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Abstract

We devise a novel simulation technique that makes black-box use of the adversary as well as the
distinguisher. Using this technique we construct several round-optimal protocols, many of which
were previously unknown even using non-black-box simulation techniques:

◦ Two-round witness indistinguishable (WI) arguments for NP from different assumptions than
previously known.

◦ Two-round arguments and three-round arguments of knowledge for NP that achieve strong WI,
witness hiding (WH) and distributional weak zero knowledge (WZK) properties in a setting
where the instance is only determined by the prover in the last round of the interaction. The
soundness of these protocols is guaranteed against adaptive provers.

◦ Three-round two-party computation satisfying input-indistinguishable security as well as a
weaker notion of simulation security against malicious adversaries.

◦ Three-round extractable commitments with guaranteed correctness of extraction from polyno-
mial hardness assumptions.

Our three-round protocols can be based on DDH or QR or Nth residuosity and our two-round pro-
tocols require quasi-polynomial hardness of the same assumptions. In particular, prior to this work,
two-round WI arguments for NP were only known based on assumptions such as the existence of trap-
door permutations, hardness assumptions on bilinear maps, or the existence of program obfuscation;
we give the first construction based on (quasi-polynomial) DDH or QR or Nth residuosity.

Our simulation technique bypasses known lower bounds on black-box simulation [Goldreich-
Krawcyzk’96] by using the distinguisher’s output in a meaningful way. We believe that this technique
is likely to find additional applications in the future.
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1 Introduction

The notion of zero-knowledge (ZK) proofs [39] is fundamental to cryptography. Intuitively, zero-
knowledge proofs guarantee that the proof of a statement does not reveal anything beyond the validity
of the statement. This seemingly paradoxical requirement is formalized via the simulation paradigm,
namely, by requiring the existence of an efficient simulator that simulates the view of a malicious verifier,
without access to any witness for the statement.

Over the years, ZK proofs (and arguments) have been integral to the design of numerous crypto-
graphic protocols, most notably general-purpose secure computation [37], as well as specific tasks such
as coin-tossing, equivocal and/or extractable commitments and non-malleable protocols [25]. Even pro-
tocols satisfying weaker notions of ZK such as strong witness indistinguishability and witness hiding
(WH)[29], are typically constructed only via a ZK protocol1. In particular, the round complexity of ZK
determines the round complexity of known constructions for these tasks.

Goldreich and Krawcyzk (GK) [36] established that three round ZK arguments for NP with black-box
simulation do not exist for languages outside BPP. Furthermore, all known non-black-box simulation
techniques [3] require more than three rounds.2 This has acted as a barrier towards achieving round-
efficient protocols for many of the aforementioned tasks. In this work, we investigate the possibility of
overcoming this barrier.

(When) Is ZK Necessary? ZK proofs are typically used to enforce “honest behaviour” for partic-
ipants of a cryptographic protocol. The zero-knowledge property additionally ensures privacy of the
inputs of honest parties. However, many applications of ZK described above do not themselves guar-
antee simulation-based security but only weaker indistinguishability-based security. As such, it is not
immediately clear whether the “full” simulation power of ZK is necessary for such applications.

For example, strong witness indistinguishability requires that for two indistinguishable statement
distributions X1,X2, a proof (or argument) for statement x1 ← X1 must be indistinguishable from a
proof (or argument) for statement x2 ← X2. All known constructions of strong witness indistinguishable
protocols rely on ZK arguments with standard simulation – and therefore end up requiring at least as
many rounds as ZK arguments. Similar issues arise in constructing input-hiding/input-indistinguishable
secure computation, witness hiding arguments and proofs, and extractable (or other sophisticated)
commitment schemes. However, it is unclear whether ZK is actually necessary in these settings.

This raises the question of whether it is possible to devise “weaker” simulation strategies in three
rounds or less that can be used to recover several applications of ZK. In this work, we implement such
a black-box simulation strategy in only two rounds.

Distinguisher-Dependent Simulation. Our starting observation is that for any cryptographic
protocol that only aims to achieve indistinguishability-based security, the security reduction has access
to an efficient distinguisher. In such scenarios, one can hope to argue security via a (weaker) simulation
strategy that potentially makes use of the distinguisher in a non-trivial manner.

The idea of distinguisher-dependent simulation is not new and has previously been studied in the
context of interactive proofs, where it is referred to as weak zero knowledge (WZK) [28]3. Informally,
WZK says that any bit of information that can be learned by the verifier by interacting with the prover
can be simulated given only the instance. As such, WZK suffices for many applications of ZK, and in
particular, implies meaningful weaker notions such as WH and WI [29].

1The work of Bitansky and Paneth [10] constructing 3 round witness-hiding and weak zero-knowledge from variants of
auxiliary-input point obfuscation, is an exception.

2Here we only refer to explicit simulation, and not non-explicit simulation via knowledge assumptions [42, 5].
3Recall that standard ZK requires that for any adversarial verifier, there exists a simulator that can produce a view that

is indistinguishable from the real one to every distinguisher. WZK relaxes this notion by reversing the order of quantifiers,
and allowing the simulator to depend on the distinguisher.
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The immediate question is whether distinguisher-dependent simulation can be realized in three
rounds or less. At first, the answer seems to be negative since the lower bound of GK also extends to
WZK (this was already noted in [10]).

A key insight in our work is that in many applications of ZK proofs, the statement being proven
is chosen by the prover from a (public) distribution. Suppose that the proof system is delayed-input
[49], namely, where the instance and witness are only required for computing the last prover message.
In this case, it is to an honest prover’s advantage to reveal the instance to the verifier only in the last
round. This does not violate correctness due to the delayed input property, but “weakens” a malicious
verifier, and in particular, ensures that a malicious verifier’s messages are independent of the instance.
Interestingly, we observe that the lower bound of GK no longer holds in this case4.

At a high-level, this is because in this setting, a simulator may be able to learn non-trivial information
about the distinguisher’s behavior by observing its output on different samples created using possibly
different instances from the same distribution. This observation is, in fact, not limited to delayed-
input proofs and extends to a large class of important two-party functionalities including coin-tossing,
generating common reference strings and oblivious PRFs.

This observation opens doors to the possibility of constructing proof systems and secure computa-
tion in three rounds or less with meaningful simulation-based and indistinguishability-based security
guarantees.

A New Black-box Simulation Technique. We devise a new distinguisher-dependent black-box
simulation technique that only requires two-rounds of communication. Roughly, we show that a single
bit of information (of whether the proof is accepted or rejected by the distinguisher) can be used to
learn information about the (possibly) malicious verifier and distinguisher, in a bit-by-bit fashion, and
that this information can later be used to efficiently simulate the proof.

We remark that the ability to learn a bit of information based on whether the protocol execution is
accepted or rejected has in the past been viewed as a source of insecurity in cryptographic protocols.
For example, in the delegation of computation schemes of [33, 18], an adversarial prover can successfully
cheat if it is able to observe the verifier’s output over multiple executions. For similar reasons, special
care is taken to prevent “input-dependent aborts” in the design of many secure computation protocols.

In this work, we turn this apparent weakness into a positive by using it to devise a new black-
box simulation strategy. Using this strategy, we obtain several new results on proof systems and
secure computation. Most of our results were previously unknown even using non-black-box simulation
techniques.

Our Setting. In order to prove privacy, we must sometimes restrict ourselves to a setting where the
prover has the flexibility to sample instances and witnesses in the last round of the argument. More
specifically, our simulator will require knowledge of any witnesses that are fixed (implicitly or explicitly)
before the last message is sent; however, it will not require knowledge of witnesses fixed in the last round.

1.1 Our Results

We now proceed to describe our results. We start with our results on interactive proof systems and then
describe their applications to secure two-party computation and extractable commitment schemes. All
of these results rely on our new black-box simulation strategy.

I. Delayed-Input Interactive Proofs. We study two and three round delayed-input interactive
proof systems where the instance to be proven can be chosen by the prover in the last round, and
soundness holds even against adaptive cheating provers who choose the instance depending upon the

4Indeed, the GK proof strategy crucially uses a verifier that chooses its protocol message as a function of the instance.
See Section 1.2 for further discussion.
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verifier’s message. First studied by [49], delayed-input protocols have found numerous applications over
the years in the design of round-efficient cryptographic protocols for a variety of tasks such as secure
computation [48, 31, 45], resettable security [24, 61], non-malleable commitments [59, 20], improved
Σ-protocols [21, 22, 51], and so on.

In the context of establishing various privacy notions, we consider both adaptive verifiers, who
receive the instance at the beginning of the protocol, and hence may choose their message based on this
instance, and non-adaptive verifiers, who receive the instance only in the last round of the protocol, and
hence their message is independent of the instance. As we discuss later, guaranteeing privacy against
non-adaptive verifiers suffices for many natural applications of delayed-input proof systems.

(i). Two Round Argument Systems. Our first contribution is a two-round delayed-input argument
system that achieves witness-indistinguishability (WI) against adaptive verifiers, and strong WI, witness
hiding (WH) and distributional weak zero-knowledge (WZK) against non-adaptive verifiers.

Theorem 1 (Informal). Assuming the existence of two-round oblivious transfer that is secure against
malicious PPT receivers and quasi-polynomial time semi-honest senders, there exists a two-round delayed-
input interactive argument system for NP with adaptive soundness and the following privacy guarantees:

◦ WI against adaptive verifiers.

◦ Strong WI, WH and distributional WZK against non-adaptive verifiers.

Oblivious transfer (OT) protocols as required in the above theorem can be constructed based on
quasi-polynomial hardness of Decisional Diffie-Hellman (DDH) [52] or N ’th Residuosity or Quadratic
Residuosity [46, 44].

Comparison with Prior Work. If we know an a priori super-polynomial bound on the hardness of
the language, then two-round WH can be obtained from two-round ZK with super-polynomial time
simulators (SPS) [54]. However, no constructions of two-round WH or distributional WZK for NP
against non-uniform verifiers were previously known. (We refer the reader to Section 1.3 for a more
thorough discussion.)

WI proofs in two rounds (or less) were previously only known based on either trapdoor permutations5

[27], or the decision linear assumption on bilinear groups [41], or indistinguishability obfuscation [11].
Our result in Theorem 1 substantially adds to the set of standard assumptions that suffice for two-round
WI. We remark that unlike previous protocols, our WI protocol is not publicly verifiable.

Privacy Amplification via Round Compression. We obtain Theorem 1 by “compressing” any Σ-protocol6

[23] into a two-round private-coin argument using OT. Our compiler follows the approach of [1, 47],
except that we use a maliciously secure OT as opposed to a computational PIR [17].

Interestingly, our approach of compressing a Σ-protocol into a two-round argument results in am-
plifying its privacy guarantees. Indeed, standard Σ-protocols are not known to be WZK. Furthermore,
[43, 55] proved that such protocols cannot be proven WH using black-box reductions.

Avoiding NP Reductions. An added benefit of our approach is that given a Σ-protocol for a language
L, we obtain a two-round private-coin argument system with the security guarantees stated in Theorem
1 for the same language L, without using expensive NP reductions. To the best of our knowledge, no
such two-round argument system was previously known.

5Presently, the only known candidates for trapdoor permutations are based on factoring or indistinguishability obfus-
cation [12, 32].

6Very roughly, a Σ-protocol is a three round protocol that is honest verifier zero-knowledge, and has a strong soundness
guarantee. We refer the reader to Definition 1.
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(ii). Three Round Arguments of Knowledge. Our second contribution is a three-round delayed-
input interactive argument of knowledge system that achieves WH and distributional WZK against
non-adaptive verifiers. This protocol uses only polynomial assumptions, but requires an extra round.

Theorem 2 (Informal). Assuming the existence of two-round oblivious transfer (OT) that is secure
against malicious PPT receivers and semi-honest PPT senders, as well as dense cryptosystems, there
exists a three-round interactive argument of knowledge for NP that achieves soundness against adaptive
(unbounded) provers and Strong WI, WH and distributional WZK against non-adaptive PPT verifiers.

