|\hat{p}\\|$ | $\\|\hat{q}\\|$ | $\left\\|p^{\prime}\right\\|$ |  |  |
| 1 | 80 | $160(20)$ | 1024 | 1023 | 1024 | 160 | 160 | 40 | Legacy |
| 2 | 112 | $224(28)$ | 2048 | 2047 | 2048 | 224 | 224 | 56 | $\leqslant 2030$ |
| 3 | 128 | $256(32)$ | 3072 | 3071 | 3072 | 256 | 256 | 64 | $>2030$ |

Table 8.1.: Length parameters according to current NIST recommendations. The length $L_{M}$ of the OT messages follows deterministically from $\left\|p^{\prime}\right\|$, see Table 6.1.

Since the minimal hash length that covers all three security levels is 256 bits ( 32 bytes), we propose using SHA-256 as general hash algorithm. We write $H \leftarrow$ SHA256 $(B)$ for calling
this algorithm with an arbitrarily long input byte array $B \in \mathcal{B}^{*}$ and assigning its return value to $H \in \mathcal{B}^{32}$. For $\lambda=3$, the length of $H$ is exactly $L=32$ bytes. For $\lambda<3$, we truncate the first $L$ bytes from $H$ to obtain the desired hash length, i.e.,

$$
\operatorname{Hash}_{L}(B)=\operatorname{Truncate}(\operatorname{SHA} 256(B), L)
$$

is our general way of computing hash values for all security levels. We use it in Alg. 4.9 to compute hash values of multiple inputs.

### 8.2. Recommended Group and Field Parameters

In this section, we specify public parameters for $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}, \mathbb{G}_{\hat{q}} \subset \mathbb{Z}_{\hat{p}}^{*}$, and $\mathbb{Z}_{p^{\prime}}$ satisfying the bit lengths of the security levels $\lambda \in\{0,1,2,3\}$ of Table 8.1. In each case, we choose the smallest possible safe prime $p \in \mathbb{S}$, the smallest possible prime group order $\hat{q} \in \mathbb{P}$, the smallest possible co-factor $\hat{k}$ satisfying $\hat{p}=\hat{k} \hat{q}+1 \in \mathbb{P}$, and the smallest possible prime $p^{\prime} \in \mathbb{P}$. Since $\|\hat{q}\|$ is always equal to $\left\|p^{\prime}\right\|$, we get $\hat{q}=p^{\prime}$ for all security levels. For every group $\mathbb{G}_{q}$, we use identical values $g=2^{2}=4$ and $h=3^{2}=9$ as default generators (other independent generators can be computed with Alg. 7.3). Similarly, for the groups $\mathbb{G}_{\hat{q}}$, we use $\hat{g}=2^{\hat{k}} \bmod \hat{p}$ as default generators. Each of the following four subsections contains a table with values $p, q, k, g, h, \hat{p}, \hat{q}, \hat{k}, \hat{q}$, and $p^{\prime}$ for the four security levels. We also give lists $\mathbf{p}=\left(p_{1}, \ldots, p_{50}\right)$ of the first 50 primes in $\mathbb{G}_{q}$, which are required to encode the selected candidates $\mathbf{s}$ as a single element $\Gamma(\mathbf{s}) \in \mathbb{G}_{q}$ (see Sections 5.3 and 6.5 for more details).

### 8.2.1. Level 0 (Testing Only)

| $p=563$ | $\hat{p}=787$ | $p^{\prime}=131$ |
| :--- | :--- | :--- |
| $q=281$ | $\hat{q}=131$ |  |
| $k=2$ | $\hat{k}=6$ |  |
| $g=4$ | $\hat{g}=64$ |  |
| $h=9$ |  |  |

Table 8.2.: Groups $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ and $\mathbb{G}_{\hat{q}} \subset \mathbb{Z}_{\hat{p}}^{*}$ with default generators $g, h$, and $\hat{g}$, respectively, and field $\mathbb{Z}_{p^{\prime}}$ for security level $\lambda=0$ (used for testing only).

| $p_{1}=3$ | $p_{10}=61$ | $p_{19}=149$ | $p_{28}=251$ | $p_{37}=379$ | $p_{46}=491$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $p_{2}=7$ | $p_{11}=67$ | $p_{20}=179$ | $p_{29}=257$ | $p_{38}=383$ | $p_{47}=503$ |
| $p_{3}=11$ | $p_{12}=71$ | $p_{21}=181$ | $p_{30}=269$ | $p_{39}=401$ | $p_{48}=509$ |
| $p_{4}=13$ | $p_{13}=101$ | $p_{22}=191$ | $p_{31}=271$ | $p_{40}=409$ | $p_{49}=521$ |
| $p_{5}=17$ | $p_{14}=103$ | $p_{23}=193$ | $p_{32}=277$ | $p_{41}=421$ | $p_{50}=541$ |
| $p_{6}=19$ | $p_{15}=107$ | $p_{24}=197$ | $p_{33}=281$ | $p_{42}=439$ | $:$ |
| $p_{7}=23$ | $p_{16}=113$ | $p_{25}=211$ | $p_{34}=337$ | $p_{43}=449$ | $:$ |
| $p_{8}=47$ | $p_{17}=127$ | $p_{26}=223$ | $p_{35}=347$ | $p_{44}=461$ |  |
| $p_{9}=59$ | $p_{18}=137$ | $p_{27}=241$ | $p_{36}=349$ | $p_{45}=467$ |  |

Table 8.3.: The first 50 prime elements in $\mathbb{G}_{p} \subset \mathbb{Z}_{q}^{*}$ for $p$ and $q$ as defined in Table 8.2.

### 8.2.2. Level 1

| $p=0 \times 800000000000000000000000000000$ | $\hat{p}=0 \times 800000000000000000000000000000$ |
| :---: | :---: |
| 00000000000000000000000000000000 | 00000000000000000000000000000000 |
| 00000000000000000000000000000000 | 00000000000000000000000000000000 |
| 00000000000000000000000000000000 | 00000000000000000000000000000000 |
| 00000000000000000000000000000000 | 00000000000000000000000000000000 |
| 00000000000000000000000000000000 | 00000000000000000000000000000000 |
| 00000000000000000000000000000000 | 0000000000000000000000007FFFFFFF |
| 00000000000000000000000000001981 | FFFFAEC41EFA48B2E00000000000012B |
| BF | 01 |
| $q=0 \times 400000000000000000000000000000$ | $\hat{q}=0 \times 800000000000000000000000000000$ |
| 00000000000000000000000000000000 | 000000012B |
| 00000000000000000000000000000000 |  |
| 00000000000000000000000000000000 |  |
| 00000000000000000000000000000000 |  |
| 00000000000000000000000000000000 |  |
| 00000000000000000000000000000000 |  |
| 00000000000000000000000000000CC0 |  |
| DF |  |
| $k=2$ | $\hat{k}=0 \times \mathrm{FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF}$ |
|  | FFFFFFFDAA0000000000000000000000 |
|  | 0000000000000574E3FFFFFFFFFFFFFF |
|  | FFFFFFFFFFFFFFFFFFF340F368000000 |
|  | 0000000000000000000000001 DC6476B |
|  | OFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBA |
|  | 72D52BE8A00000000000000100 |
| $g=4$ | $\hat{g}=0 \times 3 E 4 E C 67$ D0801039E0DAA11CA82D179 |
|  | 8C899914750ADAE377DB63181A5657EE |
|  | FCC8F110113B0E644DAA50A9193EAA68 |
|  | 63001CA3BF1B91D6131746AB1056C17A |
|  | D54367FC740B85CE7629CCC529D916A9 |
|  | A00C391308133AF108920407D35C0B1B |
|  | CF406E1B9374DA697C55650F89743A4A |
|  | ED7D857F6FEB68EA3E5F2404B4ABF33F |
|  | C4 |
| $h=9$ |  |

Table 8.4.: Groups $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ and $\mathbb{G}_{\hat{q}} \subset \mathbb{Z}_{\hat{p}}^{*}$ for security level $\lambda=1$ with default generators $g$, $h$, and $\hat{g}$, respectively.

