
CHVote System Specification
Version 1.4.2

Rolf Haenni, Reto E. Koenig, Philipp Locher, Eric Dubuis
{rolf.haenni,reto.koenig,philipp.locher,eric.dubuis}@bfh.ch

July 2, 2018

Bern University of Applied Sciences
CH-2501 Biel, Switzerland



Revision History

Revision Date Author(s) Description

0.1 14.07.2016 Rolf Haenni Initial Draft.
0.2 11.10.2016 Rolf Haenni Draft to present at meeting.
0.3 17.10.2016 Rolf Haenni,

Reto E. Koenig
Vote casting and confirmation algorithms fin-
ished.

0.4 24.10.2016 Rolf Haenni,
Reto E. Koenig

Update of vote casting and confirmation algo-
rithms.

0.5 18.11.2016 Rolf Haenni,
Philipp Locher

Mixing process finished.

0.6 25.11.2016 Rolf Haenni String conversion introduced, tallying finished.
0.7 07.12.2016 Rolf Haenni Section 5 finished.
0.8 17.12.2016 Rolf Haenni Hashing algorithms and cryptographic parame-

ters added.
0.9 10.01.2017 Rolf Haenni Section 8 finished.
0.10 06.02.2017 Rolf Haenni Security parameters finished.
0.11 21.02.2017 Rolf Haenni Section 6 finished, reorganization of Section 7.
0.11 14.03.2017 Rolf Haenni Section 7 finished.
0.12 21.03.2017 Rolf Haenni Section 8 finished.
0.13 30.03.2017 Rolf Haenni Minor corrections, Section 1 finished.
1.0 12.04.2017 Rolf Haenni Minor corrections, Section 2 finished.
1.1 19.04.2017 Rolf Haenni Conclusion added.
1.1.1 24.05.2017 Rolf Haenni Parameter changes.
1.2 14.07.2017 Rolf Haenni Major protocol revision, full sender privacy

added to oblivious transfer.
1.2.1 14.09.2017 Rolf Haenni Various minor corrections.
1.3 28.09.2017 Rolf Haenni Description and algorithms for channel security

added.
1.3.1 29.11.2017 Rolf Haenni Optimization in Alg. 7.25.
1.3.2 6.12.2017 Rolf Haenni Adjusted ballot proof generation and verifica-

tion.
1.4 26.3.2018 Rolf Haenni Proposals for improved usability in Section 9.2.
1.4.1 12.4.2018 Rolf Haenni Recapitulation added to 9.2.
1.4.2 29.6.2018 Rolf Haenni Two minor errors corrected.

2



Contents

Contents 3

I. Project Context 8

1. Introduction 9

1.1. Principal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2. Goal and Content of Document . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Election Context 13

2.1. General Election Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. Election Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1. Electorate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2. Type of Elections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

II. Theoretical Background 18

3. Mathematical Preliminaries 19

3.1. Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2. Mathematical Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1. The Multiplicative Group of Integers Modulo p . . . . . . . . . . . . . 20

3.2.2. The Field of Integers Modulo p . . . . . . . . . . . . . . . . . . . . . . 21

4. Type Conversion and Hash Algorithms 22

4.1. Byte Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1. Converting Integers to Byte Arrays . . . . . . . . . . . . . . . . . . . . 23

4.1.2. Converting Byte Arrays to Integers . . . . . . . . . . . . . . . . . . . . 23

4.1.3. Converting UCS Strings to Byte Arrays . . . . . . . . . . . . . . . . . 24

3



4.2. Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1. Converting Integers to Strings . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2. Converting Strings to Integers . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.3. Converting Byte Arrays to Strings . . . . . . . . . . . . . . . . . . . . 26

4.3. Hash Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1. Hash Values of Integers and Strings . . . . . . . . . . . . . . . . . . . . 27

4.3.2. Hash Values of Multiple Inputs . . . . . . . . . . . . . . . . . . . . . . 27

5. Cryptographic Primitives 29

5.1. ElGamal Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1. Using a Single Key Pair . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.2. Using a Shared Key Pair . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2. Pedersen Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3. Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1. OT-Scheme by Chu and Tzeng . . . . . . . . . . . . . . . . . . . . . . 31

5.3.2. Full Sender Privacy in the OT-Scheme by Chu and Tzeng . . . . . . . 33

5.3.3. Simultaneous Oblivious Transfers . . . . . . . . . . . . . . . . . . . . . 34

5.3.4. Oblivious Transfer of Long Messages . . . . . . . . . . . . . . . . . . . 35

5.4. Non-Interactive Preimage Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4.1. Composition of Preimage Proofs . . . . . . . . . . . . . . . . . . . . . 37

5.4.2. Applications of Preimage Proofs . . . . . . . . . . . . . . . . . . . . . 37

5.5. Wikström’s Shuffle Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5.1. Preparatory Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5.2. Preimage Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6. Schnorr Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7. Hybrid Encryption and Key-Encapsulation . . . . . . . . . . . . . . . . . . . . 42

III. Protocol Specification 44

6. Protocol Description 45

6.1. Parties and Communication Channels . . . . . . . . . . . . . . . . . . . . . . 45

6.2. Adversary Model and Trust Assumptions . . . . . . . . . . . . . . . . . . . . . 47

4



6.3. System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.1. Security Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.2. Election Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4. Technical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4.1. Encoding of Votes and Counting Circles . . . . . . . . . . . . . . . . . 54

6.4.2. Linking OT Queries to ElGamal Encryptions . . . . . . . . . . . . . . 55

6.4.3. Validity of Encrypted Votes . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4.4. Voter Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.5. Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.5.1. Pre-Election Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5.2. Election Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5.3. Post-Election Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.6. Channel Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7. Pseudo-Code Algorithms 71

7.1. Conventions and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2. General Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3. Pre-Election Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.4. Election Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.5. Post-Election Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.6. Channel Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

IV. System Specification 104

8. Security Levels and Parameters 105

8.1. Recommended Length Parameters . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2. Recommended Group and Field Parameters . . . . . . . . . . . . . . . . . . . 106

8.2.1. Level 0 (Testing Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2.2. Level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.2.3. Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2.4. Level 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5



9. Usability 113

9.1. Alphabets and Code Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.1.1. Voting and Confirmation Codes . . . . . . . . . . . . . . . . . . . . . . 114

9.1.2. Verification and Finalization Codes . . . . . . . . . . . . . . . . . . . . 115

9.2. Proposals for Improved Usability . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.2.1. Approach 1: Using Bilinear Mappings . . . . . . . . . . . . . . . . . . 117

9.2.2. Approach 2: Extending the Printing Authority . . . . . . . . . . . . . 119

9.2.3. Comparison of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 121

V. Conclusion 125

10.Conclusion 126

10.1. Recapitulation of Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10.2. Open Problems and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 127

Nomenclature 129

List of Tables 133

List of Protocols 134

List of Algorithms 136

Bibliography 139

6



Special Thanks

Numerous people contributed to the creation of this document in different ways. In partic-
ular, we want to thank those who made the effort of looking closely at the technical details
of this document and reported minor or major errors and problems. We list them here in
alphabetical order:

• David Bernhard (Department of Computer Science, University of Bristol, UK)

• Véronique Cortier (LORIA, Vandœuvre lès Nancy, France)

• Yannick Denzer (Bern University of Applied Sciences, Switzerland)

• Benjamin Fankhauser (Bern University of Applied Sciences, Switzerland)

• Kevin Häni (Bern University of Applied Sciences, Switzerland)

• Thomas Hofer (République et Canton de Genève, Switzerland)

• Pascal Junod (Snap Inc., Switzerland)

• Tomasz Truderung (Polyas GmbH, Berlin, Germany)

• Mathieu Turuani (LORIA, Vandœuvre lès Nancy, France)

• Christophe Vigouroux (République et Canton de Genève, Switzerland)

• Bogdan Warinschi (Department of Computer Science, University of Bristol, UK)

7



Part I.

Project Context

8



1. Introduction

The State of Geneva is one of the worldwide pioneers in offering Internet elections to their
citizens. The project, which was initiated in 2001, was one of first and most ambitious at-
tempts in the world of developing an electronic voting procedure that allows the submission
of votes over the Internet in referendums and elections. For this, a large number of technical,
legal, and administrative problems had to be solved. Despite the complexity of these prob-
lems and the difficulties of finding appropriate solutions, first legally binding referendums
had been conducted in 2003 in two suburbs of the City of Geneva. Referendums on can-
tonal and national levels followed in 2004 and 2005. In a popular referendum in in 2009, a
new constitutional provision on Internet voting had been approved by a 70.2% majority. At
more or less the same time, Geneva started to host referendums and elections for other Swiss
cantons. The main purpose of these collaborations was—and still is—to provide Internet
voting to Swiss citizens living abroad.

While the Geneva Internet voting project continued to expand, concerns about possible
vulnerabilities had been raised by security experts and scientists. There were two main
points of criticism: the lack of transparency and verifiability and the insecure platform
problem [46]. The concept of verifiable elections has been known in the scientific literature
for quite some time [11], but the Geneva e-voting system—like most other e-voting systems
in the world at that time—remained completely unverifiable. The awareness of the insecure
platform problem was given from the beginning of the project [45], but so-called code voting
approaches and other possible solutions were rejected due to usability concerns and legal
problems [43].

In the cryptographic literature on remote electronic voting, a large amount of solutions have
been proposed for both problems. One of the most interesting approaches, which solves the
insecure platform problem by adding a verification step to the vote casting procedure, was
implemented in the Norwegian Internet voting system and tested in legally binding municipal
and county council elections in 2011 and 2013 [8, 25, 26, 49]. The Norwegian project was
one of the first in the world that tried to achieve a maximum degree of transparency and
verifiability from the very beginning of the project. Despite the fact that the project has
been stopped in 2014 (mainly due to the lack of increase in turnout), it still serves as a
model for future projects and second-generation systems.

As a response to the third report on Vote électronique by the Swiss Federal Council and the
new requirements of the Swiss Federal Chancellery [42, 5], the State of Geneva decided to
introduce a radical strategic change towards maximum transparency and full verifiability.
For this, they invited leading scientific researchers and security experts to contribute to the
development of their second-generation system, in particular by designing a cryptographic
voting protocol that satisfies the requirements to the best possible degree. In this context,
a collaboration contract between the State of Geneva and the Bern University of Applied

9



Sciences was signed in 2016. The goal of this collaboration is to lay the foundation for an
entirely new system, which will be implemented from scratch.

As a first significant outcome of this collaboration, a scientific publication with a proposal
for a cryptographic voting protocol was published in 2016 at the 12th International Joint
Conference on Electronic Voting [27]. The proposed approach is the basis for the specifica-
tion presented in this document. Compared to the protocol as presented in the publication,
the level of technical details in this document is considerably higher. By providing more
background information and a broader coverage of relevant aspects, this text is also more
self-contained and comprehensive than its predecessor.

The core of this document is a set of approximately 60 algorithms in pseudo-code, which
are executed by the protocol parties during the election process. The presentation of these
algorithms is sufficiently detailed for an experienced software developer to implement the
protocol in a modern programming language.1 Cryptographic libraries are only required for
standard primitives such as hash algorithms, pseudo-random generators, and computations
with large integers. For one important sub-task of the protocol—the mixing of the encrypted
votes—a second scientific publication was published in 2017 at the 21th International Con-
ference on Financial Cryptography [28]. By facilitating the implementation of a complex
cryptographic primitive by non-specialists, this paper created a useful link between the the-
ory of cryptographic research and the practice of implementing cryptographic systems. The
comprehensive specification of this document, which encompasses all technical details of
a fully-featured cryptographic voting protocol, provides a similar, but much broader link
between theory and practice.

1.1. Principal Requirements

In 2013, the introduction of the new legal ordinance by the Swiss Federal Chancellery, Ordi-
nance on Electronic Voting (VEleS), created a new situation for the developers and providers
of Internet voting systems in Switzerland [4, 5]. Several additional security requirements
have been introduced, in particular requirements related to the aforementioned concept of
verifiable elections. The legal ordinance proposes a two-step procedure for expanding the
electorate allowed of using the electronic channel. A system that meets the requirements of
the first expansion stage may serve up to 50% of the cantonal and 30% of the federal elec-
torate, whereas a system that meets the requirements of the second (full) expansion stage
may serve up to 100% of both the cantonal and the federal electorate. Current systems may
serve up to 30% of the cantonal and 10% of the federal electorate [5, 6].

The cryptographic protocol presented in this document is designed to meet the security re-
quirements of the full expansion stage. From a conceptual point of view, the most important
requirements are the following:

• End-to-End Encryption: The voter’s intention is protected by strong encryption along
the path from the voting client to the tally. To guarantee vote privacy even after
decrypting the votes, a cryptographically secure anonymization method must be part
of the post-election process.

1See https://github.com/republique-et-canton-de-geneve/chvote-protocol-pocfor a complete proof of
concept implementation in Java by a developer of the CHVote project.

10

https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc


• Individual Verifiability : After submitting an encrypted vote, the voter receives con-
clusive evidence that the vote has been cast and recorded as intended. This evidence
enables the voter to exclude with high probability the possibility that the vote has been
manipulated by a compromised voting client. According to [4, Paragraph 4.2.4], this is
the proposed countermeasure against the insecure platform problem. The probability
of detecting a compromised vote must be 99.9% or higher.

• Universal Verifiability : The correctness of the election result can be tested by indepen-
dent verifiers. The verification includes checks that only votes cast by eligible voters
have been tallied, that every eligible voter has voted at most once, and that every vote
cast by an eligible voter has been tallied as recorded.

• Distribution of Trust : Several independent control components participate in the elec-
tion process, for example by sharing the private decryption key or by performing in-
dividual anonymization steps. While single control components are not fully trusted,
it is assumed that they are trustworthy as a group, i.e., that at least one of them will
prevent or detect any type of attack or failure. The general goal of distributing trust
in this way is to prevent single points of failures.

In this document, we call the control components election authorities (see Section 6.1).
They are jointly responsible for generating the necessary elements of the implemented cast-
as-intended mechanism. They also generate the public encryption key and use corresponding
shares of the private key for the decryption. Finally, they are responsible for the anonymiza-
tion process consisting of a series of cryptographic shuffles. By publishing corresponding
cryptographic proofs, they demonstrate that the shuffle and decryption process has been
conducted correctly. Checking these proof is part of the universal verification.

While verifiability and distributed trust are mandatory security measures at the full ex-
pansion stage, measures related to some other security aspects are not explicitly requested
by the legal ordinance. For example, regarding the problem of vote buying and coercion,
the legal ordinance only states that the risk must not be significantly higher compared to
voting by postal mail [4, Paragraph 4.2.2]. Other problems of lower significance in the legal
ordinance are the possibility of privacy attacks by malware on the voting client, the lack
of long-term security of today’s cryptographic standards, or the difficulty of printing highly
confidential information and sending them securely to the voters. We adopt corresponding
assumptions in this document without questioning them.

1.2. Goal and Content of Document

The goal of this document is to provide a self-contained, comprehensive, and fully-detailed
specification of a new cryptographic voting protocol for the future system of the State of
Geneva. The document should therefore describe every relevant aspect and every necessary
technical detail of the computations and communications performed by the participants
during the protocol execution. To support the general understanding of the cryptographic
protocol, the document should also accommodate the necessary mathematical and crypto-
graphic background information. By providing this information to the maximal possible
extent, we see this document as the ultimate companion for the developers in charge of
implementing the future Internet voting system of the State of Geneva. It may also serve as

11



a manual for developers trying to implement an independent election verification software.
The decision of making this document public will even enable implementations by third
parties, for example by students trying to develop a clone of the Geneva system for scientific
evaluations or to implement protocol extensions to achieve additional security properties.
In any case, the target audience of this document are system designers, software developers,
and cryptographic experts.

What is currently entirely missing in this document are proper definitions of the security
properties and corresponding formal proofs that these properties hold in this protocol. An
informal discussion of such properties is included in the predecessor document [27], but this
is not sufficient from a cryptographic point of view. However, the development of proper
security proofs, which is an explicit requirement of the legal ordinance, has been excluded
from this collaboration. The goal is to outsource the formal proofs to a separate project by
an external third party, which will at the same time conduct a review of the specification.
Results from this sister project will be published in a separate document as soon as they
are available. It is likely that their feedback will lead to a revision of this document.

This document is divided into five parts. In Part I, we describe the general project context,
the goal of this work and the purpose of this document (Chapter 1). We also give a first out-
line of the election procedure, an overview of the supported election types, and a discussion
of the expected electorate size (Chapter 2). In Part II, we first introduce notational con-
ventions and some basic mathematical concepts (Chapter 4). We also describe conversion
methods for some basic data types and propose a general method for computing hash values
of composed mathematical objects (Chapter 3). Finally, we summarize the cryptographic
primitives used in the protocol (Chapter 5). In Part III, we first provide a comprehensive
protocol description with detailed discussions of many relevant aspects (Chapter 6). This
description is the core and the major contribution of this document. Further details about
the necessary computations during a protocol execution are given in form of an exhaustive
list of pseudo-code algorithms (Chapter 7). Looking at these algorithms is not mandatory
for understanding the protocol and the general concepts of our approach, but for developers,
they provide a useful link from the theory towards an actual implementation. In Part IV, we
propose three security levels and corresponding system parameters, which we recommend
to use in an actual implementation of the protocol (Chapter 8). Finally, in Part V, we sum-
marize the main achievements and conclusions of this work and discuss some open problem
and future work.

12



2. Election Context

The election context, for which the protocol presented in this document has been designed,
is limited to the particular case of the direct democracy as implemented and practices in
Switzerland. Up to four times a year, multiple referendums or multiple elections are held
simultaneously on a single election day, sometimes on up to four different political levels
(federal, cantonal, municipal, pastoral). In this document, we use “election” as a general
term for referendums and elections and election event for an arbitrary combinations of such
elections taking place simultaneously. Responsible for conducting an election event are the
cantons, but the election results are published for each municipality. Note that two residents
of the same municipality do not necessarily have the same rights to vote in a given election
event. For example, some canton or municipalities accept votes from residents without a
Swiss citizenship, provided that they have been living there long enough. Swiss citizens
living abroad are not residents in a municipality, but the are still allowed to voter in federal
or cantonal issues.

Since voting has a long tradition in Switzerland and is practiced by its citizens very often,
providing efficient voting channels has always been an important consideration for election
organizers to increase turnout and to reduce costs. For this reason, some cantons started
to accept votes by postal mail in 1978, and later in 1994, postal voting for federal issues
was introduced in all cantons. Today, voting by postal mail is the dominant voting channel,
which is used by approximately 90% of the voters. Given the stability of the political
system in Switzerland and the high reliability of most governmental authorities, concerns
about manipulations when voting from a remote place are relatively low. Therefore, with
the broad acceptance and availability of information and communications technologies today,
moving towards an electronic voting channel seems to be the natural next step. This one
of the principal reasons for the Swiss government to support the introduction of Internet
voting. The relatively slow pace of the introduction is a strategic decision to limit the
security risks.

2.1. General Election Procedure

In the general setting of the CHVote system, voters submit their electronic vote using a
regular web browser on their own computer. To circumvent the problem of malware attacks
on these machines, some approaches suggest using an out-of-band channel as a trust anchor,
over which additional information is transmitted securely to the voters. In the particular
setting considered in this document, each voter receives a voting card from the election
authorities by postal mail. Each voting card contains different verification codes for every
voting option and a single finalization code. These codes are different for every voting card.
An example of such a voting card is shown in Figure 2.1. As we will discuss below, the
voting card also contains two authentication codes, which the voter must enter during vote

13



casting. Note that the length of all codes must be chosen carefully to meet the system’s
security requirements (see Section 6.3.1).

Voting Card Nr. 3587
Question 1: Etiam dictum sem pulvinar elit con vallis vehicula. Duis 
vitae purus ac tortor volut pat iaculis at sed mauris at tempor quam?

Question 2: Donec at consectetur ex. Quisque fermentum ipsum sed est 
pharetra molestie. Sed at nisl malesuada ex mollis consequat?

Question 3: Mauris rutrum tellus et lorem vehicula, quis ornare tortor 
vestibulum. In tempor, quam sit amet sodales sagittis, nib quam placerat?

Yes
A34C

No
18F5

Blank
76BC

Yes
91F3

No
71BD

Blank
034A

Yes
774C

No
CB4A

Blank
76F2

Finalization code:  
87483172

Voting code:  
eZ54-gr4B-3pAQ-Zh8q

Confirmation code:  
uw4M-QL91-jZ9N-nXA2

Figure 2.1.: Example of a voting card for an election event consisting of three referen-
dums. Verification codes are printed as 4-digit numbers in hexadecimal no-
tation, whereas the finalization code is printed as an 8-digit decimal number.
The two authentication codes are printed as alphanumeric strings.

After submitting the ballot, verification codes for the chosen voting options are displayed
by the voting application and voters are instructed to check if the displayed codes match
with the codes printed on the voting card. Matching codes imply with high probability
that a correct ballot has been submitted. This step—called cast-as-intended verification—is
the proposed counter-measure against integrity attacks by malware on the voter’s insecure
platform, but it obviously does not prevent privacy attacks. Nevertheless, as long as integrity
attacks by malware are detectable with probability higher than 99.9%, the Swiss Federal
Chancellery has approved this approach as a sufficient solution for conducting elections over
the Internet [5, Paragraph 4.2.4]. To provide a guideline to system designers, a description
of an example voting procedure based on verification codes is given in [3, Appendix 7]. The
procedure proposed in this document follows the given guideline to a considerable degree.

In addition to the verification and finalization codes, voter’s are also supplied with two au-
thentication codes called voting code and confirmation code. In the context of this document,
we consider the case where authentication, verification, and finalization codes are all printed
on the same voting card, but we do not rule out the possibility that some codes are printed
on a separate paper. In addition to these codes, a voting card has a unique identifier. If NE

denotes the size of the electorate, the unique voting card identifier will simply be an integer
i P t1, . . . , NEu, the same number that we will use to identify voters in the electorate (see
Section 6.1).

In the Swiss context, since any form of vote updating is prohibited by election laws, voters
cannot re-submit the ballot from a different platform in case of non-matching verification
codes. From the voter’s perspective, the voting process is therefore an all-or-nothing proce-
dure, which terminates with either a successfully submitted valid vote (success case) or an

14



abort (failure case). The procedure in the success case consists of five steps:

1. The voter selects the allowed number of voting options and enters the voting code.

2. The voting system1 checks the voting code and returns the verification codes of the
selected voting options for inspection.

3. The voter checks the correctness of the verification codes and enters the confirmation
code.

4. The voting system checks the confirmation code and returns the finalization code for
inspection.

5. The voter checks the correctness of the finalization code.

From the perspective of the voting system, votes are accepted after receiving the voter’s
confirmation in Step 4. From the voter’s perspective, vote casting was successful after
receiving correct verification codes in Step 3 and a correct finalization code in Step 5. In case
of an incorrect or missing finalization code, the voter is instructed to trigger an investigation
by contacting the election hotline. In any other failure case, voters are instructed to abort
the process immediately and use postal mail as a backup voting channel.

2.2. Election Use Cases

The voting protocol presented in this document is designed to support election events con-
sisting of t ě 1 simultaneous elections. Every election j P t1, . . . , tu is modeled as an inde-
pendent kj-out-of-nj election with nj ě 2 candidates, of which (exactly) 0 ă kj ă nj can be
selected by the voters. Note that we use candidate as a general term for all types of voting op-
tions, in a similar way as using election for various types of elections and referendums. Over
all t elections, n “

řt
j“1 nj denotes the total number of candidates, whereas k “

řt
j“1 kj

denotes the total number of candidates for voters to select, provided that they are eligible
in every election. A single selected candidate is denoted by a value s P t1, . . . , nu.

As stated earlier, we also have to take into account that voters may not be eligible in all t
elections of an election event. If NE denotes the size of the electorate, we set eij “ 1 if voter
i P t1, . . . , NEu is eligible in election j P t1, . . . , tu and eij “ 0 otherwise. These values define
the eligibility matrix (an NE-by-t Boolean matrix satisfying

řNE
i“1 eij ą 0 and

řt
j“1 eij ą 0),

which must be specified prior to every election event by the election administrator. For
voter i, the product k1ij “ eijkj P t0, kju denotes the number of allowed selections in election
j, and k1i “

řt
j“1 k

1
ij denotes the total number of selections over all t elections of the given

election event. In Section 6.3.2, this general model of an election event will be discussed in
further detail.

1Here we use voting system as a general term for all server-sider parties involved in the election phase
of the protocol.

15



2.2.1. Electorate

In the political system in Switzerland, all votes submitted in an election event are tallied in
so-called counting circles. In smaller municipalities, the counting circle is identical to the
municipality itself, but larger cities may consist of multiple counting circles. For statistical
reasons, the results of each counting circle must be published separately for elections on all
four political levels, i.e., the final election results on federal, cantonal, communal, or pastoral
issues are obtained by summing of the results of all involved counting circles. Counting
circles will typically consist of several hundred or several thousand eligible voters. Even in
the largest counting circle, we expect not more than 100’000 voters.

To comply with this setting, every submitted ballot will need to be assigned to a counting
circle. Let w ě 1 denote the total number of counting circles in an election event, and
wi P t1, . . . , wu the counting circle of voter i P t1, . . . , NEu, i.e., wi is the number that needs
to be attached to a ballot submitted by voter i. By including the information about each
voter’s counting circle and eligibility into the protocol specification, a single protocol instance
will be sufficient to run all sorts of mixed election events on the level of the cantons, which
by law are in charge of organizing and conducting elections in Switzerland. Regarding the
number of counting circles in a canton, we expect an upper bound of w ď 380. As we will see
in Section 9.1.2, we limit the total number of candidates in an election event to n ď 1678,
which should be sufficient to cover all practically relevant combinations of simultaneous
elections on all four political levels and for all municipalities of a given canton. Running
a single protocol instance with exactly the same election parameters is also a desirable
property form an organizational point of view, since it greatly facilitates the system setup
in such a canton.

2.2.2. Type of Elections

In the elections that we consider voters must always select exactly k different candidates from
a list of n candidates. At first glance, such k-out-of-n elections may seems too restrictive
to cover all necessary election use cases in the given context, but they are actually flexible
enough to support more general election types, for example elections with the option of
submitting blank votes. In general, it is possible to substitute any pkmin, kmaxq-out-of-n
election, in which voters are allowed to select between kmin and kmax different candidates
from the candidate list, by an equivalent k1-out-of-n1 election for k1 “ kmax and n1 “ n` b,
where b “ kmax ´ kmin denotes the number of additional blank candidates. An important
special case of this augmented setting arises for kmin “ 0, in which a completely blank ballot
is possible by selecting all b “ kmax blank candidates.

In another generalization of basic k-out-of-n elections, voters are allowed to give up to
c ď k votes to the same candidate. This is called cumulation. In the most flexible case of
cumulation, the k votes can be distributed among the n candidates in an arbitrary manner.
This case can be handled by increasing the size of the candidate list from n to n1 “ cn, i.e.,
each candidate obtains c distinct entries in the extended candidate list. This leads to an
equivalent k-out-of-n1 election, in which voters may select the same candidate up to c times
by selecting all its entries in the extended list. At the end of the election, an additional
accumulation step is necessary to determine the exact number of votes of a given candidate

16



from the final tally. By combining this technique of handling cumulations with the above way
of handling blank votes, we obtain k1-out-of-n1 elections with k1 “ kmax and n1 “ cn` b.

In Table 2.1 we give a non-exhaustive list of some common election types with corresponding
election parameters to handle blank votes and cumulations as explained above. In this list,
we assume that blank votes are always allowed up to the maximal possible number. The
last entry in the list, which describes the case of party-list elections, is thought to cover
elections of the Swiss National Council. This particular election type can be understood as
two independent elections in parallel, one 1-out-of-np party election and one cumulative k-
out-of-nc candidate election, where np and nc denote the number of parties and candidates,
respectively. Cumulation is usually restricted to maximal c “ 2 voter per candidate. Blank
votes are allowed for both the party and the candidate election. In some cases, a completely
blank candidate ballot is prohibited together with a party vote. This particular case can
be covered by reducing the number of blank candidates from b “ k to b “ k ´ 1 and by
introducing two blank parties instead of one, one for a blank party vote with at least one
non-blank candidate vote and one for an entirely blank vote. In the latter case, candidate
votes are discarded in the final tally.

Election Type k n b c k1 n1

Referendum, popular initia-
tive, direct counter-proposal

1 2 1 1 1 3

Deciding question 1 2 1 1 1 3

Single non-transferable vote 1 n 1 1 1 n` 1

Multiple non-transferable vote k n k 1 k n` k

Approval voting n n n 1 n 2n

Cumulative voting k n k c k cn` k

Party-list election p1, kq pnp, ncq p1, kq p1, 2q p1, kq pnp ` 1, 2nc ` kq

Table 2.1.: Election parameters for common types of elections. Party-list elections (last line)
are modeled as two independent elections in parallel, one for the parties and one
for the candidates.

Even in the largest possible use case in the context of elections in Switzerland, we expect k1

to be less than 100 and n1 to be less than 1000 for a single election. Since multiple complex
elections are rarely combined in a single election event, we expect the accumulations of
these values over all elections to be less than 150 for k1 “

řt
j“1 k

1
j and less than 1500 for

n1 “
řt
j“1 n

1
j . This estimation of the largest possible list of candidates is consistent with

the supported number of candidates nmax “ 1678 (see Section 9.1.2).

17



Part II.

Theoretical Background

18



3. Mathematical Preliminaries

3.1. Notational Conventions

As a general rule, we use upper-case Latin or Greek letters for sets and lower-case Latin or
Greek letters for their elements, for example X “ tx1, . . . , xnu. For composed sets or subsets
of composed sets, we use calligraphic upper-case Latin letters, for example X Ď X ˆ Y ˆZ
for the set or a subset of triples px, y, zq. |X| denotes the cardinality of a finite set X.
For general tuples, we use lower-case Latin or Greek letters in normal font, for example
t “ px, y, zq for triples from X ˆ Y ˆZ. For sequences (arrays, lists, strings), we use upper-
case Latin letters and indices starting from 0, for example S “ xs0, . . . , sn´1y P A

˚ for a
string of characters si P A, where A is a given alphabet. We write |S| “ n for the length of
S and use standard array notation Sris “ si to select the element at index i P t0, . . . , n´1u.
S1 }S2 denotes the concatenation of two sequences. For vectors, we use lower-case Latin
letters in bold font, for example x “ px1, . . . , xnq P X

n for a vector of length |x| “ n. For
two-dimensional (or higher-dimensional) matrices, we use upper-case Latin letters in bold
font, for example

X “

¨

˚

˝

x1,1 ¨ ¨ ¨ x1,n
...

. . .
...

xm,1 ¨ ¨ ¨ xm,n

˛

‹

‚

P Xmn

for an m-by-n matrix of values xij P X. We use X “ pxijqmˆn P Xmn as a shortcut
notation. Similarly, X “ pxijkqmˆnˆr P X

mnr is a shortcut notation for a three-dimensional
m-by-n-by-r matrix of values xijk P X.

The set of integers is denoted by Z “ t. . . ,´2,´1, 0, 1, 2, . . .u, the set of natural numbers
by N “ t0, 1, 2, . . .u, and the set of positive natural numbers by N` “ t1, 2, . . .u. The set of
the n smallest natural numbers is denoted by Zn “ t0, . . . , n ´ 1u, where B “ t0, 1u “ Z2

denotes the special case of the Boolean domain. The set of all prime numbers is denoted
by P. A prime number p “ 2q ` 1 P P is called safe prime, if q P P, and the set of all safe
primes is denoted by S.

For an integer x P Z, we write abspxq for the absolute value of x and ‖x‖ “ tlog2pabspxqqu`1
for the bit length of x ‰ 0 (let ‖0‖ “ 0 by definition). The set of all natural numbers of a
given bit length l ě 1 is denoted by Zrls “ tx P N : ‖x‖ “ lu “ Z2lzZ2l´1 and the cardinality
of this set is |Zrls| “ 2l´1. For example, Zr3s “ t4, 5, 6, 7u has cardinality 23´1 “ 4. Similarly,
we write Prls “ PXZrls and Srls “ SXZrls for corresponding sets of prime numbers and safe
primes, respectively.

To denote mathematical functions, we generally use one italic or multiple non-italic lower-
case Latin letters, for example fpxq or gcdpx, yq. For algorithms, we use single or multi-
ple words starting with an upper-case letter in sans-serif font, for example Euclidpx, yq or

19



ExtendedEuclidpx, yq. Algorithms can be deterministic or randomized. We useÐ for assign-
ing the return value of an algorithm call to a variable, for example z Ð Euclidpx, yq. Picking
a value uniformly at random from a finite set X is denoted by x PRX.

3.2. Mathematical Groups

In mathematics, a group G “ pG, ˝, inv, eq is an algebraic structure consisting of a set G
of elements, a (binary) operation ˝ : G ˆ G Ñ G, a (unary) operation inv : G Ñ G, and
a neutral element e P G. The following properties must be satisfied for G to qualify as a
group:

• x ˝ y P G (closure),

• x ˝ py ˝ zq “ px ˝ yq ˝ z (associativity),

• e ˝ x “ x ˝ e “ x (identity element),

• x ˝ invpxq “ e (inverse element),

for all x, y, z P G.

Usually, groups are written either additively as G “ pG,`,´, 0q or multiplicatively as G “
pG,ˆ,´1 , 1q, but this is just a matter of convention. We write k ¨ x in an additive group
and xk in a multiplicative group for applying the group operator k ´ 1 times to x. We
define 0 ¨ x “ 0 and x0 “ 1 and handle negative values as ´k ¨ x “ k ¨ p´xq “ ´pk ¨ xq
and x´k “ px´1qk “ pxkq´1, respectively. A fundamental law of group theory states that
if q “ |G| is the group order of a finite group, then q ¨ x “ 0 and xq “ 1, which implies
k ¨ x “ pk mod qq ¨ x and xk “ xk mod q. In other words, scalars or exponents such as k can
be restricted to elements of the additive group Zq, in which additions are computed modulo
q (see below). Often, the term group is used for both the algebraic structure G and its set
of elements G.

3.2.1. The Multiplicative Group of Integers Modulo p

With Z˚p “ t1, . . . , p ´ 1u we denote the multiplicative group of integers modulo a prime
p P P, in which multiplications are computed modulo p. The group order is |Z˚p | “ p´1, i.e.,
operations on the exponents can be computed modulo p ´ 1. An element g P Z˚p is called
generator of Z˚p , if tg1, . . . , gp´1u “ Z˚p . Such generators always exist for Z˚p if p is prime.
Generally, groups for which generators exist are called cyclic.

Let g be a generator of Z˚p and x P Z˚p an arbitrary group element. The problem of finding
a value k ě 0 such that x “ gk is believed to be hard. The smallest such value k “ logg x
is called discrete logarithm of x to base g and the problem of finding k is called discrete
logarithm problem (DL). It is widely believed that DL is hard in Z˚p . A related problem, called
decisional Diffie-Hellman problem (DDH), consists in distinguishing two triples pga, gb, gabq
and pga, gb, gcq for random exponents a, b, c. While DDH is known to be easy in Z˚p , it is
believed that DDH is hard in large subgroups of Z˚p .

20



A subset Gq Ă Z˚p forms a subgroup of Z˚p , if pGq,ˆ,
´1 , 1q satisfies the above properties of a

group. An important theorem of group theory states that the order q “ |Gq| of every such
subgroup divides the order of Z˚p , i.e., q|p´ 1. If q is a large prime factor of p´ 1, then it is
believed that DL in Gq is as hard as in Z˚p . In fact, even DDH seems to be hard in a large
subgroup Gq, which is not the case in Z˚p .

A particular case arises when p “ 2q`1 P S is a safe prime. In this case, Gq is equivalent to
the group of so-called quadratic residues modulo p, which we obtain by squaring all elements
of Z˚p . Since q is prime, it follows that every x P Gqzt1u is a generator of Gq, i.e., generators
of Gq can be found easily by squaring arbitrary elements of Z˚pzt1, p´ 1u.

3.2.2. The Field of Integers Modulo p

With Zq “ t0, . . . , q ´ 1u we denote the additive group of integers, in which additions are
computed modulo q. This group as such is not interesting for cryptographic purposes (no
hard problems are known), but for q “ p ´ 1, it serves as the natural additive group when
working with exponents in applications of Z˚p . The same holds for groups of prime order q,
for example for subgroups Gq Ă Z˚p .

Generally, when Zp is an additive group modulo a prime p P P, then pZp,`,ˆ,´,´1 , 0, 1q
is a prime-order field with two binary operations ` and ˆ. This particular field combines
the additive group pZp,`,´, 0q and the multiplicative group pZ˚p ,ˆ,´1 , 1q in one algebraic
structure with an additional property:

• xˆpy` zq “ pxˆ yq` pxˆ zq, for all x, y, z P Zp (distributivity of multiplication over
addition).

To emphasize its field structure, Zp is often denoted by Fp. For a given prime-order field
Fp, it is possible to define univariate polynomials

ApXq “
d
ÿ

i“0

aiX
i P FprXs

of degree d ě 0 and with coefficients ai P Fp (degree d means ad ‰ 0). Clearly, such
polynomials are fully determined by the list a “ pa0, . . . , adq of all coefficients. Another
representation results from picking distinct points pi “ pxi, yiq, yi “ Apxiq, from the poly-
nomial. Using Lagrange’s interpolation method, the coefficients can then be reconstructed
if at least d ` 1 such points are available. Reconstructing the coefficient a0 “ Ap0q is of
particular interest in many applications. For given points p “ pp1, . . . , pdq, pi P pxi, yiq P F2

p,
we obtain

a0 “

d
ÿ

i“0

yi ¨
”

ź

0ďjďd
j‰i

xj
xj ´ xi

ı

.

by applying Lagrange’s general method to X “ 0.

