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1. Introduction

The State of Geneva is one of the worldwide pioneers in offering Internet elections to their
citizens. The project, which was initiated in 2001, was one of first and most ambitious at-
tempts in the world of developing an electronic voting procedure that allows the submission
of votes over the Internet in referendums and elections. For this, a large number of technical,
legal, and administrative problems had to be solved. Despite the complexity of these prob-
lems and the difficulties of finding appropriate solutions, first legally binding referendums
had been conducted in 2003 in two suburbs of the City of Geneva. Referendums on can-
tonal and national levels followed in 2004 and 2005. In a popular referendum in in 2009, a
new constitutional provision on Internet voting had been approved by a 70.2% majority. At
more or less the same time, Geneva started to host referendums and elections for other Swiss
cantons. The main purpose of these collaborations was—and still is—to provide Internet
voting to Swiss citizens living abroad.

While the Geneva Internet voting project continued to expand, concerns about possible
vulnerabilities had been raised by security experts and scientists. There were two main
points of criticism: the lack of transparency and verifiability and the insecure platform
problem [27]. The concept of verifiable elections has been known in the scientific literature
for quite some time [9], but the Geneva e-voting system—like most other e-voting systems
in the world at that time—remained completely unverifiable. The awareness of the insecure
platform problem was given from the beginning of the project [26], but so-called code voting
approaches and other possible solutions were rejected due to usability concerns and legal
problems [25].

In the cryptographic literature on remote electronic voting, a large amount of solutions have
been proposed for both problems. One of the most interesting approaches, which solves the
insecure platform problem by adding a verification step to the vote casting procedure, was
implemented in the Norwegian Internet voting system and tested in legally binding municipal
and county council elections in 2011 and 2013 [6, 18, 19, 29]. The Norwegian project was
one of the first in the world that tried to achieve a maximum degree of transparency and
verifiability from the very beginning of the project. Despite the fact that the project has
been stopped in 2014 (mainly due to the lack of increase in turnout), it still serves as a
model for future projects and second-generation systems.

As a response to the third report on Vote électronique by the Swiss Federal Council and the
new requirements of the Swiss Federal Chancellery [24, 4], the State of Geneva decided to
introduce a radical strategic change towards maximum transparency and full verifiability.
For this, they invited leading scientific researchers and security experts to contribute to the
development of their second-generation system, in particular by designing a cryptographic
voting protocol that satisfies the requirements to the best possible degree. In this context,
a collaboration contract between the State of Geneva and the Bern University of Applied
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Sciences was signed in 2016. The goal of this collaboration is to lay the foundation for an
entirely new system, which will be implemented from scratch.

As a first significant outcome of this collaboration, a scientific publication with a proposal
for a cryptographic voting protocol was published in 2016 at the 12th International Joint
Conference on Electronic Voting [20]. The proposed approach is the basis for the specifica-
tion presented in this document. Compared to the protocol as presented in the publication,
the level of technical details in this document is considerably higher. By providing more
background information and a broader coverage of relevant aspects, this text is also more
self-contained and comprehensive than its predecessor.

The core of this document is a set of approximately 60 algorithms in pseudo-code, which
are executed by the protocol parties during the election process. The presentation of these
algorithms is sufficiently detailed for an experienced software developer to implement the
protocol in a modern programming language.1 Cryptographic libraries are only required
for standard primitives such as hash algorithms and pseudo-random generators. For one
important sub-task of the protocol—the mixing of the encrypted votes—a second scientific
publication was published in 2017 at the 21th International Conference on Financial Cryp-
tography [14]. By facilitating the implementation of a complex cryptographic primitive by
non-specialists, this paper created a useful link between the theory of cryptographic research
and the practice of implementing cryptographic systems. The comprehensive specification
of this document, which encompasses all technical details of a fully-featured cryptographic
voting protocol, provides a similar, but much broader link between theory and practice.

1.1. Principal Requirements

In 2013, the introduction of the new legal ordinance by the Swiss Federal Chancellery, Ordi-
nance on Electronic Voting (VEleS), created a new situation for the developers and providers
of Internet voting systems in Switzerland [3, 4]. Several additional security requirements
have been introduced, in particular requirements related to the aforementioned concept of
verifiable elections. The legal ordinance proposes a two-step procedure for expanding the
electorate allowed of using the electronic channel. A system that meets the requirements of
the first expansion stage may serve up to 50% of the cantonal and 30% of the federal elec-
torate, whereas a system that meets the requirements of the second (full) expansion stage
may serve up to 100% of both the cantonal and the federal electorate. Current systems may
serve up to 30% of the cantonal and 10% of the federal electorate [4, 5].

The cryptographic protocol presented in this document is designed to meet the security re-
quirements of the full expansion stage. From a conceptual point of view, the most important
requirements are the following:

• End-to-End Encryption: The voter’s intention is protected by strong encryption along
the path from the voting client to the tally. To guarantee vote privacy even after
decrypting the votes, a cryptographically secure anonymization method must be part
of the post-election process.

1See https://github.com/republique-et-canton-de-geneve/chvote-protocol-pocfor a complete proof of
concept implementation in Java by a developer of the CHVote project.
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• Individual Verifiability : After submitting an encrypted vote, the voter receives con-
clusive evidence that the vote has been cast and recorded as intended. This evidence
enables the voter to exclude with high probability the possibility that the vote has been
manipulated by a compromised voting client. According to [3, Paragraph 4.2.4], this is
the proposed countermeasure against the insecure platform problem. The probability
of detecting a compromised vote must be 99.9% or higher.

• Universal Verifiability : The correctness of the election result can be tested by indepen-
dent verifiers. The verification includes checks that only votes cast by eligible voters
have been tallied, that every eligible voter has voted at most once, and that every vote
cast by an eligible voter has been tallied as recorded.

• Distribution of Trust : Several independent control components participate in the elec-
tion process, for example by sharing the private decryption key or by performing in-
dividual anonymization steps. While single control components are not fully trusted,
it is assumed that they are trustworthy as a group, i.e., that at least one of them will
prevent or detect any type of attack or failure. The general goal of distributing trust
in this way is to prevent single points of failures.

In this document, we call the control components election authorities (see Section 6.1).
They are jointly responsible for generating the necessary elements of the implemented cast-
as-intended mechanism. They also generate the public encryption key and use corresponding
shares of the private key for the decryption. Finally, they are responsible for the anonymiza-
tion process consisting of a series of cryptographic shuffles. By publishing corresponding
cryptographic proofs, they demonstrate that the shuffle and decryption process has been
conducted correctly. Checking these proof is part of the universal verification.

While verifiability and distributed trust are mandatory security measures at the full ex-
pansion stage, measures related to some other security aspects are not explicitly requested
by the legal ordinance. For example, regarding the problem of vote buying and coercion,
the legal ordinance only states that the risk must not be significantly higher compared to
voting by postal mail [3, Paragraph 4.2.2]. Other problems of lower significance in the legal
ordinance are the possibility of privacy attacks by malware on the voting client, the lack
of long-term security of today’s cryptographic standards, or the difficulty of printing highly
confidential information and sending them securely to the voters. We adopt corresponding
assumptions in this document without questioning them.

1.2. Goal and Content of Document

The goal of this document is to provide a self-contained, comprehensive, and fully-detailed
specification of a new cryptographic voting protocol for the future system of the State of
Geneva. The document should therefore describe every relevant aspect and every necessary
technical detail of the computations and communications performed by the participants
during the protocol execution. To support the general understanding of the cryptographic
protocol, the document should also accommodate the necessary mathematical and crypto-
graphic background information. By providing this information to the maximal possible
extent, we see this document as the ultimate companion for the developers in charge of
implementing the future Internet voting system of the State of Geneva. It may also serve as
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a manual for developers trying to implement an independent election verification software.
The decision of making this document public will even enable implementations by third
parties, for example by students trying to develop a clone of the Geneva system for scientific
evaluations or to implement protocol extensions to achieve additional security properties.
In any case, the target audience of this document are system designers, software developers,
and cryptographic experts.

What is currently entirely missing in this document are proper definitions of the security
properties and corresponding formal proofs that these properties hold in this protocol. An
informal discussion of such properties is included in the predecessor document [20], but this
is not sufficient from a cryptographic point of view. However, the development of proper
security proofs, which is an explicit requirement of the legal ordinance, has been excluded
from this collaboration. The goal is to outsource the formal proofs to a separate project by
an external third party, which will at the same time conduct a review of the specification.
Results from this sister project will be published in a separate document as soon as they
are available. It is likely that their feedback will lead to a revision of this document.

This document is divided into five parts. In Part I, we describe the general project context,
the goal of this work and the purpose of this document (Chapter 1). We also give a first out-
line of the election procedure, an overview of the supported election types, and a discussion
of the expected electorate size (Chapter 2). In Part II, we first introduce notational con-
ventions and some basic mathematical concepts (Chapter 4). We also describe conversion
methods for some basic data types and propose a general method for computing hash values
of composed mathematical objects (Chapter 3). Finally, we summarize the cryptographic
primitives used in the protocol (Chapter 5). In Part III, we first provide a comprehensive
protocol description with detailed discussions of many relevant aspects (Chapter 6). This
description is the core and the major contribution of this document. Further details about
the necessary computations during a protocol execution are given in form of an exhaustive
list of pseudo-code algorithms (Chapter 7). Looking at these algorithms is not mandatory
for understanding the protocol and the general concepts of our approach, but for developers,
they provide a useful link from the theory towards an actual implementation. In Part IV, we
propose three security levels and corresponding system parameters, which we recommend to
use in an actual implementation of the protocol (Chapter 8). Finally, in ??, we summarize
the main achievements and conclusions of this work and discuss some open problem and
future work.
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2. Election Context

The election context, for which the protocol presented in this document has been designed,
is limited to the particular case of the direct democracy as implemented and practices in
Switzerland. Up to four times a year, multiple referendums or multiple elections are held
simultaneously on a single election day, sometimes on up to four different political levels
(federal, cantonal, municipal, pastoral). In this document, we use „election“ as a general
term for referendums and elections and election event for an arbitrary combinations of such
elections taking place simultaneously. Responsible for conducting an election event are the
cantons, but the election results are published for each municipality. Note that two residents
of the same municipality do not necessarily have the same rights to vote in a given election
event. For example, some canton or municipalities accept votes from residents without a
Swiss citizenship, provided that they have been living there long enough. Swiss citizens
living abroad are not residents in a municipality, but the are still allowed to voter in federal
or cantonal issues.

Since voting has a long tradition in Switzerland and is practiced by its citizens very often,
providing efficient voting channels has always been an important consideration for election
organizers to increase turnout and to reduce costs. For this reason, some cantons started
to accept votes by postal mail in 1978, and later in 1994, postal voting for federal issues
was introduced in all cantons. Today, voting by postal mail is the dominant voting channel,
which is used by approximately 90% of the voters. Given the stability of the political
system in Switzerland and the high reliability of most governmental authorities, concerns
about manipulations when voting from a remote place are relatively low. Therefore, with
the broad acceptance and availability of information and communications technologies today,
moving towards an electronic voting channel seems to be the natural next step. This one
of the principal reasons for the Swiss government to support the introduction of Internet
voting. The relatively slow pace of the introduction is a strategic decision to limit the
security risks.

2.1. General Election Procedure

In the general setting of the CHVote system, voters submit their electronic vote using a
regular web browser on their own computer. To circumvent the problem of malware attacks
on these machines, some approaches suggest using an out-of-band channel as a trust anchor,
over which additional information is transmitted securely to the voters. In the particular
setting considered in this document, each voter receives a voting card from the election
authorities by postal mail. Each voting card contains different verification codes for every
voting option and a single finalization code. These codes are different for every voting card.
An example of such a voting card is shown in Figure 2.1. As we will discuss below, the
voting card also contains two authentication codes, which the voter must enter during vote
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casting. Note that the length of all codes must be chosen carefully to meet the system’s
security requirements (see Section 6.3.1).

Voting Card Nr. 3587
Question 1: Etiam dictum sem pulvinar elit con vallis vehicula. Duis 
vitae purus ac tortor volut pat iaculis at sed mauris at tempor quam?

Question 2: Donec at consectetur ex. Quisque fermentum ipsum sed est 
pharetra molestie. Sed at nisl malesuada ex mollis consequat?

Question 3: Mauris rutrum tellus et lorem vehicula, quis ornare tortor 
vestibulum. In tempor, quam sit amet sodales sagittis, nib quam placerat?

Yes
A34C

No
18F5

Blank
76BC

Yes
91F3

No
71BD

Blank
034A

Yes
774C

No
CB4A

Blank
76F2

Finalization code:  
87483172

Voting code:  
eZ54-gr4B-3pAQ-Zh8q

Confirmation code:  
uw4M-QL91-jZ9N-nXA2

Figure 2.1.: Example of a voting card for an election event consisting of three referen-
dums. Verification codes are printed as 4-digit numbers in hexadecimal no-
tation, whereas the finalization code is printed as an 8-digit decimal number.
The two authentication codes are printed as alphanumeric strings.

After submitting the ballot, verification codes for the chosen voting options are displayed
by the voting application and voters are instructed to check if the displayed codes match
with the codes printed on the voting card. Matching codes imply with high probability
that a correct ballot has been submitted. This step—called cast-as-intended verification—is
the proposed counter-measure against integrity attacks by malware on the voter’s insecure
platform, but it obviously does not prevent privacy attacks. Nevertheless, as long as integrity
attacks by malware are detectable with probability higher than 99.9%, the Swiss Federal
Chancellery has approved this approach as a sufficient solution for conducting elections over
the Internet [4, Paragraph 4.2.4]. To provide a guideline to system designers, a description
of an example voting procedure based on verification codes is given in [2, Appendix 7]. The
procedure proposed in this document follows the given guideline to a considerable degree.

In addition to the verification and finalization codes, voter’s are also supplied with two au-
thentication codes called voting code and confirmation code. In the context of this document,
we consider the case where authentication, verification, and finalization codes are all printed
on the same voting card, but we do not rule out the possibility that some codes are printed
on a separate paper. In addition to these codes, a voting card has a unique identifier. If NE

denotes the size of the electorate, the unique voting card identifier will simply be an integer
i P t1, . . . , NEu, the same number that we will use to identify voters in the electorate (see
Section 6.1).

In the Swiss context, since any form of vote updating is prohibited by election laws, voters
cannot re-submit the ballot from a different platform in case of non-matching verification
codes. From the voter’s perspective, the voting process is therefore an all-or-nothing proce-
dure, which terminates with either a successfully submitted valid vote (success case) or an
abort (failure case). The procedure in the success case consists of five steps:
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1. The voter selects the allowed number of voting options and enters the voting code.

2. The voting system1 checks the voting code and returns the verification codes of the
selected voting options for inspection.

3. The voter checks the correctness of the verification codes and enters the confirmation
code.

4. The voting system checks the confirmation code and returns the finalization code for
inspection.

5. The voter checks the correctness of the finalization code.

From the perspective of the voting system, votes are accepted after receiving the voter’s
confirmation in Step 4. From the voter’s perspective, vote casting was successful after
receiving correct verification codes in Step 3 and a correct finalization code in Step 5. In case
of an incorrect or missing finalization code, the voter is instructed to contact the election
hotline for triggering an investigation. In any other failure case, voters are instructed to
immediately abort the process and use postal mail as a backup voting channel.

2.2. Election Uses Cases

The voting protocol presented in this document is designed to support election events con-
sisting of t ě 1 simultaneous elections. Every election j P t1, . . . , tu is modeled as an
independent kj-out-of-nj election with nj ě 2 candidates, of which (exactly) kj ă nj can
be selected by the voters. Note that we use candidate as a general term for all types of
voting options, in a similar way as using election for various types of elections and referen-
dums. Over all t elections, n “

řt
j“1 nj denotes the total number of candidates, whereas

k “
řt
j“1 kj denotes the number of candidates for voters to select, provided that they are

eligible in every election. A single selected candidate is denoted by a value s P t1, . . . , nu.

As stated earlier, we also have to take into account that voters may not be eligible in all
t elections of an election event. If NE denotes the size of the electorate, we set eij “ 1
if voter i P t1, . . . , NEu is eligible in election j P t1, . . . , tu and eij “ 0 otherwise. These
values define the eligibility matrix (an NE-by-t Boolean matrix satisfying

řt
j“1 eij ą 0),

which must be specified prior to every election event by the election administration. For
voter i, the product eijkj P t0, kju denotes the number of allowed selections in election j,
and ki “

řt
j“1 eijkj denotes the total number of selections over all t elections of the given

election event. In Section 6.3.2, this general model of an election event will be discussed in
further detail.

2.2.1. Electorate

In the political system in Switzerland, all votes submitted in an election event are tallied in
so-called counting circles. In smaller municipalities, the counting circle is identical to the
municipality itself, but larger cities may consist of multiple counting circles. For statistical

1Here voting system as a general term for all server-sider parties involved in the election phase of the
protocol.
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reasons, the results of each counting circle must be published separately for elections on all
four political levels, i.e., the final election results on federal, cantonal, communal, or pastoral
issues are obtained by summing of the results of all involved counting circles. Counting
circles will typically consist of several hundred or several thousand eligible voters. Even in
the largest counting circle, we expect not more than 100’000 voters.

To comply with this setting, multiple protocol instances will need to be executed in parallel
for a given election event, i.e., one protocol run for each counting circle. Depending on
the actual constellation, different runs of the protocol may share exactly the same election
parameters, for example in different counting circles of the same city. It could also happen
that there are no municipal or pastoral elections at all in some cantons, which implies that
all counting circle of such a canton could then share exactly the same election parameters.
If there are not too many municipal or pastoral elections, it may also be possible to include
them in a single election setting for the whole canton and to differentiate between eligibile
and ineligible voters by corresponding entries in the eligibility matrix. Since municipal and
pastoral elections are relatively rare compared to federal or cantonal elections, this might
be the most common setting for the system in practice. As we will see in Section 8.3.2,
we limit the total number of candidates in an election event to n ď 1678, which should be
sufficient to cover all combinations of simultaneous elections on all four political levels and
for all municipalities of a given canton. Running exactly the same protocol instance with
exactly the same election parameters is a desirable property, since it greatly facilitates the
system setup in such a canton.

2.2.2. Type of Elections

In the elections that we consider voters must always select exactly k different candidates from
a list of n candidates. At first glance, such k-out-of-n elections may seems too restrictive
to cover all necessary election use cases in the given context, but they are actually flexible
enough to support more general election types, for example elections with the option of
submitting blank votes. In general, it is possible to substitute any pkmin, kmaxq-out-of-n
election, in which voters are allowed to select between kmin and kmax different candidates
from the candidate list, by an equivalent k1-out-of-n1 election for k1 “ kmax and n1 “ n` b,
where b “ kmax ´ kmin denotes the number of additional blank candidates. An important
special case of this augmented setting arises for kmin “ 0, in which a completely blank ballot
is possible by selecting all b “ kmax blank candidates.

In another generalization of basic k-out-of-n elections, voters are allowed to give up to
c ď k votes to the same candidate. This is called cumulation. In the most flexible case of
cumulation, the k votes can be distributed among the n candidates in an arbitrary manner.
This case can be handled by increasing the size of the candidate list from n to n1 “ cn, i.e.,
each candidate obtains c distinct entries in the extended candidate list. This leads to an
equivalent k-out-of-n1 election, in which voters may select the same candidate up to c times
by selecting all its entries in the extended list. At the end of the election, an additional
accumulation step is necessary to determine the exact number of votes of a given candidate
from the final tally. By combining this technique of handling cumulations with the above way
of handling blank votes, we obtain k1-out-of-n1 elections with k1 “ kmax and n1 “ cn` b.
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In Table 2.1 we give a non-exhaustive list of some common election types with corresponding
election parameters to handle blank votes and cumulations as explained above. In this list,
we assume that blank votes are always allowed up to the maximal possible number. The
last entry in the list, which describes the case of party-list elections, is thought to cover
elections of the Swiss National Council. This particular election type can be understood as
two independent elections in parallel, one 1-out-of-np party election and one cumulative k-
out-of-nc candidate election, where np and nc denote the number of parties and candidates,
respectively. Cumulation is usally restricted to maximal c “ 2 voter per candidate. Blank
votes are allowed for both the party and the candidate election. In some cases, a completely
blank candidate ballot is prohibited together with a party vote. This particular case can
be covered by reducing the number of blank candidates from b “ k to b “ k ´ 1 and by
introducing two blank parties instead of one, one for a blank party vote with at least one
non-blank candidate vote and one for an entirely blank vote. In the latter case, candidate
votes are discarded inthe final tally.

Election Type k n b c k1 n1

Referendum, popular initia-
tive, direct counter-proposal

1 2 1 1 1 3

Deciding question 1 2 1 1 1 3

Single non-transferable vote 1 n 1 1 1 n` 1

Multiple non-transferable vote k n k 1 k n` k

Approval voting n n n 1 n 2n

Cumulative voting k n k c k cn` k

Party-list election p1, kq pnp, ncq p1, kq p1, 2q p1, kq pnp ` 1, 2nc ` kq

Table 2.1.: Election parameters for common types of elections. Party-list elections (last line)
are modeled as two independent elections in parallel, one for the parties and one
for the candidates.
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3. Mathematical Preliminaries

3.1. Notational Conventions

As a general rule, we use upper-case latin or greek letters for sets and lower-case latin or
greek letters for their elements, for example X “ tx1, . . . , xnu. For composed sets or subsets
of composed sets, we use calligraphic upper-case latin letters, for example X Ď XˆY ˆZ for
the set or a subset of triples px, y, zq. |X| denotes the cardinality of a finite setX. For general
tuples, we use lower-case latin or greek letters in normal font, for example t “ px, y, zq for
triples from XˆY ˆZ. For sequences (arrays, lists, strings), we use upper-case latin letters
and indices starting from 0, for example S “ xs0, . . . , sn´1y P A

˚ for a string of characters
si P A, where A is a given alphabet. We write |S| “ n for the length of S and use standard
array notation Sris “ si to select the element at index i P t0, . . . , n ´ 1u. S1 }S2 denotes
the concatenation of two sequences. For vectors, we use lower-case latin letters in bold font,
for example x “ px1, . . . , xnq P X

n for a vector of length |x| “ n. For two-dimensional (or
higher-dimensional) matrices, we use upper-case latin letters in bold font, for example

X “

¨

˚

˝

x1,1 ¨ ¨ ¨ x1,n
...

. . .
...

xm,1 ¨ ¨ ¨ xm,n

˛

‹

‚

P Xmn

for an m-by-n-matrix of values xij P X. We use X “ pxijqmˆn as a shortcut notation
and write |X| “ pm,nq. Similarly, X “ pxijkqmˆnˆr P X

mnr is a shortcut notation for a
three-dimensional m-by-n-by-r matrix of values xijk P X.

The set of integers is denoted by Z “ t. . . ,´2,´1, 0, 1, 2, . . .u, the set of natural numbers
by N “ t0, 1, 2, . . .u, and the set of positive natural numbers by N` “ t1, 2, . . .u. The set of
the n smallest natural numbers is denoted by Zn “ t0, . . . , n ´ 1u, where B “ t0, 1u “ Z2

denotes the special case of the Boolean domain. The set of all prime numbers is denoted
by P. A prime number p “ 2q ` 1 P P is called safe prime, if q P P, and the set of all safe
primes is denoted by S.

For an integer x P Z, we write abspxq for the absolute value of x and ‖x‖ “ tlog2pabspxqqu`1
for the bit length of x ‰ 0 (let ‖0‖ “ 0 by definition). The set of all natural numbers of
a given bit length l ě 1 is denoted by Z‖x‖“l “ tx P N : ‖x‖ “ lu “ Z2lzZ2l´1 and the
cardinality of this set is |Z‖x‖‖“l| “ 2l´1. For example, Z‖x‖“3 “ t4, 5, 6, 7u has cardinality
23´1 “ 4. Similarly, we write P‖x‖“l “ PXZ‖x‖“l and S‖x‖“l “ SXZ‖x‖“l for corresponding
sets of prime numbers and safe primes, respectively.

To denote mathematical functions, we generally use one italic or multiple non-italic lower-
case latin letters, for example fpxq or gcdpx, yq. For algorithms, we use single or multi-
ple words starting with an upper-case letter in sans-serif font, for example Euclidpx, yq or
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ExtendedEuclidpx, yq. Algorithms can be deterministic or randomized. We useÐ for assign-
ing the return value of an algorithm call to a variable, for example z Ð Euclidpx, yq. Picking
a value uniformly at random from a finite set X is denoted by x PRX.

3.2. Mathematical Groups

In mathematics, a group G “ pG, ˝, inv, eq is an algebraic structure consisting of a set G
of elements, a (binary) operation ˝ : G ˆ G Ñ G, a (unary) operation inv : G Ñ G, and
a neutral element e P G. The following properties must be satisfied for G to qualify as a
group:

• x ˝ y P G (closure),

• xb py ˝ zq “ px ˝ yq ˝ z (associativity),

• e ˝ y “ x ˝ e “ e (identity element),

• x ˝ invpxq “ e (inverse element),

for all x, y, z P G.

Usually, groups are written either additively as G “ pG,`,´, 0q or multiplicatively as G “
pG,ˆ,´1 , 1q, but this is just a matter of convention. We write k ¨ x in an additive group
and xk in a multiplicative group for applying the group operator k ´ 1 times to x. We
define 0 ¨ x “ 0 and x0 “ 1 and handle negative values as ´k ¨ x “ k ¨ p´xq “ ´pk ¨ xq
and x´k “ px´1qk “ pxkq´1, respectively. A fundamental law of group theory states that
if n “ |G| is the group order of a finite group, then n ¨ x “ 0 and xn “ 1, which implies
k ¨ x “ pk mod nq ¨ x and xk “ xk mod n. In other words, scalars or exponents such as k can
be restricted to elements of the additive group Zn, in which additions are computed modulo
n (see below). Often, the term group is used for both the algebraic structure G and its set
of elements G.

3.2.1. The Multiplicative Group of Integers Modulo p

With Z˚p “ t1, . . . , p ´ 1u we denote the multiplicative group of integers modulo a prime
p P P, in which multiplications are computed modulo p. The group order is |Z˚p | “ p´1, i.e.,
operations on the exponents can be computed modulo p ´ 1. An element g P Z˚p is called
generator of Z˚p , if tg1, . . . , gp´1u “ Z˚p . Such generators always exist for Z˚p if p is prime.
Generally, groups for which generators exist are called cyclic.

Let g be a generator of Z˚p and x P Z˚p an arbitrary group element. The problem of finding
a value k such that x “ gk is believed to be a hard. The value k “ logg x is called discrete
logarithm of x to base g and the problem of finding k is called discrete logarithm problem
(DL). It is widely believed that DL is hard in Z˚p . A related problem, called decisional Diffie-
Hellman problem (DDH), consists in distinguishing two triples pga, gb, gabq and pga, gb, gcq
for random exponents a, b, c. While DDH is known to be easy in Z˚p , it is believed that DDH
is hard in large subgroups of Z˚p .
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A subset Gq Ă Z˚p forms a subgroup of Z˚p , if pGq,ˆ,
´1 , 1q satisfies the above properties of a

group. An important theorem of group theory states that the order q “ |Gq| of every such
subgroup divides the order of Z˚p , i.e., q|p ´ 1. If q is a large prime factor of p ´ 1, then it
is believed that DL in Gq is as hard as in Z˚p . In fact, even DDH seems be hard in a large
subgroup Gq, which is not the case in Z˚p .