| $p_{1}=2$ | $p_{10}=83$ | $p_{19}=191$ | $p_{28}=263$ | $p_{37}=379$ | $p_{46}=521$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $p_{2}=3$ | $p_{11}=89$ | $p_{20}=193$ | $p_{29}=269$ | $p_{38}=389$ | $p_{47}=523$ |
| $p_{3}=11$ | $p_{12}=97$ | $p_{21}=197$ | $p_{30}=277$ | $p_{39}=409$ | $p_{48}=541$ |
| $p_{4}=23$ | $p_{13}=101$ | $p_{22}=199$ | $p_{31}=281$ | $p_{40}=433$ | $p_{49}=547$ |
| $p_{5}=29$ | $p_{14}=113$ | $p_{23}=211$ | $p_{32}=307$ | $p_{41}=439$ | $p_{50}=577$ |
| $p_{6}=47$ | $p_{15}=127$ | $p_{24}=227$ | $p_{33}=311$ | $p_{42}=457$ | $:$ |
| $p_{7}=53$ | $p_{16}=151$ | $p_{25}=229$ | $p_{34}=313$ | $p_{43}=479$ | $:$ |
| $p_{8}=67$ | $p_{17}=163$ | $p_{26}=239$ | $p_{35}=331$ | $p_{44}=491$ |  |
| $p_{9}=71$ | $p_{18}=173$ | $p_{27}=251$ | $p_{36}=367$ | $p_{45}=509$ |  |

Table 8.5.: The first 50 prime elements in $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for $p$ and $q$ as defined in Table 8.4.
$p^{\prime}=0 \times 800000000000000000000000000000000000012 \mathrm{~B}$
Table 8.6.: Field $\mathbb{Z}_{p^{\prime}}$ for security level $\lambda=1$.

### 8.2.3. Level 2

$$
\begin{aligned}
p= & 0 \times 80000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000 \text { AD3AF } \\
= & 0 \times 40000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000000000000000000000000000000000000000000000000000000 \\
& 0000000000000000000569 \mathrm{D} 7 \\
k= & 2 \\
g= & 4 \\
h= & 9
\end{aligned}
$$

Table 8.7.: Group $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for security level $\lambda=2$ with default generators $g$ and $h$.

| $p_{1}=2$ | $p_{10}=47$ | $p_{19}=131$ | $p_{28}=229$ | $p_{37}=359$ | $p_{46}=439$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $p_{2}=3$ | $p_{11}=53$ | $p_{20}=137$ | $p_{29}=263$ | $p_{38}=373$ | $p_{47}=443$ |
| $p_{3}=5$ | $p_{12}=59$ | $p_{21}=139$ | $p_{30}=283$ | $p_{39}=383$ | $p_{48}=449$ |
| $p_{4}=7$ | $p_{13}=61$ | $p_{22}=149$ | $p_{31}=293$ | $p_{40}=397$ | $p_{49}=467$ |
| $p_{5}=13$ | $p_{14}=79$ | $p_{23}=151$ | $p_{32}=307$ | $p_{41}=401$ | $p_{50}=479$ |
| $p_{6}=19$ | $p_{15}=89$ | $p_{24}=191$ | $p_{33}=311$ | $p_{42}=409$ | $:$ |
| $p_{7}=29$ | $p_{16}=97$ | $p_{25}=193$ | $p_{34}=317$ | $p_{43}=419$ | $:$ |
| $p_{8}=31$ | $p_{17}=113$ | $p_{26}=199$ | $p_{35}=331$ | $p_{44}=421$ |  |
| $p_{9}=41$ | $p_{18}=127$ | $p_{27}=211$ | $p_{36}=337$ | $p_{45}=431$ |  |

Table 8.8.: The first 50 prime elements in $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for $p$ and $q$ as defined in Table 8.7.
$\hat{p}=0 \times 80000000000000000000000000000000000000000000000000000000000000000000$ 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000002 B 3000000000000000000000000000010 AE 7A58BB039DF1DD000003FC4F
$\hat{q}=0 \times 800000000000000000000000000000000000000000000000000000$ BD
$\hat{k}=0 \times$ xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE86000000000000 00000000000000000000000000000000000000022 E23FFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFCC7DED80000000000000000000000000000000000000000 00000004COEOF50FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8FB33D626 600000000000000000000000000000000000000000000A5D1575CB563FFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFOB28E5011C2A58000000000000000000000000000 $000000000000169859 D D C 5 C 697 A 10000000566$
$\hat{g}=0 \times 8$ FC32AED89182BD1CAC46EA9CDBECF57DB18D8748E039355CCBC90DEDA2149437806 80CCD7D379440E833E03681AD5C93C3CCB3909333D2DC500688237C4D0623703823F02 6FCD67103BA49EE2D3B3DDFAC5B797636FFC4369177FFA357B722935B2EF3B2E3F1DFE A736903F76927794D071A723F79666EE23FF0EDE87AFB3F60792CFFC7078CB96D8A230 66C8C412813F5943CF9E98B8FE3E21A0A8F241A830BF39C16BB8F2F21D53EB91F30262 A86A043C5DF1167CB748B6EACC5946D612EB8DFEB454EOB1289A7CF66F2940C83CD461 18B37B949905AEAF315F537B5B54BF75138603D54BCC4C2D6E72C0E7DD50B5925417E5 C277E411B9394FB2FDACODF

Table 8.9.: Group $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for security level $\lambda=2$ with default generator $\hat{g}$.

[^6]Table 8.10.: Field $\mathbb{Z}_{p^{\prime}}$ for security level $\lambda=2$.

### 8.2.4. Level 3

$p=0 \times 80000000000000000000000000000000000000000000000000000000000000000000$ 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 $00000000000000000000000000000000000000000000000000000000000000006119 D F$
$q=0 \times 40000000000000000000000000000000000000000000000000000000000000000000$ 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000308CEF
$k=2$
$g=4$
$h=9$
Table 8.11.: Group $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for security level $\lambda=3$ with default generators $g$ and $h$.

| $p_{1}=2$ | $p_{10}=71$ | $p_{19}=157$ | $p_{28}=283$ | $p_{37}=443$ | $p_{46}=523$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $p_{2}=3$ | $p_{11}=79$ | $p_{20}=197$ | $p_{29}=293$ | $p_{38}=449$ | $p_{47}=547$ |
| $p_{3}=7$ | $p_{12}=83$ | $p_{21}=211$ | $p_{30}=307$ | $p_{39}=461$ | $p_{48}=563$ |
| $p_{4}=11$ | $p_{13}=101$ | $p_{22}=223$ | $p_{31}=367$ | $p_{40}=463$ | $p_{49}=577$ |
| $p_{5}=31$ | $p_{14}=103$ | $p_{23}=227$ | $p_{32}=373$ | $p_{41}=467$ | $p_{50}=601$ |
| $p_{6}=43$ | $p_{15}=107$ | $p_{24}=229$ | $p_{33}=383$ | $p_{42}=491$ | $:$ |
| $p_{7}=47$ | $p_{16}=109$ | $p_{25}=233$ | $p_{34}=419$ | $p_{43}=499$ | $:$ |
| $p_{8}=59$ | $p_{17}=127$ | $p_{26}=251$ | $p_{35}=421$ | $p_{44}=503$ |  |
| $p_{9}=67$ | $p_{18}=151$ | $p_{27}=271$ | $p_{36}=431$ | $p_{45}=521$ |  |