21



4. Type Conversion and Hash Algorithms

4.1. Byte Arrays

Let B “ xb0, . . . , bn´1y denote an array of bytes bi P B, where B “ B8 denotes the set of all
256 bytes. We identify individual bytes as integers bi P Z256 and use hexadecimal or binary
notation to denote them. For example, B “ x0A, 23, EFy denotes a byte array containing
three bytes Br0s “ 0x0A “ 000010102, Br1s “ 0x23 “ 0010000112, and Br2s “ 0xEF “

111011112.

For two byte arrays B1 and B2 of equal length n “ |B1| “ |B2|, we write B1 ‘ B2 for the
results of applying the XOR operator ‘ bit-wise to B1 and B2. For truncating a byte array
B of length n “ |B| to the first m ď n bytes, and for skipping the first m bytes from B, we
write

TruncatepB,mq “ xBr0s, . . . , Brm´ 1sy,

SkippB,mq “ xBrms, . . . , Brn´ 1sy,

respectively. Clearly, B “ TruncatepB,mq }SkippB,mq holds for all B P B˚ and all 0 ď m ď

n.

Another basic byte array operation is needed for generating unique verification codes on
every voting card (see Section 6.3.1 and Algs. 7.13 and 7.28). The goal of this operation is
similar to a digital watermark, which we use here for making verification codes unique on
each voting card. Below we define an algorithm MarkByteArraypB,m,mmaxq, which adds an
integer watermark m, 0 ď m ď mmax, to the bits of a byte array B.

Algorithm: MarkByteArraypB,m,mmaxq

Input: Byte arrays B P B˚
Watermark m, 0 ď m ď mmax

Maximal watermark mmax, ‖mmax‖ ď 8¨|B|
lÐ ‖mmax‖
sÐ 8¨|B|

l
for i “ 0, . . . , l ´ 1 do

B Ð SetBitpB, ti¨su,m mod 2q // see Alg. 4.2
mÐ tm{2s

return B // B P B˚

Algorithm 4.1: Adds an integer watermark m to the bits of a given byte array. The bits
of the watermark are spread equally across the bits of the byte array.

22



Algorithm: SetBitpB, i, bq

Input: ByteArray B P B˚
Index i, 0 ď i ă 8¨|B|
Bit b P B

j Ð ti{8u

xÐ 2i mod 8

if b “ 0 then
Brjs Ð Brjs ^ p255´ xq // ^ denotes the bitwise AND operator

else
Brjs Ð Brjs _ x // _ denotes the bitwise OR operator

return B // B P B˚

Algorithm 4.2: Sets the i-th bit of a byte array B to b P B.

4.1.1. Converting Integers to Byte Arrays

Let x P N be a non-negative integer. We use B Ð ToByteArraypx, nq to denote the algorithm
which returns the byte array B P Bn obtained from truncating the n ě ‖x‖

8 least significant
bytes from the (infinitely long) binary representation of x in big-endian order:

B “ xb0, . . . , bn´1y, where bi “
Y x

256n´i´1

]

mod 256.

We use ToByteArraypxq as a short-cut notation for ToByteArraypx, nminq, which returns the
shortest possible such byte array representation of length nmin “ r

‖x‖
8 s. Table 4.1 shows the

byte array representations for different integers x and n ď 4.

ToByteArraypx, nq
x n “ 0 n “ 1 n “ 2 n “ 3 n “ 4 nmin ToByteArraypxq

0 xy x00y x00, 00y x00, 00, 00y x00, 00, 00, 00y 0 xy

1 – x01y x00, 01y x00, 00, 01y x00, 00, 00, 01y 1 x01y

255 – xFFy x00, FFy x00, 00, FFy x00, 00, 00, FFy 1 xFFy

256 – – x01, 00y x00, 01, 00y x00, 00, 01, 00y 2 x01, 00y
65, 535 – – xFF, FFy x00, FF, FFy x00, 00, FF, FFy 2 xFF, FFy
65, 536 – – – x01, 00, 00y x00, 01, 00, 00y 3 x01, 00, 00y

16, 777, 215 – – – xFF, FF, FFy x00, FF, FF, FFy 3 xFF, FF, FFy
16, 777, 216 – – – – x01, 00, 00, 00y 4 x01, 00, 00, 00y

Table 4.1.: Byte array representation for different integers and different output lengths.

The shortest byte array representation in big-endian byte order, B Ð ToByteArraypxq, is the
default byte array representation of non-negative integers considered in this document. It
will be used for computing cryptographic hash values for integer inputs (see Section 4.3).

4.1.2. Converting Byte Arrays to Integers

Since ToByteArraypxq from the previous subsection is not bijective relative to B˚, it does
not define a unique way of converting an arbitrary byte array B P B˚ into an integer x P N.

23



Algorithm: ToByteArraypxq

Input: Non-negative integer x P N
nmin Ð r

‖x‖
8 s

B Ð ToByteArraypx, nminq // see Alg. 4.4
return B // B P B˚

Algorithm 4.3: Computes the shortest byte array representation in big-endian byte order
of a given non-negative integer x P N.

Algorithm: ToByteArraypx, nq

Input: Non-negative integer x P N
Length of byte array n ě ‖x‖

8
for i “ 1, . . . , n do

bn´i Ð x mod 256
xÐ t x

256 u

B Ð xb0, . . . , bn´1y

return B // B P Bn

Algorithm 4.4: Computes the byte array representation in big-endian byte order of a given
non-negative integer x P N. The given length n ě ‖x‖

8 of the output byte array B implies
that the first n´ r

‖x‖
8 s bytes of B are zeros.

Defining such a conversion depends on whether the conversion needs to be injective or not.
In this document, we only need the following non-injective conversion,

x “
n´1
ÿ

i“0

Bris ¨ 256n´i´1, for n “ |B|,

in which leading zeros are ignored. With xÐ ToIntegerpBq we denote a call to an algorithm,
which computes this conversion for all B P B˚. It will be used in non-interactive zero-
knowledge proofs to generate integer challenges from Fiat-Shamir hash values (see Alg. 7.4
and Alg. 7.5). Note that x Ð ToIntegerpToByteArraypxqq holds for all x P N, but B Ð

ToByteArraypToIntegerpBqq only holds for byte arrays without any leading zeros (i.e., only
when Br0s ‰ 0). One the other hand, B Ð ToByteArraypToIntegerpBq, nq holds for all byte
arrays B P Bn of length n.

4.1.3. Converting UCS Strings to Byte Arrays

Let Aucs denote the Universal Character Set (UCS) as defined by ISO/IEC 10646, which
contains about 128, 000 abstract characters. A sequence S “ xs0, . . . , sn´1y P A

˚
ucs of char-

acters si P Aucs is called UCS string of length n. A˚ucs denotes the set of all UCS strings,
including the empty string. Concrete string instances are written in the usual string no-
tation, for example "" (empty string), "x" (string consisting of a single character ’x’), or
"Hello".

24



Algorithm: ToIntegerpBq

Input: Byte array B P B˚
xÐ 0
for i “ 0, . . . , |B| ´ 1 do

xÐ 256 ¨ x`Bris

return x // x P N

Algorithm 4.5: Computes a non-negative integer from a given byte array B. Leading
zeros of B are ignored.

To encode a string S P A˚ucs as byte array, we use the UTF-8 character encoding as defined
in ISO/IEC 10646 (Annex D). Let B Ð UTF8pSq denote an algorithm that computes
corresponding byte arrays B P B˚, in which characters use 1, 2, 3, or 4 bytes of space
depending on the type of character. For example, x48, 65, 6C, 6C, 6Fy Ð UTF8p"Hello"q
is a byte array of length 5, because it only consists of Basic Latin characters, whereas
x56, 6F, 69, 6C, C3, A0y Ð UTF8p"Voilà"q contains 6 bytes due to the Latin-1 Supplement
character ’à’ translating into two bytes. UTF-8 is the only character encoding used in this
document for general UCS strings. It will be used for computing cryptographic hash values
of given input strings (see Section 4.3). Since implementations of UTF-8 character encoding
are widely available, we do not provide an explicit pseudo-code algorithm.

4.2. Strings

Let A “ tc1, . . . , cNu be an alphabet of size N ě 2. The characters in A are totally ordered,
let’s say as c1 ă ¨ ¨ ¨ ă cN , which we express by defining a ranking function rankApciq “ i´1
together with its inverse rank´1

A piq “ ci`1. A string S P A˚ is a sequence S “ xs0, . . . , sk´1y

of characters si P A.

4.2.1. Converting Integers to Strings

Let x P N be a non-negative integer. We use S Ð ToStringpx, k,Aq to denote an algorithm
that returns the following string of length k ě logN x in big-endian order:

S “ xs0, . . . , sk´1y, where si “ rank´1
A p

Y x

Nk´i´1

]

mod Nq.

We will use this conversion in Alg. 7.13 to print long integers in a more compact form. Note
that the following algorithm is almost identical to Alg. 4.4 given in Section 4.1.1 to obtain
byte arrays from integers.

4.2.2. Converting Strings to Integers

In Algs. 7.18 and 7.30, string representations S Ð ToStringpx, k,Aq of length k must be
reconverted into their original integers x P N. In a similar way as in Section 4.1.2, we obtain

25



Algorithm: ToStringpx, k,Aq

Input: Integer x P N
String length k ě logN x
Alphabet A “ tc1, . . . , cNu

for i “ 1, . . . , k do
sk´i Ð rank´1

A px mod Nq
xÐ t xN u

S Ð xs0, . . . , sk´1y

return S // S P Ak

Algorithm 4.6: Computes a string representation of length k in big-endian order of a given
non-negative integer x P N and relative to some alphabet A.

the inverse of ToStringpx, k,Aq by

x “
k´1
ÿ

i“0

rankApSrisq ¨N
k´i´1 ă Nk,

in which leading characters with rank 0 are ignored. The following algorithm is an adaptation
of Alg. 4.5.

Algorithm: ToIntegerpS,Aq

Input: String S P A˚

Alphabet A “ tc1, . . . , cNu
xÐ 0
for i “ 0, . . . , |S| ´ 1 do

xÐ N ¨ x` rankApSrisq

return x // x P N

Algorithm 4.7: Computes a non-negative integer from a given string S.

4.2.3. Converting Byte Arrays to Strings

Let B P Bn be a byte array of length n. The goal is to represent B by a unique string S P Ak

of length k, such that k is as small as possible. We will use this conversion in Algs. 7.13,
7.28 and 7.36 to print and display byte arrays in human-readable form. Since there are
|Bn| “ 256n “ 28n byte arrays of length n and |Ak| “ Nk strings of length k, we derive
k “ r 8n

log2N
s from the inequality 28n ď Nk. To obtain an optimal string representation of

B, let xB Ð ToIntegerpBq ă 28n be the representation of B as a non-negative integer. This
leads to the following length-optimal mapping from Bn to Ak.

26



Algorithm: ToStringpB,Aq

Input: Byte array B P Bn
Alphabet A “ tc1, . . . , cNu

xB Ð ToIntegerpBq // see Alg. 4.5

k Ð
Q

8n
log2N

U

S Ð ToStringpxB, k, Aq // see Alg. 4.6
return S // S P A˚

Algorithm 4.8: Computes the shortest string representation of a given byte array B rela-
tive to some alphabet A.

4.3. Hash Algorithms

A cryptographic hash algorithm defines a mapping h : B˚ Ñ B`, which transforms an input
bit array B P B˚ of arbitrary length into an output bit array hpBq P B` of length `, called
the hash value of B. In practice, hash algorithms such as SHA-1 or SHA-256 operate on
byte arrays rather than bit arrays, which implies that the length of the input and output
bit arrays is a multiple of 8. We denote such practical algorithms by H Ð HashLpBq, where
B P B˚ and H P BL are byte arrays of length L “ `

8 . Throughout this document, we do not
specify which of the available practical hash algorithms that is compatible with the output
bit length ` is used. For this we refer to the technical specification in Chapter 8.

4.3.1. Hash Values of Integers and Strings

To compute the hash value of a non-negative integer x P N, it is first encoded as a byte
array B Ð ToByteArraypxq using Alg.4.3 and then hashed into HashLpBq. The whole process
defines a mapping h : N Ñ BL. Similarly, for an input string S P A˚ucs, we compute the
hash value HashLpBq of the byte array B Ð UTF8pSq using UTF-8 character encoding (see
Section 4.1.3). In this case, we obtain a mapping h : A˚ucs Ñ BL. Both cases are included
as special cases in Alg. 4.9.

4.3.2. Hash Values of Multiple Inputs

Let b “ pB1, . . . , Bkq be a vector of multiple input byte arrays Bi P B˚ of arbitrary length.
The hash value of b can be defined recursively by

hpbq “

$

’

&

’

%

hpxyq, if k “ 0,

hpB1q, if k “ 1,

hphpB1q } ¨ ¨ ¨ }hpBkqq, if k ą 1.

We distinguish the special case of k “ 1 to avoid computing hphpB1qq for a single input and
to be able to use hpB1, . . . , Bkq as a consistent alternative notation for hpbq.

27



This definition can be generalized to multiple input values of various types. Let pv1, . . . , vkq
be such a tuple of general input values, where vi is either a byte array, an integer, a string,
or another tuple of general input values. As above, we define the hash value recursively as

hpv1, . . . , vkq “

$

’

&

’

%

hpxyq, if k “ 0,

hpv1q, if k “ 1,

hphpv1q } ¨ ¨ ¨ }hpvkqq, if k ą 1.

Note that an arbitrary tree containing byte arrays, integers, or strings in its leaves can be
hashed in this way. Calling such a general hash algorithm is denoted by

H Ð RecHashLpv1, . . . , vkq,

where subscript L indicates that the algorithm is instantiated with a cryptographic hash
algorithm of output length L. The details of the recursion are given in Alg. 4.9. Note that
the special case k “ 0 is included in the general case k ‰ 1, in which the empty byte array
is assigned to B. Alg. 4.9 also specifies a row-wise recursion for hashing two-dimensional
matrix.

Algorithm: RecHashLpv1, . . . , vkq

Input: Input values vi P Vi, Vi unspecified, k ě 0
if k “ 1 then

w Ð v1

if w P B˚ then
return HashLpwq

if w P N then
return HashLpToByteArraypwqq // see Alg. 4.3

if w P A˚ucs then
return HashLpUTF8pwqq // see Section 4.1.3

if w “ pw1, . . . , wnq then
return RecHashLpw1, . . . , wnq

if w “ pwijqnˆm then
for i “ 1, . . . , n do

wi Ð pwi,1, . . . , wi,mq

return RecHashLpw1, . . . ,wnq

return K // type of w not supported

else
B Ð } ki“1 RecHashLpviq
return HashLpBq

Algorithm 4.9: Computes the hash value hpv1, . . . , vkq P BL of multiple inputs v1, . . . , vk
in a recursive manner.

28



5. Cryptographic Primitives

5.1. ElGamal Encryption

An ElGamal encryption scheme is a triple pKeyGen,Enc,Decq of algorithms, which operate
on a cyclic group for which the DDH problem is believed to be hard [21]. The most common
choice for such a group is the subgroup of quadratic residues Gq Ă Z˚p of prime order q,
where p “ 2q`1 is a safe prime large enough to resist index calculus and other methods for
solving the discrete logarithm problem. The public parameters of an ElGamal encryption
scheme are thus p, q, and a generator g P Gqzt1u.

5.1.1. Using a Single Key Pair

An ElGamal key pair is a tuple psk, pkq Ð KeyGenpq, where sk PR Zq is the randomly chosen
private decryption key and pk “ gsk P Gq the corresponding public encryption key. If
m P Gq denotes the plaintext to encrypt, then

Encpkpm, rq “ pm ¨ pk
r, grq P Gq ˆGq

denotes the ElGamal encryption of m with randomization r PR Zq. Note that the bit length
of an encryption e Ð Encpkpm, rq is twice the bit length of p. For a given encryption
e “ pa, bq, the plaintext m can be recovered by using the private decryption key sk to
compute

mÐ Decskpeq “ a ¨ b´sk.

For any given key pair psk, pkq Ð KeyGenpq, it is easy to show that DecskpEncpkpm, rqq “ m
holds for all m P Gq and r P Zq.

The ElGamal encryption scheme is provably IND-CPA secure under the DDH assumption
and homomorphic with respect to multiplication. Therefore, component-wise multiplication
of two ciphertexts yields an encryption of the product of respective plaintexts:

Encpkpm1, r1q ¨ Encpkpm2, r2q “ Encpkpm1m2, r1 ` r2q.

In a homomorphic encryption scheme like ElGamal, a given encryption eÐ Encpkpm, rq can
be re-encrypted by multiplying e with an encryption of the neutral element 1. The resulting
re-encryption,

ReEncpkpe, r
1q “ e ¨ Encpkp1, r

1q “ Encpkpm, r ` r
1q,

is clearly an encryption of m with a fresh randomization r ` r1.

29



5.1.2. Using a Shared Key Pair

If multiple parties generate ElGamal key pairs as described above, let’s say pskj , pkjq Ð
KeyGenpq for parties j P t1, . . . , su, then it is possible to aggregate the public encryption
keys into a common public key pk “

śs
j“1 pkj , which can be used to encrypt messages as

described above. The corresponding private keys skj can then be regarded as key shares
of the private key sk “

řs
j“1 skj , which is not known to anyone. This means that an

encryption e “ encpkpm, rq can only be decrypted if all parties collaborate. This idea can
be generalized such that only a threshold number t ď s of parties is required to decrypt a
message, but this property is not needed in this document.

In the setting where s parties hold shares of a common key pair psk, pkq, the decryption of
eÐ Encpkpm, rq can be conducted without revealing the key shares skj :

Decskpeq “ a ¨ b´sk “ a ¨ b´
řs
j“1 skj “ a ¨ p

s
ź

j“1

bsj q´1 “ a ¨ p
s
ź

j“1

bjq
´1,

where each partial decryption bj “ bskj can be computed individually by the respective
holder of the key share skj .

5.2. Pedersen Commitment

The (extended) Pedersen commitment scheme is based on a cyclic group for which the DL
problem is believed to be hard. In this document, we use the same q-order subgroup Gq Ă Z˚p
of integers modulo p “ 2q ` 1 as in the ElGamal encryption scheme. Let g, h1, . . . , hn P
Gqzt1u be independent generators of Gq, which means that their relative logarithms are
provably not known to anyone. For a deterministic algorithm that generates an arbitrary
number of independent generators, we refer to the NIST standard FIPS PUB 186-4 [2,
Appendix A.2.3]. Note that the deterministic nature of this algorithm enables the verification
of the generators by the public.

The Pedersen commitment scheme consists of two deterministic algorithms, one for com-
puting a commitment

Compm, rq “ grhm1
1 ¨ ¨ ¨hmnn P Gq

to n messages m “ pm1, . . . ,mnq P Znq with randomization r PR Zq, and one for checking
the validity of c Ð Compm, rq when m and r are revealed. In the special case of a single
message m, we write Compm, rq “ grhm using a second generator h independent from g.
The Pedersen commitment scheme is perfectly hiding and computationally binding under
the DL assumption.

In this document, we will also require commitments to permutations ψ : t1, . . . , nu Ñ
t1, . . . , nu. Let Bψ “ pbijqnˆn be the permutation matrix of ψ, which consists of bits

bij “

#

1, if ψpiq “ j,

0, otherwise.

30



Note that each row and each column in Bψ has exactly one 1-bit. If bj “ pb1,j , . . . , bn,jq
denotes the j-th column of Bψ, then

Compbj , rjq “ grj
n
ź

i“1

h
bij
i “ grjhi, for i “ ψ´1pjq,

is a commitment to bj with randomization rj . By computing such commitments to all
columns,

Compψ, rq “ pCompb1, r1q, . . . ,Compbn, rnqq,

we obtain a commitment to ψ with randomizations r “ pr1, . . . , rnq. Note that the size of
such a permutation commitment cÐ Compψ, rq is Opnq.

5.3. Oblivious Transfer

An oblivious transfer results from the execution of a protocol between two parties called
sender and receiver. In a k-out-of-n oblivious transfer, denoted by OTkn, the sender holds
a list m “ pM1, . . . ,Mnq of messages Mi P B` (bit strings of length `), of which k ď n can
be selected by the receiver. The selected messages are transferred to the receiver such that
the sender remains oblivious about the receiver’s selections and that the receiver remains
oblivious about the n ´ k other messages. We write s “ ps1, . . . , skq for the k selections
sj P t1, . . . , nu of the receiver and ms “ pMs1 , . . . ,Mskq for the k messages to transfer.

In the simplest possible case of a two-round protocol, the receiver sends a randomized query
α Ð Queryps, rq to the sender, the sender replies with β Ð Replypα,mq, and the receiver
obtains ms Ð Openpβ, s, rq by removing the randomization r from β. For the correctness
of the protocol, OpenpReplypQueryps, rq,mq, s, rq “ ms must hold for all possible values of
m, s, and r. A triple of algorithms pQuery,Reply,Openq satisfying this property is called
(two-round) OTk

n-scheme.

An OTkn-scheme is called secure, if the three algorithms guarantee both receiver privacy and
sender privacy. Receiver privacy is defined in terms of indistinguishable selections s1 and
s2 relative to corresponding queries q1 and q2, whereas sender privacy is defined in terms
of indistinguishable transcripts obtained from executing the real protocol and a simulation
of the ideal protocol in the presence of a malicious receiver. In the ideal protocol, s and
m are sent to an incorruptible trusted third party, which forwards ms to the simulator. In
the literature, there is a subtle but important distinction between sender privacy and weak
sender privacy [38]. In the latter case, by selecting out-of-bounds indices, the receiver may
still learn up to k messages.

5.3.1. OT-Scheme by Chu and Tzeng

There are many general ways of constructing OTkn schemes, for example on the basis of
a less complex OT1

n- or OT1
2-scheme, but such general constructions are usually not very

efficient. In this document, we use the second OTkn-scheme presented in [18].1 We instantiate

1The modified protocol as presented in [19] is slightly more efficient, but fits less into the particular
context of this document.

31



the protocol to the same q-order subgroup Gq Ă Z˚p of integers modulo p “ 2q ` 1 as in
the ElGamal encryption scheme. Besides the description of this group, there are several
public parameters: a generator g P Gqzt1u, an encoding Γ : t1, . . . , nu Ñ Gq of the possible
selections into Gq, and a collision-resistant hash function h : B˚ Ñ B` with output length `.
In Prot. 5.1, we provide a detailed formal description of the protocol. The query is a vector
a P Gk

q of length k and the response is a tuple pb, c, dq consisting of a vector b P Gk of length
k, a vector c P pB`qn of length n, and a single value d P Gq, i.e.,

aÐ Queryps, rq,

pb, c, dq Ð Replypa,m, zq,

ms Ð Openpb, c, d, s, rq,

where r “ pr1, . . . , rkq PR Zkq is the randomization vector used for computing the query and
z PR Zq an additional randomization used for computing the response.

Receiver Sender

knows s “ ps1, . . . , skq knows m “ pM1, . . . ,Mnq

for j “ 1, . . . , k

– pick random rj PR Zq
– compute aj “ Γpsjq ¨ g

rj

a “ pa1, . . . , akq

pick random z PR Zq
for j “ 1, . . . , k

– compute bj “ azj

for i “ 1, . . . , n

– compute ki “ Γpiqz

– compute Ci “Mi ‘ hpkiq

compute d “ gz

b “ pb1, . . . , bkq,
c “ pC1, . . . , Cnq, d

for j “ 1, . . . , k

– compute kj “ bj ¨ d
´rj

– compute Msj “ Csj ‘ hpkjq

Protocol 5.1: Two-round OTk
n-scheme with weak sender privacy, where g P Gqzt1u is a

generator of Gq Ă Z˚p , Γ : t1, . . . , nu Ñ Gq an encoding of the selections into Gq, and
h : B˚ Ñ B` a collision-resistant hash function with output length `.

Executing Query and Open requires k fixed-base exponentiations in Gq each, whereas Reply
requires n` k` 1 fixed-exponent exponentiations in Gq. Note that among the 2k exponen-
tiations of the receiver, k can be precomputed, and among the n ` k ` 1 exponentiations

32



of the sender, n ` 1 can be precomputed. Therefore, only k online exponentiations remain
for both the receiver and the sender, i.e., the protocol is very efficient in terms of computa-
tion and communication costs. In the random oracle model, the scheme is provably secure
against a malicious receiver and a semi-honest sender. Receiver privacy is unconditional and
weak sender privacy is computational under the chosen-target computational Diffie-Hellman
(CT-CDH) assumption. Note that the CT-CDH assumption is weaker than standard CDH
[13].

5.3.2. Full Sender Privacy in the OT-Scheme by Chu and Tzeng

As discussed above, the two major properties of an OT-scheme—receiver privacy and weak
sender privacy—are given under reasonable assumptions in Chu and Tzeng’s scheme. How-
ever, full sender privacy, which guarantees that by submitting t ď k invalid queries aj R
tΓpiq ¨ gr : 1 ď i ď n, r P Zqu, the receiver learns only up to k ´ t messages, is not provided.
For example, by submitting an invalid query aj “ Γpsjq

zgrj for z ą 1, the scheme by Chu
and Tzeng allows the receiver to obtain a correct message Msj “ Csj ‘ hppbi ¨ d

´rj q´zq, i.e.,
Chu and Tzeng’s scheme is clearly not fully sender-private. Various similar deviations from
the protocol exist for obtaining correct messages. While such deviations are not a problem
for many OT applications, they can lead to severe vote integrity attacks in the e-voting
application context of this document.2

In Prot. 5.2 we present an extension of Chu and Tzeng’s scheme that provides full sender
privacy. The main difference to the basic scheme is the size of the reply to a query, which
consists now of a matrix C P pB`qnk of size nk instead of a vector c P pB`qn of size n. There
are also more random values involved in the computation of the reply. The signatures of the
three algorithms are as follows:

aÐ Queryps, rq,

pb,C, dq Ð Replypa,m, z1, z2, β1, . . . , βkq,

ms Ð Openpb,C, d, s, rq.

Another important difference of the extended scheme is the shape of the queries aj “
pΓpsjq ¨ g

rj
1 , g

rj
2 q, which correspond to ElGamal encryptions for a public key g1 “ gx2 . As a

consequence, receiver privacy depends now on the decisional Diffie-Hellman assumption, i.e.,
it is no longer unconditional. However, the close connection between OT queries and ElGa-
mal encryptions is a key property that we use for submitting ballots (see Section 6.4.2).

The performance of the extended scheme is slightly inferior compared to the basic scheme.
On the receiver’s side, executing Query requires 2k fixed-base exponentiations in Gq (which
can all be precomputed), and Open requires k fixed-base exponentiations in Gq. On the
sender’s side, Reply requires n`2k`2 fixed-exponent exponentiations in Gq (of which n`2
are precomputable). Therefore, k online exponentiations remain for the receiver and 2k
for the sender. Note that due to the size of th resulting matrix C, the overall asymptotic
running time for the sender is Opnkq.

2The existence of such attacks against the protocol presented in an earlier version of this document have
been discovered by Tomasz Truderung [51, Appendix B].

33



Receiver Sender

knows s “ ps1, . . . , skq knows m “ pM1, . . . ,Mnq

for j “ 1, . . . , k

– pick random rj PR Zq
– compute aj,1 “ Γpsjq ¨ g

rj
1

– compute aj,2 “ g
rj
2

– let aj “ paj,1, aj,2q

a “ pa1, . . . , akq

pick random z1, z2 PR Zq
for j “ 1, . . . , k

– pick random βj PRGq
– compute bj “ az1j,1a

z2
j,2βj

for i “ 1, . . . , n

– compute ki “ Γpiqz1

– for j “ 1, . . . , k

– compute kij “ kiβj

– compute Cij “Mi ‘ hpkijq

compute d “ gz11 g
z2
2

b “ pb1, . . . , bkq,
C “ pCijqnˆk, d

for j “ 1, . . . , k

– compute kj “ bj ¨ d
´rj

– compute Msj “ Csj ,j ‘ hpkjq

Protocol 5.2: Two-round OTk
n-scheme with sender privacy receiver, where g1, g2 P Gqzt1u

are independent generators of Gq Ă Z˚p , Γ : t1, . . . , nu Ñ Gq an encoding of the selections
into Gq, and h : B˚ Ñ B` a collision-resistant hash function with output length `.

5.3.3. Simultaneous Oblivious Transfers

The OTk
n-scheme from the previous subsection can be extended to the case of a sender

holding multiple lists ml of length nl, from which the receiver selects kl ď nl in each case.
If t is the total number of such lists, then n “

řt
l“1 nl is the total number of available

messages and k “
řt
l“1 kl the total number of selections. A simultaneous oblivious transfer

of this kind is denoted by OTk
n for vectors n “ pn1, . . . , ntq and k “ pk1, . . . , ktq. It can be

realized in two ways, either by conducting t such kl-out-of-nl oblivious transfers in parallel,
for example using the scheme from the previous subsection, or by conducting a single k-out-
of-n oblivious transfer relative to m “ m1} ¨ ¨ ¨ }mt “ pM1, . . . ,Mnq with some additional
constraints relative to the choice of s “ ps1, . . . , skq.

34



To define these constraints, let k1l “
řl´1
i“1 ki and n1l “

řl´1
i“1 ni for 1 ď l ď t ` 1. This

determines for each j P t1, . . . , ku a unique index l P t1, . . . , tu satisfying k1l ă j ď k1l`1,
which we can use to define a constraint

n1l ă sj ď n1l`1 (5.1)

for every selection sj in s. This guarantees that the first k1 messages are selected from m1,
the next k2 messages from m2, and so on.

Starting from Prot. 5.2, the sender’s algorithm Reply can be generalized in a natural way
by introducing an additional outer loop over 1 ď l ď t and by iterating the inner loops
from n1l ` 1 to n1l ` nl and from k1l ` 1 to k1l ` kl, respectively, as shown in Prot. 5.3. Note
that the receiver’s algorithms Query and Open are not affected by this change. It is easy
to demonstrate that this generalization of the OTk

n-scheme of the previous subsection is
equivalent to performing t individual oblivious transfers in parallel. Note that the total
number of exponentiations in Gq remains the same for all three algorithms.

In this extended version of the protocol, the resulting matrix C “ pCijqnˆk of ciphertexts
contains only

řt
l“1 klnl non-trivial entries, which can be considerably less than its full size

kn. As an example, consider the case of t “ 3 simultaneous oblivious transfers with k “
p2, 3, 1q and n “ p3, 4, 2q. The resulting 9-by-6 matrix C will then look as follows:

C “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

C1,1 C1,2

C2,1 C2,2

C3,1 C3,2

C4,3 C4,4 C4,5

C5,3 C5,4 C5,5

C6,3 C6,4 C6,5

C7,3 C7,4 C7,5

C8,6

C9,6

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

In this particular case, the matrix contains 2 ¨ 3 ` 3 ¨ 4 ` 1 ¨ 2 “ 20 regular entries Cij and
34 empty entries.

5.3.4. Oblivious Transfer of Long Messages

If the output length ` of the available hash function h : B˚ Ñ B` is shorter than the messages
Mi known to the sender, the methods of the previous subsections can not be applied directly.
The problem is the computation of the values Ci “Mi‘hpkiq by the sender, for which equally
long hash values hpkiq are needed. In general, for messages Mi P B`m of length `m ą `, we
can circumvent this problem by applying the counter mode of operation (CTR) from block
ciphers. If we suppose that `m “ r` is a multiple of `, we can split each message Mi into r
blocks Mij P B` of length ` and process them individually using hash values hpki, jq. Here,
the index j P t1, . . . , ku plays the role of the counter. This is identical to applying a single
concatenated hash value hpki, 1q } ¨ ¨ ¨ }hpki, kq of length `m to Mi. If `m is not an exact
multiple of `, we do the same for r “ r`m{`s block, but then truncate the first `m bits from
the resulting concatenated hash value value to obtain the desired length.

35



Receiver Sender

knows s “ ps1, . . . , skq knows m “ pM1, . . . ,Mnq

for j “ 1, . . . , k

– pick random rj PR Zq
– compute aj,1 “ Γpsjq ¨ g

rj
1

– compute aj,2 “ g
rj
2

– let aj “ paj,1, aj,2q

a “ pa1, . . . , akq

pick random z1, z2 PR Zq
for j “ 1, . . . , k

– pick random βj PRGq
– compute bj “ az1j,1a

z2
j,2βj

for l “ 1, . . . , t

– for i “ n1l ` 1, . . . , n1l ` nl

– compute ki “ Γpiqz1

– for j “ k1l ` 1, . . . , k1l ` kl

– compute kij “ kiβj

– compute Cij “Mi ‘ hpkijq

compute d “ gz11 g
z2
2

b “ pb1, . . . , bkq,
C “ pCijqnˆk, d

for j “ 1, . . . , k

– compute kj “ bj ¨ d
´rj

– compute Msj “ Csj ,j ‘ hpkjq

Protocol 5.3: Two-round OTk
n-scheme with sender privacy, where g1, g2 P Gqzt1u are inde-

pendent generators of Gq Ă Z˚p , Γ : t1, . . . , nu Ñ Gq an encoding of the selections into Gq,
and h : B˚ Ñ B` a collision-resistant hash function with output length `.

5.4. Non-Interactive Preimage Proofs

Non-interactive zero-knowledge proofs of knowledge are important building blocks in cryp-
tographic protocol design. In a non-interactive preimage proof

NIZKPrpxq : y “ φpxqs

for a one-way group homomorphism φ : X Ñ Y , the prover proves knowledge of a secret
preimage x “ φ´1pyq P X for a public value y P Y [41]. The most common construction
of a non-interactive preimage proof results from combining the Σ-protocol with the Fiat-
Shamir heuristic [22]. Proofs constructed in this way are perfect zero-knowledge in the

36



random oracle model. In practical implementations, the random oracle is approximated
with a collision-resistant hash function h.

Generating a preimage proof pt, sq Ð GenProofφpx, yq for φ consists of picking a random
value w PRX and computing a commitment t “ φpwq P Y , a challenge c “ hpy, tq, and a
response s “ w ` c ¨ x P X. Verifying a proof includes computing c “ hpy, tq and checking
t “ φpsq ¨y´c. For a given proof π “ pt, sq, this process is denoted by bÐ CheckProofφpπ, yq
for b P B. Clearly, we have

CheckProofφpGenProofφpx, yq, yq “ 1

for all x P X and y “ φpxq P Y .

5.4.1. Composition of Preimage Proofs

Preimage proofs for two (or more) one-way homomorphisms φ1 : X1 Ñ Y1 and φ2 : X2 Ñ

Y2 can be reduced to a single preimage proof for φ : X1 ˆ X2 Ñ Y1 ˆ Y2 defined by
φpx1, x2q “ pφ1px1q, φ2px2qq. In this case, w “ pw1, w2q P X1 ˆ X2, t “ pt1, t2q P Y1 ˆ Y2,
and s “ ps1, s2q P X1 ˆ X2 are pairs of values, whereas c remains a singe value. This
way of combining multiple preimage proofs into a single preimage proof is sometimes called
AND-composition. The following two equivalent notations are therefore equivalent and can
be used interchangeably:

NIZKPrpx1, x2q : y1 “ φ1px1q ^ y2 “ φ2px2qs “ NIZKPrpx1, x2q : py1, y2q “ φpx1, x2qs.

An important special case of an AND-composition arises when φ1 : X Ñ Y1 and φ2 : X Ñ Y2

have a common domain X and when the y1 “ φ1pxq and y2 “ φ2pxq have the same preimage
x P X. The corresponding equality proof,

NIZKPrpxq : y1 “ φ1pxq ^ y2 “ φ2pxqs “ NIZKPrpxq : py1, y2q “ φpxqs,

shows that y1 and y2 have an equal preimage. In the special case of two exponential functions
φ1pxq “ gx and φ2pxq “ hx, this demonstrates the equality of discrete logarithms [15].

5.4.2. Applications of Preimage Proofs

Let us look at some concrete instantiations of the above preimage proof. Each of them will
be used later in this document.

Schnorr Identification. In a Schnorr identification scheme, the holder of a private credential
x P X proves knowledge of x “ φ´1pyq “ logg y, where g is a generator in a suitable
group Y in which the DL assumption holds [48]. This leads to one of the simplest and
most fundamental instantiation of the above preimage proof,

NIZKPrpxq : y “ gxs,

where φpxq “ gx is the exponential function to base g. For w PRX, the prover com-
putes t “ gw, c “ hpt, yq, and s “ w ` c ¨ x, and the verifier checks π “ pt, sq by
t “ y´c ¨ gs.

37



Proof of Knowledge of ElGamal Plaintext. Another application of a preimage proof re-
sults from the ElGamal encryption scheme. The goal is to prove knowledge of the plain-
text m and the randomization r for a given ElGamal ciphertext pa, bq Ð Encpkpm, rq,
which we can denote as

NIZKPrpm, rq : e “ Encpkpm, rqs “ NIZKPrpm, rq : pa, bq “ pgr,m ¨ pkrqs.

Since Encpk defines a homomorphism from Gq ˆZq to Gq ˆGq, both the commitment
t “ pt1, t2q P Gq ˆ Gq and the response s “ ps1, s2q P Gq ˆ Zq are pairs of values.
Generating the proof requires two and verifying the proof four exponentiations in Gq.