Comparison with Prior Work. Three-round ZK arguments are known either based on non-standard
“knowledge assumptions” [42, 5], or against adversaries with bounded non-uniformity [9, 7]. In this
work, we consider security against adversaries with non-uniform advice of arbitrarily large polynomial
length, based on standard cryptographic assumptions. Prior to our work, three-round WH and WZK
arguments for NP were known from non-black-box techniques that rely on auxiliary input point obfus-
cation assumptions [10]. These protocols, unlike ours, guarantee privacy also against adaptive verifiers.
However, some of their underlying assumptions have recently been shown to be implausible [14, 6]. (See
Section 1.3 for a more detailed discussion.)

II. Secure Two-Party Computation. We next study two-party computation against malicious ad-
versaries in the plain model without trusted setup assumptions. In this setting, the state of the art
result is due to Katz and Ostrovsky [48] who constructed a four-round protocol for general functions in
the setting where only one party receives the output. We refer to the output recipient as the receiver
and the other party as the sender.

As an application of our new simulation technique, we obtain two new results on two-party compu-
tation in three rounds. Our first result achieves input-indistinguishable security [50] against malicious
receivers, while our second result achieves distinguisher-dependent simulation security against malicious
receivers. In both of these results, we achieve standard simulation security against malicious senders.
We elaborate on these results below.

(i). Three Round Input-Indistinguishable Computation. The notion of input-indistinguishable
computation (IIC) was introduced by Micali, Pass and Rosen [50] as a weakening of standard simulation-
based security notion for secure computation while still providing meaningful security. (See also [30, 53].)
Roughly, input-indistinguishable security against malicious receivers guarantees7 that for any function
f and a pair of inputs (x1, x2) for the sender, a malicious receiver cannot distinguish whether the
sender’s input is x1 or x2 as long as the receiver’s “implicit input” y in the execution is such that
f(x1, y) = f(x2, y).8

We construct the first three-round IIC protocol for general functions based on polynomial hardness
assumptions. In fact, our protocol achieves standard simulation-based security against malicious senders
and input-indistinguishable security against malicious receivers.

Theorem 3 (Informal). Assuming the existence of two-round oblivious transfer that is secure against
malicious PPT receivers and semi-honest PPT senders, along with dense cryptosystems, there exists a
three-round secure two-party computation protocol for general functions between a sender and a receiver,
where only the receiver obtains the output, with standard simulation security against malicious senders
and input-indistinguishable security against malicious receivers.

(ii). Three Round Two-Party Computation with Distinguisher Dependent Simulation.
We also consider a weak simulation-based security notion for two-party computation that is defined

7Security against malicious senders can be defined analogously.
8The formal security definition of IIC is much more delicate, and we refer the reader to the technical sections for details.
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analogously to distributional WZK by allowing the simulator to depend (non-uniformly) upon the dis-
tinguisher and the distribution over the public input to the adversary. We refer to this as distributional
distinguisher-dependent simulation secure two-party computation. While this generalizes the notion of
distributional WZK, it also implies distinguisher-dependent simulation security for all functionalities
where the honest party’s input can be efficiently sampled (without the need for non-uniform advice)
even if the input of the malicious party and any common input is already fixed.

We show that the same protocol as in Theorem 3 also satisfies distributional distinguisher-dependent
security for all functionalities. In particular, we obtain three round distinguisher-dependent simulation
secure two party computation for inherently distributional functionalities such as coin-tossing, generat-
ing common reference strings and oblivious PRFs.

Theorem 4 (Informal). Assuming the existence of two-round oblivious transfer that is secure against
malicious PPT receivers and semi-honest PPT senders, as well as dense cryptosystems, there exists a
three-round protocol for secure two-party computation for any function between a sender and receiver,
where only the receiver obtains the output, with standard simulation security against a malicious sender
and distributional distinguisher-dependent simulation security against a malicious receiver. This implies
distinguisher-dependent simulation secure two-party computation for any function where the sender’s
input can be efficiently sampled even if the receiver’s input (and any common input) is already fixed.

A Two-round Protocol. We also remark that our three-round two-party computation protocol can be
downgraded to a two-round protocol that achieves distributional distinguisher-dependent simulation
security or input-indistinguishable security against malicious receivers and quasi-polynomial time sim-
ulation security against malicious senders (or polynomial-time simulation security against semi-honest
senders).

Outputs for Both Parties. Theorem 3 and Theorem 4 consider the case where only one party, namely
the receiver, learns the output. As observed in [48], such a protocol can be easily transformed into one
where both parties receive the output by computing a modified functionality that outputs signed values.
Now the output recipient can simply forward the output to the other party who accepts it only if the
signature verifies.

This adds a round of communication, making the protocol four rounds in total. Because we consider
distinguisher-dependent simulation security (or input-indistinguishable security), this bypasses the lower
bound of [48] who proved that coin-tossing cannot be realized with standard simulation-based security
in less than five rounds when both parties receive output.

III. Extractable Commitments. We finally discuss application of our techniques to extractable com-
mitments. A commitment scheme is said to be extractable if there exists a PPT extractor that can
extract the committed value with guaranteed correctness of extraction. In particular, if the commit-
ment is not “well-formed” (i.e., not computed honestly), then the extractor must output ⊥, while if
the commitment is well-formed, then the extractor must output the correct committed value. Ex-
tractable commitments are very useful in the design of advanced cryptographic protocols, in particular,
to facilitate the extraction of the adversary’s input in tasks such as secure computation, non-malleable
commitments, etc.

A standard way to construct extractable commitment schemes is to “compile” a standard commit-
ment scheme with a ZKAoK, namely, by having a committer commit to its value using a standard
commitment and additionally give a ZKAoK to prove knowledge of the decommitment value. The
soundness property of ZKAoK guarantees the well-formedness of commitment, which in turn guar-
antees correctness of extraction of the committed value using the AoK extractor for ZKAoK, while
the ZK property preserves the hiding of the underlying commitment. This approach yields a four
round extractable commitment scheme starting from any four round ZKAoK. However, in the absence
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of three-round ZKAoK, constructing three-round extractable commitments from polynomial hardness
assumptions have so far proven to be elusive.9

The main challenge here is to enforce honest behavior on a malicious committer, while at the same
time guaranteeing privacy for honest committers. Indeed, natural variations of the above approach
(e.g., using weaker notions such as WIPOK that are known in three rounds) seem to only satisfy one
of these two requirements, but not both.

As an application of Theorem 2, we construct the first three-round extractable commitment scheme
based on standard polynomial-time hardness assumptions.

Theorem 5 (Informal). Assuming the existence of two-round oblivious transfer that is secure against
malicious PPT receivers and semi-honest PPT senders, as well as dense cryptosystems, there exists a
three-round extractable commitment scheme.

Roughly, our construction of extractable commitments follows the same approach as described above.
Our main observation is that the hiding property of the extractable commitment can be argued if the
AoK system satisfies a strong WI property (instead of requiring full-fledged ZK).

1.2 Discussion

Non-adaptive Verifiers. Our results on distributional WZK, WH and strong WI are w.r.t. non-
adaptive verifiers who learn the statement in the last round of the protocol. To the best of our knowledge,
privacy against non-adaptive verifiers has not been studied before, and therefore, it is natural to ask
whether it is a meaningful notion of privacy.

We argue that privacy against non-adaptive verifiers is very useful. Our main observation is that in
many applications of delayed-input proof systems, the verifier is already non-adaptive, or can be made
non-adaptive by design. Two concrete examples follow:

◦ We construct a three-round extractable commitment scheme by combining a standard commitment
with a three-round delayed-input strong WIAoK of correctness of the committed value, that
achieves security against non-adaptive verifiers. By sending the commitment in the last round,
we automatically make the verifier non-adaptive.

◦ In secure computation using garbled circuits (GCs) [60], a malicious sender must prove correctness
of its GC. In this case, the instance (i.e., the GC) can simply be sent together with the last prover
message, which automatically makes the verifier non-adaptive. This does not affect the security of
the receiver if the proof system achieves adaptive soundness (which is true for our constructions).
Indeed, our construction uses exactly this approach.

We anticipate that the notion of privacy against non-adaptive verifiers will find more applications in
the future.

Bypassing GK and GO Lower Bounds. We now elaborate on the reasons why we are able to
bypass the lower bounds of [36] and [38]. The black-box impossibility result of [36] for three-round ZK
crucially uses an adaptive verifier. More specifically, they consider a verifier that has a random seed
to a pseudo-random function hard-wired into it, and for any instance and first message sent by the
prover, it uses its PRF seed, to answer honestly with fresh-looking randomness. It is then argued that

9All known constructions of three-round extractable commitments from polynomial-hardness assumptions (such as
[56, 57]) only satisfy a weak extraction property where either the extractor outputs (with non-negligible probability) a
non ⊥ value when the commitment is not well-formed, or it fails to output the correct value when the commitment is
well-formed. It is, however, possible to construct extractable commitments using quasi-polynomial hardness [40] or using
three round zero-knowledge with super-polynomial simulation [54].
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a black-box simulator can be used to break soundness. Very roughly, this is because a cheating prover
can simply run the black-box simulator; if the simulator rewinds the verifier, then the cheating prover
answers it with a random message on behalf of the verifier. This proof also extends to WZK because
any query made by the simulator to the distinguisher can simply be answered with “reject.”

Note, however, that in the non-adaptive setting, the verifier is not allowed to generate different
messages for different instances, and hence the simulator has more power than a cheating prover, since
it can fix the first message of the prover and then test whether the distinguisher accepts or not with
various instances and various third round messages. Indeed, we exploit exactly this fact to design a
distinguisher-dependent simulator for our protocols.

We next explain why we are able to overcome the lower bound of [38] for two-round ZK. A key
argument in the proof of [38] is that no (possibly non-black-box) simulator can simulate the prover’s
message for a false statement (even when the protocol is privately verifiable). For ZK, this is argued
by setting the verifier’s auxiliary input to be an honestly generated first message and providing the
corresponding private randomness to the distinguisher, who is chosen after the simulator. Now, if
the simulator succeeds, then we can break soundness of the protocol. However, in WZK, since the
distinguisher is fixed in advance, the above approach does not work. In particular, if the distinguisher
is given the private randomness then the simulator is given it as well (and hence can simulate), and
otherwise, the simulator can succeed by simulating a rejecting transcript.

1.3 Related Work

Concurrent Work. Concurrent to our work, Badrinarayanan et al. [2] construct protocols that are
similar to our two-round protocols. However their focus is on super-polynomial simulation, whereas
we focus on polynomial time distinguisher-dependent simulation. They also give other instantiations of
two-round OT, which can be combined with our results to obtain two-round delayed-input distributional
weak zero-knowledge from additional assumptions.

Proof Systems. We mention two related works on two-round ZK proofs that overcome the lower
bound of [38] in different ways. A recent work of [19] constructs a two-round (T, t, ε)-ZK proof system
for languages in statistical zero-knowledge, where roughly, (T, t, ε) ZK requires the existence of a sim-
ulator that simulates the view of the verifier for any distinguisher running in time t and distinguishing
probability ε. The running time T of the simulator depends upon t and ε. In another recent work, [9]
construct a two-round ZK argument system against verifiers with auxiliary inputs of a priori bounded
size.

Three-round ZK proofs are known either based on non-standard “knowledge assumptions” [42, 5],
or against adversaries that receive auxiliary inputs of a priori bounded size [9, 7]. In contrast, in this
work, we consider security against adversaries with non-uniform advice of arbitrarily polynomial size,
based on standard cryptographic assumptions.

Finally, we discuss WI, WH and WZK in three rounds. While three round WI is known from injective
one-way functions [29], WH and WZK are non-trivial to realize even in three rounds. In particular, [43]
proved a lower bound for three-round public-coin WH w.r.t. a natural class of black-box reductions.
More recently, [55] extended their result to rule out all black-box reductions. Presently, the only known
constructions of three-round WH and WZK for NP require either “knowledge assumptions” [42, 5], or
rely on the assumption of auxiliary-input point obfuscation (AIPO) and auxiliary-input multi-bit point
obfuscation (AIMPO), respectively, with an additional “recognizability” property [10]. For general
auxiliary inputs, however, AIMPO was recently proven to be impossible w.r.t. general auxiliary inputs
[14], assuming the existence of indistinguishability obfuscation [4]. Further, one of the assumptions used
by [10] to build recognizable AIPO, namely, strong DDH assumption [15], was recently shown to be
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impossible w.r.t. general auxiliary inputs [6], assuming the existence of virtual grey-box obfuscation [8].