Table 8.12.: The first 50 prime elements in $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for $p$ and $q$ as defined in Table 8.11.
$\hat{p}=0 \times 80000000000000000000000000000000000000000000000000000000000000000000$ 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0001F6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC6C982AE8AA368D05E56D53
$\hat{q}=0 \times 800000000000000000000000000000000000000000000000000000000000005 \mathrm{~F}$
$\hat{k}=0 \times$ FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF420000 000000000000000000000000000000000000000000000000000000008 D03FFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9757080000000000000000 00000000000000000000000000000000000000004 DAD680FFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC6594CC4200000000000000000000000000000 0000000000000000000000002AC9B906703FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFE03E48AD38B0800000000000000000000000000000000000000000 000000001791C60F6FED00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF EE81CF008AEE194200000000000000000000000000000000000000000000000CFBA85D 98E3494103FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF65D390A88874FA1 BFOBEE
$\hat{g}=0 \times 28 F 1 F 91 B 358840 E E F 71964530 F 6899 B B 54 D D 42062 A B 9 D 9 C E C B C 625862 F 16949 A 5100$ F0E8297AD084B7E5528CF486E6CE3C2D426F587D8FB57E6BFACEBF9BE2FC56ECD08AEF 52DD04755CE826FFD04FAA680198F7D60BD27D98B6DAC03751D568FB655CAEE672F0D5 95A32BD2E0E4DD22B9505153A85436F3237658DE414C5C288B21520B760275A7BE1B24 6A8F6391368104FC8DB45E4305CF6FAA1AB380516E131C90626BA9E5692CE390D5AA22 00966D79D7815894AD82DF1B11ECE364CF7819BBA4CF02CE3ED48A643082CA8E49418A 293CD535BA0A4CE02B9D32760560197A6831C2045D89A62212818BD95612A132743443 23EF8F725DCFF619F1F0B7B6CE168D530E94F96BBB5E0450A352DE5C168CE0E4053D5C 2DA11C2C50B3EAA869B82ABBB8D2D272DCB1D2BBDCB77D672BC5DC62A6D9D63CFBC442 71D65F1984B5284B42822A03CF5B7E04A409D82EF019A36D25C5E358DE2F1AB83098BC 180A4D957DD30A5D5247D047B14728532172340D9D6444B165FB80BBD77231CD0408BB

Table 8.13.: Group $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for security level $\lambda=3$ with default generator $\hat{g}$.


Table 8.14.: Field $\mathbb{Z}_{p^{\prime}}$ for security level $\lambda=3$.

### 8.3. Alphabets and Code Lengths

For the codes printed on the voting cards and displayed to the voters on their voting device, suitable alphabets need to be fixed. In this section, we specify several alphabets and discuss-based on their properties-their benefits and weaknesses for each type of code. The main discriminating property of the codes is the way of their usage. The voting and confirmation codes need to be entered by the voters, whereas the verification and finalization codes are displayed to the voters for comparison only. Since entering codes by users is an error-prone process, it is desirable that the chance of misspellings is as small as possible. Case-insensitive codes and codes not containing homoglyphs such as ' 0 ' and ' 0 ' are therefore preferred. We call an alphabet not containing such homoglyphs fail-safe.

In Table 8.15, we list some of the most common alphabets consisting of latin letters and arabic digits. Some of them are case-insensitive and some are fail-safe. The table also shows the entropy (measured in bits) of a single character in each alphabet. The alphabet $A_{62}$, for example, which consists of all 62 alphanumerical characters (digits 0-9, upper-case letters A-F, lower-case letters a-z), does not provide case-insensitivity or fail-safety. Each character of $A_{62}$ corresponds to $\log 62=5.95$ bits entropy. Note that the Base64 alphabet $A_{64}$ requires two non-alphanumerical characters to reach 6 bits entropy.

Another special case is the last alphabet in Table 8.15, which contains $6^{5}=7776$ different English words from the new Diceware wordlist of the Electronic Frontier Foundation. ${ }^{1,2}$ The advantage of such a large alphabet is its relatively high entropy of almost 13 bits per word. Furthermore, since human users are well-trained in entering words in a natural language, entering lists of such words is less error-prone than entering codes consisting of random characters. In case of using the Diceware wordlist, the length of the codes is measured in number of words rather than number of characters. Note that analogous Diceware wordlists of equal size are available in many different languages.

| Name | Alphabet | Caseinsensitive | Failsafe | Bits per character |
| :---: | :---: | :---: | :---: | :---: |
| Decimal | $A_{10}=\{0, \ldots, 9\}$ | - | - | 3.32 |
| Hexadecimal | $A_{16}=\{0, \ldots, 9, \mathrm{~A}, \ldots, \mathrm{~F}\}$ | - | $\bullet$ | 4 |
| Latin | $A_{26}=\{\mathrm{A}, \ldots, \mathrm{Z}\}$ |  | - | 4.70 |
| Alphanumeric | $A_{32}=\{0, \ldots, 9, \mathrm{~A}, \ldots, \mathrm{Z}\} \backslash\{0,1, \mathrm{I}, \mathrm{O}\}$ | $\bullet$ | $\bullet$ | 5 |
|  | $A_{36}=\{0, \ldots, 9, \mathrm{~A}, \ldots, \mathrm{Z}\}$ | - |  | 5.17 |
|  | $A_{57}=\{0, \ldots, 9, \mathrm{~A}, \ldots, \mathrm{Z}, \mathrm{a}, \ldots, \mathrm{z}\} \backslash\{0,1, \mathrm{I}, \mathrm{O}, \mathrm{I}\}$ |  | $\bullet$ | 5.83 |
|  | $A_{62}=\{0, \ldots, 9, \mathrm{~A}, \ldots, \mathrm{Z}, \mathrm{a}, \ldots, \mathrm{z}\}$ |  |  | 5.95 |
| Base64 | $A_{64}=\{\mathrm{A}, \ldots, \mathrm{Z}, \mathrm{a}, \ldots, \mathrm{z}, 0, \ldots, 9,=, /\}$ |  |  | 6 |
| Diceware | $A_{7776}=\{$ "abacus", ..., "zoom" $\}$ | $\bullet$ | - | 12.92 |

Table 8.15.: Common alphabets with different sizes and characteristics. Case-insensitivity and fail-safety are desirable properties to facilitate flawless user entries.

[^7]In Section 4.2, we have discussed methods for converting integers and byte arrays into strings of a given alphabet $A=\left\{c_{1}, \ldots, c_{N}\right\}$ of size $N \geqslant 2$. The conversion algorithms depend on the assumption that the characters in $A$ are totally ordered and that a ranking function $\operatorname{rank}_{A}\left(c_{i}\right)=i-1$ representing this order is available. We propose to derive the ranking function from the characters as listed in Table 8.15. In the case of $A_{16}$, for example, this means that the ranking function looks as follows:

$$
\begin{array}{c|cccccccccccccccc}
c_{i} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\
\hline \operatorname{rank}_{A_{16}}\left(c_{i}\right) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15
\end{array}
$$

All other ranking functions are defined in exactly this way. In case of $A_{32}$ and $A_{57}$, the removed homoglyphs are simply skipped in the ranking, i.e., ' 2 ' becomes the first character in the order. Note that the proposed order for $A_{64}$ is consistent with the official MIME Base64 alphabet (RFC 1421, RFC 2045).

### 8.3.1. Voting and Confirmation Codes

For the voting and confirmation codes, which are entered by the voters during vote casting, we consider the six alphabets from Table 8.15 satisfying fail-safety. For the security levels $\lambda \in\{0,1,2,3\}$ introduced in the beginning of this chapter, Table 8.16 shows the resulting code lengths for these alphabets. We propose to satisfy the constraints for corresponding upper bounds $\hat{q}_{x}$ and $\hat{q}_{y}$ by setting them to the smallest integer of length $2 \tau$ bits:

$$
\hat{q}_{x}=\hat{q}_{y}= \begin{cases}128, & \text { for } \lambda=0 \\ 2^{159}, & \text { for } \lambda=1 \\ 2^{223}, & \text { for } \lambda=2 \\ 2^{255}, & \text { for } \lambda=3\end{cases}
$$

By looking at the numbers in Table 8.16, we see that the necessary code lengths to achieve the desired security strength are problematical from a usability point of view. The caseinsensitive Diceware alphabet $A_{7776}$ with code lengths between 13 and 20 words, which seems to be one of the best choices, is still not very practical. We will continue the discussion of this problem in ??.

| Security <br> Level $\lambda$ | Security <br> Strength $\tau$ | $\hat{q}_{x}\\|,\\| \hat{q}_{y} \\|$ | $\ell_{X}, \ell_{Y}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $A_{16}$ | $A_{26}$ | $A_{32}$ | $A_{57}$ | $A_{7776}$ |  |
| 0 | 4 |  | 3 | 2 | 2 | 2 | 2 | 1 |
| 1 | 80 |  | 44 | 40 | 35 | 32 | 27 | 13 |
| 2 | 112 |  | 61 | 56 | 48 | 45 | 38 | 18 |
| 3 | 128 |  | 70 | 64 | 55 | 52 | 43 | 20 |

Table 8.16.: Lengths of voting and confirmation codes for different alphabets and security levels.