A particular case arises when p “ 2q`1 P S is a safe prime. In this case, Gq is equivalent to
the group of so-called quadratic residues modulo p, which we obtain by squaring all elements
of Z˚p . Since q is prime, it follows that every x P Gqzt1u is a generator of Gq, i.e., generators
of Gq can be found easily by squaring arbitrary elements of Z˚pzt1, p´ 1u.

3.2.2. The Field of Integers Modulo p

With Zn “ t0, . . . , n ´ 1u we denote the additive group of integers, in which additions are
computed modulo n. This group as such is not interesting for cryptographic purposes (no
hard problems are known), but for n “ p´ 1, it serves as the natural additive group when
working with exponents in applications of Z˚p . The same holds for groups of prime order q,
for example for subgroups Gq Ă Z˚p . In this case, all calculations in the exponent take place
in Zq.

Generally, when Zp is an additive group modulo a prime p P P, then pZp,`,ˆ,´,´1 , 0, 1q
is a prime-order field with two binary operations ` and ˆ. This particular field combines
the additive group pZp,`,´, 0q and the multiplicative group pZ˚p ,ˆ,´1 , 1q in one algebraic
structure with an additional property:

• xˆpy` zq “ pxˆ yq` pxˆ zq, for all x, y, z P Zp (distributivity of multiplication over
addition).

For a given prime-order field Zp, it is possible to define univariate polynomials

ApXq “
d
ÿ

i“1

aiX
i P ZprXs

of degree d ě 0 and with coefficients ai P Zp (degree d means ad ‰ 0). Clearly, such
polynomials are fully determined by the list a “ pa0, . . . , adq of all coefficients. Another
representation results from picking distinct points pi “ pxi, yiq, yi “ Apxiq, from the poly-
nomial. Using Lagrange’s interpolation method, the coefficients can then be reconstructed
if at least d ` 1 such points are available. Reconstructing the coefficient a0 “ Ap0q is of
particular interest in many applications. For given points p “ pp1, . . . , pdq, pi P pxi, yiq P Z2

p,
we obtain

a0 “

d
ÿ

i“0

yi ¨
”

ź

0ďjďd
j‰i

xj
xj ´ xi

ı

.

by applying Lagrange’s general method to X “ 0.
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4. Type Conversion and Hash Algorithms

4.1. Byte Arrays

Let B “ xb0, . . . , bn´1y denote an array of bytes bi P B, where B “ B8 denotes the set of all
256 bytes. We identify individual bytes as integers bi P Z256 and use hexadecimal or binary
notation to denote them. For example, B “ x0A, 23, EFy denotes a byte array containing
three bytes Br0s “ 0A16 “ 000010102, Br1s “ 2316 “ 0010000112, and Br2s “ EF16 “

111011112.

For two byte arrays B1 and B2 of equal length n “ |B1| “ |B2|, we write B1 ‘ B2 for the
results of applying the XOR operator ‘ bit-wise to B1 and B2. For truncating a byte array
B of length n “ |B| to the first m ď n bytes, and for skipping the first m bytes from B, we
write

TruncatepB,mq “ xBr0s, . . . , Brm´ 1sy,

SkippB,mq “ xBrms, . . . , Brn´ 1sy,

respectively. Clearly, B “ TruncatepB,mq }SkippB,mq holds for all B P B˚ and all 0 ď m ď

n.

Another basic byte array operation is needed for generating unique verification codes on
every voting card (see Section 6.3.1 and Algs. 7.13 and 7.28). The goal of this operation is
similar to a digital watermark, which we use here for making verification codes unique on
each voting card. Below we define an algorithm MarkByteArraypB,m,mmaxq, which adds an
integer watermark m, 0 ď m ď mmax, to the bits of a byte array B.

Algorithm: MarkByteArraypB,m,mmaxq

Input: Byte arrays B P B˚
Watermark m, 0 ď m ď mmax

Maximal watermark mmax, ‖mmax‖ ď 8¨|B|
lÐ ‖mmax‖
sÐ 8¨|B|

l
for i “ 0, . . . , l ´ 1 do

B Ð SetBitpB, ti¨su,m mod 2q // see Alg. 4.2
mÐ tm{2s

return B // B P B˚

Algorithm 4.1: Adds an integer watermark m to the bits of a given byte array. The bits
of the watermark are spread equally across the bits of the byte array.
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Algorithm: SetBitpB, i, bq

Input: ByteArray B P B˚
Index i, 0 ď i ă 8¨|B|
Bit b P B

j Ð ti{8u

xÐ 2i mod 8

if b “ 0 then
Brjs Ð Brjs ^ p255´ xq // ^ denotes the bitwise AND operator

else
Brjs Ð Brjs _ x // _ denotes the bitwise OR operator

return B // B P B˚

Algorithm 4.2: Sets the i-th bit of a byte array B to b P B.

4.1.1. Converting Integers to Byte Arrays

Let x P N be a non-negative integer. We use B Ð ToByteArraypx, nq to denote the algorithm
which returns the byte array B P Bn obtained from truncating the n ě ‖x‖

8 least significant
bytes from the (infinitely long) binary representation of x in big-endian order:

B “ xb0, . . . , bn´1y, where bi “
Y x

256n´i´1

]

mod 256.

We use ToByteArraypxq as a short-cut notation for ToByteArraypx, nminq, which returns the
shortest possible such byte array representation of length nmin “ r

‖x‖
8 s. Table 4.1 shows the

byte array representations for different integers x and n ď 4.

ToByteArraypx, nq
x n “ 0 n “ 1 n “ 2 n “ 3 n “ 4 nmin ToByteArraypxq

0 xy x00y x00, 00y x00, 00, 00y x00, 00, 00, 00y 0 xy

1 – x01y x00, 01y x00, 00, 01y x00, 00, 00, 01y 1 x01y

255 – xFFy x00, FFy x00, 00, FFy x00, 00, 00, FFy 1 xFFy

256 – – x01, 00y x00, 01, 00y x00, 00, 01, 00y 2 x01, 00y
65, 535 – – xFF, FFy x00, FF, FFy x00, 00, FF, FFy 2 xFF, FFy
65, 536 – – – x01, 00, 00y x00, 01, 00, 00y 3 x01, 00, 00y

16, 777, 215 – – – xFF, FF, FFy x00, FF, FF, FFy 3 xFF, FF, FFy
16, 777, 216 – – – – x01, 00, 00, 00y 4 x01, 00, 00, 00y

Table 4.1.: Byte array representation for different integers and different output lengths n.

The shortest byte array representation in big-endian byte order, B Ð ToByteArraypxq, is the
default byte array representation of non-negative integers considered in this document. It
will be used for computing cryptographic hash values for integer inputs (see Section 4.3).
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Algorithm: ToByteArraypxq

Input: Non-negative integer x P N
nmin Ð r

‖x‖
8 s

B Ð ToByteArraypx, nminq // see Alg. 4.4
return B // B P B˚

Algorithm 4.3: Computes the shortest byte array representation in big-endian byte order
of a given non-negative integer x P N.

Algorithm: ToByteArraypx, nq

Input: Non-negative integer x P N
Length of byte array n ě ‖x‖

8
for i “ 1, . . . , n do

bn´i Ð x mod 256
xÐ t x

256 u

B Ð xb0, . . . , bn´1y

return B // B P Bn

Algorithm 4.4: Computes the byte array representation in big-endian byte order of a given
non-negative integer x P N. The given length n ě ‖x‖

8 of the output byte array B implies
that the first n´ r

‖x‖
8 s bytes of B are zeros.

4.1.2. Converting Byte Arrays to Integers

Since ToByteArraypxq from the previous subsection is not bijective relative to B˚, it does
not define a unique way of converting an arbitrary byte array B P B˚ into an integer x P N.
Defining such a conversion depends on whether the conversion needs to be injective or not.
In this document, we only need the following non-injective conversion,

x “
n´1
ÿ

i“0

Bris ¨ 256n´i´1, for n “ |B|,

in which leading zeros are ignored. With xÐ ToIntegerpBq we denote a call to an algorithm,
which computes this conversion for all B P B˚. It will be used in non-interactive zero-
knowledge proofs to generate integer challenges from Fiat-Shamir hash values (see Alg. 7.4
and Alg. 7.5). Note that x Ð ToIntegerpToByteArraypxqq holds for all x P N, but B Ð

ToByteArraypToIntegerpBqq only holds for byte arrays without any leading zeros (i.e., only
when Br0s ‰ 0). One the other hand, B Ð ToByteArraypToIntegerpBq, nq holds for all byte
arrays B P Bn of length n.

4.1.3. Converting UCS Strings to Byte Arrays

Let Aucs denote the Universal Character Set (UCS) as defined by ISO/IEC 10646, which
contains about 128, 000 abstract characters. A sequence S “ xs0, . . . , sn´1y P A

˚
ucs of char-

acters si P Aucs is called UCS string of length n. A˚ucs denotes the set of all UCS strings,
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Algorithm: ToIntegerpBq

Input: Byte array B P B˚
xÐ 0
for i “ 0, . . . , |B| ´ 1 do

xÐ 256 ¨ x`Bris

return x // x P N

Algorithm 4.5: Computes a non-negative integer from a given byte array B. Leading
zeros of B are ignored.

including the empty string. Concrete string instances are written in the usual string no-
tation, for example "" (empty string), "x" (string consisting of a single character ’x’), or
"Hello".

To encode a string S P A˚ucs as byte array, we use the UTF-8 character encoding as defined
in ISO/IEC 10646 (Annex D). Let B Ð UTF8pSq denote an algorithm that computes
corresponding byte arrays B P B˚, in which characters use 1, 2, 3, or 4 bytes of space
depending on the type of character. For example, x48, 65, 6C, 6C, 6Fy Ð UTF8p"Hello"q
is a byte array of length 5, because it only consists of Basic Latin characters, whereas
x56, 6F, 69, 6C, C3, A0y Ð UTF8p"Voilà"q contains 6 bytes due to the Latin-1 Supplement
character ’à’ translating into two bytes. UTF-8 is the only character encoding used in this
document for general UCS strings. It will be used for computing cryptographic hash values
of given input strings (see Section 4.3). Since implementations of UTF-8 character encoding
are widely available, we do not provide an explicit pseudo-code algorithm.

4.2. Strings

Let A “ tc1, . . . , cNu be an alphabet of size N ě 2. The characters in A are totally ordered,
let’s say as c1 ă ¨ ¨ ¨ ă cN , which we express by defining a ranking function rankApciq “ i´1
together with its inverse rank´1

A piq “ ci`1. A string S P A˚ is a sequence S “ xs0, . . . , sk´1y

of characters si P A.

4.2.1. Converting Integers to Strings

Let x P N be a non-negative integer. We use S Ð ToStringpx, k,Aq to denote an algorithm
that returns the following string of length k ě logN x in big-endian order:

S “ xs0, . . . , sk´1y, where si “ rank´1
A p

Y x

Nk´i´1

]

mod Nq.

We will use this conversion in Alg. 7.13 to print long integers in a more compact form. Note
that the following algorithm is almost identical to Alg. 4.4 given in Section 4.1.1 to obtain
byte arrays from integers.
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Algorithm: ToStringpx, k,Aq

Input: Integer x P N
String length k ě logN x
Alphabet A “ tc1, . . . , cNu

for i “ 1, . . . , k do
sk´i Ð rank´1

A px mod Nq
xÐ t xN u

S Ð xs0, . . . , sk´1y

return S // S P Ak

Algorithm 4.6: Computes a string representation of length k in big-endian order of a given
non-negative integer x P N and relative to some alphabet A.

4.2.2. Converting Strings to Integers

In Algs. 7.18 and 7.30, string representations S Ð ToStringpx, k,Aq of length k must be
reconverted into their original integers x P N. In a similar way as in Section 4.1.2, we obtain
the inverse of ToStringpx, k,Aq by

x “
k´1
ÿ

i“0

rankApSrisq ¨N
k´i´1 ă Nk,

in which leading characters with rank 0 are ignored. The following algorithm is an adaptation
of Alg. 4.5.

Algorithm: ToIntegerpS,Aq

Input: String S P A˚

Alphabet A “ tc1, . . . , cNu
xÐ 0
for i “ 0, . . . , |S| ´ 1 do

xÐ N ¨ x` rankApSrisq

return x // x P N

Algorithm 4.7: Computes a non-negative integer from a given string S.

4.2.3. Converting Byte Arrays to Strings

Let B P Bn be a byte array of length n. The goal is to represent B by a unique string S P Ak

of length k, such that k is as small as possible. We will use this conversion in Algs. 7.13,
7.28 and 7.37 to print and display byte arrays in human-readable form. Since there are
|Bn| “ 256n “ 28n byte arrays of length n and |Ak| “ Nk strings of length k, we derive
k “ r 8n

log2N
s from the inequality 28n ď Nk. To obtain an optimal string representation of

B, let xB Ð ToIntegerpBq ă 28n be the representation of B as a non-negative integer. This
leads to the following length-optimal mapping from Bn to Ak.
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Algorithm: ToStringpB,Aq

Input: Byte array B P Bn
Alphabet A “ tc1, . . . , cNu

xB Ð ToIntegerpBq // see Alg. 4.5

k Ð
Q

8n
log2N

U

S Ð ToStringpxB, k, Aq // see Alg. 4.6
return S // S P A˚

Algorithm 4.8: Computes the shortest string representation of a given byte array B rela-
tive to some alphabet A.

4.3. Hash Algorithms

A cryptographic hash algorithm defines a mapping h : B˚ Ñ B`, which transforms an input
bit array B P B˚ of arbitrary length into an output bit array hpBq P B` of length `, called
the hash value of B. In practice, hash algorithms such as SHA-1 or SHA-256 operate on
byte arrays rather than bit arrays, which implies that the length of the input and output
bit arrays is a multiple of 8. We denote such practical algorithms by H Ð HashLpBq, where
B P B˚ and H P BL are byte arrays of length L “ `

8 . Throughout this document, we do not
specify which of the available practical hash algorithms that is compatible with the output
bit length ` is used. For this we refer to the technical specification in Chapter 8.

4.3.1. Hash Values of Integers and Strings

To compute the hash value of a non-negative integer x P N, it is first encoded as a byte
array B Ð ToByteArraypxq using Alg.4.3 and then hashed into HashLpBq. The whole process
defines a mapping h : N Ñ BL. Similarly, for an input string S P A˚ucs, we compute the
hash value HashLpBq of the byte array B Ð UTF8pSq using UTF-8 character encoding (see
Section 4.1.3). In this case, we obtain a mapping h : A˚ucs Ñ BL. Both cases are included
as special cases in Alg. 4.9.

4.3.2. Hash Values of Multiple Inputs

Let b “ pB1, . . . , Bkq be a vector of multiple input byte arrays Bi P B˚ of arbitrary length.
The hash value of b can be defined recursively by

hpbq “

$

’

&

’

%

hpxyq, if k “ 0,

hpB1q, if k “ 1,

hphpB1q } ¨ ¨ ¨ }hpBkqq, if k ą 1.

We distinguish the special case of k “ 1 to avoid computing hphpB1qq for a single input and
to be able to use hpB1, . . . , Bkq as a consistent alternative notation for hpbq.
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This definition can be generalized to multiple input values of various types. Let pv1, . . . , vkq
be such a tuple of general input values, where vi is either a byte array, an integer, a string,
or another tuple of general input values. As above, we define the hash value recursively as

hpv1, . . . , vkq “

$

’

&

’

%

hpxyq, if k “ 0,

hpv1q, if k “ 1,

hphpv1q } ¨ ¨ ¨ }hpvkqq, if k ą 1.

Note that an arbitrary tree containing byte arrays, integers, or strings in its leaves can be
hashed in this way. Calling such a general hash algorithm is denoted by

H Ð RecHashLpv1, . . . , vkq,

where subscript L indicates that the algorithm is instantiated with a cryptographic hash
algorithm of output length L. The details of the recursion are given in Alg. 4.9. Note that
the special case k “ 0 is included in the general case k ‰ 1.

Algorithm: RecHashLpv1, . . . , vkq

Input: Input values vi P Vi, Vi unspecified, k ě 0
if k “ 1 then

v Ð v1

if v P B˚ then
return HashLpvq

if v P N then
return HashLpToByteArraypvqq // see Alg. 4.3

if v P A˚ucs then
return HashLpUTF8pvqq // see Section 4.1.3

if v “ pv11, . . . , v
1
k1q then

return RecHashLpv
1
1, . . . , v

1
k1q

return K // type of v not supported

else
B Ð } ki“1 RecHashLpviq
return HashLpBq

Algorithm 4.9: Computes the hash value hpv1, . . . , vkq P BL of multiple inputs v1, . . . , vk
in a recursive manner.
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5. Cryptographic Primitives

5.1. ElGamal Encryption

An ElGamal encryption scheme is a triple pKeyGen,Enc,Decq of algorithms, which operate
on a cyclic group for which the decisional Diffie-Hellman assumption (DDH) holds [15]. The
most common choice for such a group is the subgroup of quadratic residues Gq Ă Z˚p of prime
order q, where p “ 2q ` 1 is a safe prime large enough to resist index calculus and other
methods for solving the discrete logarithm problem. The public parameters of an ElGamal
encryption scheme are thus p, q, and a generator g P Gqzt1u.

5.1.1. Using a Single Key Pair

An ElGamal key pair is a tuple psk, pkq Ð KeyGenpq, where sk PR Zq is the randomly chosen
private decryption key and pk “ gsk P Gq the corresponding public encryption key. If
m P Gq denotes the plaintext to encrypt, then

Encpkpm, rq “ pm ¨ pk
r, grq P Gq ˆGq

denotes the ElGamal encryption of m with randomization r PR Zq. Note that the bit length
of an encryption e Ð Encpkpm, rq is twice the bit length of p. For a given encryption
e “ pa, bq, the plaintext m can be recovered by using the private decryption key sk to
compute

mÐ Decskpeq “ a ¨ b´sk.

For any given key pair psk, pkq Ð KeyGenpq, it is easy to show that DecskpEncpkpm, rqq “ m
holds for all m P Gq and r P Zq.

The ElGamal encryption scheme is IND-CPA secure under the DDH assumption and ho-
momorphic with respect to multiplication. Therefore, component-wise multiplication of two
ciphertexts yields an encryption of the product of respective plaintexts:

Encpkpm1, r1q ¨ Encpkpm2, r2q “ Encpkpm1m2, r1 ` r2q.

In a homomorphic encryption scheme like ElGamal, a given encryption eÐ Encpkpm, rq can
be re-encrypted by multiplying e with an encryption of the neutral element 1. The resulting
re-encryption,

ReEncpkpe, r
1q “ e ¨ Encpkp1, r

1q “ Encpkpm, r ` r
1q,

is clearly an encryption of m with a fresh randomization r ` r1.
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5.1.2. Using a Shared Key Pair

If multiple parties generate ElGamal key pairs as described above, let’s say pskj , pkjq Ð
KeyGenpq for parties j P t1, . . . , su, then it is possible to aggregate the public encryption
keys into a common public key pk “

śs
j“1 pkj , which can be used to encrypt messages as

described above. The corresponding private keys skj can then be regarded as key shares
of the private key sk “

řs
j“1 skj , which is not known to anyone. This means that an

encryption e “ encpkpm, rq can only be decrypted if all parties collaborate. This idea can
be generalized such that only a threshold number t ď s of parties is required to decrypt a
message, but this property is not needed in this document.

In the setting where s parties hold shares of a common key pair psk, pkq, the decryption of
eÐ Encpkpm, rq can be conducted without revealing the key shares skj :

Decskpeq “ a ¨ b´sk “ a ¨ b´
řs
j“1 skj “ a ¨ p

s
ź

j“1

bsj q´1 “ a ¨ p
s
ź

j“1

bjq
´1,

where each partial decryption bj “ bskj can be computed individually by the respective
holder of the key share skj .

5.2. Pedersen Commitment

The (extended) Pedersen commitment scheme is based on a cyclic group for which the
discrete logarithm (DL) assumption holds. In this document, we use the same q-order
subgroup Gq Ă Z˚p of integers modulo p “ 2q ` 1 as in the ElGamal encryption scheme.
Let g, h1, . . . , hn P Gqzt1u be independent generators of Gq, which means that their relative
logarithms are provably not known to anyone. For a deterministic algorithm that generates
an arbitrary number of independent generators, we refer to the NIST standard FIPS PUB
186-4 [1, Appendix A.2.3]. Note that the deterministic nature of this algorithm enables the
verification of the generators by the public.

The Pedersen commitment scheme consists of two deterministic algorithms, one for com-
puting a commitment

Compm, rq “ grhm1
1 ¨ ¨ ¨hmnn P Gq

to n messages m “ pm1, . . . ,mnq P Znq with randomization r PR Zq, and one for checking
the validity of c Ð Compm, rq when m and r are revealed. In the special case of a single
message m, we write Compm, rq “ grhm using a second generator h independent from g.
The Pedersen commitment scheme is perfectly hiding and computationally binding under
the DL assumption.

In this document, we will also require commitments to permutations ψ : t1, . . . , nu Ñ
t1, . . . , nu. Let Bψ “ pbijqnˆn be the permutation matrix of ψ, which consists of bits

bij “

#

1, if ψpiq “ j,

0, otherwise.
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Note that each row and each column in Bψ has exactly one 1-bit. If bj “ pb1,j , . . . , bn,jq
denotes the j-th column of Bψ, then

Compbj , rjq “ grj
n
ź

i“1

h
bij
i “ grjhi, for i “ ψ´1pjq,

is a commitment to bj with randomization rj . By computing such commitments to all
columns,

Compψ, rq “ pCompb1, r1q, . . . ,Compbn, rnqq,

we obtain a commitment to ψ with randomizations r “ pr1, . . . , rnq. Note that the size of
such a permutation commitment cÐ Compψ, rq is Opnq.

5.3. Oblivious Transfer

An oblivious transfer results from the execution of a protocol between two parties called
sender and receiver. In a k-out-of-n oblivious transfer, denoted by OTkn, the sender holds a
list m “ pM1, . . . ,Mnq of messages Mi P B` (bit strings of length `), of which k ď n can be
selected by the receiver. The selected messages are transferred to the receiver such that the
sender remains oblivious about the receiver’s selections and that the receiver learns nothing
about the n´k other messages. We write s “ ps1, . . . , skq for the k selections sj P t1, . . . , nu
of the receiver and ms “ pMs1 , . . . ,Mskq for the k messages to transfer.

In the simplest possible case of a two-round protocol, the receiver sends a randomized query
α Ð Queryps, rq to the sender, the sender replies with β Ð Replypα,mq, and the receiver
obtains ms Ð Openpβ, rq by removing the randomization r from β. For the correctness
of the protocol, OpenpReplypQueryps, rq,mq, rq “ ms must hold for all possible values of
m, s, and r. A triple of algorithms pQuery,Reply,Openq satisfying this property is called
(two-round) OTk

n scheme.

An OTkn scheme is called secure, if the three algorithms guarantee both receiver privacy and
sender privacy. Usually, receiver privacy is defined in terms of indistinguishable selections s1

and s2 relative to corresponding queries q1 and q2, whereas sender privacy is defined in terms
of indistinguishable transcripts obtained from executing the real and the ideal protocols in
the presence of a malicious receiver (called simulator). In the ideal protocol, s and m are
sent to an incorruptible trusted third party, which forwards ms to the simulator.

5.3.1. OT-Scheme by Chu and Tzeng

There are many general ways of constructing OTkn schemes, for example on the basis of less
complex OT1

n or OT1
2 schemes, but such general constructions are usually not very efficient.

In this document, we use the second OTkn scheme presented in [12].1 We instantiate the
protocol to the same q-order subgroup Gq Ă Z˚p of integers modulo p “ 2q ` 1 as in the
ElGamal encryption scheme. Besides the description of this group, there are several public
parameters: a generator g P Gqzt1u, an encoding Γ : t1, . . . , nu Ñ Gq of the possible

1The modified protocol as presented in [13] is slightly more efficient, but fits less into the particular
context of this document.
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selections into Gq, and a collision-resistant hash function h : B˚ Ñ B` with output length `.
In Prot. 5.1, we provide a detailed formal description of the protocol. The query is a vector
a P Gk

q of length k and the response is a tuple pb, c, dq consisting of a vector b P Gk of length
k, a vector c P pB`qn of length n, and a single value d P Gq, i.e.,

aÐ Queryps, rq,

pb, c, dq Ð Replypa,m, r1q,

ms Ð Openpb, c, d, rq,

where r “ pr1, . . . , rkq PR Zkq is the randomization vector used in computing the query and
r1 PR Zq an additional randomization used in computing the response.

Executing Query and Open requires k fixed-base exponentiations in Gq each, whereas Reply
requires n`k`1 fixed-exponent exponentiations in Gq. Note that among the 2k exponenti-
ations of the receiver, k can be precomputed, and among the n`k`1 exponentiations of the
sender, n`1 can be precomputed. Therefore, only k online exponentiations remain for both
the receiver and the sender, i.e., the protocol is very efficient in terms of computation and
communication costs. In the random oracle model, the scheme is provably secure against a
malicious receiver and a semi-honest sender. Receiver privacy is unconditional and sender
privacy is computational under the chosen-target computational Diffie-Hellman (CT-CDH)
assumption, which is a weaker assumption than standard CDH [10].

5.3.2. Simultaneous Oblivious Transfers

The OTk
n scheme from the previous subsection can be extended to the case of a sender holding

multiple lists mj “ pM1,j , . . . ,Mnj ,jq of length nj , from which the receiver selects kj ď nj in
each case. If t is the total number of such lists, then n “

řt
j“1 nj is the total number of avail-

able messages and k “
řt
j“1 kj the total number of selections. An oblivious transfer of this

kind can be realized in two ways, either by conducting t such kj-out-of-nj oblivious transfers
simultaneously, for example using the scheme from the previous subsection, or by conduct-
ing a single k-out-of-n oblivious transfer relative to m “ m1} ¨ ¨ ¨ }mt “ pM1, . . . ,Mnq with
some additional constraints relative to the choice of s “ ps1, . . . , skq.

To define these constraints, let k1j “
řj´1
i“1 ki and n1j “

řj´1
i“1 ni for 1 ď j ď t ` 1. This

determines for each i P t1, . . . , ku a unique index j P t1, . . . , tu satisfying k1j ă i ď k1j`1,
which we can use to define a constraint

n1j ă si ď n1j`1 (5.1)

for every selection si in s. This guarantees that the first k1 messages are selected from m1,
the next k2 messages are selected from m2, and so on. To obtain such a OTk

n scheme, we
can generalize the algorithms of the previous subsection into

aÐ Queryps, rq,

pb, c,dq Ð Replypa,m, r1q,

ms Ð Openpb, c,d, rq,

where d “ pd1, . . . , dtq P Gt
q and r1 “ pr11, . . . , r

1
tq P Ztq are now vectors of size t. Note that

the algorithm Query is not affected by this change. Reply and Open can be generalized in
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Receiver Sender

knows s “ ps1, . . . , skq knows m “ pM1, . . . ,Mnq

for i “ 1, . . . , k

– pick random ri PR Zq

– compute ai “ Γpsiq ¨ g
ri

a “ pa1, . . . , akq

pick random r1 PR Zq

for i “ 1, . . . , k

– compute bi “ ar
1

i

for i “ 1, . . . , n

– compute ki “ Γpiqr
1

– compute Ki “ hpkiq

– compute Ci “Mi ‘Ki

compute d “ gr
1

b “ pb1, . . . , bkq,

c “ pC1, . . . , Cnq, d

for i “ 1, . . . , k

– compute Ki “ hpbi ¨ d
´riq

– compute Msi “ Csi ‘Ki

Protocol 5.1: Two-round OTk
n scheme for malicious receiver, where g P Gqzt1u is a generator

of Gq Ă Z˚p , Γ : t1, . . . , nu Ñ Gq an encoding of the selections into Gq, and h : B˚ Ñ B` a
collision-resistant hash function with output length `.

a natural way by introducing an additional loop over 1 ď j ď t and by performing the
computations with the right values r1j and dj , respectively, as shown in Prot. 5.2. It is easy
to demonstrate that this generalization of the OTk

n scheme by Chu and Tzeng is equivalent
to performing t individual oblivious transfers in parallel. Note that the total number of
exponentiations in Gq remains the same for both Query and Open (k exponentiations with
t different bases), but for Reply the number is slightly increased (n` k ` t exponentiations
with t different exponents).

