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Abstract. It is well known that multivariate quadratic (MQ) digital
signature schemes have small signatures but huge public keys. However,
in some settings, such as public key infrastructure (PKI), both variables
are important. This paper explains how to transform any MQ signa-
ture scheme into one with a much smaller public key at the cost of a
larger signature. The transformation aims to reduce the combined size
of the public key and signature and this metric is improved significantly.
The security of our transformation reduces to that of the underlying
MQ signature scheme in the random oracle model. It is possible to de-
crease signature sizes even further but then its security is related to the
conjectured hardness of a new problem, the Approximate MQ Problem
(AMQ).
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dom oracle, post-quantum, hard problem

1 Introduction

Post-quantum cryptography is gaining in popularity in recent years, largely due
to the promise of Shor’s algorithms to break most deployed public-key cryptog-
raphy as soon as large enough quantum computers are built [25]. For instance,
NIST [17] is looking to standardize one or more quantum-resistant public-key
cryptographic algorithms [18]. The EU-funded PQCRYPTO project aims to de-
velop a portfolio of fast and highly secure implementations of post-quantum
cryptosystems [28]. The conference of the same name has been held semi-anually
since 2006 with larger turnouts every edition [2]. Perhaps the most noteworthy il-
lustration of the increased consideration afforded to post-quantum cryptography
is the experimental but successful adoption of the New Hope key establishment
algorithm by Google in Chrome browsers [1,15].

While certainly a step forward, the deployment of the New Hope key estab-
lishment algorithm only protects users against passive eavesdroppers. An active
attacker can launch a man-in-the-middle attack and fool Alice and Bob into
establishing a secure channel with the attacker, rather than directly with one
other. Alice and Bob can sign their messages to guarantee authenticity and thus
foil the attack. However, this countermeasure does not fundamentally solve the



problem as it requires that either Alice or Bob knows the other’s public key, or
at the very least is capable of verifying its authenticity when they receive it.

Public Key Infrastructure (PKI) solves this problem with certificates that
authenticate the transmitted public key. The certificate itself is a linked list of
public keys and signatures, where each signature authenticates the next public
key under the previous one. The first public key in this link is the root public
key of a Certificate Authority (CA), which in the case of web traffic is built into
the user’s browser.

The transmission of the certificate constitutes a significant bandwidth cost in
any key establishment protocol and should consequently be minimized. However,
most current proposals for post-quantum signatures do not seem to take this par-
ticular use case into account. By and large, post-quantum signature schemes fall
into two camps. In camp (1) public keys are small but the signatures are huge.
This is the case for hash-based signatures such as SPHINCS [3] and signatures
based on non-interactive zero-knowledge proofs such as the MQ-based SSH pro-
tocol [24] and the subsequent MQDSS [7] or Stern’s code-based identification
scheme [27]. By contrast, in camp (2) the signatures are small but the public
keys are huge, such as is the case for well-known MQ signature schemes such as
UOV [14] or HFEv− [19,21] but also notably the code-based trapdoor schemes
such as CFS and derivates [8]. The odd exception to this polarization is the
lattice-based BLISS [10] whose public keys and signatures clock in at roughly
the same size.

In the case of PKI, only the root public key is not transmitted as part of the
certificate as it is assumed to be present on the client already. For this purpose,
camp (2) is ideal as it increases the certificate size by the smallest amount. At the
other end of the chain, the public key should be small as it is transmitted every
time; but more importantly its signature generation algorithm should be fast as
it must produce new signatures every time the protocol runs — in contrast to
the certificate itself, which can be copied straight from memory. Therefore, fast
representatives from camp (1) or the odd exception between camps seem more
suited for the tail end of the chain. In the middle of the chain, signatures are
generated relatively infrequently and the chief concern is not so much the cost
of the signature generation algorithm but rather the sizes of the public keys and
signatures. Between these two size variables, one should not minimize one at the
expense of the other, but rather both variables at the same time.

Fig. 1 plots several signature schemes and their positions in the quarter
plane spanned by the signature size and public key size axes. While ECDSA
enjoys both very short signatures and public keys, it offers zero security against
quantum computers.

In this paper we present a generic transformation that turns MQ signature
schemes — whose public keys are huge and whose signatures are small — into
a new signature scheme with smaller public keys and larger signatures. The
objective is a new signature scheme whose public keys pk and signatures s solve

min
(
|pk|+ |s|

)
. (1)
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Fig. 1. Diagram of various digital signature schemes laid out according to signature
and public key size.

It should be noted that it is easy to transform any representative from camp
(2) to one from camp (1) using hash functions. Just replace the public key with
its hash digest, and include the original public key as part of the new signatures.
This näıve transformation does not improve the target quantity. However, as
there is no equivalent reverse transformation, it shows perhaps that camp (2) is
the more fruitful starting point.