Secure Computation. Katz and Ostrovsky [48] constructed a four-round two-party computation
protocol for general functions where only one party receives the output. A recent work of Garg et al.
[31] extends their result to the simultaneous-message model to obtain a four-round protocol where both
parties receive the outputs.

The notion of input-indistinguishable computation (IIC) was introduced by Micali, Pass and Rosen
[50] as a weakening of standard simulation-based security notion for secure computation while still
providing meaningful security. (See also [30, 53].) We provide the first three-round protocol that
provides input-indistinguishable security.

A recent work of Döttling et al. [26] constructs a two-round two-party computation protocol for
oblivious computation of cryptographic functionalities. They consider semi-honest senders and mali-
cious receivers, and prove game-based security against the latter. We remark that our three-round
two-party computation protocol can be easily downgraded to a two-round protocol that achieves weak
simulation security against malicious receivers and super-polynomial time simulation security against
malicious senders (or polynomial-time simulation against semi-honest senders). We note that our re-
sult is incomparable to [26], because we consider a restricted class of distributions (such as product
distributions), albeit any functionality, whereas [26] considers the class of cryptographic functionalities.

1.4 Organization

The rest of this paper is organized as follows. We begin with an overview of our techniques in Section 2.
In Section 3, we describe important relevant preliminaries including Σ-protocols and oblivious transfer.
In Section 4, we recall definitions of adaptive soundness, witness indistinguishability, distributional
weak-ZK and witness hiding against non-adaptive verifiers. In Section 5, we describe our two-round
protocol, which uses any Σ-protocol with a special structure, together with 2-message OT. In the same
section, we describe how to modify our protocol so as to rely on any Σ-protocol, and also show how to
base security on polynomial hardness assumptions at the cost of adding an extra round. Due to lack of
space, we defer additional details of our three round protocols and their applications to the full version
of the paper.

2 Technical Overview

We now give an overview of our main ideas and techniques.

2.1 Argument Systems

We construct a two-round argument system, which we prove is both witness indistinguishable (against
all malicious verifiers), and is distributional ε-weak zero-knowledge (against non-adaptive malicious
verifiers). Our protocol makes use of two components:

◦ Any Σ-protocol consisting of three messages (a, e, z) that is secure against unbounded provers,

◦ Any two-message oblivious transfer protocol, denoted by (OT1,OT2), which is secure against
malicious PPT receivers, and malicious senders running in time at most 2|z|. For receiver input b
and sender input messages (m0,m1), we denote the two messages of the OT protocol as OT1(b)
and OT2(m0,m1). We note that OT2(m0,m1) also depends on the message OT1(b) sent by the
receiver. For the sake of simplicity, we omit this dependence from the notation.
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For simplicity, throughout most of the paper, we assume that the Σ-protocol is a parallel repetition
of Σ-protocols with a single-bit challenge and constant soundness10. Namely, we assume that the
Σ-protocol contains three messages, denoted by (a, e, z) and that these messages can be parsed as
a = (a1, . . . , aκ), e = (e1, . . . , eκ), and z = (z1, . . . , zκ), where for each i ∈ [κ], the triplet (ai, ei, zi) are
messages corresponding to an underlying Σ-protocol with a single-bit challenge (i.e., where ei ∈ {0, 1}).
We denote by f1 and f2 the functions that satisfy ai = f1(x,w; ri) and zi = f2(x,w, ri, ei), for answers
provided by the honest prover, and where ri is uniformly chosen randomness.

We show how to convert any such Σ-protocol into a two-round protocol (P, V ) using OT. Our
transformation is essentially the same as the one suggested by Aeillo et. al. [1], and used by Kalai
and Raz [47], to reduce rounds in interactive protocols, except that we use an OT scheme rather than
a computational PIR scheme (since as opposed to [1, 47] we are not concerned with compressing the
length of the messages). Specifically, given any such Σ-protocol and OT protocol, our two-round protocol
(P, V ), proceeds as follows.

◦ For i ∈ [κ], V picks ei
$←{0, 1}, and sends OT1,i(ei) in parallel. Each ei is encrypted with a fresh

OT instance.

◦ For i ∈ [κ], P computes ai = f1(x,w; ri), z
(0)
i = f2(x,w, ri, 0), z

(1)
i = f2(x,w, ri, 1). The prover P

then sends ai,OT2,i(z
(0)
i , z

(1)
i ) in parallel for all i ∈ [κ].

◦ The verifier V recovers z
(ei)
i from the OT, and accepts if and only if for every i ∈ [κ], the transcript

(ai, ei, z
(ei)
i ) is an accepting transcript of the underlying Σ-protocol.

Soundness. It was proven in [47] that such a transformation from any public-coin interactive proof to
a two-round argument preserves soundness against PPT provers. We extend their proof to show that
the resulting two-round protocol also satisfies adaptive soundness, i.e., is sound against cheating provers
that may adaptively choose some instance x as a function of the verifier message.

To prove soundness, we rely on the following special-soundness property of Σ-protocols: There exists
a polynomial-time algorithm A that given any instance x of some NP language L with witness relation
RL, and a pair of accepting transcripts (a, e, z), (a, e′, z′) for x with the same first prover message, where
e 6= e′, outputs w such that w ∈ RL(x). In particular, this means that for any x 6∈ L, for any fixed
message a, there exists at most one unique value of receiver challenge e, for which there exists z such
that (a, e, z) is an accepting transcript (as otherwise the algorithm A would output a witness w ∈ RL(x),
which is impossible).

Going back to our protocol – suppose a cheating prover, on input the verifier message OT1(e∗),
outputs x∗ 6∈ L, together with messages a∗,OT2(z∗), such that the verifier accepts with non-negligible
probability. Since, for any x∗ 6∈ L and any a∗, there exists at most one unique value of receiver challenge
e, for which there exists a z that causes the verifier to accept – intuitively, this means that a∗ encodes
the receiver challenge e∗.

Thus, for fixed a∗, a reduction can enumerate over all possible values of z (corresponding to all
possible e), and check which single e results in an accepting transcript. Then, this would allow a
reduction to break receiver security of the oblivious transfer. Since such a reduction would require time
at least 2|z|, we need the underlying oblivious transfer to be 2|z|-secure (or, sub-exponentially secure).
If z can be scaled down to be of size poly-logarithmic in the security parameter, we can rely on an
oblivious transfer protocol which is quasi-polynomially secure against malicious receivers.

A New Extraction Technique for Proving Weaker Notions of Zero-Knowledge. We now
proceed to describe our main ideas for proving the privacy guarantees of our protocol. For simplicity,

10We later describe how garbled circuits can be used in order to modify our construction to work with any Σ-protocol.
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consider a single repetition of the protocol outlined above. That is, consider a protocol where the

verifier picks a random bit e
$← {0, 1} and sends r = OT1(e) to the prover. The prover then sends

a,OT2(z(0), z(1)) to the verifier, where (a, z(0), z(1)) are computed similarly as before.
By the security of the underlying OT scheme against malicious receivers (see Definition 2 and

discussion therein), the following holds: For any malicious verifier (i.e. malicious receiver of the OT
scheme) there exists a (possibly inefficient) simulator that interacts with an ideal OT functionality and
is able to simulate the view of the verifier. This means that for any PPT distinguisher DV (that obtains
as input the view of the verifier and additional auxiliary information), its output distribution when the
prover sends (a,OT2(z(0), z(1))) is indistinguishable from one of the following:

◦ Its output distribution when the prover sends (a,OT2(z(0), z(0))) (implicitly corresponding to
receiver choice bit 0).

◦ Its distribution output when the prover sends (a,OT2(z(1), z(1))) (implicitly corresponding to
receiver choice bit 1).

Suppose the message of the verifier, OT1(e) is generated independently of the instance x, and
suppose that the instance x is generated according to some distribution D. Then an extractor E , given
the message OT1(e), can guess e (if the distinguisher “knows” e), up to ε-error in time poly(1/ε), as
follows: The extractor will generate poly(1/ε) many instance-witness pairs (x,w) ∈ RL, where each
x is distributed independently from D (E will have these instance-witness pairs hardwired if they are
hard to sample). Then for each such instance-witness pair the extractor will generate (a, z(0), z(1)),
and will observe the distinguisher’s output corresponding to the prover’s message (a,OT2(z(0), z(0))),
(a,OT2(z(1), z(1))), and (a,OT2(z(0), z(1))). If the distinguisher cannot distinguish between these three
distributions then the extractor outputs ⊥ (indicating that the distinguisher does not know e). If the
extractor outputs ⊥, the distinguisher is (distributionally) insensitive to the prover’s response, so we
can behave as if it was approximated to 0.

However, if the distinguisher can distinguish between (a,OT2(z(0), z(1))) and (a,OT2(z(b), z(b))), then
the distinguisher will guess e = 1−b. In this way, the extractor can approximate (up to ε-error) whether
the implicit receiver choice bit is 0 or 1, while running in time poly(1/ε). This idea forms the basis of
our new extraction technique.

Witness Indistinguishability. Since witness indistinguishability is known to compose under parallel
repetition, it suffices to prove WI for a single repetition of the protocol outlined above. In fact, we will
try to prove something even stronger.

As explained above, there exists a distinguisher-dependent simulator SimDV , that, given a fixed
receiver message r, can try to approximate the verifier’s implicit challenge bit e, by observing the
distinguisher’s output corresponding to various sender messages, up to error ε. Once SimDV has suc-
cessfully extracted the verifier’s challenge, it can use the honest-verifier zero-knowledge simulator of the
underlying Σ-protocol.

Of course, to even begin the extraction process, SimDV needs to observe the output of the distin-
guisher on (a,OT2(z(0), z(1))). However, even computing (a,OT2(z(0), z(1))) correctly, requires access to
a witness! This is because a correctly compute tuple (a, z(0), z(1)) actually encodes a witness.

In the case of witness indistinguishability, this is not a problem – since an “intermediate” simulator
for witness indistinguishability has access to both witnesses in question, and therefore can generate
valid messages (a,OT2(z0, z1)) using both witnesses. It can use these transcripts to learn the verifier’s
challenge bit, and then use the bit it learned, to generate a simulated transcript for the same receiver
message r (where the simulated transcript uses neither of the two witnesses). We mainly rely on OT
security to show that the distinguisher DV cannot distinguish between the view generated by such a
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simulator SimDV and the real view of the verifier, when he interacts with an honest prover that uses
only one of the witnesses.

There are additional subtleties in the proof, for instance, in ensuring that the extracted values when
the simulator uses one particular witness for learning, do not contradict the values extracted when it
uses the other witness. We refer the reader to Section 5.3 for a detailed proof.

Distributional Weak Zero-Knowledge. We prove that the same protocol satisfies distributional
weak zero-knowledge against non-adaptive verifiers (which can also be easily seen to imply witness-hiding
against non-adaptive verifiers). Distributional weak zero-knowledge is a “distributional” relaxation
of the standard notion of zero-knowledge where the simulator is additionally allowed to depend on
the distribution of instances, and on the distinguisher. This notion roughly requires that for every
distribution X over instances, every verifier V and distinguisher DV that obtains the view of V , every
ε = 1

poly(κ) for some polynomial poly(·), there exists a simulator SimDV that runs in time poly(1/ε) and
outputs a view, such that the distinguisher DV has at most ε-advantage in distinguishing the real view
of V from the simulated view.

Fix the first message of the verifier (since the verifier is non-adaptive, this is fixed independently
of the instance). The simulator SimDV obtains as (non-uniform) advice, poly(1/ε) randomly chosen
instance-witness pairs from the distribution in question.11 It then uses these pairs together with the
extraction strategy E described above, to “learn” an approximation to the verifier’s implicit challenge
string in the fixed verifier message. However, distributional weak zero-knowledge is not known to
be closed under parallel composition. Therefore, we modify the simple extraction strategy described
previously for a single repetition, so as to extract all bits of the verifier’s challenge, while still remaining
efficient in poly(1/ε).