5.3.3. Oblivious Transfer of Long Messages

If the output length ` of the available hash function h : B˚ Ñ B` is shorter than the messages
Mi known to the sender, the methods of the previous subsections can not be applied directly.
The problem is the computation of the values Ci “Mi‘Ki by the sender, for which equally
long values Ki are needed. In general, for messages Mi P B`m of length `m ą `, we can
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Receiver Sender

knows s “ ps1, . . . , skq knows m “ pM1, . . . ,Mnq

for i “ 1, . . . , k

– pick random ri PR Zq

– compute ai “ Γpsiq ¨ g
ri

a “ pa1, . . . , akq

for j “ 1, . . . , t

– pick random r1j PR Zq

– for l “ 1, . . . , kj

– compute i “ k1j ` l

– compute bi “ a
r1
j

i

– for l “ 1, . . . , nj

– compute i “ n1j ` l

– compute ki “ Γpiqr
1
j

– compute Ki “ hpkiq

– compute Ci “Mi ‘Ki

– compute dj “ gr
1
j

b “ pb1, . . . , bkq

c “ pC1, . . . , Cnq

d “ pd1, . . . , dtq

for j “ 1, . . . , t

– for l “ 1, . . . , kj

– compute i “ k1j ` l

– compute Ki “ hpbi ¨ d
´ri
j q

– compute Msi “ Csi ‘Ki

Protocol 5.2: Two-round OTk
n scheme for malicious receiver, where g P Gqzt1u is a generator

of Gq Ă Z˚p , Γ : t1, . . . , nu Ñ Gq an encoding of the selections into Gq, and h : B˚ Ñ B` a
collision-resistant hash function with output length `.

circumvent this problem by applying the counter mode of operation (CTR) from block
ciphers. If we suppose that `m “ k` is a multiple of `, we can split each message Mi into k
blocks Mij P B` of length ` and process them individually using values Kij “ hpki, jq. Here,
the index j P t1, . . . , ku plays the role of the counter. This is identical to computing a single
value Ki “ hpki, 1q } ¨ ¨ ¨ }hpki, kq of length `m and then applying Ki to Mi. If `m is not an
exact multiple of `, we do the same for k “ r`m{`s, but then truncate the first `m bits from
the resulting value Ki to obtain the desired length.
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5.4. Non-Interactive Preimage Proofs

Non-interactive zero-knowledge proofs of knowledge are important building blocks in cryp-
tographic protocol design. In a non-interactive preimage proof

NIZKPrpxq : y “ φpxqs

for a one-way group homomorphism φ : X Ñ Y , the prover proves knowledge of a secret
preimage x “ φ´1pyq P X for a public value y P Y [23]. The most common construction
of a non-interactive preimage proof results from combining the Σ-protocol with the Fiat-
Shamir heuristic [16]. Proofs constructed in this way are perfect zero-knowledge in the
random oracle model. In practical implementations, the random oracle is approximated
with a collision-resistant hash function h.

Generating a preimage proof pt, sq Ð GenProofφpx, yq for φ consists of picking a random
value w PRX and computing a commitment t “ φpwq P Y , a challenge c “ hpy, tq, and a
response s “ w ` c ¨ x P X. Verifying a proof includes computing c “ hpy, tq and checking
t “ y´c ¨φpsq. For a given proof π “ pt, sq, this process is denoted by bÐ CheckProofφpπ, yq
for b P B. Clearly, we have

CheckProofφpGenProofφpx, yq, yq “ 1

for all x P X and y “ φpxq P Y .

5.4.1. Composition of Preimage Proofs

Preimage proofs for two (or more) one-way homomorphisms φ1 : X1 Ñ Y1 and φ2 : X2 Ñ

Y2 can be reduced to a single preimage proof for φ : X1 ˆ X2 Ñ Y1 ˆ Y2 defined by
φpx1, x2q “ pφ1px1q, φ2px2qq. In this case, w “ pw1, w2q P X1 ˆ X2, t “ pt1, t2q P Y1 ˆ Y2,
and s “ ps1, s2q P X1 ˆ X2 are pairs of values, whereas c remains a singe value. This
way of combining multiple preimage proofs into a single preimage proof is sometimes called
AND-composition. The following two equivalent notations are therefore equivalent and can
be used interchangeably:

NIZKPrpx1, x2q : y1 “ φ1px1q ^ y2 “ φ2px2qs “ NIZKPrpx1, x2q : py1, y2q “ φpx1, x2qs.

An important special case of an AND-composition arises when φ1 : X Ñ Y1 and φ2 : X Ñ Y2

have a common domain X and when the y1 “ φ1pxq and y2 “ φ2pxq have the same preimage
x P X. The corresponding equality proof,

NIZKPrpxq : y1 “ φ1pxq ^ y2 “ φ2pxqs “ NIZKPrpxq : py1, y2q “ φpxqs,

shows that y1 and y2 have an equal preimage. In the special case of two exponential functions
φ1pxq “ gx and φ2pxq “ hx, this demonstrates the equality of discrete logarithms [11].
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5.4.2. Applications of Preimage Proofs

Let us look at some concrete instantiations of the above preimage proof. Each of them will
be used later in this document.

Schnorr Identification. In a Schnorr identification scheme, the holder of a private credential
x P X proves knowledge of x “ φ´1pyq “ logg y, where g is a generator in a suitable
group Y in which the DL assumption holds [28]. This leads to one of the simplest and
most fundamental instantiation of the above preimage proof,

NIZKPrpxq : y “ gxs,

where φpxq “ gx is the exponential function to base g. For w PRX, the prover com-
putes t “ gw, c “ hpt, yq, and s “ w ` c ¨ x, and the verifier checks π “ pt, sq by
t “ y´c ¨ gs.

Proof of Knowledge of ElGamal Plaintext. Another application of a preimage proof re-
sults from the ElGamal encryption scheme. The goal is to prove knowledge of the plain-
text m and the randomization r for a given ElGamal ciphertext pa, bq Ð Encpkpm, rq,
which we can denote as

NIZKPrpm, rq : e “ Encpkpm, rqs “ NIZKPrpm, rq : pa, bq “ pgr,m ¨ pkrqs.

Since Encpk defines a homomorphism from Gq ˆZq to Gq ˆGq, both the commitment
t “ pt1, t2q P Gq ˆ Gq and the response s “ ps1, s2q P Gq ˆ Zq are pairs of values.
Generating the proof requires two and verifying the proof four exponentiations in Gq.

ElGamal Decryption Proof. The decryption m Ð Decskpeq of an ElGamal ciphertext e “
pa, bq defines a mapping from Gq ˆ Gq to Gq, but this mapping is not homomorphic.
The desired decryption proof,

NIZKPrpskq : m “ Decskpeq ^ pk “ gsks “ NIZKPrpskq : pm, pkq “ pa ¨ b´sk, gskqs,

which demonstrates that the correct decryption key sk has been used, can therefore not
be treated directly as an application of a preimage proof. However, since m “ a ¨ b´sk

can be rewritten as a{m “ bsk, we can achieve the same goal by

NIZKPrpskq : pa{m, pkq “ pbsk, gskqs.

Note that this proof is a standard proof of equality of discrete logarithms. We will use
it to prove the correctness of a partial decryption bj “ bskj , where skj is a share of the
private key sk (see Section 5.1.2).

5.5. Wikström’s Shuffle Proof

A cryptographic shuffle of a list e “ pe1, . . . , eN q of ElGamal encryptions ei Ð Encpkpmi, riq
is another list of ElGamal encryptions e1 “ pe11, . . . , e1N q, which contains the same plaintexts
mi in permuted order. Such a shuffle can be generated by selecting a random permutation
ψ : t1, . . . , Nu Ñ t1, . . . , Nu from the set ΨN of all such permutations (e.g., using Knuth’s
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shuffle algorithm [22]) and by computing re-encryptions e1i Ð ReEncpkpej , r
1
jq for j “ ψpiq.

We write
e1 Ð Shufflepkpe, r

1, ψq

for an algorithm performing this task, where r1 “ pr11, . . . , r
1
N q denotes the randomization

used to re-encrypt the input ciphertexts.

Proving the correctness of a cryptographic shuffle can be realized by proving knowledge of
ψ and r1, which generate e1 from e in a cryptographic shuffle:

NIZKPrpψ, r1q : e1 “ Shufflepkpe, r
1, ψqs.

Unfortunately, since Shufflepk does not define a homomorphism, we can not apply the stan-
dard technique for preimage proofs. Therefore, the strategy of what follows is to find an
equivalent formulation using a homomorphism.

The shuffle proof according to Wikström and Terelius consists of two parts, an offline and
an online proof. In the offline proof, the prover computes a commitment c Ð Compψ, rq
and proves that c is a commitment to a permutation matrix. In the online proof, the prover
demonstrates that the committed permutation matrix has been used in the shuffle to obtain
e1 from e. The two proofs can be kept separate, but combining them into a single proof
results in a slightly more efficient method. Here, we only present the combined version of
the two proofs and we restrict ourselves to the case of shuffling ElGamal ciphertexts.

From a top-down perspective, Wikström’s shuffle proof can be seen as a two-layer proof
consisting of a top layer responsible for preparatory work such as computing the commitment
cÐ Compψ, rq and a bottom layer computing a standard preimage proof.

5.5.1. Preparatory Work

There are two fundamental ideas behind Wikström’s shuffle proof. The first idea is based
on a simple theorem that states that if Bψ “ pbijqNˆN is an N -by-N -matrix over Zq and
px1, ..., xN q a vector of N independent variables, then Bψ is a permutation matrix if and only
if
řN
j“1 bij “ 1, for all i P t1, . . . , Nu, and

śN
i“1

řN
j“1 bijxi “

śN
i“1 xi. The first condition

means that the elements of each row of Bψ must sum up to one, while the second condition
requires that Bψ has exactly one non-zero element in each row.

Based on this theorem, the general proof strategy is to compute a permutation commitment
cÐ Compψ, rq and to construct a zero-knowledge argument that the two conditions of the
theorem hold for Bψ. This implies then that c is a commitment to a permutation matrix
without revealing ψ or Bψ.

For c “ pc1, . . . , cN q, r “ pr1, . . . , rN q, and r̄ “
řN
j“1 rj , the first condition leads to the

following equality:

N
ź

j“1

cj “
N
ź

j“1

grj
N
ź

i“1

h
bij
i “ g

řN
j“1 rj

N
ź

i“1

h
řN
j“1 bij

i “ gr̄
N
ź

i“1

hi “ Comp1, r̄q. (5.2)
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Similarly, for arbitrary values u “ pu1, . . . , uN q P ZNq , u1 “ pu11, . . . , u
1
N q P ZNq , with

u1i “
řN
j“1 bijuj “ uj for j “ ψpiq, and r̃ “

řN
j“1 rjuj , the second condition leads to

two equalities:

N
ź

i“1

u1i “
N
ź

j“1

uj , (5.3)

N
ź

j“1

c
uj
j “

N
ź

j“1

pgrj
N
ź

i“1

h
bij
i q

uj “ g
řN
j“1 rjuj

N
ź

i“1

h
řN
j“1 bijuj

i “ gr̃
N
ź

i“1

h
u1i
i

“Compu1, r̃q, (5.4)

By proving that (5.2), (5.3), and (5.4) hold, and from the independence of the generators,
it follows that both conditions of the theorem are true and finally that c is a commitment
to a permutation matrix. In the interactive version of Wikström’s proof, the prover obtains
u “ pu1, . . . , uN q P ZNq in an initial message from the verifier, but in the non-interactive
version we derive these values from the public inputs, for example by computing ui Ð
Hashppe, e1, cq, iq.

The second fundamental idea of Wikström’s proof is based on the homomorphic property of
the ElGamal encryption scheme and the following observation for values u and u1 defined
in the same way as above:

N
ź

i“1

pe1iq
u1i “

N
ź

j“1

ReEncpkpej , r
1
jq
uj “

N
ź

j“1

ReEncpkpe
uj
j , r

1
jujq

“ ReEncpkp
N
ź

j“1

e
uj
j ,

N
ÿ

j“1

r1jujq “ Encpkp1, r
1q ¨

N
ź

j“1

e
uj
j , (5.5)

for r1 “
řN
j“1 r

1
juj . By proving (5.5), it follows that every e1i is a re-encryption of ej for

j “ ψpiq. This is the desired property of the cryptographic shuffle. By putting (5.2) to (5.5)
together, the shuffle proof can therefore be rewritten as follows:

NIZKP

»

—

—

—

—

–

pr̄, r̃, r1,u1q :

śN
j“1 cj “ Comp1, r̄q

^
śN
i“1 u

1
i “

śN
j“1 uj

^
śN
j“1 c

uj
j “ Compu1, r̃q

^
śN
i“1pe

1
iq
u1i “ Encpkp1, r

1q ¨
śN
j“1 e

uj
j

fi

ffi

ffi

ffi

ffi

fl

.

The last step of the preparatory work results from replacing in the above expression the
equality of products,

śN
i“1 u

1
i “

śN
j“1 uj , by an equivalent expression based on a chained

list ĉ “ tĉ1, . . . , ĉNu of Pedersen commitments with different generators. For ĉ0 “ h and
random values r̂ “ pr̂1, . . . , r̂N q P ZNq , we define ĉi “ gr̂i ĉ

u1i
i´1, which leads to ĉN “ Compu, r̂q

for u “
śN
i“1 ui and

r̂ “
N
ÿ

i“1

r̂i

N
ź

j“i`1

u1j .

Applying this replacement leads to the following final result, on which the proof construction
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is based:

NIZKP

»

—

—

—

—

–

pr̄, r̂, r̃, r1, r̂,u1q :

śN
j“1 cj “ Comp1, r̄q

^ ĉN “ Compu, r̂q ^
”

ŹN
i“1pĉi “ gr̂i ĉ

u1i
i´1q

ı

^
śN
j“1 c

uj
j “ Compu1, r̃q

^
śN
i“1pe

1
iq
u1i “ Encpkp1, r

1q ¨
śN
j“1 e

uj
j

fi

ffi

ffi

ffi

ffi

fl

.

To summarize the preparatory work for the proof generation, we give a list of all necessary
computations:

• Pick r “ pr1, . . . , rN q PR ZNq and compute cÐ Compψ, rq.

• For i “ 1, . . . , N , compute ui Ð Hashppe, e1, cq, iq, let u1i “ uψpiq, pick r̂i PR Zq, and
compute ĉi “ gr̂i ĉ

u1i
i´1.

• Let r̂ “ pr̂1, . . . , r̂N q and ĉ “ pĉ1, . . . , ĉN q.

• Compute r̄ “
řN
j“1 rj , r̂ “

řN
i“1 r̂i

śN
j“i`1 u

1
j , r̃ “

řN
j“1 rjuj , and r

1 “
řN
j“1 r

1
juj .

Note that r̂ can be computed in linear time by generating the values
śN
j“i`1 u

1
j in an

incremental manner by looping backwards over j “ N, . . . , 1.

5.5.2. Preimage Proof

By rearranging all public values to the left-hand side and all secret values to the right-
hand side of each equation, we can derive a homomorphic one-way function from the final
expression of the previous subsection. In this way, we obtain the homomorphic function

φpx1, x2, x3, x4, x̂,x
1q

“ pgx1 , gx2 ,Compx1, x3q,ReEncpkp
N
ź

i“1

pe1iq
x1i ,´x4q, pg

x̂1 ĉ
x11
0 , . . . , g

x̂N ĉ
x1N
N´1qq,

which maps inputs px1, x2, x3, x4, x̂,x
1q P X of length 2N ` 4 into outputs

py1, y2, y3, y4, ŷq “ φpx1, x2, x3, x4, x̂,x
1q P Y

of length N ` 5, i.e., X “ Z4
q ˆ ZNq ˆ ZNq is the domain and Y “ G3

q ˆ G2
q ˆ GN

q the
co-domain of φ. Note that we slightly modified the order of the five sub-functions of φ for
better readability. By applying this function to the secret values pr̄, r̂, r̃, r1, r̂,u1q, we get a
tuple of public values,

pc̄, ĉ, c̃, e1, ĉq “ p

śN
j“1 cj

śN
j“1 hj

,
ĉN
hu
,
N
ź

j“1

c
uj
j ,

N
ź

j“1

e
uj
j , pĉ1, . . . , ĉN qq,

which can be derived from the public values e, e1, c, ĉ, and pk (and from u, which is derived
from e, e1, and c).
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To summarize, we have a homomorphic one-way function φ : X Ñ Y , secret values x “
pr̄, r̂, r̃, r1, r̂,u1q P X, and public values y “ pc̄, ĉ, c̃, e1, ĉq “ φpxq P Y . We can therefore
generate a non-interactive preimage proof

NIZKP

»

—

—

–

pr̄, r̂, r̃, r1, r̂,u1q :

c̄ “ gr̄ ^ ĉ “ gr̂ ^ c̃ “ Compu1, r̃q

^ e1 “ ReEncpkp
śN
i“1pe

1
iq
u1i ,´r1q

^

”

ŹN
i“1pĉi “ gr̂i ĉ

u1i
i´1q

ı

fi

ffi

ffi

fl

,

using the standard procedure from Section 5.4. The result of such a proof generation,
pt, sq Ð GenProofφpx, yq, consists of two values t “ φpwq P Y of length N ` 5 and s “
ω` c ¨x P X of length 2N ` 4, which we obtain from picking w PRX (of length 2N ` 4) and
computing c “ Hashpy, tq. Alternatively, a different c “ Hashpy1, tq could be derived directly
from the public values y1 “ pe, e1, c, ĉ, pkq, which has the advantage that y “ pc̄, ĉ, c̃, e1, ĉq
needs not to be computed explicitly during the proof generation.

This preimage proof, together with the two lists of commitments c and ĉ, leads to the
desired non-interactive shuffle proof NIZKPrpψ, r1q : e1 “ Shufflepkpe, r

1, ψqs. We denote the
generation and verification of a such proof π “ pt, s, c, ĉq by

π Ð GenProofpkpe, e
1, r1, ψq

bÐ CheckProofpkpπ, e, e
1q.

respectively. Corresponding algorithms are depicted in Alg. 7.44 and Alg. 7.48. Note that
generating the proof requires 7N`4 and verifying the proof 9N`11 modular exponentiations
in Gq. The proof itself consists of 5N ` 9 elements (2N ` 4 elements from Zq and 3N ` 5
elements from Gq).
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Part III.

Protocol Specification
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6. Protocol Description

The goal of this chapter is to describe the cryptographic voting protocol from various per-
spectives. We introduce the involved parties, describe their roles, and define the commu-
nication channels over which they exchange messages during a protocol execution. The
protocol itself has various phases—each with multiple sub-phases—which we describe with
sufficient technical details for understanding the general protocol design and the most im-
portant computational details. A comprehensive list of security and election parameters is
introduced beforehand. We also model the adversary and give a list of underlying trust
assumptions. Finally, we discuss the security properties that we obtain from applying the
adversary model and trust assumptions to the protocol. For further details in form of low-
level pseudo-code algorithms, we refer to Chapter 7. The protocol itself is an extension of
the protocol introduced in [20].

6.1. Parties and Communication Channels

In our protocol, we consider six different types of parties. A party can be a human being, a
computer, a human being controlling a computer, or even a combination of multiple human
beings and computers. In each of these cases, we consider them as atomic entities with
distinct tasks and responsibilities. Here is the list of parties we consider:

• The election administrator is responsible for setting up an election event. This includes
tasks such as defining the electoral roll, the number of elections, the set of candidates
in each election, and the eligibility of each voter in each election (see Section 6.3.2).
At the end of the election process, the election administrator determines and publishes
the final election result.

• A group of election authorities guarantees the integrity and privacy of the votes sub-
mitted during the election period. They are numbered with indices j P t1, . . . , su,
s ě 1. Before every election event, they establish jointly a public ElGamal encryption
key pk. They also generate the credentials and codes to be printed on the voting
cards. During vote casting, they respond to the submitted ballots and confirmations.
At the end of the election period, they perform a cryptographic shuffle of the en-
crypted votes. Finally, they use their private key shares skj to decrypt the votes in a
distributed manner.

• The printing authority is responsible for printing the voting cards and delivering them
to the voters. They receive the data necessary for generating the voting cards from
the bulletin board and the election authorities.
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• The voters are the actual human users of the system. They are numbered with indices
i P t1, . . . , NEu, NE ě 0. Prior to an election event, they receive the voting card
from the printing authority, which they can use to cast and confirm a vote during the
election period using their voting client.

• The voting client is a machine used by some voter to conduct the vote casting and
confirmation process. Typically, this machine is either a desktop, notebook, or tablet
computer with a network connection and enough computational power to perform
cryptographic computations. The strict separation between voter and voting client is
an important precondition for the protocol’s security concept.

• The bulletin board is the central communication unit of the system. It implements
a broadcast channel with memory among the parties involved in the protocol [21].
For this, it keeps track of all the messages reveived during the protocol execution.
The messages from the election administrator and the election authorities are kept in
separate dedicated sections, which implies that bulletin board can authenticate them
unambiguously. The entire election data stored by the bulletin board defines the input
of the verification process.

An overview of the involved parties is given in Figure 6.1, together with the necessary
communication channels between them. It depicts the central role of the bulletin board as
a communication hub. The election administrator, for example, only communicates with
the bulletin board. Since only public messages are sent to the bulletin board, none of its
input or output channels is confidential. As indicated in Figure 6.1 by means of a lock,
confidential channels only exist from the election authorities to the printing authority and
from the printing authority to the voters (and between the voter and the voting client). The
channel from the printing authority to the voters consists of sending a personalized voting
card by postal mail.

We assume that the election administrator and the election authorities are in possession
of a private signature key, which they use to sign all messages sent to the bulletin board.
Corresponding output channels are therefore authentic. A special case is the channel between
the voter and the voting client, which exists in form of the device’s user interface and the
voter’s interaction with the device. We assume that this channel is confidential. Note that
the bandwidth of this channel is obviously not very high. All other channels are assumed
to be efficient enough for transmitting the messages sufficiently fast.
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Figure 6.1.: Overview of the parties and communication channels.

6.2. Adversary Model and Trust Assumptions

We assume that the general adversarial goal is to break the integrity or secrecy of the
votes, but not to influence the election outcome via bribery or coercion. We consider covert
adversaries, which may arbitrarily interfere with the voting process or deviate from the
protocol specification to reach their goals, but only if such attempts are likely to remain
undetected [7]. Voters and authorities are potential covert adversaries, as well as any external
party. This includes adversaries trying to spread dedicated malware to gain control over
the voting clients or to break into the systems operated by the election administrator, the
election authorities, or the bulletin board.

All parties are polynomially bounded and thus incapable of solving supposedly hard problems
such as the DDH problem or breaking cryptographic primitives such as contemporary hash
algorithms. This implies that adversaries cannot efficiently decrypt ElGamal ciphertexts
or generate valid non-interactive zero-knowledge proofs without knowing the secret inputs.
For making the system resistant against attacks of that kind, it is necessary to select the
cryptographic parameters of Section 6.3 with much care and in accordance with current
recommendations (see Chapter 8).

For preparing and conducting an election event, as well as for computing the final election
result, we assume that at least one honest election authority is following the protocol faith-
fully. In other words, we take into account that dishonest election authorities may collude
with the adversary (willingly or unwillingly), but not all of them in the same election event.
Trust assumptions like this are common in cryptographic voting protocols, but they may
be difficult to implement in practice. A difficult practical problem is to guarantee that the
authorities act independently, which implies, for example, that they use software written by
independent developers and run them on hardware from independent manufacturers. This
document does not specify conditions for the election authorities to reach a satisfactory
degree of independence.
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There are two very strong trust assumptions in our protocol. The first one is attributed to
the voting client, which is assumed not to be corrupted by an adversary trying to attack
vote privacy. Since the voting client learns the plaintext vote from the voter during the vote
casting process, it is obvious that vote privacy can not be guaranteed in the presence of a
corrupted device, for instance one that is infiltrated with malware. This is one of the most
important unsolved problems in any approach, in which voter’s are allowed to prepare and
submit their votes on their own (insecure) devices.

The second very strong trust assumption in our protocol is attributed to the printing au-
thority. For printing the voting cards in the pre-election phase, the printing authority
receives very sensitive information from the election authorities, for example the credentials
for submitting a vote or the verification codes for the candidates. In principle, knowing
this information allows the submission of votes on behalf of eligible voters. Exploiting this
knowledge would be noticed by the voters when trying to submit a ballot, but obviously
not by voters abstaining from voting. Even worse, if check is given access to the verifica-
tion codes, it can easily bypass the cast-as-intended verification mechanism, i.e., voters can
no longer detect vote manipulations on the voting client. These scenarios exemplify the
strength of the trust assumptions towards the printing authority, which after all constitutes
a single-point-of-failure in the system. Given the potential security impact in case of a fail-
ure, it is important to use extra care when selecting the people, the technical infrastructure
(computers, software, network, printers, etc.), and the business processes for providing this
service. In this document, we will give a detailed functional specification of the printing
authority (see ??), but we will not recommend measures for establishing a sufficient amount
of trust.

6.3. System Parameters

The specification of the cryptographic voting protocol relies on a number of system parame-
ters, which need to be fixed for every election event. There are two categories of parameters.
The first category consists of security parameters, which define the security of the system
from a cryptographic point of view. They are likely to remain unchanged over multiple
election events until external requirements such as the desired level of protection or key
length recommendations from well-known organizations are revised. The second category of
election parameters define the particularities of every election event such as the number of
eligible voters or the candidate list. In our subsequent description of the protocol, we assume
that the security parameters are known to everyone, whereas the election parameters are
published on the bulletin board by the election administrator. Knowing the full set of all
parameters is an precondition for verifying an election result based on the data published
on the bulletin board.

6.3.1. Security Parameters

The security of the system is determined by four principal security parameters. As the
resistance of the system against attackers of all kind depends strongly on the actual choice
of these parameters, they need to be selected with much care. Note that they impose strict
lower bounds for all other security parameters.
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• The minimal privacy σ defines the amount of computational work for a polynomially
bounded adversary to break the privacy of the votes to be greater or equal to c ¨ 2σ for
some constant value c ą 0 (under the given trust assumptions of Section 6.2). This is
equivalent to brute-force searching a key of length σ bits. Recommended values today
are σ “ 112, σ “ 128, or higher.

• The minimal integrity τ defines the amount of computational work for breaking the
integrity of a vote in the same way as σ for breaking the privacy of the vote. In
other words, the actual choice of τ determines the risk that an adversary succeeds in
manipulating an election. Recommendations for τ are similar to the above-mentioned
values for σ, but since manipulating an election is only possible during the election
period or during tallying, a less conservative value may be chosen.

