
Evaluating Bernstein-Rabin-Winograd Polynomials

Debrup Chakraborty Sebati Ghosh Palash Sarkar
Indian Statistical Institute

203, B.T.Road, Kolkata, India - 700108.
{debrup,sebati r,palash}@isical.ac.in

April 13, 2017

Abstract

We describe a non-recursive algorithm which can efficiently evaluate Bernstein-Rabin-Winograd
polynomials with variable number of blocks.
Keywords: universal hash function, BRW polynomials.

1 Introduction

In [1], Bernstein built upon a previous work due to Rabin and Winograd [4] to propose a family of
polynomials which have been called the BRW polynomials in [5]. A BRW polynomial is constructed
from m ≥ 0 field elements. For m ≥ 3, a BRW polynomial constructed from m field elements can
be evaluated using bm/2c field multiplications and blgmc squarings. The importance of such
polynomials for constructing hash functions with low collision and differential probabilities has
been discussed in [1]. Hardware implementation of BRW polynomials has been reported in [3] and
a recent work [2] reports the software implementation of BRW polynomials for m = 31.

The definition of BRW polynomials is recursive. This makes it difficult to have a software
implementation of BRW polynomials where m can vary. To the best of our knowledge, no prior
work has reported any algorithm for evaluating BRW polynomials with variable m. In this work,
we describe an efficient algorithm for this task.

2 BRW Polynomials

Let F be a finite field. For m ≥ 0, BRWτ (M1,M2, · · · ,Mm) with M1, . . . ,Mm ∈ F is a polynomial
in the variable τ and is defined as follows:

• BRWτ () = 0;
• BRWτ (M1) = M1;
• BRWτ (M1,M2) = M1τ +M2;
• BRWτ (M1,M2,M3) = (τ +M1)(τ

2 +M2) +M3;
• BRWτ (M1,M2, · · · ,Mm)

= BRWτ (M1, · · · ,Mt−1)(τ
t +Mt) + BRWτ (Mt+1, · · · ,Mm);

if t ∈ {4, 8, 16, 32, · · · } and t ≤ m < 2t.

1



3 Algorithm

The following data structures and variables are used in the algorithm.

isDef[0, . . .]: a bit array;
res[0, . . .]: an array where partial results are stored;

keyPow[0, . . .]: the j-th location stores τ2
j
;

`: current length of both isDef and res.

The interpretation of the two arrays is as follows: for 1 ≤ j ≤ `, isDef[j] = 1 if and only if res[j]
holds a valid partial result. When i blocks (field elements) have been processed, the value of ` is
blg ic.

The following external functions are used.

polyMult(A,B): returns the product of the polynomials A and B without reduction;
reduce(A): reduces the polynomial A;
getBlks(k): returns (M1, . . . ,Mk, t);
EOF: returns true if there are no more blocks left and false otherwise.

For the output (M1, . . . ,Mk, t) returned by getBlks(k), 1 ≤ t ≤ k and blocks M1, . . . ,Mt are the
next t blocks from the buffer; if t < k, then Mt+1, . . . ,Mk are not defined.

The algorithm for computing variable length BRW polynomials is the following. The algorithm
assumes that there is at least one block.

Algorithm A(τ,M1,M2, . . .)
1. i← 1; `← 1; keyPow[0] = τ ; keyPow[1] = τ2;
2. while not EOF do
3. (Mi,Mi+1,Mi+2,Mi+3, t)← getBlks(4);
4. if t = 4 then
5. res[0]← polyMult(Mi + keyPow[0],Mi+1 + keyPow[1]) +Mi+2;
6. j ← 1; tmp← res[0];
7. while (j < ` and isDef[j] = 1) do tmp← tmp + res[j]; j ← j + 1; end do;
8. if j = ` then `← `+ 1; keyPow[`]← keyPow[`− 1]2; end if;
9. res[j]← polyMult(reduce(tmp),Mi+3 + keyPow[j + 1]);
10. isDef[j]← 1;
11. for k = 0 to j − 1 do isDef[k]← 0; end do;
12. else
13. if t = 1 then res[0]←Mi;
14. if t = 2 then res[0]← polyMult(Mi, keyPow[0]) +Mi+1;
15. if t = 3 then res[0]← polyMult(Mi + keyPow[0],Mi+1 + keyPow[1]) +Mi+2;
16. isDef[0]← 1;
17. end if;
18. i← i+ t;
19. end do;
20. tmp← 0;
21. for j = 0 to `− 1 do
22. if isDef[j] = 1 then tmp← tmp + res[j]; end if;
23. end do;
24. return reduce(tmp).