This is done inductively: at any time-step i ∈ [κ], the simulator SimDV has extracted an approxi-
mation for the first (i− 1) bits of the verifier’s challenge, and is now supposed to extract the ith bit. At
a high level, the extraction strategy of SimDV is as follows:

◦ It generates a “fake” output for the first (i − 1) parallel repetitions as follows: for j ∈ [i − 1], if
the jth bit of the verifier’s challenge was approximated to 0, respond with aj , (z

0
j , z

0
j ) in the jth

repetition (and similarly, if it was approximated to 1, respond with aj , (z
1
j , z

1
j )).

◦ For all j ∈ [i+ 1, κ] it responds honestly with aj , (z
0
j , z

1
j ) in the jth repetition.

◦ With outputs for all j < i set to “fake” according to approximated challenge, and for all j > i
set to honest, at j = i, SimDV uses the extraction strategy E described above. That is, for j = i,
it sets the output to ai, (z

0
i , z

1
i ), ai, (z

0
i , z

0
i ), and ai, (z

1
i , z

1
i ), and checks whether the output of the

distinguisher when given inputs corresponding to ai,OT2,i(z
0
i , z

1
i ) is close to its output when given

inputs corresponding to ai,OT2,i(z
0
i , z

0
i ) or to ai,OT2,i(z

i
i , z

i
i). It uses this to approximate the ith

bit of the verifier’s challenge.

Via an inductive hybrid argument, we prove that with high probability, the approximation computed by
SimDV has at most Θ(ε)-error when SimDV runs in time poly(1/ε). Once SimDV has successfully extracted
the verifier’s challenge, it can use the honest-verifier zero-knowledge simulator of the underlying Σ-
protocol as before.

Note that in order to perform extraction, the simulator is required to generate various ai,OT2,i(z
0
i , z

1
i )

tuples, which it does using the instance-witness pairs it sampled or obtained as advice. SimDV then
uses the challenge it extracted to generate fake proofs for various other x← X . Non-adaptivity of the
verifier ensures that the simulator can, for a fixed verifier messages, generate proofs for several other

11In most cryptographic applications, and in all our applications, it is possible for the simulator to efficiently sample
random instance-witness pairs from the distribution on its own, without the need for any non-uniform advice.
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statements in the distribution while observing the output of the distinguisher. We refer the reader to
Section 5.4 for a complete proof.

Three Round Protocols from Polynomial Hardness Assumptions. We also describe how quasi-
polynomial assumptions can be avoided at the cost of an extra round. The need for quasi-polynomial
assumptions in our two-round protocols is to guarantee soundness: roughly, we require that a cheating
prover should be unable to “maul” the receiver’s challenge while providing his message. In the two-
round setting, this is achieved by ensuring (via complexity leveraging) that the security of receiver
OT message is stronger than the security of the prover’s response. Three rounds, however, give an
opportunity to rewind and extract the value inside the prover’s message, while relying on (polynomial)
hiding of the receiver OT message.

We assume here that the first round of the Σ-protocol consists of commitments to certain values,
and the third round consists of decommitments to a subset of these commitments, together with ad-
ditional auxiliary information (for instance, the Blum protocol for Graph Hamiltonicity satisfies this
requirement). We modify the protocol to have the prover send extractable commitments (instead of
standard commitments) to commit to the values needed for the first round of the Σ-protocol.

Consider a PPT cheating prover that generates a proof for x 6∈ L. A reduction can obtain the receiver
OT message externally as an encryption of some n-bit challenge, and then extract the values committed
by the prover. Because the underlying Σ-protocol is special-sound against unbounded provers, any
accepting proof for x 6∈ L, will allow recovering the receiver challenge directly by observing the values
committed by the prover. We must, however, ensure that adding such extractable commitments does not
harm privacy – since our simulator is required to generate several actual proofs before it is able to output
a simulated proof. To accomplish this, we design a special kind of (weakly) extracting commitments,
details of which can be found in Section 6. We note here that over-extraction suffices, in particular, we
only care about extracting the values committed by provers that generate accepting transcripts.

2.2 Applications

We now describe some applications of our proof systems. As a first step, we describe a transformation
from our three-round distributional WZK argument system to an argument of knowledge12 (that retains
the distributional weak ZK/strong WI property against non-adaptive verifiers).

Weak ZK/Strong WI Argument of Knowledge. We begin with the following simple idea for a
distributional weak ZKAoK, for instances x← X : Let us use a delayed-input witness indistinguishable
adaptive proof of knowledge (WIPoK), for instance the Lapidot-Shamir proof [49], to prove the following
statement:

Either x ∈ L, OR, ∃ randomness r such that c = com(1κ; r).

Here, the commitment string c is also chosen and sent in the last round, together with instance x.
Furthermore, to ensure that a (cheating) prover indeed uses the witness for x ∈ L, the prover must
also give a weak ZK proof, for the same string c that ∃r such that c = com(0κ; r). The argument of
knowledge property of this protocol now follows from the proof of knowledge property of WIPoK, the
soundness of the weak ZK argument, and the statistical binding property of the commitment scheme.
Specifically, by adaptive soundness of the weak ZK proof, c must indeed be constructed as a commitment
to 0κ; moreover, by the statistical binding property of the commitment scheme, the same string c cannot
be a commitment to 1κ. Therefore, the only possible witness that can be extracted from the WIPoK is
indeed a witness for the instance x.

12Despite using a variant of extractable commitments, the three-round argument described in the previous section not
a standard AoK in the delayed-input setting.
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To prove weak ZK/strong WI property for the same protocol, we would ideally like to have the
following sequence of hybrid arguments: First, we start simulating the weak ZK proof, by observing the
output of the distinguisher on several different instances from the distribution X , while using correct
witnesses for these instances. We then use the information learned to simulate the weak ZK proof for
c obtained externally in the main transcript. Since the string c is not used in the main thread at all,
we change it so that com(0κ; r) for uniformly random r. Next, we must begin using (c, r) as witnesses
in the WIPoK, instead of using the witness for x.

It is in this step that there arises a subtle issue, because of the way our simulator works. In each
experiment, before it can generate a simulated proof, it must first generate several real proofs for other
random instances. We require the WIPoK to maintain witness indistinguishability, even when the
simulator provides multiple proofs for different instances using the same first two messages. This is in
general, not true for proof systems such as Lapidot-Shamir [49]. This is also not as strong a requirement
as resettable-WI [16] since the verifier’s message is fixed and remains the same for all proofs.

We refer to this property as reusable WI and construct an adaptively sound argument of knowledge
satisfying this property. The argument of knowledge works by the prover sending two three-round ex-
tractable commitments (with “over” extraction) [56, 57] to random strings, encrypting the witness with
each of these strings using standard private key encryption, and sending a three-round delayed-input
reusable WI argument (this does not need to be an argument of knowledge, and could be instantiated
with a ZAP, or with our three round arguments) to establish that one of the two commitments is a valid
extractable commitment, and the corresponding ciphertext correctly encrypts the witness. The use of
private key encryption gives us the additional desired property of reusability.

Extractable Commitments. Given the weak ZK argument of knowledge, our construction of three-
round extractable commitments simply consists of sending a non-interactive statistically binding com-
mitment to the message in the last round, together with a (distributional) weak ZK argument of knowl-
edge to establish knowledge of the committed message and randomness. The weak ZK property helps
prove hiding of this scheme, while the proof of knowledge property guarantees correct polynomial-time
extraction, with overwhelming probability. We refer the reader to the full version for details.

Three Round, Two Party, Input-Indistinguishable Secure Computation. We begin by consid-
ering the following two-round protocol for two-party computation: The receiver generates OT messages
corresponding to his inputs, together with the first message of a two-round weak ZK argument. Then,
the sender generates garbled circuits corresponding to his own input labels, together with the second
message of the two-round weak ZK argument.

This protocol already satisfies input-indistinguishable security against malicious receivers, as well as
distinguisher-dependent security against malicious receivers, when an honest sender’s input is sampled
from some public distribution. Even though our weak ZK proof guarantees hiding against malicious
receivers, security is not immediate. Indeed, we must first extract an adversarial receiver’s input from
his OT messages, and weak ZK does not help with that. Thus, apart from simulating the weak ZK, we
must use our extraction strategy in this context, in order to (distributionally) learn the receiver’s input.

In the full version, we describe applications of our techniques to obtaining input-indistinguishable se-
cure computation, as well as distributional distinguisher-dependent secure computation in three rounds
from polynomial assumptions. In particular, we also note that a large class of functionalities such as
coin tossing, generating common reference strings, oblivious PRFs, etc. (that we call independent-input
functions) are distributional by definition, and can be realized with distinguisher-dependent polynomial
simulation security in three rounds.
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3 Preliminaries

Throughout this paper, we will use κ to denote the security parameter, and negl(κ) to denote any
function that is asymptotically smaller than 1

poly(κ) for any polynomial poly(·).

Definition 1 (Σ-protocols). Let L ∈ NP with corresponding witness relation RL, and let x denote an
instance with corresponding witness w(x). A protocol Π = (P, V ) is a Σ-protocol for relation RL if it is
a three-round public-coin protocol, and the following requirements hold:

◦ Completeness: Pr[〈P (x,w(x)), V (x)〉 = 1] = 1− negl(κ), assuming P and V follow the protocol
honestly.

◦ Special Soundness: There exists a polynomial-time algorithm A that given any x and a pair
of accepting transcripts (a, e, z), (a, e′, z′) for x with the same first prover message, where e 6= e′,
outputs w such that w ∈ RL(x).

◦ Honest verifier zero-knowledge: There exists a probabilistic polynomial time simulator SΣ

such that
{SΣ(x, e)}x∈L,e∈{0,1}κ ≈c {〈P (x,w(x)), V (x, e)〉}x∈L,e∈{0,1}κ

where SΣ(x, e) denotes the output of simulator S upon input x and e, and 〈P (x,w(x)), V (x, e)〉
denotes the output transcript of an execution between P and V , where P has input (x,w), V has
input x and V ’s random tape (determining its query) is e.

Definition 2 (Oblivious Transfer). Oblivious transfer is a protocol between two parties, a sender S
with messages (m0,m1) and receiver R with input a choice bit b, such that R obtains output mb at the
end of the protocol. We let 〈S(m0,m1), R(b)〉 denote an execution of the OT protocol with sender input
(m0,m1) and receiver input bit b. It additionally satisfies the following properties.
Receiver Security. For any sender S∗, all auxiliary inputs z ∈ {0, 1}∗, and all (b, b′) ∈ {0, 1},
ViewS∗(〈S∗(z), R(b)〉) ≈c ViewS∗(〈S∗(z), R(b′)〉).
Sender Security. This is defined using the real-ideal paradigm, and requires that for all auxiliary in-
puts z ∈ {0, 1}∗, every distribution on the inputs (m0,m1) and any adversarial receiver R∗, there exists
a (possibly unbounded) simulator SimR∗ that interacts with an ideal functionality Fot on behalf of R∗.
Here Fot is an oracle that obtains the inputs (m0,m1) from the sender and b from the SimR∗ (simulating
the malicious receiver), and outputs mb to SimR∗. Then SimFot

R∗ outputs a receiver view VSim that is com-
putationally indistinguishable from the real view of the malicious receiver ViewR∗(〈S(m0,m1, z), R

∗〉).

We will make use of two-message oblivious-transfer protocols with security against malicious re-
ceivers and semi-honest senders. Such protocols have been constructed based on the DDH assump-
tion [52], and a stronger variant of smooth-projective hashing, which can be realized from DDH as
well as the N th-residuosity and Quadratic Residuosity assumptions [46, 44]. Such protocols can also be
based on indistinguishability obfuscation (iO) together with one-way functions [58].

We will use the following sender security property in our protocols (which is implied by the definition
of sender security in Definition 2 above). For any fixed first message generated by a malicious receiver
R∗, we require that either of the following statements is true:

◦ For all m0,m1, ViewR∗〈S(m0,m1, z), R
∗〉) ≈c ViewR∗(〈S(m0,m0, z), R

∗〉)

◦ Or, for all m0,m1, ViewR∗(〈S(m0,m1, z), R
∗〉) ≈c ViewR∗(〈S(m1,m1, z), R

∗〉)

This follows from the (unbounded) simulation property, i.e., there exists a simulator that extracts some
receiver input b from the first message of R∗, sends it to the ideal functionality, obtains mb and generates
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an indistinguishable receiver view. Then, by the definition of sender security, the simulated view must
be close to both ViewR∗(〈S(m0,m1, z), R

∗〉), and ViewR∗(〈S(mb,mb, z), R
∗〉).