ElGamal Decryption Proof. The decryption m Ð Decskpeq of an ElGamal ciphertext e “
pa, bq defines a mapping from Gq ˆ Gq to Gq, but this mapping is not homomorphic.
The desired decryption proof,

NIZKPrpskq : m “ Decskpeq ^ pk “ gsks “ NIZKPrpskq : pm, pkq “ pa ¨ b´sk, gskqs,

which demonstrates that the correct decryption key sk has been used, can therefore not
be treated directly as an application of a preimage proof. However, since m “ a ¨ b´sk

can be rewritten as a{m “ bsk, we can achieve the same goal by

NIZKPrpskq : pa{m, pkq “ pbsk, gskqs.

Note that this proof is a standard proof of equality of discrete logarithms. We will use
it to prove the correctness of a partial decryption bj “ bskj , where skj is a share of the
private key sk (see Section 5.1.2).

5.5. Wikström’s Shuffle Proof

A cryptographic shuffle of a list e “ pe1, . . . , eN q of ElGamal encryptions ei Ð Encpkpmi, riq
is another list of ElGamal encryptions e1 “ pe11, . . . , e1N q, which contains the same plaintexts
mi in permuted order. Such a shuffle can be generated by selecting a random permutation
ψ : t1, . . . , Nu Ñ t1, . . . , Nu from the set ΨN of all such permutations (e.g., using Knuth’s
shuffle algorithm [34]) and by computing re-encryptions e1i Ð ReEncpkpej , r

1
jq for j “ ψpiq.

We write
e1 Ð Shufflepkpe, r

1, ψq

for an algorithm performing this task, where r1 “ pr11, . . . , r
1
N q denotes the randomization

used to re-encrypt the input ciphertexts.

Proving the correctness of a cryptographic shuffle can be realized by proving knowledge of
ψ and r1, which generate e1 from e in a cryptographic shuffle:

NIZKPrpψ, r1q : e1 “ Shufflepkpe, r
1, ψqs.

Unfortunately, since Shufflepk does not define a homomorphism, we can not apply the stan-
dard technique for preimage proofs. Therefore, the strategy of what follows is to find an
equivalent formulation using a homomorphism.

The shuffle proof according to Wikström and Terelius consists of two parts, an offline and
an online proof. In the offline proof, the prover computes a commitment c Ð Compψ, rq

38



and proves that c is a commitment to a permutation matrix. In the online proof, the prover
demonstrates that the committed permutation matrix has been used in the shuffle to obtain
e1 from e. The two proofs can be kept separate, but combining them into a single proof
results in a slightly more efficient method. Here, we only present the combined version of
the two proofs and we restrict ourselves to the case of shuffling ElGamal ciphertexts.

From a top-down perspective, Wikström’s shuffle proof can be seen as a two-layer proof
consisting of a top layer responsible for preparatory work such as computing the commitment
cÐ Compψ, rq and a bottom layer computing a standard preimage proof.

5.5.1. Preparatory Work

There are two fundamental ideas behind Wikström’s shuffle proof. The first idea is based
on a simple theorem that states that if Bψ “ pbijqNˆN is an N -by-N matrix over Zq and
px1, ..., xN q a vector of N independent variables, then Bψ is a permutation matrix if and only
if
řN
j“1 bij “ 1, for all i P t1, . . . , Nu, and

śN
i“1

řN
j“1 bijxi “

śN
i“1 xi. The first condition

means that the elements of each row of Bψ must sum up to one, while the second condition
requires that Bψ has exactly one non-zero element in each row.

Based on this theorem, the general proof strategy is to compute a permutation commitment
cÐ Compψ, rq and to construct a zero-knowledge argument that the two conditions of the
theorem hold for Bψ. This implies then that c is a commitment to a permutation matrix
without revealing ψ or Bψ.

For c “ pc1, . . . , cN q, r “ pr1, . . . , rN q, and r̄ “
řN
j“1 rj , the first condition leads to the

following equality:

N
ź

j“1

cj “
N
ź

j“1

grj
N
ź

i“1

h
bij
i “ g

řN
j“1 rj

N
ź

i“1

h
řN
j“1 bij

i “ gr̄
N
ź

i“1

hi “ Comp1, r̄q. (5.2)

Similarly, for arbitrary values u “ pu1, . . . , uN q P ZNq , u1 “ pu11, . . . , u
1
N q P ZNq , with

u1i “
řN
j“1 bijuj “ uj for j “ ψpiq, and r̃ “

řN
j“1 rjuj , the second condition leads to

two equalities:

N
ź

i“1

u1i “
N
ź

j“1

uj , (5.3)

N
ź

j“1

c
uj
j “

N
ź

j“1

pgrj
N
ź

i“1

h
bij
i q

uj “ g
řN
j“1 rjuj

N
ź

i“1

h
řN
j“1 bijuj

i “ gr̃
N
ź

i“1

h
u1i
i

“Compu1, r̃q, (5.4)

By proving that (5.2), (5.3), and (5.4) hold, and from the independence of the generators,
it follows that both conditions of the theorem are true and finally that c is a commitment
to a permutation matrix. In the interactive version of Wikström’s proof, the prover obtains
u “ pu1, . . . , uN q P ZNq in an initial message from the verifier, but in the non-interactive
version we derive these values from the public inputs, for example by computing ui Ð
Hashppe, e1, cq, iq.

39



The second fundamental idea of Wikström’s proof is based on the homomorphic property of
the ElGamal encryption scheme and the following observation for values u and u1 defined
in the same way as above:

N
ź

i“1

pe1iq
u1i “

N
ź

j“1

ReEncpkpej , r
1
jq
uj “

N
ź

j“1

ReEncpkpe
uj
j , r

1
jujq

“ ReEncpkp
N
ź

j“1

e
uj
j ,

N
ÿ

j“1

r1jujq “ Encpkp1, r
1q ¨

N
ź

j“1

e
uj
j , (5.5)

for r1 “
řN
j“1 r

1
juj . By proving (5.5), it follows that every e1i is a re-encryption of ej for

j “ ψpiq. This is the desired property of the cryptographic shuffle. By putting (5.2) to (5.5)
together, the shuffle proof can therefore be rewritten as follows:

NIZKP

»

—

—

—

—

–

pr̄, r̃, r1,u1q :

śN
j“1 cj “ Comp1, r̄q

^
śN
i“1 u

1
i “

śN
j“1 uj

^
śN
j“1 c

uj
j “ Compu1, r̃q

^
śN
i“1pe

1
iq
u1i “ Encpkp1, r

1q ¨
śN
j“1 e

uj
j

fi

ffi

ffi

ffi

ffi

fl

.

The last step of the preparatory work results from replacing in the above expression the
equality of products,

śN
i“1 u

1
i “

śN
j“1 uj , by an equivalent expression based on a chained

list ĉ “ tĉ1, . . . , ĉNu of Pedersen commitments with different generators. For ĉ0 “ h and
random values r̂ “ pr̂1, . . . , r̂N q P ZNq , we define ĉi “ gr̂i ĉ

u1i
i´1, which leads to ĉN “ Compu, r̂q

for u “
śN
i“1 ui and

r̂ “
N
ÿ

i“1

r̂i

N
ź

j“i`1

u1j .

Applying this replacement leads to the following final result, on which the proof construction
is based:

NIZKP

»

—

—

—

—

–

pr̄, r̂, r̃, r1, r̂,u1q :

śN
j“1 cj “ Comp1, r̄q

^ ĉN “ Compu, r̂q ^
”

ŹN
i“1pĉi “ gr̂i ĉ

u1i
i´1q

ı

^
śN
j“1 c

uj
j “ Compu1, r̃q

^
śN
i“1pe

1
iq
u1i “ Encpkp1, r

1q ¨
śN
j“1 e

uj
j

fi

ffi

ffi

ffi

ffi

fl

.

To summarize the preparatory work for the proof generation, we give a list of all necessary
computations:

• Pick r “ pr1, . . . , rN q PR ZNq and compute cÐ Compψ, rq.

• For i “ 1, . . . , N , compute ui Ð Hashppe, e1, cq, iq, let u1i “ uψpiq, pick r̂i PR Zq, and
compute ĉi “ gr̂i ĉ

u1i
i´1.

• Let r̂ “ pr̂1, . . . , r̂N q and ĉ “ pĉ1, . . . , ĉN q.

• Compute r̄ “
řN
j“1 rj , r̂ “

řN
i“1 r̂i

śN
j“i`1 u

1
j , r̃ “

řN
j“1 rjuj , and r

1 “
řN
j“1 r

1
juj .

Note that r̂ can be computed in linear time by generating the values
śN
j“i`1 u

1
j in an

incremental manner by looping backwards over j “ N, . . . , 1.

40



5.5.2. Preimage Proof

By rearranging all public values to the left-hand side and all secret values to the right-
hand side of each equation, we can derive a homomorphic one-way function from the final
expression of the previous subsection. In this way, we obtain the homomorphic function

φpx1, x2, x3, x4, x̂,x
1q

“ pgx1 , gx2 ,Compx1, x3q,ReEncpkp
N
ź

i“1

pe1iq
x1i ,´x4q, pg

x̂1 ĉ
x11
0 , . . . , g

x̂N ĉ
x1N
N´1qq,

which maps inputs px1, x2, x3, x4, x̂,x
1q P X of length 2N ` 4 into outputs

py1, y2, y3, y4, ŷq “ φpx1, x2, x3, x4, x̂,x
1q P Y

of length N ` 5, i.e., X “ Z4
q ˆ ZNq ˆ ZNq is the domain and Y “ G3

q ˆ G2
q ˆ GN

q the
co-domain of φ. Note that we slightly modified the order of the five sub-functions of φ for
better readability. By applying this function to the secret values pr̄, r̂, r̃, r1, r̂,u1q, we get a
tuple of public values,

pc̄, ĉ, c̃, e1, ĉq “ p

śN
j“1 cj

śN
j“1 hj

,
ĉN
hu
,
N
ź

j“1

c
uj
j ,

N
ź

j“1

e
uj
j , pĉ1, . . . , ĉN qq,

which can be derived from the public values e, e1, c, ĉ, and pk (and from u, which is derived
from e, e1, and c).

To summarize, we have a homomorphic one-way function φ : X Ñ Y , secret values x “
pr̄, r̂, r̃, r1, r̂,u1q P X, and public values y “ pc̄, ĉ, c̃, e1, ĉq “ φpxq P Y . We can therefore
generate a non-interactive preimage proof

NIZKP

»

—

—

–

pr̄, r̂, r̃, r1, r̂,u1q :

c̄ “ gr̄ ^ ĉ “ gr̂ ^ c̃ “ Compu1, r̃q

^ e1 “ ReEncpkp
śN
i“1pe

1
iq
u1i ,´r1q

^

”

ŹN
i“1pĉi “ gr̂i ĉ

u1i
i´1q

ı

fi

ffi

ffi

fl

,

using the standard procedure from Section 5.4. The result of such a proof generation,
pt, sq Ð GenProofφpx, yq, consists of two values t “ φpwq P Y of length N ` 5 and s “
ω` c ¨x P X of length 2N ` 4, which we obtain from picking w PRX (of length 2N ` 4) and
computing c “ Hashpy, tq. Alternatively, a different c “ Hashpy1, tq could be derived directly
from the public values y1 “ pe, e1, c, ĉ, pkq, which has the advantage that y “ pc̄, ĉ, c̃, e1, ĉq
needs not to be computed explicitly during the proof generation.

This preimage proof, together with the two lists of commitments c and ĉ, leads to the
desired non-interactive shuffle proof NIZKPrpψ, r1q : e1 “ Shufflepkpe, r

1, ψqs. We denote the
generation and verification of a such proof π “ pt, s, c, ĉq by

π Ð GenProofpkpe, e
1, r1, ψq

bÐ CheckProofpkpπ, e, e
1q.

respectively. Corresponding algorithms are depicted in Alg. 7.43 and Alg. 7.47. Note that
generating the proof requires 7N`4 and verifying the proof 9N`11 modular exponentiations
in Gq. The proof itself consists of 5N ` 9 elements (2N ` 4 elements from Zq and 3N ` 5
elements from Gq).

41



5.6. Schnorr Signatures

The Schnorr signature scheme consists of a triple pKeyGen,Sign,Verifyq of algorithms, which
operate on a cyclic group for which the DL problem is believed to be hard [48]. A common
choice is a prime-order subgroup Gq of the multiplicative group Z˚p of integers modulo p,
where the primes p “ kq`1 (for k ě 2) and q are large enough to resist all known methods for
solving the discrete logarithm problem. In this particular setting, the public parameters of a
Schnorr signature scheme are the values p and q, a generator g P Gqzt1u, and a cryptographic
hash function h : B˚ Ñ B`. Note that the output length ` of the hash function depends on
the scheme’s security parameter.

A key pair in the Schnorr signature scheme is a tuple psk, pkq Ð KeyGenpq, where sk PR Zq
is the randomly chosen private signature key and pk “ gsk P Gq the corresponding public
verification key. If m P B˚ denotes the message to sign and r PR Zq a random value, then a
Schnorr signature

pc, sq Ð Signskpm, rq P B` ˆ Zq
consists of two values c “ hpgr,mq and s “ r ´ c ¨ sk. Using the public key sk, a given
signature σ “ pc, sq of m can be verified by

bÐ Verifypkpσ,mq “

#

1, if hpgs¨ pkc,mq “ c,

0, otherwise.
.

For any given key pair psk, pkq Ð KeyGenpq, it is easy to show that VerifypkpSignskpm, rq,mq “
1 holds for all m P B˚ and r P Zq. Note that a Schnorr signature is very similar to a non-
interactive zero-knowledge proof NIZKPrpskq : pk “ gsks, in which m is passed as an
additional input to the Fiat-Shamir hash function (a few other subtle differences are due
to different traditions of describing Schnorr signatures and non-interactive zero-knowledge
proofs in the literature).

Assuming that the DL problem is hard in the chosen group, the Schnorr signature scheme is
provably EUF-CMA secure in the random oracle model. Due to (expired) patent restrictions,
Schnorr signatures have been standardized only recently and only for elliptic curves [1, 7].
As a consequence, despite multiple advantages over other DL-based schemes such as DSA
(which is not provably secure in the random oracle model), they are not yet very common
in practical applications.

5.7. Hybrid Encryption and Key-Encapsulation

For large messages m P B˚, public-key encryption schemes such as ElGamal are often not
efficient enough. This is the motivation for constructing hybrid encryption schemes, which
combine the advantages of (asymmetric) public-key encryption schemes with the advan-
tages of (symmetric) secret-key encryption schemes. The idea is to use a key-encapsulation
mechanism (KEM) to generate and encapsulate an ephemeral secret key k P B`, which is
used to encrypt m symmetrically. For a key pair psk, pkq Ð KeyGenpq, the result of a hy-
brid encryption is a ciphertext pc, c1q Ð Encpkpmq, which consists of the encapsulated key
c obtained from pc, kq Ð Encapspkpq and the symmetric ciphertext c1 Ð Enc1kpmq. The
decryption m Ð Decskpc, c

1q works in the opposite manner, i.e., first the symmetric key

42



k Ð Decapsskpcq is reconstructed from c and then the plaintext message m Ð Dec1kpc
1q is

decrypted from c1 using k. Note that a triple of algorithms pKeyGen,Enc,Decq constructed in
this way from a key-encapsulation mechanism pEncaps,Decapsq and a secret-key encryption
scheme pEnc1,Dec1q is a public-key encryption scheme. For this general construction, IND-
CPA and IND-CCA security can be proven depending on the properties of the underlying
schemes [33].

A simple KEM construction operates on a cyclic group for which at least the CDH problem
is believed to be hard. A common choice is a prime-order subgroup Gq of the multiplicative
group Z˚p of integers modulo p, where the p “ kq ` 1 (for k ě 2) and q are large primes. In
this particular setting, the public parameters of the KEM are the values p and q, a generator
g P Gqzt1u, and a cryptographic hash function h : B˚ Ñ B` with output length ` (which
corresponds to the length of the symmetric key k and therefore depends on the security
parameter). Note that this setting is identical to the setting of the above Schnorr signature
scheme, except for the slightly stronger computational assumption. A key pair in this setting
consists of two values sk PR Zq and pk “ gsk P Gq, and key encapsulation generates a pair
of values c “ gr and k “ hppkrq, where r PR Zq is chosen at random. Using the private key
sk, the symmetric key k “ hpcskq “ hppkrq can then be reconstructed from c. Note that
both key encapsulation and decapsulation require a single exponentiation in Gq.

Relative to the above KEM algorithms Encaps and Decaps, a proof for CPA-security can be
based either on DDH (standard model) or CDH (random oracle model) [33]. However, by
combining this KEM with a practical block cipher such as AES and an appropriate mode
of operation (and possibly a suitable padding algorithm), provable security is replaced by
practical security, i.e., it is assumed that the practical block cipher is a good approximation
of an ideal block cipher [20]. Nevertheless, given the significant efficiency benefits, instanti-
ations based on current standards such a as AES are commonly accepted and widely used
in practice.

43



Part III.

Protocol Specification

44



6. Protocol Description

The goal of this chapter is to describe the cryptographic voting protocol from various per-
spectives. We introduce the involved parties, describe their roles, and define the commu-
nication channels over which they exchange messages during a protocol execution. The
protocol itself has various phases—each with multiple sub-phases—which we describe with
sufficient technical details for understanding the general protocol design and the most im-
portant computational details. A comprehensive list of security and election parameters is
introduced beforehand. We also model the adversary and give a list of underlying trust
assumptions. Finally, we discuss the security properties that we obtain from applying the
adversary model and trust assumptions to the protocol. For further details in form of low-
level pseudo-code algorithms, we refer to Chapter 7. The protocol itself is an extension of
the protocol introduced in [27].

6.1. Parties and Communication Channels

In our protocol, we consider six different types of parties. A party can be a human being, a
computer, a human being controlling a computer, or even a combination of multiple human
beings and computers. In each of these cases, we consider them as atomic entities with
distinct tasks and responsibilities. Here is the list of parties we consider:

• The election administrator is responsible for setting up an election event. This includes
tasks such as defining the electoral roll, the number of elections, the set of candidates
in each election, and the eligibility of each voter in each election (see Section 6.3.2).
At the end of the election process, the election administrator determines and publishes
the final election result.

• A group of election authorities guarantees the integrity and privacy of the votes sub-
mitted during the election period. They are numbered with indices j P t1, . . . , su,
s ě 1. Before every election event, they establish jointly a public ElGamal encryption
key pk. They also generate the credentials and codes to be printed on the voting
cards. During vote casting, they respond to the submitted ballots and confirmations.
At the end of the election period, they perform a cryptographic shuffle of the en-
crypted votes. Finally, they use their private key shares skj to decrypt the votes in a
distributed manner.

• The printing authority is responsible for printing the voting cards and delivering them
to the voters. They receive the data necessary for generating the voting cards from
the bulletin board and the election authorities.

45



• The voters are the actual human users of the system. They are numbered with indices
i P t1, . . . , NEu, NE ě 0. Prior to an election event, they receive the voting card
from the printing authority, which they can use to cast and confirm a vote during the
election period using their voting client.

• The voting client is a machine used by some voter to conduct the vote casting and
confirmation process. Typically, this machine is either a desktop, notebook, or tablet
computer with a network connection and enough computational power to perform
cryptographic computations. The strict separation between voter and voting client is
an important precondition for the protocol’s security concept.

• The bulletin board is the central communication unit of the system. It implements
a broadcast channel with memory among the parties involved in the protocol [30].
For this, it keeps track of all the messages received during the protocol execution.
The messages from the election administrator and the election authorities are kept in
separate dedicated sections, which implies that bulletin board can authenticate them
unambiguously. The entire election data stored by the bulletin board defines the input
of the verification process.

An overview of the involved parties is given in Figure 6.1, together with the necessary
communication channels between them. It depicts the central role of the bulletin board as
a communication hub. The election administrator, for example, only communicates with
the bulletin board. Since only public messages are sent to the bulletin board, none of its
input or output channels is confidential. As indicated in Figure 6.1 by means of a padlock,
confidential channels only exist from the election authorities to the printing authority and
from the printing authority to the voters (and between the voter and the voting client). The
channel from the printing authority to the voters consists of sending a personalized voting
card by postal mail.

We assume that the election administrator and the election authorities are in possession
of a private signature key, which they use to sign all messages sent to the bulletin board.
Corresponding output channels are therefore authentic. In Section 6.6, we give further details
on how the presumed channel security can be achieved in practice, and in Section 7.6, we
give corresponding pseudo-code algorithms.

A special case is the channel between the voter and the voting client, which exists in form
of the device’s user interface and the voter’s interaction with the device. We assume that
this channel is confidential. Note that the bandwidth of this channel is obviously not very
high. All other channels are assumed to be efficient enough for transmitting the messages
and the signatures sufficiently fast.

46



VoterElection
Autorithies

Voting
Client

Printing
Authority

Bulletin
Board

Election
Administrator

Figure 6.1.: Overview of the parties and communication channels.

6.2. Adversary Model and Trust Assumptions

We assume that the general adversarial goal is to break the integrity or secrecy of the
votes, but not to influence the election outcome via bribery or coercion. We consider covert
adversaries, which may arbitrarily interfere with the voting process or deviate from the
protocol specification to reach their goals, but only if such attempts are likely to remain
undetected [9]. Voters and authorities are potential covert adversaries, as well as any external
party. This includes adversaries trying to spread dedicated malware to gain control over
the voting clients or to break into the systems operated by the election administrator, the
election authorities, or the bulletin board.

All parties are polynomially bounded and thus incapable of solving supposedly hard problems
such as the DDH problem or breaking cryptographic primitives such as contemporary hash
algorithms. This implies that adversaries cannot efficiently decrypt ElGamal ciphertexts
or generate valid non-interactive zero-knowledge proofs without knowing the secret inputs.
For making the system resistant against attacks of that kind, it is necessary to select the
cryptographic parameters of Section 6.3 with much care and in accordance with current
recommendations (see Chapter 8).

For preparing and conducting an election event, as well as for computing the final election
result, we assume that at least one honest election authority is following the protocol faith-
fully. In other words, we take into account that dishonest election authorities may collude
with the adversary (willingly or unwillingly), but not all of them in the same election event.
Trust assumptions like this are common in cryptographic voting protocols, but they may
be difficult to implement in practice. A difficult practical problem is to guarantee that the
authorities act independently, which implies, for example, that they use software written by
independent developers and run them on hardware from independent manufacturers. This
document does not specify conditions for the election authorities to reach a satisfactory
degree of independence.

47



There are two very strong trust assumptions in our protocol. The first one is attributed to
the voting client, which is assumed not to be corrupted by an adversary trying to attack
vote privacy. Since the voting client learns the plaintext vote from the voter during the vote
casting process, it is obvious that vote privacy can not be guaranteed in the presence of a
corrupted device, for instance one that is infiltrated with malware. This is one of the most
important unsolved problems in any approach, in which voter’s are allowed to prepare and
submit their votes on their own (insecure) devices.

The second very strong trust assumption in our protocol is attributed to the printing au-
thority. For printing the voting cards in the pre-election phase, the printing authority
receives very sensitive information from the election authorities, for example the credentials
for submitting a vote or the verification codes for the candidates. In principle, knowing
this information allows the submission of votes on behalf of eligible voters. Exploiting this
knowledge would be noticed by the voters when trying to submit a ballot, but obviously
not by voters abstaining from voting. Even worse, if check is given access to the verifica-
tion codes, it can easily bypass the cast-as-intended verification mechanism, i.e., voters can
no longer detect vote manipulations on the voting client. These scenarios exemplify the
strength of the trust assumptions towards the printing authority, which after all constitutes
a single-point-of-failure in the system. Given the potential security impact in case of a fail-
ure, it is important to use extra care when selecting the people, the technical infrastructure
(computers, software, network, printers, etc.), and the business processes for providing this
service. In this document, we will give a detailed functional specification of the printing
authority (see Section 7.3), but we will not recommend measures for establishing a sufficient
amount of trust.

6.3. System Parameters

The specification of the cryptographic voting protocol relies on a number of system parame-
ters, which need to be fixed for every election event. There are two categories of parameters.
The first category consists of security parameters, which define the security of the system
from a cryptographic point of view. They are likely to remain unchanged over multiple
election events until external requirements such as the desired level of protection or key
length recommendations from well-known organizations are revised. The second category of
election parameters define the particularities of every election event such as the number of
eligible voters or the candidate list. In our subsequent description of the protocol, we assume
that the security parameters are known to everyone, whereas the election parameters are
published on the bulletin board by the election administrator. Knowing the full set of all
parameters is a precondition for verifying an election result based on the data published on
the bulletin board.

6.3.1. Security Parameters

The security of the system is determined by four principal security parameters. As the
resistance of the system against attackers of all kind depends strongly on the actual choice
of these parameters, they need to be selected with much care. Note that they impose strict
lower bounds for all other security parameters.

48



• The minimal privacy σ defines the amount of computational work for a polynomially
bounded adversary to break the privacy of the votes to be greater or equal to c ¨ 2σ for
some constant value c ą 0 (under the given trust assumptions of Section 6.2). This is
equivalent to brute-force searching a key of length σ bits. Recommended values today
are σ “ 112, σ “ 128, or higher.

• The minimal integrity τ defines the amount of computational work for breaking the
integrity of a vote in the same way as σ for breaking the privacy of the vote. In
other words, the actual choice of τ determines the risk that an adversary succeeds in
manipulating an election. Recommendations for τ are similar to the above-mentioned
values for σ, but since manipulating an election is only possible during the election
period or during tallying, a less conservative value may be chosen.

• The deterrence factor 0 ă ε ď 1 defines a lower bound for the probability that an
attempt to cheat by an adversary is detected by some honest party. Clearly, the
higher the value of ε, the greater the probability for an adversary of getting caught
and therefore the greater the deterrent to perform an attack. There are no general
recommendations, but values such as ε “ 0.99 or ε “ 0.999 seem appropriate for most
applications.

• The number of election authorities s ě 1 determines the amount of trust that needs
to be attributed to each of them. This is a consequence of our assumption that at
least one election authority is honest, i.e., in the extreme case of s “ 1, full trust is
attributed to a single authority. Generally, increasing the number of authorities means
to decrease the chance that they are all malicious. On the other hand, finding a large
number of independent and trustworthy authorities is a difficult problem in practice.
There is no general rule, but 3 ď s ď 5 authorities seems to be a reasonable choice in
practice.

In the following paragraphs, we introduce the complete set of security parameters that can
be derived from σ, τ , and ε. A summary of all parameters and constraints to consider when
selecting them will be given in Table 6.1 at the end of this subsection.

a) Hash Algorithm Parameters

At multiple places in our voting protocol, we require a collision-resistant hash functions
h : B˚ Ñ B` for various purposes. In principle, we could work with different output lengths
`, depending on whether the use of the hash function affects the privacy or integrity of
the system. However, for reasons of simplicity, we propose to use a single hash algorithm
HashLpBq throughout the entire document. Its output length L “ 8` must therefore be
adjusted to both σ and τ . The general rule for a hash algorithm to resist against birthday
attacks is that its output length should at least double the desired security strength, i.e.,
` ě 2 ¨maxpσ, τq bits (resp. L ě maxpσ,τq

4 bytes) in our particular case.

b) Group and Field Parameters

Other important building blocks in our protocol are the algebraic structures (two multi-
plicative groups, one prime field), on which the cryptographic primitives operate. Selecting

49



appropriate group and field parameters is important to guarantee the minimal privacy σ
and the minimal integrity τ . We follow the current NIST recommendations [10, Table 2],
which defines minimal bit lengths for corresponding moduli and orders.

• The encryption group Gq Ă Zp is a q-order subgroup of the multiplicative group
of integers modulo a safe prime p “ 2q ` 1 P S. Since Gq is used for the ElGamal
encryption scheme and the oblivious transfer, i.e., it is only used to protect the privacy
of the votes, the minimal bit length of p (and q) depends on σ only. The following
constraints are consistent with the NIST recommendations:

‖p‖ ě

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1024, for σ “ 80,

2048, for σ “ 112,

3072, for σ “ 128,

7680, for σ “ 192,

15360, for σ “ 256.

(6.1)

In addition to p and q, two independent generators g, h P Gqzt1u of this group must be
known to everyone. The only constraint when selecting them is that their independence
is guaranteed in a verifiable manner.

• The identification group Gq̂ Ă Zp̂ is a q̂-order subgroup of the multiplicative group of
integers modulo a prime p̂ “ kq̂` 1 P P, where q̂ P P is prime and k ě 2 the co-factor.
Since this group is used for voter identification using Schnorr’s identification scheme,
i.e., it is only used to protect the integrity of the votes, the bit length of p̂ and q̂
depend on τ only. The constraints for the bit length of p̂ are therefore identical to the
constraints for the bit length of p,

‖p̂‖ ě

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1024, for τ “ 80,

2048, for τ “ 112,

3072, for τ “ 128,

7680, for τ “ 192,

15360, for τ “ 256,

(6.2)

but the NIST recommendations also define a minimal bit length for q̂. For reasons
similar to those defining the minimal output length of a collision-resistant hash func-
tion, the desired security strength τ must be doubled. This implies that ‖q̂‖ ě 2τ is
the constraint to consider when choosing q̂. Finally, an arbitrary generator ĝ P Gq̂zt1u
must be known to everyone.

• A prime field Zp1 is required in our protocol for polynomial interpolation during the
vote confirmation process. The goal of working with polynomials is to prove the
validity of a submitted vote in an efficient way. For maximal efficiency, we connect
this proof to Schnorr’s identification scheme in the vote confirmation process. This
connection requires that the constraint for Gq̂ also apply to Zp1 , i.e., we must consider
‖p1‖ ě 2τ when choosing p1. Maximal simplicity can be reached by setting p1 “ q̂. An
additional parameter that follows directly from p1 is the length LM of the messages
transferred by the OT-protocol. Since each of these messages represents a point in
Z2
p1 , we obtain LM “ 2 ¨ r‖p

1‖
8 s bytes.

50



c) Parameters for Voting and Confirmation Codes

As we will see in Section 6.5.2, Schnorr’s identification scheme is used twice in the vote
casting and confirmation process. For this, voter i obtains a random pair of secret values
pxi, yiq P Zq̂x ˆ Zq̂y in form of a pair of fixed-length strings pXi, Yiq P A

`X
X ˆA`YY , which are

printed on the voting card. The values q̂x ď q̂ and q̂y ď q̂ are the upper bounds for xi and
yi, respectively. If |AX | ě 2 and |AY | ě 2 denote the sizes of corresponding alphabets, we
can derive the string lengths of Xi and Yi as follows:

`X “

R

‖q̂x‖
log2 |AX |

V

, `Y “

R

‖q̂y‖
log2 |AY |

V

.

For reasons similar to the ones mentioned above, it is critical to choose values q̂x and q̂y
satisfying ‖q̂x‖ ě 2τ and ‖q̂y‖ ě 2τ to guarantee the security of Schnorr’s identification
scheme. In the simplest possible case, i.e., by setting q̂x “ q̂y “ q̂, all constraints are
automatically satisfied. The selection of the alphabets AX and AY is mainly a trade-off
between conflicting usability parameters, for example the number of character versus the
number of different characters to enter. Typical alphabets for such purposes are the sets
t0, . . . , 9u, t0, . . . , 9, A, . . . , Zu, t0, . . . , 9, A, . . . , Z, a, . . . , zu, or other combinations of the most
common characters. Each character will then contribute between 3 to 6 entropy bits to the
entropy of xi or yi. While even larger alphabets may be problematical from a usability
point of view, standardized word lists such as Diceware1 are available in many natural
languages. These lists have been designed for optimizing the quality of passphrases. In the
English Diceware list, the average word length is 4.2 characters, and each word contributes
approximately 13 entropy bits. With this, the values xi and yi would by represented by
passphrases consisting of at least 2τ

13 English words.

d) Parameters for Verification and Finalization Codes

Other elements printed on the voting card of voter i are the verification codes RCij and
the finalization code FCi. Their purpose is the detection of attacks by corrupt voting
clients. The length of these codes is therefore a function of the deterrence factor ε. They
are generated in two steps, first as byte arrays Rij of length LR and Fi of length LF ,
respectively, which are then converted into strings RCij of length `R and FCi of length `F
(for given alphabets AR and AF ). To provide the security defined by the deterrence factor,
the following general constraints must be satisfied:

8LR ě log
1

1´ ε
, 8LF ě log

1

1´ ε
.

For ε “ 0.999 (0.001 chance of an undetected attack), for example, LR “ LF “ 2 would
be appropriate. In the case of the finalization code, the string length `F follows directly
from LF and the size of the alphabet AF . For the verification codes, an additional usability
constraint needs to be considered, namely that each code should appear at most once on
each voting card. This problem can be solved by increasing the length of the byte arrays
and to watermark them with j´ 1 P t0, . . . , n´ 1u before converting them into a string (see
Alg. 4.1). Note that this creates a minor technical problem, namely that LR is no longer

1See http://world.std.com/„reinhold/diceware.html.

51

http://world.std.com/~reinhold/diceware.html


independent of the election parameters (see next subsection). We can solve this problem by
defining nmax to be the maximal number of candidates in every possible election event and
to extend the constraint for LR into

8LR ě log
nmax ´ 1

1´ ε
.

For ε “ 0.999 and nmax “ 1000, for example, LR “ 3 would satisfy this extended constraint.
For given lengths LR and LF , we can calculate the lengths `R and `F of corresponding
strings using the alphabet sizes:

`R “

R

8LR
log2 |AR|

V

, `F “

R

8LF
log2 |AF |

V

.

For LR “ 3, LF “ 2, and alphabet sizes |AR| “ |AF | “ 64 (6 bits), `R “ 4 characters are
required for the verification codes and `F “ 3 characters for the finalization code.

6.3.2. Election Parameters

A second category of parameters defines the details of a concrete election event. Defining
such election parameters is the responsibility of the election administrator. For making them
accessible to every participating party, they are published on the bulletin board. This is the
initial step of the election preparation phase (see Section 6.5.1). At the end of this subsection,
Table 6.2 summarizes the list of all election parameters and constraints to consider when
selecting them.

In Chapter 2, we already discussed that our definition of an election event, which constitutes
of multiple simultaneous k-out-of-n elections over multiple counting circles, covers all election
use cases in the given context. The most important parameters of an election event are
therefore the number t of simultaneous elections and the number w of counting circles. By
assuming t ě 1 and w ě 1, we exclude the meaningless limiting cases of an election event
with no elections or no counting circles. Most other election parameters are directly or
indirectly influenced by the actual values of t and w.

Different election events are distinguished by associating a unique election event identifier
U P A˚ucs. While the protocol is not designed to run multiple election events in parallel, it is
important to strictly separate the election data of successive election events. By introducing
a unique election event identifier and by adding it to every digital signature issued during
the protocol execution (see Section 6.6), the data of a given election event is unanimously
tied together. This is the main purpose of the election event identifier. To avoid that the
data of multiple elections is inadvertently tied together when the same identifier U is used
multiple times, we assume U to contain enough information (e.g., the date of the election
day) to allow participating parties to judge whether U is a fresh value or not.

a) Candidates

Let nj ě 2 denote the number of candidates in the j-th election of an election event. By
requiring at least two candidates, we exclude trivial or meaningless elections with n “ 1
or n “ 0 candidates. The sum of such values, n “

řt
j“1 nj , represents the total number

52



Parameters Constraints

L Output length of hash function (bytes) L ě maxpσ,τq
4

p Modulo of encryption group Gq see (6.1)

g, h Independent generators of Gq g, h P Gqz1

p̂ Modulo of identification group Gq̂ see (6.2)

q̂ Prime order of Gq̂ ‖q̂‖ ě 2τ

ĝ Generator of Gq̂ g P Gq̂z1

p1 Modulo of prime field Zp1 ‖p1‖ ě 2τ

LM Length of OT messages (bytes) LM “ 2 ¨ r‖p
1‖

8 s

q̂x Upper bound of secret voting credential x q̂x ď q̂, ‖q̂x‖ ě 2τ

AX Voting code alphabet |AX | ě 2

`X Length of voting codes (characters) `X “
Q

‖q̂x‖
log2 |AX |

U

q̂y Upper bound of secret confirmation credential y q̂y ď q̂, ‖q̂y‖ ě 2τ

AY Confirmation code alphabet |AY | ě 2

`Y Length of confirmation codes (characters) `Y “
Q

‖q̂y‖
log2 |AY |

U

nmax Maximal number of candidates nmax ě 2

LR Length of verification codes Rij (bytes) 8LR ě log nmax´1
1´ε

AR Verification code alphabet |AR| ě 2

`R Length of verification codes RCij (characters) `R “
Q

8LR
log2 |AR|

U

LF Length of finalization codes Fi (bytes) 8LF ě log 1
1´ε

AF Finalization code alphabet |AF | ě 2

`F Length of finalization codes FCi (characters) `F “
Q

8LF
log2 |AF |

U

Table 6.1.: List of security parameters derived from the principal security parameters σ, τ ,
and ε. We assume that these values are fixed and publicly known to every party
participating in the protocol.

of candidates in an election event. For each such candidate i P t1, . . . , nu, a candidate
description Ci P A

˚
ucs must be provided. In this document, by assuming that candidate

descriptions are given as arbitrary UCS strings, we do not further specify the type and
format of the information given for each candidate. Other important parameters of an
election event are the numbers of candidates kj , 0 ă kj ă nj , which a voter can select in
each election j. We exclude the two meaningless limiting cases of kj “ 0 and kj “ nj . The
total number of selections over all elections, k “

řt
j“1 kj , is limited by a constraint that

follows from our particular vote encoding method (see Section 6.4.1).

b) Electorate

A second category of election parameters specifies the details of the electorate. With NE ě 0
we denote the number of eligible voters in an election event and use i P t1, . . . , NEu as

53



identifier.2 For each voter i, a voter description Vi P A˚ucs and a counting circle wi P
t1, . . . , wu must be provided. As for the candidate descriptions, we do not further specify
the type and format of the given information. Note that in the given election use cases of
Section 2.2, voter i is not automatically eligible in every election of an election event. We
use single bits eij P B to define whether voter i is eligible in election j or not, and we exclude
completely ineligible voters by

řt
j“1 eij ą 0. The matrix E “ peijqNEˆt of all such values is

called eligibility matrix.