• The deterrence factor 0 ă ε ď 1 defines a lower bound for the probability that an
attempt to cheat by an adversary is detected by some honest party. Clearly, the
higher the value of ε, the greater the probability for an adversary of getting caught
and therefore the greater the deterrent to perform an attack. There are no general
recommendations, but values such as ε “ 0.99 or ε “ 0.999 seem appropriate for most
applications.

• The number of election authorities s ě 1 determines the amount of trust that needs
to be attributed to each of them. This is a consequence of our assumption that at
least one election authority is honest, i.e., in the extreme case of s “ 1, full trust is
attributed to a single authority. Generally, increasing the number of authorities means
to decrease the chance that they are all malicious. On the other hand, finding a large
number of independent and trustworthy authorities is a difficult problem in practice.
There is no general rule, but 3 ď s ď 5 authorities seems to be a reasonable choice in
practice.

In the following paragraphs, we introduce the complete set of security parameters that can
be derived from σ, τ , and ε. A summary of all parameters and constraints to consider when
selecting them will be given in Table 6.1 at the end of this subsection.

a) Hash Algorithm Parameters

At multiple places in our voting protocol, we require a collision-resistant hash functions
h : B˚ Ñ B` for various purposes. In principle, we could work with different output lengths
`, depending on whether the use of the hash function affects the privacy or integrity of
the system. However, for reasons of simplicity, we propose to use a single hash algorithm
HashLpBq throughout the entire document. Its output length L “ 8` must therefore be
adjusted to both σ and τ . The general rule for a hash algorithm to resist against birthday
attacks is that its output length should at least double the desired security strength, i.e.,
` ě 2 ¨maxpσ, τq bits (resp. L ě maxpσ,τq

4 bytes) in our particular case.

b) Group and Field Parameters

Other important building blocks in our protocol are the algebraic structures (two multi-
plicative groups, one prime field), on which the cryptographic primitives operate. Selecting
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appropriate group and field parameters is important to guarantee the minimal privacy σ
and the minimal integrity τ . We follow the current NIST recommendations [8, Table 2],
which defines minimal bit lengths for corresponding moduli and orders.

• The encryption group Gq Ă Zp is a q-order subgroup of the multiplicative group
of integers modulo a safe prime p “ 2q ` 1 P S. Since Gq is used for the ElGamal
encryption scheme and the oblivious transfer, i.e., it is only used to protect the privacy
of the votes, the minimal bit length of p (and q) depends on σ only. The following
constraints are consistent with the NIST recommendations:

‖p‖ ě

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1024, for σ “ 80,

2048, for σ “ 112,

3072, for σ “ 128,

7680, for σ “ 192,

15360, for σ “ 256.

(6.1)

In addition to p and q, two independent generators g, h P Gqzt1u of this group must
be known to everyone. The only constraint when selecting them is the independence
requirement.

• The identification group Gq̂ Ă Zp̂ is a q̂-order subgroup of the multiplicative group of
integers modulo a prime p̂ “ kq̂` 1 P P, where q̂ P P is prime and k ě 2 the co-factor.
Since this group is used for voter identification using Schnorr’s identification scheme,
i.e., it is only used to protect the integrity of the votes, the bit length of p̂ and q̂
depend on τ only. The constraints for the bit length of p̂ are therefore identical to the
constraints for the bit length of p,

‖p̂‖ ě

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1024, for τ “ 80,

2048, for τ “ 112,

3072, for τ “ 128,

7680, for τ “ 192,

15360, for τ “ 256,

(6.2)

but the NIST recommendations also define a minimal bit length for q̂. For reasons
similar to those defining the minimal output length of a collision-resistant hash func-
tion, the desired security strength τ must be doubled. This implies that ‖q̂‖ ě 2τ is
the constraint to consider when choosing q̂. Finally, an arbitrary generator ĝ P Gq̂zt1u
must be known to everyone.

• A prime field Zp1 is required in our protocol for polynomial interpolation during the
vote confirmation process. The goal of working with polynomials is to prove the
validity of a submitted vote in an efficient way. For maximal efficiency, we connect
this proof to Schnorr’s identification scheme in the vote confirmation process. This
connection requires that the constraint for Gq̂ also apply to Zp1 , i.e., we must consider
‖p1‖ ě 2τ when choosing p1. Maximal simplicity can be reached by setting p1 “ q̂. An
additional parameter that follows directly from p1 is the length LM of the messages
transferred by the OT-protocol. Since each of these messages represents a point in
Z2
p1 , we obtain LM “ 2 ¨ r‖p

1‖
8 s bytes.
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c) Parameters for Voting and Confirmation Codes

As we will see in Section 6.5.2, Schnorr’s identification scheme is used twice in the vote
casting and confirmation process. For this, voter i obtains a random pair of secret values
pxi, yiq P Zq̂x ˆ Zq̂y in form of a pair of fixed-length strings pXi, Yiq P A

`X
X ˆA`YY , which are

printed on the voting card. The values q̂x ď q̂ and q̂y ď q̂ are the upper bounds for xi and
yi, respectively. If |AX | ě 2 and |AY | ě 2 denote the sizes of corresponding alphabets, we
can derive the string lengths of Xi and Yi as follows:

`X “

R

‖q̂x‖
log2 |AX |

V

, `Y “

R

‖q̂y‖
log2 |AY |

V

.

For reasons similar to the ones mentioned above, it is critical to choose values q̂x and q̂y
satisfying ‖q̂x‖ ě 2τ and ‖q̂y‖ ě 2τ to guarantee the security of Schnorr’s identification
scheme. In the simplest possible case, i.e., by setting q̂x “ q̂y “ q̂, all constraints are
automatically satisfied. The selection of the alphabets AX and AY is mainly a trade-off
between conflicting usability parameters, for example the number of character versus the
number of different characters to enter. Typical alphabets for such purposes are the sets
t0, . . . , 9u, t0, . . . , 9, A, . . . , Zu, t0, . . . , 9, A, . . . , Z, a, . . . , zu, or other combinations of the most
common characters. Each character will then contribute between 3 to 6 entropy bits to the
entropy of xi or yi. While even larger alphabets may be problematical from a usability
point of view, standardized word lists such as Diceware1 are available in many natural
languages. These lists have been designed for optimizing the quality of passphrases. In the
English Diceware list, the average word length is 4.2 characters, and each word contributes
approximately 13 entropy bits. With this, the values xi and yi would by represented by
passphrases consisting of at least 2τ

13 English words.

d) Parameters for Verification and Finalization Codes

Other elements printed on the voting card of voter i are the verification codes RCij and
the finalization code FCi. Their purpose is the detection of attacks by corrupt voting
clients. The length of these codes is therefore a function of the deterrence factor ε. They
are generated in two steps, first as byte arrays Rij of length LR and Fi of length LF ,
respectively, which are then converted into strings RCij of length `R and FCi of length `F
(for given alphabets AR and AF ). To provide the security defined by the deterrence factor,
the following general constraints must be satisfied:

8LR ě log
1

1´ ε
, 8LF ě log

1

1´ ε
.

For ε “ 0.999 (0.001 chance of an undetected attack), for example, LR “ LF “ 2 would
be appropriate. In the case of the finalization code, the string length `F follows directly
from LF and the size of the alphabet AF . For the verification codes, an additional usability
constraint needs to be considered, namely that each code should appear at most once on
each voting card. This problem can be solved by increasing the length of the byte arrays
and to watermark them with j´ 1 P t0, . . . , n´ 1u before converting them into a string (see
Alg. 4.1). Note that this creates a minor technical problem, namely that LR is no longer

1See http://world.std.com/„reinhold/diceware.html.
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independent of the election parameters (see next subsection). We can solve this problem by
defining nmax to be the maximal number of candidates in every possible election event and
to extend the constraint for LR into

8LR ě log
nmax ´ 1

1´ ε
.

For ε “ 0.999 and nmax “ 1000, for example, LR “ 3 would satisfy this extended constraint.
For given lengths LR and LF , we can calculate the lengths `R and `F of corresponding
strings using the alphabet sizes:

`R “

R

8LR
log2 |AR|

V

, `F “

R

8LF
log2 |AF |

V

.

For LR “ 3, LF “ 2, and alphabet sizes |AR| “ |AF | “ 64 (6 bits), `R “ 4 characters are
required for the verification codes and `F “ 3 characters for the finalization code.

6.3.2. Election Parameters

A second category of parameters defines the details of a concrete election event. Defining
such election parameters is the responsibility of the election administrator. For making them
accessible to every participating party, they are published on the bulletin board. This is the
initial step of the election preparation phase (see Section 6.5.1). At the end of this subsection,
Table 6.2 summarizes the list of all election parameters and constraints to consider when
selecting them.

In Chapter 2, we already discussed that our definition of an election event, which consti-
tutes of multiple simultaneous k-out-of-n elections, covers all election use cases in the given
context. The most important parameter of an election event is therefore the number t of
simultaneous elections. By assuming t ě 1, we exclude the meaningless limiting case of
an election event with no election. All other election parameters are directly or indirectly
influenced by the actual value of t. We use j P t1, . . . , tu as an identifier for the elections in
an election event.

a) Candidates

Let nj ě 2 denote the number of candidates in the j-th election of an election event. By
requiring at least two candidates, we exclude trivial or meaningless elections with n “ 1
or n “ 0 candidates. The sum of such values, n “

řt
j“1 nj , represents the total number

of candidates in an election event. For each such candidate i P t1, . . . , nu, a candidate
description Ci P A

˚
ucs must be provided. In this document, by assuming that candidate

descriptions are given as arbitrary UCS strings, we do not further specify the type and
format of the information given for each candidate. Other important parameters of an
election event are the numbers of candidates kj , 0 ă kj ă nj , which a voter can select in
each election j. We exclude the two meaningless limiting cases of kj “ 0 and kj “ nj . The
total number of selections over all elections, k “

řt
j“1 kj , is limited by a constraint that

follows from our particular vote encoding method (see Section 6.4.1).
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Parameters Constraints

L Output length of hash function (bytes) L ě maxpσ,τq
4

p Modulo of encryption group Gq see (6.1)

g, h Independent generators of Gq g, h P Gqz1

p̂ Modulo of identification group Gq̂ see (6.2)

q̂ Order of Gq̂ ‖q̂‖ ě 2τ

ĝ Generator of Gq̂ g P Gq̂z1

p1 Modulo of prime field Zp1 ‖p1‖ ě 2τ

LM Length of OT messages (bytes) LM “ 2 ¨ r‖p
1‖

8 s

q̂x Upper bound of secret voting credential x ‖q̂x‖ ě 2τ , q̂x ď q̂

AX Voting code alphabet |AX | ě 2

`X Length of voting codes (characters) `X “
Q

‖q̂x‖
log2 |AX |

U

q̂y Upper bound of secret confirmation credential y ‖q̂y‖ ě 2τ , q̂y ď q̂

AY Confirmation code alphabet |AY | ě 2

`Y Length of confirmation codes (characters) `Y “
Q

‖q̂y‖
log2 |AY |

U

nmax Maximal number of candidates nmax ě 2

LR Length of verification codes Rij (bytes) 8LR ě log nmax´1
1´ε

AR Verification code alphabet |AR| ě 2

`R Length of verification codes RCij (characters) `R “
Q

8LR
log2 |AR|

U

LF Length of finalization codes Fi (bytes) 8LF ě log 1
1´ε

AF Finalization code alphabet |AF | ě 2

`F Length of finalization codes FCi (characters) `F “
Q

8LF
log2 |AF |

U

Table 6.1.: List of security parameters derived from the principal security parameters σ, τ ,
and ε. We assume that these values are fixed and publicly known to every party
participating in the protocol.

b) Electorate

A second category of election parameters specifies the details of the electorate. With NE ě 0
we denote the number of eligible voters in an election event and use i P t1, . . . , NEu as iden-
tifier.2 For each voter i, a voter description Vi P A˚ucs must be provided. As for the candidate
descriptions, we do not further specify the type and format of the given information. Note
that in the given election use cases of Section 2.2, voter i is not automatically eligible in
every election of an election event. We use single bits eij P B to define whether voter i is
eligible in election j or not, and we exclude completely ineligible voters by

řt
j“1 eij ě 1.

The matrix E “ peijqNEˆt of all such values is called eligibility matrix.

2Related election parameters will be formed during vote casting and confirmation. The number of
submitted ballots will be denoted by NB ď NE , the number of confirmed ballots by NC ď NB , and the
number of valid votes by N ď NC .
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Parameters Constraints

t Number of elections t ě 1

n “ pn1, . . . , ntq Number of candidates in each elec-
tion

nj ě 2

n Total number of candidates n “
řt
j“1 nj

c “ pC1, . . . , Cnq Candidate descriptions Ci P A
˚
ucs

k “ pk1, . . . , ktq Number of selections in each elec-
tion

0 ă kj ă nj

k Total number of selections k “
řt
j“1 kj ,

śk
i“1 pn´i`1 ă q

NE Number of eligible voters NE ě 0

v “ pV1, . . . , VNE q Voter descriptions Vi P A
˚
ucs

E “ peijqNEˆt Eligibility matrix eij P B,
řt
j“1 eij ě 1

Table 6.2.: List of election parameters.

6.4. Technical Preliminaries

From a cryptographic point of view, our protocol exploits a few non-trivial technical tricks.
In order to facilitate the exposition of the protocol in the next section, we introduce them
beforehand. Some of them have been used in other cryptographic voting protocols and are
well documented.

6.4.1. Vote Encoding and Encryption

In an election that allows votes for multiple candidates, it is usually more efficient to incor-
porate all votes into a single encryption. In the case of the ElGamal encryption scheme with
Gq as message space, we must define an invertible mapping Γ from the set of all possible
votes into Gq. A common technique for encoding a selection s “ ps1, . . . , skq of k candi-
dates out of n candidates, 1 ď si ď n, is to encode each selection si by a prime number
Γpsiq P PXGq and to multiply them into Γpsq “

śk
i“1 Γpsiq. Inverting Γpsq by factorization

is unique as long as Γpsq ă q and efficient when n is small [19]. For optimal capacity, we
choose the n smallest prime numbers p1, . . . , pn P PXGq, pj ă pj`1, and define Γpjq “ pj for
j P t1, . . . , nu. In this particular case, the uniqueness of the factorization is given if the prod-
uct of the k largest primes,

śk
i“1 pn´i`1, is smaller than q. This is an important constraint

when choosing the security and election parameters (see Table 6.2 in Section 6.3).

6.4.2. Linking OT Queries to ElGamal Encryptions

If the same encoding Γ : t1, . . . , nu Ñ Gq is used for the OTk
n scheme by Chu and Tseng

(see Section 5.3.1) and for encoding plaintext votes, we obtain a natural link between an
OT query a “ pa1, . . . , akq and an ElGamal encryption pa, bq Ð EncpkpΓpsq, rq. The link
arises by replacing the generator g P Gqzt1u in the OT scheme with the public encryption
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key pk. In this case, we obtain ai “ Γpsiq ¨ pk
ri and therefore a “

śk
i“1 ai “ Γpsq ¨ pkr for

r “
řk
i“1 ri, i.e., we can derive the right-hand side of the ElGamal encryption b “ gr from

the randomizations used in the OT query. This simple technical trick is crucial for making
our protocol efficient [20]. It means that submitting pa, bq as part of the ballot solves two
problems at the same time: sending an OT query and an encrypted vote to the election
authorities and guaranteeing that they contain exactly the same selection of candidates.

6.4.3. Validity of Encrypted Votes

The main purpose of the verification codes in our protocol is to provide evidence to the voters
that their votes have been cast and recorded as intended. However, our way of constructing
the verification codes solves another important problem, namely to guarantee that every
submitted encrypted vote satisfies exactly the constraints given by the election parameters
k and n, i.e., that every encryption contains a valid vote. Let RC1, . . . , RCn P A

`R
R be

the verification codes for the n candidates of a given voting card. In our scheme, they are
constructed as follows [20]:

• Each authority picks t random polynomials AjpXq PR Zp1rXs of degree kj ´ 1, one for
every election 1 ď j ď t. From each polynomial, the authority selects nj random
points pij “ pxij , Ajpxijqq by picking nj distinct random values xij PR Zp1 . The result
is a vector of points,

pp1,1, . . . , pn1,1, . . . . . . , p1,t, . . . , pnt,tq,

of length n “
řt
j“1 nj . Over all NE voting cards, each authority generates a NE-by-n

matrix of such points. Computing such a matrix is part of the election preparation of
every election authority. In the remaining of this document, the matrix generated by
authority j will be denoted by Pj .

• During vote casting, every authority j P t1, . . . , su transfers exactly k points from
Pj obliviously to the voting client, i.e., the voting client receives a k-by-s matrix
Ps “ ppijqkˆs of such points, which depends on the voter’s selection s. The verification
code RCsi for the selected candidate si is derived from the points pi,1, . . . , pi,s by
truncating corresponding hash values hppijq to the desired length LR, combining them
with an exclusive-or into a single value, and finally converting this value into a string
RCsi of length `R. The same happens simultaneously for all of the voter’s k selections,
which leads to a vector rcs “ pRCs1 , . . . , RCskq. During the printing of the voting
card, exactly the same calculations are performed for the verification codes of all n
candidates.

• By obtaining k “
řt
j“1 kj points from a particular election authority, the voting client

can reconstruct the polynomial AjpXq of degree kj ´ 1, if at least kj distinct points
from AjpXq are available (see Section 3.2.2). Consequently, in order to reconstruct
all t polynomials, exactly kj distinct points must be available for every AjpXq. If this
is the case, the simultaneous OTk

n query must have been formed properly under the
constraints given by k and n. The voting client can therefore prove the validity of
the encrypted vote by proving knowledge of these polynomials. For this, it evaluates
the polynomials for X “ 0 and merges corresponding values yj “ Ajp0q into a single
hash value h “ hpy1, . . . , ytq, which can not be guessed efficiently without knowing
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each of the t polynomials. In this way, the voting client obtains a hash value from
every authority. Their integer sum is incorporated into the voter’s public confirmation
credential ŷ by adding it to the secret confirmation credential y derived from the con-
formation code Y (see next subsection). Knowing the correct hash values is therefore
a prerequisite for the voting client to successfully confirm the vote.

The finalization code FC P A`FF of a given voting card is also derived from the random points
generated by each authority. The procedure is similar to the generation of the verification
codes. First, election authority j computes the hash value of the voter’s n points in Pj

and truncates it to the desired length LF . The resulting s hash values—one from every
authority—are combined with an exclusive-or into a single value, which is then converted
into a string of length `F . These last steps are the same for the printing authority during
the election preparation and for the voting client at the end of the vote casting process.

6.4.4. Voter Identification

During the vote casting process, the voter needs to be identified twice as an eligible voter,
first to submit the initial ballot and to obtain corresponding verification codes, and second
to confirm the vote after checking the verification codes. A given voting card contains two
secret codes for this purpose, the voting code X P A`XX and the confirmation code Y P A`YY .
By entering these codes into the voting client, the voter expresses the intention to proceed to
the next step in the vote casting process. In both cases, a Schnorr identification is performed
between the voting client and the election authorities (see Section 5.4.2). Without entering
these codes, or by entering incorrect codes, the identification fails and the process stops.

The voting code X is a string representation of a secret value x P Zq̂ called secret voting
credential. This value is generated by the election authorities in a distributed way, such that
no one except the printing authority learns it. For this, each election authority contributes a
random value xj PR Zq̂, which the printing authority combines into x “

řs
j“1 xj mod q̂. The

corresponding public voting credential x̂ P Gq̂ is derived from the values x̂j “ ĝxj mod p̂,
which are published by the election authorities:

x̂ “
s
ź

j“1

x̂j mod p̂ “
s
ź

j“1

ĝxj mod p̂ “ ĝ
řs
j“1 xj mod p̂ “ ĝx mod p̂.

For a given pair px, x̂q P Zq̂ ˆ Gq̂ of secret and public voting credentials, performing the
Schnorr identification corresponds to computing a non-interactive zero-knowledge proof
NIZKPrpxq : x̂ “ ĝx mod p̂s. In our protocol, we combine this proof with a proof of
knowledge of the plaintext vote contained in the submitted ballot (see Section 5.4.2).

The generation of the confirmation code Y is very similar. It is a string representation of
the secret confirmation credential y P Zq̂, which is generated by the election authorities in
exactly the same way as x. However, for the corresponding public confirmation credential
ŷ P Gq̂, the method is slightly different. After picking yj PR Zq̂ at random, the authority
computes the hash value hj “ hpyq of y “ py1, . . . , ytq and adds it to yj . By publishing
ŷj “ ĝyj`hj mod p̂, the public credential can be computed by

ŷ “
s
ź

j“1

ŷj mod p̂ “
s
ź

j“1

ĝyj`hj mod p̂ “ ĝ
řs
j“1 yj`hj mod p̂ “ ĝy`h mod p̂,
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for y “
řs
j“1 yj mod q̂ and h “

řs
j“1 hj mod q̂. Therefore, performing a Schnorr identifi-

cation relative to ŷ requires knowledge of y ` h. The corresponding zero-knowledge proof,
NIZKPrpy, hq : ŷ “ ĝy`h mod p̂s, is more efficient than conducting two separate proofs for
y and h.

6.5. Protocol Description

Based on the preceding sections about parties, channels, adversaries, trust assumptions, sys-
tem parameters, and technical preliminaries, we are now ready to present the cryptographic
protocol in greater detail. As mentioned earlier, the protocol itself has three phases, which
we describe in corresponding subsections with sufficient technical details for understanding
the general protocol design. By exhibiting the involved parties in each phase and sub-phase,
a first overview of the protocol is given in Table 6.3. This overview illustrates the central
role of the bulletin board as a communication hub and the strong involvement of the election
authorities in almost every step of the whole process.

Phase
Election
Admin.

Election
Authority

Printing
Authority Voter Voting

Client
Bulletin
Board

Protocol
Nr.

1. Pre-Election ‚ ‚ ‚ ‚ ‚

1.1 Election Preparation ‚ ‚ ‚ 6.1

1.2 Printing of Voting Cards ‚ ‚ ‚ ‚ 6.2

1.3 Key Generation ‚ ‚ 6.3

2. Election ‚ ‚ ‚ ‚

2.1 Candidate Selection ‚ ‚ ‚ 6.4

2.2 Vote Casting ‚ ‚ ‚ 6.5

2.3 Vote Confirmation ‚ ‚ ‚ ‚ 6.6

3. Post-Election ‚ ‚ ‚

3.1 Mixing ‚ ‚ 6.7

3.2 Decryption ‚ ‚ 6.8

3.3 Tallying ‚ ‚ 6.9

Table 6.3.: Overview of the protocol phases and sub-phases with the involved parties.

In each of the following subsections, we provide comprehensive illustrations of correspond-
ing protocol sub-phases. The illustrations are numbered from Prot. 6.3 to Prot. 6.9. Each
illustration depicts the involved parties, the information known to each party prior to execut-
ing the protocol sub-phase, the computations performed by each party during the protocol
sub-phase, and the exchanged messages. Together, these illustration define a precise and
complete skeleton of the entire protocol. The details of the algorithms called by the parties
when performing their computations are given in Chapter 7.

6.5.1. Pre-Election Phase

The pre-election phase of the protocol involves all necessary tasks to setup an election
event. The main goal is to equip each eligible voter with a personalized voting card, which
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we identify with an index i P t1, . . . , NEu. Without loss of generality, we assume that
voting card i is sent to voter i. We understand a voting card as a string Si P A˚ucs, which
is printed on paper by the printing authority. This string contains the voter index i, the
voter description Vi P A˚ucs, the voting code Xi P A

`X
X , the confirmation code Yi P A`YY , the

finalization code FCi P A`FF , and the candidate descriptions Cj P A˚ucs with corresponding
verification codes RCij P A`RR for each candidate j P t1, . . . , nu. The information printed on
voting card i is therefore a tuple

pi, Vi, Xi, Yi, FCi, tpCj , RCijqu
n
j“1q.

a) Election Preparation

The codes printed on the voting cards are generated by the s election authorities in a dis-
tributed manner (see Sections 6.4.2 and 6.4.3 for technical background). For this, each
election authority j calls an algorithm GenElectorateDatapn,k,Eq with the election parame-
ters n, k, and E, which are published beforehand by the election administrator. The result
obtained from calling this algorithm consists of a private part dj , a public part d̂j , and
the matrix of random points Pj . The matrix K is a combination of k and E, which is
precomputed for later use. Further details of the algorithm are given in Alg. 7.6. These first
steps are depicted in the upper part of Prot. 6.1.

The public part d̂j , which contains the authority’s partial information for deriving the
public voter credentials x̂i and ŷi, is submitted via the bulletin board to all other election
authorities. At the end of this process, every election authority knows the public data of the
whole electorate, D̂ “ pd̂1, . . . , d̂sq, which they can use for calling GetPublicCredentialspD̂q.
This algorithm outputs the two lists x̂ and ŷ of all public credentials, which are used to
identify the voters during the vote casting and vote confirmation phases (see Section 6.4.4
and Alg. 7.12 for further details).

b) Printing of Code Sheets

The private part dj of the electorate data generated by authority j contains the authority’s
partial information about the secret voting, confirmation, finalization, and verification codes
of every voting card. This information is very sensitive and can only be shared with the
printing authority. The process of sending dj to the printing authority (over a secure chan-
nel) is depicted in Prot.6.2. The actual voting cards can then be generated from the collected
private data D Ð pd1, . . . ,dsq and the elections parameters v, c, n, k, and E. The print-
ing authority uses them as inputs for calling the algorithm GetVotingCardspv, c,n,k,E,Dq,
which produces corresponding strings s “ pS1, . . . , SNE q, Si P A

˚
ucs (see Alg. 7.13). A print-

out of such a string is sent to every voter, for example using a trusted postal service.

c) Key Generation

In the last step of the election preparation, a public ElGamal encryption key pk P Gq is
generated jointly by the election authorities. As shown in Prot. 6.3, this is a simple process
between the election authorities and the bulletin board. At the end of the protocol, pk is
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Election Bulletin Election Authority
Administrator Board j P t1, . . . , su

knows v, c,n,k,E

v, c,n,k,E

n,k,E

pdj , d̂j ,Pj ,Kq Ð

GenElectorateDatapn,k,Eq

d̂j

D̂Ð pd̂1, . . . , d̂sq

D̂

px̂, ŷq Ð GetPublicCredentialspD̂q

Protocol 6.1: Election Preparation.

known to every authority, and each of them holds a share skj P Zq of the corresponding
private key. It involves calls to two algorithms GenKeyPairpq for generating the key shares and
GetPublicKeyppkq for combining the resulting public keys. For details of these algorithms,
we refer to Section 5.1.2 and Algs. 7.15 and 7.16.

6.5.2. Election Phase

The election phase is the core of the cryptographic voting protocol. The start and end of
this phase are given by the official election period. These are two very critical events in every
election. To prevent or detect the submission of early or late votes, it is very important to
handle these events accurately. Since there are multiply ways for dealing with this problem,
we do not propose a solution in this document. We only assume that the bulletin board and
the election authorities will always agree whether a particular vote (or vote confirmation)
has been submitted within the election period, and only accept it if this is the case.