### 8.3.2. Verification and Finalization Codes

According to the constraints of Table 6.1 in Section 6.3.1, the length of the verification and finalization codes are determined by the deterrence factor $\epsilon$, the maximal number of candidates $n_{\max }$, and the size of the chosen alphabet. For $n_{\max }=1678$ and security levels $\lambda \in\{0,1,2,3\}$, Table 8.17 shows the resulting code lengths for different alphabets and different deterrence factors $\epsilon=1-10^{-(\lambda+2)}$. This particular choice for $n_{\max }$ has two reasons. First, it satisfies the use cases described in Section 2.2 with a good margin. Second, it is the highest value for which $L_{R}=3$ bytes are sufficient in security level $\lambda=2$.

In the light of the results of Table 8.17 for the verification codes, we conclude that the alphabet $A_{64}$ (Base64) with verification codes of length $\ell_{R}=4$ in most cases seems to be a good compromise between security and usability. Since $n$ verification codes are printed on the voting card and $k$ verification codes are displayed to the voter, they should be as small as possible for usability reasons. On the other hand, since only one finalization code appears on every voting card, it would probably not matter much if they were slightly longer. Any of the proposed alphabets seems therefore appropriate. To make finalization codes look different from verification codes, we propose to use the alphabet $A_{10}$, i.e., to represent finalization codes as 5 -digit numbers for $\lambda \in\{1,2\}$ or as a 8 -digit numbers for $\lambda=3$.

| Security <br> Level $\lambda$ | Deterrence <br> Factor $\epsilon$ | $L_{R}$ | $\ell_{R}$ |  |  |  |  |  | $L_{F}$ | $\ell_{F}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $A_{10}$ | $A_{16}$ | $A_{26}$ | $A_{36}$ | $A_{62}$ | $A_{64}$ |  | $A_{10}$ | $A_{16}$ | $A_{26}$ | $A_{36}$ | $A_{62}$ | $A_{64}$ |
| 0 | 99\% | 3 | 8 | 6 | 6 | 5 | 5 | 4 | 1 | 3 | 2 | 2 | 2 | 2 | 2 |
| 1 | 99.9\% | 3 | 8 | 6 | 6 | 5 | 5 | 4 | 2 | 5 | 4 | 4 | 4 | 3 | 3 |
| 2 | 99.99\% | 3 | 8 | 6 | 6 | 5 | 5 | 4 | 2 | 5 | 4 | 4 | 4 | 3 | 3 |
| 3 | 99.999\% | 4 | 10 | 8 | 7 | 7 | 6 | 6 | 3 | 8 | 6 | 6 | 5 | 5 | 4 |

Table 8.17.: Lengths of verification and finalization codes for different alphabets and security levels. For the maximal number of candidates, we use $n_{\max }=1678$ as default value.

## Nomenclature

| $\alpha$ | Ballot |
| :--- | :--- |
| $a$ | Left-hand side of encrypted vote |
| $\mathbf{a}$ | OT query |
| $A_{F}$ | Alphabet for finalization codes |
| $A_{R}$ | Alphabet for verification codes |
| $A_{X}$ | Alphabet for voting codes |
| $A_{Y}$ | Alphabet for confirmation codes |
| $\beta_{j}$ | Reponse generated by authority $j$ |
| $\boldsymbol{\beta}_{i}$ | Reponses for voter $i$ |
| $b$ | Right-hand side of encrypted vote |
| $\mathbf{b}_{j}^{\prime}$ | Partial decryptions by authority $j$ |
| $B$ | Ballot list consisting of tuples $(i, \alpha, \mathbf{r})$ for each valid ballot $(i, \alpha)$ |
| $\mathbf{B}^{\prime}$ | Partial decryptions <br> $\mathbb{B}$ <br> $\gamma$$\quad$Boolean set <br> Confirmation |
| $\mathbf{c}$ | List of candidate descriptions |
| $C$ | Confirmation list consisting of tuples $(i, \gamma)$ for each valid confirmation $(i, \gamma)$ |
| $C_{i}$ | Candidate description |
| $\delta_{j}$ | Finalization generated by authority $j$ |
| $\boldsymbol{\delta}_{i}$ | Finalizations for voter $i$ |
| $d_{i}$ | Voting card data |
| $\hat{\mathbf{d}}_{j}$ | Public credentials generated by authority $j$ |
| $\mathbf{d}_{j}$ | Voting card data generated by authority $j$ |
| $\hat{\mathbf{D}}$ | Public credentials |
| $\mathbf{D}$ | Voting card data |
| $\epsilon$ | Deterrence factor |
| $e_{i j}$ | Eligibility of voter $i$ in election $j$ |
| $\mathbf{E}$ | Eligibility matrix |
| $F C_{i}$ | Finalization code of voter $i$ |
| $g$ | Generator of group $\mathbb{G}_{q}$ |
| $\hat{g}$ | Generator of group $\mathbb{G}_{\hat{q}}$ |
| $\mathbb{G}_{q}$ | Multiplicative subgroup of integers modulo $p$ (of order $\left.q=\frac{p-1}{2}\right)$ |
| $\mathbb{G}_{\hat{q}}$ | Multiplicative subgroup of integers modulo $\hat{p}$ (of order $\hat{q})$ |
| $h$ | Generator of group $\mathbb{G}_{q}$ |


| $h_{i}$ | Generator of group $\mathbb{G}_{q}$ |
| :---: | :---: |
| $i$ | Voter index from $\left\{1, \ldots, N_{E}\right\}$, selection index from $\{1, \ldots, k\}$ |
| $j$ | Authority index from $\{1, \ldots, s\}$, election index from $\{1, \ldots, t\}$ |
| $k_{F}$ | String length of finalization codes |
| $k_{i j}$ | Number of selections of voter $i$ in election $j$ |
| $k_{R}$ | String length of verification codes |
| k | Number of selections in each election |
| $\mathbf{k}_{i}$ | Number of selections of voter $i$ in each election |
| K | Number of selections of each voter in each election |
| $\lambda$ | Security level |
| $l$ | Auxiliary index in iterations |
| $\ell$ | Output length of hash funciton (bits) |
| $\ell_{F}$ | Length of finalization codes (bits) |
| $\ell_{R}$ | Length of verification codes (bits) |
| $\ell_{X}$ | String length of voting code |
| $\ell_{Y}$ | String length of confirmation code |
| $L$ | Output length of hash function (bytes) |
| $L_{F}$ | Length of finalization codes (bytes) |
| $L_{M}$ | Length of OT messages (bytes) |
| $L_{R}$ | Length of verification codes (bytes) |
| $\tau$ | Security strength (integrity) |
| $m$ | Product of selected primes |
| m | Products of selected primes |
| $n$ | Number of candidates |
| n | Number of candidates in each election |
| $N$ | Number of valid votes |
| $N_{B}$ | Size of ballot list $B$ |
| $N_{C}$ | Size of confirmation list $C$ |
| $N_{E}$ | Number of eligible voters |
| $\mathbb{N}$ | Natural numbers |
| $\mathbb{N}^{+}$ | Positive integers |
| $\pi$ | Ballot or confirmation NIZKP |
| $\pi_{j}$ | Shuffle proof of authority $j$ |
| $\pi_{j}^{\prime}$ | Decryption proof of authority $j$ |
| $\pi$ | Shuffle proofs |
| $\pi^{\prime}$ | Decryption proofs |
| $p$ | Prime modulus of group $\mathbb{G}_{q}$ |
| $\hat{p}$ | Prime modulus of group $\mathbb{G}_{\hat{q}}$ |
| $p_{i j}$ | Point on polynomials of voter $i$ |
| $p^{\prime}$ | Prime modulus of field $\mathbb{Z}_{p^{\prime}}$ |
| $P_{i}$ | Voting page of voter $i$ |