2



The array isDef can be implemented using a b-bit unsigned integer: the value of the j-th can be
obtained as (isDef � j) and 1) (required in Steps 7 and 22); the value of the j-th bit can be set to
one using isDef ← (isDef or (1 � j)) (required in Steps 10 and 16); the j least significant bits of
isDef can be set to 0 using isDef ← (isDef and (1b � j)) (required in Step 11).

4 Modification of the Algorithm: Number of Blocks is Known

If the number of blocks m is known, then Algorithm A can be simplified to improve the efficiency.
For this algorithm, we assume that getBlks(4) returns exactly 4 blocks.

Algorithm B(τ,M1, . . . ,Mm), m ≥ 1
1. keyPow[0] = τ ;
2. if m > 2 then
3. for j = 1 to blgmc do keyPow[j] = keyPow[j − 1]2; end do;
4. end if;
5. isDef[0] = 0;
6. if m ≥ 4 then
7. for j = 1 to blgmc − 1 do isDef[j] = 0; end do;
8. end if;
9. for i = 1 to bm/4c do
10. (M4i−3,M4i−2,M4i−1,M4i)← getBlks(4);
11. res[0]← polyMult(M4i−3 + keyPow[0],M4i−2 + keyPow[1]) +M4i−1;
12. j ← 1; tmp← res[0];
13. while (isDef[j] = 1) do tmp← tmp + res[j]; j ← j + 1; end do;
14. res[j]← polyMult(reduce(tmp),M4i + keyPow[j + 1]);
15. isDef[j]← 1;
16. for k = 0 to j − 1 do isDef[k]← 0; end do;
17. end do;
18. if m mod 4 = 1 then res[0]←Mm; end if;
19. if m mod 4 = 2 then res[0]← polyMult(Mm−1, keyPow[0]) +Mm; end if;
20. if m mod 4 = 3 then res[0]← polyMult(Mm−2 + keyPow[0],Mm−1 + keyPow[1]) +Mm; end if;
21. if m mod 4 6= 0 then isDef[0]← 1; end if;
22. tmp← 0;
23. for j = 0 to blgmc − 1 do
24. if isDef[j] = 1 then tmp← tmp + res[j]; end if;
25. end do;
26. return reduce(tmp).

5 Modification of the Algorithm: Loop Unrolling

In Algorithm B, the main loop first computes polyMult(M4i−3 + keyPow[0],M4i−2 + keyPow[1]) +
M4i−1 and then merges it with an appropriate segment of previously computed partial result. Note
that polyMult(M4i−3 + keyPow[0],M4i−2 + keyPow[1]) + M4i−1 is essentially the computation of
BRWτ (M4i−3,M4i−2,M4i−1) with the only difference that the final result is not reduced.

Let t ≥ 2 and suppose that the main loop processes 2t blocks at a time in the following manner.
First BRWτ (M2t·i−(2t−1),M2t·i−(2t−2), . . . ,M2t·i−1) is computed without reducing the final result.

3



Next, this is appropriately merged with previously computed partial results. In Algorithm B we
have t = 2. Allowing t to be greater than 2 essentially means an unrolling of the loop. To be able
to do this, we introduce a modification of BRW where the final reduction is not applied.