Indeed, our transform can be thought of as applying the above näıve trans-
formation and stopping half-way. Instead of including the entire original public
key in the signatures, we include only a small portion of it — but just enough
to keep the verification procedure meaningful. Which portion is to be included,
is decided by the random oracle after being queried with the signature. Lastly,
a small set of Merkle tree paths ending in linearly homomorphic MACs allows
the verifier to verify that the released portion of the original public key matches
the Merkle root, which is the new public key.

It is possible to choose parameters for which our transform generates a new
signature scheme whose security reduces cleanly to that of the underlying MQ
signature scheme. For parameters that lead to even smaller signatures we have
no security proof but we are able to relate forgery to a hard problem called the
Approximate MQ Problem (AMQ), which generalizes the MQ problem to allow
erroneous solutions, as long as the errors live in a consistent small-dimension sub-
space. We offer several arguments supporting the hardness of the AMQ Problem.

2 Preliminaries

Random oracle model. We use a hash function in our construction. For the
purpose of proving security we model it by a random oracle, which is a random
function H : {0, 1}∗ → {0, 1}κ with a fixed output length, typically equal to
the security parameter. If necessary, the random oracle’s output space can be
lifted to any finite set X. We use subscripts to differentiate the random oracles
associated with different output spaces. A security proof relying on the modelling
of hash function as random oracles is said to hold in the random oracle model.
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Signature scheme. A public key signature scheme is defined as a triple of poly-
nomial-time algorithms (KeyGen,Sign,Verify). The probabilistic key generation
algorithm takes the security level κ (in unary notation) and produces a secret and
public key: KeyGen(1κ) = (sk, pk); the signature generation algorithm produces
a signature: s = Sign(sk,m) ∈ {0, 1}∗. The verification algorithm takes the
public key, the message and the signature and decides if the signature is valid:
Verify(pk,m, s) ∈ {0, 1}. The signature scheme is correct if signing a message
with the secret key produces a valid signature under the matching public key:

(sk, pk) = KeyGen(1κ) ⇒ ∀m ∈ {0, 1}∗ .Verify (pk,m,Sign(sk,m)) = 1 .

Security is defined with respect to the Existential Unforgeability under Cho-
sen Message Attack (EUF-CMA) game [12] between the adversary A and the
challenger C, both polynomial-time Turing machines. The challenger generates
a key pair and sends the public key to the adversary. The adversary is al-
lowed to make a polynomial number of queries mi, i ∈ {1, . . . , q}, q ≤ κc for
some c, which the challenger signs using the secret key and sends back: si ←
Sign(sk,mi). At the end of the game, the adversary must produce a pair of val-
ues (m′, s′) where m′ was not queried before: m′ 6∈ {mi}qi=1. The adversary wins
if Verify(pk,m′, s′) = 1. A signature scheme is secure in the EUF-CMA model
if for all quantum polynomial-time adversaries A, the probability of winning is
negligible, i.e., drops faster than any polynomial’s reciprocal:

∀c > 1 .∃N ∈ N .∀κ > N . ∀A .

Pr

[
Verify(pk,m′, s′) = 1
∧m′ 6∈ {mi}qi=1

∣∣∣∣ (sk, pk)← KeyGen(1κ)

({mi, si}q<κ
c

i=1 ,m′, s′)← 〈C(sk),A〉(pk)

]
≤ 1

κc
.

3 Multivariate Quadratic Signature Schemes

Multivariate quadratic (MQ) cryptosystems rely on the cryptographic hardness
of the MQ Problem, which asks to find a satisfying solution x ∈ Fnq to a list of
m multivariate quadratic polynomials P ∈ (Fq[x])m. This problem is NP-hard
as well as empirically hard on average, requiring an exponential running time
for solution by state-of-the-art algorithms whenever m ≈ n. This paper, and all
other MQ-based cryptography, assumes that the MQ Problem is hard.

MQ Problem. Given: a list of m multivariate quadratic polynomials P(x) =
(p1(x), . . . , pm(x))T over a finite field Fq in n variables (x1, . . . , xn)T = x ∈ Fnq .
Find an assignment to x that satisfies p1(x) = . . . = pm(x) = 0. We write MQ
to denote the problem class and MQ[m,n] to make the parameters explicit.

MQ Assumption. Ifm ≈ n, there is no polynomial-time quantum computer
that solves generic instances of MQ[m,n].

The MQ signature schemes considered in this paper have public keys that
contain a trapdoor. The signature verification algorithm consists of evaluating
the public key P in the signature s ∈ Fnq , and checking whether this evaluation

4



results in the hash of the message m ∈ {0, 1}∗ lifted to Fmq : P(s)
?
= H(m). In

order to sign a message, the signer must know a secret decomposition of P into
P = T ◦ F ◦ S where T and S are affine and where F is efficiently invertible1.
Therefore, in addition to the MQ Problem, these signature schemes rely on the
Extended Isomorphism of Polynomials (EIP) Problem, which asks to recover the
factorization T,F , S from P.