| $\mathbf{P}$ | Matrix of points |
| :--- | :--- |
| $\mathbb{P}$ | Primes numbers |
| $p k$ | Public encryption key |
| $p k_{j}$ | Share of public encryption key |
| $\mathbf{p k}$ | Shares of public encryption key |
| $q$ | Order of group $\mathbb{G}_{q}$ |
| $\hat{q}$ | Order of group $\mathbb{G}_{\hat{q}}$ |
| $\hat{q}_{x}$ | Upper bound for secret voting credentials |
| $\hat{q}_{y}$ | Upper bound for secret confirmation credentials |
| $\mathbf{q}$ | Selected primes |
| $\mathbf{r} \mathbf{c}_{i}$ | Verification codes of voter $i$ |
| $R C_{i j}$ | Verification code of voter $i$ for candidate $j$ (string) |
| $\sigma$ | Security strength (privacy) |
| $s$ | Number of authorities |
| $s_{i}$ | Index of selected candidate |
| $\mathbf{s}$ | Vector of indices of selected candidates |
| $\mathbb{S}$ | Safe primes |
| $S_{i}$ | Voting card of voter $i$ |
| $s k_{j}$ | Share of private decryption key |
| $t$ | Number of elections in an election event |
| $v_{i j}$ | Single entry of the election result matrix |
| $\mathbf{v}$ | List of voter descriptions |
| $V_{i}$ | Voter description (first/last names, address, date of birth, etc.) |
| $\mathbf{V}$ | Election result matrix |
| $\hat{x}_{i}$ | Public voting credential of voter $i$ |
| $x_{i}$ | Secret voting credential of voter $i$ |
| $X_{i}$ | Voting code of voter $i$ |
| $\hat{y}_{i}$ | Public confirmation credential of voter $i$ |
| $y_{i}$ | Secret confirmation credential of voter $i$ |
| $Y_{i}$ | Confirmation code of voter $i$ |
| $\mathbb{Z}_{p^{\prime}}$ | Field of integers modulo $p^{\prime}$ |
| $\mathbb{Z}_{\hat{p}}^{*}$ | Multiplicative group of integers modulo $\hat{p}$ |
| $\mathbb{Z}_{q}$ | Field integers modulo $q$ |
| $\mathbb{Z}_{\hat{q}}$ | Fier |

## List of Tables

2.1. Election parameters for common types of elections. Party-list elections (last line) are modeled as two independent elections in parallel, one for the parties and one for the candidates ..... 16
4.1. Byte array representation for different integers and different output lengths $n$. ..... 22
6.1. List of security parameters derived from the principal security parameters $\sigma$, $\tau$, and $\epsilon$. We assume that these values are fixed and publicly known to every party participating in the protocol. ..... 49
6.2. List of election parameters. ..... 50
6.3. Overview of the protocol phases and sub-phases with the involved parties. ..... 53
7.1. Overview of general algorithms for specific tasks. ..... 64
7.2. Overview of algorithms and sub-algorithms of the pre-election phase ..... 67
7.3. Overview of algorithms and sub-algorithms of the election phase ..... 73
7.4. Overview of algorithms and sub-algorithms of the post-election phase ..... 83
8.1. Length parameters according to current NIST recommendations. The length $L_{M}$ of the OT messages follows deterministically from $\left\|p^{\prime}\right\|$, see Table 6.1. ..... 93
8.2. Groups $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ and $\mathbb{G}_{\hat{q}} \subset \mathbb{Z}_{\hat{p}}^{*}$ with default generators $g$, $h$, and $\hat{g}$, respec- tively, and field $\mathbb{Z}_{p^{\prime}}$ for security level $\lambda=0$ (used for testing only). ..... 94
8.3. The first 50 prime elements in $\mathbb{G}_{p} \subset \mathbb{Z}_{q}^{*}$ for $p$ and $q$ as defined in Table 8.2. . ..... 95
8.4. Groups $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ and $\mathbb{G}_{\hat{q}} \subset \mathbb{Z}_{\hat{p}}^{*}$ for security level $\lambda=1$ with default generators $g, h$, and $\hat{g}$, respectively. ..... 96
8.5. The first 50 prime elements in $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for $p$ and $q$ as defined in Table 8.4. ..... 97
8.6. Field $\mathbb{Z}_{p^{\prime}}$ for security level $\lambda=1$. ..... 97
8.7. Group $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for security level $\lambda=2$ with default generators $g$ and $h$. ..... 97
8.8. The first 50 prime elements in $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for $p$ and $q$ as defined in Table 8.7. ..... 98
8.9. Group $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for security level $\lambda=2$ with default generator $\hat{g}$. ..... 98
8.10. Field $\mathbb{Z}_{p^{\prime}}$ for security level $\lambda=2$. ..... 98
8.11. Group $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for security level $\lambda=3$ with default generators $g$ and $h$. ..... 99
8.12. The first 50 prime elements in $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for $p$ and $q$ as defined in Table 8.11. ..... 99
8.13. Group $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ for security level $\lambda=3$ with default generator $\hat{g}$. ..... 100
8.14. Field $\mathbb{Z}_{p^{\prime}}$ for security level $\lambda=3$. ..... 100
8.15. Common alphabets with different sizes and characteristics. Case-insensitivity and fail-safety are desirable properties to facilitate flawless user entries ..... 101
8.16. Lengths of voting and confirmation codes for different alphabets and security levels. ..... 102
8.17. Lengths of verification and finalization codes for different alphabets and se- curity levels. For the maximal number of candidates, we use $n_{\max }=1678$ as default value. ..... 103

## List of Protocols

5.1. Two-round $\mathrm{OT}_{n}^{k}$ scheme for malicious receiver, where $g \in \mathbb{G}_{q} \backslash\{1\}$ is a generator of $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}, \Gamma:\{1, \ldots, n\} \rightarrow \mathbb{G}_{q}$ an encoding of the selections into $\mathbb{G}_{q}$, and $h: \mathbb{B}^{*} \rightarrow \mathbb{B}^{\ell}$ a collision-resistant hash function with output length $\ell$. ..... 32
5.2. Two-round $\mathrm{OT}_{\mathbf{n}}^{\mathbf{k}}$ scheme for malicious receiver, where $g \in \mathbb{G}_{q} \backslash\{1\}$ is a generator of $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}, \Gamma:\{1, \ldots, n\} \rightarrow \mathbb{G}_{q}$ an encoding of the selections into $\mathbb{G}_{q}$, and $h: \mathbb{B}^{*} \rightarrow \mathbb{B}^{\ell}$ a collision-resistant hash function with output length $\ell$. ..... 33
6.1. Election Preparation ..... 55
6.2. Printing of Voting Cards. ..... 56
6.3. Key Generation ..... 56
6.4. Candidate Selection ..... 57
6.5. Vote Casting ..... 58
6.6. Vote Confirmation ..... 59
6.7. Mixing ..... 61
6.8. Decryption ..... 62
6.9. Tallying ..... 62