Parameters Constraints

U Unique election event identi-
fier

U P A˚ucs

t Number of elections t ě 1

w Number of counting circles w ě 1

n “ pn1, . . . , ntq Number of candidates in
each election

nj ě 2

n Total number of candidates n “
řt
j“1 nj

c “ pC1, . . . , Cnq Candidate descriptions Ci P A
˚
ucs

k “ pk1, . . . , ktq Number of selections in each
election

0 ă kj ă nj

k Total number of selections k “
řt
j“1 kj , pn`w

śk
j“1 pn´j`1 ă p

NE Number of eligible voters NE ě 0

v “ pV1, . . . , VNE q Voter descriptions Vi P A
˚
ucs

w “ pw1, . . . , wNE q Assigned counting circles wi P t1, . . . , wu

E “ peijqNEˆt Eligibility matrix eij P B,
řt
j“1 eij ě 1

Table 6.2.: List of election parameters.

6.4. Technical Preliminaries

From a cryptographic point of view, our protocol exploits a few non-trivial technical tricks.
In order to facilitate the exposition of the protocol in the next section, we introduce them
beforehand. Some of them have been used in other cryptographic voting protocols and are
well documented.

6.4.1. Encoding of Votes and Counting Circles

In an election that allows votes for multiple candidates, it is usually more efficient to incor-
porate all votes into a single encryption. In the case of the ElGamal encryption scheme with
Gq as message space, we must define an invertible mapping Γ from the set of all possible

2Related election parameters will be formed during vote casting and confirmation. The number of
submitted ballots will be denoted by NB ď NE , the number of confirmed ballots by NC ď NB , and the
number of valid votes by N ď NC .

54



votes into Gq. A common technique for encoding a selection s “ ps1, . . . , skq of k candi-
dates out of n candidates, 1 ď sj ď n, is to encode each selection sj by a prime number
Γpsjq P PXGq and to multiply them into Γpsq “

śk
j“1 Γpsjq. Inverting Γpsq by factorization

is unique as long as Γpsq ă p and efficient when n is small [26]. For optimal capacity, we
choose the n smallest prime numbers p1, . . . , pn P PXGq, pi ă pi`1, and define Γpsjq “ psj
for j P t1, . . . , ku.

Since each encrypted votes is attributed to a counting circle, we extend the above invertible
mapping Γ : t1, . . . , nuk Ñ Gq into Γ1 : t1, . . . , nuk ˆ t1, . . . , wu Ñ Gq by considering the w
next smallest prime numbers pn`1, . . . , pn`w P P X Gq. A selection s and a counting circle
wi P t1, . . . , wu can then be encoded together as Γ1ps, wiq “ pn`wi ¨ Γpsq. This mapping
is invertible, if the product of pn`w with the k largest primes pn´k`1, . . . , pn is smaller
than p, i.e., if pn`w

śk
j“1 pn´j`1 ă p. This is an important constraint when choosing the

security and election parameters of an election event (see Table 6.2 in Section 6.3). Note
that in this way, due to the homomorphic property of ElGamal, assigning a counting circle
wi to an encoded vote can also be conducted under encryption: let pa, bq “ EncpkpΓpsq, rq
be an ElGamal encryption of Γpsq, then ppn`wi ¨ a, bq “ Encpkppn`wi , 0q ¨ EncpkpΓpsq, rq “
EncpkpΓ

1ps, wiq, rq is an ElGamal encryption of Γ1ps, wiq. We will use this property in the
protocol to assign in a verifiable manner the counting circles to the encrypted votes before
processing them through the mix-net.

6.4.2. Linking OT Queries to ElGamal Encryptions

If the same encoding Γ : t1, . . . , nu Ñ Gq is used for the OTk
n-scheme (see Section 5.3.3) and

for encoding plaintext votes, we obtain a natural link between an OT query a “ pa1, . . . , akq
and an ElGamal encryption pa, bq Ð EncpkpΓpsq, rq. The link arises by substituting the
first generator g1 in the OT-scheme with the public encryption key pk “ gsk mod p and
the second generator g2 by g. In this case, we obtain aj “ pΓpsjq¨pk

rj , grj q and therefore
a “

śk
j“1 aj “ pΓpsq¨pk

r, grq for r “
řk
j“1 rj . This simple technical link between the OT

query and the encrypted vote is crucial for making our protocol efficient [27]. It means that
submitting a as part of the ballot solves two problems at the same time: sending an OT
query and an encrypted vote to the election authorities and guaranteeing that they contain
exactly the same selection of candidates.

6.4.3. Validity of Encrypted Votes

The main purpose of the verification codes in our protocol is to provide evidence to the voters
that their votes have been cast and recorded as intended. However, our way of constructing
the verification codes solves another important problem, namely to guarantee that every
submitted encrypted vote satisfies exactly the constraints given by the election parameters
k, n, and E, i.e., that every encryption contains a valid vote. Let RC1, . . . , RCn P A

`R
R be

the verification codes for the n “
řt
j“1 nj candidates of a given voting card. In our scheme,

they are constructed as follows [27]:

• For every voter i P t1, . . . , NEu and k1i “
řt
j“1 eijkj , each authority picks a random

polynomial AipXq PR Zp1rXs of degree k1i ´ 1. From this polynomial, the author-
ity selects n random points pij “ pxij , Aipxijqq by picking n distinct random values

55



xij PR Zp1 . The result is a vector of points, pi “ ppi,1, . . . , pi,nq, of length n. Over all
NE voting cards, each authority generates a matrix ppijqNEˆn of such points. Com-
puting this matrix is part of the election preparation of every election authority. In
the remaining of this document, the matrix generated by authority j will be denoted
by Pj .

• During vote casting, every authority transfers exactly k1i points from Pj obliviously
to the voting client of voter i, i.e., the voting client receives a matrix Ps “ ppijqsˆk1i
of such points, which depends on the voter’s selection s. The verification code RCsj
for the selected candidate sj is derived from the points p1,j , . . . , ps,j by truncating
corresponding hash values hppijq to the desired length LR, combining them with an
exclusive-or into a single value, and finally converting this value into a string RCsj
of length `R. The same happens simultaneously for all of the voter’s k1i selections,
which leads to a vector rcs “ pRCs1 , . . . , RCsk1

i
q. During the printing of the voting

card, exactly the same calculations are performed for the verification codes of all n
candidates.

• By obtaining k1i points from a particular election authority, the voting client can recon-
struct the polynomial AipXq of degree k1i´ 1, if at least k1i distinct points from AipXq

are available (see Section 3.2.2). If this is the case, the simultaneous OT
k1i
n query must

have been formed properly under the constraints given by n, k, and E. The voting
client can therefore prove the validity of the encrypted vote by proving knowledge of
this polynomial. For this, it evaluates the polynomial for X “ 0 to obtain a secret vote
validity credential y1i “ Aip0q, which can not be guessed efficiently without knowing
the polynomial. In this way, the voting client obtains a secret vote validity credential
y1ij from every authority j. Their integer sum y1i “

řs
j“1 y

1
ij is incorporated into the

voter’s public confirmation credential ŷ by adding it to the secret confirmation creden-
tial yi derived from the conformation code Yi (see next subsection). Knowing correct
values y1ij is therefore a prerequisite for the voting client to successfully confirm the
vote (see following subsection).

The finalization code FC P A`FF of a given voting card is also derived from the random points
generated by each authority. The procedure is similar to the generation of the verification
codes. First, election authority j computes the hash value of the voter’s n points in Pj

and truncates it to the desired length LF . The resulting s hash values—one from every
authority—are combined with an exclusive-or into a single value, which is then converted
into a string of length `F . These last steps are the same for the printing authority during
the election preparation and for the voting client at the end of the vote casting process.

6.4.4. Voter Identification

During the vote casting process, the voter needs to be identified twice as an eligible voter,
first to submit the initial ballot and to obtain corresponding verification codes, and second
to confirm the vote after checking the verification codes. A given voting card contains two
secret codes for this purpose, the voting code X P A`XX and the confirmation code Y P A`YY .
By entering these codes into the voting client, the voter expresses the intention to proceed to
the next step in the vote casting process. In both cases, a Schnorr identification is performed

56



between the voting client and the election authorities (see Section 5.4.2). Without entering
these codes, or by entering incorrect codes, the identification fails and the process stops.

The voting code X is a string representation of a secret value x P Zq̂ called secret voting
credential. This value is generated by the election authorities in a distributed way, such that
no one except the printing authority learns it. For this, each election authority contributes a
random value xj PR Zq̂, which the printing authority combines into x “

řs
j“1 xj mod q̂. The

corresponding public voting credential x̂ P Gq̂ is derived from the values x̂j “ ĝxj mod p̂,
which are published by the election authorities:

x̂ “
s
ź

j“1

x̂j mod p̂ “
s
ź

j“1

ĝxj mod p̂ “ ĝ
řs
j“1 xj mod p̂ “ ĝx mod p̂.

For a given pair px, x̂q P Zq̂ ˆ Gq̂ of secret and public voting credentials, executing the
Schnorr identification protocol corresponds to computing a non-interactive zero-knowledge
proof NIZKPrpxq : x̂ “ ĝx mod p̂s. In our protocol, we combine this proof with a proof of
knowledge of the plaintext vote contained in the submitted ballot (see Section 5.4.2).

The generation of the confirmation code Y is very similar. It is a string representation of
the secret confirmation credential y P Zq̂, which is generated by the election authorities in
exactly the same way as x. However, for the corresponding public confirmation credential
ŷ P Gq̂, the method is slightly different. After picking yj PR Zq̂ at random, the authority
computes ŷj “ ĝyj`y

1
j mod p̂, where y1j denotes the vote validity credential from the previous

subsection. The public credential can be computed by

ŷ “
s
ź

j“1

ŷj mod p̂ “
s
ź

j“1

ĝyj`y
1
j mod p̂ “ ĝ

řs
j“1 yj`

řs
j“1 y

1
j mod p̂ “ ĝy`y

1

mod p̂,

for y “
řs
j“1 yj mod q̂ and y1 “

řs
j“1 y

1
j mod q̂. Therefore, performing a Schnorr identifi-

cation relative to ŷ requires knowledge of y ` y1. The corresponding zero-knowledge proof,
NIZKPrpy, y1q : ŷ “ ĝy`y

1

mod p̂s, is more efficient than conducting a conjunction of two
separate proofs for y and y1.

6.5. Protocol Description

Based on the preceding sections about parties, channels, adversaries, trust assumptions, sys-
tem parameters, and technical preliminaries, we are now ready to present the cryptographic
protocol in greater detail. As mentioned earlier, the protocol itself has three phases, which
we describe in corresponding subsections with sufficient technical details for understanding
the general protocol design. By exhibiting the involved parties in each phase and sub-phase,
a first overview of the protocol is given in Table 6.3. This overview illustrates the central
role of the bulletin board as a communication hub and the strong involvement of the election
authorities in almost every step of the whole process.

In each of the following subsections, we provide comprehensive illustrations of corresponding
protocol sub-phases. The illustrations are numbered from Prot. 6.3 to Prot. 6.9. Each illus-
tration depicts the involved parties, the necessary information known to each party prior
to executing the protocol sub-phase, the computations performed by each party during the

57



Phase
Election
Admin.

Election
Authority

Printing
Authority Voter Voting

Client
Bulletin
Board

Protocol
Nr.

1. Pre-Election ‚ ‚ ‚ ‚ ‚

1.1 Election Preparation ‚ ‚ ‚ 6.1

1.2 Printing of Voting Cards ‚ ‚ ‚ ‚ 6.2

1.3 Key Generation ‚ ‚ 6.3

2. Election ‚ ‚ ‚ ‚

2.1 Candidate Selection ‚ ‚ ‚ 6.4

2.2 Vote Casting ‚ ‚ ‚ 6.5

2.3 Vote Confirmation ‚ ‚ ‚ ‚ 6.6

3. Post-Election ‚ ‚ ‚

3.1 Mixing ‚ ‚ 6.7

3.2 Decryption ‚ ‚ 6.8

3.3 Tallying ‚ ‚ 6.9

Table 6.3.: Overview of the protocol phases and sub-phases with the involved parties.

protocol sub-phase, and the exchanged messages. Together, these illustration define a pre-
cise and complete skeleton of the entire protocol. The details of the algorithms called by
the parties when performing their computations are given in Chapter 7. Note that the il-
lustrations do not show the signatures that are generated by the election administrator and
the election authorities. These signatures are important to provide authenticity, i.e., they
must be generated whenever a message is sent to the bulletin board and verified whenever
a message is retrieved from there. As already discussed in Section 6.3.2, a unique election
event identifier U is included in every signature. The distribution of U is included in the pro-
tocol illustrations, but other details of the signature generation are discussed in Section 6.6.
Corresponding algorithms are given in Section 7.6.

6.5.1. Pre-Election Phase

The pre-election phase of the protocol involves all necessary tasks to setup an election
event. The main goal is to equip each eligible voter with a personalized voting card, which
we identify with an index i P t1, . . . , NEu. Without loss of generality, we assume that voting
card i is sent to voter i. We understand a voting card as a string Si P A˚ucs, which is
printed on paper by the printing authority. This string contains the voter index i, the voter
description Vi P A

˚
ucs, the counting circle wi P t1, . . . , wu, the voting code Xi P A

`X
X , the

confirmation code Yi P A`YY , the finalization code FCi P A`FF , and the candidate descriptions
Cj P A

˚
ucs with corresponding verification codes RCij P A`RR for each candidate j P t1, . . . , nu.

The information printed on voting card i is therefore a tuple

pi, Vi, wi, Xi, Yi, FCi, tpCj , RCijqu
n
j“1q.

58



a) Election Preparation

The codes printed on the voting cards are generated by the s election authorities in a dis-
tributed manner (see Sections 6.4.2 and 6.4.3 for technical background). For this, each
election authority j calls an algorithm GenElectorateDatapn,k,Eq with the election parame-
ters n, k, and E, which are published beforehand by the election administrator. The result
obtained from calling this algorithm consists of a private part dj , a public part d̂j , and the
matrix of random points Pj . Further details of the algorithm are given in Alg. 7.6. These
first steps are depicted in the upper part of Prot. 6.1.

The public part d̂j , which contains the authority’s partial information for deriving the
public voter credentials x̂i and ŷi, is submitted via the bulletin board to all other election
authorities. At the end of this process, every election authority knows the public data of the
whole electorate, D̂ “ pd̂1, . . . , d̂sq, which they can use for calling GetPublicCredentialspD̂q.
This algorithm outputs the two lists x̂ and ŷ of all public credentials, which are used to
identify the voters during the vote casting and vote confirmation phases (see Section 6.4.4
and Alg. 7.12 for further details).

Election Bulletin Election Authority
Administrator Board j P t1, . . . , su

knows U,v,w, c,n,k,E

U,v,w, c,n,k,E

U,n,k,E

pdj , d̂j ,Pjq Ð

GenElectorateDatapn,k,Eq

d̂j

D̂Ð pd̂1, . . . , d̂sq

D̂

px̂, ŷq Ð

GetPublicCredentialspD̂q

Protocol 6.1: Election Preparation.

b) Printing of Code Sheets

The private part dj of the electorate data generated by authority j contains the author-
ity’s partial information about the secret voting, confirmation, finalization, and verification
codes of every voting card. This information is very sensitive and can only be shared with
the printing authority. The process of sending dj to the printing authority is depicted in
Prot. 6.2. Recall that this channel is confidential, i.e., it must be secured by cryptographic
means. This can be achieved by sending dj in encrypted form using the key-encapsulation

59



mechanism in combination with a symmetric encryption scheme as described in Section 5.7.
We denote the resulting ciphertext, which results from calling GenCiphertextφppkPrint,djq
using the printing authority’s public encryption key pkPrint, by rdjs. Using the correspond-
ing private key skPrint, the printing authority can then call GetPlaintextφpskPrint, rdjsq to
decrypt rdjs into dj (see Alg. 7.56 and Alg. 7.57). Note that the integrity of the ciphertext
is ensured by other means (see Section 6.6).

The actual voting cards can be generated from the collected private data DÐ pd1, . . . ,dsq
and the elections parameters v, w, c, n, k, and E. The printing authority uses them as
inputs for the algorithm GetVotingCardspv,w, c,n,k,E,Dq, which produces corresponding
strings s “ pS1, . . . , SNE q, Si P A

˚
ucs (see Alg. 7.13). A printout of such a string is sent to

every voter, for example using a trusted postal service.

Bulletin Printing Election Authority
Board Authority j P t1, . . . , su

knows U,v,w, c,n,k,E knows skPrint knows U,dj , pkPrint

U,v,w, c,n,k,E

rdjs Ð

GenCiphertextφppkPrint,djq

rdjs

dj Ð GetPlaintextφpskPrint, rdjsq

DÐ pd1, . . . ,dsq

sÐ GetVotingCardspv,w, c,n,k,E,Dq

Voter i P t1, . . . , NEu

Si

Protocol 6.2: Printing of Voting Cards.

c) Key Generation

In the last step of the election preparation, a public ElGamal encryption key pk P Gq is
generated jointly by the election authorities. As shown in Prot. 6.3, this is a simple process
between the election authorities and the bulletin board. At the end of the protocol, pk is
known to every authority, and each of them holds a share skj P Zq of the corresponding
private key. It involves calls to two algorithms GenKeyPairpq for generating the key shares and
GetPublicKeyppkq for combining the resulting public keys. For details of these algorithms,
we refer to Section 5.1.2 and Algs. 7.15 and 7.16.

6.5.2. Election Phase

The election phase is the core of the cryptographic voting protocol. The start and end of
this phase are given by the official election period. These are two very critical events in every
election. To prevent or detect the submission of early or late votes, it is very important to
handle these events accurately. Since there are multiply ways for dealing with this problem,
we do not propose a solution in this document. We only assume that the bulletin board and

60



Bulletin Election Authority
Board j P t1, . . . , su

knows U

pskj , pkjq Ð GenKeyPairpq

pkj

pkÐ ppk1, . . . , pksq

pk

pk Ð GetPublicKeyppkq

Protocol 6.3: Key Generation

the election authorities will always agree whether a particular vote (or vote confirmation)
has been submitted within the election period, and only accept it if this is the case.

The main actors of the election phase are the voters and the election authorities, which
communicate over the bulletin board. The main goal of the voters is to submit a valid vote
for the selected candidates using the untrusted voting client, whereas the goal of the election
authorities is to collect all valid votes from eligible voters. The submission of a single vote
takes place in three subsequent steps.

a) Candidate Selection

The first step for the voter is the selection of the candidates. In an election event with t
simultaneous elections, voter v must select exactly evjkj candidates for each election j P
t1, . . . , tu and k1v “

řt
j“1 evjkj candidates in total. These values can be derived from the

election parameters k and E, which the voting client retrieves from the bulletin board
together with the candidate descriptions c and the number of candidates n. This preparatory
step is shown in the upper part of Prot.6.4. By calling GetVotingPagepv,v,w, c,n,k,Eq, the
voting client then generates a voting page Pv P A˚ucs, which represents the visual interface
displayed to voter v for selecting the candidates (see Alg. 7.17). The voter’s selection s “
ps1, . . . , sk1vq is a vector of values sj satisfying the constraint in (5.1) from Section 5.3.3. The
voter enters these values together with the voting code Xv from the voting card.

b) Vote Casting

Based on the voter’s selection s “ ps1, . . . , sk1vq, the voting client generates a ballot α “
px̂v,a, πq by calling an algorithm GenBallotpXv, s, pkq. The ballot contains an OT query
a “ pa1, . . . , ak1vq P pG

2
qq
k1v for corresponding return codes. By using the public encryption

key pk in the oblivious transfer as a generator of the group Gq (see Section 6.4.2), each
query aj is an ElGamal encryption of the voter’s selection sj . The ballot α also contains
the voter’s public credential x̂v, which is derived from the secret voting code Xv, and a

61



Voter Voting Bulletin
v P t1, . . . , NEu Client Board

knows v,Xv knows U,v,w, c,n,k,E

U,v,w, c,n,k,E

v

Pv Ð GetVotingPagepv,v,w, c,n,k,Eq

Pv

sÐ ps1, . . . , sk1
v
q

Xv, s

Protocol 6.4: Candidate Selection

non-interactive zero-knowledge proof

πα “ NIZKPrpxv, s, rq : x̂v “ ĝxv mod p̂^

k1v
ź

j“1

aj “ EncpkpΓpsq, rqs,

that demonstrates the well-formedness of the ballot. This proof includes all elements of a
Schnorr identification relative to x̂v (see Section 6.4.4).

The ballot is submitted to the election authorities via the bulletin board. Each authority
checks its validity by calling CheckBallotpv, α, pk,k,E, x̂, Bq. This algorithm verifies that
the size of a is exactly k1v “

řt
j“1 evjkj , that the public voting credential x̂v is included in

x̂, that the zero-knowledge proof πα is valid (which implies that the voter is in possession
of a valid voting code Xv), and that the same voter has not submitted a valid ballot before.
To detect multiple ballots from the same voter, each authority keeps track of a list Bj of
valid ballots submitted so far. If one of the above checks fails, the ballot is rejected and the
process aborts.

If the ballot α passes all checks, the election authorities respond to the OT query a included
in α. Each of them computes its OT response βj by calling GenResponsepv,a, pk,n,k,E,Pjq.
The selected points from the matrix Pj are the messages to transfer obliviously to the
voter via the bulletin board (see Section 6.4.3). By calling GetPointMatrixpβ, s, rq for
β “ pβ1, . . . , βsq, the voting client derives the s-by-k1v matrix Ps of selected points from
every βj . Finally, by calling GetReturnCodesps,Psq, it computes the verification codes
rcs “ pRCs1 , . . . , RCsk1v

q for the selected candidates. This whole procedure is depicted
in Prot. 6.5.

c) Vote Confirmation

The voting client displays the verification codes rcs “ pRCs1 , . . . , RCsk1v
q for the selected

candidates to the voter for comparing them with the codes rcv printed on voter v’ voting

62



Voting Bulletin Election Authority
Client Board j P t1, . . . , su

knows U, v,Xv, s knows pk knows U, pk,n,k,E,Pj , x̂, Bj Ð xy

pk

pk Ð GetPublicKeyppkq

pα, rq Ð GenBallotpXv, s, pkq

v, α

v, α

if  CheckBallotpv, α, pk,k,E, x̂, Bq
abort

pβj , zq Ð GenResponsepv,a, pk,n,k,E,Pjq

Bj Ð Bj } xpv, α, zqy

v, βj

β “ pβ1, . . . , βsq

β

Ps Ð GetPointMatrixpβ, s, rq

rcs Ð GetReturnCodesps,Psq

Protocol 6.5: Vote Casting

card. We describe this process by an algorithm call CheckReturnCodesprcv, rcs, sq, which is
executed by the human voter. In case of a match, the voter enters the confirmation code
Yv, from which the voting client computes the confirmation γ “ pŷv, πβq consisting of the
voter’s public confirmation credential ŷv and a non-interactive zero-knowledge proof

πβ “ NIZKPrpyv, y
1
vq : ŷv “ ĝyv`y

1
v mod p̂s.

In this way, the voting client proves knowledge of a sum yv ` y
1
v of values yv (derived from

Yv) and y1v (derived from Ps). The motivation and details of this particular construction
have been discussed in Section 6.4.4.

After submitting γ via the bulletin board to every authority, they check the validity of
the zero-knowledge proof included. In the success case, they respond with their finaliza-
tion δj “ pFvj , zvjq. The voting client retrieves the finalization code FC from the values
pFv,1, . . . , Fv,sq included in δ “ pδ1, . . . , δsq by calling GetFinalizationCodepδq and displays
it to the voter for comparison. As above, we describe this process by an algorithm call
CheckFinalizationCodepFCv, FCq executed by the human voter. The whole process is de-
picted in Prot.6.6. Note that the randomizations pzv,1, . . . , zv,sq included in δ are not needed
for computing the finalization code. But their publication enables the verification of the OT
responses by external verifiers [27].

63



Voter Voting Bulletin Election Authority
v P t1, . . . , NEu Client Board j P t1, . . . , su

knows Yv, FCv, rcv, s knows U, v,Ps, rcs knows U,Pj , ŷ, Bj Ð xy, Cj Ð xy

rcs

if  CheckReturnCodesprcv, rcs, sq
abort

Yv

γ Ð GenConfirmationpYv,Psq

v, γ

v, γ

if  CheckConfirmationpv, γ, ŷ, Bj , Cjq
abort

δj Ð GetFinalizationpv,Pj , Bjq

Cj Ð Cj } xpv, γqy

v, δj

δ Ð pδ1, . . . , δsq

δ

FC Ð GetFinalizationCodepδq

FC

if  CheckFinalizationCodepFCv, FCq
abort

Protocol 6.6: Vote Confirmation



6.5.3. Post-Election Phase

In the post-election phase, all N ď NE submitted and confirmed ballots are processed
through a mixing and decryption process. The main actors are the election authorities, which
perform the mixing in a serial and the decryption in a parallel process. For the decryption,
they require their shares skj of the private encryption key, which the have generated during
the pre-election phase. Before applying their key shares to the output of the mixing, they
verify all previous steps by checking the validity of every ballot collected during the election
phase and the correctness of the shuffle proofs. In addition to performing the decryption,
they need to demonstrate its correctness with a non-interactive zero-knowledge proof. The
very last step of the entire election process is the computation and announcement of the
final election result by the election administrator.

a) Mixing

The mixing is a serial process, in which all election authorities are involved. Without loss
of generality, we assume that the first mix is performed by the Authority 1, the second by
Authority 2, and so on. The process is the same for everyone, except for the first authority,
which needs to extract the list of encrypted votes from the submitted ballots. Recall that
during vote casting, each authority keeps track of all submitted ballots and confirmation. In
case of Authority 1, corresponding lists are denoted by B1 and C1, respectively. By calling
GetEncryptionspB1, C1,n,wq, the first authority retrieves the list e0 of encrypted votes, and
by calling GenShufflepe0, pkq, this list is shuffled into e1 Ð Shufflepkpe0, r1, ψ1q, where r1

denotes the re-encryption randomizations and ψ1 the random permutation. These values
are the secret inputs for a non-interactive proof

π1 “ NIZKPrpψ1, r1q : e1 “ Shufflepkpe0, r1, ψ1qs,

which proves the correctness of the shuffle. This proof results from calling the algorithm
GenShuffleProofpe0, e1, r1, ψ1, pkq. The results from conducting the first shuffle—the shuffled
list of encryptions e1 and the zero-knowledge proof π1—are sent to the bulletin board. This
is depicted in the upper part of Prot. 6.7.

Exactly the same shuffling procedure is repeated s times, where the output list ej´1 of
the shuffle performed by authority j ´ 1 becomes the input list for the shuffle ej Ð
Shufflepkpej´1, rj , ψjq performed of authority j. The whole process over all s authorities
realizes the functionality of a re-encryption mix-net. The final result of the mix-net consists
of s lists of encryption E “ pe1, . . . , esq with corresponding shuffle proofs π “ pπ1, . . . , πsq.

b) Decryption

After the mixing, every authority retrieves the complete output of the mix-net—the shuffled
lists of encryptions E and the shuffle proofs π—from the bulletin board. The input e0 of the
first shuffle is retrieved from the submitted ballots by calling GetEncryptionspBj , Cj ,n,wq.
Before starting the decryption, CheckShuffleProofspπ, e0,E, pk, jq is called the to verify the
correctness of all shuffles. For authority j, this algorithm loops over all shuffle proofs πi,

65



Election Authority Bulletin
j “ 1 Board

knows U, pk,B1, C1,n knows w

w

e0 Ð GetEncryptionspB1, C1,n,wq

pe1, r1, ψ1q Ð GenShufflepe0, pkq

π1 Ð GenShuffleProofpe0, e1, r1, ψ1, pkq

e1, π1

Election Authority
j P t2, . . . , su

knows U, pk
ej´1

pej , rj , ψjq Ð GenShufflepej´1, pkq

πj Ð GenShuffleProofpej´1, ej , rj , ψj , pkq

ej , πj

EÐ pe1, . . . , esq

π Ð pπ1, . . . , πsq

Protocol 6.7: Mixing

i ‰ j, and checks them individually. As shown in Prot. 6.8, the process aborts in case any
of these check fails.

In the success case, the encryptions es “ ppa1, b1q, . . . pan, bN qq obtained from authority s
(the last mixer in the mix-net) are partially decrypted using the share skj of the private
decryption key. Calling GetPartialDecryptionspes, skjq returns a list b1j “ pb

1
1,j , . . . , b

1
N,jq of

partial decryptions b1ij “ b
skj
i , which are published on the bulletin board. To guarantee the

correctness of the decryption, a non-interactive decryption proof

π1j “ NIZKPrpskjq : pb11,j , . . . , b
1
N,j , pkjq “ pb

skj
1 , . . . , b

skj
N , gskj qs

is computed by calling GenDecryptionProofpskj , pkj , es,b
1
jq and published along with b1j .

Note that this is a proof of equality of multiple discrete logarithms (see Section 5.4.2). At
the end of this process, the partial decryptions and the decryption proofs from all election
authorities are available on the bulletin board.

c) Tallying

To conclude an election, the election administrator retrieves the partial decryptions of every
election authority from the bulletin board. The attached decryption proofs are checked
by calling CheckDecryptionProofspπ1,pk, es,B

1q. The process aborts if one or more than
one check fails. Otherwise, by calling GetDecryptionspes,B

1q, the partial decryptions are

66



Election Authority Bulletin
j P t1, . . . , su Board

knows U, skj , pkj , pk,Bj , Cj ,n knows w,E “ pe1, . . . , esq,π

w,E,π

e0 Ð GetEncryptionspBj , Cj ,n,wq

if  CheckShuffleProofspπ, e0,E, pk, jq
abort
b1j Ð GetPartialDecryptionspes, skjq

π1j Ð GenDecryptionProofpskj , pkj , es,b
1
jq

b1j , π
1
j

B1 Ð pb11, . . . ,b
1
sq

π1 Ð pπ11, . . . , π
1
sq

Protocol 6.8: Decryption

assembled and the plaintexts are determined. Recall from Section 6.4.2 that every such
plaintext is an encoding Γ1ps, wiq P Gq of some voter’s selection of candidates and the
voter’s counting circle, and that the individual votes can be retrieved by factorizing this
number. By calling GetVotespm,n,wq, this process is performed for all plaintexts.

The whole tallying process is depicted in Prot. 6.9. The resulting election result matrix
V “ pvijqNˆn and the counting circle matrix W “ pwijqNˆw represent the outcome of the
election. The value vij P B is set to 1, if plaintext vote i contains a vote for candidate
j P t1, . . . , nu, and to 0, if this is not the case. Similarly, wij P B is set to 1, if plaintext vote
i contains a vote for counting circle j P t1, . . . , wu, and to 0, if this is not the case. These
matrices can be used to compute the following aggregated election results:

Vj “
N
ÿ

i“1

vij “ total number of votes for candidate j,

Wj “

N
ÿ

i“1

wij “ total number of submitted votes in counting circle j,

Vjj1 “
N
ÿ

i“1

vijwij1 “ total number of votes for candidate j in counting circle j1.

67



Election Bulletin
Administrator Board

knows U,n,w knows pk, es,B1,π1

pk, es,B
1,π1

if  CheckDecryptionProofspπ1,pk, es,B
1q

abort
mÐ GetDecryptionspes,B

1q

pV,Wq Ð GetVotespm,n,wq

V,W

Protocol 6.9: Tallying

6.6. Channel Security

In Section 6.1, we have already identified the channels that need to be secured by cryp-
tographic means. Most importantly, we require all messages sent to the bulletin board by
either the election administrator or the election authorities to be digitally signed. For this,
we assume each of these parties to possess a Schnorr signature key pair pskX , pkXq and a
certificate CX that binds the public key pkX to party X P tAdmin,Auth1, . . . ,Authsu. We
assume that checking the validity of certificates is part of checking a signature, i.e., without
explicitly describing this process. Therefore, we do not further specify the type, format, and
issuer of the certificates and the algorithms for checking them. For this, we refer to current
standards such as X.509 and corresponding software libraries and best practices.

Table 6.4 gives an overview of all signatures generated during the protocol execution. For
the reasons discussed earlier in Section 6.3.2, we include the election event identifier U
as a message prefix in every signature. Generally, for generating a signature for multiple
messages m “ pm1, . . . ,mrq, we call GenSignaturepskX ,mq using the party’s public key
pkX . This algorithm implements Schnorr’s signature scheme as described in Section 5.6 (see
Alg.7.54 for further details). Note that according to Table 6.4, redundant signatures σparam1 ,
σparam2 , and σparam3 are generated by the election administrator during the preparation phase.
The reason for this redundancy is to provide tailor-made signatures for all involved parties,
i.e., depending on the information they retrieve from the bulletin board during the protocol
run.

A special case in the list of signatures shown in Table 6.4 is the entry for Prot. 6.2, which
describes the only signature not submitted to the bulletin board. Recall that the private part
dj of the electorate data generated by election authority j must be sent over a confidential
channel to the printing authority. We realize this confidential channel using a symmetric
encryption scheme in combination with a key-encapsulation mechanism. Instead of signing
dj , the result of this hybrid encryption, rdjs Ð GenCiphertextφppkPrint,djq, is signed and sent
to the printing authority. pkPrint denotes the public encryption key of the printing authority.
Again, we assume that a certificate for this key exists and is known to everyone.

In Table 6.5, which provides the counterpart of the above list of signatures, we show the

68



Issuer Nr. Protocol Parameters Signatures Range

Election 6.1 Election preparation
U,v,w, c,n,k,E σparam1

administrator
U,n,k,E σparam2

U,w σparam3

6.9 Tallying U,V,W σtally

Election

6.1 Election preparation U, d̂j σprepj

authority

6.2 Printing U, rdjs σprintj

j P t1, . . . , su

6.3 Key generation U, pkj σkgenj

6.5 Vote casting U, v, βj σcastij i P t1, . . . , NBu

6.6 Vote confirmation U, v, δj σconfij i P t1, . . . , NCu

6.7 Mixing U, ej , πj σmix
j

6.8 Decryption U,b1j , π
1
j σdecj

Table 6.4.: Overview of the signatures generated during the protocol execution.

necessary signature verifications performed during a complete protocol run. In principle,
each time a signed message is retrieved from the bulletin board or received over a direct
channel, its attached signature is verified. There is only one exception from this general rule.
In Prot. 6.7, i.e., during the mixing process, checking the signatures for the data retrieved
from the bulletin board is not mandatory. The mixing process, as implemented in this
protocol, is an optimistic procedure, in which each participating election authority performs
its task without questioning the correctness of the mixing steps executed previously by other
authorities. Since checking the overall correctness of the mix-net is done in the beginning
of the decryption process (see Prot. 6.8), no harm can result from this way of performing
the mixing. The same holds for checking the signatures issued for the data involved in this
protocol step, i.e., for w, e1, . . . , es´1, which is done by every election authority as an initial
step of the decryption process.

69



Verifier Nr. Protocol Parameters Signatures Range

Election
6.9 Tallying

U, pkj σkgenj

j P t1, . . . , su

administrator
U, es, πs σmix

s

U,b1j , π
1
j σdecj

Election
6.1 Election preparation

U,n,k,E σparam2

authority
U, d̂j σprepj

j P t1, . . . , su

6.3 Key generation U, pkj σkgenj

6.8 Decryption
U,w σparam3

U, ej , πj σmix
j

Voting client

6.4 Candidate selection U,v,w, c,n,k,E σparam1

6.5 Vote casting
U, pkj σkgenj

U, v, βj σcastij

6.6 Vote confirmation U, v, δj σconfij

Printing
6.2 Printing

U,v,w, c,n,k,E σparam1

authority U, rdjs σprintj

Table 6.5.: Overview of the signatures verified during the election process.

70



7. Pseudo-Code Algorithms

To complete the formal description of the cryptographic voting protocol from the previous
chapter, we will now present all necessary algorithms in pseudo-code. This will provide
an even closer look at the details of the computations performed during the entire election
process. The algorithms are numbered according to their appearance in the protocol. To
avoid code redundancy and for improved clarity, some algorithms delegate certain tasks to
sub-algorithms. An overview of all algorithms and sub-algorithms is given at the beginning
of every subsection. Every algorithm is commented in the caption below the pseudo-code,
but apart from that, we do not give further explanations. In Section 7.2, we start with some
general algorithms for specific tasks, which are needed at multiple places. In Sections 7.3
to 7.5, we specify the algorithms of the respective protocol phases.

7.1. Conventions and Assumptions

With respect to the names attributed to the algorithms, we apply the convention of using
the prefix “Gen” for non-deterministic algorithms, the prefix “Get” for general deterministic
algorithms, and the prefixes “Is”, “Has”, or “Check” for predicates. In the case of non-
deterministic algorithms, we assume the existence of a cryptographically secure pseudo-
random number generator (PRNG) and access to a high-entropy seed. We require such
a PRNG for picking elements r PR Zq, r PRGq, r PR Zq̂, r PR Zp1 , and r PR ra, bs uniformly
at random. Since implementing a PRNG is a difficult problem on its own, it cannot be
addressed in this document. Corresponding algorithms are usually available in standard
cryptographic libraries of modern programming languages.