S F T

P
public knowledge

private knowledge

signature verification

signature generation

Fig. 2. Schematic representation of multivariate quadratic signature schemes.

The EIP problem is not hard in general. Rather, the central map F re-
quires careful design to resist all known attacks. We recommend relying on the
HFEv− [21] or UOV [14] signature schemes, as these have remained unbroken
for close to two decades. We omit a formal treatment of the EIP problem as
it is not relevant to our transformation and it is assumed to be hard for the
underlying signature scheme anyway.

3.1 Approximate MQ

Unfortunately, not all instances of our construction have a clean reduction to-
wards the underlying MQ signature scheme. Instead, we relate their security to
a new computational problem called the Approximate MQ Problem (AMQ for
short). Roughly speaking, the AMQ Problem is a weaker variant of the MQ
problem where the solution does not have to be exact; rather, the errors have to
live in a subspace of small dimension.

AMQ Problem. Let m,n, v, r ∈ N be integers with r < m and r < v. Given
a list of m multivariate quadratic polynomials P(x) = (p1(x), . . . , pm(x))T over
a finite field Fq in n variables (x1, . . . , xn)T = x ∈ Fnq , and a list of v target
vectors y1, . . . ,yv ∈ Fmq . Find a list of v vectors x1, . . . ,xv ∈ Fnq such that

dim 〈{P(xi)− yi}vi=1〉 ≤ r .

We write AMQ to denote the problem class and write AMQ[m,n, v, r] to make
the parameters explicit.

1 If n > m, which is necessary for MQ signature schemes, any image is likely to
have multiple inverses. By “efficiently invertible” we mean that there is an efficient
algorithm to sample from the inverse set of any given image.
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Obviously, we have MQ[m,n] ≡ AMQ[m,n, v, 0]. Other trivial reductions
include AMQ[m,n, v, r + 1] ≤ AMQ[m,n, v, r]; AMQ[m,n, v, r] ≤ MQ[m,n];
AMQ[m,n, v, r] ≤ AMQ[m+1, n, v, r]; and AMQ[m,n, v, r] ≤ AMQ[m,n, v+1, r].

Unfortunately, we know of no reduction showing that AMQ with r ≥ 1 is
at least as hard as another hard problem. Nevertheless, we argue that it is a
hard problem by detailing three algorithms to solve it, each with an exponential
running time, assuming v � m� r.

Exhaustive search. Modelling P as a random function, we have that a random
choice of xi will lie in a subspace of dimension r with probability 1/q(m−r). The
first r vectors x1, . . . ,xr can be chosen at random and the next v − r vectors
should be chosen such that ∀i ∈ {r+ 1, . . . , v} .P(xi)− yi ∈ 〈{P(xj)− yj}rj=1〉.
This strategy takes about O(qm−r) time.

Grover. A large asymptotical work factor can be saved by running the algo-
rithm on a quantum computer, employing Grover’s algorithm [13] or its general-
ization by the name of amplitude amplification [6]. The probability of P(xi)−yi
lying in a targeted space of dimension r is still 1/q(m−r) but a quantum search
will find one in roughly O(q(m−r)/2) steps.

Algebraic. This strategy attempts to repeatedly find one extra vector xr+i
by running a Gröbner basis algorithm such as F4 [11] or XL [9], or a hybrid ap-
proach [4,5]. Introduce r new indeterminates zj for j ∈ {1, . . . , r} and in addition
to the n variables xr+i. Then require that z1(P(x1)−y1)+ . . .+zr(P(xr)−yr)+
P(xr+i) − yr+i = 0. After applying a linear transformation, this is equivalent
to an instance of the MQ Problem with n variables and m − r equations, i.e.,
AMQ[m,n, v, r] ≤ MQ[m − r, n]. A similar search for x1, . . . ,xv simultaneously
will lead to a cubic system with a number of equations and variables that scale
linearly in v.

It is clear that the AMQ problem gets easier as r approaches min(m, v). The
algorithms above suggest that the complexity of a solution should be exponential
in m− r, assuming v is large enough.

4 Construction

We now describe a transform that turns an MQ signature scheme (ORIGINAL.
KeyGen, ORIGINAL.Sign, ORIGINAL.Verify) into another one (NEW.KeyGen,NEW.
Sign,NEW.Verify) that has a smaller public key but larger signatures. The ob-
jective is to minimize |pk| + |s| (public key size plus signature size) subject to
guaranteeing κ bits of security against attackers. In the following we denote by
P ∈ (Fq[x])m the list of polynomials of the original public key and by pk its
representation as a bit string.