The main actors of the election phase are the voters and the election authorities, which
communicate over the bulletin board. The main goal of the voters is to submit a valid vote
for the selected candidates using the untrusted voting client, whereas the goal of the election
authorities is to collect all valid votes from eligible voters. The submission of a single vote
takes place in three subsequent steps.

a) Candidate Selection

The first step for the voter is the selection of the candidates. In an election event with
t simultaneous elections, voter i must select exactly eijkj candidates for each election j P
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Bulletin Printing Election Authority
Board Authority j P t1, . . . , su

knows v, c,n,k,E knows dj

v, c,n,k,E

dj

DÐ pd1, . . . ,dsq

sÐ GetVotingCardspv, c,n,k,E,Dq

Voter i P t1, . . . , NEu

Si

Protocol 6.2: Printing of Voting Cards.

Election Authority Bulletin
j P t1, . . . , su Board

pskj , pkjq Ð GenKeyPairpq

pkj

pkÐ ppk1, . . . , pksq

pk

pk Ð GetPublicKeyppkq

Protocol 6.3: Key Generation

t1, . . . , tu and k “
řt
j“1 eijkj candidates in total. These values can be derived from the

election parameters k and E, which the voting client retrieves from the bulletin board
together with the candidate descriptions c and the number of candidates n. This preparatory
step is shown in the upper part of Prot. 6.4.

By calling GetVotingPagepi, c,n,kiq for ki “ pei,1k1, . . . , ei,tktq, the voting client then gener-
ates a voting page Pi P A˚ucs, which represents the visual interface displayed to the voter for
selecting the candidates (see Alg. 7.17). The voter’s selection s “ ps1, . . . , skq is a vector of
values si satisfying the constraint in (5.1) from Section 5.3.2. The voter enters these values
together with the voting code Xi from the voting card.

b) Vote Casting

Based on the voter’s selection s “ ps1, . . . , skq, the voting client generates a ballot α “
px̂i,a, b, πq by calling an algorithm GenBallotpXi, s, pkq. The ballot contains both an ElGa-
mal encryption pa, bq P G2

q of the voter’s selection s and an OTk
n query a “ pa1, . . . , akq P Gk

q

for corresponding verification codes. The values a and a are linked over a “
śk
i“1 ai mod p,

which results from using the public encryption key pk in the oblivious transfer as a generator
of the group Gq (see Section 6.4.2). The ballot α also contains the voter’s public credential
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Voter Voting Bulletin
i P t1, . . . , NEu Client Board

knows i,Xi knows c,n,k,E

c,n,k,E

i

ki Ð pei,1k1, . . . , ei,tktq

Pi Ð GetVotingPagepi, c,n,kiq

Pi

sÐ ps1, . . . , skq

Xi, s

Protocol 6.4: Candidate Selection

x̂i, which is derived from the secret voting code Xi, and a non-interactive zero-knowledge
proof

πα “ NIZKPrpxi, s, rq : x̂i “ ĝxi mod p̂^ pa, bq “ EncpkpΓpsq, rqs,

that demonstrates the well-formedness of the ballot. This proof includes all elements of a
Schnorr identification relative to x̂i (see Section 6.4.4).

The ballot is submitted to the election authorities via the bulletin board. Each authority
checks its validity by calling CheckBallotpi, α, pk,K, x̂, Bq. This algorithm verifies that the
size of a is exactly k “

řt
j“1 eijkj , that the public voting credential x̂ is included in x̂, that

the zero-knowledge proof πα is valid (which implies that the voter is in possession of a valid
voting code Xi), and that the same voter has not submitted a valid ballot before. Recall
that the matrix K “ peijkjqNEˆt has been precomputed during the election preparation.
To detect multiple ballots from the same voter, each authority keeps track of a list Bj of
valid ballots submitted so far. If one of the above checks fails, the ballot is rejected and the
process aborts.

If the ballot α passes all checks, the election authorities respond to the OT query a included
in α. Each of them computes its OT response βj by calling GenResponsepi,a, pk,n,K,Pjq.
The selected points from the matrix Pj are the messages to transfer obliviously to the voter
via the bulletin board (see Section 6.4.3). By calling GetPointMatrixpβi,ki, s, rq, the voting
client derives the k-by-s matrix Ps of selected points from every βj . Finally, by calling
GetReturnCodesps,Psq, it computes the verification codes rcs “ pRCs1 , . . . , RCskq for the
selected candidates. This whole procedure is depicted in Prot. 6.5.
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Voting Bulletin Election Authority
Client Board j P t1, . . . , su

knows i,Xi,ki, s knows pk knows pk,n,K,Pj , x̂, Bj Ð xy

pk

pk Ð GetPublicKeyppkq

pα, rq Ð GenBallotpXi, s, pkq

i, α

i, α

if  CheckBallotpi, α, pk,K, x̂, Bq
abort

pβj , rq Ð GenResponsepi,a, pk,n,K,Pjq

Bj Ð Bj } xpi, α, rqy

i, βj

βi “ pβ1, . . . , βsq

βi

Ps Ð GetPointMatrixpβi,ki, s, rq

rcs Ð GetReturnCodesps,Psq

Protocol 6.5: Vote Casting

c) Vote Confirmation

The voting client displays the verification codes rcs “ pRCs1 , . . . , RCskq for the selected
candidates to the voter for comparing them with the codes rci printed on voting card i. We
describe this process by an algorithm call CheckReturnCodesprci, rcs, sq, which is executed
by the human voter. In case of a match, the voter enters the confirmation code Yi, from
which the voting client computes the confirmation γ “ pŷi, πβq consisting of the voter’s
public confirmation credential ŷi and a non-interactive zero-knowledge proof

πβ “ NIZKPrpyi, hiq : ŷi “ ĝyi`hi mod p̂s.

In this way, the voting client proves knowledge of a sum yi`hi o values yi (derived from Yi)
and hi (derived from Ps). The motivation and details of this particular construction have
been discussed in Section 6.4.4.

After submitting γ via the bulletin board to every authority, they check the validity of
the zero-knowledge proof included. In the success case, they respond with their finaliza-
tion δj “ pFij , rijq. The voting client retrieves the finalization code FC from the values
pFi,1, . . . , Fi,sq included in δi “ pδ1, . . . , δsq by calling GetFinalizationCodepδiq and displays
it to the voter for comparison. As above, we describe this process by an algorithm call
CheckFinalizationCodepFCi, FCq executed by the human voter. The whole process is de-
picted in Prot. 6.6. Note that the randomizations pri,1, . . . , ri,sq included in δi are not
needed for computing the finalization code. But their publication enables the verification of
the OT responses by external verifiers [20].
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Voter Voting Bulletin Election Authority
i P t1, . . . , NEu Client Board j P t1, . . . , su

knows Yi, FCi, rci, s knows i,ki,Ps, rcs knows Pj , ŷ, Bj Ð xy, Cj Ð xy

rcs

if  CheckReturnCodesprci, rcs, sq
abort

Yi

γ Ð GenConfirmationpYi,Ps,kiq

i, γ

i, γ

if  CheckConfirmationpi, γ, ŷ, Bj , Cjq

abort
δj Ð GetFinalizationpi,Pj , Bjq

Cj Ð Cj } xpi, γqy

i, δj

δi Ð pδ1, . . . , δsq

δi

FC Ð GetFinalizationCodepδiq

FC

if  CheckFinalizationCodepFCi, FCq
abort

Protocol 6.6: Vote Confirmation



6.5.3. Post-Election Phase

In the post-election phase, all N ď NE submitted and confirmed ballots are processed
through a mixing and decryption process. The main actors are the election authorities, which
perform the mixing in a serial and the decryption in a parallel process. For the decryption,
they require their shares skj of the private encryption key, which the have generated during
the pre-election phase. Before applying their key shares to the output of the mixing, they
verify all previous steps by checking the validity of every ballot collected during the election
phase and the correctness of the shuffle proofs. In addition to performing the decryption,
they need to demonstrate its correctness with a non-interactive zero-knowledge proof. The
very last step of the entire election process is the computation and announcement of the
final election result by the election administrator.

a) Mixing

The mixing is a serial process, in which all election authorities are involved. Without loss
of generality, we assume that the first mix is performed by the Auhoritiy 1, the second by
Auhoritiy 2, and so on. The process is the same for everyone, except for the first authority,
which needs to extract the list of encrypted votes from the submitted ballots. Recall that
during vote casting, each authority keeps track of all submitted ballots and confirmation.
In case of Authority 1, corresponding lists are denoted by B1 and C1, respectively. By
calling GetEncryptionspB1, C1q, the first authority retrieves the list e0 of encrypted votes,
and by calling GenShufflepe0, pkq, this list is shuffled into e1 Ð Shufflepkpe0, r1, ψ1q, where
r1 denotes the re-encryption randomizations and ψ1 the random permutation. These values
are the secret inputs for a non-interactice proof

π1 “ NIZKPrpψ1, r1q : e1 “ Shufflepkpe0, r1, ψ1qs,

which proves the correctness of the shuffle. This proof results from calling the algorithm
GenShuffleProofpe0, e1, r1, ψ1, pkq. The results from conducting the first schuffle—the shuf-
fled list of encryptions e1 and the zero-knowledge proof π1—are sent to the bulletin board.
This is depicted in the upper part of Prot. 6.7.

Exactly the same shuffling procedure is repeated s times, where the output list ej´1 of
the shuffle performed by Authority j ´ 1 becomes the input list for the shuffle ej Ð
Shufflepkpej´1, rj , ψjq performed of Authority j. The whole process over all s authorities
realizes the functionality of a re-encryption mix-net. The final result of the mix-net consists
of s lists of encryption E “ pe1, . . . , esq with corresponding shuffle proofs π “ pπ1, . . . , πsq.

b) Decryption

After the mixing, every authority retrieves the complete output of the mix-net—the shuffled
lists of encryptions E and the shuffle proofs π—from the bulletin board. The input e0 of
the first shuffle is retrieved from the submitted ballots by calling GetEncryptionspBj , Cjq.
Before starting the decryption, CheckShuffleProofspπ, e0,E, pk, jq is called the to verify the
correctness of all shuffles. For authority j, this algorithm loops over all shuffle proofs πi,
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Election Authority Bulletin
j “ 1 Board

knows pk,B1, C1

e0 Ð GetEncryptionspB1, C1q

pe1, r1, ψ1q Ð GenShufflepe0, pkq

π1 Ð GenShuffleProofpe0, e1, r1, ψ1, pkq

e1, π1

Election Authority
j P t2, . . . , su

knows pk
ej´1

pej , rj , ψjq Ð GenShufflepej´1, pkq

πj Ð GenShuffleProofpej´1, ej , rj , ψj , pkq

ej , πj

EÐ pe1, . . . , esq

π Ð pπ1, . . . , πsq

Protocol 6.7: Mixing

i ‰ j, and checks them individually. As shown in Prot. 6.8, the process aborts in case any
of these check fails.

In the success case, the encryptions es “ ppa1, b1q, . . . pan, bnqq obtained from authority s
(the last mixer in the mix-net) are partially decrypted using the share skj of the private
decryption key. Calling GetPartialDecryptionspes, skjq returns a list b1j “ pb

1
1,j , . . . , b

1
n,jq of

partial decryptions b1ij “ b
skj
i , which are published on the bulletin board. To guarantee the

correctness of the decryption, a non-interactive decryption proof

π1j “ NIZKPrpskjq : pb11,j , . . . , b
1
n,j , pkjq “ pb

skj
1 , . . . , b

skj
n , gskj qs

is computed by calling GenDecryptionProofpskj , pkj , es,b
1
jq and published along with b1j .

Note that this is a proof of equality of multiple discrete logarithms (see Section 5.4.2). At
the end of this process, the partial decryptions and the decryption proofs from all election
authorities are available on the bulletin board.

c) Tallying

To conclude an election, the election administrator retrieves the partial decryptions of every
election authority from the bulletin board. The attached decryption proofs are checked
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Election Authority Bulletin
j P t1, . . . , su Board

knows skj , pkj , pk,Bj , Cj knows E “ pe1, . . . , esq,π

E,π

e0 Ð GetEncryptionspBj , Cjq

if  CheckShuffleProofspπ, e0,E, pk, jq
abort
b1j Ð GetPartialDecryptionspes, skjq

π1j Ð GenDecryptionProofpskj , pkj , es,b
1
jq

b1j , π
1
j

B1 Ð pb11, . . . ,b
1
sq

π1 Ð pπ11, . . . , π
1
sq

Protocol 6.8: Decryption

by calling CheckDecryptionProofspπ1,pk, es,B
1q. The process aborts if one or more than

one check fails. Otherwise, by calling GetDecryptionspes,B
1q, the partial decryptions are

assembled and the plaintexts are determined. Recall from Section 6.4.2 that every such
plaintext is an encoding Γpsq P Gq of some voter’s selection of candidates, and that the
individual votes can be retrieved by factorizing this number. By calling GetVotespm, nq, this
process is performed for all plaintexts. The whole tallying process is depicted in Prot. 6.9.
The resulting election result matrix V “ pvijqNˆn represents the outcome of the election.
The value vij P B is set to 1, if plaintext vote i contains a vote for candidate j, and to 0, if
this is not the case. Computing

řN
i“1 vij yields the total number of votes for candidate j.

Election Bulletin
Administrator Board

knows n knows pk, es,B1,π1

pk, es,B
1,π1

if  CheckDecryptionProofspπ1,pk, es,B
1q

abort
mÐ GetDecryptionspes,B

1q

VÐ GetVotespm, nq

V

Protocol 6.9: Tallying
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7. Pseudo-Code Algorithms

To complete the formal description of the cryptographic voting protocol from the previous
chapter, we will now present all necessary algorithms in pseudo-code. This will provide
an even closer look at the details of the computations performed during the entire election
process. The algorithms are numbered according to their appearance in the protocol. To
avoid code redundancy and for improved clarity, some algorithms delegate certain tasks to
sub-algorithms. An overview of all algorithms and sub-algorithms is given at the beginning
of every subsection. Every algorithm is commented in the caption below the pseudo-code,
but apart from that, we do not give further explanations. In Section 7.2, we start with some
general algorithms for specific tasks, which are needed at multiple places. In Sections 7.3
to 7.5, we specify the algorithms of the respective protocol phases.

7.1. Conventions and Assumptions

With respect to the names attributed to the algorithms, we apply the convention of using
the prefix „Gen“ for non-deterministic algorithms, the prefix „Get“ for general deterministic
algorithms, and the prefixes „Is“, „Has“, or „Check“ for predicates. In the case of non-
deterministic algorithms, we assume the existence of a cryptographically secure pseudo-
random number generator (PRNG) and access to a high-entropy seed. We require such
a PRNG for picking elements r PR Zq, r PRGq, r PR Zq̂, r PR Zp1 , and r PR ra, bs uniformly
at random. Since implementing a PRNG is a difficult problem on its own, it cannot be
addressed in this document. Corresponding algorithms are usually available in standard
cryptographic libraries of modern programming languages.

The public security parameters from Section 6.3.1 are assumed to be known in every al-
gorithm, i.e., we do not pass them explicitly as parameters. Most numeric calculations in
the algorithms are performed modulo p, q, p̂, q̂, or p1. For maximal clarity, we indicate
the modulus in each individual case. We suppose that efficient algorithms are available for
computing modular exponentiations xy mod p and modular inverses x´1 mod p. Divisions
x{y mod p are handled as xy´1 mod p and exponentiations x´y mod p with negative ex-
ponents as px´1qy mod p or pxyq´1 mod p. We also assume that readers are familiar with
mathematical notations for sums and products, such that implementing expressions like
řN
i“1 xi or

śN
i“1 xi is straightforward.

An important precondition for every algorithm is the validity of the input parameters, for
example that an ElGamal encryption e “ pa, bq is an element of Gq ˆ Gq or that a given
input lists has the desired length. We specify all preconditions for every algorithm, but we
do not give explicit code to perform corresponding checks. However, as many attacks—for
example on mix-nets—are based on infiltrating invalid parameters, we stress the importance
of conducting such checks in an actual implementation. For an efficient way of testing group
memberships x P Gq, we refer to Alg. 7.2.
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7.2. General Algorithms

We start with some general algorithms that are called by at least two other algorithms in
at least two different protocol phases. They are all deterministic. In Table 7.1 we give an
overview. The algorithm IsMemberpxq, which is called by GetPrimespnq for checking the set
membership of values x P Zp, can also be used for checking the validity of such parameters
in other algorithms. As mentioned before, our algorithms do not contain explicit codes for
making such checks.

Nr. Algorithm Called by Protocol

7.1 GetPrimespnq Algs. 7.19, 7.25 and 7.54 6.5, 6.9

7.2 ë IsMemberpxq

7.3 GetGeneratorspnq Algs. 7.44 and 7.48 6.7, 6.8

7.4 GetNIZKPChallengepy, t, κq Algs. 7.21, 7.24, 7.33, 7.36,
7.44, 7.48, 7.50 and 7.52

6.5, 6.6, 6.7, 6.8, 6.9

7.5 GetNIZKPChallengespn, y, κq Algs. 7.44 and 7.48 6.7, 6.8

Table 7.1.: Overview of general algorithms for specific tasks.

Other general algorithms have been introduced in the Chapter 4 for converting integers,
strings, and byte arrays and for hash value computations. We do not repeat them here.
There are four algorithms in total, for which we not give explicit pseudo-code: SortĺpSq for
sorting a list S according to some total order ĺ, UTF8pSq for converting a string S into a
byte array according to the UTF-8 character encoding, HashLpBq for computing the hash
value of length L (bytes) of an input byte array B (see Section 8.1), and JacobiSymbolpx, pq
for computing the Jacobi symbol

`

x
p

˘

P t´1, 0, 1u for two integers x and p. A proposal for
HashLpBq based on the SHA-256 hash algorithm is given in Section 8.1.

For the first three algorithms, standard implementations are available in most modern pro-
gramming languages. Algorithms to compute the Jacobi symbol are not so widely available,
but GMPLib1, one of the fastest and most widely used libraries for multiple-precision arith-
metic, provides an implementation of the Kronecker symbol, which includes the Jacobi
symbol as special case. If no off-the-shelf implementation is available, we refer to existing
pseudo-code algorithms such as [1, pp. 76–77].

1See https://gmplib.org
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Algorithm: GetPrimespnq

Input: Number of primes n ě 2
xÐ 1
for i “ 1, . . . , n do

repeat
if x ď 2 then

xÐ x` 1

else
xÐ x` 2

if x ě p then
return K // n is incompatible with p

until IsPrimepxq and IsMemberpxq // see Alg. 7.2
pi Ð x

pÐ pp1, . . . , pnq
return p // p P pGq X Pqn

Algorithm 7.1: Computes the first n prime numbers from Gq Ă Z˚p . The computation
possibly fails if n is too large or p is too small, but this case is very unlikely in practice. In a
more efficient implementation of this algorithm, the list of resulting primes is accumulated
in a cache or precomputed for the largest expected value nmax ě n.

Algorithm: IsMemberpxq

Input: Number to test x P N
if 1 ď x ă p then

j Ð JacobiSymbolpx, pq // j P t´1, 0, 1u
if j “ 1 then

return true
return false

Algorithm 7.2: Checks if a positive integer x P N is an element of Gq Ă Z˚p . The core
of the algorithm is the computation of the Jacobi symbol

`

x
p

˘

P t´1, 0, 1u, for which we
refer to existing algorithms such as [1, pp. 76–77] or implementations in libraries such as
GMPLib.
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Algorithm: GetGeneratorspnq

Input: Number of independent geneators n ě 0
for i “ 1, . . . , n do

xÐ 0
repeat

xÐ x` 1
hi Ð ToIntegerpRecHashLp"chVote", i, xqq mod p // see Algs. 4.5 and 4.9
hi Ð h2

i mod p

until hi R t0, 1, g, hu Y th1, . . . , hi´1u // these cases are very unlikely

hÐ ph1, . . . , hnq
return h // h P pGqzt1uq

n

Algorithm 7.3: Computes n independent generators of Gq Ă Z˚p . The algorithm is an
adaption of the NIST standard FIPS PUB 186-4 [1, Appendix A.2.3]. The string "chVote"
guarantees that the resulting values are specific to the chVote project. In a more efficient
implementation of this algorithm, the list of resulting generators is accumulated in a cache
or precomputed for the largest expected value nmax ě n.

Algorithm: GetNIZKPChallengepy, t, κq

Input: Public value y P Y , Y unspecified
Commitment t P T , T unspecified
Soundness strength 1 ď κ ď 8L

cÐ ToIntegerpRecHashLpy, tqq mod 2κ // see Algs. 4.5 and 4.9
return c // c P Z2κ

Algorithm 7.4: Computes a NIZKP challenge 0 ď c ă 2κ for a given public value y and a
public commitment t. The domains Y and T of the input values are unspecified.

Algorithm: GetNIZKPChallengespn, y, κq

Input: Number of challenges n ě 0
Public value y P Y , Y unspecified
Soundness strength 1 ď κ ď 8L

H Ð RecHashLpyq // see Alg. 4.9
for i “ 1, . . . , n do

I Ð RecHashLpiq // see Alg. 4.9
ci Ð ToIntegerpHashLpH } Iqq mod 2κ // see Alg. 4.5

cÐ pc1, . . . , cnq
return c // c P Zn2κ

Algorithm 7.5: Computes n challenges 0 ď ci ă 2κ for a given of public value y. The
domain Y of the input value is unspecified. The results in c “ pc1, . . . , cnq are identical to
ci “ ToIntegerpRecHashLpy, iqq mod 2κ, but precomputing H makes the algorithm more
efficient, especially if y is a complex mathematical object.
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7.3. Pre-Election Phase

The main actors in the pre-election phase are the election authorities. For the given election
definition consisting of values n, k, and E, each election authority generates a share of the
electorate data by calling Alg. 7.6. This is the main algorithm of the election preparation,
which invokes several sub-algorithms for more specific tasks. Table 7.2 gives an overview of
all algorithms of the pre-election phase. The public parts of the electorate data from every
authority, which are exchanged using the bulletin board, are assembled by the election
authorities by calling Alg. 7.12. The private parts of the electorate data, which are sent
to the printing authority over a confidential channel, are assembled to create the voting
cards by calling Alg. 7.13. The corresponding sub-task for creating a single voting card
is delegated to Alg. 7.14, but the formating details are not specified explicitly. Two other
algorithms are required for generating shares of the encryption key and for assembling the
shares of the public key. For a more detailed description of the pre-election phase, we refer
to Section 6.5.1.

Nr. Algorithm Called by Protocol

7.6 GenElectorateDatapn,k,Eq Election authority

6.1

7.7 ë GenPointspn,kq

7.8 ë GenPolynomialpdq

7.9 ë GetYValuepx,aq

7.10 ë GenSecretVoterDatappq

7.11 ë GetPublicVoterDatapx, y,yq

7.12 GetPublicCredentialspD̂q Election authority

7.13 GetVotingCardspv, c,n,k,E,Dq Printing authority
6.2

7.14 ë GetVotingCardpi, V, c,n,k, X, Y, FC, rcq

7.15 GenKeyPairpq Election authority
6.3

7.16 GetPublicKeyppkq Election authority

Table 7.2.: Overview of algorithms and sub-algorithms of the pre-election phase
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Algorithm: GenElectorateDatapn,k,Eq

Input: Number of candidates n “ pn1, . . . , ntq, nj ě 2
Number of selections k “ pk1, . . . , ktq, 0 ă kj ă nj
Eligibility matrix E “ peijqNEˆt, eij P B

for i “ 1, . . . , NE do
for j “ 1, . . . , t do

kij Ð eijkj

ki Ð pki,1, . . . , ki,tq
ppi,yiq Ð GenPointspn,kiq // pi “ ppi,1, . . . , pi,nq, see Alg. 7.7
di Ð GenSecretVoterDatappiq // di “ pxi, yi, Fi, riq, see Alg. 7.10
d̂i Ð GetPublicVoterDatapxi, yi,yiq // d̂i “ px̂i, ŷiq, see Alg. 7.11

dÐ pd1, . . . , dNE q

d̂Ð pd̂1, . . . , d̂NE q
PÐ ppijqNEˆn
KÐ pkijqNEˆt

return pd, d̂,P,Kq // d P pZq̂xˆZq̂yˆBLFˆpBLRqnqNE, d̂ P pG2
q̂q
NE,

// P P pZ2
p1q

NEn, K P NNEt

Algorithm 7.6: Generates the voting card data for the whole electorate. For this, the
algorithm loops over all voters and computes for each voter i the permitted number
kij “ eijkj of selections in each of the t elections of the current election event. Alg. 7.10
and Alg. 7.11 are called to generate the voter data for each single voter. At the end, the
responses of these calls are grouped into a secret part d sent to the voters prior to an
election event via the printing authority (see Prot.6.2), a public part d̂ sent to the bulletin
board to allow voter identification during vote casting (see Prot.6.1 and Prot.6.5), and the
matrix P “ ppijqNEˆn of random points pij “ pxij , yijq, of which some will be transferred
obliviously to the voters during vote casting (see Prot. 6.5). The matrix K “ pkijqNEˆt
derived from k and E is returned for later use.
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Algorithm: GenPointspn,kq

Input: Number of candidates n “ pn1, . . . , ntq, nj ě 2, n “
řt
j“1 nj

Number of selections k “ pk1, . . . , ktq, 0 ď kj ă nj // kj “ 0 means ineligible
iÐ 1 // loop over i “ 1, . . . , n
for j “ 1, . . . , t do

aj Ð GenPolynomialpkj ´ 1q // aj “ paj,1, . . . , aj,kj q, see Alg. 7.8
X ÐH

for l “ 1, . . . , nj do
x PR Zp1zX // different from values picked previously
X Ð X Y txu
y Ð GetYValuepx,ajq // see Alg. 7.9
pi Ð px, yq
iÐ i` 1

yj Ð GetYValuep0,ajq // see Alg. 7.9

pÐ pp1, . . . , pnq
yÐ py1, . . . , ytq
return pp,yq // p P pZ2

p1q
n, y P Ztq̂

Algorithm 7.7: Generates a list of n “
řt
j“1 nj random points picked from t random poly-

nomials AjpXq PR Zp1rXs of degree kj ´ 1 (by picking nj different random points from
each polynomial). The random polynomials are obtained from calling Alg. 7.8. Addition-
ally, using Alg. 7.9, the values yj “ Ajp0q are computed for all random polynomials and
returned together with the random points.

Algorithm: GenPolynomialpdq

Input: Degree d ě ´1
if d “ ´1 then

aÐ p0q

else
for i “ 0, . . . , d´ 1 do

ai PR Zp1
ad PR Zp1zt0u
aÐ pa0, . . . , adq

return a // a P Zd`1
p1

Algorithm 7.8: Generates the coefficients a0, . . . , ad of a random polynomial ApXq “
řd
i“0 aiX

i mod p1 of degree d ě 0. The algorithm also accepts d “ ´1 as input, which we
interpret as the polynomial ApXq “ 0. In this case, the algorithm returns the coefficient
list a “ p0q.
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Algorithm: GetYValuepx,aq

Input: Value x P Zp1
Coefficients a “ pa0, . . . , adq, ai P Zp1 , d ě 0

if x “ 0 then
y Ð a0

else
y Ð 0
for i “ d, . . . , 0 do

y Ð ai ` x ¨ y mod p1

return y // y P Zp1

Algorithm 7.9: Computes the value y “ Apxq P Zp1 obtained from evaluating the poly-
nomial ApXq “

řd
i“0 aiX

i mod p1 at position x. The algorithm is an implementation of
Horner’s method.