The public security parameters from Section 6.3.1 are assumed to be known in every al-
gorithm, i.e., we do not pass them explicitly as parameters. Most numeric calculations in
the algorithms are performed modulo p, q, p̂, q̂, or p1. For maximal clarity, we indicate
the modulus in each individual case. We suppose that efficient algorithms are available for
computing modular exponentiations xy mod p and modular inverses x´1 mod p. Divisions
x{y mod p are handled as xy´1 mod p and exponentiations x´y mod p with negative ex-
ponents as px´1qy mod p or pxyq´1 mod p. We also assume that readers are familiar with
mathematical notations for sums and products, such that implementing expressions like
řN
i“1 xi or

śN
i“1 xi is straightforward.

An important precondition for every algorithm is the validity of the input parameters, for
example that an ElGamal encryption e “ pa, bq is an element of Gq ˆ Gq or that a given
input lists has the desired length. We specify all preconditions for every algorithm, but we
do not give explicit code to perform corresponding checks. However, as many attacks—for
example on mix-nets—are based on infiltrating invalid parameters, we stress the importance
of conducting such checks in an actual implementation. For an efficient way of testing group
memberships x P Gq, we refer to Alg. 7.2.

71



7.2. General Algorithms

We start with some general algorithms that are called by at least two other algorithms in
at least two different protocol phases. They are all deterministic. In Table 7.1 we give an
overview. The algorithm IsMemberpxq, which is called by getPrimespnq for checking the set
membership of values x P Zp, can also be used for checking the validity of such parameters
in other algorithms. As mentioned before, our algorithms do not contain explicit codes for
making such checks.

Nr. Algorithm Called by Protocol

7.1 getPrimespnq Algs. 7.19, 7.25 and 7.53 6.5, 6.9

7.2 ë IsMemberpxq

7.3 GetGeneratorspnq Algs. 7.43 and 7.47 6.7, 6.8

7.4 GetNIZKPChallengepy, t, κq Algs. 7.21, 7.24, 7.32, 7.35,
7.43, 7.47, 7.49 and 7.51

6.5, 6.6, 6.7, 6.8, 6.9

7.5 GetNIZKPChallengespn, y, κq Algs. 7.43 and 7.47 6.7, 6.8

Table 7.1.: Overview of general algorithms for specific tasks.

Other general algorithms have been introduced in the Chapter 4 for converting integers,
strings, and byte arrays and for hash value computations. We do not repeat them here.
There are four algorithms in total, for which we not give explicit pseudo-code: SortĺpSq for
sorting a list S according to some total order ĺ, UTF8pSq for converting a string S into a
byte array according to the UTF-8 character encoding, HashLpBq for computing the hash
value of length L (bytes) of an input byte array B (see Section 8.1), and JacobiSymbolpx, pq
for computing the Jacobi symbol

`

x
p

˘

P t´1, 0, 1u for two integers x and p. A proposal for
HashLpBq based on the SHA-256 hash algorithm is given in Section 8.1.

For the first three algorithms, standard implementations are available in most modern pro-
gramming languages. Algorithms to compute the Jacobi symbol are not so widely available,
but GMPLib1, one of the fastest and most widely used libraries for multiple-precision arith-
metic, provides an implementation of the Kronecker symbol, which includes the Jacobi
symbol as special case. If no off-the-shelf implementation is available, we refer to existing
pseudo-code algorithms such as [2, pp. 76–77].

1See https://gmplib.org

72

https://gmplib.org


Algorithm: getPrimespnq

Input: Number of primes n ě 0
xÐ 1
for i “ 1, . . . , n do

repeat
if x ď 2 then

xÐ x` 1

else
xÐ x` 2

if x ě p then
return K // n is incompatible with p

until IsPrimepxq and IsMemberpxq // see Alg. 7.2
pi Ð x

pÐ pp1, . . . , pnq
return p // p P pGq X Pqn

Algorithm 7.1: Computes the first n prime numbers from Gq Ă Z˚p . The computation
possibly fails if n is too large or p is too small, but this case is very unlikely in practice. In a
more efficient implementation of this algorithm, the list of resulting primes is accumulated
in a cache or precomputed for the largest expected value nmax ě n.

Algorithm: IsMemberpxq

Input: Number to test x P N
if 1 ď x ă p then

j Ð JacobiSymbolpx, pq // j P t´1, 0, 1u
if j “ 1 then

return true
return false

Algorithm 7.2: Checks if a positive integer x P N is an element of Gq Ă Z˚p . The core
of the algorithm is the computation of the Jacobi symbol

`

x
p

˘

P t´1, 0, 1u, for which we
refer to existing algorithms such as [2, pp. 76–77] or implementations in libraries such as
GMPLib.

73



Algorithm: GetGeneratorspnq

Input: Number of independent geneators n ě 0
for i “ 1, . . . , n do

xÐ 0
repeat

xÐ x` 1
hi Ð ToIntegerpRecHashLp"chVote", "ggen", i, xqq mod p // see Algs. 4.5 and 4.9
hi Ð h2

i mod p

until hi R t0, 1u // these cases are very unlikely

hÐ ph1, . . . , hnq
return h // h P pGqzt1uq

n

Algorithm 7.3: Computes n independent generators of Gq Ă Z˚p . The algorithm is an
adaption of the NIST standard FIPS PUB 186-4 [2, Appendix A.2.3]. The string "chVote"
guarantees that the resulting values are specific to the chVote project. In a more efficient
implementation of this algorithm, the list of resulting generators is accumulated in a cache
or precomputed for the largest expected value nmax ě n.

Algorithm: GetNIZKPChallengepy, t, κq

Input: Public value y P Y , Y unspecified
Commitment t P T , T unspecified
Soundness strength 1 ď κ ď 8L

cÐ ToIntegerpRecHashLpy, tqq mod 2κ // see Algs. 4.5 and 4.9
return c // c P Z2κ

Algorithm 7.4: Computes a NIZKP challenge 0 ď c ă 2κ for a given public value y and a
public commitment t. The domains Y and T of the input values are unspecified.

Algorithm: GetNIZKPChallengespn, y, κq

Input: Number of challenges n ě 0
Public value y P Y , Y unspecified
Soundness strength 1 ď κ ď 8L

H Ð RecHashLpyq // see Alg. 4.9
for i “ 1, . . . , n do

I Ð RecHashLpiq // see Alg. 4.9
ci Ð ToIntegerpHashLpH } Iqq mod 2κ // see Alg. 4.5

cÐ pc1, . . . , cnq
return c // c P Zn2κ

Algorithm 7.5: Computes n challenges 0 ď ci ă 2κ for a given of public value y. The
domain Y of the input value is unspecified. The results in c “ pc1, . . . , cnq are identical to
ci “ ToIntegerpRecHashLpy, iqq mod 2κ, but precomputing H makes the algorithm more
efficient, especially if y is a complex mathematical object.

74



7.3. Pre-Election Phase

The main actors in the pre-election phase are the election authorities. For the given election
definition consisting of values n, k, and E, each election authority generates a share of the
electorate data by calling Alg. 7.6. This is the main algorithm of the election preparation,
which invokes several sub-algorithms for more specific tasks. Table 7.2 gives an overview of
all algorithms of the pre-election phase. The public parts of the electorate data from every
authority, which are exchanged using the bulletin board, are assembled by the election
authorities by calling Alg. 7.12. The private parts of the electorate data, which are sent
to the printing authority over a confidential channel, are assembled to create the voting
cards by calling Alg. 7.13. The corresponding sub-task for creating a single voting card
is delegated to Alg. 7.14, but the formating details are not specified explicitly. Two other
algorithms are required for generating shares of the encryption key and for assembling the
shares of the public key. For a more detailed description of the pre-election phase, we refer
to Section 6.5.1.

Nr. Algorithm Called by Protocol

7.6 GenElectorateDatapn,k,Eq Election authority

6.1

7.7 ë GenPointspn, kq

7.8 ë GenPolynomialpdq

7.9 ë GetYValuepx,aq

7.10 ë GenSecretVoterDatappq

7.11 ë GetPublicVoterDatapx, yq

7.12 GetPublicCredentialspD̂q Election authority

7.13 GetVotingCardspv,w, c,n,k,E,Dq Printing authority
6.2

7.14 ë GetVotingCardpv, V, w, c,n,k, X, Y, FC, rcq

7.15 GenKeyPairpq Election authority
6.3

7.16 GetPublicKeyppkq Election authority

Table 7.2.: Overview of algorithms and sub-algorithms of the pre-election phase.

75



Algorithm: GenElectorateDatapn,k,Eq

Input: Number of candidates n “ pn1, . . . , ntq, nj ě 2
Number of selections k “ pk1, . . . , ktq, 0 ă kj ă nj
Eligibility matrix E “ peijqNEˆt, eij P B

nÐ
řt
j“1 nj

for i “ 1, . . . , NE do
k1i Ð

řt
j“1 eijkj

ppi, y
1
iq Ð GenPointspn, k1iq // pi “ ppi,1, . . . , pi,nq, see Alg. 7.7

di Ð GenSecretVoterDatappiq // di “ pxi, yi, Fi, riq, see Alg. 7.10
d̂i Ð GetPublicVoterDatapxi, yi, y

1
iq // d̂i “ px̂i, ŷiq, see Alg. 7.11

dÐ pd1, . . . , dNE q

d̂Ð pd̂1, . . . , d̂NE q
PÐ ppijqNEˆn

return pd, d̂,Pq // d P pZq̂xˆZq̂yˆBLFˆpBLRqnqNE, d̂ P pG2
q̂q
NE, P P pZ2

p1q
NEn

Algorithm 7.6: Generates the voting card data for the whole electorate. For this, the
algorithm loops over all voters and computes for each voter i the permitted number
k1i “

řt
j“1 eijkj of selections of the current election event. Alg. 7.10 and Alg. 7.11 are

called to generate the voter data for each single voter. At the end, the responses of
these calls are grouped into a secret part d sent to the voters prior to an election event
via the printing authority (see Prot. 6.2), a public part d̂ sent to the bulletin board to
allow voter identification during vote casting (see Prot. 6.1 and Prot. 6.5), and the matrix
P “ ppijqNEˆn of random points pij “ pxij , yijq, of which k1i will be transferred obliviously
to the voters during vote casting (see Prot. 6.5).

Algorithm: GenPointspn, kq

Input: Number of candidates n ě 2
Number of selections 0 ă k ă n

aÐ GenPolynomialpk ´ 1q // a “ pa0, . . . , ak´1q, see Alg. 7.8
X ÐH

for i “ 1, . . . , n do
x PR Zp1zX // different from values picked previously
X Ð X Y txu
y Ð GetYValuepx,aq // see Alg. 7.9
pi Ð px, yq

y1 Ð GetYValuep0,aq // see Alg. 7.9
pÐ pp1, . . . , pnq
return pp, y1q // p P pZ2

p1q
n, y1 P Zp1

Algorithm 7.7: Generates a list of n random points picked from a random polynomial
ApXq PR Zp1rXs of degree k´1. The random polynomial is obtained from calling Alg.7.8.
Additionally, using Alg. 7.9, the value y1 “ Ap0q is computed and returned together with
the random points.

76



Algorithm: GenPolynomialpdq

Input: Degree d ě ´1
if d “ ´1 then

aÐ p0q

else
for i “ 0, . . . , d´ 1 do

ai PR Zp1
ad PR Zp1zt0u
aÐ pa0, . . . , adq

return a // a P Zd`1
p1

Algorithm 7.8: Generates the coefficients a0, . . . , ad of a random polynomial ApXq “
řd
i“0 aiX

i mod p1 of degree d ě 0. The algorithm also accepts d “ ´1 as input, which we
interpret as the polynomial ApXq “ 0. In this case, the algorithm returns the coefficient
list a “ p0q.

Algorithm: GetYValuepx,aq

Input: Value x P Zp1
Coefficients a “ pa0, . . . , adq, ai P Zp1 , d ě 0

if x “ 0 then
y Ð a0

else
y Ð 0
for i “ d, . . . , 0 do

y Ð ai ` x ¨ y mod p1

return y // y P Zp1

Algorithm 7.9: Computes the value y “ Apxq P Zp1 obtained from evaluating the poly-
nomial ApXq “

řd
i“0 aiX

i mod p1 at position x. The algorithm is an implementation of
Horner’s method.

77



Algorithm: GenSecretVoterDatappq

Input: Points p “ pp1, . . . , pnq, pi P Z2
p1

q̂1x Ð tq̂x{su, q̂1y Ð tq̂y{su

x PR Zq̂1x , y PR Zq̂1y
F Ð TruncatepRecHashLppq, LF q // see Alg. 4.9
for i “ 1, . . . , n do

Ri Ð TruncatepRecHashLppiq, LRq // see Alg. 4.9

rÐ pR1, . . . , Rnq
dÐ px, y, F, rq
return d // d P Zq̂x ˆ Zq̂y ˆ BLF ˆ pBLRqn

Algorithm 7.10: Generates an authority’s share of the secret data for a single voter, which
is sent to the voter prior to an election event via the printing authority.

Algorithm: GetPublicVoterDatapx, y, y1q

Input: Secret voting credential x P Zq̂
Secret confirmation credential y P Zq̂
Secret vote validity credential y1 P Zp1

x̂Ð ĝx mod p̂, ŷ Ð ĝy`y
1 mod q̂ mod p̂

d̂Ð px̂, ŷq

return d̂ // d̂ P G2
q̂

Algorithm 7.11: Generates an authority’s share of the public data for a single voter, which
is sent to the bulletin board.

Algorithm: GetPublicCredentialspD̂q

Input: Public voter credentials D̂ “ pd̂ijqNEˆs, d̂ij “ px̂ij , ŷijq, x̂ij P Gq̂, ŷij P Gq̂

for i “ 1, . . . , NE do
x̂i Ð

śs
j“1 x̂ij mod p̂

ŷi Ð
śs
j“1 ŷij mod p̂

x̂Ð px̂1, . . . , x̂NE q
ŷÐ pŷ1, . . . , ŷNE q

return px̂, ŷq // x̂ P GNE
q̂ , ŷ P GNE

q̂

Algorithm 7.12: Computes lists x̂ and ŷ of public voter credentials, which are obtained by
multiplying corresponding values from the public parts of the electorate data generated
by the election authorities. The values in x̂ are used in Prot. 6.5 to verify if a submitted
ballot belongs to an eligible voter, whereas the values in ŷ are used in Prot. 6.6 to verify
that the vote confirmation has been invoked by the same eligible voter.

78



Algorithm: GetVotingCardspv,w, c,n,k,E,Dq

Input: Voter descriptions v “ pV1, . . . , VNE q, Vi P A
˚
ucs

Counting circles w “ pw1, . . . , wNE q, wi P N
Candidate descriptions c “ pC1, . . . , Cnq, Ci P A˚ucs
Number of candidates n “ pn1, . . . , ntq, nj ě 2, n “

řt
j“1 nj

Number of selections k “ pk1, . . . , ktq, 0 ă kj ă nj
Eligibility matrix E “ peijqNEˆt, eij P B
Voting card data D “ pdijqNEˆs, dij “ pxij , yij , Fij , rijq, xij P Zq̂x ,
řs
j“1 xij ă q̂x, yij P Zq̂y ,

řs
j“1 yij ă q̂y, Fij P BLF , rij “ pRi,j,1, . . . , Ri,j,nq,

Rijk P BLR
for i “ 1, . . . , NE do

k “ pei,1k1, . . . , ei,tktq
X Ð ToStringp

řs
j“1 xij , `X , AXq // see Alg. 4.6

Y Ð ToStringp
řs
j“1 yij , `Y , AY q // see Alg. 4.6

FC Ð ToStringp‘sj“1Fij , AF q // see Alg. 4.8
for k “ 1, . . . , n do

RÐ MarkByteArrayp‘sj“1Rijk, k ´ 1, nmaxq // see Alg. 4.1
RCk Ð ToStringpR,ARq // see Alg. 4.8

rcÐ pRC1, . . . , RCnq
Si Ð GetVotingCardpi, Vi, wi, c,n,k, X, Y, FC, rcq // see Alg. 7.14

sÐ pS1, . . . , SNE q
return s // s P pA˚ucsq

NE

Algorithm 7.13: Computes the list s “ pS1, . . . , SNE q of voting cards for every voter. A
single voting card is represented as a string Si P A˚ucs, which is generated by Alg. 7.14.

Algorithm: GetVotingCardpv, V, w, c,n,k, X, Y, FC, rcq

Input: Voter index v P N
Voter description V P A˚ucs
Counting circle w P N
Candidate descriptions c “ pC1, . . . , Cnq, Ci P A˚ucs
Number of candidates n “ pn1, . . . , ntq, nj ě 2, n “

řt
j“1 nj

Number of selections k “ pk1, . . . , ktq, 0 ď kj ă nj // kj “ 0 means ineligible
Voting code X P A`XX
Confirmation code Y P A`YY
Finalization code FC P A`FF
Verification codes rc “ pRC1, . . . , RCnq, RCi P A`RR

S Ð ¨ ¨ ¨ // compose string to be printed on voting card
return S // S P A˚ucs

Algorithm 7.14: Computes a string S P A˚ucs, which represent a voting card that can be
printed on paper and sent to voter v. Specifying the formatting details of presenting the
information on the printed voting card is beyond the scope of this document.

79



Algorithm: GenKeyPairpq

sk PR Zq
pk Ð gsk mod p
return psk, pkq // psk, pkq P Zq ˆGq

Algorithm 7.15: Generates a random ElGamal encryption key pair psk, pkq P Zq ˆ Gq

or a shares of such a key pair. This algorithm is used in Prot. 6.3 by the authorities to
generate private shares of a common public encryption key.

Algorithm: GetPublicKeyppkq

Input: Public keys pk “ ppk1, . . . , pksq, pkj P Gq

pk Ð
śs
j“1 pkj mod p

return pk // pk P Gq

Algorithm 7.16: Computes a public ElGamal encryption key pk P Gq from given shares
pkj P Gq.

80



7.4. Election Phase

The election phase is the most complex part of the cryptographic protocol, in which each of
the involved parties (voter, voting client, election authorities) calls several algorithms. An
overview of all algorithms is given in Table 7.3. To submit a ballot containing the voter’s
selections s, the voting client calls Alg.7.17 to obtain the voting page that is presented to the
voter and Alg. 7.16 to obtain the public encryption key. Using the voter’s inputs X and s,
the ballot is constructed by calling Alg.7.18, which internally invokes several sub-algorithms.
The authorities call Alg.7.22 to check the validity of the ballot and Alg.7.25 to generate the
response to the OT query included in the ballot. The voting client unpacks the responses by
calling Alg. 7.26 and assembles the resulting point matrix into the verification codes of the
selected candidates by calling Alg. 7.28. The voter then compares the displayed verification
codes with the ones on the voting card and enters the confirmation code Y . We describe

Nr. Algorithm Called by Protocol

7.17 GetVotingPagepi,v,w, c,n,k,Eq Voting client 6.4

7.16 GetPublicKeyppkq Voting client

6.5

7.18 GenBallotpX, s, pkq Voting client
7.19 ë GetSelectedPrimespsq

7.20 ë GenQuerypq, pkq

7.21 ë GenBallotProofpx,m, r, x̂,a, pkq

7.22 CheckBallotpv, α, pk,k,E, x̂, Bq Election authority
7.23 ë HasBallotpv,Bq

7.24 ë CheckBallotProofpπ, x̂,a, pkq

7.25 GenResponsepv,a, pk,n,k,E,Pq Election authority
7.26 GetPointMatrixpβ, s, rq Voting client
7.27 ë GetPointspβ, s, rq

7.28 GetReturnCodesps,Psq Voting client

7.29 CheckReturnCodesprc, rc1, sq Voter

6.6

7.30 GenConfirmationpY,Pq Voting client
7.31 ë GetValueppq

7.32 ë GenConfirmationProofpy, y1, ŷq

7.33 CheckConfirmationpv, γ, ŷ, B,Cq Election authority
7.23 ë HasBallotpv,Bq

7.34 ë HasConfirmationpi, Cq

7.35 ë CheckConfirmationProofpπ, ŷq

7.36 GetFinalizationpv,P, Bq Election authority
7.37 GetFinalizationCodepδq Voting client
7.38 CheckFinalizationCodepFC,FC 1q Voter

Table 7.3.: Overview of algorithms and sub-algorithms of the election phase.

81



the (human) execution of this task by a call to Alg. 7.29. The voting client then generates
the confirmation message using Alg. 7.30, which invokes several sub-algorithms. By calling
Algs. 7.33 and 7.36, the authorities check the confirmation and return their shares of the
finalization code. Using 7.37, the voting client assembles the finalization code and displays it
to the voter, which finally executes Alg.7.38 to compare it with the finalization code printed
on the voting card. Section 6.5.2 describes the election phase in more details.

Algorithm: GetVotingPagepv,v,w, c,n,k,Eq

Input: Voter index v P t1, . . . , NEu

Voter descriptions v “ pV1, . . . , VNE q, Vi P A
˚
ucs

Counting circles w “ pw1, . . . , wNE q, wi P N
Candidate descriptions c “ pC1, . . . , Cnq, Ci P A˚ucs
Number of candidates n “ pn1, . . . , ntq, nj ě 2, n “

řt
j“1 nj

Number of selections k “ pk1, . . . , ktq, 0 ă kj ă nj
Eligibility matrix E “ peijqNEˆt, eij P B

P Ð ¨ ¨ ¨ // compose string to be displayed to the voter
return P // P P A˚ucs

Algorithm 7.17: Computes a string P P A˚ucs, which represents the voting page displayed
to voter v. Specifying the details of presenting the information on the voting page is
beyond the scope of this document.

Algorithm: GenBallotpX, s, pkq

Input: Voting code X P A`XX
Selection s “ ps1, . . . , skq, 1 ď s1 ă ¨ ¨ ¨ ă sk
Encryption key pk P Gq

xÐ ToIntegerpXq // see Alg. 4.7
x̂Ð ĝx mod p̂
qÐ GetSelectedPrimespsq // q “ pq1, . . . , qkq, see Alg. 7.19
pa, rq Ð GenQuerypq, pkq // a “ pa1, . . . , akq, r “ pr1, . . . , rkq, see Alg. 7.20
mÐ

śk
j“1 qj

if m ě p then
return K // pk, nq is incompatible with p

r Ð
řk
j“1 rj mod q

π Ð GenBallotProofpx,m, r, x̂,a, pkq // π “ pt, sq, see Alg. 7.21
αÐ px̂,a, πq

return pα, rq // α P Zq̂ ˆ pG2
qq
k ˆ ppGq̂ ˆGq ˆGqq ˆ pZq̂ ˆGq ˆ Zqqq, r P Zkq

Algorithm 7.18: Generates a ballot based on the selection s and the voting code X.
The ballot includes an OT query a and a NIZKP π. The algorithm also returns the
randomizations r of the OT query, which are required in Alg.7.27 to derive the transferred
messages from the OT response.

82



Algorithm: GetSelectedPrimespsq

Input: Selections s “ ps1, . . . , skq, 1 ď s1 ă ¨ ¨ ¨ ă sk
pÐ getPrimespskq // see Alg. 7.1
for j “ 1, . . . , k do

qj Ð psj

qÐ pq1, . . . , qkq

return q // q P pGq X Pqk

Algorithm 7.19: Selects k prime numbers from Gq corresponding to the given indices
s “ ps1, . . . , skq. For example, s “ p1, 3, 7q means selecting the first, the third, and the
seventh prime from Gq.

Algorithm: GenQuerypq, pkq

Input: Selected primes q “ pq1, . . . , qkq
Encryption key pk P Gq

for j “ 1, . . . , k do
rj PR Zq
aj,1 Ð qj ¨ pk

rj mod p
aj,2 Ð grj mod p
aj Ð paj,1, aj,2q

aÐ pa1, . . . , akq
rÐ pr1, . . . , rkq

return pa, rq // a P pGq ˆGqq
k, r P Zkq

Algorithm 7.20: Generates an OT query a from the prime numbers representing the voter’s
selections and a for a given public encryption key (which serves as a generator of Zp).

83



Algorithm: GenBallotProofpx,m, r, x̂,a, pkq

Input: Voting credentials px, x̂q P Zq̂ ˆGq̂

Product of selected primes m P Gq

Randomization r P Zq
OT query a “ pa1, . . . , akq, aj “ paj,1, aj,2q P G2

q , k ą 0
Encryption key pk P Gq

ω1 PR Zq̂, ω2 PRGq, ω3 PR Zq
t1 Ð ĝω1 mod p̂, t2 Ð ω2 ¨ pk

ω3 mod p, t3 Ð gω3 mod p
y Ð px̂,aq, tÐ pt1, t2, t3q
cÐ GetNIZKPChallengepy, t, τq // see Alg. 7.4
s1 Ð ω1 ` c ¨ x mod q̂, s2 Ð ω2 ¨m

c mod p, s3 Ð ω3 ` c ¨ r mod q
sÐ ps1, s2, s3q

π Ð pt, sq
return π // π P pGq̂ ˆGq ˆGqq ˆ pZq̂ ˆGq ˆ Zqq

Algorithm 7.21: Generates a NIZKP, which proves that the ballot has been formed prop-
erly. This proof includes a proof of knowledge of the secret voting credential x that
matches with the public voting credential x̂. Note that this is equivalent to a Schnorr
identification proof [48]. For the verification of this proof, see Alg. 7.24.

Algorithm: CheckBallotpv, α, pk,k,E, x̂, Bq

Input: Voter index v P t1, . . . NEu

Ballot α “ px̂,a, πq, x̂ P Zq̂, a “ pa1, . . . , akq, aj “ paj,1, aj,2q P G2
q , k ą 0

Encryption key pk P Gq

Number of selections k “ pk1, . . . , ktq, 0 ă kj ă nj
Eligibility matrix E “ peijqNEˆt, eij P B
Public voting credentials x̂ “ px̂1, . . . , x̂NE q, x̂i P Gq̂

Ballot list B “ xpvi, αi, ziqyNB´1
i“0 , vi P t1, . . . , NEu

k1 Ð
řt
j“1 evjkj

if  HasBallotpv,Bq and x̂ “ x̂v and k “ k1 then // see Alg. 7.23
if CheckBallotProofpπ, x̂,a, pkq then // see Alg. 7.24

return true

return false

Algorithm 7.22: Checks if a ballot α obtained from voter v is valid. For this, voter v must
not have submitted a valid ballot before, x̂ must be the public voting credential of voter
v, the length k “ |a| must be equal to k1 “

řt
j“1 kvj , and π must be valid.

84



Algorithm: HasBallotpv,Bq

Input: Voter index v P N
Ballot list B “ xpvi, αi, ziqyNB´1

i“0 , vi P N
foreach pvi, αi, ziq P B do // use binary search or hash table for better performance

if v “ vi then
return true

return false

Algorithm 7.23: Checks if the ballot list B contains an entry for voter v.

Algorithm: CheckBallotProofpπ, x̂,a, pkq

Input: Ballot proof π “ pt, sq, t “ pt1, t2, t3q P Gq̂ˆGqˆGq, s “ ps1, s2, s3q P Zq̂ˆGqˆZq
Public voting credential x̂ P Zq̂
OT query a “ pa1, . . . , akq, aj “ paj,1, aj,2q P G2

q , k ą 0
Encryption key pk P Gq

y Ð px̂,aq
cÐ GetNIZKPChallengepy, t, τq // see Alg. 7.4
a1 Ð

śk
j“1 aj,1 mod p, a2 Ð

śk
j“1 aj,2 mod p

t11 Ð x̂´c ¨ ĝs1 mod p̂
t12 Ð a´c1 ¨ s2 ¨ pk

s3 mod p
t13 Ð a´c2 ¨ gs3 mod p
return pt1 “ t11q ^ pt2 “ t12q ^ pt3 “ t13q

Algorithm 7.24: Checks the correctness of a NIZKP π generated by Alg. 7.21. The public
values of this proof are the public voting credential x̂ and the OT query a “ pa1, . . . , akq.

85



Algorithm: GenResponsepv,a, pk,n,k,E,Pq

Input: Voter index v P t1, . . . , NEu

Queries a “ pa1, . . . , akq, aj P Gq

Encryption key pk P Gq

Number of candidates n “ pn1, . . . , ntq, nj ě 2, n “
řt
j“1 nj

Number of selections k “ pk1, . . . , ktq, 0 ă kj ă nj
Eligibility matrix E “ peijqNEˆt, eij P B
Points P “ ppijqNEˆn, pij “ pxij , yijq, xij P Zp1 , yij P Zp1

z1, z2 PR Zq
for j “ 1, . . . , k do

βj PRGq

bj Ð az1j,1a
z2
j,2βj mod p

`M Ð rLM{Ls

pÐ getPrimespnq // p “ pp1, . . . , pnq, see Alg. 7.1
n1 Ð 0, k1 Ð 0
for l “ 1, . . . , t do

if evl “ 0 then // optimization by excluding evl “ 0
for i “ n1 ` 1, . . . , n1 ` nl do

p1i Ð pz1i mod p

Mi Ð ToByteArraypxvi,
LM

2 q }ToByteArraypyvi,
LM

2 q // see Alg. 4.4
for j “ k1 ` 1, . . . , k1 ` evlkl do

kij Ð p1iβj mod p

Kij Ð Truncatep} `Mc“1RecHashLpkij , cq, LM q // see Alg. 4.9
Cij ÐMi ‘Kij

k1 Ð k1 ` evlkl

n1 Ð n1 ` nl

bÐ pb1, . . . , bkq, CÐ pCijqnˆk, dÐ pkz1gz2 mod p
β Ð pb,C, dq
z “ pz1, z2q

return pβ, zq // β P Gk
q ˆ pBLM qnk ˆGq, z P Z2

q

Algorithm 7.25: Generates the response β for the given OT query a. The messages to
transfer are byte array representations of the n points ppv,1, . . . , pv,nq. Along with β, the
algorithm also returns the randomizations z used to generate the response.

86



Algorithm: GetPointMatrixpβ, s, rq

Input: OT responses β “ pβ1, . . . , βsq, βj P Gk
q ˆ pBLM qnk ˆGq

Selection s “ ps1, . . . , skq, 1 ď s1 ă ¨ ¨ ¨ ă sk ď n
Randomizations r “ pr1, . . . , rkq, rj P Zq

for i “ 1, . . . , s do
pi Ð GetPointspβi, s, rq // pj “ ppi,1, . . . , pi,kq, see Alg. 7.27

Ps Ð ppijqsˆk
return Ps // Ps P pZ2

pq
sk

Algorithm 7.26: Computes the s-by-k matrix Ps “ ppijqsˆk of the points obtained from
the s authorities for the selection s. The points are derived from the messages included
in the OT responses β “ pβ1, . . . , βsq.

Algorithm: GetPointspβ, s, rq

Input: OT response β “ pb,C, dq, b “ pb1, . . . , bkq, bj P Gq, C “ pCijqnˆk, Cij P BLM ,
d P Gq

Selection s “ ps1, . . . , skq, 1 ď s1 ă ¨ ¨ ¨ ă sk ď n
Randomizations r “ pr1, . . . , rkq, rj P Zq

`M Ð rLM{Ls

for j “ 1, . . . , k do
kj Ð bj ¨ d

´rj mod p

Kj Ð Truncatep} `Mc“1RecHashLpkj , cq, LM q // see Alg. 4.9
Mj Ð Csj ,j ‘Kj

xj Ð ToIntegerpTruncatepMj ,
LM

2 qq // see Alg. 4.5
yj Ð ToIntegerpSkippMj ,

LM
2 qq // see Alg. 4.5

if xj ě p1 or yj ě p1 then
return K // point not in Z2

p1

pj Ð pxj , yjq

pÐ pp1, . . . , pkq

return p // p P pZ2
p1q

k

Algorithm 7.27: Computes the k transferred points p “ pp1, . . . , pkq from the OT response
β using the random values r from the OT query and the selection s. The algorithm returns
K, if some transfered point lies outside Z2

p1 . By selecting the largest possible prime p1 for
a given bit length, this exception is very unlikely (see Section 8.2).

87



Algorithm: GetReturnCodesps,Psq

Input: Selection s “ ps1, . . . , skq, 1 ď s1 ă ¨ ¨ ¨ ă sk ď n
Points Ps “ ppijqsˆk, pij P Z2

p1

for j “ 1, . . . , k do
for i “ 1, . . . , s do

Rij Ð TruncatepRecHashLppijq, LRq // see Alg. 4.9

Rj Ð MarkByteArrayp‘si“1Rij , sj ´ 1, nmaxq // see Alg. 4.1
RCsj Ð ToStringpR,ARq // see Alg. 4.8

rcs Ð pRCs1 , . . . , RCskq

return rcs // rc P pA`FF q
k

Algorithm 7.28: Computes the k verification codes rcs “ pRCs1 , . . . , RCskq for the selected
candidates by combining the hash values of the transferred points pij P Ps from different
authorities.

Algorithm: CheckReturnCodesprc, rc1, sq

Input: Printed verification codes rc “ pRC1, . . . , RCnq, RCi P A`RR
Displayed verification codes rc1 “ pRC 11, . . . , RC 1kq, RC

1
j P A

`R
R

Selections s “ ps1, . . . , skq, 1 ď s1 ă ¨ ¨ ¨ ă sk ď n
return

Źk
j“1pRCsj “ RC 1jq

Algorithm 7.29: Checks if every displayed verification code RC 1i matches with the verifi-
cation code RCsi of the selected candidate si as printed on the voting card. Note that
this algorithm is executed by humans.

Algorithm: GenConfirmationpY,Pq

Input: Confirmation code Y P A`YY
Points P “ ppijqsˆk, pij P Z2

p1

for i “ 1 . . . , s do
pi Ð ppi,1, . . . , pi,kq
y1i Ð GetValueppiq // see Alg. 7.31

y Ð ToIntegerpY q mod q̂, y1 Ð
řs
i“1 y

1
i mod q̂ // see Alg. 4.7

ŷ Ð ĝy`y
1 mod q̂ mod p̂

π Ð GenConfirmationProofpy, y1, ŷq // π “ pt, sq, see Alg. 7.32
γ Ð pŷ, πq
return γ // γ P Gq̂ ˆ pGq ˆ Zq̂q

Algorithm 7.30: Generates the confirmation γ, which consists of the public confirma-
tion credential ŷ and a NIZKP of knowledge π of the secret confirmation and validity
credentials y and y1.

88



Algorithm: GetValueppq

Input: Points p “ pp1, . . . , pkq, pj “ pxj , yjq P Z2
p1 , k ě 0

y Ð 0
for i “ 1, . . . , k do

nÐ 1, dÐ 1
for j “ 1, . . . , k do

if i ‰ j then
nÐ n ¨ xj mod p1

dÐ d ¨ pxj ´ xiq mod p1

y Ð y ` yi ¨
n
d mod p1

return y // y P Zp1

Algorithm 7.31: Computes a polynomial ApXq of degree k ´ 1 from given points p “
pp1, . . . , pkq using Lagrange’s interpolation method and returns the value y “ Ap0q.

Algorithm: GenConfirmationProofpy, y1, ŷq

Input: Secret confirmation credential y P Zq̂
Secret validity credential y1 P Zq̂
Public confirmation credential ŷ P Gq̂

ω PR Zq̂
tÐ ĝω mod p̂
cÐ GetNIZKPChallengepŷ, t, τq // see Alg. 7.4
sÐ ω ` c ¨ py ` y1q mod q̂
π Ð pt, sq
return π // π P Gq̂ ˆ Zq̂

Algorithm 7.32: Generates a NIZKP of knowledge of the secret confirmation and validity
credentials y and y1 that matches with a given public confirmation credential ŷ. Note
that this proof is equivalent to a Schnorr identification proof [48]. For the verification of
π, see Alg. 7.35.

89



Algorithm: CheckConfirmationpv, γ, ŷ, B,Cq

Input: Voter index v P t1, . . . , NEu

Confirmation γ “ pŷ, πq, ŷ P Gq̂, π P Gq̂ ˆ Zq̂
Public confirmation credentials ŷ “ pŷ1, . . . , ŷNE q, ŷi P Gq̂

Ballot list B “ xpvi, αi, ziqyNB´1
i“0 , vi P t1, . . . , NEu

Confirmation list C “ xpvi, γiqyNC´1
i“0 , vi P t1, . . . , NEu

if HasBallotpv,Bq and  HasConfirmationpv, Cq and ŷ “ ŷv then // see Alg. 7.23, 7.34
if CheckConfirmationProofpπ, ŷq then // see Alg. 7.35

return true

return false

Algorithm 7.33: Checks if a confirmation γ obtained from voter i is valid. For this, voter
v must have submitted a valid ballot before, but not a valid confirmation. The check
then succeeds if π is valid and if ŷ is the public confirmation credential of voter v.

Algorithm: HasConfirmationpv, Cq

Input: Voter index v P N
Confirmation list C “ xpvj , γjqyNC´1

j“0 , vj P N
foreach pvj , γjq P C do // use binary search or hash table for better performance

if v “ vj then
return true

return false

Algorithm 7.34: Checks if the confirmation list C contains an entry for voter v.