Only transmit a randomly chosen part of public key. New signatures
consist of σ original signatures s1, . . . , sσ along with some information to verify
them. The main idea is that it is not necessary to transmit the entire public key
for this verification. Instead, it suffices to include a small number of randomly
chosen linear combinations of polynomials of P in each signature. So besides the
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σ original signatures, part of the new signature consists of a list of α quadratic
polynomials R(x) : Fnq → Fαq derived from the original public key as R(x) =
tP(x), where t ∈ Fα×mq is a randomly chosen matrix.

At the time of verifying the new signature, P might be unknown. Never-
theless, R(x) is known so it can be used instead to obtain some level of assur-
ance of the signatures’ validity. In particular, if s is a valid signature for docu-
ment d, i.e., P(s) = H1(d), then the same holds after multiplication by t, i.e.,
R(s) = tP(s) = tH1(d). The matrix t is chosen after the σ signatures s1, . . . , sσ
are fixed by passing them through a hash function H2 : {0, 1}∗ → {0, 1}κ whose
output is lifted to the space of α×m matrices: t← H2(d‖s1‖ · · · ‖sσ). This de-
layed choice strategy forces the signer to produce signatures honestly, because
any invalid signature has probability 1/qα of passing this test. This probability
can be made negligible by choosing the parameter α sufficiently large.

Alternatively, one can keep α by increasing the number σ of original signa-
tures s1, . . . , sσ on documents deterministically derived from d as si = Sign(sk, d‖i)
for i ∈ {1, . . . , σ}. The probability that a set of signatures s1, . . . , sσ all satisfy
R(si) = tH1(d||i) for a randomly chosen t is then 1/qαD, where D ≤ σ is the
dimension of the subspace spanned by the errors P(si)− H(d||i). We then have
to rely on the hardness of the AMQ problem, because it should be infeasible to
forge the signatures s1, · · · , sσ such that D is small.

Assure the validity of R(x). Using R(x) instead of P(x) introduces a new
attack strategy: to forge signatures for a polynomial system R(x) that is not at
all related to P(x). To block this attack, we need to add some information to
the signature such that the verifier can check that R(x) = tP(x). An obvious
way to do this is committing to P(x) in the public key and revealing it in the
signature, but this would lead to a huge signature and defeat the purpose of our
construction. Instead, we compute MAC (message authentication code) polyno-
mials to authenticate R(x).

Fix any ordering of monomials and consider the list of N = n(n + 1)/2 +
n + 1 coefficients of pi(x), the ith polynomial of the original public key. Group
these elements into dN/ke adjacent tuples of k elements each, padding with
zeros if necessary. Interpret these k-tuples as coefficients in Fqk of a polynomial

p̂i(z) ∈ Fqk [z]. Let P̂(z) denote the vector of these MAC polynomials: P̂(z) =

(p̂i(z))
m−1
i=0 . Apply the same operation to the α polynomials of R(x) to obtain

R̂(z) ∈ (Fqk [z])α. The following diagram commutes:

P(x) P̂(z)
MAC

tP(x) tP̂(z)
MAC

t t
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In other words, we have that MAC(tP(x)) = tMAC(P(x)). The public key
represents a commitment to the evaluation of P̂(z) in a large number τ of points
r ∈ Z ⊂ Fqk . A signature reveals the evaluation of P̂ in a small number ϑ of
randomly chosen points r ∈ O ⊂ Z, and the verifier can check for all r ∈ O
whether R̂(r) = tP̂(r). Since R̂(z)− tP̂(z) are α polynomials of degree at most
dN/ke − 1 there are at most dN/ke − 1 values of r ∈ Fqk for which this equality

holds when R̂(z) 6= tP̂(z). Therefore, if the equality holds for enough randomly
chosen values r ∈ O, this assures the verifier that R(x) = tP(x). Exactly which
evaluations are revealed is determined by the hash value of d‖s1‖ · · · ‖sσ‖R(x),
i.e., O = H3(d‖s1‖ · · · ‖sσ‖R(x)). For an incorrectR(x) at most dN/ke−1 values
of r ∈ Fqk can satisfy R̂(r) = tP̂(r). Therefore the probability that an incorrect

R(x) passes the tests is bounded above by
(
dN/ke−1

τ

)ϑ
. The parameters τ and

ϑ have to be chosen so that this probability is negligible.
To save space, put the τ = #Z evaluations of P̂(z) as leaves into a Merkle

tree. The public key is the root of this Merkle tree: it commits to all evaluations
of P̂(z). Revealing a single evaluation of P̂(z) requires (log2τ) − 2 hash values
to trace and verify the path from the given point to the root.

Fig. 3. Merkle tree with one opened path. The length of the path is logarithmic in the
number of leafs.

We do not cover the exact implementation of the Merkle tree and instead
invoke the following procedures abstractly. Merkle.generate tree takes a list of
2k (for some k ∈ N) objects and generates the entire Merkle tree from them,
returning the tree as its output. Merkle.root takes the tree and outputs its root
node. Merkle.open path takes the tree and leaf node and outputs that leaf along
with all hashes needed to merge branches and travel to the root. Merkle.verify
takes a root node and a path and verifies that both belong to the same tree.