We also note that all the aforementioned instantiations of two-message oblivious-transfer are addi-
tionally secure against unbounded malicious receivers.

4 Definitions

4.1 Proof Systems

Delayed-Input Interactive Protocols. An n-round delayed-input interactive protocol (P, V ) for
deciding a language L with associated relation RL proceeds in the following manner:

◦ At the beginning of the protocol, P and V receive the size of the instance and execute the first
n− 1 rounds.

◦ At the start of the last round, P receives an input (x,w) ∈ RL and V receives x. Upon receiving
the last round message from P , V outputs 1 or 0.

An execution of (P, V ) with instance x and witness w is denoted as 〈P, V 〉(x,w). Whenever clear
from context, we also use the same notation to denote the output of V . Delayed-Input Interactive

Arguments. An n-round delayed-input interactive argument for a language L must satisfy the standard
notion of completeness as well as adaptive soundness, where the soundness requirement holds even
against malicious PPT provers who choose the statement adaptively, depending upon the first n − 1
rounds of the protocol.

Definition 3 (Delayed-Input Interactive Arguments). An n-round delayed-input interactive protocol
(P, V ) for deciding a language L is an interactive argument for L if it satisfies the following properties:

◦ Completeness: For every (x,w) ∈ RL,

Pr
[
〈P, V 〉(x,w) = 1

]
≥ 1− negl(κ),

where the probability is over the random coins of P and V .

◦ Adaptive Soundness: For every z ∈ {0, 1}∗, every PPT prover P ∗ that chooses x ∈ {0, 1}κ \ L
adaptively, depending upon the first n− 1 rounds,

Pr
[
〈P ∗(z), V 〉(x) = 1

]
≤ negl(κ),

where the probability is over the random coins of V .

Witness Indistinguishability. A proof system is witness indistinguishable if for any statement with
at least two witnesses, proofs computed using different witnesses are indistinguishable.

Definition 4 (Witness Indistinguishability). A delayed-input interactive argument (P, V ) for a language
L is said to be witness-indistinguishable if for every non-uniform PPT verifier V ∗, every z ∈ {0, 1}∗, and
every sequence (x,w1, w2) such that w1, w2 ∈ RL(x), the following two ensembles are computationally
indistinguishable: {

〈P, V ∗(z)〉(x,w1)
}

and
{
〈P, V ∗(z)〉(x,w2)

}
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Non-adaptive Distributional Weak Zero Knowledge. Zero knowledge (ZK) requires that for any
adversarial verifier, there exists a simulator that can produce a view that is indistinguishable from the
real one to every distinguisher. Weak zero knowledge (WZK) relaxes the standard notion of ZK by
reversing the order of quantifiers, and allowing the simulator to depend on the distinguisher.

We consider a variant of WZK, namely, distributional WZK [34, 28], where the instances are chosen
from some hard distribution over the language. Furthermore, we allow the simulator’s running time
to depend upon the distinguishing probability of the distinguisher. We refer to this as distributional
ε-WZK, which says that for every distinguisher D with distinguishing probability ε (where ε is an inverse
polynomial) there exists a simulator with running time polynomial in ε. This notion was previously
considered in [28, 19].

We define distributional ε-WZK property against non-adaptive malicious verifiers that receive the
instance only in the last round of the protocol.

Definition 5 (Non-adaptive Distributional ε-Weak Zero Knowledge). A delayed-input interactive ar-
gument (P, V ) for a language L is said to be distributional ε-weak zero knowledge against non-adaptive
verifiers if for every efficiently samplable distribution (Xκ,Wκ) on RL, i.e., Supp(Xκ,Wκ) = {(x,w) :
x ∈ L ∩ {0, 1}κ, w ∈ RL(x)}, every non-adaptive PPT verifier V ∗, every z ∈ {0, 1}∗, every PPT dis-
tinguisher D, and every ε = 1/poly(κ), there exists a simulator S that runs in time poly(κ, ε) such
that: ∣∣∣∣∣ Pr

(x,w)←(Xκ,Wκ)

[
D(x, z,ViewV ∗ [〈P, V ∗(z)〉(x,w)] = 1

]
− Pr

(x,w)←(Xκ,Wκ)

[
D(x, z,SV ∗,D(x, z)) = 1

]∣∣∣∣∣ ≤ ε(κ),

where the probability is over the random choices of (x,w) as well as the random coins of the parties.

Non-adaptive Witness Hiding. Let L be an NP language and let (X ,W) be a distribution over the
associated relation RL. A proof system is witness hiding w.r.t. (X ,W) if for any (x,w) ← (X ,W), a
proof for x is “one-way” in the sense that no verifier can extract a witness for x from its interaction
with the prover. Note that in order for WH to be non-trivial, it is necessary that (X ,W) be a “hard”
distribution.

Below, we define witness hiding property against non-adaptive malicious verifiers that receive the
instance only in the last round of the protocol.

Definition 6 (Hard Distributions). Let (X ,W) = (Xκ,Wκ)κ∈N be an efficiently samplable distribution
on RL, i.e., Supp(Xκ,Wκ) = {(x,w) : x ∈ L ∩ {0, 1}κ, w ∈ RL(x)}. We say that (X ,W) is hard if for
any poly-size circuit family {Cκ}, it holds that:

Pr
(x,w)←(Xκ,Wκ)

[
Cκ(x) ∈ RL(x)

]
≤ negl(κ).

Definition 7 (Non-adaptive Witness Hiding). A delayed-input interactive argument (P, V ) for a lan-
guage L is said to be witness hiding against non-adaptive verifiers w.r.t. a hard distribution (Xκ,Wκ)
if for every non-adaptive PPT verifier V ∗, every z ∈ {0, 1}∗, it holds that:

Pr
(x,w)←(Xκ,Wκ)

[
〈P, V ∗(z)〉(x) ∈ RL(x)

]
≤ negl(κ).

Non-adaptive Strong Witness Indistinguishability
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Definition 8 (Non-adaptive Strong Witness Indistinguishability). A delayed-input interactive argument
(P, V ) for a language L is said to be strong witness indistinguishable against non-adaptive verifiers w.r.t.
a pair of indistinguishable distributions (X1,κ,W1,κ), (X2,κ,W2,κ) if for every non-adaptive PPT verifier
V ∗, every z ∈ {0, 1}∗, it holds that:∣∣∣∣∣ Pr

(x,w)←(X1,κ,W1,κ)

[
D(x, z,ViewV ∗ [〈P, V ∗(z)〉(x,w)] = 1

]
− Pr

(x,w)←(X2,κ,W2,κ)

[
D(x, z,ViewV ∗ [〈P, V ∗(z)〉(x,w)] = 1

]∣∣∣∣∣ ≤ negl(κ).

Definition 9 (Weak Resettable Non-adaptive Distributional ε-Weak Zero Knowledge). A three round
delayed-input interactive argument (P, V ) for a language L is said to be weak resettable distributional
weak zero-knowledge, if for every efficiently samplable distribution (Xκ,Wκ) on RL, i.e., Supp(Xκ,Wκ) =
{(x,w) : x ∈ L ∩ {0, 1}κ, w ∈ RL(x)}, every non-adaptive PPT verifier V ∗, every z ∈ {0, 1}∗, every
PPT distinguisher D, and every ε = 1/poly(κ), there exists a simulator S that runs in time poly(κ, ε)

and generates a simulated proof for instance x
$← Xκ, such that over the randomness of sampling

(x,w) ← (Xκ,Wκ), Pr[b′ = b] ≤ 1
2 + ε + negl(κ) in the following experiment, where the challenger

C plays the role of the prover:

◦ At the beginning, (C, V ∗) receive the size of the instance, V ∗ receives auxiliary input z, and they
execute the first 2 rounds. Let us denote these messages by τ1, τ2.

◦ Next, (C, V ∗) run poly(κ) executions, with the same fixed first message τ1, but different second
messages chosen potentially maliciously by V ∗. In each execution, C picks a fresh sample (x,w)←
(Xκ,Wκ), and generates a proof for it according to honest verifier strategy.

◦ Next, C samples bit b
$←{0, 1} and if b = 0, for x

$←Xκ it generates an honest proof with first two
messages τ1, τ2, else if b = 1, it generates a simulated proof with first two messages τ1, τ2 using
simulator S.

◦ Finally, V ∗ sends its view to a distinguisher D that outputs b.

Remark 1. A non-adaptive distributional weak ZK argument of knowledge is an argument of knowledge
that satisfies the distributional weak ZK property against non-adaptive verifiers. Similarly, a non-
adaptive strong WI argument of knowledge is an argument of knowledge that satisfies the strong WI
property against non-adaptive verifiers. Finally, a non-adaptive witness hiding argument of knowledge
can be defined similarly as an argument of knowledge that satisfies the witness hiding property against
non-adaptive verifiers.

Definition 10 (Reusable Witness Indistinguishable Argument of Knowledge). A three round delayed-
input interactive argument of knowledge (P, V ) for a language L is said to be reusable witness indis-
tinguisable, if for every PPT verifier V ∗, every z ∈ {0, 1}∗, every k = poly(κ) and every sequence
(x1, w1), (x2, w2), . . . (xk−1, wk−1), (xk, wk1 , w

k
2), Pr[b′ = b] ≤ 1

2 + negl(κ) in the following experiment:

◦ At the beginning, (P, V ∗) receive the size of the instance, and execute the first 2 rounds.

◦ Next, P receives inputs (x1, w1), (x2, w2), . . . (xk−1, wk−1), (xk, wk1 , w
k
2) and V ∗ receives (x1, x2 . . . xk).

◦ Next P samples bit b
$←{0, 1} and generates the third message of the delayed-input witness indistin-

guishable argument of knowledge for instances (x1, x2 . . . xk) using witnesses (w1, w2, . . . wk−1, wkb )

◦ Finally, V ∗ outputs b′.
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4.2 Two Party Computation

We define two party computation with distinguisher-dependent simulation. Following the terminology
of [28], we call this weak two-party computation. This can also be naturally extended to weak multi-
party computation.

We consider malicious adversaries who may arbitrarily deviate from the specified protocol. Also,
we consider a model where parties send messages one by one. We consider the standard real-ideal
definition where, very roughly, we require that any adversary interacting in the real world does not
learn significantly more than an adversary that interacts with a simulator in an ideal world – except,
that the simulator for a malicious receiver can depend upon the distinguisher.

We now give the formal definitions of two party computation. Parts of the definition are taken
verbatim from [35].

A two-party functionality F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where F = (F1, F2), is such that
for each pair of inputs (x, y), the output pair is a random variable F1(x, y), F2(x, y) ranging over pairs
of strings. The first party (with input x) wishes to obtain F1(x, y) and the second party (with input y)
wishes to obtain F2(x, y).

Ideal model execution. The ideal model execution proceeds as follows:

◦ Inputs. Each party obtains an input, denoted w (w = x for P1 and w = y for P2).

◦ Send inputs to trusted party. An honest party always sends w to the trusted party. A malicious
party may, depending on w, either abort or send some w′ ∈ {0, 1}|w| to the trusted party.

◦ Trusted party answers first party. In case it has obtained an input pair (x, y), the trusted party
replies to the first party with F1(x, y). Otherwise (in case it didn’t receive two valid inputs), the
trusted party replies to both parties with a special symbol ⊥.

◦ Trusted party answers second party. In case the first party is malicious, it may, dependeing on
its input and the trusted party’s answer, decide to stop the trusted party by sending it ⊥ after
receiving its output. In this case the trusted party sends ⊥ to the second party. Otherwise (i.e.,
if not stopped), the trusted party sends F2(x, y) to the second party.

◦ Outputs. An honest party always outputs the message it obtained from the trusted party. A
malicious party may output an arbitrary (PPT) function of its initial input and the message
obtained from the trusted party.

Let S(S1,S2) be a pair of non-uniform PPT machines (representing parties in the ideal model).
Such a pair is admissible if for at least one i ∈ {1, 2} we have that Si is honest (i.e., follows the honest
party instructions in the above-described ideal execution). Then, the joint execution of F under S in
the ideal model (on input pair (x, y) and security parameters κ), denoted IDEALF,S(κ, x, y) is defined
as the output pair of S1 and S2 from the above ideal execution.