Algorithm: CheckConfirmationProofpπ, ŷq

Input: Confirmation proof π “ pt, sq, t P Gq̂, s P Zq̂
Public confirmation credential ŷ P Gq̂

cÐ GetNIZKPChallengepŷ, t, τq // see Alg. 7.4
t1 Ð ŷ´c ¨ ĝs mod p̂
return pt “ t1q

Algorithm 7.35: Checks the correctness of a NIZKP π generated by Alg. 7.32. The public
value of this proof is the public confirmation credential ŷ.

90



Algorithm: GetFinalizationpv,P, Bq

Input: Voter index v P t1, . . . , NEu

Points P “ ppijqNEˆn, pij P Z2
p1

Ballot list B “ xpvi, αi, ziqyNB´1
i“0 , vi P t1, . . . , NEu

pÐ ppv,1, . . . , pv,nq
F Ð TruncatepRecHashLppq, LF q // see Alg. 4.9
foreach pvi, αi, ziq P B do // use binary search or hash table for better performance

if v “ vi then
δ Ð pF, ziq
return δ // δ P BLF ˆ Z2

q

return K // no entry for v in B

Algorithm 7.36: Computes the finalization code F for voter v from the given points
ppv,1, . . . , pv,nq and returns F together with the randomizations used in the creation of
the OT response.

Algorithm: GetFinalizationCodepδq

Input: Finalizations δ “ pδ1, . . . , δsq, δj “ pFj , zjq, Fj P BLF , zj P Z2
q

FC Ð ToStringp‘sj“1Fj , AF q // see Alg. 4.8
return FC // FC P A`FF

Algorithm 7.37: Computes a finalization code FC by combining the values Fj received
from the authorities.

Algorithm: CheckFinalizationCodepFC,FC 1q

Input: Printed finalization code FC P A`FF
Displayed finalization code FC 1 P A`FF

return FC “ FC 1

Algorithm 7.38: Checks if the displayed finalization code FC 1 matches with the finalization
code FC from the voting card. Note that this algorithm is executed by humans.

91



7.5. Post-Election Phase

The main actors in the process at the end of an election are the election authorities. Corre-
sponding algorithms are shown in Table 7.4. To initiate the mixing process, the first election
authority calls Alg. 7.39 to cleanse the list of submitted ballots and to extract a sorted list
of encrypted votes to shuffle. By calling Algs. 7.40 and 7.43, this list is shuffled according to
a random permutation and a NIZKP of shuffle is generated. This step is repeated by every
election authority. The final result obtained from the last shuffle is the list of encrypted
votes that will be decrypted. Before computing corresponding partial decryptions, each
election authority calls Alg. 7.46 to check the correctness of the whole shuffle process. The
partial decryptions are then computed using Alg. 7.48 and corresponding decryption proofs
are generated using Alg.7.49. The information exchange during this whole process goes over
the bulletin board. After terminating all tasks, the process is handed over from the election
authorities to the election administrator, who calls Alg. 7.50 to check all decryption proofs
and Alg.7.53 to obtain the final election result. We refer to Section 6.5.3 for a more detailed
description of this process.

Nr. Algorithm Called by Protocol

7.39 GetEncryptionspB,C,n,wq Election authority

6.7

7.34 ë HasConfirmationpv, Cq

7.40 GenShufflepe, pkq Election authority

7.41 ë GenPermutationpNq

7.42 ë GenReEncryptionpe, pkq

7.43 GenShuffleProofpe, e1, r1, ψ, pkq Election authority

7.44 ë GenPermutationCommitmentpψ,hq

7.45 ë GenCommitmentChainpc0,uq

7.39 GetEncryptionspB,C,n,wq Election authority

6.8
7.46 CheckShuffleProofspπ, e0,E, pk, jq Election authority

7.47 ë CheckShuffleProofpπ, e, e1, pkq

7.48 GetPartialDecryptionspe, skjq Election authority

7.49 GenDecryptionProofpskj , pkj , e,b
1q Election authority

7.50 CheckDecryptionProofspπ1,pk, e,B1q Election administrator

6.9
7.51 ë CheckDecryptionProofpπ1, pkj , e,b

1q

7.52 GetDecryptionspe,B1q Election administrator

7.53 GetVotespm,n,wq Election administrator

Table 7.4.: Overview of algorithms and sub-algorithms of the post-election phase.

92



Algorithm: GetEncryptionspB,C,n,wq

Input: Ballot list B “ xpvi, αi, ziqyNB´1
i“0 , vi P t1, . . . , NEu

Confirmation list C “ xpvi, γiqyNC´1
i“0 , vi P t1, . . . , NEu

Number of candidates n “ pn1, . . . , ntq, nj ě 2
Counting circles w “ pw1, . . . , wNE q, wi P N

nÐ
řt
j“1 nj

w Ð maxNEi“1wi
pÐ getPrimespn` wq // p “ pp1, . . . , pn`wq, see Alg. 7.1
iÐ 1 // loop over i “ 1, . . . , NC

foreach pv, α, zq P B do // α “ px̂,a, πq, a “ pa1, . . . , akq, aj “ paj,1, aj,2q P G2
q

if HasConfirmationpv, Cq then // see Alg. 7.34
a1 Ð pn`wv

śk
j“1 aj,1 mod p

a2 Ð
śk
j“1 aj,2 mod p

ei Ð pa1, a2q

iÐ i` 1

eÐ Sortĺpe1, . . . , eNC q
return e // e P pG2

qq
NC

Algorithm 7.39: Computes a sorted list of ElGamal encryptions from the list of submitted
ballots, for which a valid confirmation is available. The counting circles wv are added to
the encryptions. Sorting the resulting list is necessary to guarantee a unique order. For
this, we define a total order over G2

q by ei ĺ ej ô pai ă ajq _ pai “ aj ^ bi ď bjq, for
ei “ pai, biq and ej “ paj , bjq.

Algorithm: GenShufflepe, pkq

Input: ElGamal encryptions e “ pe1, . . . , eN q, ei P G2
q

Encryption key pk P Gq

ψ Ð GenPermutationpNq // ψ “ pj1, . . . , jN q P ΨN , see Alg. 7.41
for i “ 1, . . . , N do
pe1i, r

1
iq Ð GenReEncryptionpei, pkq // see Alg. 7.42

e1 Ð pe1j1 , . . . , e
1
jN
q

r1 Ð pr11, . . . , r
1
N q

return pe1, r1, ψq // e1 P pG2
qq
N , r1 P ZNq , ψ P ΨN

Algorithm 7.40: Generates a random permutation ψ P ΨN and uses it to shuffle a given
list e “ pe1, . . . , eN q of ElGamal encryptions ei “ pai, biq P G2

q . With ΨN “ tpj1, . . . , jN q :
ji P t1, . . . , Nu, ji1‰ji2 ,@i1‰i2u we denote the set of all N ! possible permutations of the
indices t1, . . . , Nu.

93



Algorithm: GenPermutationpNq

Input: Permutation size N P N
I Ð x1, . . . , Ny
for i “ 0, . . . , N ´ 1 do

k PR ti, . . . , N ´ 1u
ji`1 Ð Irks
Irks Ð Iris

ψ Ð pj1, . . . , jN q
return ψ // ψ P ΨN

Algorithm 7.41: Generates a random permutation ψ P ΨN following Knuth’s shuffle algo-
rithm [34, pp. 139–140].

Algorithm: GenReEncryptionpe, pkq

Input: ElGamal encryption e “ pa, bq, a P Gq, b P Gq

Encryption key pk P Gq

r1 PR Zq
a1 Ð a ¨ pkr

1

mod p

b1 Ð b ¨ gr
1

mod p
e1 Ð pa1, b1q
return pe1, r1q // e1 P G2

q , r1 P Zq

Algorithm 7.42: Generates a re-encryption e1 “ pa ¨ pkr1 , b ¨ gr1q of the given ElGamal en-
cryption e “ pa, bq P G2

q . The re-encryption e1 is returned together with the randomization
r1 P Zq.

94



Algorithm: GenShuffleProofpe, e1, r1, ψ, pkq

Input: ElGamal encryptions e “ pe1, . . . , eN q, ei “ pai, biq P G2
q

Shuffled ElGamal encryptions e1 “ pe11, . . . , e1N q, e
1
i “ pa

1
i, b
1
iq P G2

q

Re-encryption randomizations r1 “ pr11, . . . , r1N q, r
1
i P Zq

Permutation ψ “ pj1, . . . , jN q P ΨN

Encryption key pk P Gq

hÐ GetGeneratorspNq // see Alg. 7.3
pc, rq Ð GenPermutationCommitmentpψ,hq // c “ pc1, . . . , cN q, see Alg. 7.44
uÐ GetNIZKPChallengespN, pe, e1, cq, τq // u “ pu1, . . . , uN q, see Alg. 7.5
for i “ 1, . . . , N do

u1i Ð uji

u1 Ð pu11, . . . , u
1
N q

pĉ, r̂q Ð GenCommitmentChainph,u1q // ĉ “ pĉ1, . . . , ĉN q, see Alg. 7.45
for i “ 1, . . . , 4 do

ωi PR Zq
for i “ 1, . . . , N do

ω̂i PR Zq, ω1i PR Zq
t1 Ð gω1 mod p
t2 Ð gω2 mod p

t3 Ð gω3
śN
i“1 h

ω1i
i mod p

pt4,1, t4,2q Ð ppk´ω4
śN
i“1pa

1
iq
ω1i mod p, g´ω4

śN
i“1pb

1
iq
ω1i mod pq

ĉ0 Ð h
for i “ 1, . . . , N do

t̂i Ð gω̂i ĉ
ω1i
i´1 mod p

tÐ pt1, t2, t3, pt4,1, t4,2q, pt̂1, . . . , t̂N qq
y Ð pe, e1, c, ĉ, pkq
cÐ GetNIZKPChallengepy, t, τq // see Alg. 7.4
r̄ Ð

řN
i“1 ri mod q, s1 Ð ω1 ` c ¨ r̄ mod q

vN Ð 1
for i “ N ´ 1, . . . , 1 do

vi Ð u1i`1vi`1 mod q

r̂ Ð
řN
i“1 r̂ivi mod q, s2 Ð ω2 ` c ¨ r̂ mod q

r̃ Ð
řN
i“1 riui mod q, s3 Ð ω3 ` c ¨ r̃ mod q

r1 Ð
řN
i“1 r

1
iui mod q, s4 Ð ω4 ` c ¨ r

1 mod q
for i “ 1, . . . , N do

ŝi Ð ω̂i ` c ¨ r̂i mod q, s1i Ð ω1i ` c ¨ u
1
i mod q

sÐ ps1, s2, s3, s4, pŝ1, . . . , ŝN q, ps
1
1, . . . , s

1
N qq

π Ð pt, s, c, ĉq
return π // π P pGqˆGqˆGqˆG2

qˆGN
q q ˆ pZqˆZqˆZqˆZqˆZNq ˆZNq q ˆGN

q ˆGN
q

Algorithm 7.43: Generates a NIZKP of shuffle relative to ElGamal encryptions e and e1,
which is equivalent to proving knowledge of a permutation ψ and randomizations r1 such
that e1 “ Shufflepkpe, r

1, ψq. The algorithm implements Wikström’s proof of a shuffle
[52, 50], except for the fact that the offline and online phases are merged. For the proof
verification, see Alg. 7.47. For further background information we refer to Section 5.5.

95



Algorithm: GenPermutationCommitmentpψ,hq

Input: Permutation ψ “ pj1, . . . , jN q P ΨN

Independent generators h “ ph1, . . . , hN q, hi P Gqzt1u
for i “ 1, . . . , N do

rji PR Zq
cji Ð grji ¨ hi mod p

cÐ pc1, . . . , cN q
rÐ pr1, . . . , rN q
return pc, rq // c P GN

q , r P ZNq

Algorithm 7.44: Generates a commitment c “ compψ, rq to a permutation ψ by commit-
ting to the columns of the corresponding permutation matrix. This algorithm is used in
Alg. 7.43.

Algorithm: GenCommitmentChainpc0,uq

Input: Initial commitment c0 P Gq

Public challenges u “ pu1, . . . , uN q, ui P Zq
for i “ 1, . . . , N do

ri PR Zq
ci Ð gri ¨ cuii´1 mod p

cÐ pc1, . . . , cN q
rÐ pr1, . . . , rN q
return pc, rq // c P GN

q , r P ZNq

Algorithm 7.45: Generates a commitment chain c0 Ñ c1 Ñ ¨ ¨ ¨ Ñ cN relative to a list of
public challenges u and starting with a given commitment c0. This algorithm is used in
Alg. 7.43.

Algorithm: CheckShuffleProofspπ, e0,E, pk, iq

Input: Shuffle proofs π “ pπ1, . . . , πsq
ElGamal encryptions e0 “ pe1,0, . . . , eN,0q, ei,0 P G2

q

Shuffled ElGamal encryptions E “ peijqNˆs, eij P G2
q

Encryption key pk P Gq

Authority index i P t1, . . . , su
for j “ 1, . . . , s do

ej Ð pe1,j , . . . , eN,jq
if i ‰ j then // check proofs from others only

if  CheckShuffleProofpπj , ej´1, ej , pkq then // see Alg. 7.47
return false

return true

Algorithm 7.46: Checks if a chain of shuffle proofs generated by s different authorities is
correct.

96



Algorithm: CheckShuffleProofpπ, e, e1, pkq

Input: Shuffle proof π “ pt, s, c, ĉq, t “ pt1, t2, t3, pt4,1, t4,2q, pt̂1, . . . , t̂N qq,
s “ ps1, s2, s3, s4, pŝ1, . . . , ŝN q, ps

1
1, . . . , s

1
N qq, c “ pc1, . . . , cN q, ĉ “ pĉ1, . . . , ĉN q

ElGamal encryptions e “ pe1, . . . , eN q, ei P G2
q

Shuffled ElGamal encryptions e1 “ pe11, . . . , e1N q, e
1
i P G2

q

Encryption key pk P Gq

hÐ GetGeneratorspNq // see Alg. 7.3
uÐ GetNIZKPChallengespN, pe, e1, cq, τq // u “ pu1, . . . , uN q, see Alg. 7.5
y Ð pe, e1, c, ĉ, pkq
cÐ GetNIZKPChallengepy, t, τq // see Alg. 7.4
c̄Ð

śN
i“1 ci{

śN
i“1 hi mod p

uÐ
śN
i“1 ui mod q

ĉÐ ĉN{h
u mod p

c̃Ð
śN
i“1 c

ui
i mod p

pa1, b1q Ð p
śN
i“1 a

ui
i mod p,

śN
i“1 b

ui
i mod pq

t11 Ð c̄´c ¨ gs1 mod p
t12 Ð ĉ´c ¨ gs2 mod p

t13 Ð c̃´c ¨ gs3
śN
i“1 h

s1i
i mod p

pt14,1, t
1
4,2q Ð ppa1q´c ¨ pk´s4

śN
i“1pa

1
iq
s1i mod p, pb1q´c ¨ g´s4

śN
i“1pb

1
iq
s1i mod pq

ĉ0 Ð h
for i “ 1, . . . , N do

t̂1i Ð ĉ´ci ¨ gŝi ¨ ĉ
s1i
i´1 mod p

return pt1 “ t11q ^ pt2 “ t12q ^ pt3 “ t13q ^ pt4,1 “ t14,1q ^ pt4,2 “ t14,2q ^
”

ŹN
i“1pt̂i “ t̂1iq

ı

Algorithm 7.47: Checks the correctness of a NIZKP of a shuffle π generated by Alg. 7.43.
The public values are the ElGamal encryptions e and e1 and the public encryption key
pk.

Algorithm: GetPartialDecryptionspe, skq

Input: ElGamal encryptions e “ pe1, . . . , eN q, ei “ pai, biq, ai, bi P Gq

Decryption key sk P Zq
for i “ 1, . . . , N do

b1i Ð bski mod p

b1 Ð pb11, . . . , b
1
N q

return b1 // b1 P GN
q

Algorithm 7.48: Computes the partial decryptions of a given input list e of ElGamal
encryption using a share sk of the private decryption key.

97



Algorithm: GenDecryptionProofpsk, pk, e,b1q

Input: Decryption key sk P Zq
Encryption key pk P Gq

ElGamal encryptions e “ pe1, . . . , eN q, ei “ pai, biq, ai, bi P Gq

Partial decryptions b1 “ pb11, . . . , b1N q, b
1
i P Gq

ω PR Zq
t0 Ð gω mod p
for i “ 1, . . . , N do

ti Ð bωi mod p

tÐ pt0, pt1, . . . , tN qq
bÐ pb1, . . . , bN q
y Ð ppk,b,b1q
cÐ GetNIZKPChallengepy, t, τq // see Alg. 7.4
sÐ ω ` c ¨ sk mod q
π Ð pt, sq
return π // π P pGq ˆGN

q q ˆ Zq

Algorithm 7.49: Generates a decryption proof relative to ElGamal encryptions e and
partial decryptions b1. This is essentially a NIZKP of knowledge of the private key sk
satisfying b1i “ bski for all input encryptions ei “ pai, biq and pk “ gsk. For the proof
verification, see Alg. 7.51.

Algorithm: CheckDecryptionProofspπ1,pk, e,B1q

Input: Decryption proofs π1 “ pπ11, . . . , π1sq, πj P pGq ˆGN
q q ˆ Zq

Encryption key shares pk “ ppk1, . . . , pksq, pkj P Gq

ElGamal encryptions e “ pe1, . . . , eN q, ei P G2
q

Partial decryptions B1 “ pbijqNˆs, b1ij P Gq

for j “ 1, . . . , s do
b1j Ð pb11,j , . . . , b

1
N,jq

if  CheckDecryptionProofpπ1j , pkj , e,b
1
jq then // see Alg. 7.51

return false

return true

Algorithm 7.50: Checks if the decryption proofs generated by s different authorities are
correct.

98



Algorithm: CheckDecryptionProofpπ1, pk, e,b1q

Input: Decryption proof π1 “ pt, sq, t “ pt0, pt1, . . . , tN qq, ti P Gq, s P Zq
Encryption key share pk P Gq

ElGamal encryptions e “ pe1, . . . , eN q, ei “ pai, biq, ai, bi P Gq

Partial decryptions b1 “ pb11, . . . , b1N q, b
1
i P Gq

bÐ pb1, . . . , bN q
y Ð ppk,b,b1q
cÐ GetNIZKPChallengepy, t, τq // see Alg. 7.4
t10 Ð pk´c ¨ gs mod p
for i “ 1, . . . , N do

t1i Ð pb1iq
´c ¨ bsi mod p

return pt0 “ t10q ^
”

ŹN
i“1pti “ t1iq

ı

Algorithm 7.51: Checks the correctness of a decryption proof π generated by Alg. 7.49.
The public values are the ElGamal encryptions e, the partial decryptions b1, and the
share pk of the public encryption key.

Algorithm: GetDecryptionspe,B1q

Input: ElGamal encryptions e “ pe1, . . . , eN q, ei “ pai, biq, ai, bi P Gq

Partial decryptions B1 “ pb1iiqNˆs, b
1
ij P Gq

for i “ 1, . . . , N do
b1i Ð

śs
j“1 b

1
ij mod p

mi Ð
ai
b1i

mod p

mÐ pm1, . . . ,mN q

return m // m P GN
q

Algorithm 7.52: Computes the list of decrypted plaintexts m “ pm1, . . . ,mN q by assem-
bling the partial decryptions b1ij obtained from s different authorities.

99



Algorithm: GetVotespm,n,wq

Input: Encoded selections m “ pm1, . . . ,mN q, mi P Gq

Number of candidates n “ pn1, . . . , ntq, nj ě 2
Counting circles w “ pw1, . . . , wNE q, wi P N

nÐ
řt
j“1 nj

w Ð maxNEi“1wi
pÐ getPrimespn` wq // p “ pp1, . . . , pn`wq, see Alg. 7.1
for i “ 1, . . . , N do

for j “ 1, . . . , n do
if mi mod pj “ 0 then

vij Ð 1

else
vij Ð 0

for j “ 1, . . . , w do
if mi mod pn`j “ 0 then

wij Ð 1

else
wij Ð 0

VÐ pvijqNˆn, WÐ pwilqNˆw
return pV,Wq // V P BNn, W P BNw

Algorithm 7.53: Computes the election result matrix V “ pvijqnˆN and correspond-
ing counting circles W “ pwijqNˆw from the products of encoded selections m “

pm1, . . . ,mN q by retrieving the prime factors of each mj . Each resulting vector vi “
pvi,1, . . . , vi,nq represents somebody’s vote, and each value vij “ 1 represents somebody’s
vote for a specific candidate j P t1, . . . , nu.

100



7.6. Channel Security

The additional protocol steps to achieve the necessary channel security have already been
discussed in Section 6.6. Four algorithms for generating and verifying digital signatures and
for encrypting and decrypting some data are required. Recall that corresponding algorithm
calls are not explicitly depicted in the protocol illustrations of Section 6.5, but an exhaustive
list of all necessary calls is given in Tables 6.4 and 6.5. In Table 7.5, we summarize the
contents of these lists.

Nr. Algorithm Called by Protocols

7.54 GenSignaturepsk,mq
Election administrator 6.1, 6.9

Election authority 6.1, 6.2, 6.3, 6.5, 6.6, 6.7, 6.8

7.55 VerifySignatureppk, σ,mq

Election administrator 6.9

Election authority 6.1, 6.3, 6.8

Printing authority 6.2

Voting client 6.4, 6.5, 6.6

7.56 GenCiphertextφppk,mq Election authority 6.2

7.57 GetPlaintextφpsk, cq Printing authority 6.2

Table 7.5.: Overview of algorithms used to establish channel security.

In all algorithms listed above, the message space is not further specified. In case of the
signature generation and verification algorithms, which implement the Schnorr signature
scheme over Gq̂ (see Section 5.6), we call RecHashLpt,mq as a sub-routine for computing
a hash value that depends on the message m. Therefore, the message space supported
by Alg. 4.9 determines the message space of the signature scheme. If multiple messages
m1, . . . ,mn need to be signed, we form the tuplem “ pm1, . . . ,mnq for calling the algorithms
with a single message as parameter.

Algorithm: GenSignaturepsk,mq

Input: Signature key sk P Zq̂
Message m PM , M unspecified

repeat
r PR Zq̂
tÐ q̂r mod p̂
cÐ ToIntegerpRecHashLpt,mqq mod q̂ // see Algs. 4.5 and 4.9
sÐ r ´ c ¨ sk mod q̂

until c “ 0 and s “ 0
σ Ð pc, sq
return σ // σ P Z2

q̂

Algorithm 7.54: Computes a Schnorr signature for given message m and a signature key
sk. For the verification of this signature, see Alg. 7.55. By considering tuples m “

pm1, . . . ,mrq, the algorithm can be used to sign multiple messages simultaneously.

101



Algorithm: VerifySignatureppk, σ,mq

Input: Verification key pk P Gq̂

Signature σ “ pc, sq P Z2
q̂

Message m PM , M unspecified
t1 Ð ĝs ¨ pkc mod p̂
c1 Ð ToIntegerpRecHashLpt

1,mqq mod q̂ // see Algs. 4.5 and 4.9
return c “ c1

Algorithm 7.55: Verifies a Schnorr signature σ “ pc, sq generated by Alg. 7.54 using a
given public verification key pk.

In case of the encryption and decryption algorithms, which implement a hybrid encryption
scheme based on the key-encapsulation mechanism over Gq̂ of Section 5.7, we assume that
an invertible function φ : M Ñ B˚ exists for converting messages m P M into byte arrays
φpmq P B˚ and vice versa. As long as φ´1pφpmqq “ m holds for allm PM , any mapping that
is efficiently computable in both directions is suitable. The actual choice of φ is therefore
a technical detail of minor importance, which needs not to be specified in this document.
In practice, mathematical objects such as the ones used in this document are often first
serialized into a standard string format (XML, JSON, . . . ), before converting them into
byte arrays.

Another assumption in the following two algorithms is the availability of an AES-256 block
cipher implementations in combination with the CTR mode of operation.2 For a 256-
bit key k P B32 (32 bytes), we use B1 Ð AES-CTRpk,Bq to denote the encryption of a
byte array B P B˚ of length L into a byte array B1 P B˚ of the same length L, and
B Ð AES-CTR´1pk,B1q for the corresponding decryption.

Algorithm: GenCiphertextφppk,mq

Input: Encryption key pk P Gq̂

Message m PM , M unspecified
r PR Zq̂
k Ð RecHash32ppk

r mod p̂q // see Alg. 4.9
c1 Ð ĝr mod p̂
c2 Ð AES-CTRpk, φpmqq
cÐ pc1, c2q

return c // c P Gq̂ ˆ B˚

Algorithm 7.56: Computes a hybrid encryption for a message m and a public encryption
key pk. With φ : M Ñ B˚ we denote an invertible mapping from the message space M
into the set of byte arrays B˚. Alg. 7.57 is the corresponding decryption algorithm.

2Using the largest possible AES key length (256 bits instead of 192 or 128 bits) guarantees maximal
compatibility with current and future security levels of Chapter 8.

102



Algorithm: GetPlaintextφpsk, cq

Input: Decryption key sk P Zq̂
Ciphertext c “ pc1, c2q, c1 P Gq̂, c2 P B˚

k Ð RecHash32pc
sk
1 mod p̂q // see Alg. 4.9

mÐ φ´1pAES-CTR´1pk, c2qq

return m // m PM , M unspecified

Algorithm 7.57: Decrypts a ciphertext c “ pc1, c2q for a given private decryption key sk.
The algorithms uses the inverse mapping φ´1 : B˚ ÑM from Alg. 7.56.

103



Part IV.

System Specification

104



8. Security Levels and Parameters

In this chapter, we introduce three different security levels λ P t1, 2, 3u, for which default
security parameters are given. An additional security level λ “ 0 with very small parameters
is introduced for testing purposes. Selecting the “right” security level is a trade-off between
security, efficiency, and usability. The proposed parameters are consistent with the general
constraints listed in Table 6.1 of Section 6.3.1. In Section 8.1, we define general length
parameters for the hash algorithms and the mathematical groups and fields. Complete
sets of recommended group and field parameters are listed in Section 8.2. We recommend
that exactly these values are used in an actual implementation. In Section 9.1, we specify
various alphabets and code lengths for the voting, confirmation, finalization, and verification
codes.

8.1. Recommended Length Parameters

For each security level, an estimate of the achieved security strengths σ (privacy) and τ
(integrity) is shown in Table 8.1. We measure security strength in the number of bits of a
space, for which an exhaustive search requires at least as many basic operations as breaking
the security of the system, for example by solving related mathematical problems such as
DL or DDH. Except for λ “ 0, the values and corresponding bit lengths given in Table 8.1
are in accordance with current NIST recommendations [10, Table 2]. Today, λ “ 1 (80 bits
security) is no longer considered to be sufficiently secure (DL computations for a trapdoored
1024-bit prime modulo have been reported recently [23]). Therefore, we recommend at least
λ “ 2 (112 bits security), which is considered to be strong enough until at least 2030. Note
that a mix of security levels can be chosen for privacy and integrity, for example σ “ 128
(λ “ 3) for improved privacy in combination with τ “ 112 (λ “ 2) for minimal integrity.

Security
Level λ

Security
Strength σ, τ

Hash Length
` (L)

Gq Ă Z˚p Gq̂ Ă Z˚p̂ Zp1
LM

Crypto-
period‖p‖ ‖q‖ ‖p̂‖ ‖q̂‖ ‖p1‖

0 4 8 (1) 12 11 12 8 8 2 Testing

1 80 160 (20) 1024 1023 1024 160 160 40 Legacy

2 112 224 (28) 2048 2047 2048 224 224 56 ď 2030

3 128 256 (32) 3072 3071 3072 256 256 64 ą 2030

Table 8.1.: Length parameters according to current NIST recommendations. The length LM
of the OT messages follows deterministically from ‖p1‖, see Table 6.1.

Since the minimal hash length that covers all three security levels is 256 bits (32 bytes), we
propose using SHA-256 as general hash algorithm. We write H Ð SHA256pBq for calling

105



this algorithm with an arbitrarily long input byte array B P B˚ and assigning its return
value to H P B32. For λ “ 3, the length of H is exactly L “ 32 bytes. For λ ă 3, we
truncate the first L bytes from H to obtain the desired hash length, i.e.,

HashLpBq “ TruncatepSHA256pBq, Lq

is our general way of computing hash values for all security levels. We use it in Alg. 4.9 to
compute hash values of multiple inputs.

8.2. Recommended Group and Field Parameters

In this section, we specify public parameters for Gq Ă Z˚p , Gq̂ Ă Z˚p̂ , and Zp1 satisfying
the bit lengths of the security levels λ P t0, 1, 2, 3u of Table 8.1. To obtain parameters
that are not susceptible to special-purpose attacks, and to demonstrate that no trapdoors
have been put in place, we use the binary representation of Euler’s number e “ 2.71828 . . .
as a reference for selecting them. Table 8.2 shows the first 769 digits of e in hexadecimal
notation, from which the necessary amount of bits (up to 3072) are taken from the fractional
part. Let es P t2s´1, . . . , 2s ´ 1u denote the number obtained from interpreting the s most
significant bits of the fractional part of e as a non-negative integer, e.g., e4 “ 0xB “ 11,
e8 “ 0xB7 “ 183, e10 “ t0xB7E{4u “ 735, e12 “ 0xB7E “ 2942, etc. We use these numbers
as starting points for searching suitable primes and safe primes.

e “ 0x2.B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF32
4E7738926CFBE5F4BF8D8D8C31D763DA06C80ABB1185EB4F7C7B5757F5958490CFD47D
7C19BB42158D9554F7B46BCED55C4D79FD5F24D6613C31C3839A2DDF8A9A276BCFBFA1
C877C56284DAB79CD4C2B3293D20E9E5EAF02AC60ACC93ED874422A52ECB238FEEE5AB
6ADD835FD1A0753D0A8F78E537D2B95BB79D8DCAEC642C1E9F23B829B5C2780BF38737
DF8BB300D01334A0D0BD8645CBFA73A6160FFE393C48CBBBCA060F0FF8EC6D31BEB5CC
EED7F2F0BB088017163BC60DF45A0ECB1BCD289B06CBBFEA21AD08E1847F3F7378D56C
ED94640D6EF0D3D37BE67008E186D1BF275B9B241DEB64749A47DFDFB96632C3EB061B
6472BBF84C26144E49C2D04C324EF10DE513D3F5114B8B5D374D93CB8879C7D52FFD72
BA0AAE7277DA7BA1B4AF1488D8E836AF14865E6C37AB6876FE690B571121382AF341AF
E94F77BCF06C83B8FF5675F0979074AD9A787BC5B9BD4B0C5937D3EDE4C3A79396215E
DA

Table 8.2.: Hexadecimal representation of Euler’s number (first 3072 bits of fractional part).1

For each security level, we apply the following general rules. We choose the smallest safe
prime p P S satisfying es ď p ă 2s, where s “ ‖p‖ denotes the required bit length. Similarly,
for bit lengths s “ ‖p̂‖ and t “ ‖q̂‖, we first choose the smallest prime q̂ P P satisfying
et ď q̂ ă 2t and then the smallest co-factor k̂ ě 2 satisfying p̂ “ k̂q̂` 1 P P and es ď p̂ ă 2s.
Finally, we choose the largest possible prime p1 P P satisfying p1 ă 2s for s “ ‖p1‖.2 For every

1Taken from http://www.numberworld.org/constants.html.
2With regard to the fields Zp1 , for which no computational intractability assumptions are imposed, we

are free to choose any prime of the given bit length. We choose the largest prime for reasons explained in
the caption of Alg. 7.27.

106

http://www.numberworld.org/constants.html


group Gq, we use g “ 22 “ 4 and h “ 32 “ 9 as default generators (additional independent
generators can be computed with Alg. 7.3). For the groups Gq̂, we use ĝ “ 2k̂ mod p̂ as
default generators.

The following four subsections contain tables with values p, q, k, g, h, p̂, q̂, k̂, q̂, and p1 for
the four security levels. We also give lists p “ pp1, . . . , p60q of the first 60 primes in Gq,
which are required to encode the selected candidates s as a single element Γpsq P Gq (see
Sections 5.3 and 6.5 for more details).

8.2.1. Level 0 (Testing Only)

p “ 0xB93 “ 2963 p̂ “ 0xEED “ 3821 p1 “ 0xFB “ 251

q “ 0x5C9 “ 1481 q̂ “ 0xBF “ 191

k “ 2 k̂ “ 0x14 “ 20

g “ 4 ĝ “ 0x656 “ 1622

h “ 9

Table 8.3.: Groups Gq Ă Z˚p and Gq̂ Ă Z˚p̂ with default generators g, h, and ĝ, respectively,
and field Zp1 for security level λ “ 0 (used for testing only).

p1 “ 3 p11 “ 97 p21 “ 233 p31 “ 307 p41 “ 409 p51 “ 523
p2 “ 13 p12 “ 107 p22 “ 239 p32 “ 311 p42 “ 419 p52 “ 547
p3 “ 19 p13 “ 109 p23 “ 251 p33 “ 317 p43 “ 421 p53 “ 557
p4 “ 23 p14 “ 113 p24 “ 257 p34 “ 331 p44 “ 431 p54 “ 563
p5 “ 29 p15 “ 149 p25 “ 269 p35 “ 347 p45 “ 433 p55 “ 571
p6 “ 37 p16 “ 163 p26 “ 271 p36 “ 349 p46 “ 439 p56 “ 593
p7 “ 43 p17 “ 173 p27 “ 277 p37 “ 367 p47 “ 443 p57 “ 599
p8 “ 59 p18 “ 179 p28 “ 281 p38 “ 373 p48 “ 449 p58 “ 607
p9 “ 71 p19 “ 181 p29 “ 283 p39 “ 383 p49 “ 499 p59 “ 619
p10 “ 83 p20 “ 229 p30 “ 293 p40 “ 401 p50 “ 509 p60 “ 641

Table 8.4.: The first 60 prime numbers in Gq Ă Z˚p for p and q as defined in Table 8.3.

107



8.2.2. Level 1

p “ 0xB7E151628AED2A6ABF7158809CF4F3
C762E7160F38B4DA56A784D9045190CF
EF324E7738926CFBE5F4BF8D8D8C31D7
63DA06C80ABB1185EB4F7C7B5757F595
8490CFD47D7C19BB42158D9554F7B46B
CED55C4D79FD5F24D6613C31C3839A2D
DF8A9A276BCFBFA1C877C56284DAB79C
D4C2B3293D20E9E5EAF02AC60ACC9425
93

p̂ “ 0xB7E151628AED2A6ABF7158809CF4F3
C762E7160F38B4DA56A784D9045190CF
EF324E7738926CFBE5F4BF8D8D8C31D7
63DA06C80ABB1185EB4F7C7B5757F595
8490CFD47D7C19BB42158D9554F7B46B
CED55C4D79FD5F24D6613C31C3839A2D
DF8A9A276BCFBFA1C877C562C77CC8FB
A599C5FBDA90A7EC659F50FB5FEA2922
09

q “ 0x5BF0A8B1457695355FB8AC404E7A79
E3B1738B079C5A6D2B53C26C8228C867
F799273B9C49367DF2FA5FC6C6C618EB
B1ED0364055D88C2F5A7BE3DABABFACA
C24867EA3EBE0CDDA10AC6CAAA7BDA35
E76AAE26BCFEAF926B309E18E1C1CD16
EFC54D13B5E7DFD0E43BE2B1426D5BCE
6A6159949E9074F2F578156305664A12
C9

q̂ “ 0xB7E151628AED2A6ABF7158809CF4F3
C762E7161D

k “ 2 k̂ “ 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFECD143303438D0AAD939DEE6
0194B8DB990AC80D6ACFBA0AA3C285C4
ADD467AA7303859CF5F2B38A8C54CC9F
95E67E76F5C2313A29D7AC442E7EE08B
437562EFC324E7CA505E33CB314E04A5
4135A4B65F031105BE082EEBA8

g “ 4 ĝ “ 0x4ECC560DFEB7F7C6EF0F6B74F3AE8A
01DC08FF2A41F1CADB6BFEB2396942EB
5E46D5A33EAEFD1AE25AE0C812A82815
A04431D991F56FFFD108928AC16DB496
AEED72BCCB83A7259A97093FE90991E7
89F384A478B11FDE984687156832B79C
0313BF3660C28043920B0FEBBA1CFC55
331F3DA1EFA25A732D0A510CFDA84E00
EE

h “ 9

Table 8.5.: Groups Gq Ă Z˚p and Gq̂ Ă Z˚p̂ for security level λ “ 1 with default generators g,
h, and ĝ, respectively.

108



p1 “ 3 p11 “ 59 p21 “ 151 p31 “ 263 p41 “ 353 p51 “ 457
p2 “ 5 p12 “ 79 p22 “ 157 p32 “ 269 p42 “ 367 p52 “ 463
p3 “ 7 p13 “ 83 p23 “ 179 p33 “ 271 p43 “ 373 p53 “ 467
p4 “ 11 p14 “ 89 p24 “ 181 p34 “ 277 p44 “ 379 p54 “ 479
p5 “ 13 p15 “ 101 p25 “ 199 p35 “ 281 p45 “ 383 p55 “ 509
p6 “ 23 p16 “ 103 p26 “ 227 p36 “ 283 p46 “ 409 p56 “ 523
p7 “ 29 p17 “ 109 p27 “ 229 p37 “ 293 p47 “ 419 p57 “ 547
p8 “ 41 p18 “ 131 p28 “ 239 p38 “ 317 p48 “ 431 p58 “ 557
p9 “ 43 p19 “ 137 p29 “ 241 p39 “ 337 p49 “ 443 p59 “ 563
p10 “ 47 p20 “ 149 p30 “ 251 p40 “ 347 p50 “ 449 p60 “ 569

Table 8.6.: The first 60 prime numbers in Gq Ă Z˚p for p and q as defined in Table 8.5.

p1 “ 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD1

Table 8.7.: Field Zp1 for security level λ “ 1.