While our transformation borrows the Merkle tree construction from hash-
based signature schemes, we would like to stress that this is for compression
only. In particular, reusing the same Merkle path for different signature poses
no security threat as the transformed signature scheme is still stateless.

4.1 Summary

Figures 4, 5, 6 present pseudocode for the new key generation, signature gener-
ation, and signature verification algorithms. Aside from the standard parameter
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names for MQ cryptosystems, we also rely on the following parameters or short-
hand forms:

N — number of columns of the Macaulay matrix of P, equal to n(n+ 3)/2 + 1.
σ — number of original signatures to include in the new signature;
α — number of polynomials to include in the new signature;
τ — number of MAC values; must be a power of two and τ ≥ N must hold;
k — degree of the extension field Fqk such that #Fqk ≥ τ ;
ϑ — number of Merkle paths to open; ϑ must be greater than 1;
Z — A subset of Fqk that contains τ elements.

algorithm NEW.KeyGen
input: 1κ — the security parameter in unary representation
output: sk′ — new secret key

pk′ – new public key

1: (pk, sk)← ORIGINAL.KeyGen(1κ)
2: for i from 0 to m− 1 do: . obtain MAC polynomials P̂(z)
3: for j from 0 to dN/ke − 1 do:
4: cj ← cast coeffs(pi(x))[jk : (j + 1)k − 1] to Fqk
5: end
6: pi(z)←

∑dN/ke−1
j=0 cjz

j

7: end
8: P̂(z)← (p̂i(z))

m−1
i=0

9: mt← Merkle.generate tree({P̂(r)}r∈Z) . evaluate P̂(z) in Z and Merkleize
10: pk′ ← Merkle.root(mt)
11: sk′ ← (sk,P(x),mt)

Fig. 4. New key generation algorithm.

5 Security

Security of the construction for large enough α is shown through a sequence of
games reduction [26], going from an adversary winning the EUF-CMA game of
the new scheme to one that wins the same game but associated with the original
MQ signature scheme. Our reduction works in two steps. The intermediate game
is also an EUF-CMA game but against a hybrid scheme defined as follows:

– HYBRID.KeyGen is identical to ORIGINAL.KeyGen. No MACs are generated.
– HYBRID.Sign retains steps 1–6 from NEW.Sign and drops the opened paths

from the signature in step 12.
– HYBRID.Verify retains steps 1–8 from NEW.Verify and instead of verifying

the MAC (steps 9–19) verifies that R(x) = tTP(x) because the public key
P(x) is now known and there is no longer any need to rely on the MACs.

9



algorithm NEW.Sign
input: sk′ — secret key

d ∈ {0, 1}∗ — document to be signed
output: s′ — signature for d

1: sk,P(x),mt← sk′

2: for i from 1 to σ do: . generate σ original signatures
3: si ← ORIGINAL.Sign(sk, d‖i)
4: end
5: t← H2(d‖s1‖ · · · ‖sσ)
6: R(x)← tTP(x) . get verification polynomials R(x)
7: O ← H3(d||s1|| · · · ||sσ||R(x)) such that O ⊂ Z and #O = ϑ
8: open paths← empty list
9: for r in O do: . open indicated Merkle paths for MACs

10: open paths.append(Merkle.open path(mt, P̂(r)))
11: end
12: s′ ← (s1, . . . , sσ,R(x), open paths)

Fig. 5. New signature generation algorithm.

Theorem 1. If there is an adversary A against EUF-CMA-NEW in time T with
Q random oracle queries and with success probability ε, then there is an adversary
BA that wins EUF-CMA-HYB in time O(T ) and with success probability at least

ε− (Q+ 1)
(
dN/ke−1

τ

)ϑ
− 2τ(Q+ 1)/2κ.

Theorem 2. If there is an adversary A against EUF-CMA-HYB in time T with
Q random oracle queries and with success probability ε then there exists an adver-
sary BA against EUF-CMA-ORIGINAL in time O(T ) with success probability

at least ε− (Q+ 1)
(

1
q

)α
.

Due to the space constraint, we defer the proofs to Appendix A. In both
cases the simulated algorithm has unbridled access to the real random oracle;
the simulator does not measure nor compute on queries or responses. The set
of challenge-response pairs of the random oracle is random but fixed before the
protocol starts. While the simulator algorithm works in the quantum random
oracle model, the proof of the lower bound on the success probability models the
queries as classical messages and therefore only holds in the classical random
oracle model. Nevertheless, we believe that the success probability can still be
proven to be significant in the quantum random oracle model.