Real model execution. We next consider the real model in which a real two-party protocol is executed
(and there exists no trusted third party). In this case, a malicious party may follow an arbitrary feasible
strategy; that is, any stratgy implementable by non-uniform PPT machines. In particular, the malicious
party may abort the execution at any point in time (and when this happens prematurely, the other
party is left with no output). Let F be as above and let Π be a two-party protocol for computing
F . Furthermore, let A = (A1,A2) be a pair of non-uniform PPT mahcines (representing parties in
the real model). Such a pair is admissible if for at least one i ∈ {1, 2}, Ai is honest (i.e., follows the
strategy specified by the protocol). Then, the joint execution of Π under A in the real model, denoted
by REALΠ,A(κ, x, y), is defined as the output pair of A1 and A2 resulting from the protocol interaction.
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Definition 11 (Weak Secure Two Party Computation with Black-Box Simulation). Let F and Π
be as described above. Protocol Π is said to securely compute F (in the malicious model) with weak
security or distinguisher-dependent security, if for every pair of admissible non-uniform PPT machines
A = (A1,A2) in the real model, for every error ε, and every distinguisher D, there exists a pair of
admissible PPT machines S = (S1,S2) in the ideal model that run in time poly(1

ε ), such that:∣∣Pr
[
D
(
IDEALF,S(κ, x, y)κ∈N,(x,y)s.t.|x|=|y|

)]
− Pr

[
D
(
REALΠ,A(κ, x, y)κ∈N,(x,y)s.t.|x|=|y|

)]∣∣ ≤ ε+ negl(κ)

Definition 12 (Distributional Weak Secure Two Party Computation with Black-Box Simulation). Let
F and Π be as described above. Protocol Π is said to securely compute F (in the malicious model) with
distributional weak security or distributional distinguisher-dependent security, if for every adversary A
with fixed public input, and every pair of admissible non-uniform PPT machines A = (A1,A2) in the
real model, for every error ε, and every distinguisher D, there exists a pair of admissible PPT machines
S = (S1,S2) in the ideal model that run in time poly(1

ε ), such that:∣∣Pr
[
D
(
IDEALF,S(κ, x, y)κ∈N,(x,y)s.t.|x|=|y|

)]
− Pr

[
D
(
REALΠ,A(κ, x, y)κ∈N,(x,y)s.t.|x|=|y|

)]∣∣ ≤ ε+ negl(κ)

Note that this definition weakens the previous definition by allowing the simulator to (non-uniformly)
depend on the public input.

Definition 13 (Independent-Input Functionalities). An independent-input functionality is defined as a
functionality between two parties, Alice and Bob. Let (Q,R,U) denote the joint distribution over inputs
of both parties, where Alice’s private input can be sampled efficiently from public distribution Q, Bob’s
private input is sampled from (possibly private) distribution R, and U denotes their common public
input. Then, a functionality F over (X = (Q,U))× (Y = (R,U)), is independent-input for Alice, if Q
is independent of (R,U). We denote the class of all two-party independent-input functionalities by FIIF.

Definition 14 (Weak Secure Computation for FIIF Functionalities). A protocol Π is said to securely
compute FIIF with weak security for Alice (in the malicious model) and standard security for Bob (in the
malicious model) if for every pair of admissible non-uniform PPT machines A = (A1,A2) (representing
Alice and Bob respecitvely) computing FIIF in the real model, every error ε and every distinguisher D
that obtains Bob’s view, there exists a pair of admissible PPT machines S = (S1,S2), representing Alice
and Bob respectively in the ideal model (where S2 runs in time poly(1

ε ), such that for every distinguisher
D that obtains Alice’s view: ∣∣Pr

[
D
(
IDEALF,S(κ, x, y)κ∈N,(x,y)s.t.|x|=|y|

)]
− Pr

[
D
(
REALΠ,A(κ, x, y)κ∈N,(x,y)s.t.|x|=|y|

)]∣∣ ≤ negl(κ)

We emphasize that the simulator for a malicious Bob is distinguisher-dependent, whereas the simu-
lator for malicious Alice satisfies the standard simulation security definition, without distinguisher-
dependence.

Examples of independent-input functionalities (for which the above definition implies distinguisher-
dependent simulation security) include: coin-tossing, generating common reference strings, evaluating
oblivious PRFs, etc. We note that functionalities such as standard ZK and blind signatures do not
satisfy this property because Alice’s input (witness for ZK instance or signing key for signatures) is
correlated with a public instance/verification key, and is not efficiently samplable given the public
input.
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4.2.1 Input-Indistinguishable Computation

We recall the notion of input-indistinguishable secure computation as defined by Micali, Pass and Rosen
[50]. While they gave a definition for the concurrent setting, below, we provide a stand-alone version of
their definition.

We first recall the notion of implicit input from their work, which is then used to formalize input-
indistinguishable security.

Definition 15 (Implicit Input). Let (A1,A2) be a k-round protocol, and let A∗2 be the adversary.
Consider a function inR that maps the full view of A∗2, denoted by View∗1(τ) in an execution τ of
(A1,A∗2) into an input y∗ ∈ (Y ∪ ⊥). The function is said to be receiver implicit input for (A1,A∗2) if
y∗ = ⊥ whenever the receiver aborts, and otherwise y∗ is equal to the unique input used by the receiver
in execution τ .

We also require a designated output delivery message in the protocol (before which no information
on the output of the protocol is revealed. For simplicity, we assume that output delivery occurs in the
last round of the protocolm and define boolean variable output1(τ) to be true if and only if the output
delivery message has been sent to party A1 in τ .

Definition 16 ((Stand-alone) Input-indistinguishable computation). Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×
{0, 1}∗ be a (deterministic) function, and let Π be a two-party protocol. We say that Π securely computes
f with respect to the sender and implicit input function inR mapping a transcript of the execution to
implicit input y∗ of Bob, if the following conditions hold:

◦ Completeness: For every x, y ∈ X × Y, every κ ∈ N:

Pr[P1(View1(τ)) = f1(x, y)] = 1

where τ
$← REALΠ,A(κ, x, y)κ∈N,(x,y)s.t.|x|=|y| We note that this is only for the case where sender

also obtains an output.

◦ Implicit Computation: For every efficient A∗2, for every (x, y) ∈ X ×Y, if output1(τ) = true, then
Pr[A1(View1(τ)) = f(x, y∗)] > 1 − negl(n). Else if output1(τ) = false, then Pr[A1(View1(τ)) =

⊥] > 1− negl(n). Here τ
$← REALΠ,A(κ, x, y)κ∈N,(x,y)s.t.|x|=|y| and y∗ ← inR(View∗2(τ)).

◦ Input Indistinguishability and Independence: For every efficient A∗2, every x1, x2 ∈ X , and every
y ∈ Y, the following ensembles are computationally indistinguishable:

– ExptA1,A∗2(x1, x2, y;κ)

– ExptA1,A∗2(x2, x1, y;κ)

where the random variable ExptA1,A∗2(x1, x2, y;κ) is defined as follows:

1. τ
$← REALΠ,A(κ, x1, y)κ∈N

2. y∗ ← inR(View∗2(τ))

3. If output(τ) is true, and f2(x1, y
∗) 6= f2(x2, y

∗) then output ⊥.

4. Else, output y∗,View2(τ).
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4.3 Extractable Commitments

A commitment scheme allows a party to commit to a secret value x by publishing C = com(x; r) with
randomnesss r, in such a way that com(x; r) ≈c com(0; r). The player can later decommit C to reveal
x, by publishing x and a decommitment string r′: then it is required that the player cannot open C
to reveal x′ 6= x in a way that is acceptable to the verifier. In this paper, we are only interested in
commitments where the binding property is statistical.

Definition 17 (Extractable Commitments). In addition to the standard properties of binding and
hiding, a commitment is extractable if additionally, for any committer C that generates a commitment
transcript C, there exists an efficient algorithm, called an extractor, which extracts x, such that with
probability 1− negl(κ) over the randomness of the extractor and the transcript, there exists randomness
r such that C = com(x; r).

We say that the commitment is black-box extractable if the extractor works with black-box access to
the committer.

Extractable Commitments with Over-Extraction. We note that simple three round constructions
of extractable commitments are known [56, 57], if we only require correctness of the extracted value
when the commitment is generated to a valid value. Otherwise (if the commitment is invalid), the
extractor is allowed to output any (possibly valid) value. These are called extractable commitments
with over-extraction.

5 Two Round Argument Systems

5.1 Construction

We show how to use two-message malicious-secure oblivious transfer (OT) to convert any three-message
Σ-protocol according to Definition 1, into a two-message argument system. We then prove soundness of
the resulting argument system, assuming sub-exponential security of oblivious transfer. We also prove
that this protocol is witness indistinguishable, satisfies distributional weak zero-knowledge, strong WI
and witness hiding against non-adaptive verifiers.

Let OT = (OT1,OT2) denote a two-message bit oblivious transfer protocol according to Definition 2.
Let OT1(b) denote the first message of the OT protocol with receiver input b, and let OT2(m0,m1) denote
the second message of the OT protocol with sender input bits m0,m1.

Let Σ = (a, e, z) denote the three messages of a Σ-protocol. For most of this paper, we consider Σ-
protocols that are a parallel composition of individual protocols with a single-bit challenge and constant
soundness, i.e., the Σ-protocol contains three messages, denoted by (a, e, z) and that these messages can
be parsed as a = (a1, . . . , aκ), e = (e1, . . . , eκ), and z = (z1, . . . , zκ), where for each i ∈ [κ], the triplet
(ai, ei, zi) are messages corresponding to an underlying Σ-protocol with a single-bit challenge (i.e., where
ei ∈ {0, 1}). We denote by f1 and f2 the functions that satisfy ai = f1(x,w; ri) and zi = f2(x,w, ri, ei),
where ri is uniformly chosen randomness.

Examples of such Σ-protocols are the parallel Blum proof of Graph Hamiltonicity [13], and the
Lapidot-Shamir [49] three round WI proof. By a Karp reduction to Graph Hamiltonicity, there exists
such a Σ-protocol for all of NP.

5.2 Adaptive Soundness

The protocol in Figure 1 compiles a three-round public coin proof to a two-round argument using
oblivious transfer. Kalai-Raz [47] proved that such a compiler, applied to any public-coin proof system
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Witness Indistinguishable and Weak Distributional Zero-Knowledge Argument
Prover Input: Instance x ∈ L, witness w such that RL(x,w) = 1.
Verifier Input: Instance x, language L.

◦ Verifier Message: The verifier picks challenge e
$← {0, 1}κ for the Σ-protocol, and for

i ∈ [κ], sends OT1,i(ei) in parallel. Each bit ei is encrypted with a fresh OT instance.

◦ Prover Message: For i ∈ [κ], the prover sends ai,OT2,i(z
0
i , z

1
i ) in parallel.

◦ Verifier Output: The verifier V recovers zi as the output of OTi for i ∈ [κ], and outputs
accept if for all i ∈ [κ], (ai, ei, zi)i∈[κ] is an accepting transcript of the underlying Σ-protocol.

Figure 1: Two Round Argument System for NP

preserves soundness. Specifically, the following theorem in [47] proves (static) soundness of the above
protocol, assuming sub-exponential oblivious transfer.

Imported Theorem 1. (Rephrased) Let Σ = (a, e, z) denote a Σ-protocol, and let ` = poly(κ, s) be the
size of z, where κ is the security parameter, and s is an upper bound on the length of allowed instances.
Assuming the existence of an oblivious transfer protocol secure against probabilistic senders running in
time at most 2`, the protocol in Figure 1 is sound.

We observe that the proof in Kalai-Raz [47] can be extended to prove adaptive soundness, i.e.,
soundness against malicious provers that can adaptively choose x 6∈ L based on the verifier’s input
message.

Lemma 1. Let Σ = (a, e, z) denote a Σ-protocol, and let ` be the size of z. Assuming the existence of an
oblivious transfer protocol secure against probabilistic senders running in time at most 2`, the protocol
in Figure 1 is adaptively sound.