8.2.3. Level 2

p “ 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF324E
7738926CFBE5F4BF8D8D8C31D763DA06C80ABB1185EB4F7C7B5757F5958490CFD47D7C
19BB42158D9554F7B46BCED55C4D79FD5F24D6613C31C3839A2DDF8A9A276BCFBFA1C8
77C56284DAB79CD4C2B3293D20E9E5EAF02AC60ACC93ED874422A52ECB238FEEE5AB6A
DD835FD1A0753D0A8F78E537D2B95BB79D8DCAEC642C1E9F23B829B5C2780BF38737DF
8BB300D01334A0D0BD8645CBFA73A6160FFE393C48CBBBCA060F0FF8EC6D31BEB5CCEE
D7F2F0BB088017163BC60DF45A0ECB1BCD289B06CBBFEA21AD08E1847F3F7378D56CED
94640D6EF0D3D37BE69D0063

q “ 0x5BF0A8B1457695355FB8AC404E7A79E3B1738B079C5A6D2B53C26C8228C867F79927
3B9C49367DF2FA5FC6C6C618EBB1ED0364055D88C2F5A7BE3DABABFACAC24867EA3EBE
0CDDA10AC6CAAA7BDA35E76AAE26BCFEAF926B309E18E1C1CD16EFC54D13B5E7DFD0E4
3BE2B1426D5BCE6A6159949E9074F2F5781563056649F6C3A21152976591C7F772D5B5
6EC1AFE8D03A9E8547BC729BE95CADDBCEC6E57632160F4F91DC14DAE13C05F9C39BEF
C5D98068099A50685EC322E5FD39D30B07FF1C9E2465DDE5030787FC763698DF5AE677
6BF9785D84400B8B1DE306FA2D07658DE6944D8365DFF510D68470C23F9FB9BC6AB676
CA3206B77869E9BDF34E8031

k “ 2

g “ 4

h “ 9

Table 8.8.: Group Gq Ă Z˚p for security level λ “ 2 with default generators g and h.

109



p1 “ 3 p11 “ 53 p21 “ 137 p31 “ 233 p41 “ 331 p51 “ 433
p2 “ 7 p12 “ 61 p22 “ 139 p32 “ 257 p42 “ 347 p52 “ 449
p3 “ 11 p13 “ 71 p23 “ 149 p33 “ 263 p43 “ 349 p53 “ 461
p4 “ 17 p14 “ 83 p24 “ 157 p34 “ 271 p44 “ 353 p54 “ 479
p5 “ 19 p15 “ 97 p25 “ 167 p35 “ 277 p45 “ 373 p55 “ 487
p6 “ 23 p16 “ 101 p26 “ 179 p36 “ 281 p46 “ 389 p56 “ 547
p7 “ 29 p17 “ 103 p27 “ 181 p37 “ 283 p47 “ 401 p57 “ 557
p8 “ 37 p18 “ 109 p28 “ 193 p38 “ 311 p48 “ 419 p58 “ 569
p9 “ 41 p19 “ 127 p29 “ 199 p39 “ 313 p49 “ 421 p59 “ 571
p10 “ 47 p20 “ 131 p30 “ 229 p40 “ 317 p50 “ 431 p60 “ 599

Table 8.9.: The first 60 prime numbers in Gq Ă Z˚p for p and q as defined in Table 8.8.

p̂ “ 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF324E
7738926CFBE5F4BF8D8D8C31D763DA06C80ABB1185EB4F7C7B5757F5958490CFD47D7C
19BB42158D9554F7B46BCED55C4D79FD5F24D6613C31C3839A2DDF8A9A276BCFBFA1C8
77C56284DAB79CD4C2B3293D20E9E5EAF02AC60ACC93ED874422A52ECB238FEEE5AB6A
DD835FD1A0753D0A8F78E537D2B95BB79D8DCAEC642C1E9F23B829B5C2780BF38737DF
8BB300D01334A0D0BD8645CBFA73A6160FFE393C48CBBBCA060F0FF8EC6D31BEB5CCEE
D7F2F0BB088017163BC60DF45A0ECB1BCD3548E571733F4A8C724DC97F56F0AE89897D
8A6B93C6F87D7494503A5D6D

q̂ “ 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D991

k̂ “ 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3C244D2E2C2FD6
0A6164BC77C063F2EBBC35FD1C04CC0935158380D5FC66ECBF2D0EBBF20D83B7128970
667D9A93360EF9D99BE7F831A7C2543BDD5A111009853B48C3AA11A3FDB7F5991F05A0
316733D358632D2C05854286BD2B40A2FCF623CDA13C8029C5959399C45E01350E63D9
4F603C42EE50C5E1F254231BF6BBFB71E6C8A004EEB649A6E11D9E37AE093AB3E39CDC
D2D426CF47C3E202D9A2E4A0FAB9A54465D906A94137F8EA484202E8898A440D8BEDAC
C7C0DEAAB473927C635AC35BCACFCE88DD30AC

ĝ “ 0x7C41B5D002301514D10155BF22BA33947C96EB398837B9E6AC1A25ABFC3F9D44FB7D
943A3317771A26615814BB06E58B5531F4D81CF23B778F23A2364FFB0C28A7335AE731
761FAB304975C8DB647FCCFC1E64239373F60FAD80FE12D750B3CD753B98D548A325A9
A629B06E63A7FC2860D4EB1B885482B64D7177854104554363DFD70DAFDF529F9AFF07
2F78B7FEAA92D00DC6A7180FF49B60F84979A777919E42484A6A1C014E7F8E8CC18454
6CAE0557124F7F21FB2C16AC6EF4F122BB70966F9FBF03A7807AF8190CDF95DCDF0509
C0FA8302681130E7B60C9E9A65BDF83940F0CCC164989B558B9724D97C524E1A2810E0
BB546F83754A846000A9ADB2

Table 8.10.: Group Gq Ă Z˚p for security level λ “ 2 with default generator ĝ.

p1 “ 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC1

Table 8.11.: Field Zp1 for security level λ “ 2.

110



8.2.4. Level 3

p “ 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF324E
7738926CFBE5F4BF8D8D8C31D763DA06C80ABB1185EB4F7C7B5757F5958490CFD47D7C
19BB42158D9554F7B46BCED55C4D79FD5F24D6613C31C3839A2DDF8A9A276BCFBFA1C8
77C56284DAB79CD4C2B3293D20E9E5EAF02AC60ACC93ED874422A52ECB238FEEE5AB6A
DD835FD1A0753D0A8F78E537D2B95BB79D8DCAEC642C1E9F23B829B5C2780BF38737DF
8BB300D01334A0D0BD8645CBFA73A6160FFE393C48CBBBCA060F0FF8EC6D31BEB5CCEE
D7F2F0BB088017163BC60DF45A0ECB1BCD289B06CBBFEA21AD08E1847F3F7378D56CED
94640D6EF0D3D37BE67008E186D1BF275B9B241DEB64749A47DFDFB96632C3EB061B64
72BBF84C26144E49C2D04C324EF10DE513D3F5114B8B5D374D93CB8879C7D52FFD72BA
0AAE7277DA7BA1B4AF1488D8E836AF14865E6C37AB6876FE690B571121382AF341AFE9
4F77BCF06C83B8FF5675F0979074AD9A787BC5B9BD4B0C5937D3EDE4C3A79396419CD7

q “ 0x5BF0A8B1457695355FB8AC404E7A79E3B1738B079C5A6D2B53C26C8228C867F79927
3B9C49367DF2FA5FC6C6C618EBB1ED0364055D88C2F5A7BE3DABABFACAC24867EA3EBE
0CDDA10AC6CAAA7BDA35E76AAE26BCFEAF926B309E18E1C1CD16EFC54D13B5E7DFD0E4
3BE2B1426D5BCE6A6159949E9074F2F5781563056649F6C3A21152976591C7F772D5B5
6EC1AFE8D03A9E8547BC729BE95CADDBCEC6E57632160F4F91DC14DAE13C05F9C39BEF
C5D98068099A50685EC322E5FD39D30B07FF1C9E2465DDE5030787FC763698DF5AE677
6BF9785D84400B8B1DE306FA2D07658DE6944D8365DFF510D68470C23F9FB9BC6AB676
CA3206B77869E9BDF3380470C368DF93ADCD920EF5B23A4D23EFEFDCB31961F5830DB2
395DFC26130A2724E1682619277886F289E9FA88A5C5AE9BA6C9E5C43CE3EA97FEB95D
0557393BED3DD0DA578A446C741B578A432F361BD5B43B7F3485AB88909C1579A0D7F4
A7BBDE783641DC7FAB3AF84BC83A56CD3C3DE2DCDEA5862C9BE9F6F261D3C9CB20CE6B

k “ 2

g “ 4

h “ 9

Table 8.12.: Group Gq Ă Z˚p for security level λ “ 3 with default generators g and h.

p1 “ 2 p11 “ 89 p21 “ 167 p31 “ 313 p41 “ 457 p51 “ 577
p2 “ 3 p12 “ 101 p22 “ 173 p32 “ 317 p42 “ 461 p52 “ 593
p3 “ 7 p13 “ 103 p23 “ 181 p33 “ 331 p43 “ 467 p53 “ 599
p4 “ 11 p14 “ 109 p24 “ 199 p34 “ 367 p44 “ 479 p54 “ 607
p5 “ 13 p15 “ 113 p25 “ 211 p35 “ 379 p45 “ 491 p55 “ 619
p6 “ 31 p16 “ 127 p26 “ 229 p36 “ 383 p46 “ 499 p56 “ 643
p7 “ 61 p17 “ 131 p27 “ 233 p37 “ 397 p47 “ 503 p57 “ 647
p8 “ 73 p18 “ 139 p28 “ 239 p38 “ 401 p48 “ 547 p58 “ 659
p9 “ 79 p19 “ 151 p29 “ 251 p39 “ 409 p49 “ 557 p59 “ 677
p10 “ 83 p20 “ 157 p30 “ 283 p40 “ 449 p50 “ 563 p60 “ 691

Table 8.13.: The first 60 prime numbers in Gq Ă Z˚p for p and q as defined in Table 8.12.

111



p̂ “ 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF324E
7738926CFBE5F4BF8D8D8C31D763DA06C80ABB1185EB4F7C7B5757F5958490CFD47D7C
19BB42158D9554F7B46BCED55C4D79FD5F24D6613C31C3839A2DDF8A9A276BCFBFA1C8
77C56284DAB79CD4C2B3293D20E9E5EAF02AC60ACC93ED874422A52ECB238FEEE5AB6A
DD835FD1A0753D0A8F78E537D2B95BB79D8DCAEC642C1E9F23B829B5C2780BF38737DF
8BB300D01334A0D0BD8645CBFA73A6160FFE393C48CBBBCA060F0FF8EC6D31BEB5CCEE
D7F2F0BB088017163BC60DF45A0ECB1BCD289B06CBBFEA21AD08E1847F3F7378D56CED
94640D6EF0D3D37BE67008E186D1BF275B9B241DEB64749A47DFDFB96632C3EB061B64
72BBF84C26144E49C2D04C324EF10DE513D3F5114B8B5D374D93CB8879C7D52FFD72BA
0AAE7277DA7BA1B4AF1488D8E836AF14865E6C37AB6876FE690B571121382AF341AFE9
4F790F02FA1BCE9C73886B4C0ACABDC3DD14E0D8C955577C9764844038771FC25F84BB

q̂ “ 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190D05D

k̂ “ 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF67215E
C15D7BB8A7D7B5CB2294EFCAA4C7B3C6906FC93847CD5FEFF6F1F10C1400310C2150C4
450843B67D7B0184C0A9B71708B657001B502DFAC3E8E29D3102610EB5B1D9AD470F0E
FBC232F5025A3D88C58E70D9D2097C5E4E081BBFEE2373A9B5076970B38F6865D03E16
293DBBBCA1B85E3FC5412F7262643B08A2A4CFA5EA43F5F8C9D9986B88155CEA5EC971
5322344FF714C84F18D0B19772C421923C7E2CD2A6FE1000FBFCB4BBBBACEBAAF74C38
CBC29EE75521F18B03C9816975D948F177476F6EBD8816152A0FECEA7DD6EF0AB7B6A0
99617F82337346BDFC1CA47586EADF125A9DA7C1D960DDECDE399A37D7470FEFBED940
3A4EC70A5841F41F60E3E0D40D70B1A5970EBEC446DF220714E83349462754D5C81F16
FCC5ED708EBC21C36C0F3D494E04C15E3C275C18A562BADDA0293ADE9075FAA254E965
E73402

ĝ “ 0x47DAD70733EFE399D1AFF4FE387250218BB88FD5F4040C31851AE1DF0985D0019950
A958710C6B935B6B3BB45C278381DC5883CC933C5B7052D3BC8C77D746E3D1FB2B7EF3
630C1014417D2F83BEAD0E1F4DFD986104CDF16C4AEC33BB5906C8149C83E6C5B8837E
12AB32E73A69C4ABEB0B014FFF1FBB3173EAD73A1404DAEDF52F62D605D37879001248
29751320FEDAA1F5B2D90FB846C7EB7815193E5C2460F93A3A5D16FB7A3DBAC9CE31B7
517D2F88D530E61D06B529A43A0806F6A931247C9166C32CC9BAA019823528D3F156B6
0ECE5DA9A6D60148661F59670AD98A1B8EAFEBC4A68D8A5D3F29105FD33D994751A9AD
8E0EB7367D5BFE7A2F082981869FA2F177C472D1988844E4DA58170BB3DDE9DFB2E61D
C06FA5249C3200CD3BBBF24D5C257879CB23D7931ED4AD1F9FA168B38FAA3C6DB89AA9
D89BB6DB3F47BF1BE57856C12AD2FD708A932DC4C91A48E662B37C4076A5D2BE54AC80
0EC1E6A13E1FC8EB61CA52E5D7B7608483E3BC225FBC62456AB46E39DA3CF45AB11A50

Table 8.14.: Group Gq Ă Z˚p for security level λ “ 3 with default generator ĝ.

p1 “ 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF43

Table 8.15.: Field Zp1 for security level λ “ 3.

112



9. Usability

For the codes printed on the voting cards and displayed to the voters on their voting device,
suitable alphabets need to be fixed. Since the actual choice of an alphabet has a great
impact on the system’s usability, we will propose and discuss in Section 9.1 several possible
alphabets that are commonly used for such purposes. Independently of the chosen alphabets,
we will see that for reaching the desired security levels, very long voting and confirmation
codes need to be entered by the voters. This creates a usability problem, for which we do
not have an optimal solution at hand. Instead, we propose in Section 9.2 various possible
workarounds, which each has its own strengths and weaknesses.

9.1. Alphabets and Code Lengths

In this section, we specify several alphabets and discuss—based on their properties—their
benefits and weaknesses for each type of code. The main discriminating property of the
codes is the way of their usage. The voting and confirmation codes need to be entered by
the voters, whereas the verification and finalization codes are displayed to the voters for
comparison only. Since entering codes by users is an error-prone process, it is desirable
that the chance of misspellings is as small as possible. Case-insensitive codes and codes not
containing homoglyphs such as ’0’ and ’O’ are therefore preferred. We call an alphabet
not containing such homoglyphs fail-safe.

In Table 9.1, we list some of the most common alphabets consisting of Latin letters and
Arabic digits. Some of them are case-insensitive and some are fail-safe. The table also
shows the entropy (measured in bits) of a single character in each alphabet. The alphabet
A62, for example, which consists of all 62 alphanumerical characters (digits 0–9, upper-case
letters A–F, lower-case letters a–z), does not provide case-insensitivity or fail-safety. Each
character of A62 corresponds to log 62 “ 5.95 bits of entropy. Note that the Base64 alphabet
A64 requires two non-alphanumerical characters to reach 6 bits of entropy.

Another special case is the last alphabet in Table 9.1, which contains 65 “ 7776 different
English words from the new Diceware wordlist of the Electronic Frontier Foundation.1,2 The
advantage of such a large alphabet is its relatively high entropy of almost 13 bits per word.
Furthermore, since human users are well-trained in entering words in a natural language,
entering lists of such words is less error-prone than entering codes consisting of random
characters. In case of using the Diceware wordlist, the length of the codes is measured in
number of words rather than number of characters. Note that analogous Diceware wordlists
of equal size are available in many different languages.

1See http://world.std.com/„reinhold/diceware.html.
2See https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases.

113

http://world.std.com/~reinhold/diceware.html
https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases


Name Alphabet Case-
insensitive

Fail-
safe

Bits per
character

Decimal A10 “ t0, . . . , 9u ‚ ‚ 3.32

Hexadecimal A16 “ t0, . . . , 9, A, . . . , Fu ‚ ‚ 4

Latin A26 “ tA, . . . , Zu ‚ 4.70

Alphanumeric A32 “ t0, . . . , 9, A, . . . , Zu z t0, 1, I, Ou ‚ ‚ 5

A36 “ t0, . . . , 9, A, . . . , Zu ‚ 5.17

A57 “ t0, . . . , 9, A, . . . , Z, a, . . . , zu z t0, 1, I, O, lu ‚ 5.83

A62 “ t0, . . . , 9, A, . . . , Z, a, . . . , zu 5.95

Base64 A64 “ tA, . . . , Z, a, . . . , z, 0, . . . , 9, =, /u 6

Diceware A7776 “ t"abacus", . . . , "zoom"u ‚ ‚ 12.92

Table 9.1.: Common alphabets with different sizes and characteristics. Case-insensitivity
and fail-safety are desirable properties to facilitate flawless user entries.

In Section 4.2, we have discussed methods for converting integers and byte arrays into strings
of a given alphabet A “ tc1, . . . , cNu of size N ě 2. The conversion algorithms depend on
the assumption that the characters in A are totally ordered and that a ranking function
rankApciq “ i ´ 1 representing this order is available. We propose to derive the ranking
function from the characters as listed in Table 9.1. In the case of A16, for example, this
means that the ranking function looks as follows:

ci 0 1 2 3 4 5 6 7 8 9 A B C D E F
rankA16pciq 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All other ranking functions are defined in exactly this way. In case of A32 and A57, the
removed homoglyphs are simply skipped in the ranking, i.e., ’2’ becomes the first character
in the order. Note that the proposed order for A64 is consistent with the official MIME
Base64 alphabet (RFC 1421, RFC 2045).

9.1.1. Voting and Confirmation Codes

For the voting and confirmation codes, which are entered by the voters during vote casting,
we consider the six alphabets from Table 9.1 satisfying fail-safety. For the security levels
λ P t0, 1, 2, 3u introduced in the beginning of this chapter, Table 9.2 shows the resulting
code lengths for these alphabets. We propose to satisfy the constraints for corresponding
upper bounds q̂x and q̂y by setting them to 22τ´1, the smallest 2τ -bit integer:

q̂x “ q̂y “

$

’

’

’

’

&

’

’

’

’

%

27, for λ “ 0,

2159, for λ “ 1,

2223, for λ “ 2,

2255, for λ “ 3.

.

114



By looking at the numbers in Table 9.2, we see that the necessary code lengths to achieve
the desired security strength are problematical from a usability point of view. The case-
insensitive Diceware alphabet A7776 with code lengths between 13 and 20 words seems to
be one of the best choices, but it still not very practical. We will continue the discussion of
this problem in Section 9.2.

Security
Level λ

Security
Strength τ

Required
bit length

`X , `Y

A10 A16 A26 A32 A57 A7776

0 4 8 3 2 2 2 2 1

1 80 160 49 40 35 32 28 13

2 112 224 68 56 48 45 39 18

3 128 256 78 64 55 52 44 20

Table 9.2.: Lengths of voting and confirmation codes for different alphabets and security
levels.

9.1.2. Verification and Finalization Codes

According to the constraints of Table 6.1 in Section 6.3.1, the length of the verification
and finalization codes are determined by the deterrence factor ε, the maximal number of
candidates nmax, and the size of the chosen alphabet. For nmax “ 1678 and security levels
λ P t0, 1, 2, 3u, Table 9.3 shows the resulting code lengths for different alphabets and different
deterrence factors ε “ 1´10´pλ`2q. This particular choice for nmax has two reasons. First, it
satisfies the use cases described in Section 2.2 with a good margin. Second, it is the highest
value for which LR “ 3 bytes are sufficient in security level λ “ 2.

Security
Level λ

Deterrence
Factor ε

LR
`R

LF
`F

A10 A16 A26 A36 A62 A64 A10 A16 A26 A36 A62 A64

0 99% 3 8 6 6 5 5 4 1 3 2 2 2 2 2

1 99.9% 3 8 6 6 5 5 4 2 5 4 4 4 3 3

2 99.99% 3 8 6 6 5 5 4 2 5 4 4 4 3 3

3 99.999% 4 10 8 7 7 6 6 3 8 6 6 5 5 4

Table 9.3.: Lengths of verification and finalization codes for different alphabets and security
levels. For the maximal number of candidates, we use nmax “ 1678 as default
value.

In the light of the results of Table 9.3 for the verification codes, we conclude that the
alphabet A64 (Base64) with verification codes of length `R “ 4 in most cases seems to be a
good compromise between security and usability. Since n verification codes are printed on
the voting card and k verification codes are displayed to the voter, they should be as small as
possible for usability reasons. On the other hand, since only one finalization code appears on
every voting card, it would probably not matter much if they were slightly longer. Any of the
proposed alphabets seems therefore appropriate. To make finalization codes look different

115



from verification codes, we propose to use alphabet A10, i.e., to represent finalization codes
as 5-digit numbers for λ P t1, 2u or as a 8-digit numbers for λ “ 3.

9.2. Proposals for Improved Usability

According to current recommendations, 112 bits is the minimal security strength for cryp-
tographic applications. In terms of group sizes, key lengths, and output length of hash
algorithms, this corresponds to 224 bits. In our protocol, this means that in order to au-
thenticate during voter casting, voters need to enter at least 2τ “ 224 bits of entropy twice,
once for the voting code x and once for the confirmation code y. According to our calcula-
tions in the previous section, this corresponds to 39 characters from a 57-character alphabet
or equivalently to 18 words from the Diceware word list. Clearly, asking voters to enter such
long strings creates a huge usability problem.

Two of the most obvious approaches or improving the usability of the authentication mech-
anism are the following:

• Since voting and confirmation codes must only sustain attacks before or during the
election period, reducing their lengths to 160 bits (80 bits security) or less could
possibly be justified. The general problem is that such attacks can be conducted offline
as soon as corresponding public credentials are published by the election authorities
(see second step in Prot. 6.1). In offline attacks, the workload can be distributed to a
large amount of CPUs, which execute the attack in parallel. While breaking the DL
problem is still very expensive for 160-bit logarithms (and 1024-bit moduli), especially
if multiple discrete logarithms need to be found simultaneously, we do not recommend
less than 80 bits security. Note that this number is expected to increase in the future.

• Scanning a 2D barcode containing the necessary amount of bits instead of entering
them over the keyboard—for example using the voter’s smartphone—may be another
suitable approach, but probably not if an additional device with some special-purpose
software installed is required to perform the scanning process. Latest developments
in web technologies even allow to the use of built-in cameras directly from the web
browser, but this will only work for machines with a built-in camera and an up-to-
date web browser installed. We recommend considering this approach as an optional
feature, but not yet as a general solution for everyone.

To conclude, the usability of the protocol’s authentication mechanism remains a critical
open problem. For finding a more suitable solution, we see two general strategies. First,
by making offline attacks dependent on values different from the secret credentials, and
second, by preventing offline attacks targeting directly the underlying DL problem. In both
cases, the goal is to make brute-forcing 112-bit secret credentials the optimal solution for an
attacker (in security level λ “ 2). The necessary bit lengths of the credentials would then
be shortened to one half of the current bit lengths, i.e., 20 characters from a 57-character
alphabet or equivalently to 9 words from the Diceware word list. This seems to be within
the bounds of what is reasonable for the majority of voters. Table 9.4 gives an update of
the values from Table 9.2 for different security levels and alphabets.

In the following two subsections, we describe multiple ways of achieving such a usability
improvement. In all proposals, we only discuss the case of the voting credential x and

116



Security
Level λ

Security
Strength τ

Required
bit length

`X , `Y

A10 A16 A26 A32 A57 A7776

0 4 4 2 1 1 1 1 1

1 80 80 25 20 18 16 14 7

2 112 112 34 28 24 23 20 9

3 128 128 39 32 28 26 22 10

Table 9.4.: Lengths of voting and confirmation codes for different alphabets and security
levels by reducing the required bit length from 2τ to τ bits.

assume that the confirmation credential y is treated equally. The approach presented in the
first subsection does not require additional communication during the protocol execution,
but it is based on bilinear mappings, which requires rather complex mathematics. Three
other approaches are presented in the second subsection, in which an additional channel from
the printing authority to the bulleting board is required. We summarize the advantages and
disadvantages of all approaches in Section 9.2.3.

9.2.1. Approach 1: Using Bilinear Mappings

This approach is highly compatible with the protocols presented in Chapter 6. It only
substitutes the cryptographic methods and underlying mathematics of the authentication
mechanism. It is based on a bilinear mapping φ : G1ˆG2 Ñ H between groups pG1,`,´, 0q,
pG2,`,´, 0q and pH,ˆ,´1 , 1q satisfying three properties:

• Bilinearity: φpx1 ` x2, yq “ φpx1, yq ˆ φpx2, yq holds for all values x1, x2 P G1 and
y P G2; symmetrically, φpx, y1 ` y2q “ φpx, y1q ˆ φpx, y2q holds for all values x P G1

and y1, y2 P G2;

• Non-degeneracy: φpx, yq “ 1 holds for some values x P G1 and y P G2;

• Computability: φpx, yq can be computed efficiently for all values x P G1 and y P G2.

Among other things, bilinearity implies φpax, yq “ φpx, yqa, φpx, byq “ φpx, yqb, and there-
fore φpax, bzq “ φpx, yqab. In the special case of G “ G1 “ G2, called symmetric pairing,
this property allows to solve the DDH problem in G (but not in H).3 This seems to be a
technical subtlety, but it opens the door for a special cryptographic discipline called pairing-
based cryptography, which has numerous applications in different areas. We use it here to
define an identification scheme with sufficiently short private credentials.

Pairing-Based Identification Scheme. Let q “ |G| be the order of G “ G1 “ G2 and
g1, g2 P G two independent generators. For generating a private credential of length ` ď ‖q‖,
a random value x P t0, . . . , 2`´1u is chosen uniformly at random. The corresponding public
credential is a pair x̂ “ pgr11 , g

r2
2 q, where r1 P Zq is picked uniformly at random from the

whole range of possible values and r2 “ r1 ` x mod q is derived from r1 and x. For such a

3For values x, ax, bx, cx P G, deciding if ab “ c is equivalent to checking φpax, bxq “ φpx, cxq.

117



public credential x̂ “ px̂1, x̂2q P G
2, successful identification is linked to someone’s ability of

generating a fresh pair x̂1 “ px̂11, x̂12q satisfying

φ

ˆ

x̂1

x̂11
, g2

˙

“ φ

ˆ

g1,
x̂2

x̂12

˙

.

Note that for values r11 “ logg1 x̂
1
1 and r12 “ logg2 x̂

1
2, this equation can we rewritten as

φpg1, g2q
r1´r11 “ φpg1, g2q

r2´r12 ,

which implies r1 ´ r11 “ r2 ´ r12 and therefore r2 ´ r1 “ r12 ´ r11 “ x. Thus, knowing x is
sufficient for generating suitable pairs px̂11, x̂12q “ pg

r11
1 , g

r12
2 q satisfying the above condition,

simply by selecting an arbitrary r11 P Zq and computing r12 “ r11 ` x mod q (or vice versa,
by selecting r12 P Zq and computing r11 “ r12 ´ x mod q).

To avoid that suitable pairs px̂11, x̂12q can be found without knowing x, for example by comput-
ing px̂11, x̂12q “ px̂1, x̂2qˆ pg

r1
1 , g

r1
2 q for arbitrary values r1 P Zq, it is important to demonstrate

the freshness of px̂11, x̂12q by proving knowledge of r11 and r12. Such a proof of knowledge can
be constructed as a composition of two Schnorr identification proofs (see Section 5.4). In a
non-interactive setting, a proof transcript

π “ NIZKPrpr11, r
1
2q : x̂1 “ g

r11
1 ^ x̂2 “ g

r12
2 qs

must therefore be presented along with x̂1 “ px̂11, x̂
1
2q, where π “ pt1, t2, s1, s2q P G

2 ˆ Z2
q

consists of four values. As a consequence, identifying the holder of the private credential
x according to this scheme requires two steps: checking the above condition relative to
x̂ “ px̂1, x̂2q and x̂1 “ px̂11, x̂

1
2q and verifying the validity of π. Note that computing the

bilinear mapping φ is only necessary in the first verification step, but not for generating x̂1

and π.

Consider multiple private credentials x1, . . . , xs P Zq with corresponding public credentials
x̂i “ px̂i,1, x̂i,2q. By computing the sum and the product of these values, we obtain a new
valid pair

px, x̂q “ p
ÿ

i

xi mod q,
ź

i

x̂iq “ p
ÿ

i

xi mod q, p
ź

x̂i,1,
ź

i

x̂i,2qq

of private and public credentials. This property is similar to the Schnorr identification
scheme (see Section 6.4.4), in which multiple private and public credentials can be aggregated
without considerably increasing the length of the private credential (roughly by log s bits
only).

Protocol Adjustments. The above identification scheme could be used to replace the
Schnorr identification in the protocol such that the general information flow remains exactly
the same. Minor protocol adjustments result from changing the underlying mathematics.
First of all, to represent a public credentials x̂ “ px̂1, x̂2q, we require now two group elements
from G instead of one group element from Gq̂. Since all known bilinear mappings operate
on elliptic curves, such group elements are points consisting of two coordinates from the
underlying finite field. In the case of the Weil pairing

φ : EpFpkqrqs ˆ EpFpkqrqs Ñ Fpkrqs,

118



which maps two elements from a q-order subgroup of an elliptic curve EpFpkq over an ex-
tension field Fpk into an element of a q-order subgroup of Fpk , where k ą 1 denotes a small
embedding factor (typically k P t6, . . . , 12u), these coordinates are field elements of Fpk ,
which can be represented each by a k-tuple of values from Fp [14]. Therefore, we need four
such coordinates (i.e., 4k values from Fp) in total to represent x̂ P EpFpkqrqs ˆ EpFpkqrqs.
The same holds for the value x̂1 P EpFpkqrqs ˆ EpFpkqrqs generated during voter identifi-
cation. Similarly, for representing the generators g1, g2 P EpFpkqrqs and the commitments
included in the proof transcript π, we need 2k values from Fp in each case. Note that p and
q as used in this context denote much smaller prime numbers than the ones used elsewhere
in this document. To achieve τ bits of security, 2τ bits are sufficient for both p and q, and
` “ τ bits are sufficient for x.

As a consequence, the main protocol change for the voting client is the computation of
x̂1 and π during vote casting, which requires implementing elliptic curve computations on
the client side. For the election authorities, generating the shares of x̂ is the main change
in the pre-election phase. During vote casting, the main change consists in checking the
above condition relative to x̂ and x̂1 (which involves computing the bilinear map twice) and
verifying the proof transcript π. For the printing authorities, computations relative to the
private credential x remain the same.

9.2.2. Approach 2: Extending the Printing Authority

The appendix of the Federal Chancellery Ordinance on Electronic Voting (VEleS) explic-
itly allows an additional communication channel from the printing authority back to the
“system” [4, Section 4.1]. In the protocol presented in this paper, using this channel has
been avoided for multiple reasons, but most importantly for restricting the printing author-
ity’s responsibility to their main task of printing the voting cards and sending them to the
voters. Using this additional channel means to enlarge the trust assumptions towards the
printing authority. Recall that in our adversary model, the printing authority is the only
fully trustworthy party, i.e., implementing the printing authority is already a very delicate
and difficult problem. Therefore, further increasing the printing authority’s responsibility
should always be done as moderately as possible. Unfortunately, we have not yet found a
single best solution.

Below, we propose three different protocol modifications, which all assume that the print-
ing authority can publish data on the bulletin board prior to an election. In each of the
proposed protocol modifications, we manage to reduce the length of the private voting and
confirmation codes from 2τ bits to τ bits. As discussed in Section 6.6 for the general case,
we require the data sent over this channel to be digitally signed by the printing authority,
and therefore that a certificate for the printing authority’s public signature key is available
to everyone. Figure 9.1 shows the extended communication model.

Approach 2a: The first approach is based on the observation that a symmetric encryption
key of length τ is sufficient for achieving a security strength of τ bits, for example when using
AES. Therefore, instead of printing a 2τ -bit secret voting credential xi P Zq̂x to the voting
card of voter i (see Table 6.1 and Section 9.1.1 for more details on system parameters and
their bit lengths), the printing authority selects a secret symmetric encryption key ki P Bτ

119



VoterElection
Autorithies

Voting
Client

Printing
Authority

Bulletin
Board

Election
Administrator

Figure 9.1.: Overview of the parties and channels in the extended communication model.
Compared to Figure 6.1, it contains an additional channel from the printing
authority to the bulletin board and the printing authority’s signature key.

of length τ , prints ki to the voting card, encrypts xi using ki into rxis Ð Enckipxiq, and
sends the encryption rxis to the bulletin board. At the end of the pre-election phase, a
list prx1s, . . . , rxNE sq of such encrypted secret voting credentials is available on the bulletin
board, one for each eligible voter. During the voting process, voter i enters ki as printed
on the voting card to the voting client, which then retrieves rxis from the bulletin board
and decrypts rxis into xi Ð Deckiprxisq. Finally, xi is used to authenticate voter i as an
eligible voter as before. Note that for solving the same usability problem in another system
proposed for the Swiss context, exactly this idea has been proposed in [24, Section 6.1].

The most problematic point in this approach is to let the printing authority generate critical
keying material. For this, a reliable randomness source is necessary. Otherwise, an attacker
might be capable of reproducing the same keying material and thus fully break the integrity
of the system without being noticed. Attributing the random generation task to the printing
authority is therefore in conflict with the above-mentioned general principle of increasing its
responsibility as moderately as possible.

Approach 2b: This approach is an adaption of the previous one. The main change to the
protocol is the same, i.e., the private credential xi is transported in encrypted form to the
voting client via the bulletin board, whereas the secret decryption key is transported to
the voter via the voting card. However, instead of letting the printing authority pick the
secret encryption key ki at random, we propose to derive it from the private credential xi
by applying a key derivation function (KDF). The idea for this is the observation that a
high-entropy 2τ -bit secret voting credential contains enough entropy for extracting a τ -bit
secret encryption key.

We propose to use the HMAC-based standard HKDF, which is designed according to the
extract-then-expand approach. It offers the option of adding a random salt si and some

120



contextual information c to each generated key [36, 35]. Therefore, we let the printing
authority compute a secret key ki Ð HKDFτ pxi, si, cq of length τ bits, which is used to
encrypt xi. The random salt is published on the bulletin board along with rxis, and c is a
string which depends on the unique election identifier U . The voting client, upon retrieving
rxis and si from the bulletin board and decrypting rxis using ki, can additionally check the
validity of the secret key ki “ HKDFτ pxi, si, cq. This check is very useful for detecting a
cheating printing authority. Note that since this check requires knowledge of ki, it can only
be performed the voting client. If the check fails, the voting procedure must be aborted.

Approach 2c: In this approach, we reverse the role of the key derivation function in the
previous approach. Here, the KDF is used to derive a 2τ -bit value x1i “ HKDF2τ pxi, si, cq
from a τ -bit private voting credential xi P Zq̂x . This means that the constraint ‖q̂x‖ ě 2τ
from Table 6.1 is relaxed into ‖q̂x‖ ě τ . Like in the general protocol, the private credentials
xi are generated by the election authorities in a distributed manner. Corresponding shares
xij are transmitted to the printing authority, which then applies the KDF to the aggregated
value. The main difference here is that the public voting credential x̂i “ ĝx

1
i mod p̂ is now

computed by the printing authority based on x1i. The printing authority is also responsible
for publishing this value on the bulletin board, along with the random salt si. As in the
general protocol, the voter enters xi into the voting client, which then retrieves si from
the bulletin board to compute x1i “ HKDF2τ pxi, si, cq. Finally, the Schnorr identification is
performed relative to x̂i (using x1i instead of xi).

The problem with this approach so far is that the printing authority may use voting cre-
dentials different from the values xi obtained from the election authorities. Again, this is
not a problem as long as the printing authority is fully trustworthy (which is the case in
our adversary model), but the potential of such undetectable protocol deviations assigns
unnecessarily large responsibilities to the printing authority. This problem can be mitigated
by letting the election authorities publish their shares xij of the value xi in response to
a successful identification. The correctness of x̂i and therefore the proper behavior of the
printing authority can then be publicly verified for each submitted vote. The effect that xi
does no longer remain secret after submitting a vote is in contrast to the general protocol
and the three approaches presented above.

9.2.3. Comparison of Methods

In the previous subsection, we presented four different methods to mitigate the aforemen-
tioned usability problem. In each case, the number of entropy bits for a voter to enter is
reduced from 2τ to τ bits. However, this improvement comes at a price. Since introducing
an absolute scale for comparing these prices is rather difficult, we prefer to give an overview
of the differences, strengths, and weaknesses of each approach rather than selecting a single
winner. At the end of this section, our analysis allows us to give some general recommen-
dations.