## List of Algorithms

4.1. Adds an integer watermark $m$ to the bits of a given byte array. The bits of the watermark are spread equally across the bits of the byte array. ..... 21
4.2. Sets the $i$-th bit of a byte array $B$ to $b \in \mathbb{B}$ ..... 22
4.3. Computes the shortest byte array representation in big-endian byte order of a given non-negative integer $x \in \mathbb{N}$. ..... 23
4.4. Computes the byte array representation in big-endian byte order of a given non-negative integer $x \in \mathbb{N}$. The given length $n \geqslant \frac{\|x\|}{8}$ of the output byte array $B$ implies that the first $n-\left\lceil\frac{\|x\|}{8}\right\rceil$ bytes of $B$ are zeros. ..... 23
4.5. Computes a non-negative integer from a given byte array $B$. Leading zeros of $B$ are ignored. ..... 24
4.6. Computes a string representation of length $k$ in big-endian order of a given non-negative integer $x \in \mathbb{N}$ and relative to some alphabet $A$ ..... 25
4.7. Computes a non-negative integer from a given string $S$. ..... 25
4.8. Computes the shortest string representation of a given byte array $B$ relative to some alphabet $A$. ..... 26
4.9. Computes the hash value $h\left(v_{1}, \ldots, v_{k}\right) \in \mathcal{B}^{L}$ of multiple inputs $v_{1}, \ldots, v_{k}$ in a recursive manner. ..... 27
7.1. Computes the first $n$ prime numbers from $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$. The computation possibly fails if $n$ is too large or $p$ is too small, but this case is very unlikely in practice. In a more efficient implementation of this algorithm, the list of resulting primes is accumulated in a cache or precomputed for the largest expected value $n_{\max } \geqslant n .65$
7.2. Checks if a positive integer $x \in \mathbb{N}$ is an element of $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$. The core of the algorithm is the computation of the Jacobi symbol $\left(\frac{x}{p}\right) \in\{-1,0,1\}$, for which we refer to existing algorithms such as [1, pp. 76-77] or implementations in libraries such as GMPLib. ..... 65
7.3. Computes $n$ independent generators of $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$. The algorithm is an adap- tion of the NIST standard FIPS PUB 186-4 [1, Appendix A.2.3]. The string "chVote" guarantees that the resulting values are specific to the chVote project. In a more efficient implementation of this algorithm, the list of resulting gener- ators is accumulated in a cache or precomputed for the largest expected value $n_{\text {max }} \geqslant n$. ..... 66
7.4. Computes a NIZKP challenge $0 \leqslant c<2^{\kappa}$ for a given public value $y$ and a
public commitment $t$. The domains $Y$ and $T$ of the input values are unspecified. 66
7.5. Computes $n$ challenges $0 \leqslant c_{i}<2^{\kappa}$ for a given of public value $y$. The domain $Y$ of the input value is unspecified. The results in $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ are identical to $c_{i}=\operatorname{Tolnteger}\left(\operatorname{RecHash}_{L}(y, i)\right) \bmod 2^{\kappa}$, but precomputing $H$ makes the algorithm more efficient, especially if $y$ is a complex mathematical object.
7.6. Generates the voting card data for the whole electorate. For this, the algorithm loops over all voters and computes for each voter $i$ the permitted number $k_{i j}=e_{i j} k_{j}$ of selections in each of the $t$ elections of the current election event. Alg. 7.10 and Alg. 7.11 are called to generate the voter data for each single voter. At the end, the responses of these calls are grouped into a secret part d sent to the voters prior to an election event via the printing authority (see Prot.6.2), a public part $\hat{\mathbf{d}}$ sent to the bulletin board to allow voter identification during vote casting (see Prot.6.1 and Prot.6.5), and the matrix $\mathbf{P}=\left(p_{i j}\right)_{N_{E} \times n}$ of random points $p_{i j}=\left(x_{i j}, y_{i j}\right)$, of which some will be transferred obliviously to the voters during vote casting (see Prot. 6.5). The matrix $\mathbf{K}=\left(k_{i j}\right)_{N_{E} \times t}$ derived from $\mathbf{k}$ and $\mathbf{E}$ is returned for later use.
7.7. Generates a list of $n=\sum_{j=1}^{t} n_{j}$ random points picked from $t$ random polynomials $A_{j}(X) \in_{R} \mathbb{Z}_{p^{\prime}}[X]$ of degree $k_{j}-1$ (by picking $n_{j}$ different random points from each polynomial). The random polynomials are obtained from calling Alg. 7.8. Additionally, using Alg. 7.9, the values $y_{j}=A_{j}(0)$ are computed for all random polynomials and returned together with the random points.

# 7.8. Generates the coefficients $a_{0}, \ldots, a_{d}$ of a random polynomial $A(X)=\sum_{i=0}^{d} a_{i} X^{i} \bmod$ $p^{\prime}$ of degree $d \geqslant 0$. The algorithm also accepts $d=-1$ as input, which we interpret as the polynomial $A(X)=0$. In this case, the algorithm returns the coefficient list $\mathbf{a}=(0)$. 