Proof. We will use a prover that breaks soundness to break sub-exponential receiver security of the
underlying oblivious transfer. The reduction samples two random challenge strings e0, e1 and reduction

sends them to an external OT challenger. The external OT challenger picks b
$← {0, 1}, and outputs

OT1(ei,b) for i ∈ [κ], which the reduction forwards to the cheating prover P ∗.
P ∗ outputs x 6∈ L, together with messages ai, OT2(z0

i , z
1
i ) for i ∈ [κ]. Next, the reduction R does a

brute-force search over all possible values of z, checking whether (a, e0, z) is an accepting transcript for
any z ∈ {0, 1}` and whether (a, e1, z

′) is an accepting transcript for any z′ ∈ {0, 1}`.
Suppose a cheating prover breaks soundness with probability p = 1

poly(κ) over the randomness of the
experiment. Since the reduction chooses prover messages e0, e1 uniformly at random, with probability
p, the prover P ∗ outputs a∗i , OT2(z0

i , z
1
i ) for i ∈ [κ] that cause the verifier to accept.

Thus, with probability p, R finds at least one z such that (a∗, eb, z) is an accepting transcript.
Since eb was picked uniformly at random and independent of eb, we argue that with at most negl(κ)

probability, R finds one or more z′ such that (a∗, eb, z
′) is an accepting transcript. Note that with

probability 1 − 2−κ, we have that eb 6= eb. By special-soundness of the underlying Σ-protocol, if
there exists z′ such that (a∗, eb, z

′) is an accepting transcript, conditioned on eb 6= eb, this would allow
obtaining a witness w from (a, eb, z) and (a, eb, z

′), which is a contradiction since x 6∈ L.
Therefore, if R finds z such that (a∗, eb, z) is an accepting transcript, R outputs eb as its guess for

the first OT message, and this guess is correct with probability at least p−negl(κ). Since R runs in time
2` and guesses the OT message with non-negligible probability, this is a contradiction to the security of
OT against 2`-time malicious senders.
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Observing the Verifier’s output. The protocol is not sound when the prover is allowed to generate
a-priori unbounded arguments using the same verifier message, as an adaptive function of the verifier’s
accept/reject outputs on prior arguments. Looking ahead, such a prover can use the simulation strategy
from Section 5.4 to explicitly break soundness.

However, the protocol is sound when the prover is only allowed to generate an a-priori bounded
arguments that adaptively depend on the verifier’s accept/reject outputs on prior arguments. This can
be ensured via simply having the verifier output a longer challenge string – to obtain adaptive soundness

for B executions, the protocol requires the verifier to generate e
$←{0, 1}κ·B, and encrypt it using κ ·B

OT instances. The prover uses the first κ instances for the first argument, the second set of κ instances
for the second, and so forth. It is easy to see then that the argument of Lemma 1 easily extends to the
bounded execution case.

5.3 Witness Indistinguishability

Theorem 6. Assuming two-round oblivious transfer (OT) secure against malicious PPT receivers, the
two-round protocol in Figure 1 is witness-indistinguishable against PPT verifiers.

Recall that witness indistinguishability (WI) is closed under parallel composition [29], therefore it
suffices to prove WI for a single repetition (i.e., for some i ∈ [κ]) of the protocol in Figure 1. That is,
we consider the following protocol:

Witness Indistinguishable Argument
Prover Input: Instance x, witness w such that R(x,w) = 1.
Verifier Input: Instance x

◦ Verifier Message: The verifier picks challenge er
$←{0, 1} for the Σ-protocol, and sends

r = OT1(er) in parallel.

◦ Prover Message: The prover verifies that r is a valid message according to the underlying
OT scheme. Then the prover computes a = f1(x,w, r), zr,0 = f2(x,w, r, 0) and zr,1 =
f2(x,w, r, 1) and sends a,OT2(zr,0, zr,1) in parallel.

◦ Verifier Output: The verifier recovers zr,e and verifies that (a, e, zr,e) is a valid accepting
transcript of the Σ-protocol.

Figure 2: A Single Repetition of a Two Round Argument System for NP

Our proof proceeds via a sequence of hybrid arguments, where, in an intermediate hybrid, we con-
struct a distinguisher-dependent simulator, that learns (using both witnesses w1 and w2), an approxi-
mation for the verifier’s challenge e. Upon learning the challenge, the simulator uses the honest-verifier
ZK property to generate a simulated proof, without using any of the witnesses.

5.3.1 Proof via Hybrid Experiments

For an NP language L with corresponding relation RL, consider an instance x ∈ L and let w1, w2 be
two witnesses such that RL(x,w1) = 1 and R(x,w2) = 1. We prove witness indistinguishability by
contradiction: suppose there exists a distinguisher DV that distinguishes between experiments where
the prover generates a proof using witness w1 versus an experiment where the prover generates a proof
using witness w2, with advantage greater than ε′. We then consider a sequence of 6 hybrid experiments,
indexed by error parameter ε = ε′/7, and by the previous statement, DV must distinguish two consecutive
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hybrids in the sequence with advantage greater than ε′/6. But this is a contradiction, because we prove
that the advantage of the distinguisher DV between every two consecutive hybrids (indexed by ε) is at
most ε+ negl(κ).
Hybridw1

:
This hybrid corresponds to an honest prover that generates a proof for x using witness w1. That is,
the challenger computes a = f1(x,w1, r), z

0 = f2(x,w1, r, e = 0), z1 = f2(x,w1, r, e = 1), and sends the
prover message according to Figure 2.

The output of this hybrid denoted by DV (Hybridw1
) is the output of the distinguisher on input the

view of the verifier in this experiment.

Hybrid1,ε :
In this hybrid, with probability at least 1 − 2−κ, the view of the verifier is the same as Hybridw1

, and
with probability at most 2−κ, the output view is ⊥. This ensures that the advantage of the distinguisher
between the previous hybrid and this hybrids is at most 2−κ.

This hybrid is indexed by a small error parameter ε = 1
poly(κ) for some polynomial poly(·), and

proceeds as follows. The challenger sets a counter count = 0 and while count ≤ κ, repeats the following
two steps:

Step1 : The first step of this experiment is the same as Hybridw1
, that is, first compute a =

f1(x,w1, r), z
0 = f2(x,w1, r, e = 0), z1 = f2(x,w1, r, e = 1), and send prover message according to

Figure 2. Denote the view of the verifier at the end of this step, by View1.

Step2 : Additionally, (unlike Hybridw1
), guess eguess

$←{0, 1}. Then, run the algorithm in Figure 3 with
oracle access to the V and distinguisher D, and error parameter ε, to obtain eapprox. This corresponds,
roughly, to approximating the verifier’s challenge e, with error at most ε (this approximation is called
eapprox).

If eguess = eapprox, set the output of the distinguisher on input the view View1, as the output of the
experiment, and stop.

Else, set count = count + 1 and continue (go to start of while loop).
We will add a more detailed explanation of the approximating algorithm in the next hybrid. In this

hybrid, it suffices to note that independently with probability at least 1
2 in any iteration, eguess = eapprox.

Conditioned on eguess = eapprox in at least one iteration, the view of the distinguisher in this hybrid
remains the same as Hybridw1

.
If count > κ, abort and output 0 as the output of the experiment.

Lemma 2. |Pr[DV(Hybridw1
) = 1]− Pr[DV(Hybrid1,ε) = 1]| ≤ negl(κ)

Proof. The experiments are identical conditioned on the challenger not aborting. Since eguess is sampled
independently at random from eapprox, Pr[eguess = eapprox] = 1

2 independently in every iteration. Thus,
the advantage of the distinguisher is at most the probability of abort, which is 1

2κ .

Hybrid2,ε : In this hybrid, at an intuitive level, the challenger approximates the receiver’s challenge
(i.e., the bit er), and replaces the sender’s oblivious transfer messages with simulated messages, corre-
sponding to the approximated value of er.

That is, the (malicious) receiver sends message r, that could possibly correspond to OT1(er) for some
challenge bit er (or to no er at all). The challenger verifies that r is a valid message according to the
underlying OT scheme. By security of the underlying OT against malicious receivers (refer Definition 2),
for any fixed r sent by a malicious receiver that the challenger verifies to be a valid OT message, and
any auxiliary input z, the following statement is true: Conditioned on r being the first message of R,
either the distribution of receiver views ViewR(〈S(m0,m1), R(z))〉 ≈c ViewR(〈S(m0,m0), R(z))〉 for all
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Algorithm MV,DV to approximate the verifier’s challenge.

1. Set p = 1/ε3.

2. For w ∈ {w1, w2}, and for the same fixed first message of the verifier, repeat the following:

◦ Set j = 1,D0,w = 0 and repeat:

(a) If j = p, then halt.

(b) Sample fresh randomness rj , set a = f1(x,w, rj), z
0 = z1 = f2(x,w, e = 0, rj), and

send the prover message according to Figure 2.
Set D0,w = D0,w+ 1

p if the output of the distinguisher DV = 1 (w.l.o.g., we assume
that the distinguisher DV outputs either 0 or 1).

◦ Set j = 1,D1,w = 0 and repeat:

(a) If j = p, then halt.

(b) Sample fresh randomness rj , set a = f1(x,w, rj), z
0 = z1 = f2(x,w, a, e = 1, rj),

and send the prover message according to Figure 2.
Set D1,w = D1,w+ 1

p if the output of the distinguisher DV = 1 (w.l.o.g., we assume
that the distinguisher DV outputs either 0 or 1).

◦ Set j = 1,Dw = 0 and repeat:

(a) If j = p, then halt.

(b) Sample fresh randomness rj , set a = f1(x,w, rj), z
0 = f2(x,w, a, e = 0, rj), z

1 =
f2(x,w, a, e = 1, rj), and send the prover message according to Figure 2.
Set Dw = Dw + 1

p if the output of the distinguisher DV = 1 (w.l.o.g., we assume
that the distinguisher DV outputs either 0 or 1).

3. If |D1,w2 −Dw2 | ≥ |D0,w2 −Dw2 |+ ε, set eapprox = 0.

4. Else if |D0,w2 −Dw2 | ≥ |D1,w2 −Dw2 |+ ε, set eapprox = 1.

5. Else if |D1,w1 −Dw1 | ≥ |D0,w1 −Dw1 |+ ε, set eapprox = 0.

6. Else set eapprox = 1.

Figure 3: Approximately Learning the Verifier’s Challenge

(m0,m1), or, ViewR(〈S(m0,m1), R(z)〉) ≈c ViewR(〈S(m1,m1), R(z)〉) for all (m0,m1). That is, every r
generated by a malicious receiver that verifies as a valid OT message, behaves like OT1(er) for some bit
er.

In other words, for any distinguisher that has input the view of the verifier, at least one out of
ViewR(〈S(m0,m0), R(z)〉) and ViewR(〈S(m1,m1), R(z)〉) is negl(κ)- close to the correct distribution
ViewR(〈S(m0,m1), R(z)〉) (or, both could be negl(κ)-close, which we do not discuss here because the
distinguisher is a trivial distinguisher, and the proof becomes easier). When only one of the distributions
ViewR(〈S(m0,m0), R(z)〉) and ViewR(〈S(m1,m1), R(z)〉) is close to the correct distribution, the chal-
lenger computes which distribution is close by sending many randomly chosen sender messages to the
distinguisher, according to all three distributions, and learning whether the output of the distinguisher
on ViewR(〈S(m0,m0), R(z)〉) or the output of the distinguisher on input ViewR(〈S(m1,m1), R(z)〉) is
close to the output of the distinguisher on input ViewR(〈S(m0,m1, z)〉), upto error ε = 1

poly(κ) .

25



Formally, the experiment is indexed by an error parameter ε = 1
poly(κ) , and proceeds as follows.

Step1 : First, guess eguess
$← {0, 1}. Next, compute a = f1(x,w1, r), z

0 = f2(x,w1, r, eguess), z
1 =

f2(x,w1, r, eguess), and send prover message according to Figure 2.
Step2 : Then, run the protocol in Figure 3 with error parameter ε to compute eapprox. If eguess =

eapprox, set the output of the distinguisher on input the view of the verifier in Step1 of this experiment,
as the output of the experiment DV (Hybrid2,ε), and stop.

Else, set count = count + 1 and continue (go to start of while loop).
If count > κ, abort and output 0 as the output of the experiment.