A first overview of the proposed methods is given in Table 9.5, which summarizes the
necessary calculations in each approach and compares them to the current protocol. The
overview is restricted to calculations relative to the private and public voting credentials,
but exactly the same calculations are necessary to deal with corresponding confirmation

121



credentials. The table shows for example the similarity between Approach 1 and the current
protocol, and also the similarity between Approach 2a and Approach 2b. Note that selecting
and aggregating the shares xij of the private voting credential xi P Zq̂x looks identical in all
four approaches, but the selected values are not equally long. In Approaches 2a and 2b, they
consist of at least 2τ bits (the same as in the current protocol), whereas in Approaches 1
and 2c, they consist of τ bits. This difference results from relaxed restrictions relative to
the upper bound q̂x in two of the four cases.

Current
Protocol Approach 1 Approach 2a Approach 2b Approach 2c

xij PR Zq̂x xi Ð
ř

j xij

– – si PR Bτ si PR Bτ

– –
ki PR Bτ ki Ð

HKDFτ pxi, si, cq
x1i Ð

HKDF2τ pxi, si, cq

– – rxis Ð Enckipxiq, xi Ð Deckiprxisq –

x̂ij Ð ĝxij x̂ij Ð pgr1, g
r`xij
2 q x̂ij Ð ĝxij

x̂i Ð ĝx
1
i

x̂i Ð
ś

j x̂ij

– x̂1i Ð pgr
1

1 , g
r1`xi
2 q – –

Table 9.5.: Necessary computations in each of the four proposed methods compared to the
current protocol. Only the case of the voting credentials is shown. Similar
computations are necessary for the confirmation credentials.

An even more detailed overview of corresponding protocol processes is given in Table 9.6. It
exposes the augmented responsibility assigned to the printing authority in Approaches 2a,
2b, and 2c. In all three cases, this involves generating random values and sending some
data to the bulletin board. This is the main disadvantage in comparison to both the current
protocol and Approach 1. Note that generating a random salt si (which is only used for
making pre-computations of brute-force attacks more expensive) is much less delicate than
generating a random encryption key ki. Compared to all other approaches, this is the main
disadvantage of Approach 2a, which does not allow to detect an attack against the random
key generation process. Since a printing authority with augmented responsibility is more
likely to attract attacks of all kinds, it is important that a corrupt printing authority could
at least be detected. In Approaches 2b and 2c, corresponding tests can be implemented into
the voting client or as part of the universal verification process (see explanations given in
the previous subsection).

Something that is not visible in Tables 9.5 and 9.6 is the complex mathematics required
to implement the bilinear mapping in Approach 1, and also the fact that the proposed
identification scheme has not yet been described in a scientific publication. In other words,
it is not yet an established cryptographic scheme with formally proven security properties,
i.e., further research will be necessary for achieving this. These are the two main weaknesses

122



of Approach 1.

Compared to the current protocol, a subtle weakness of all four approaches is the fact that
entering the voter index i becomes mandatory. In the current protocol, entering i appears in
Prot. 6.4 for obtaining the correct voting page, but the role of i as a unique identifier could
in principle be taken over by the public voting credential x̂i, which can be derived from xi
alone. Unfortunately, this is no longer the case in any of the four proposed approaches. In
Approach 1, x̂i is non-deterministic and can therefore not be reconstructed without knowing
its randomness. In all other approaches, x̂i can be reconstructed from xi, but knowing i
is necessary for retrieving the right values rxis and si from the bulletin board, which are
needed to derive xi.4

P
ro
to
co
l

P
ha

se

P
ar
ty

T
as
k

C
ur
re
nt

pr
ot
oc
ol

A
pp

ro
ac
h
1

A
pp

ro
ac
h
2a

A
pp

ro
ac
h
2b

A
pp

ro
ac
h
2c

6.1 EAj

Select at random, send to PA xij xij xij xij xij

Compute and send to BB x̂ij x̂ij x̂ij x̂ij –

Retrieve from BB px̂ijq px̂ijq px̂ijq px̂ijq –

Compute x̂i x̂i x̂i x̂i –

6.2 PA

Select at random – – ki si si

Compute xi xi xi, rxis xi, ki, rxis xi, x1i, x̂i
Send to BB – – rxis si, rxis si, x̂i
Send to Vi i, xi i, xi i, ki i, ki i, xi

6.4 Vi Enter into VCi i, xi i, xi i, ki i, ki i, xi

6.5

VCi

Retrieve from BB – – rxis si, rxis si

Check integrity of – – – ki, xi, si –

Compute π x̂1i, π xi, π xi, π x1i, π

Send to BB i, π i, x̂1i, π i, π i, π i, π

EAj

Retrieve from BB i, π i, x̂1i, π i, π i, π i, π

Check integrity of – x̂i, x̂1i – – –

Check validity of π π π π π

6.6 EAj Send to BB – – – – xij

Table 9.6.: Tasks to be executed by the election authorities (EAj), the printing authority
(PA), the voters (Vi), and the voting clients (VCi) in the different phases of the
protocol.

4In case of Algorithm 2c, it is possible to derive x̂i from xi without knowing i, but only if the random
salt of the key derivation function is entirely omitted. As a general rule, we do not recommend using a KDF
without a random salt, even if high-entropy input keying material and case-specific contextual information is
available. On the other hand, we do not entirely exclude it as an option for achieving an optimal compromise
between security and usability.

123



A recapitulation of the above discussion and comparison is given in Table 9.7. It lists the
major strengths and weaknesses for each of the four approaches. As mentioned before,
it turns out that no single winner can be selected based on our analysis. However, since
Approach 2a seems to be strictly less preferable than Approach 2b or 2c, we recommend
excluding it from further consideration. For very different reasons, we also have reservations
against Approach 1. The main problem there is the additional complexity for dealing with
bilinear maps. Since implementing bilinear maps is known to be very difficult, describing
corresponding algorithms in pseudocode be a challenge for this document.

Therefore, we conclude this discussion by recommending either Approach 2b or 2c as a
possible compromise solution for solving the usability problem addressed in this section. The
augmented responsibility assigned to the printing authority is clearly not very appealing,
but also not excluded by the given VEleS regulations. Nevertheless, we propose to conduct
further research relative to Approach 1, which is the only approach that does not augment
the printing authority’s responsibility, and to keep it as a possibility for a future protocol
update.

Approach Strengths Weaknesses

1

– No new channel from printing
authority to bulletin board

– Information flow identical to
current protocol

– Complex mathematics and im-
plementation

– Identification scheme not well
studied (no publication, no for-
mal security proofs)

– Client- and server-side compu-
tations more expensive

– Additional cryptographic pa-
rameters

2a

– Tasks executed by election au-
thorities remain unchanged

– New channel from printing au-
thority to bulletin board

– Random keys generated by
printing authority

– Validity of secret keys can not
be checked

2b

– Tasks executed by election au-
thorities remain unchanged

– Validity of secret key can be
checked by voting client

– New channel from printing au-
thority to bulletin board

– Random salt generated by print-
ing authority

2c

– Tasks executed by election au-
thorities is simplified

– Validity of secret credentials can
be publicly verified

– New channel from printing au-
thority to bulletin board

– Random salt generated by print-
ing authority

– Private credentials revealed af-
ter vote casting

Table 9.7.: Recapitulation of major weaknesses and strength.

124



Part V.

Conclusion

125



10. Conclusion

10.1. Recapitulation of Achievements

The system specification presented in this document provides a precise guideline for imple-
menting the next-generation Internet voting system of the State of Geneva. It is designed
to support the election use cases of Switzerland and to fulfill the requirements defined by
the Federal Chancellery Ordinance on Electronic Voting (VEleS) to the extent of the full
expansion stage. In Art. 2, the ordinance lists three general requirements for authorizing
electronic voting. The first is about guaranteeing secure and trustworthy vote casting, the
second is about providing an easy-to-use interface to voters, and the third is about docu-
menting the details of all security-relevant technical and organizational procedures of such a
system [5]. The content of this document is indented to lay the groundwork for a complete
implementation of all three general requirements.

The core of the document is a new cryptographic voting protocol, which provides the follow-
ing key properties based on state-of-the-art technology from the cryptographic literature:

• Votes are end-to-end encrypted from the voting client to the final tally. We use a
verifiable re-encryption mix-net for breaking up the link between voters and their
votes before performing the decryption.

• By comparing some codes, voters can verify that their vote has been recorded as
intended. If the verification succeeds, they know with sufficiently high probability
that their vote has reached the ballot box without any manipulation by malware or
other types of attack. We realize this particular form of individual verifiability with
an existing oblivious transfer protocol [27].

• Based on the public election data produced during the protocol execution, the correct-
ness of the final election result can be verified by independent parties. We use digital
signatures, commitments, and zero-knowledge proofs to ensure that all involved par-
ties strictly comply with the protocol in every single step. In this way, we achieve a
complete universal verification chain from the election setup all the way to the final
tally.

• Every critical task of the protocol is performed in a distributed way by multiple elec-
tion authorities, such that no single party involved in the protocol can manipulate
the election result or break vote privacy. This way of distributing the trust involves
the code generation during the election preparation, the authentication of the voters,
the sharing of the encryption key, the mixing of the encrypted votes, and the final
decryption.

126



By providing these properties, we have addressed all major security requirements of the legal
ordinance (see Section 1.1). For adjusting the actual security level to current and future
needs, all system parameters are derived from three principal security parameters. This way
of parameterizing the protocol offers a great flexibility for trading off the desired level of
security against the best possible usability. The strict parametrization is also an important
prerequisite for formal security proofs.

With the protocol description given in form of precise pseudo-code algorithms, we have
reached the highest possible level of details for such a document. To the best of our knowl-
edge, today no other document in the literature on cryptographic voting protocols or in
the practice of electronic voting systems offers such a detailed and complete protocol spec-
ification. With our effort of writing such a document, we hope to deliver a good example
of how electronic voting systems could (or should) be documented. We believe that this is
roughly the level of transparency that any electronic voting system should offer in terms
of documentation. It enables software developers to link the written code precisely and
systematically with corresponding parts of the specification. Such links are extremely useful
for code reviewers and auditors of the resulting system.

10.2. Open Problems and Future Work

Some problems have not been directly addressed in this document or have not been solved
entirely. We conclude this document by providing a list of such open problems with a short
discussion of a possible solution in each case.

• Web Browser Performance: Due to the limited performance of interpreted JavaScript
code, web browsers are relatively slow computational environments for cryptographic
computations. Usually, modular exponentiations with very large numbers are the most
expensive operations in cryptographic applications, but JavaScript developers have
no built-in access to such a primitive. With the best JavaScript libraries available
today, computing a small number of modular exponentiations is possible in a modern
web browser, but computing a large number of modular exponentiations may lead to
major usability problems. This is the case in our protocol when a large number of
candidates must be selected. A possible solution is to outsource such computations
to external servers. Many protocols with different properties exist for this purpose
[16, 17, 32, 40, 53]. Their main challenge is to guarantee that no secret information is
leaked to the servers. Selecting the outsourcing protocol with the best properties for
our specific purpose is an open question.

• Secure Bulletin Board : Throughout this document, we have assumed the existence of
a robust append-only bulletin board, which is available to all protocol participants at
all times. However, the implementation of a secure bulletin board is a very difficult
problem on its own. The main challenge is to guarantee the consistency of the messages
posted to the board without creating a single point of failure. There is a considerable
amount of literature on this topic, but so far no consensus about the best approach has
been reached [12? , 29, 30, 31, 37, 39, 47]. The problem in the context of this document
is a little less critical, because copies of all submitted ballots are automatically kept
by all election authorities. Lost, manipulated, or added ballots are therefore detected

127



without any additional measures. Nevertheless, the robustness of the board is still
critical for the proper functioning of the system.

• Secure Printing : The most critical component in our protocol is the printing authority
(see Section 6.2). It is the only party that learns enough information to manipulate
the election, for example by submitting ballots in the name of real voters. Printing
sensitive information securely is known to be a difficult problem. The technical section
of the VEleS ordinance accepts a solution based on organizational and procedural
measures. Defining them, putting them in place, and supervising them during the
printing process is a problem that needs no be addressed separately. This problem gets
even more challenging, if one of the proposals of Section 9.2 for improved usability is
implemented.

• Privacy Attack on Voting Device: The assumption that no adversary will attack the
voter’s privacy on the voting device is a very strong one. The problem could be solved
by pure code voting [44], but this would have an enormous negative impact on the
system’s usability. Apparently the most viable solution to this problem is to distribute
trusted hardware to voters, but this would have a considerable impact on the overall
costs. At the moment, however, we do not see a better solution.

• Formal Security Proofs: Definitions of security properties and corresponding formal
proofs that these properties are satisfied by the protocol are not included in this
document. The plan is to develop them in a second stage of the project by a third-
party expert. As long as such proofs are missing, we can not guarantee that no attack
has been overlooked. Consequently, the protocol presented in this document should
be considered with care until such formal proofs are available.

128



Nomenclature

α Ballot
a Left-hand side of encrypted vote
a OT query
AF Alphabet for finalization codes
AR Alphabet for verification codes
AX Alphabet for voting codes
AY Alphabet for confirmation codes
βj Reponse generated by authority j
βi Reponses for voter i
b Right-hand side of encrypted vote
b1j Partial decryptions by authority j
B Ballot list consisting of tuples pi, α, wq for each valid ballot pi, αq
B1 Partial decryptions
B Boolean set
γ Confirmation
c Vector of candidate descriptions
C Confirmation list consisting of tuples pi, γq for each valid confirmation pi, γq
Ci Candidate description
δj Finalization generated by authority j
δi Finalizations for voter i
di Voting card data
d̂j Public credentials generated by authority j
dj Voting card data generated by authority j
D̂ Public credentials
D Voting card data
ε Deterrence factor
eij Eligibility of voter i in election j
E Eligibility matrix
FCi Finalization code of voter i
g Generator of group Gq

ĝ Generator of group Gq̂

Gq Multiplicative subgroup of integers modulo p (of order q “ p´1
2 q

Gq̂ Multiplicative subgroup of integers modulo p̂ (of order q̂)
h Generator of group Gq

129



hi Generator of group Gq

i Index over candidates t1, . . . , nu, index over voters t1, . . . , NEu, index over sub-
mitted ballots t1, . . . , NBu, index over confirmations t1, . . . , NCu, index over en-
crypted votes t1, . . . , Nu,

j Index over authorities t1, . . . , su, index over selections t1, . . . , ku, index over elec-
tions t1, . . . , tu

kj Number of selections in election j
k1ij Number of selections of voter i in each election j
kF String length of finalization codes
kR String length of verification codes
k Number of selections in each election
λ Security level
l Auxiliary index in iterations
` Output length of hash funciton (bits)
`F Length of finalization codes (bits)
`R Length of verification codes (bits)
`X String length of voting code
`Y String length of confirmation code
L Output length of hash function (bytes)
LF Length of finalization codes (bytes)
LM Length of OT messages (bytes)
LR Length of verification codes (bytes)
τ Security strength (integrity)
m Product of selected primes
m Products of selected primes
n Number of candidates
n Number of candidates in each election
N Number of valid votes
NB Size of ballot list B
NC Size of confirmation list C
NE Number of eligible voters
N Natural numbers
N` Positive integers
π Ballot or confirmation NIZKP
πj Shuffle proof of authority j
π1j Decryption proof of authority j
π Shuffle proofs
π1 Decryption proofs
p Prime modulus of group Gq

p̂ Prime modulus of group Gq̂

pij Point on polynomials of voter i

130



p1 Prime modulus of field Zp1
Pi Voting page of voter i
P Matrix of points
P Primes numbers
pk Public encryption key
pkj Share of public encryption key
pk Shares of public encryption key
q Order of group Gq

q̂ Order of group Gq̂

q̂x Upper bound for secret voting credentials
q̂y Upper bound for secret confirmation credentials
q Selected primes
rci Verification codes of voter i
RCij Verification code of voter i for candidate j (string)
σ Security strength (privacy)
s Number of authorities
sj Index of selected candidate
s Vector of indices of selected candidates
S Safe primes
Si Voting card of voter i
skj Share of private decryption key
t Number of elections in an election event
U Unique election identifier
v Voter index
vij Single entry of the election result matrix
v Vector of voter descriptions
Vi Voter description (first/last names, address, date of birth, etc.)
V Election result matrix
w Number of counting circles
wi Counting circle of voter i
wij Single entry of the counting circle matrix
w Vector of counting circles assigned to voters
W Counting circle matrix of election result
xi Secret voting credential of voter i
x̂i Public voting credential of voter i
Xi Voting code of voter i
yi Secret confirmation credential of voter i
ŷi Public confirmation credential of voter i
y1i Secret vote validity credential of voter i
Yi Confirmation code of voter i
zij Randomization used in OT response by authority j for voter i

131



Zp1 Field of integers modulo p1

Z˚p̂ Multiplicative group of integers modulo p̂
Zq Field of integers modulo q
Zq̂ Field of integers modulo q̂

132



List of Tables

2.1. Election parameters for common types of elections. . . . . . . . . . . . . . . . 17

4.1. Byte array representation for different integers and different output lengths. . 23

6.1. List of security parameters derived from the principal security parameters. . . 53

6.2. List of election parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3. Overview of the protocol phases and sub-phases with the involved parties. . . 58

6.4. Overview of the signatures generated during the protocol execution. . . . . . 69

6.5. Overview of the signatures verified during the election process. . . . . . . . . 70

7.1. Overview of general algorithms for specific tasks. . . . . . . . . . . . . . . . . 72

7.2. Overview of algorithms and sub-algorithms of the pre-election phase. . . . . . 75

7.3. Overview of algorithms and sub-algorithms of the election phase. . . . . . . . 81

7.4. Overview of algorithms and sub-algorithms of the post-election phase. . . . . 92

7.5. Overview of algorithms used to establish channel security. . . . . . . . . . . . 101

8.1. Length parameters according to current NIST recommendations. . . . . . . . 105

8.2. Hexadecimal representation of Euler’s number . . . . . . . . . . . . . . . . . . 106

8.3. Groups and default generators for security level λ “ 0. . . . . . . . . . . . . . 107

8.4. The first 60 prime numbers in Gq Ă Z˚p for p and q as defined in Table 8.3. . . 107

8.5. Groups and default generators for security level λ “ 1. . . . . . . . . . . . . . 108

8.6. The first 60 prime numbers in Gq Ă Z˚p for p and q as defined in Table 8.5. . . 109

8.7. Field Zp1 for security level λ “ 1. . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.8. Groups and default generators for security level λ “ 2. . . . . . . . . . . . . . 109

8.9. The first 60 prime numbers in Gq Ă Z˚p for p and q as defined in Table 8.8. . . 110

8.10. Group Gq Ă Z˚p for security level λ “ 2 with default generator ĝ. . . . . . . . 110

8.11. Field Zp1 for security level λ “ 2. . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.12. Groups and default generators for security level λ “ 3. . . . . . . . . . . . . . 111

133



8.13. The first 60 prime numbers in Gq Ă Z˚p for p and q as defined in Table 8.12. . 111

8.14. Group Gq Ă Z˚p for security level λ “ 3 with default generator ĝ. . . . . . . . 112

8.15. Field Zp1 for security level λ “ 3. . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.1. Common alphabets with different sizes and characteristics. . . . . . . . . . . . 114

9.2. Lengths of voting and confirmation codes for different alphabets and security
levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.3. Lengths of verification and finalization codes for different alphabets and se-
curity levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.4. Lengths of voting and confirmation codes for different alphabets and security
levels by reducing the required bit length from 2τ to τ bits. . . . . . . . . . . 117

9.5. Necessary computations in each of the four proposed methods compared to
the current protocol. Only the case of the voting credentials is shown. Similar
computations are necessary for the confirmation credentials. . . . . . . . . . . 122

9.6. Tasks to be executed by the election authorities (EAj), the printing authority
(PA), the voters (Vi), and the voting clients (VCi) in the different phases of
the protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.7. Recapitulation of major weaknesses and strength. . . . . . . . . . . . . . . . . 124

134



List of Protocols

5.1. Two-round OTk
n-scheme by Chu and Tzeng . . . . . . . . . . . . . . . . . . . 32

5.2. Two-round OTk
n-scheme with sender privacy . . . . . . . . . . . . . . . . . . . 34

5.3. Two-round OTk
n-scheme with sender privacy . . . . . . . . . . . . . . . . . . . 36

6.1. Election Preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2. Printing of Voting Cards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3. Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4. Candidate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5. Vote Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.6. Vote Confirmation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.7. Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.8. Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.9. Tallying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

135



List of Algorithms

4.1. MarkByteArraypB,m,mmaxq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2. SetBitpB, i, bq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3. ToByteArraypxq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4. ToByteArraypx, nq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5. ToIntegerpBq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6. ToStringpx, k,Aq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.7. ToIntegerpS,Aq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.8. ToStringpB,Aq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.9. RecHashLpv1, . . . , vkq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1. getPrimespnq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2. IsMemberpxq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3. GetGeneratorspnq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.4. GetNIZKPChallengepy, t, κq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.5. GetNIZKPChallengespn, y, κq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.6. GenElectorateDatapn,k,Eq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.7. GenPointspn, kq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.8. GenPolynomialpdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.9. GetYValuepx,aq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.10. GenSecretVoterDatappq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.11. GetPublicVoterDatapx, yq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.12. GetPublicCredentialspD̂q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.13. GetVotingCardspv,w, c,n,k,E,Dq . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.14. GetVotingCardpv, V, w, c,n,k, X, Y, FC, rcq . . . . . . . . . . . . . . . . . . . . 79

7.15. GenKeyPairpq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.16. GetPublicKeyppkq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.17. GetVotingPagepv,v,w, c,n,k,Eq . . . . . . . . . . . . . . . . . . . . . . . . . . 82

136



7.18. GenBallotpX, s, pkq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.19. GetSelectedPrimespsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.20. GenQuerypq, pkq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.21. GenBallotProofpx,m, r, x̂,a, pkq . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.22. CheckBallotpv, α, pk,k,E, x̂, Bq . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.23. HasBallotpv,Bq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.24. CheckBallotProofpπ, x̂,a, pkq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.25. GenResponsepv,a, pk,n,k,E,Pq . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.26. GetPointMatrixpβ, s, rq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.27. GetPointspβ, s, rq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.28. GetReturnCodesps,Psq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.29. CheckReturnCodesprc, rc1, sq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.30. GenConfirmationpY,Pq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.31. GetValueppq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.32. GenConfirmationProofpy, y1ŷq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.33. CheckConfirmationpv, γ, ŷ, B,Cq . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.34. HasConfirmationpv, Cq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.35. CheckConfirmationProofpπ, ŷq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.36. GetFinalizationpv,P, Bq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.37. GetFinalizationCodepδq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.38. CheckFinalizationCodepFC,FC 1q . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.39. GetEncryptionspB,C,n,wq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.40. GenShufflepe, pkq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.41. GenPermutationpNq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.42. GenReEncryptionpe, pkq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.43. GenShuffleProofpe, e1, r1, ψ, pkq . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.44. GenPermutationCommitmentpψ,hq . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.45. GenCommitmentChainpc0,uq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.46. CheckShuffleProofspπ, e0,E, pk, iq . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.47. CheckShuffleProofpπ, e, e1, pkq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.48. GetPartialDecryptionspe, skq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.49. GenDecryptionProofpsk, pk, e,b1q . . . . . . . . . . . . . . . . . . . . . . . . . . 98

137



7.50. CheckDecryptionProofspπ1,pk, e,B1q . . . . . . . . . . . . . . . . . . . . . . . . 98

7.51. CheckDecryptionProofpπ1, pk, e,b1q . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.52. GetDecryptionspe,B1q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.53. GetVotespm,n,wq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.54. GenSignaturepsk,mq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.55. VerifySignatureppk, σ,mq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.56. GenCiphertextppk,mq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.57. GetPlaintextpsk, eq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

138



Bibliography

[1] Elliptic curve cryptography. Technical Guideline TR-03111, Bundesamt für Sicherheit
in der Informationstechnik, 2012.

[2] Digital signature standard (DSS). FIPS PUB 186-4, National Institute of Standards
and Technology (NIST), 2013.

[3] Ergänzende Dokumentation zum dritten Bericht des Bundesrates zu Vote électronique.
Die Schweizerische Bundeskanzlei (BK), 2013.

[4] Technische und administrative Anforderungen an die elektronischen Stimmabgabe. Die
Schweizerische Bundeskanzlei (BK), 2013.

[5] Verordnung der Bundeskanzlei über die elektronische Stimmabgabe (VEleS). Die
Schweizerische Bundeskanzlei (BK), 2013.

[6] Verordnung über die politischen Rechte. SR 161.11. Der Schweizerische Bundesrat, 2013.

[7] Information technology — security techniques – digital signatures with appendix –
part 3: Discrete logarithm based mechanisms. ISO/IEC 14888-3:2016, International
Organization for Standardization, 2016.

[8] A. Ansper, S. Heiberg, H. Lipmaa, T. A. Øverland, and F. van Laenen. Security and
trust for the Norwegian e-voting pilot project E-Valg 2011. In A. Jøsang, T. Maseng,
and S. J. Knapskog, editors, NordSec’09, 14th Nordic Conference on Secure IT Systems,
LNCS 5838, pages 207–222, Oslo, Norway, 2009.

[9] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for
realistic adversaries. Journal of Cryptology, 23(2):281–343, 2010.

[10] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation for key
management. NIST Special Publication 800-57, Part 1, Rev. 3, NIST, 2012.

[11] J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, New Haven,
USA, 1987.

[12] J. Beuchat. Append-only web bulletin board. Master’s thesis, Bern University of
Applied Sciences, Biel, Switzerland, 2012.

[13] A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, PKC’03, 6th
International Workshop on Theory and Practice in Public Key Cryptography, LNCS
2567, pages 31–46, Miami, USA, 2003.

[14] X. Boyen. A promenade through the new cryptography of bilinear pairings. In ITW’06,
IEEE Information Theory Workshop, pages 19–23, Punta del Este, Uruguay, 2006.

139



[15] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell,
editor, CRYPTO’92, 12th Annual International Cryptology Conference on Advances in
Cryptology, LNCS 740, pages 89–105, Santa Barbara, USA, 1992.

[16] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou. New algorithms for secure outsourcing
of modular exponentiations. IEEE Transactions on Parallel and Distributed Systems,
25(9):2386–2396, 2014.

[17] C. Chevalier, F. Laguillaumie, and D. Vergnaud. Privately outsourcing exponentiation
to a single server: Cryptanalysis and optimal constructions. In I. Askoxylakis, S. Ioanni-
dis, S. Katsikas, and C. Meadows, editors, ESORICS’16, 21st European Conference on
Research in Computer Security, LNCS 9878, pages 261–278, Heraklion, Greece, 2016.

[18] C. K. Chu and W. G. Tzeng. Efficient k-out-of-n oblivious transfer schemes with
adaptive and non-adaptive queries. In S. Vaudenay, editor, PKC’05, 8th International
Workshop on Theory and Practice in Public Key Cryptography, LNCS 3386, pages 172–
183, Les Diablerets, Switzerland, 2005.

[19] C. K. Chu and W. G. Tzeng. Efficient k-out-of-n oblivious transfer schemes. Journal
of Universal Computer Science, 14(3):397–415, 2008.

[20] J.-S. Coron, J. Patarin, and Y. Seurin. The random oracle model and the ideal cipher
model are equivalent. In D. Wagner, editor, CRYPTO’08, 28th Annual International
Cryptology Conference, LNCS 5157, pages 1–20, Santa Barbara, USA, 2008.

[21] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In G. R. Blakley and D. Chaum, editors, CRYPTO’84, Advances in Cryptology,
LNCS 196, pages 10–18, Santa Barbara, USA, 1984. Springer.

[22] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. M. Odlyzko, editor, CRYPTO’86, 6th Annual International
Cryptology Conference on Advances in Cryptology, LNCS 263, pages 186–194, Santa
Barbara, USA, 1986.

[23] J. Fried, P. Gaudry, N. Heninger, and E. Thomé. A kilobit hidden SNFS discrete
logarithm computation. IACR Cryptology ePrint Archive, 2016/961, 2016.

[24] D. Galindo, S. Guasch, and J. Puiggalí. Swiss online voting protocol. Technical report,
Scytl Secure Electronic Voting, Barcelona, Spain, 2016.

[25] I. S. Gebhardt Stenerud and C. Bull. When reality comes knocking – Norwegian expe-
riences with verifiable electronic voting. In M. J. Kripp, M. Volkamer, and R. Grimm,
editors, EVOTE’12, 5th International Workshop on Electronic Voting, number P-205
in Lecture Notes in Informatics, pages 21–33, Bregenz, Austria, 2012.

[26] K. Gjøsteen. The Norwegian Internet voting protocol. In A. Kiayias and H. Lipmaa,
editors, VoteID’11, 3rd International Conference on E-Voting and Identity, LNCS 7187,
pages 1–18, Tallinn, Estonia, 2011.

[27] R. Haenni, R. E. Koenig, and E. Dubuis. Cast-as-intended verification in electronic
elections based on oblivious transfer. In J. Barrat Robert Krimmer, Melanie Volkamer,
J. Benaloh, N. Goodman, P. Ryan, O. Spycher, V. Teague, and G. Wenda, editors,
E-Vote-ID’16, 1st International Joint Conference on Electronic Voting, LNCS 10141,
pages 277–296, Bregenz, Austria, 2016.

140



[28] R. Haenni, P. Locher, R. E. Koenig, and E. Dubuis. Pseudo-code algorithms for verifi-
able re-encryption mix-nets. In M. Brenner, K. Rohloff, J. Bonneau, A. Miller, P. Y. A.
Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, and M. Jakobsson, editors, FC’17,
21st International Conference on Financial Cryptography, LNCS 10323, pages 370–384,
Silema, Malta, 2017.

[29] S. Hauser and R. Haenni. A generic interface for the public bulletin board used in UniV-
ote. In P. Parycek and N. Edelmann, editors, CeDEM’16, 6th International Conference
for E-Democracy and Open Government, pages 49–56, Krems, Austria, 2016.

[30] S. Hauser and R. Haenni. Implementing broadcast channels with memory for electronic
voting systems. JeDEM – eJournal of eDemocracy and Open Government, 8(3):61–79,
2016.

[31] J. Heather and D. Lundin. The append-only web bulletin board. In P. Degano,
J. Guttman, and F. Martinelli, editors, FAST’08, 5th International Workshop on For-
mal Aspects in Security and Trust, LNCS 5491, pages 242–256, Malaga, Spain, 2008.

[32] S. Hohenberger and A. Lysyanskaya. How to securely outsource cryptographic compu-
tations. In J. Kilian, editor, TCC’05, 2nd Theory of Cryptography Conference, LNCS
3378, pages 264–282, Cambridge, USA, 2005.

[33] J. Katz and Y. Lindell. Introduction to Modern Cryptography. CRC Press, 2nd edition,
2015.

[34] Donald E. Knuth. The Art of Computer Programming, volume 2, Seminumerical Algo-
rithms. Addison Wesley, 3rd edition, 1997.

[35] H. Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.
In T. Rabin, editor, CRYPTO’08, 30th Annual International Cryptology Conference,
LNCS 6223, pages 631–648, Santa Barbara, USA, 2010.

[36] H. Krawczyk and P. Eronen. Hmac-based extract-and-expand key derivation function
(hkdf). RFC 5869, IETF Network Working Group, 2000.

[37] R. Krummenacher. Implementation of a web bulletin board for e-voting applications.
Project report, Hochschule für Technik Rapperswil (HSR), Switzerland, 2010.

[38] H. Lipmaa. Verifiable homomorphic oblivious transfer and private equality test. In
C. S. Laih, editor, ASIACRYPT’03, 9th International Conference on the Theory and
Application of Cryptology and Information Security, LNCS 2894, pages 416–433, Taipei,
Taiwan, 2003.

[39] D. Lundin and J. Heather. The robust append-only web bulletin board. Technical
report, University of Surrey, Guildford, U.K., 2008.

[40] P. Mainini. Efficient and secure outsourcing of modular exponentiation. Bachelor thesis,
Bern University of Applied Sciences, Biel, Switzerland, 2017.

[41] U. Maurer. Unifying zero-knowledge proofs of knowledge. In B. Preneel, editor,
AFRICACRYPT’09, 2nd International Conference on Cryptology in Africa, LNCS
5580, pages 272–286, Gammarth, Tunisia, 2009.

[42] U. Maurer and C. Casanova. Bericht des Bundesrates zu Vote électronique. 3. Bericht,
Schweizerischer Bundesrat, 2013.

141



[43] R. Oppliger. Addressing the secure platform problem for remote internet voting in
Geneva. Technical report, Chancellory of the State of Geneva, 2002.

[44] R. Oppliger. How to address the secure platform problem for remote internet voting.
In SIS’02, 5th Conference on “Sicherheit in Informationssystemen”, pages 153–173,
Vienna, Austria, 2002.

[45] R. Oppliger. Traitement du problème de la sécurité des plates-formes pour le vote par
internet à Genève. Technical report, ESECURITY Techologies, 2002.

[46] R. Oppliger. E-voting auf unsicheren client-plattformen. digma – Zeitschrift für Daten-
recht und Informationssicherheit, 8(2):82–85, 2008.

[47] R. A. Peters. A secure bulletin board. Master’s thesis, Department of Mathematics
and Computing Science, Technische Universiteit Eindhoven, The Netherlands, 2005.

[48] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[49] O. Spycher, M. Volkamer, and R. E. Koenig. Transparency and technical measures to
establish trust in Norwegian Internet voting. In A. Kiayias and H. Lipmaa, editors,
VoteID’11, 3rd International Conference on E-Voting and Identity, LNCS 7187, pages
19–35, Tallinn, Estonia, 2011.

[50] B. Terelius and D. Wikström. Proofs of restricted shuffles. In D. J. Bernstein and
T. Lange, editors, AFRICACRYPT’10, 3rd International Conference on Cryptology in
Africa, LNCS 6055, pages 100–113, Stellenbosch, South Africa, 2010.

[51] T. Truderung. Cast-as-intended mechanism with return codes based on PETs. In E-
Vote-ID’17, 2nd International Joint Conference on Electronic Voting, Bregenz, Austria,
2017.

[52] D. Wikström. A commitment-consistent proof of a shuffle. In C. Boyd and J. González
Nieto, editors, ACISP’09, 14th Australasian Conference on Information Security and
Privacy, LNCS 5594, pages 407–421, Brisbane, Australia, 2009.

[53] J. Ye, X. Chen, and J. Ma. An improved algorithm for secure outsourcing of modu-
lar exponentiations. In L. Barolli, M. Takizawa, F. Xhafa, T. Enokido, and J. Park,
editors, AINA’15, 29th International Conference on Advanced Information Networking
and Applications Workshops, pages 73–76, Gwangju, Korea, 2015.

142


	Contents
	Project Context
	Introduction
	Principal Requirements
	Goal and Content of Document

	Election Context
	General Election Procedure
	Election Use Cases
	Electorate
	Type of Elections



	Theoretical Background
	Mathematical Preliminaries
	Notational Conventions
	Mathematical Groups
	The Multiplicative Group of Integers Modulo p
	The Field of Integers Modulo p


	Type Conversion and Hash Algorithms
	Byte Arrays
	Converting Integers to Byte Arrays
	Converting Byte Arrays to Integers
	Converting UCS Strings to Byte Arrays

	Strings
	Converting Integers to Strings
	Converting Strings to Integers
	Converting Byte Arrays to Strings

	Hash Algorithms
	Hash Values of Integers and Strings
	Hash Values of Multiple Inputs


	Cryptographic Primitives
	ElGamal Encryption
	Using a Single Key Pair
	Using a Shared Key Pair

	Pedersen Commitment
	Oblivious Transfer
	OT-Scheme by Chu and Tzeng
	Full Sender Privacy in the OT-Scheme by Chu and Tzeng
	Simultaneous Oblivious Transfers
	Oblivious Transfer of Long Messages

	Non-Interactive Preimage Proofs
	Composition of Preimage Proofs
	Applications of Preimage Proofs

	Wikström's Shuffle Proof
	Preparatory Work
	Preimage Proof

	Schnorr Signatures
	Hybrid Encryption and Key-Encapsulation


	Protocol Specification
	Protocol Description
	Parties and Communication Channels
	Adversary Model and Trust Assumptions
	System Parameters
	Security Parameters
	Election Parameters

	Technical Preliminaries
	Encoding of Votes and Counting Circles
	Linking OT Queries to ElGamal Encryptions
	Validity of Encrypted Votes
	Voter Identification

	Protocol Description
	Pre-Election Phase
	Election Phase
	Post-Election Phase

	Channel Security

	Pseudo-Code Algorithms
	Conventions and Assumptions
	General Algorithms
	Pre-Election Phase
	Election Phase
	Post-Election Phase
	Channel Security


	System Specification
	Security Levels and Parameters
	Recommended Length Parameters
	Recommended Group and Field Parameters
	Level 0 (Testing Only)
	Level 1
	Level 2
	Level 3


	Usability
	Alphabets and Code Lengths
	Voting and Confirmation Codes
	Verification and Finalization Codes

	Proposals for Improved Usability
	Approach 1: Using Bilinear Mappings
	Approach 2: Extending the Printing Authority
	Comparison of Methods



	Conclusion
	Conclusion
	Recapitulation of Achievements
	Open Problems and Future Work

	Nomenclature
	List of Tables
	List of Protocols
	List of Algorithms
	Bibliography