7.9. Computes the value $y=A(x) \in \mathbb{Z}_{p^{\prime}}$ obtained from evaluating the polynomial
$A(X)=\sum_{i=0}^{d} a_{i} X^{i} \bmod p^{\prime}$ at position $x$. The algorithm is an implementation
of Horner's method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.10. Generates an authority's share of the secret data for a single voter, which is
sent to the voter prior to an election event via the printing authority. . . . . 70
7.11. Generates an authority's share of the public data for a single voter, which is sent to the bulletin board.
7.12. Computes lists $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ of public voter credentials, which are obtained by multiplying corresponding values from the public parts of the electorate data generated by the election authorities. The values in $\hat{\mathbf{x}}$ are used in Prot. 6.5 to verify if a submitted ballot belongs to an eligible voter, whereas the values in $\hat{\mathbf{y}}$ are used in Prot. 6.6 to verify that the vote confirmation has been invoked by the same eligible voter.
7.13. Computes the list $\mathbf{s}=\left(S_{1}, \ldots, S_{N_{E}}\right)$ of voting cards for every voter. A single voting card is represented as a string $S_{i} \in A_{\text {ucs }}^{*}$, which is generated by Alg. 7.14. 71
7.14. Computes a string $S \in A_{\mathrm{ucs}}^{*}$, which represent a voting card that can be printed on paper and sent to voter $i$. Specifying the formatting details of presenting the information on the printed voting card is beyond the scope of this document. 72
7.15. Generates a random ElGamal encryption key pair $(s k, p k) \in \mathbb{Z}_{q} \times \mathbb{G}_{q}$ or a shares of such a key pair. This algorithm is used in Prot. 6.3 by the authorities to generate private shares of a common public encryption key. ..... 72
7.16. Computes a public ElGamal encryption key $p k \in \mathbb{G}_{q}$ from given shares $p k_{j} \in \mathbb{G}_{q}$. ..... 72
7.17. Computes a string $P \in A_{\mathrm{ucs}}^{*}$, which represents the voting page displayed to voter. Specifying the details of presenting the information on the voting page is beyond the scope of this document. ..... 74
7.18. Generates a ballot based on the selection $s$ and the voting code $X$. The ballot includes an OT query a and a NIZKP $\pi$. The algorithm also returns the randomizations $\mathbf{r}$ of the OT query, which are required in Alg. 7.27 to derive the transferred messages from the OT response. ..... 74
7.19. Selects $k$ prime numbers from $\mathbb{G}_{q}$ corresponding to the given indices $\mathbf{s}=$ $\left(s_{1}, \ldots, s_{k}\right)$. For example, $\mathbf{s}=(1,3,7)$ means selecting the first, the third, and the seventh prime from $\mathbb{G}_{q}$. ..... 75
7.20. Generates an OT query a from the prime numbers representing the voter's selections and a for a given public encryption key (which serves as a generator of $\mathbb{Z}_{p}$ ). ..... 75
7.21. Generates a NIZKP, which proves that the ballot has been formed properly. This proof includes a proof of knowledge of the secret voting credential $x$ that matches with the public voting credential $\hat{x}$. Note that this is equivalent to a Schnorr identification proof [28]. For the verification of this proof, see Alg. 7.24. 75
7.22. Checks if a ballot $\alpha$ obtained from voter $i$ is valid. For this, voter $i$ must not have submitted a valid ballot before, $\pi$ must be valid, and $\hat{x}$ must be the public voting credential of voter $i$. Note that parameter checking $|\mathbf{a}|=k_{i}$ for $k_{i}=\sum_{j=1}^{t} k_{i j}$ is a very important initial step of this algorithm. ..... 76
7.23. Checks if the ballot list $B$ contains an entry for $i$. ..... 76
7.24. Checks the correctness of a NIZKP $\pi$ generated by Alg. 7.21. The public values of this proof are the public voting credential $\hat{x}$ and the ElGamal encryption $(a, b)$. ..... 76
7.25. Generates the response $\beta$ for the given OT query $\mathbf{a}$. The messages to transfer are byte array representations of the $n$ points $\mathbf{p}_{i}=\left(p_{i, 1}, \ldots, p_{i, n}\right)$. Along with $\beta$, the algorithm also returns the randomizations $\mathbf{r}$ used to generate the response. 77
7.26. Computes the $k$-by- $s$ matrix $\mathbf{P}_{\mathbf{s}}=\left(p_{i j}\right)_{k \times s}$ of the points obtained from the $s$ authorities for the selection $\mathbf{s}$. The points are derived from the messages included in the OT responses $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{s}\right)$. ..... 77
7.27. Computes the $k$ transferred points $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$ from the OT response $\beta$ using the random values $\mathbf{r}$ from the OT query and the selection $\mathbf{s}$. ..... 78
7.28. Computes the $k$ verification codes $\mathbf{r c}_{\mathbf{s}}=\left(R C_{s_{1}}, \ldots, R C_{s_{k}}\right)$ for the selected candidates by combining the hash values of the transferred points $p_{i j} \in \mathbf{P}_{\mathbf{s}}$ from different authorities. ..... 78
7.29. Checks if every displayed verification code $R C_{i}^{\prime}$ matches with the verification code $R C_{s_{i}}$ of the selected candidate $s_{i}$ as printed on the voting card. Note that this algorithm is executed by humans. ..... 79
7.30. Generates the confirmation $\gamma$, which consists of the public confirmation cre- dential $\hat{y}$ and a NIZKP of knowledge $\pi$ of the secret confirmation credential $y$. ..... 79
7.31. Computes the values $y_{j}=A_{j}(0)$ of the $t$ polynomials $A_{j}(X)$ of degree $k_{j}-1$ interpolated from $k=\sum_{j=1}^{t} k_{j}$ points $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$. ..... 79
7.32. Computes a polynomial $A(X)$ of degree $k-1$ from given points $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$ using Lagrange's interpolation method and returns the value $y=A(0)$. ..... 80
7.33. Generates a NIZKP of knowledge of the secret confirmation credential $y$ that matches with a given public confirmation credential $\hat{y}$. Note that this proof is equivalent to a Schnorr identification proof [28]. For the verification of $\pi$, see Alg. 7.36. ..... 80
7.34. Checks if a confirmation $\gamma$ obtained from voter $i$ is valid. For this, voter $i$ must have submitted a valid ballot before, but not a valid confirmation. The check then succeeds if $\pi$ is valid and if $\hat{y}$ is the public confirmation credential of voter $i$. ..... 80
7.35. Checks if the confirmation list $C$ contains an entry for $i$. ..... 81
7.36. Checks the correctness of a NIZKP $\pi$ generated by Alg. 7.33. The public value of this proof is the public confirmation credential $\hat{y}$. ..... 81
7.37. Computes the finalization code $F_{i}$ for voter $i$ from the given points $\mathbf{p}_{i}$ and returns $F_{i}$ together with the randomizations $\mathbf{r}_{i}$ used in the OT response. ..... 81
7.38. Computes a finalization code $F C$ by combining the values $F_{j}$ received from the authorities. ..... 81
7.39. Checks if the displayed finalization code $F C^{\prime}$ matches with the finalization code $F C$ from the voting card. Note that this algorithm is executed by humans. ..... 82
7.40. Computes a sorted list of ElGamal encryptions from the list of submitted ballots, for which a valid confirmation is available. Sorting this list is necessary to guarantee a unique order. For this, we define a total order over $\mathbb{G}_{q}^{2}$ by $e_{i} \leq e_{j} \Leftrightarrow\left(a_{i}<a_{j}\right) \vee\left(a_{i}=a_{j} \wedge b_{i} \leqslant b_{j}\right)$, for $e_{i}=\left(a_{i}, b_{i}\right)$ and $e_{j}=\left(a_{j}, b_{j}\right)$. ..... 84
7.41. Generates a random permutation $\psi \in \Psi_{N}$ and uses it to shuffle a given list $\mathbf{e}=\left(e_{1}, \ldots, e_{N}\right)$ of ElGamal encryptions $e_{i}=\left(a_{i}, b_{i}\right) \in \mathbb{G}_{q}^{2}$. With $\Psi_{N}=$ $\left\{\left(j_{1}, \ldots, j_{N}\right): j_{i} \in\{1, \ldots, N\}, j_{i_{1}} \neq j_{i_{2}}, \forall i_{1} \neq i_{2}\right\}$ we denote the set of all $N$ ! possible permutations of the values $\{1, \ldots, N\}$. ..... 84
7.42. Generates a random permutation $\psi \in \Psi_{N}$ following Knuth's shuffle algorithm [22, pp. 139-140]. ..... 85
7.43. Generates a re-encryption $e^{\prime}=\left(a \cdot p k^{r^{\prime}}, b \cdot g^{r^{\prime}}\right)$ of the given ElGamal encryption $e=(a, b) \in \mathbb{G}_{q}^{2}$. The re-encryption $e^{\prime}$ is returned together with the randomiza- tion $r^{\prime} \in \mathbb{Z}_{q}$. ..... 85
7.44. Generates a NIZKP of shuffle relative to ElGamal encryptions e and $\mathbf{e}^{\prime}$, which is equivalent to proving knowledge of a permutation $\psi$ and randomizations $\mathbf{r}^{\prime}$ such that $\mathbf{e}^{\prime}=\operatorname{Shuffle}_{p k}\left(\mathbf{e}, \mathbf{r}^{\prime}, \psi\right)$. The algorithm implements Wikström's proof of a shuffle [31, 30], except for the fact that the offline and online phases are merged. For the proof verification, see Alg. 7.48. For further background information we refer to Section 5.5. ..... 86
7.45. Generates a commitment $\mathbf{c}=\operatorname{com}(\psi, \mathbf{r})$ to a permutation $\psi$ by committing to the columns of the corresponding permutation matrix. This algorithm is used in Alg. 7.44. ..... 87
7.46. Generates a commitment chain $c_{0} \rightarrow c_{1} \rightarrow \cdots \rightarrow c_{N}$ relative to a list of public challenges $\mathbf{u}$ and starting with a given commitment $c_{0}$. This algorithm is used in Alg. 7.44. ..... 87
7.47. Checks if a chain of shuffle proofs generated by $s$ different authorities is correct. ..... 87
7.48. Checks the correctness of a NIZKP of a shuffle $\pi$ generated by Alg. 7.44. The public values are the ElGamal encryptions $\mathbf{e}$ and $\mathbf{e}^{\prime}$ and the public encryption key $p k$. ..... 88
7.49. Computes the partial decryptions of a given input list e of ElGamal encryption using a share $s k_{j}$ of the private decryption key. ..... 88
7.50. Generates a decryption proof relative to ElGamal encryptions e and partial decryptions $\mathbf{b}^{\prime}$. This is essentially a NIZKP of knowledge of the private key share $s k_{j}$ satisfying $b_{i}^{\prime}=b_{i}^{s k_{j}}$ for all input encryptions $e_{i}=\left(a_{i}, b_{i}\right)$ and $p k_{j}=$ $g^{s k_{j}}$. For the proof verification, see Alg. 7.52. ..... 89
7.51. Checks if the decryption proofs generated by $s$ different authorities are correct. ..... 89
7.52. Checks the correctness of a decryption proof $\pi$ generated by Alg. 7.50. The public values are the ElGamal encryptions $\mathbf{e}$, the partial decryptions $\mathbf{b}^{\prime}$, and the share $p k_{j}$ of the public encryption key. ..... 90
7.53. Computes the list of decryptions $\mathbf{m}=\left(m_{1}, \ldots, m_{N}\right)$ by assembling the partial decryptions $b_{i j}^{\prime}$ obtained from $s$ different authorities. ..... 90
7.54. Computes the election result matrix $\mathbf{V}=\left(v_{i j}\right)_{N \times n}$ from the products of encoded selections $\mathbf{m}=\left(m_{1}, \ldots, m_{N}\right)$ by retrieving the prime factors of each $m_{i}$. Each resulting vector $\mathbf{v}_{i}$ represents somebody's vote, and each value $v_{i j}=1$ represents somebody's vote for a specific candidate $j \in\{1, \ldots, n\}$.91