Algorithm: GenSecretVoterDatappq

Input: Points p “ pp1, . . . , pnq, pi P Z2
p1

q̂1x Ð tq̂x{su, q̂1y Ð tq̂y{su

x PR Zq̂1x , y PR Zq̂1y
F Ð TruncatepRecHashLppq, LF q // see Alg. 4.9
for i “ 1, . . . , n do

Ri Ð TruncatepRecHashLppiq, LRq // see Alg. 4.9

rÐ pR1, . . . , Rnq
dÐ px, y, F, rq
return d // d P Zq̂x ˆ Zq̂y ˆ BLF ˆ pBLRqn

Algorithm 7.10: Generates an authority’s share of the secret data for a single voter, which
is sent to the voter prior to an election event via the printing authority.

Algorithm: GetPublicVoterDatapx, y,yq

Input: Secret voting credential x P Zq̂
Secret confirmation credential y P Zq̂
Values y P Ztp1

hÐ ToIntegerpRecHashLpyqq mod q̂ // see Algs. 4.5 and 4.9
x̂Ð ĝx mod p̂, ŷ Ð ĝy`h mod p̂

d̂Ð px̂, ŷq

return d̂ // d̂ P G2
q̂

Algorithm 7.11: Generates an authority’s share of the public data for a single voter, which
is sent to the bulletin board.
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Algorithm: GetPublicCredentialspD̂q

Input: Public voter credentials D̂ “ pd̂ijqNEˆs, d̂ij “ px̂ij , ŷijq, x̂ij P Gq̂, ŷij P Gq̂

for i “ 1, . . . , NE do
x̂i Ð

śs
j“1 x̂ij mod p̂

ŷi Ð
śs
j“1 ŷij mod p̂

x̂Ð px̂1, . . . , x̂NE q
ŷÐ pŷ1, . . . , ŷNE q

return px̂, ŷq // x̂ P GNE
q̂ , ŷ P GNE

q̂

Algorithm 7.12: Computes lists x̂ and ŷ of public voter credentials, which are obtained by
multiplying corresponding values from the public parts of the electorate data generated
by the election authorities. The values in x̂ are used in Prot. 6.5 to verify if a submitted
ballot belongs to an eligible voter, whereas the values in ŷ are used in Prot. 6.6 to verify
that the vote confirmation has been invoked by the same eligible voter.

Algorithm: GetVotingCardspv, c,n,k,E,Dq

Input: Voter descriptions v “ pV1, . . . , VNE q, Vi P A
˚
ucs

Candidate descriptions c “ pC1, . . . , Cnq, Ci P A˚ucs
Number of candidates n “ pn1, . . . , ntq, nj ě 2, n “

řt
j“1 nj

Number of selections k “ pk1, . . . , ktq, 0 ă kj ă nj
Eligibility matrix E “ peijqNEˆt, eij P B
Voting card data D “ pdijqNEˆs, dij “ pxij , yij , Fij , rijq, xij P Zq̂x ,
řs
j“1 xij ă q̂x, yij P Zq̂y ,

řs
j“1 yij ă q̂y, Fij P BLF , rij “ pRi,j,1, . . . , Ri,j,nq,

Rijk P BLR
for i “ 1, . . . , NE do

ki “ pei,1k1, . . . , ei,tktq
X Ð ToStringp

řs
j“1 xij , `X , AXq // see Alg. 4.6

Y Ð ToStringp
řs
j“1 yij , `Y , AY q // see Alg. 4.6

FC Ð ToStringp‘sj“1Fij , AF q // see Alg. 4.8
for k “ 1, . . . , n do

RÐ MarkByteArrayp‘sj“1Rijk, k ´ 1, nmaxq // see Alg. 4.1
RCk Ð ToStringpR,ARq // see Alg. 4.8

rcÐ pRC1, . . . , RCnq
Si Ð GetVotingCardpi, Vi, c,n,ki, X, Y, FC, rcq // see Alg. 7.14

sÐ pS1, . . . , SNE q
return s // s P pA˚ucsq

NE

Algorithm 7.13: Computes the list s “ pS1, . . . , SNE q of voting cards for every voter. A
single voting card is represented as a string Si P A˚ucs, which is generated by Alg. 7.14.

71



Algorithm: GetVotingCardpi, V, c,n,k, X, Y, FC, rcq

Input: Voter index i P N
Voter description V P A˚ucs
Candidate descriptions c “ pC1, . . . , Cnq, Ci P A˚ucs
Number of candidates n “ pn1, . . . , ntq, nj ě 2, n “

řt
j“1 nj

Number of selections k “ pk1, . . . , ktq, 0 ď kj ă nj // kj “ 0 means ineligible
Voting code X P A`XX
Confirmation code Y P A`YY
Finalization code FC P A`FF
Verification codes rc “ pRC1, . . . , RCnq, RCi P A`RR

S Ð ¨ ¨ ¨ // compose string to be printed on voting card
return S // S P A˚ucs

Algorithm 7.14: Computes a string S P A˚ucs, which represent a voting card that can be
printed on paper and sent to voter i. Specifying the formatting details of presenting the
information on the printed voting card is beyond the scope of this document.

Algorithm: GenKeyPairpq

sk PR Zq
pk Ð gsk mod p
return psk, pkq // psk, pkq P Zq ˆGq

Algorithm 7.15: Generates a random ElGamal encryption key pair psk, pkq P Zq ˆ Gq

or a shares of such a key pair. This algorithm is used in Prot. 6.3 by the authorities to
generate private shares of a common public encryption key.

Algorithm: GetPublicKeyppkq

Input: Public keys pk “ ppk1, . . . , pksq, pkj P Gq

pk Ð
śs
j“1 pkj mod p

return pk // pk P Gq

Algorithm 7.16: Computes a public ElGamal encryption key pk P Gq from given shares
pkj P Gq.
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7.4. Election Phase

The election phase is the most complex part of the cryptographic protocol, in which each of
the involved parties (voter, voting client, election authorities) calls several algorithms. An
overview of all algorithms is given in Table 7.3. To submit a ballot containing the voter’s
selections s, the voting client calls Alg.7.17 to obtain the voting page that is presented to the
voter and Alg. 7.16 to obtain the public encryption key. Using the voter’s inputs X and s,
the ballot is constructed by calling Alg.7.18, which internally invokes several sub-algorithms.
The authorities call Alg.7.22 to check the validity of the ballot and Alg.7.25 to generate the
response to the OT query included in the ballot. The voting client unpacks the responses by
calling Alg. 7.26 and assembles the resulting point matrix into the verification codes of the

Nr. Algorithm Called by Protocol

7.17 GetVotingPagepi, c,n,kq Voting client 6.4

7.16 GetPublicKeyppkq Voting client

6.5

7.18 GenBallotpX, s, pkq Voting client
7.19 ë GetSelectedPrimespsq

7.20 ë GenQuerypq, pkq

7.21 ë GenBallotProofpx,m, r, x̂, a, b, pkq

7.22 CheckBallotpi, α, pk,K, x̂, Bq Election authority
7.23 ë HasBallotpi, Bq

7.24 ë CheckBallotProofpπ, x̂, a, b, pkq

7.25 GenResponsepi,a, pk,n,K,Pq Election authority
7.26 GetPointMatrixpβ,k, s, rq Voting client
7.27 ë GetPointspβ,k, s, rq

7.28 GetReturnCodesps,Psq Voting client

7.29 CheckReturnCodesprc, rc1, sq Voter

6.6

7.30 GenConfirmationpY,P1,kq Voting client
7.31 ë GetValuespp,kq

7.32 ë GetValueppq

7.33 ë GenConfirmationProofpy, ŷq

7.34 CheckConfirmationpi, γ, ŷ, B,Cq Election authority
7.23 ë HasBallotpi, Bq

7.35 ë HasConfirmationpi, Cq

7.36 ë CheckConfirmationProofpπ, ŷq

7.37 GetFinalizationpi,P, Bq Election authority
7.38 GetFinalizationCodepδq Voting client
7.39 CheckFinalizationCodepFC,FC 1q Voter

Table 7.3.: Overview of algorithms and sub-algorithms of the election phase
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selected candidates by calling Alg. 7.28. The voter then compares the displayed verification
codes with the ones on the voting card and enters the confirmation code Y . We describe
the (human) execution of this task by a call to Alg. 7.29. The voting client then generates
the confirmation message using Alg. 7.30, which invokes several sub-algorithms. By calling
Algs. 7.34 and 7.37, the authorities check the confirmation and return their shares of the
finalization code. Using 7.38, the voting client assembles the finalization code and displays it
to the voter, which finally executes Alg.7.39 to compare it with the finalization code printed
on the voting card. Section 6.5.2 describes the election phase in more details.

Algorithm: GetVotingPagepi, c,n,kq

Input: Voter index i P N
Candidate descriptions c “ pC1, . . . , Cnq, Ci P A˚ucs
Number of candidates n “ pn1, . . . , ntq, nj ě 2, n “

řt
j“1 nj

Number of selections k “ pk1, . . . , ktq, 0 ď kj ă nj // kj “ 0 means ineligible
// Compose string to be displayed to the voter
P Ð ¨ ¨ ¨

return P // P P A˚ucs

Algorithm 7.17: Computes a string P P A˚ucs, which represents the voting page displayed
to voter. Specifying the details of presenting the information on the voting page is beyond
the scope of this document.

Algorithm: GenBallotpX, s, pkq

Input: Voting code X P A`XX
Selection s “ ps1, . . . , skq, 1 ď s1 ă ¨ ¨ ¨ ă sk
Encryption key pk P Gqzt1u

xÐ ToIntegerpXq // see Alg. 4.7
x̂Ð ĝx mod p̂
qÐ GetSelectedPrimespsq // q “ pq1, . . . , qkq, see Alg. 7.19
mÐ

śk
i“1 qi

if m ě p then
return K // pk, nq is incompatible with p

pa, rq Ð GenQuerypq, pkq // a “ pa1, . . . , akq, r “ pr1, . . . , rkq, see Alg. 7.20
aÐ

śk
i“1 ai mod p

r Ð
řk
i“1 ri mod q

bÐ gr mod p
π Ð GenBallotProofpx,m, r, x̂, a, b, pkq // π “ pt, sq, see Alg. 7.21
αÐ px̂,a, b, πq

return pα, rq // α P Zq̂ ˆGk
q ˆGq ˆ ppGq̂ ˆG2

qq ˆ pZq̂ ˆGq ˆ Zqqq, r P Zkq

Algorithm 7.18: Generates a ballot based on the selection s and the voting code X.
The ballot includes an OT query a and a NIZKP π. The algorithm also returns the
randomizations r of the OT query, which are required in Alg.7.27 to derive the transferred
messages from the OT response.
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Algorithm: GetSelectedPrimespsq

Input: Selections s “ ps1, . . . , skq, 1 ď s1 ă ¨ ¨ ¨ ă sk
pÐ GetPrimespskq // see Alg. 7.1
for i “ 1, . . . , k do

qi Ð psi

qÐ pq1, . . . , qkq

return q // q P pGq X Pqk

Algorithm 7.19: Selects k prime numbers from Gq corresponding to the given indices
s “ ps1, . . . , skq. For example, s “ p1, 3, 7q means selecting the first, the third, and the
seventh prime from Gq.

Algorithm: GenQuerypq, pkq

Input: Selected primes q “ pq1, . . . , qkq
Encryption key pk P Gqzt1u

for i “ 1, . . . , k do
ri PR Zq
ai Ð qi ¨ pk

ri mod p

aÐ pa1, . . . , akq, rÐ pr1, . . . , rkq

return pa, rq // a P Gk
q , r P Zkq

Algorithm 7.20: Generates an OT query a from the prime numbers representing the voter’s
selections and a for a given public encryption key (which serves as a generator of Zp).

Algorithm: GenBallotProofpx,m, r, x̂, a, b, pkq

Input: Voting credentials px, x̂q P Zq̂ ˆGq̂

Product of selected primes m P Gq

Randomization r P Zq
ElGamal encryption pa, bq P Gq ˆGq

Encryption key pk P Gq

ω1 PR Zq̂, ω2 PRGq, ω3 PR Zq
t1 Ð ĝω1 mod p̂, t2 Ð ω2 ¨ pk

ω3 mod p, t3 Ð gω3 mod p
y Ð px̂, a, bq, tÐ pt1, t2, t3q
cÐ GetNIZKPChallengepy, t, τq // see Alg. 7.4
s1 Ð ω1 ` c ¨ x mod q̂, s2 Ð ω2 ¨m

c mod p, s3 Ð ω3 ` c ¨ r mod q
sÐ ps1, s2, s3q

π Ð pt, sq
return π // π P pGq̂ ˆG2

qq ˆ pZq̂ ˆGq ˆ Zqq

Algorithm 7.21: Generates a NIZKP, which proves that the ballot has been formed prop-
erly. This proof includes a proof of knowledge of the secret voting credential x that
matches with the public voting credential x̂. Note that this is equivalent to a Schnorr
identification proof [28]. For the verification of this proof, see Alg. 7.24.
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Algorithm: CheckBallotpi, α, pk,K, x̂, Bq

Input: Voter index i P t1, . . . NEu

Ballot α “ px̂,a, b, πq, x̂ P Zq̂, a “ pa1, . . . , akiq, aj P Gq, b P Gq,
π P pGq̂ ˆG2

qq ˆ pZq̂ ˆGq ˆ Zqq
Encryption key pk P Gq

Number of selections K “ pkijqNEˆt, 0 ď kij , ki “
řt
j“1 kij

Public voting credentials x̂ “ tx̂1, . . . , x̂NEu, x̂i P Gq̂

Ballot list B “ xpij , αj , rjqyNB´1
j“0 , ij P t1, . . . , NEu

if  HasBallotpi, Bq and x̂ “ x̂i then // see Alg. 7.23
aÐ

śki
j“1 aj mod p

if CheckBallotProofpπ, x̂, a, b, pkq then // see Alg. 7.24
return true

return false

Algorithm 7.22: Checks if a ballot α obtained from voter i is valid. For this, voter i must
not have submitted a valid ballot before, π must be valid, and x̂ must be the public voting
credential of voter i. Note that parameter checking |a| “ ki for ki “

řt
j“1 kij is a very

important initial step of this algorithm.

Algorithm: HasBallotpi, Bq

Input: Voter index i P N
Ballot list B “ xpij , αj , rjqyNB´1

j“0 , ij P N
for j “ 0, . . . , NB ´ 1 do // use binary search or hash table for better performance
pij , αj , rjq Ð Brjs
if i “ ij then

return true

return false

Algorithm 7.23: Checks if the ballot list B contains an entry for i.

Algorithm: CheckBallotProofpπ, x̂, a, b, pkq

Input: Ballot proof π “ pt, sq, t “ pt1, t2, t3q P Gq̂ ˆG2
q , s “ ps1, s2, s3q P Zq̂ ˆGq ˆ Zq

Public voting credential x̂ P Zq̂
ElGamal encryption pa, bq P Gq ˆGq

Encryption key pk P Gq

y Ð px̂, a, bq
cÐ GetNIZKPChallengepy, t, τq // see Alg. 7.4
t11 Ð x̂´c ¨ ĝs1 mod p̂
t12 Ð a´c ¨ s2 ¨ pk

s3 mod p
t13 Ð b´c ¨ gs3 mod p
return pt1 “ t11q ^ pt2 “ t12q ^ pt3 “ t13q

Algorithm 7.24: Checks the correctness of a NIZKP π generated by Alg. 7.21. The public
values of this proof are the public voting credential x̂ and the ElGamal encryption pa, bq.
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Algorithm: GenResponsepi,a, pk,n,K,Pq

Input: Voter index i P N
Queries a “ pa1, . . . , akiq, ai P Gq

Encryption key pk P Gqzt1u
Number of candidates n “ pn1, . . . , ntq, nj ě 2, n “

řt
j“1 nj

Number of selections K “ pkijqNEˆt, 0 ď kij , ki “
řt
j“1 kij

Points P “ ppijqNEˆn, pij “ pxij , yijq, xij P Zp1 , yij P Zp1
`M Ð rLM{Ls

pÐ GetPrimespnq // p “ pp1, . . . , pnq, see Alg. 7.1
uÐ 1, v Ð 1 // loop over u “ 1, . . . , ki and v “ 1, . . . , n
for j “ 1, . . . , t do

rj PR Zq
for l “ 1, . . . , kij do

bu Ð a
rj
u mod p

uÐ u` 1

for l “ 1, . . . , nj do
M Ð ToByteArraypxi,v,

LM
2 q }ToByteArraypyi,v,

LM
2 q // see Alg. 4.4

k Ð p
rj
v mod p

K Ð Truncatep} `Mi“1RecHashLpk, iq, LM q // see Alg. 4.9
Cv ÐM ‘K
v Ð v ` 1

dj Ð pkrj mod p

bÐ pb1, . . . , bkiq, cÐ pC1, . . . , Cnq, dÐ pd1, . . . , dtq, rÐ pr1, . . . , rtq
β Ð pb, c,dq

return pβ, rq // β P Gki
q ˆ pBLM qn ˆGt

q, r P Ztq

Algorithm 7.25: Generates the response β for the given OT query a. The messages to
transfer are byte array representations of the n points pi “ ppi,1, . . . , pi,nq. Along with β,
the algorithm also returns the randomizations r used to generate the response.

Algorithm: GetPointMatrixpβ,k, s, rq

Input: OT responses β “ pβ1, . . . , βsq, βj P Gk
q ˆ pBLM qn ˆGt

q

Number of selections k “ pk1, . . . , ktq, kj ě 0, k “
řt
j“1 kj

Selection s “ ps1, . . . , skq, 1 ď s1 ă ¨ ¨ ¨ ă sk ď n
Randomizations r “ pr1, . . . , rkq, ri P Zq

for j “ 1, . . . , s do
pj Ð GetPointspβj ,k, s, rq // pj “ pp1,j , . . . , pk,jq, see Alg. 7.27

Ps Ð ppijqkˆs
return Ps // Ps P pZ2

pq
ks

Algorithm 7.26: Computes the k-by-s matrix Ps “ ppijqkˆs of the points obtained from
the s authorities for the selection s. The points are derived from the messages included
in the OT responses β “ pβ1, . . . , βsq.
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Algorithm: GetPointspβ,k, s, rq

Input: OT response β “ pb, c,dq, b “ pb1, . . . , bkq, c “ pC1, . . . , Cnq, d “ pd1, . . . , dtq,
bi P Gq, Ci P BLM , di P Gq

Number of selections k “ pk1, . . . , ktq, kj ě 0, k “
řt
j“1 kj

Selection s “ ps1, . . . , skq, 1 ď s1 ă ¨ ¨ ¨ ă sk ď n
Randomizations r “ pr1, . . . , rkq, ri P Zq

`M Ð rLM{Ls

iÐ 1 // loop over i “ 1, . . . , k
for j “ 1, . . . , t do

for l “ 1, . . . , kj do
k Ð bi ¨ d

´ri
j mod p

K Ð Truncatep} `Mi“1RecHashLpk, iq, LM q
M Ð Csi ‘K

xÐ ToIntegerpTruncatepM, LM2 qq // see Alg. 4.5
y Ð ToIntegerpSkippM, LM2 qq // see Alg. 4.5
if x ě p1 or y ě p1 then

return K // point not in Z2
p1

pi Ð px, yq
iÐ i` 1

pÐ pp1, . . . , pkq

return p // p P pZ2
p1q

k

Algorithm 7.27: Computes the k transferred points p “ pp1, . . . , pkq from the OT response
β using the random values r from the OT query and the selection s.

Algorithm: GetReturnCodesps,Psq

Input: Selection s “ ps1, . . . , skq, 1 ď s1 ă ¨ ¨ ¨ ă sk ď n
Points Ps “ ppijqkˆs, pij P Z2

p1

for i “ 1, . . . , k do
for j “ 1, . . . , s do

Rj Ð TruncatepRecHashLppijq, LRq // see Alg. 4.9

RÐ MarkByteArrayp‘sj“1Rj , si ´ 1, nmaxq // see Alg. 4.1
RCsi Ð ToStringpR,ARq // see Alg. 4.8

rcs Ð pRCs1 , . . . , RCskq

return rcs // rc P pA`FF q
k

Algorithm 7.28: Computes the k verification codes rcs “ pRCs1 , . . . , RCskq for the selected
candidates by combining the hash values of the transferred points pij P Ps from different
authorities.
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Algorithm: CheckReturnCodesprc, rc1, sq

Input: Printed verification codes rc “ pRC1, . . . , RCnq, RCi P A`RR
Displayed verification codes rc1 “ pRC 11, . . . , RC 1kq, RC

1
i P A

`R
R

Selections s “ ps1, . . . , skq, 1 ď s1 ă ¨ ¨ ¨ ă sk ď n
return

Źk
i“1pRCsi “ RC 1iq

Algorithm 7.29: Checks if every displayed verification code RC 1i matches with the verifi-
cation code RCsi of the selected candidate si as printed on the voting card. Note that
this algorithm is executed by humans.

Algorithm: GenConfirmationpY,P1,kq

Input: Confirmation code Y P A`YY
Points P1 “ pp1ijqkˆs, p

1
ij P Z2

p1

Number of selections k “ pk1, . . . , ktq, kj ě 0, k “
řt
j“1 kj

for j “ 1 . . . , s do
p1j Ð pp11,j , . . . , p

1
k,jq

yj Ð GetValuespp1j ,kq // see Alg. 7.31
hj Ð ToIntegerpRecHashLpyjqq mod q̂ // see Algs. 4.5 and 4.9

y Ð pToIntegerpY q `
řs
j“1 hjq mod q̂ // see Alg. 4.7

ŷ Ð ĝy mod p̂
π Ð GenConfirmationProofpy, ŷq // π “ pt, sq, see Alg. 7.33
γ Ð pŷ, πq
return γ // γ P Gq̂ ˆ pGq ˆ Zq̂q

Algorithm 7.30: Generates the confirmation γ, which consists of the public confirmation
credential ŷ and a NIZKP of knowledge π of the secret confirmation credential y.

Algorithm: GetValuespp,kq

Input: Points p “ pp1, . . . , pkq, pi P Z2
p1

Number of selections k “ pk1, . . . , ktq, kj ě 0, k “
řt
j“1 kj

iÐ 1 // loop over i “ 1, . . . , k
for j “ 1, . . . , t do

pj Ð ppi, . . . , pi`kj´1q

yj Ð GetValueppjq // see Alg. 7.32
iÐ i` kj

yÐ py1, . . . , ytq
return y // y P Ztp1

Algorithm 7.31: Computes the values yj “ Ajp0q of the t polynomials AjpXq of degree
kj ´ 1 interpolated from k “

řt
j“1 kj points p “ pp1, . . . , pkq.
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Algorithm: GetValueppq

Input: Points p “ pp1, . . . , pkq, pi “ pxi, yiq P Z2
p1 , k ě 0

y Ð 0
for i “ 1, . . . , k do

nÐ 1, dÐ 1
for j “ 1, . . . , k do

if i ‰ j then
nÐ n ¨ xj mod p1

dÐ d ¨ pxj ´ xiq mod p1

y Ð y ` yi ¨
n
d mod p1

return y // y P Zp1

Algorithm 7.32: Computes a polynomial ApXq of degree k ´ 1 from given points p “
pp1, . . . , pkq using Lagrange’s interpolation method and returns the value y “ Ap0q.

Algorithm: GenConfirmationProofpy, ŷq

Input: Secret confirmation credential y P Zq̂
Public confirmation credential ŷ P Gq̂

ω PR Zq̂
tÐ ĝω mod p̂
cÐ GetNIZKPChallengepŷ, t, τq // see Alg. 7.4
sÐ ω ` c ¨ y mod q̂
π Ð pt, sq
return π // π P Gq̂ ˆ Zq̂

Algorithm 7.33: Generates a NIZKP of knowledge of the secret confirmation credential
y that matches with a given public confirmation credential ŷ. Note that this proof is
equivalent to a Schnorr identification proof [28]. For the verification of π, see Alg. 7.36.

Algorithm: CheckConfirmationpi, γ, ŷ, B, Cq

Input: Voter index i P t1, . . . , NEu

Confirmation γ “ pŷ, πq, ŷ P Gq̂, π P Gq̂ ˆ Zq̂
Public confirmation credentials ŷ “ pŷ1, . . . , ŷNE q, ŷi P Gq̂

Ballot list B “ xpij , αj , rjqyNB´1
j“0 , ij P t1, . . . , NEu

Confirmation list C “ xpij , γjqyNC´1
j“0 , ij P t1, . . . , NEu

if HasBallotpi, Bq and  HasConfirmationpi, Cq and ŷ “ ŷi then // see Alg. 7.23, 7.35
if CheckConfirmationProofpπ, ŷq then // see Alg. 7.36

return true

return false

Algorithm 7.34: Checks if a confirmation γ obtained from voter i is valid. For this, voter
i must have submitted a valid ballot before, but not a valid confirmation. The check then
succeeds if π is valid and if ŷ is the public confirmation credential of voter i.
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Algorithm: HasConfirmationpi, Cq

Input: Voter index i P N
Confirmation list C “ xpij , γjqyNC´1

j“0 , ij P N
for j “ 0, . . . , NC ´ 1 do // use binary search or hash table for better performance
pij , γjq Ð Crjs
if i “ ij then

return true

return false

Algorithm 7.35: Checks if the confirmation list C contains an entry for i.

Algorithm: CheckConfirmationProofpπ, ŷq

Input: Confirmation proof π “ pt, sq, t P Gq̂, s P Zq̂
Public confirmation credential ŷ P Gq̂

cÐ GetNIZKPChallengepŷ, t, τq // see Alg. 7.4
t1 Ð ŷ´c ¨ ĝs mod p̂
return pt “ t1q

Algorithm 7.36: Checks the correctness of a NIZKP π generated by Alg. 7.33. The public
value of this proof is the public confirmation credential ŷ.

Algorithm: GetFinalizationpi,P, Bq

Input: Voter index i P N
Points P “ ppijqNEˆn, pij P Z2

p1

Ballot list B “ xpij , αj , rjqyNB´1
j“0 , ij P t1, . . . , NEu

pi Ð ppi,1, . . . , pi,nq
Fi Ð TruncatepRecHashLppiq, LF q // see Alg. 4.9
δ Ð pFi, riq
return δ // δ P BLF ˆ Ztq

Algorithm 7.37: Computes the finalization code Fi for voter i from the given points pi
and returns Fi together with the randomizations ri used in the OT response.

Algorithm: GetFinalizationCodepδq

Input: Finalizations δ “ pδ1, . . . , δsq, δj “ pFj , rjq, Fj P BLF , rj P Ztq
FC Ð ToStringp‘sj“1Fj , AF q // see Alg. 4.8
return FC // FC P A`FF

Algorithm 7.38: Computes a finalization code FC by combining the values Fj received
from the authorities.
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Algorithm: CheckFinalizationCodepFC,FC 1q

Input: Printed finalization code FC P A`FF
Displayed finalization code FC 1 P A`FF

return FC “ FC 1

Algorithm 7.39: Checks if the displayed finalization code FC 1 matches with the finalization
code FC from the voting card. Note that this algorithm is executed by humans.
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7.5. Post-Election Phase

The main actors in the process at the end of an election are the election authorities. Corre-
sponding algorithms are shown in Table 7.4. To initiate the mixing process, the first election
authority calls Alg. 7.40 to cleanse the list of submitted ballots and to extract a sorted list
of encrypted votes to shuffle. By calling Algs. 7.41 and 7.44, this list is shuffled according to
a random permutation and a NIZKP of shuffle is generated. This step is repeated by every
election authority. The final result obtained from the last shuffle is the list of encrypted
votes that will be decrypted. Before computing corresponding partial decryptions, each
election authority calls Alg. 7.47 to check the correctness of the whole shuffle process. The
partial decryptions are then computed using Alg. 7.49 and corresponding decryption proofs
are generated using Alg.7.50. The information exchange during this whole process goes over
the bulletin board. After terminating all tasks, the process is handed over from the election
authorities to the election administrator, who calls Alg. 7.51 to check all decryption proofs
and Alg.7.54 to obtain the final election result. We refer to Section 6.5.3 for a more detailed
description of this process.