• unreducedBRWτ () = 0;
• unreducedBRWτ (M1) = M1;
• unreducedBRWτ (M1,M2) = polyMult(M1, τ) +M2;
• unreducedBRWτ (M1,M2,M3) = polyMult((τ +M1), (τ

2 +M2)) +M3;
• unreducedBRWτ (M1,M2, · · · ,Mm)

= polyMult(BRWτ (M1, · · · ,Mt−1), (τ
t +Mt)) + unreducedBRWτ (Mt+1, · · · ,Mm);

if t ∈ {4, 8, 16, 32, · · · } and t ≤ m < 2t.

The modified algorithm with loop unrolling can now be described as follows.

Algorithm C(τ,M1, . . . ,Mm, t), m ≥ 1, t ≥ 2
1. keyPow[0] = τ ;
2. if m > 2 then
3. for j = 1 to blgmc do keyPow[j] = keyPow[j − 1]2; end do;
4. end if;
5. isDef[0] = 0;
6. if m ≥ 2t then
7. for j = 1 to blgmc − t+ 1 do isDef[j] = 0; end do;
8. end if;
9. for i = 1 to bm/2tc do
10. (M2t·i−(2t−1), . . . ,M2t·i)← getBlks(2t);
11. res[0]← unreducedBRWτ (M2t·i−(2t−1), . . . ,M2t·i−1);

12. j ← 1; tmp← res[0];
13. while (isDef[j] = 1) do tmp← tmp + res[j]; j ← j + 1; end do;
14. res[j]← polyMult(reduce(tmp),M2t·i + keyPow[j + t− 1]);
15. isDef[j]← 1;
16. for k = 0 to j − 1 do isDef[k]← 0; end do;
17. end do;
18. r = m mod 2t;
19. if r > 0 then tmp← unreducedBRWτ (Mm−r+1, . . . ,Mm);
20. else tmp← 0;
21. end if;
22. for j = 1 to blgmc − t+ 1 do
23. if isDef[j] = 1 then tmp← tmp + res[j]; end if;
24. end do;
25. return reduce(tmp).

6 Timing Results

We have implemented Algorithm-C in Intel intrinsics for n = 128 and t = 2, 3, 4 and 5. The
corresponding timing results that were obtained are shown in Tables 1 and 2. The column headers
provide the message size in bytes and the entries in the tables are in cycles per byte.

4



Table 1: Indicative timing results on Haswell. The basic field multiplications were implemented
using Karatsuba.

512 1024 4096 8192

t = 2 0.94 0.77 0.60 0.57

t = 3 1.01 0.84 0.68 0.65

t = 4 0.92 0.75 0.58 0.55

t = 5 0.86 0.68 0.51 0.48

Table 2: Indicative timing results on Skylake. The basic field multiplications were implemented
using schoolbook.

512 1024 4096 8192

t = 2 0.72 0.57 0.43 0.40

t = 3 0.82 0.68 0.54 0.51

t = 4 0.71 0.57 0.44 0.41

t = 5 0.68 0.52 0.38 0.34

References

[1] Daniel J. Bernstein. Polynomial evaluation and message authentication, 2007. http://cr.yp.
to/papers.html#pema.

[2] Debrup Chakraborty, Sebati Ghosh, and Palash Sarkar. A fast single-key two-level universal
hash function. IACR Trans. Symmetric Cryptol., 2017(1):106–128, 2017.

[3] Debrup Chakraborty, Cuauhtemoc Mancillas-López, Francisco Rodŕıguez-Henŕıquez, and
Palash Sarkar. Efficient hardware implementations of BRW polynomials and tweakable en-
ciphering schemes. IEEE Trans. Computers, 62(2):279–294, 2013.

[4] Michael O. Rabin and Shmuel Winograd. Fast evaluation of polynomials by rational preparation.
Communications on Pure and Applied Mathematics, 25:433–458, 1972.

[5] Palash Sarkar. Efficient tweakable enciphering schemes from (block-wise) universal hash func-
tions. IEEE Trans. Information Theory, 55(10):4749–4760, 2009.

5