## Bibliography

[1] Digital signature standard (DSS). FIPS PUB 186-4, National Institute of Standards and Technology (NIST), 2013.
[2] Ergänzende Dokumentation zum dritten Bericht des Bundesrates zu Vote électronique. Die Schweizerische Bundeskanzlei (BK), 2013.
[3] Technische und administrative Anforderungen an die elektronischen Stimmabgabe. Die Schweizerische Bundeskanzlei (BK), 2013.
[4] Verordnung der Bundeskanzlei über die elektronische Stimmabgabe (VEleS). Die Schweizerische Bundeskanzlei (BK), 2013.
[5] Verordnung über die politischen Rechte. SR 161.11. Der Schweizerische Bundesrat, 2013.
[6] A. Ansper, S. Heiberg, H. Lipmaa, T. A. Øverland, and F. van Laenen. Security and trust for the Norwegian e-voting pilot project E-Valg 2011. In A. Jøsang, T. Maseng, and S. J. Knapskog, editors, NordSec'09, 14th Nordic Conference on Secure IT Systems, LNCS 5838, pages 207-222, Oslo, Norway, 2009.
[7] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries. Journal of Cryptology, 23(2):281-343, 2010.
[8] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation for key management. NIST Special Publication 800-57, Part 1, Rev. 3, NIST, 2012.
[9] J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, New Haven, USA, 1987.
[10] A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, PKC'03, 6th International Workshop on Theory and Practice in Public Key Cryptography, LNCS 2567, pages 31-46, Miami, USA, 2003.
[11] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell, editor, CRYPTO'92, 12th Annual International Cryptology Conference on Advances in Cryptology, LNCS 740, pages 89-105, Santa Barbara, USA, 1992.
[12] C. K. Chu and W. G. Tzeng. Efficient $k$-out-of-n oblivious transfer schemes with adaptive and non-adaptive queries. In S. Vaudenay, editor, PKC'05, 8th International Workshop on Theory and Practice in Public Key Cryptography, LNCS 3386, pages 172183, Les Diablerets, Switzerland, 2005.
[13] C. K. Chu and W. G. Tzeng. Efficient $k$-out-of- $n$ oblivious transfer schemes. Journal of Universal Computer Science, 14(3):397-415, 2008.
[14] E. Dubuis, R. Haenni, R. E. Koenig, and P. Locher. Pseudo-code algorithms for verifiable re-encryption mix-nets. In FC'17, 21st International Conference on Financial Cryptography, Silema, Malta, 2017.
[15] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R. Blakley and D. Chaum, editors, CRYPTO'84, Advances in Cryptology, LNCS 196, pages 10-18, Santa Barbara, USA, 1984. Springer.
[16] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In A. M. Odlyzko, editor, CRYPTO'86, 6th Annual International Cryptology Conference on Advances in Cryptology, LNCS 263, pages 186-194, Santa Barbara, USA, 1986.
[17] J. Fried, P. Gaudry, N. Heninger, and E. Thomé. A kilobit hidden SNFS discrete logarithm computation. IACR Cryptology ePrint Archive, 2016/961, 2016.
[18] I. S. Gebhardt Stenerud and C. Bull. When reality comes knocking - Norwegian experiences with verifiable electronic voting. In M. J. Kripp, M. Volkamer, and R. Grimm, editors, EVOTE'12, 5th International Workshop on Electronic Voting, number P-205 in Lecture Notes in Informatics, pages 21-33, Bregenz, Austria, 2012.
[19] K. Gjøsteen. The Norwegian Internet voting protocol. In A. Kiayias and H. Lipmaa, editors, VoteID'11, 3rd International Conference on E-Voting and Identity, LNCS 7187, pages 1-18, Tallinn, Estonia, 2011.
[20] R. Haenni, R. E. Koenig, and E. Dubuis. Cast-as-intended verification in electronic elections based on oblivious transfer. In J. Barrat Robert Krimmer, Melanie Volkamer, J. Benaloh, N. Goodman, P. Ryan, O. Spycher, V. Teague, and G. Wenda, editors, E-Vote-ID'16, 12th International Joint Conference on Electronic Voting, LNCS 10141, pages 277-296, Bregenz, Austria, 2016.
[21] S. Hauser and R. Haenni. Implementing broadcast channels with memory for electronic voting systems. JeDEM - eJournal of eDemocracy and Open Government, 8(3):61-79, 2016.
[22] Donald E. Knuth. The Art of Computer Programming, volume 2, Seminumerical Algorithms. Addison Wesley, 3rd edition, 1997.
[23] U. Maurer. Unifying zero-knowledge proofs of knowledge. In B. Preneel, editor, AFRICACRYPT'09, 2nd International Conference on Cryptology in Africa, LNCS 5580, pages 272-286, Gammarth, Tunisia, 2009.
[24] U. Maurer and C. Casanova. Bericht des Bundesrates zu Vote électronique. 3. Bericht, Schweizerischer Bundesrat, 2013.
[25] R. Oppliger. Addressing the secure platform problem for remote internet voting in Geneva. Technical report, Chancellory of the State of Geneva, 2002.
[26] R. Oppliger. Traitement du problème de la sécurité des plates-formes pour le vote par internet à Genève. Technical report, ESECURITY Techologies, 2002.
[27] R. Oppliger. E-voting auf unsicheren client-plattformen. digma - Zeitschrift für Datenrecht und Informationssicherheit, 8(2):82-85, 2008.
[28] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161-174, 1991.
[29] O. Spycher, M. Volkamer, and R. E. Koenig. Transparency and technical measures to establish trust in Norwegian Internet voting. In A. Kiayias and H. Lipmaa, editors, VoteID'11, 3rd International Conference on E-Voting and Identity, LNCS 7187, pages 19-35, Tallinn, Estonia, 2011.
[30] B. Terelius and D. Wikström. Proofs of restricted shuffles. In D. J. Bernstein and T. Lange, editors, AFRICACRYPT'10, 3rd International Conference on Cryptology in Africa, LNCS 6055, pages 100-113, Stellenbosch, South Africa, 2010.
[31] D. Wikström. A commitment-consistent proof of a shuffle. In C. Boyd and J. González Nieto, editors, ACISP'09, 14 th Australasian Conference on Information Security and Privacy, LNCS 5594, pages 407-421, Brisbane, Australia, 2009.


[^0]:    ${ }^{1}$ See https://github.com/republique-et-canton-de-geneve/chvote-protocol-pocfor a complete proof of concept implementation in Java by a developer of the CHVote project.

[^1]:    ${ }^{1}$ Here voting system as a general term for all server-sider parties involved in the election phase of the protocol.

[^2]:    ${ }^{1}$ The modified protocol as presented in [13] is slightly more efficient, but fits less into the particular context of this document.

[^3]:    ${ }^{1}$ See http://world.std.com/~reinhold/diceware.html.

[^4]:    ${ }^{2}$ Related election parameters will be formed during vote casting and confirmation. The number of submitted ballots will be denoted by $N_{B} \leqslant N_{E}$, the number of confirmed ballots by $N_{C} \leqslant N_{B}$, and the number of valid votes by $N \leqslant N_{C}$.

[^5]:    ${ }^{1}$ See https: / /gmplib.org

[^6]:    $p^{\prime}=0 \times 800000000000000000000000000000000000000000000000000000$ BD

[^7]:    ${ }^{1}$ See http://world.std.com/~reinhold/diceware.html.
    ${ }^{2}$ See https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases.