Nr. Algorithm Called by Protocol

7.40 GetEncryptionspB,Cq Election authority

6.7

7.35 ë HasConfirmationpi, Cq

7.41 GenShufflepe, pkq Election authority

7.42 ë GenPermutationpNq

7.43 ë GenReEncryptionpe, pkq

7.44 GenShuffleProofpe, e1, r1, ψ, pkq Election authority

7.45 ë GenPermutationCommitmentpψ,hq

7.46 ë GenCommitmentChainpc0,uq

7.40 GetEncryptionspB,Cq Election authority

6.8
7.47 CheckShuffleProofspπ, e0,E, pk, jq Election authority

7.48 ë CheckShuffleProofpπ, e, e1, pkq

7.49 GetPartialDecryptionspe, skjq Election authority

7.50 GenDecryptionProofpskj , pkj , e,b
1q Election authority

7.51 CheckDecryptionProofspπ1,pk, e,B1q Election administrator

6.9
7.52 ë CheckDecryptionProofpπ1, pkj , e,b

1q

7.53 GetDecryptionspe,B1q Election administrator

7.54 GetVotespm, nq Election administrator

Table 7.4.: Overview of algorithms and sub-algorithms of the post-election phase
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Algorithm: GetEncryptionspB,Cq

Input: Ballot list B “ xpij , αj , rjqyNB´1
j“0 , ij P N, αj “ px̂ij ,aj , bj , πjq,

aj “ paj,1, . . . , aj,kq

Confirmation list C “ xpij , γjqyNC´1
j“0 , ij P N

iÐ 1 // loop over i “ 1, . . . , NC

for j “ 0, . . . , NB ´ 1 do
pij , αj , rjq Ð Brjs
if HasConfirmationpij , Cq then // see Alg. 7.35

aj Ð
śk
l“1 aj,l mod p

ei Ð paj , bjq
iÐ i` 1

eÐ Sortĺpe1, . . . , eNC q
return e // e P pG2

qq
NC

Algorithm 7.40: Computes a sorted list of ElGamal encryptions from the list of sub-
mitted ballots, for which a valid confirmation is available. Sorting this list is nec-
essary to guarantee a unique order. For this, we define a total order over G2

q by
ei ĺ ej ô pai ă ajq _ pai “ aj ^ bi ď bjq, for ei “ pai, biq and ej “ paj , bjq.

Algorithm: GenShufflepe, pkq

Input: ElGamal encryptions e “ pe1, . . . , eN q, ei P G2
q

Encryption key pk P Gq

ψ Ð GenPermutationpNq // ψ “ pj1, . . . , jN q P ΨN , see Alg. 7.42
for i “ 1, . . . , N do
pe1i, r

1
iq Ð GenReEncryptionpei, pkq // see Alg. 7.43

e1 Ð pe1j1 , . . . , e
1
jN
q

r1 Ð pr11, . . . , r
1
N q

return pe1, r1, ψq // e1 P pG2
qq
N , r1 P ZNq , ψ P ΨN

Algorithm 7.41: Generates a random permutation ψ P ΨN and uses it to shuffle a given
list e “ pe1, . . . , eN q of ElGamal encryptions ei “ pai, biq P G2

q . With ΨN “ tpj1, . . . , jN q :
ji P t1, . . . , Nu, ji1‰ji2 ,@i1‰i2u we denote the set of all N ! possible permutations of the
values t1, . . . , Nu.
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Algorithm: GenPermutationpNq

Input: Permutation size N P N
I Ð x1, . . . , Ny
for i “ 0, . . . , N ´ 1 do

k PR ti, . . . , N ´ 1u
ji`1 Ð Irks
Irks Ð Iris

ψ Ð pj1, . . . , jN q
return ψ // ψ P ΨN

Algorithm 7.42: Generates a random permutation ψ P ΨN following Knuth’s shuffle algo-
rithm [22, pp. 139–140].

Algorithm: GenReEncryptionpe, pkq

Input: ElGamal encryption e “ pa, bq, a P Gq, b P Gq

Encryption key pk P Gq

r1 PR Zq
a1 Ð a ¨ pkr

1

mod p

b1 Ð b ¨ gr
1

mod p
e1 Ð pa1, b1q
return pe1, r1q // e1 P G2

q , r1 P Zq

Algorithm 7.43: Generates a re-encryption e1 “ pa ¨ pkr1 , b ¨ gr1q of the given ElGamal en-
cryption e “ pa, bq P G2

q . The re-encryption e1 is returned together with the randomization
r1 P Zq.
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Algorithm: GenShuffleProofpe, e1, r1, ψ, pkq

Input: ElGamal encryptions e “ pe1, . . . , eN q, ei “ pai, biq P G2
q

Shuffled ElGamal encryptions e1 “ pe11, . . . , e1N q, e
1
i “ pa

1
i, b
1
iq P G2

q

Re-encryption randomizations r1 “ pr11, . . . , r1N q, r
1
i P Zq

Permutation ψ “ pj1, . . . , jN q P ΨN

Encryption key pk P Gq

hÐ GetGeneratorspNq // see Alg. 7.3
pc, rq Ð GenPermutationCommitmentpψ,hq // c “ pc1, . . . , cN q, see Alg. 7.45
uÐ GetNIZKPChallengespN, pe, e1, cq, τq // u “ pu1, . . . , uN q, see Alg. 7.5
for i “ 1, . . . , N do

u1i Ð uji

u1 Ð pu11, . . . , u
1
N q

pĉ, r̂q Ð GenCommitmentChainph,u1q // ĉ “ pĉ1, . . . , ĉN q, see Alg. 7.46
for i “ 1, . . . , 4 do

ωi PR Zq
for i “ 1, . . . , N do

ω̂i PR Zq, ω1i PR Zq
t1 Ð gω1 mod p
t2 Ð gω2 mod p

t3 Ð gω3
śN
i“1 h

ω1i
i mod p

pt4,1, t4,2q Ð ppk´ω4
śN
i“1pa

1
iq
ω1i mod p, g´ω4

śN
i“1pb

1
iq
ω1i mod pq

ĉ0 Ð h
for i “ 1, . . . , N do

t̂i Ð gω̂i ĉ
ω1i
i´1 mod p

tÐ pt1, t2, t3, pt4,1, t4,2q, pt̂1, . . . , t̂N qq
y Ð pe, e1, c, ĉ, pkq
cÐ GetNIZKPChallengepy, t, τq // see Alg. 7.4
r̄ Ð

řN
i“1 ri mod q, s1 Ð ω1 ` c ¨ r̄ mod q

vN Ð 1
for i “ N ´ 1, . . . , 1 do

vi Ð u1i`1vi`1 mod q

r̂ Ð
řN
i“1 r̂ivi mod q, s2 Ð ω2 ` c ¨ r̂ mod q

r̃ Ð
řN
i“1 riui mod q, s3 Ð ω3 ` c ¨ r̃ mod q

r1 Ð
řN
i“1 r

1
iui mod q, s4 Ð ω4 ` c ¨ r

1 mod q
for i “ 1, . . . , N do

ŝi Ð ω̂i ` c ¨ r̂i mod q, s1i Ð ω1i ` c ¨ u
1
i mod q

sÐ ps1, s2, s3, s4, pŝ1, . . . , ŝN q, ps
1
1, . . . , s

1
N qq

π Ð pt, s, c, ĉq
return π // π P pG3

q ˆG2
q ˆGN

q q ˆ pZ4
q ˆ ZNq ˆ ZNq q ˆGN

q ˆGN
q

Algorithm 7.44: Generates a NIZKP of shuffle relative to ElGamal encryptions e and e1,
which is equivalent to proving knowledge of a permutation ψ and randomizations r1 such
that e1 “ Shufflepkpe, r

1, ψq. The algorithm implements Wikström’s proof of a shuffle
[31, 30], except for the fact that the offline and online phases are merged. For the proof
verification, see Alg. 7.48. For further background information we refer to Section 5.5.
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Algorithm: GenPermutationCommitmentpψ,hq

Input: Permutation ψ “ pj1, . . . , jN q P ΨN

Independent generators h “ ph1, . . . , hN q, hi P Gqzt1u
for i “ 1, . . . , N do

rji PR Zq
cji Ð grji ¨ hi mod p

cÐ pc1, . . . , cN q
rÐ pr1, . . . , rN q
return pc, rq // c P GN

q , r P ZNq

Algorithm 7.45: Generates a commitment c “ compψ, rq to a permutation ψ by commit-
ting to the columns of the corresponding permutation matrix. This algorithm is used in
Alg. 7.44.

Algorithm: GenCommitmentChainpc0,uq

Input: Initial commitment c0 P Gq

Public challenges u “ pu1, . . . , uN q, ui P Zq
for i “ 1, . . . , N do

ri PR Zq
ci Ð gri ¨ cuii´1 mod p

cÐ pc1, . . . , cN q
rÐ pr1, . . . , rN q
return pc, rq // c P GN

q , r P ZNq

Algorithm 7.46: Generates a commitment chain c0 Ñ c1 Ñ ¨ ¨ ¨ Ñ cN relative to a list of
public challenges u and starting with a given commitment c0. This algorithm is used in
Alg. 7.44.

Algorithm: CheckShuffleProofspπ, e0,E, pk, jq

Input: Shuffle proofs π “ pπ1, . . . , πsq, πj P pG3
qˆG2

qˆGN
q q ˆ pZ4

qˆZNq ˆZNq q ˆGN
q ˆGN

q

ElGamal encryptions e0 “ pe1,0, . . . , eN,0q, ei,0 P G2
q

Shuffled ElGamal encryptions E “ pe1, . . . , esq, ej “ pe1,j , . . . , eN,jq, eij P G2
q

Encryption key pk P Gq

Authority index j P t1, . . . , su
for i “ 1, . . . , s do

if i ‰ j then // check proofs from others only
if  CheckShuffleProofpπi, ei´1, ei, pkq then // see Alg. 7.48

return false

return true

Algorithm 7.47: Checks if a chain of shuffle proofs generated by s different authorities is
correct.
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Algorithm: CheckShuffleProofpπ, e, e1, pkq

Input: Shuffle proof π “ pt, s, c, ĉq, t “ pt1, t2, t3, pt4,1, t4,2q, pt̂1, . . . , t̂N qq,
s “ ps1, s2, s3, s4, pŝ1, . . . , ŝN q, ps

1
1, . . . , s

1
N qq, c “ pc1, . . . , cN q, ĉ “ pĉ1, . . . , ĉN q

ElGamal encryptions e “ pe1, . . . , eN q, ei P G2
q

Shuffled ElGamal encryptions e1 “ pe11, . . . , e1N q, e
1
i P G2

q

Encryption key pk P Gq

hÐ GetGeneratorspNq // see Alg. 7.3
uÐ GetNIZKPChallengespN, pe, e1, cq, τq // u “ pu1, . . . , uN q, see Alg. 7.5
y Ð pe, e1, c, ĉ, pkq
cÐ GetNIZKPChallengepy, t, τq // see Alg. 7.4
c̄Ð

śN
i“1 ci{

śN
i“1 hi mod p

uÐ
śN
i“1 ui mod q

ĉÐ ĉN{h
u mod p

c̃Ð
śN
i“1 c

ui
i mod p

pa1, b1q Ð p
śN
i“1 a

ui
i mod p,

śN
i“1 b

ui
i mod pq

t11 Ð c̄´c ¨ gs1 mod p
t12 Ð ĉ´c ¨ gs2 mod p

t13 Ð c̃´c ¨ gs3
śN
i“1 h

s1i
i mod p

pt14,1, t
1
4,2q Ð ppa1q´c ¨ pk´s4

śN
i“1pa

1
iq
s1i mod p, pb1q´c ¨ g´s4

śN
i“1pb

1
iq
s1i mod pq

for i “ 1, . . . , N do
t̂1i Ð ĉ´ci ¨ gŝi ¨ ĉ

s1i
i´1 mod p

return pt1 “ t11q ^ pt2 “ t12q ^ pt3 “ t13q ^ pt4,1 “ t14,1q ^ pt4,2 “ t14,1q ^
”

ŹN
i“1pt̂i “ t̂1iq

ı

Algorithm 7.48: Checks the correctness of a NIZKP of a shuffle π generated by Alg. 7.44.
The public values are the ElGamal encryptions e and e1 and the public encryption key
pk.

Algorithm: GetPartialDecryptionspe, skjq

Input: ElGamal encryptions e “ pe1, . . . , eN q, ei “ pai, biq, ai, bi P Gq

Decryption key share skj P Zq
for i “ 1, . . . , N do

b1i Ð b
skj
i mod p

b1 Ð pb11, . . . , b
1
N q

return b1 // b1 P GN
q

Algorithm 7.49: Computes the partial decryptions of a given input list e of ElGamal
encryption using a share skj of the private decryption key.
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Algorithm: GenDecryptionProofpskj , pkj , e,b
1q

Input: Decryption key share skj P Zq
Encryption key share pkj P Gq

ElGamal encryptions e “ pe1, . . . , eN q, ei “ pai, biq, ai, bi P Gq

Partial decryptions b1 “ pb11, . . . , b1N q, b
1
i P Gq

ω PR Zq
t0 Ð gω mod p
for i “ 1, . . . , N do

ti Ð bωi mod p

tÐ pt0, pt1, . . . , tN qq
bÐ pb1, . . . , bN q
y Ð ppkj ,b,b

1q

cÐ GetNIZKPChallengepy, t, τq // see Alg. 7.4
sÐ ω ` c ¨ skj mod q
π Ð pt, sq
return π // π P pGq ˆGN

q q ˆ Zq

Algorithm 7.50: Generates a decryption proof relative to ElGamal encryptions e and
partial decryptions b1. This is essentially a NIZKP of knowledge of the private key share
skj satisfying b1i “ b

skj
i for all input encryptions ei “ pai, biq and pkj “ gskj . For the

proof verification, see Alg. 7.52.

Algorithm: CheckDecryptionProofspπ1,pk, e,B1q

Input: Decryption proofs π1 “ pπ11, . . . , π1sq, πj P pGq ˆGN
q q ˆ Zq

Encryption key shares pk “ ppk1, . . . , pksq, pkj P Gq

ElGamal encryptions e “ pe1, . . . , eN q, ei P G2
q

Partial decryptions B1 “ pb11, . . . ,b1sq, b1j “ pb
1
1,j , . . . , b

1
N,jq, b

1
ij P Gq

for j “ 1, . . . , s do
if  CheckDecryptionProofpπ1j , pkj , e,b

1
jq then // see Alg. 7.52

return false

return true

Algorithm 7.51: Checks if the decryption proofs generated by s different authorities are
correct.
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Algorithm: CheckDecryptionProofpπ1, pkj , e,b
1q

Input: Decryption proof π1 “ pt, sq, t “ pt0, pt1, . . . , tN qq, ti P Gq, s P Zq
Encryption key share pkj P Gq

ElGamal encryptions e “ pe1, . . . , eN q, ei “ pai, biq, ai, bi P Gq

Partial decryptions b1 “ pb11, . . . , b1N q, b
1
i P Gq

bÐ pb1, . . . , bN q
y Ð ppkj ,b,b

1q

cÐ GetNIZKPChallengepy, t, τq // see Alg. 7.4
t10 Ð pk´cj ¨ gs mod p

for i “ 1, . . . , N do
t1i Ð pb1iq

´c ¨ bsi mod p

return pt0 “ t10q ^
”

ŹN
i“1pti “ t1iq

ı

Algorithm 7.52: Checks the correctness of a decryption proof π generated by Alg. 7.50.
The public values are the ElGamal encryptions e, the partial decryptions b1, and the
share pkj of the public encryption key.

Algorithm: GetDecryptionspe,B1q

Input: ElGamal encryptions e “ pe1, . . . , eN q, ei “ pai, biq, ai, bi P Gq

Partial decryptions B1 “ pb1ijqNˆs, b
1
ij P Gq

for i “ 1, . . . , N do
b1i Ð

śs
j“1 b

1
ij mod p

mi Ð
ai
b1i

mod p

mÐ pm1, . . . ,mN q

return m // m P GN
q

Algorithm 7.53: Computes the list of decryptions m “ pm1, . . . ,mN q by assembling the
partial decryptions b1ij obtained from s different authorities.
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Algorithm: GetVotespm, nq

Input: Products of encoded selections m “ pm1, . . . ,mN q, mi P Gq

Number of candidates n ě 2
pÐ GetPrimespnq // p “ pp1, . . . , pnq, see Alg. 7.1
for i “ 1, . . . , N do

for j “ 1, . . . , n do
if mi mod pj “ 0 then

vij Ð 1

else
vij Ð 0

vi Ð pvi,1, . . . , vi,nq

VÐ pv1, . . . ,vN q
return V // V P BNn

Algorithm 7.54: Computes the election result matrix V “ pvijqNˆn from the products
of encoded selections m “ pm1, . . . ,mN q by retrieving the prime factors of each mi.
Each resulting vector vi represents somebody’s vote, and each value vij “ 1 represents
somebody’s vote for a specific candidate j P t1, . . . , nu.
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Part IV.

System Specification
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8. Security Levels and Parameters

In this chapter, we introduce three different security levels λ P t1, 2, 3u, for which default
security parameters are given. An additional security level λ “ 0 with very small parameters
is introduced for testing purposes. Selecting the „right“ security level is a trade-off between
security, efficiency, and usability. The proposed parameters are consistent with the general
constraints listed in Table 6.1 of Section 6.3.1. In Section 8.1, we define general length
parameters for the hash algorithms and the mathematical groups and fields. Complete
sets of recommended group and field parameters are listed in Section 8.2. We recommend
that exactly these values are used in an actual implementation. In Section 8.3, we specify
various alphabets and code lengths for the voting, confirmation, finalization, and verification
codes.

8.1. Length Parameters

For each security level, an estimate of the achieved security strengths σ (privacy) and τ
(integrity) is shown in Table 8.1. We measure security strength in the number of bits of a
space, for which an exhaustive search requires at least as many basic operations as breaking
the security of the system, for example by solving related mathematical problems such as
DL or DDH. Except for λ “ 0, the values and corresponding bit lengths given in Table 8.1
are in accordance with current NIST recommendations [8, Table 2]. Today, λ “ 1 (80 bits
security) is no longer considered to be sufficiently secure (DL computations for a trapdoored
1024-bit prime modulo have been reported recently [17]). Therefore, we recommend at least
λ “ 2 (112 bits security), which is considered to be strong enough until at least 2030. Note
that a mix of security levels can be chosen for privacy and integrity, for example σ “ 128
(λ “ 3) for improved privacy in combination with τ “ 112 (λ “ 2) for minimal integrity.

Security
Level λ

Security
Strength σ, τ

Hash Length
` (L)

Gq Ă Z˚p Gq̂ Ă Z˚p̂ Zp1
LM

Crypto-
period‖p‖ ‖q‖ ‖p̂‖ ‖q̂‖ ‖p1‖

0 4 8 (1) 10 9 10 8 8 2 Testing

1 80 160 (20) 1024 1023 1024 160 160 40 Legacy

2 112 224 (28) 2048 2047 2048 224 224 56 ď 2030

3 128 256 (32) 3072 3071 3072 256 256 64 ą 2030

Table 8.1.: Length parameters according to current NIST recommendations. The length LM
of the OT messages follows deterministically from ‖p1‖, see Table 6.1.

Since the minimal hash length that covers all three security levels is 256 bits (32 bytes), we
propose using SHA-256 as general hash algorithm. We write H Ð SHA256pBq for calling
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this algorithm with an arbitrarily long input byte array B P B˚ and assigning its return
value to H P B32. For λ “ 3, the length of H is exactly L “ 32 bytes. For λ ă 3, we
truncate the first L bytes from H to obtain the desired hash length, i.e.,

HashLpBq “ TruncatepSHA256pBq, Lq

is our general way of computing hash values for all security levels. We use it in Alg. 4.9 to
compute hash values of multiple inputs.

8.2. Recommended Group and Field Parameters

In this section, we specify public parameters for Gq Ă Z˚p , Gq̂ Ă Z˚p̂ , and Zp1 satisfying
the bit lengths of the security levels λ P t0, 1, 2, 3u of Table 8.1. In each case, we choose
the smallest possible safe prime p P S, the smallest possible prime group order q̂ P P, the
smallest possible co-factor k̂ satisfying p̂ “ k̂q̂ ` 1 P P, and the smallest possible prime
p1 P P. Since ‖q̂‖ is always equal to ‖p1‖, we get q̂ “ p1 for all security levels. For every
group Gq, we use identical values g “ 22 “ 4 and h “ 32 “ 9 as default generators (other
independent generators can be computed with Alg. 7.3). Similarly, for the groups Gq̂, we
use ĝ “ 2k̂ mod p̂ as default generators. Each of the following four subsections contains a
table with values p, q, k, g, h, p̂, q̂, k̂, q̂, and p1 for the four security levels. We also give
lists p “ pp1, . . . , p50q of the first 50 primes in Gq, which are required to encode the selected
candidates s as a single element Γpsq P Gq (see Sections 5.3 and 6.5 for more details).

8.2.1. Level 0 (Testing Only)

p “ 563 p̂ “ 787 p1 “ 131
q “ 281 q̂ “ 131
k “ 2 k̂ “ 6
g “ 4 ĝ “ 64
h “ 9

Table 8.2.: Groups Gq Ă Z˚p and Gq̂ Ă Z˚p̂ with default generators g, h, and ĝ, respectively,
and field Zp1 for security level λ “ 0 (used for testing only).
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p1 “ 3 p10 “ 61 p19 “ 149 p28 “ 251 p37 “ 379 p46 “ 491
p2 “ 7 p11 “ 67 p20 “ 179 p29 “ 257 p38 “ 383 p47 “ 503
p3 “ 11 p12 “ 71 p21 “ 181 p30 “ 269 p39 “ 401 p48 “ 509
p4 “ 13 p13 “ 101 p22 “ 191 p31 “ 271 p40 “ 409 p49 “ 521
p5 “ 17 p14 “ 103 p23 “ 193 p32 “ 277 p41 “ 421 p50 “ 541
p6 “ 19 p15 “ 107 p24 “ 197 p33 “ 281 p42 “ 439 : :
p7 “ 23 p16 “ 113 p25 “ 211 p34 “ 337 p43 “ 449 : :
p8 “ 47 p17 “ 127 p26 “ 223 p35 “ 347 p44 “ 461
p9 “ 59 p18 “ 137 p27 “ 241 p36 “ 349 p45 “ 467

Table 8.3.: The first 50 prime elements in Gp Ă Z˚q for p and q as defined in Table 8.2.

95



8.2.2. Level 1

p “ 0x800000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000001981
BF

p̂ “ 0x800000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
0000000000000000000000007FFFFFFF
FFFFAEC41EFA48B2E00000000000012B
01

q “ 0x400000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000CC0
DF

q̂ “ 0x800000000000000000000000000000
000000012B

k “ 2 k̂ “ 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFDAA0000000000000000000000
0000000000000574E3FFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFF340F368000000
0000000000000000000000001DC6476B
0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFBA
72D52BE8A00000000000000100

g “ 4 ĝ “ 0x3E4EC67D0801039E0DAA11CA82D179
8C899914750ADAE377DB63181A5657EE
FCC8F110113B0E644DAA50A9193EAA68
63001CA3BF1B91D6131746AB1056C17A
D54367FC740B85CE7629CCC529D916A9
A00C391308133AF108920407D35C0B1B
CF406E1B9374DA697C55650F89743A4A
ED7D857F6FEB68EA3E5F2404B4ABF33F
C4

h “ 9

Table 8.4.: Groups Gq Ă Z˚p and Gq̂ Ă Z˚p̂ for security level λ “ 1 with default generators g,
h, and ĝ, respectively.
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p1 “ 2 p10 “ 83 p19 “ 191 p28 “ 263 p37 “ 379 p46 “ 521
p2 “ 3 p11 “ 89 p20 “ 193 p29 “ 269 p38 “ 389 p47 “ 523
p3 “ 11 p12 “ 97 p21 “ 197 p30 “ 277 p39 “ 409 p48 “ 541
p4 “ 23 p13 “ 101 p22 “ 199 p31 “ 281 p40 “ 433 p49 “ 547
p5 “ 29 p14 “ 113 p23 “ 211 p32 “ 307 p41 “ 439 p50 “ 577
p6 “ 47 p15 “ 127 p24 “ 227 p33 “ 311 p42 “ 457 : :
p7 “ 53 p16 “ 151 p25 “ 229 p34 “ 313 p43 “ 479 : :
p8 “ 67 p17 “ 163 p26 “ 239 p35 “ 331 p44 “ 491
p9 “ 71 p18 “ 173 p27 “ 251 p36 “ 367 p45 “ 509

Table 8.5.: The first 50 prime elements in Gq Ă Z˚p for p and q as defined in Table 8.4.

p1 “ 0x800000000000000000000000000000000000012B

Table 8.6.: Field Zp1 for security level λ “ 1.