Theorems 1 and 2 give a tight reduction of EUF-CMA-NEW to EUF-CMA-
ORIGINAL if we select parameters such that ((dN/ke − 1)/τ)ϑ < 2−κ and
q−α < 2−κ and the resulting scheme will be provably as secure as the underlying
MQ signature scheme. If we choose α to be smaller and compensate with a larger
σ then the conditions on τ and ϑ are identical but Thm. 2 fails to produce a
winning adversary. Instead we must rely on the hardness of AMQ for small r.
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algorithm NEW.Verify
input: pk′ — public key

d ∈ {0, 1}∗ — document
s′ — signature on document

output: True or False

1: s1, . . . , sσ,R(x), open paths← s′

2: t← H2(d‖s1‖ . . . ‖sσ)
3: for i from 1 to σ do: . verify original signatures against R(x)
4: si ← cast si toFnq
5: if R(si) 6= tH1(d‖i)
6: return False
7: end
8: end
9: for j from 1 to α do: . obtain MAC polynomials R̂(z)

10: for i from 0 to dN/ke − 1 do:
11: ai ← cast coeffs(rj(x))[ik : (i+ 1)k − 1] to Fqk
12: end
13: r̂j(z)←

∑dN/ke−1
i=0 aiz

i

14: end
15: R̂(z)← (r̂j(z))

α
j=1

16: O ← H3(d||s1|| · · · ||sσ||R(x)) such that O ⊂ Z and #O = ϑ
17: for i from 1 to #O do: . validate R̂(z) against opened Merkle paths
18: P̂(r),mp← open paths[i]
19: if Merkle.verify(pk′,mp) = False or R̂(O[i]) 6= tTP̂(r)
20: return False
21: end
22: end
23: return True

Fig. 6. New signature verification algorithm.

If the adversary wishes to produce a forgery then he must query H2 on
d‖s1‖ · · · ‖sσ and obtain a suitable t ∈ Fα×mq , where suitable means ∀j . tP(sj) =
tH1(d‖j) even though, potentially, ∃j .P(sj) 6= H1(d‖j). The probability of ob-
taining a suitable t is q−αr, where r = dim〈{. . . ,P(sj)−H1(d‖j), . . .}〉. So if the
adversary can generate small-dimension AMQ solutions, then he can generate
forgeries.

We have tried to find a formal reduction-based proof showing that the hard-
ness of AMQ (for small r) is sufficient in addition to necessary. However, this task
seems very non-trivial. Therefore, we leave the exact security of this parameter
choice as an open problem.
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6 Discussion

The public key contains only the Merkle root, and hence |pk| = κ. By contrast,
a signature contains σ original-scheme signatures s1, . . . , sσ; α quadratic poly-
nomials R(x); and ϑ Merkle paths of depth log2τ ending in an element of Fmqk .

Consequently, |s| = (σn+ αN + ϑmk)dlog2qe+ ϑ(log2 τ − 2)κ.
Two constraints should be satisfied in order to guarantee at least κ bits of

security. First, the MAC should be unforgeable:
(
dN/ke−1

τ

)ϑ
≤ 2−κ. A larger τ is

slower but generates smaller signatures. Second, forging approximate signatures
should be hard. The case σ = 1 requires that α ≥ d κ

log2 q
e and is provably secure.

In contrast, smaller α does not lead to a concrete security estimate even if the
AMQ Problem is hard. In this case we need at least ασ ≥ d κ

log2 q
e to be safe

against a trivial brute force attack. Table 1 presents several viable parameter
choices and compares the schemes before and after transformation.

In the case of UOV, our technique is perfectly compatible with the compres-
sion technique of Petzoldt et al. [22], where the first v(v + 1)/2 + ov columns
of the Macaulay matrix are generated from a pseudorandom generator and a
short seed. The same number of coefficients can be dropped from R(x), and the
smaller degree of R̂(z) requires fewer opened Merkle paths. This combination
shrinks signatures even more while only increasing the public key by κ bits.

Table 1. Comparison of public key and signature size of HFEv− and UOV (with com-
pression) before and after applying our transformation. The recommended parameters
were drawn from the Gui signature scheme [21] and Petzoldt’s dissertation [20]. In all
cases, τ = 220.

scheme parameters sec. lvl. |pk| |s|
original HFEv− q = 2, n = 98,m = 90 80 56.8 kB 98 bits
transformed α = 1, σ = 80, k = 21, ϑ = 7 ? 80 bits 4.4 kB

original HFEv− q = 2, n = 133,m = 123 120 139.2 kB 123 bits
transformed α = 1, σ = 120, k = 21, ϑ = 11 ? 120 bits 9.4 kB

UOVrand q = 256, n = 135,m = 45 128 45.5 kB 1080
transformed α = 16, σ = 1, k = 3, ϑ = 12 128 256 bits 21.3 kB

UOVrand q = 256, n = 210,m = 70 192 169.9 kB 1 680 bits
transformed α = 24, σ = 1, k = 3, ϑ = 19 192 384 bits 70.4 kB

UOVrand q = 256, n = 285,m = 95 256 423.0 kB 2 280 bits
transformed α = 32, σ = 1, k = 3, ϑ = 28 256 512 bits 166.3 kB

The shrinkage is the most striking for σ > 1, in which case α can be small.
However, this requires the AMQ Problem to be hard and offers no provable secu-
rity. There is another possibility: security takes no hit when α is kept reasonably
small and we choose a larger q instead. Unfortunately, not all MQ signature
schemes can be adapted as-is to a larger field.

We close with a note on the flexibility of our construction. As we presented the
transform, the entire public key is replaced by a single Merkle root. However,
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some applications prefer to minimize the signature size while having a fixed
and insufficient allowance for the public key. In this scenario, one can apply
the Merkle tree MAC construction to only the second half of the public key’s
Macaulay matrix, and present the other half with the Merkle root as the new
public key. Similarly, it is somewhat redundant to reduce the public key to a
single Merkle root if both its children are released in nearly every signature. It is
better to compute 2δ separate trees of height log2τ − δ and shrink the signatures
a little by tracing a shorter path for each MAC, at the expense of a factor-2δ

larger public key.
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adversary BA that wins EUF-CMA-HYB in time O(T ) and success probability

at least ε− (Q+ 1)
(
dN/ke−1

τ

)ϑ
− 2τ(Q+ 1)/2κ.

Proof. Firstly, we describe how the adversary BA plays the EUF-CMA-HYB
game. We denote by C the challenger for the EUF-CMA-HYB game. The EUF-
CMA-HYB game begins when our adversary BA receives the public key pk =
P(x) from the challenger C. Upon receiving this message, the hybrid adversary
BA runs steps 5–12 of NEW.KeyGen to produce a new public key pk′ and Merkle
tree mt. The public key pk′ is sent to the EUF-CMA-NEW adversary A.

Whenever A requests a message di ∈ {0, 1}∗ be signed, BA requests C to sign
the message di. Then, C responds with the signature si = (s1, . . . , sσ,R(x)). At
this point AB runs steps 7–12 of NEW.Sign to compute O and open the associ-
ated Merkle paths necessary to complete the signature, which he then sends to
A. After making some message-queries, A terminates his end of the protocol by
producing a message-signature pair (d, s). The adversary BA simply drops the
Merkle paths from the signature s to get a signature s′ for the hybrid signature
scheme and sends the message-signature (d, s′) on to the challenger C.

It is clear that BA runs with overhead linear in the number of signing queries
done by A, so the overhead is O(T ). We show that BA wins the EUF-CMA-HYB

game with probability at least ε− (Q+ 1)
(
dN/ke−1

τ

)ϑ
− 2τ(Q+ 1)/2κ, where Q

is the number of random oracle queries made by A.

Our adversary BA wins the EUF-CMA-HYB game if the message-signature
pair (d, s′) it outputs is a valid signature for the hybrid signature scheme and
if BA has not queried C to sign d before. This is the case if the message-
signature pair (d, s) output by A wins the EUF-CMA-NEW game and the poly-
nomial map included in s is correct, meaning that if s = (s1, · · · , sσ,R(x)) and
t = H2(d‖s1‖ · · · ‖sσ), then R(x) = tP(x).

By assumption the first event occurs with probability ε. We finish the proof
by showing that that the probability that the first event occurs, but the second

event fails is bounded by 2τ(Q+ 1)/2κ + (Q+ 1)
(
dN/ke−1

τ

)ϑ
.

Assume the message-signature pair (d, s) that is output by A wins the EUF-
CMA-NEW game. First consider the case where for one of the r ∈ O the leaf
of the merkle paths corresponding to r in s is not equal to P̂(r). Since s is a
valid signature for the new signature scheme this means that A has forged a
valid merkle path that ends in the merkle root. This requires finding a second
preimage to one of the 2τ − 1 values in the Merkle tree. The probability that
any algorithm does that is bounded by 2τ(Q+ 1)/2κ, so in the rest of the proof
we can assume that all the leaves included in the signature are valid.
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Without loss of generality we can assume that A only outputs a message-
signature pair (d, s) with s = (s1, · · · , sσ,R(x), open paths) after having queried
the random oracle H3 for its value at d‖s1‖ · · · ‖sσ‖R(x). Indeed, if this is not
the case A can be transformed into an adversary that does this at the cost of

only one extra random oracle query. Let d(i)‖s(i)1 ‖ · · · ‖s
(i)
1 ‖R(i) for i running

from 1 to Q + 1 be all the values of this form that A has queried H3 for. Then
A can only output a message-signature pair which is a valid pair and such that
R(x) 6= tP(x) if this is true for one of the message pairs (d(i), s(i)). But for any
message-signature pair (d, s) the probability that for a randomly chosen elements
r ∈ Z we have that R̂(r) = tP̂(r) is either 1 in the case that R(x) = tP(x),

or bounded by
(
dN/ke−1

τ

)
otherwise. This is so because if R(x) 6= tP(x), then

R̂(z) 6= tP̂(z), so the list of polynomials R̂(z) − tP̂(z) contains at least one
nonzero polynomial of degree at most dN/ke − 1, so it has at most dN/ke − 1
zeros in Z. The probability that a zero is chosen randomly from Z is therefore

at most
(
dN/ke−1

τ

)
.