8.2.3. Level 2

p “ 0x80000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000AD3AF

q “ 0x40000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000569D7

k “ 2

g “ 4

h “ 9

Table 8.7.: Group Gq Ă Z˚p for security level λ “ 2 with default generators g and h.
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p1 “ 2 p10 “ 47 p19 “ 131 p28 “ 229 p37 “ 359 p46 “ 439
p2 “ 3 p11 “ 53 p20 “ 137 p29 “ 263 p38 “ 373 p47 “ 443
p3 “ 5 p12 “ 59 p21 “ 139 p30 “ 283 p39 “ 383 p48 “ 449
p4 “ 7 p13 “ 61 p22 “ 149 p31 “ 293 p40 “ 397 p49 “ 467
p5 “ 13 p14 “ 79 p23 “ 151 p32 “ 307 p41 “ 401 p50 “ 479
p6 “ 19 p15 “ 89 p24 “ 191 p33 “ 311 p42 “ 409 : :
p7 “ 29 p16 “ 97 p25 “ 193 p34 “ 317 p43 “ 419 : :
p8 “ 31 p17 “ 113 p26 “ 199 p35 “ 331 p44 “ 421
p9 “ 41 p18 “ 127 p27 “ 211 p36 “ 337 p45 “ 431

Table 8.8.: The first 50 prime elements in Gq Ă Z˚p for p and q as defined in Table 8.7.

p̂ “ 0x80000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000002B3000000000000000000000000000010AE
7A58BB039DF1DD000003FC4F

q̂ “ 0x800000000000000000000000000000000000000000000000000000BD

k̂ “ 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE86000000000000
00000000000000000000000000000000000000022E23FFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFCC7DED80000000000000000000000000000000000000000
00000004C0E0F50FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8FB33D626
600000000000000000000000000000000000000000000A5D1575CB563FFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF0B28E5011C2A58000000000000000000000000000
000000000000169859DDC5C697A10000000566

ĝ “ 0x8FC32AED89182BD1CAC46EA9CDBECF57DB18D8748E039355CCBC90DEDA2149437806
80CCD7D379440E833E03681AD5C93C3CCB3909333D2DC500688237C4D0623703823F02
6FCD67103BA49EE2D3B3DDFAC5B797636FFC4369177FFA357B722935B2EF3B2E3F1DFE
A736903F76927794D071A723F79666EE23FF0EDE87AFB3F60792CFFC7078CB96D8A230
66C8C412813F5943CF9E98B8FE3E21A0A8F241A830BF39C16BB8F2F21D53EB91F30262
A86A043C5DF1167CB748B6EACC5946D612EB8DFEB454E0B1289A7CF66F2940C83CD461
18B37B949905AEAF315F537B5B54BF75138603D54BCC4C2D6E72C0E7DD50B5925417E5
C277E411B9394FB2FDAC0DF

Table 8.9.: Group Gq Ă Z˚p for security level λ “ 2 with default generator ĝ.

p1 “ 0x800000000000000000000000000000000000000000000000000000BD

Table 8.10.: Field Zp1 for security level λ “ 2.
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8.2.4. Level 3

p “ 0x80000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000006119DF

q “ 0x40000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000308CEF

k “ 2

g “ 4

h “ 9

Table 8.11.: Group Gq Ă Z˚p for security level λ “ 3 with default generators g and h.

p1 “ 2 p10 “ 71 p19 “ 157 p28 “ 283 p37 “ 443 p46 “ 523
p2 “ 3 p11 “ 79 p20 “ 197 p29 “ 293 p38 “ 449 p47 “ 547
p3 “ 7 p12 “ 83 p21 “ 211 p30 “ 307 p39 “ 461 p48 “ 563
p4 “ 11 p13 “ 101 p22 “ 223 p31 “ 367 p40 “ 463 p49 “ 577
p5 “ 31 p14 “ 103 p23 “ 227 p32 “ 373 p41 “ 467 p50 “ 601
p6 “ 43 p15 “ 107 p24 “ 229 p33 “ 383 p42 “ 491 : :
p7 “ 47 p16 “ 109 p25 “ 233 p34 “ 419 p43 “ 499 : :
p8 “ 59 p17 “ 127 p26 “ 251 p35 “ 421 p44 “ 503
p9 “ 67 p18 “ 151 p27 “ 271 p36 “ 431 p45 “ 521

Table 8.12.: The first 50 prime elements in Gq Ă Z˚p for p and q as defined in Table 8.11.
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p̂ “ 0x80000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0001F6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC6C982AE8AA368D05E56D53

q̂ “ 0x800000000000000000000000000000000000000000000000000000000000005F

k̂ “ 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF420000
000000000000000000000000000000000000000000000000000000008D03FFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9757080000000000000000
00000000000000000000000000000000000000004DAD680FFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC6594CC4200000000000000000000000000000
0000000000000000000000002AC9B906703FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFE03E48AD38B0800000000000000000000000000000000000000000
000000001791C60F6FED00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
EE81CF008AEE194200000000000000000000000000000000000000000000000CFBA85D
98E3494103FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF65D390A88874FA1
BF0BEE

ĝ “ 0x28F1F91B358840EEF71964530F6899BB54DD42062AB9D9CECBC625862F16949A5100
F0E8297AD084B7E5528CF486E6CE3C2D426F587D8FB57E6BFACEBF9BE2FC56ECD08AEF
52DD04755CE826FFD04FAA680198F7D60BD27D98B6DAC03751D568FB655CAEE672F0D5
95A32BD2E0E4DD22B9505153A85436F3237658DE414C5C288B21520B760275A7BE1B24
6A8F6391368104FC8DB45E4305CF6FAA1AB380516E131C90626BA9E5692CE390D5AA22
00966D79D7815894AD82DF1B11ECE364CF7819BBA4CF02CE3ED48A643082CA8E49418A
293CD535BA0A4CE02B9D32760560197A6831C2045D89A62212818BD95612A132743443
23EF8F725DCFF619F1F0B7B6CE168D530E94F96BBB5E0450A352DE5C168CE0E4053D5C
2DA11C2C50B3EAA869B82ABBB8D2D272DCB1D2BBDCB77D672BC5DC62A6D9D63CFBC442
71D65F1984B5284B42822A03CF5B7E04A409D82EF019A36D25C5E358DE2F1AB83098BC
180A4D957DD30A5D5247D047B14728532172340D9D6444B165FB80BBD77231CD0408BB

Table 8.13.: Group Gq Ă Z˚p for security level λ “ 3 with default generator ĝ.

p1 “ 0x800000000000000000000000000000000000000000000000000000000000005F

Table 8.14.: Field Zp1 for security level λ “ 3.
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8.3. Alphabets and Code Lengths

For the codes printed on the voting cards and displayed to the voters on their voting de-
vice, suitable alphabets need to be fixed. In this section, we specify several alphabets and
discuss—based on their properties—their benefits and weaknesses for each type of code.
The main discriminating property of the codes is the way of their usage. The voting and
confirmation codes need to be entered by the voters, whereas the verification and finaliza-
tion codes are displayed to the voters for comparison only. Since entering codes by users is
an error-prone process, it is desirable that the chance of misspellings is as small as possi-
ble. Case-insensitive codes and codes not containing homoglyphs such as ’0’ and ’O’ are
therefore preferred. We call an alphabet not containing such homoglyphs fail-safe.

In Table 8.15, we list some of the most common alphabets consisting of latin letters and
arabic digits. Some of them are case-insensitive and some are fail-safe. The table also
shows the entropy (measured in bits) of a single character in each alphabet. The alphabet
A62, for example, which consists of all 62 alphanumerical characters (digits 0–9, upper-case
letters A–F, lower-case letters a–z), does not provide case-insensitivity or fail-safety. Each
character of A62 corresponds to log 62 “ 5.95 bits entropy. Note that the Base64 alphabet
A64 requires two non-alphanumerical characters to reach 6 bits entropy.

Another special case is the last alphabet in Table 8.15, which contains 65 “ 7776 different
English words from the new Diceware wordlist of the Electronic Frontier Foundation.1,2 The
advantage of such a large alphabet is its relatively high entropy of almost 13 bits per word.
Furthermore, since human users are well-trained in entering words in a natural language,
entering lists of such words is less error-prone than entering codes consisting of random
characters. In case of using the Diceware wordlist, the length of the codes is measured in
number of words rather than number of characters. Note that analogous Diceware wordlists
of equal size are available in many different languages.

Name Alphabet Case-
insensitive

Fail-
safe

Bits per
character

Decimal A10 “ t0, . . . , 9u ‚ ‚ 3.32

Hexadecimal A16 “ t0, . . . , 9, A, . . . , Fu ‚ ‚ 4

Latin A26 “ tA, . . . , Zu ‚ 4.70

Alphanumeric A32 “ t0, . . . , 9, A, . . . , Zu z t0, 1, I, Ou ‚ ‚ 5

A36 “ t0, . . . , 9, A, . . . , Zu ‚ 5.17

A57 “ t0, . . . , 9, A, . . . , Z, a, . . . , zu z t0, 1, I, O, lu ‚ 5.83

A62 “ t0, . . . , 9, A, . . . , Z, a, . . . , zu 5.95

Base64 A64 “ tA, . . . , Z, a, . . . , z, 0, . . . , 9, =, /u 6

Diceware A7776 “ t"abacus", . . . , "zoom"u ‚ ‚ 12.92

Table 8.15.: Common alphabets with different sizes and characteristics. Case-insensitivity
and fail-safety are desirable properties to facilitate flawless user entries.

1See http://world.std.com/„reinhold/diceware.html.
2See https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases.
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In Section 4.2, we have discussed methods for converting integers and byte arrays into strings
of a given alphabet A “ tc1, . . . , cNu of size N ě 2. The conversion algorithms depend on
the assumption that the characters in A are totally ordered and that a ranking function
rankApciq “ i ´ 1 representing this order is available. We propose to derive the ranking
function from the characters as listed in Table 8.15. In the case of A16, for example, this
means that the ranking function looks as follows:

ci 0 1 2 3 4 5 6 7 8 9 A B C D E F
rankA16pciq 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All other ranking functions are defined in exactly this way. In case of A32 and A57, the
removed homoglyphs are simply skipped in the ranking, i.e., ’2’ becomes the first character
in the order. Note that the proposed order for A64 is consistent with the official MIME
Base64 alphabet (RFC 1421, RFC 2045).

8.3.1. Voting and Confirmation Codes

For the voting and confirmation codes, which are entered by the voters during vote casting,
we consider the six alphabets from Table 8.15 satisfying fail-safety. For the security levels
λ P t0, 1, 2, 3u introduced in the beginning of this chapter, Table 8.16 shows the resulting
code lengths for these alphabets. We propose to satisfy the constraints for corresponding
upper bounds q̂x and q̂y by setting them to the smallest integer of length 2τ bits:

q̂x “ q̂y “

$

’

’

’

’

&

’

’

’

’

%

128, for λ “ 0,

2159, for λ “ 1,

2223, for λ “ 2,

2255, for λ “ 3.

.

By looking at the numbers in Table 8.16, we see that the necessary code lengths to achieve
the desired security strength are problematical from a usability point of view. The case-
insensitive Diceware alphabet A7776 with code lengths between 13 and 20 words, which seems
to be one of the best choices, is still not very practical. We will continue the discussion of
this problem in ??.

Security
Level λ

Security
Strength τ ‖q̂x‖, ‖q̂y‖

`X , `Y

A10 A16 A26 A32 A57 A7776

0 4 8 3 2 2 2 2 1

1 80 160 44 40 35 32 27 13

2 112 224 61 56 48 45 38 18

3 128 256 70 64 55 52 43 20

Table 8.16.: Lengths of voting and confirmation codes for different alphabets and security
levels.
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8.3.2. Verification and Finalization Codes

According to the constraints of Table 6.1 in Section 6.3.1, the length of the verification
and finalization codes are determined by the deterrence factor ε, the maximal number of
candidates nmax, and the size of the chosen alphabet. For nmax “ 1678 and security levels
λ P t0, 1, 2, 3u, Table 8.17 shows the resulting code lengths for different alphabets and
different deterrence factors ε “ 1´10´pλ`2q. This particular choice for nmax has two reasons.
First, it satisfies the use cases described in Section 2.2 with a good margin. Second, it is
the highest value for which LR “ 3 bytes are sufficient in security level λ “ 2.

In the light of the results of Table 8.17 for the verification codes, we conclude that the
alphabet A64 (Base64) with verification codes of length `R “ 4 in most cases seems to be a
good compromise between security and usability. Since n verification codes are printed on
the voting card and k verification codes are displayed to the voter, they should be as small as
possible for usability reasons. On the other hand, since only one finalization code appears on
every voting card, it would probably not matter much if they were slightly longer. Any of the
proposed alphabets seems therefore appropriate. To make finalization codes look different
from verification codes, we propose to use the alphabet A10, i.e., to represent finalization
codes as 5-digit numbers for λ P t1, 2u or as a 8-digit numbers for λ “ 3.

Security
Level λ

Deterrence
Factor ε

LR
`R

LF
`F

A10 A16 A26 A36 A62 A64 A10 A16 A26 A36 A62 A64

0 99% 3 8 6 6 5 5 4 1 3 2 2 2 2 2

1 99.9% 3 8 6 6 5 5 4 2 5 4 4 4 3 3

2 99.99% 3 8 6 6 5 5 4 2 5 4 4 4 3 3

3 99.999% 4 10 8 7 7 6 6 3 8 6 6 5 5 4

Table 8.17.: Lengths of verification and finalization codes for different alphabets and security
levels. For the maximal number of candidates, we use nmax “ 1678 as default
value.
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Nomenclature

α Ballot
a Left-hand side of encrypted vote
a OT query
AF Alphabet for finalization codes
AR Alphabet for verification codes
AX Alphabet for voting codes
AY Alphabet for confirmation codes
βj Reponse generated by authority j
βi Reponses for voter i
b Right-hand side of encrypted vote
b1j Partial decryptions by authority j
B Ballot list consisting of tuples pi, α, rq for each valid ballot pi, αq
B1 Partial decryptions
B Boolean set
γ Confirmation
c List of candidate descriptions
C Confirmation list consisting of tuples pi, γq for each valid confirmation pi, γq
Ci Candidate description
δj Finalization generated by authority j
δi Finalizations for voter i
di Voting card data
d̂j Public credentials generated by authority j
dj Voting card data generated by authority j
D̂ Public credentials
D Voting card data
ε Deterrence factor
eij Eligibility of voter i in election j
E Eligibility matrix
FCi Finalization code of voter i
g Generator of group Gq

ĝ Generator of group Gq̂

Gq Multiplicative subgroup of integers modulo p (of order q “ p´1
2 q

Gq̂ Multiplicative subgroup of integers modulo p̂ (of order q̂)
h Generator of group Gq
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hi Generator of group Gq

i Voter index from t1, . . . , NEu, selection index from t1, . . . , ku

j Authority index from t1, . . . , su, election index from t1, . . . , tu

kF String length of finalization codes
kij Number of selections of voter i in election j
kR String length of verification codes
k Number of selections in each election
ki Number of selections of voter i in each election
K Number of selections of each voter in each election
λ Security level
l Auxiliary index in iterations
` Output length of hash funciton (bits)
`F Length of finalization codes (bits)
`R Length of verification codes (bits)
`X String length of voting code
`Y String length of confirmation code
L Output length of hash function (bytes)
LF Length of finalization codes (bytes)
LM Length of OT messages (bytes)
LR Length of verification codes (bytes)
τ Security strength (integrity)
m Product of selected primes
m Products of selected primes
n Number of candidates
n Number of candidates in each election
N Number of valid votes
NB Size of ballot list B
NC Size of confirmation list C
NE Number of eligible voters
N Natural numbers
N` Positive integers
π Ballot or confirmation NIZKP
πj Shuffle proof of authority j
π1j Decryption proof of authority j
π Shuffle proofs
π1 Decryption proofs
p Prime modulus of group Gq

p̂ Prime modulus of group Gq̂

pij Point on polynomials of voter i
p1 Prime modulus of field Zp1
Pi Voting page of voter i
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P Matrix of points
P Primes numbers
pk Public encryption key
pkj Share of public encryption key
pk Shares of public encryption key
q Order of group Gq

q̂ Order of group Gq̂

q̂x Upper bound for secret voting credentials
q̂y Upper bound for secret confirmation credentials
q Selected primes
rci Verification codes of voter i
RCij Verification code of voter i for candidate j (string)
σ Security strength (privacy)
s Number of authorities
si Index of selected candidate
s Vector of indices of selected candidates
S Safe primes
Si Voting card of voter i
skj Share of private decryption key
t Number of elections in an election event
vij Single entry of the election result matrix
v List of voter descriptions
Vi Voter description (first/last names, address, date of birth, etc.)
V Election result matrix
x̂i Public voting credential of voter i
xi Secret voting credential of voter i
Xi Voting code of voter i
ŷi Public confirmation credential of voter i
yi Secret confirmation credential of voter i
Yi Confirmation code of voter i
Zp1 Field of integers modulo p1

Z˚p̂ Multiplicative group of integers modulo p̂
Zq Field of integers modulo q
Zq̂ Field of integers modulo q̂
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7.37. Computes the finalization code Fi for voter i from the given points pi and
returns Fi together with the randomizations ri used in the OT response. . . . . 81

7.38. Computes a finalization code FC by combining the values Fj received from
the authorities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.39. Checks if the displayed finalization code FC 1 matches with the finalization
code FC from the voting card. Note that this algorithm is executed by humans. 82

7.40. Computes a sorted list of ElGamal encryptions from the list of submitted
ballots, for which a valid confirmation is available. Sorting this list is necessary
to guarantee a unique order. For this, we define a total order over G2

q by
ei ĺ ej ô pai ă ajq _ pai “ aj ^ bi ď bjq, for ei “ pai, biq and ej “ paj , bjq. . . . 84

7.41. Generates a random permutation ψ P ΨN and uses it to shuffle a given list
e “ pe1, . . . , eN q of ElGamal encryptions ei “ pai, biq P G2

q . With ΨN “

tpj1, . . . , jN q : ji P t1, . . . , Nu, ji1‰ji2 ,@i1‰i2u we denote the set of all N !
possible permutations of the values t1, . . . , Nu. . . . . . . . . . . . . . . . . . . 84

7.42. Generates a random permutation ψ P ΨN following Knuth’s shuffle algorithm
[22, pp. 139–140]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

113



7.43. Generates a re-encryption e1 “ pa ¨pkr1 , b ¨gr1q of the given ElGamal encryption
e “ pa, bq P G2

q . The re-encryption e1 is returned together with the randomiza-
tion r1 P Zq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.44. Generates a NIZKP of shuffle relative to ElGamal encryptions e and e1, which
is equivalent to proving knowledge of a permutation ψ and randomizations
r1 such that e1 “ Shufflepkpe, r

1, ψq. The algorithm implements Wikström’s
proof of a shuffle [31, 30], except for the fact that the offline and online phases
are merged. For the proof verification, see Alg. 7.48. For further background
information we refer to Section 5.5. . . . . . . . . . . . . . . . . . . . . . . . . 86

7.45. Generates a commitment c “ compψ, rq to a permutation ψ by committing to
the columns of the corresponding permutation matrix. This algorithm is used
in Alg. 7.44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.46. Generates a commitment chain c0 Ñ c1 Ñ ¨ ¨ ¨ Ñ cN relative to a list of public
challenges u and starting with a given commitment c0. This algorithm is used
in Alg. 7.44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.47. Checks if a chain of shuffle proofs generated by s different authorities is correct. 87

7.48. Checks the correctness of a NIZKP of a shuffle π generated by Alg. 7.44. The
public values are the ElGamal encryptions e and e1 and the public encryption
key pk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.49. Computes the partial decryptions of a given input list e of ElGamal encryption
using a share skj of the private decryption key. . . . . . . . . . . . . . . . . . . 88

7.50. Generates a decryption proof relative to ElGamal encryptions e and partial
decryptions b1. This is essentially a NIZKP of knowledge of the private key
share skj satisfying b1i “ b

skj
i for all input encryptions ei “ pai, biq and pkj “

gskj . For the proof verification, see Alg. 7.52. . . . . . . . . . . . . . . . . . . . 89

7.51. Checks if the decryption proofs generated by s different authorities are correct. 89

7.52. Checks the correctness of a decryption proof π generated by Alg. 7.50. The
public values are the ElGamal encryptions e, the partial decryptions b1, and
the share pkj of the public encryption key. . . . . . . . . . . . . . . . . . . . . 90

7.53. Computes the list of decryptions m “ pm1, . . . ,mN q by assembling the partial
decryptions b1ij obtained from s different authorities. . . . . . . . . . . . . . . . 90

7.54. Computes the election result matrix V “ pvijqNˆn from the products of en-
coded selections m “ pm1, . . . ,mN q by retrieving the prime factors of each mi.
Each resulting vector vi represents somebody’s vote, and each value vij “ 1
represents somebody’s vote for a specific candidate j P t1, . . . , nu. . . . . . . . 91

114



Bibliography

[1] Digital signature standard (DSS). FIPS PUB 186-4, National Institute of Standards
and Technology (NIST), 2013.

[2] Ergänzende Dokumentation zum dritten Bericht des Bundesrates zu Vote électronique.
Die Schweizerische Bundeskanzlei (BK), 2013.

[3] Technische und administrative Anforderungen an die elektronischen Stimmabgabe. Die
Schweizerische Bundeskanzlei (BK), 2013.

[4] Verordnung der Bundeskanzlei über die elektronische Stimmabgabe (VEleS). Die
Schweizerische Bundeskanzlei (BK), 2013.

[5] Verordnung über die politischen Rechte. SR 161.11. Der Schweizerische Bundesrat, 2013.

[6] A. Ansper, S. Heiberg, H. Lipmaa, T. A. Øverland, and F. van Laenen. Security and
trust for the Norwegian e-voting pilot project E-Valg 2011. In A. Jøsang, T. Maseng,
and S. J. Knapskog, editors, NordSec’09, 14th Nordic Conference on Secure IT Systems,
LNCS 5838, pages 207–222, Oslo, Norway, 2009.

[7] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for
realistic adversaries. Journal of Cryptology, 23(2):281–343, 2010.

[8] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation for key
management. NIST Special Publication 800-57, Part 1, Rev. 3, NIST, 2012.

[9] J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, New Haven,
USA, 1987.

[10] A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, PKC’03, 6th
International Workshop on Theory and Practice in Public Key Cryptography, LNCS
2567, pages 31–46, Miami, USA, 2003.

[11] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell,
editor, CRYPTO’92, 12th Annual International Cryptology Conference on Advances in
Cryptology, LNCS 740, pages 89–105, Santa Barbara, USA, 1992.

[12] C. K. Chu and W. G. Tzeng. Efficient k-out-of-n oblivious transfer schemes with
adaptive and non-adaptive queries. In S. Vaudenay, editor, PKC’05, 8th International
Workshop on Theory and Practice in Public Key Cryptography, LNCS 3386, pages 172–
183, Les Diablerets, Switzerland, 2005.

[13] C. K. Chu and W. G. Tzeng. Efficient k-out-of-n oblivious transfer schemes. Journal
of Universal Computer Science, 14(3):397–415, 2008.

115



[14] E. Dubuis, R. Haenni, R. E. Koenig, and P. Locher. Pseudo-code algorithms for ver-
ifiable re-encryption mix-nets. In FC’17, 21st International Conference on Financial
Cryptography, Silema, Malta, 2017.

[15] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In G. R. Blakley and D. Chaum, editors, CRYPTO’84, Advances in Cryptology,
LNCS 196, pages 10–18, Santa Barbara, USA, 1984. Springer.

[16] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. M. Odlyzko, editor, CRYPTO’86, 6th Annual International
Cryptology Conference on Advances in Cryptology, LNCS 263, pages 186–194, Santa
Barbara, USA, 1986.

[17] J. Fried, P. Gaudry, N. Heninger, and E. Thomé. A kilobit hidden SNFS discrete
logarithm computation. IACR Cryptology ePrint Archive, 2016/961, 2016.

[18] I. S. Gebhardt Stenerud and C. Bull. When reality comes knocking – Norwegian expe-
riences with verifiable electronic voting. In M. J. Kripp, M. Volkamer, and R. Grimm,
editors, EVOTE’12, 5th International Workshop on Electronic Voting, number P-205
in Lecture Notes in Informatics, pages 21–33, Bregenz, Austria, 2012.

[19] K. Gjøsteen. The Norwegian Internet voting protocol. In A. Kiayias and H. Lipmaa,
editors, VoteID’11, 3rd International Conference on E-Voting and Identity, LNCS 7187,
pages 1–18, Tallinn, Estonia, 2011.

[20] R. Haenni, R. E. Koenig, and E. Dubuis. Cast-as-intended verification in electronic
elections based on oblivious transfer. In J. Barrat Robert Krimmer, Melanie Volkamer,
J. Benaloh, N. Goodman, P. Ryan, O. Spycher, V. Teague, and G. Wenda, editors,
E-Vote-ID’16, 12th International Joint Conference on Electronic Voting, LNCS 10141,
pages 277–296, Bregenz, Austria, 2016.

[21] S. Hauser and R. Haenni. Implementing broadcast channels with memory for electronic
voting systems. JeDEM – eJournal of eDemocracy and Open Government, 8(3):61–79,
2016.

[22] Donald E. Knuth. The Art of Computer Programming, volume 2, Seminumerical Algo-
rithms. Addison Wesley, 3rd edition, 1997.

[23] U. Maurer. Unifying zero-knowledge proofs of knowledge. In B. Preneel, editor,
AFRICACRYPT’09, 2nd International Conference on Cryptology in Africa, LNCS
5580, pages 272–286, Gammarth, Tunisia, 2009.

[24] U. Maurer and C. Casanova. Bericht des Bundesrates zu Vote électronique. 3. Bericht,
Schweizerischer Bundesrat, 2013.

[25] R. Oppliger. Addressing the secure platform problem for remote internet voting in
Geneva. Technical report, Chancellory of the State of Geneva, 2002.

[26] R. Oppliger. Traitement du problème de la sécurité des plates-formes pour le vote par
internet à Genève. Technical report, ESECURITY Techologies, 2002.

[27] R. Oppliger. E-voting auf unsicheren client-plattformen. digma – Zeitschrift für Daten-
recht und Informationssicherheit, 8(2):82–85, 2008.

116



[28] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[29] O. Spycher, M. Volkamer, and R. E. Koenig. Transparency and technical measures to
establish trust in Norwegian Internet voting. In A. Kiayias and H. Lipmaa, editors,
VoteID’11, 3rd International Conference on E-Voting and Identity, LNCS 7187, pages
19–35, Tallinn, Estonia, 2011.

[30] B. Terelius and D. Wikström. Proofs of restricted shuffles. In D. J. Bernstein and
T. Lange, editors, AFRICACRYPT’10, 3rd International Conference on Cryptology in
Africa, LNCS 6055, pages 100–113, Stellenbosch, South Africa, 2010.

[31] D. Wikström. A commitment-consistent proof of a shuffle. In C. Boyd and J. González
Nieto, editors, ACISP’09, 14th Australasian Conference on Information Security and
Privacy, LNCS 5594, pages 407–421, Brisbane, Australia, 2009.

117


	Contents
	Project Context
	Introduction
	Principal Requirements
	Goal and Content of Document

	Election Context
	General Election Procedure
	Election Uses Cases
	Electorate
	Type of Elections



	Theoretical Background
	Mathematical Preliminaries
	Notational Conventions
	Mathematical Groups
	The Multiplicative Group of Integers Modulo p
	The Field of Integers Modulo p


	Type Conversion and Hash Algorithms
	Byte Arrays
	Converting Integers to Byte Arrays
	Converting Byte Arrays to Integers
	Converting UCS Strings to Byte Arrays

	Strings
	Converting Integers to Strings
	Converting Strings to Integers
	Converting Byte Arrays to Strings

	Hash Algorithms
	Hash Values of Integers and Strings
	Hash Values of Multiple Inputs


	Cryptographic Primitives
	ElGamal Encryption
	Using a Single Key Pair
	Using a Shared Key Pair

	Pedersen Commitment
	Oblivious Transfer
	OT-Scheme by Chu and Tzeng
	Simultaneous Oblivious Transfers
	Oblivious Transfer of Long Messages

	Non-Interactive Preimage Proofs
	Composition of Preimage Proofs
	Applications of Preimage Proofs

	Wikström's Shuffle Proof
	Preparatory Work
	Preimage Proof



	Protocol Specification
	Protocol Description
	Parties and Communication Channels
	Adversary Model and Trust Assumptions
	System Parameters
	Security Parameters
	Election Parameters

	Technical Preliminaries
	Vote Encoding and Encryption
	Linking OT Queries to ElGamal Encryptions
	Validity of Encrypted Votes
	Voter Identification

	Protocol Description
	Pre-Election Phase
	Election Phase
	Post-Election Phase


	Pseudo-Code Algorithms
	Conventions and Assumptions
	General Algorithms
	Pre-Election Phase
	Election Phase
	Post-Election Phase


	System Specification
	Security Levels and Parameters
	Length Parameters
	Recommended Group and Field Parameters
	Level 0 (Testing Only)
	Level 1
	Level 2
	Level 3

	Alphabets and Code Lengths
	Voting and Confirmation Codes
	Verification and Finalization Codes


	Nomenclature
	List of Tables
	List of Protocols
	List of Algorithms
	Bibliography