Since ϑ elements of Z are chosen randomly and independently by the random
oracle H3 the probability that a message-signature pair (d, s) for which R(x) 6=

tP(x) is valid for the new signature scheme is at most
(
dN/ke−1

τ

)ϑ
. The union

bound implies that the probability that for any 1 ≤ i ≤ Q + 1 the message-
signature pair (d(i), s(i)) is valid and R(i)(x) 6= t(i)P(x) is bounded by (Q +

1)
(
dN/ke−1

τ

)ϑ
. The probability that A outputs such a signature pair is also

bounded by this probability. ut

A.2 Proof of Theorem 2

Theorem 2. If there is an adversary A against EUF-CMA-HYB in time T
with Q random oracle queries and with success probability ε then there exists
an adversary BA against EUF-CMA-ORIGINAL in time O(T ) with success

probability at least ε− (Q+ 1)
(

1
q

)α
.

Proof. Firstly, we describe how the adversaryBA plays the EUF-CMA-ORIGINAL
game. We denote by C the challenger for the EUF-CMA-ORIGINAL game. The
EUF-CMA-ORIGINAL game begins when the challenger C sends the public key
pk = P(x) to BA. This is also the public key under the hybrid scheme, so BA

sends it to the adversary A to initiate the EUF-CMA-HYB game.

Whenever the adversary A requests a message di ∈ {0, 1}∗ be signed, BA re-
quests C to sign the messages di‖1, . . . , di‖σ. Then, C responds with signatures

s
(1)
i , . . . , s

(σ)
i . Using this set of σ original scheme signatures, the BA runs steps

5 and 6 of NEW.Sign to compute R(x). He then sends si = (s
(1)
i , . . . , s

(σ)
i ,R(x))

to A.
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After making some message queries A terminates the protocol by producing
a pair (d, s). Let s = (s1, · · · , sσ,R(x)), then BA sends the message-signature
pair (d‖1, s1) to C. (Any one of the pairs (d‖i, si) would do the job.)

It is clear that BA runs with overhead linear in the number of signing queries
done by A, so the overhead is O(T ). We show that BA wins the EUF-CMA-
ORIGINAL game with probability at least ε − (Q + 1)q−α, where Q is the
number of random oracle queries made by A.

Our adversary BA wins the EUF-CMA-HYB game if the message-signature
pair (d, s′) it outputs is a valid signature for the hybrid signature scheme and if
BA has not queried C to sign d before. This is the case if the message-signature
pair (d, s) outputted by A wins the EUF-CMA-HYB game and P(s1) = H1(d||1).

By assumption the first event occurs with probability ε. We finish the proof
by showing that that the probability that the first event occurs, but the second
event fails is bounded by (Q+ 1)q−α.

Without loss of generality we can assume that A only outputs a message-
signature pair (d, s) with s = (s1, · · · , sσ,R(x)) after having queried the random
oracle H2 for its value at d‖s1‖ · · · ‖sσ. Indeed, if this is not the case A can be
transformed into an adversary that does this at the cost of only one extra ran-

dom oracle query. Let d(i)‖s(i)1 ‖ · · · ‖s
(i)
1 for i running from 1 to (Q+1) be all the

values of this form that A has queried H2 for. Then A can only output a message-
signature pair which is valid and such that P(s1) 6= H1(d‖1) if this is true for
one of the message pairs (d(i), s(i)). But, for any message-signature pair (d, s)
the probability that for a random t ∈ Fα×mq we have that tP(s1) = tH1(d‖1)
is either 1 in the case that P(s1) = H1(d‖1), or q−α otherwise. This is so be-
cause if P(s1) 6= H1(d‖1), then P(s1)− H1(d‖1) is a nonzero vector in Fmq . The
probability that a nonzero vector is in the kernel of a randomly chosen matrix
t ∈ Fα×mq is exactly q−α.

Since t is chosen randomly by the random oracle H2 the probability that
a message-signature pair (d, s) for which P(s1) 6= H1(d‖1) is valid for the new
signature scheme is q−α. The union bound implies that the probability that for
any 1 ≤ i ≤ Q + 1 the message-signature pair (d(i), s(i)) is valid and P(s1) 6=
H1(d‖1) is bounded by (Q + 1)q−α. The probability that A outputs such a
signature pair is also bounded by this probability. ut
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