Lemma 3. ∣∣Pr[DV = 1|Hybrid1,ε]− Pr[DV = 1|Hybrid2,ε]
∣∣ ≤ ε+ negl(κ)

Proof. For the fixed verifier message OT1(e) corresponding to the receiver challenge bit er, and witness
w ∈ {w1, w2},

◦ Let Dcorrect,0,w denote the actual distribution output by the distinguisher when the challenger
samples fresh randomness rj , sets a = f1(x,w, rj), z

0 = z1 = f2(x,w, e = 0, rj), and send the
prover message according to Figure 2. We will abuse notation and also use Dcorrect,0,w to denote
the probability that the distinguisher outputs 1 in this situation.

◦ Let Dcorrect,1,w denote the actual distribution output by the distinguisher when the challenger
samples fresh randomness rj , sets a = f1(x,w, rj), z

0 = z1 = f2(x,w, e = 1, rj), and send the
prover message according to Figure 2. We will abuse notation and also use Dcorrect,1,w to denote
the probability that the distinguisher outputs 1 in this situation.

◦ Let Dcorrect,w denote the actual distribution output by the distinguisher when the challenger sam-
ples fresh randomness rj , sets a = f1(x,w, rj), z

0 = f2(x,w, e = 0, rj), z
1 = f2(x,w, a, e = 1, rj),

and send the prover message according to Figure 2. We will abuse notation and also use Dcorrect,w

to denote the probability that the distinguisher outputs 1 in this situation.

◦ We note that D0,w1 ,D1,w1 ,D0,w2 ,D1,w2 ,Dw1 ,Dw2 denote the approximate distributions that the
simulator lerans (refer Figure 3), while Dcorrect,0,w,Dcorrect,1,w and Dcorrect,w denote the actual
distributions (output by the distinguisher) themselves.

Claim 1. Either of the following statements is true:

◦ For all witnesses w,

|Pr[Dcorrect,0,w = 1]− Pr[Dcorrect,w = 1]| ≤ negl(κ)

◦ For all witnesses w,

|Pr[Dcorrect,1,w = 1]− Pr[Dcorrect,w = 1]| ≤ negl(κ)

Proof. Assume, for contradiction, that there exist V and DV for which the claim is not true. We will
use them to break sender security of the underlying OT. Consider a reduction R that obtains the first
OT message from V and forwards this message to the OT challenger.

The reduction sets a = f1(x,w, rj), z
0 = f2(x,w, e = 0, rj), z

1 = f2(x,w, e = 1, rj), and sends
(z0, z1) to the OT challenger.

The OT challenger generates either the real message OT2(z0, z1), or a simulated message OT2(z∗, z∗),
for some (fixed) z∗ ∈ {z0, z1}. The reduction forwards this message to the OT.

The reduction mirrors the output of DV and it holds that,
|Pr[DV = 1|real OT message]−Pr[DV = 1|simulated OT message]| ≥ 1

poly(κ) for some polynomial poly(·),
for both z∗ = z0 and z∗ = z1, which is a contradiction.
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This claim establishes that at least one of the distributions Dcorrect,0,w and Dcorrect,1,w is negligibly
close to Dcorrect,w.

If both Dcorrect,0,w and Dcorrect,1,w are ε-close to Dcorrect,w for w = w1, then for any value of eguess in
{0, 1},

∣∣Pr[DV = 1|Hybrid1,ε]− Pr[DV = 1|Hybrid2,ε]
∣∣ ≤ ε+ negl(κ) and we are done.

Therefore, for the rest of this lemma, we restrict ourselves to the case where for w = w1, one and
only one out of Dcorrect,0,w and Dcorrect,1,w is ε-close to Dcorrect,w. In particular, this also implies that
|Dcorrect,0,w −Dcorrect,1,w| > ε for w = w1.

If the challenger could “magically” set eguess to 0 if Dcorrect,0,w was close to Dcorrect,w, and to 1 if
Dcorrect,0,w was close to Dcorrect,w, then again we would have that∣∣Pr[DV = 1|Hybrid1,ε]− Pr[DV = 1|Hybrid2,ε]

∣∣ ≤ ε.
Unfortunately, the challenger cannot magically know which distributions are close, and will therefore

have to approximate these distributions to obtain an answer. We now bound the probability that the
challenger’s approximation eapprox is incorrect conditioned on |Dcorrect,0,w−Dcorrect,1,w| > ε, i.e., we show:

Claim 2.

Pr
[
(eapprox = b)

∣∣(|Dcorrect,1,w−Dcorrect,0,w| > ε)∧ (|Dcorrect,w−Dcorrect,b,w| > ε)
]
≤ negl(κ) where w = w1.

Proof. We note that for w ∈ {w1, w2},D0,D1,Dw consist of p random samples from the distributions:
Dcorrect,0,w,Dcorrect,1,w,Dcorrect,w.

Then, using a simple Chernoff bound, we have that for w ∈ {w1, w2}:

◦ Pr[(D0 > Dcorrect,0,w(1 + α)) ∨ (D0 < Dcorrect,0,w(1− α))] ≤ 2 exp−
α2pDcorrect,0,w

2

◦ Pr[(D1 > Dcorrect,1,w(1 + α)) ∨ (D1 < Dcorrect,1,w(1− α))] ≤ 2 exp−
α2pDcorrect,1,w

2

◦ Pr[(Dw > Dcorrect,w(1 + α)) ∨ (Dw < Dcorrect,w(1− α))] ≤ 2 exp−
α2pDcorrect,w

2

Setting α = ε
2 , by a simple union bound we have that for w ∈ {w1, w2},

Pr
[(
|Dcorrect,0,w −D0| >

ε

2

)
∨
(
|Dcorrect,1,w −D1| >

ε

2

)
∨
(
|Dcorrect,w −Dw| >

ε

2

)]
≤ 6 exp−

1
2ε

Since ε will always be set to 1
poly(κ) for some polynomial poly(·), for w ∈ {w1, w2},

Pr
[(
|Dcorrect,0,w −D0| >

ε

2

)
∨
(
|Dcorrect,1,w −D1| >

ε

2

)
∨
(
|Dcorrect,w −Dw| >

ε

2

)]
≤ 6 exp−

1
8ε

We consider the event that the approximation eapprox is incorrect, and perform a case-analysis of
this event.

◦ Case I: Suppose that the value eapprox was fixed in Step 5 or Step 6 (i.e., by using witness w1

to approximate). Recall that one of Dcorrect,0,w and Dcorrect,1,w is at least ε-far from Dcorrect,w,
and the other is at most negl(κ)-far, for w = w1. The bit b is estimated via D0,D1,Dw which
each have error at most ε

2 , from the corresponding distributions Dcorrect,0,w,Dcorrect,1,w,Dcorrect,0,w.
Thus, Pr[eapprox is incorrect in Case I] ≤ negl(κ).

◦ Case II: Suppose that the value eapprox was fixed in Step 3 or Step 4 of Figure 3 (i.e., by using
witness w2 to approximate). Recall that there exists a bit b such that Dcorrect,b,x is at least ε-far
from Dcorrect,w, and Dcorrect,b,w is at most negl(κ)-far, for w = w1. By Claim 1, even for w = w2,
Dcorrect,b,w is at most negl(κ)-far from Dcorrect,w.

27



Then, eapprox is incorrect if Step 3 and Step 4 result in output b = 1−b, which happens if and only if
|Db,w2−Dw2 | > |Db,w2

−Dw2 |+ε. However, note that Pr[|Db,w2−Dw2 | > ε
∣∣|Dcorrect,b,w−Dcorrect,w| =

negl(κ)] ≤ negl(κ) by the Chernoff bounds above. Therefore, Steps 3 and 4 result in incorrect
output eapprox with probability at most negl(κ).

Summing up, Pr
[
eapprox = b

∣∣|(Dcorrect,1,w −Dcorrect,0,w| > ε) ∧ (|Dcorrect,w −Dcorrect,b,w| > ε)
]
≤ negl(κ)

for w = w1.

This completes the proof of the lemma.

Hybrid3,ε : In this experiment, the challenger approximates the verifier challenge and conditions on
eguess = eapprox as before. In Hybrid2,ε, the challenger response OT2(zeapprox , zeapprox) was fixed and did
not encode the witness, but the message a still possibly encoded witness w1. In this hybrid, instead of
sampling (a, zeguess) using the witness w1, the challenger simulates (a, zeguess) without any witness, instead
relying on the honest-verifier ZK simulator of the underlying Σ-protocol.

Formally, the experiment is indexed by an error parameter ε = 1
poly(κ) , and proceeds as follows.

Step1 : First, guess eguess
$←{0, 1}. Next, compute without using the witness w1, a = f1(x, r, eguess), z

0 =
z1 = f2(x, r, eguess), and send prover message according to Figure 2.

Step2 : Then, run the protocol in Figure 3 with error parameter ε to compute eapprox. If eguess =
eapprox, set the output of the distinguisher on input the view of the verifier in Step1 of this experiment,
as the output of the experiment DV (Hybrid3,ε), and stop.

Else, set count = count + 1 and continue (go to start of while loop).
If count > κ, then abort and output 0 as the output of the experiment.

Lemma 4. |Pr[DV(Hybrid1,ε) = 1]− Pr[DV(Hybrid2,ε) = 1]| ≤ negl(κ)

Proof. Assume, for contradiction, that there exist V and DV for which the claim is not true. We will
use them to break honest-verifier zero-knowledge of the underlying Σ-protocol.

Consider a reduction R that in all iterations of Step 1, does the following: R first sets eguess
$←{0, 1}.

R then sends eguess to the honest-verifier ZK challenger, and obtains (a∗, z∗), that is either sampled
honestly using the witness w1 and verifier challenge eguess, or sampled using the honest-verifier ZK
simulator and verifier challenge eguess.

The reduction R then sends a∗,OT2(z∗, z∗) to the distinguisher DV as the output of the challenger
between Hybrid1,ε and Hybrid2,ε. Note that the experiment corresponds to Hybrid1,ε if (a∗, z∗) is sampled
honestly using the witness w1, and to Hybrid2,ε if it is sampled using the honest-verifier ZK simulator.
Then, R can just mirror the output of the distinguisher DV such that, Pr[DV |real (a∗, z∗) = 1] −
Pr[DV |simulated (a∗, z∗)] ≥ 1

poly(κ) for some polynomial poly(·), which is a contradiction.

Hybrid4,ε :
This hybrid is identical to Hybrid2,ε except that in Step1, a = f1(x,w2, r), z

0 = f2(x,w2, r, eguess), z
1 =

f2(x,w2, r, eguess). That is, the challenger starts using witness w2 to compute (a, zeguess).

Lemma 5. |Pr[DV(Hybrid3,ε) = 1]− Pr[DV(Hybrid4,ε) = 1]| ≤ negl(κ)

Proof. The proof of this lemma follows in the same way as the proof of Lemma 4.

Hybrid5,ε :
This is identical to Hybrid1,ε, except that in Step1, a = f1(x,w2, r), z

0 = f2(x,w2, r, e = 0), z1 =
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f2(x,w2, r, e = 1). That is, the challenger now starts using the witness w2 to compute (a, z0, z1), and
the experiment is identical to an honest challenger using w2 to generate the proof, except it aborts with
probability 1

2κ .

Lemma 6. |Pr[DV(Hybrid4,ε) = 1]− Pr[DV(Hybrid5,ε) = 1]| ≤ ε+ negl(κ)

Proof. The proof of this lemma follows in the same way as the proof of Lemma 3.

Hybridw2
:

This is the real experiment corresponding to generating the proof with witness w2, where the challenger
computes a = f1(x,w2, r), z

0 = f2(x,w2, r, e = 0), z1 = f2(x,w2, r, e = 1) and sends the prover message
according to Figure 2.

Lemma 7. |Pr[DV(Hybrid5,ε) = 1]− Pr[DV(Hybridw2
) = 1]| ≤ negl(κ)

Proof. The proof of this lemma follows in the same way as the proof of Lemma 2.

Suppose there exists a verifier V , a distinguisherDV , and a polynomial p(·) such that Pr[DV (Hybridw1
) =

1]− Pr[DV (Hybridw2
) = 1] = ε′ ≥ 1

p(·) . Consider the family of hybrids parameterized by ε = ε′

7 .

Then, the distinguisher must necessarily have advantage at least ε′

6 in distinguishing one pair of
consecutive hybrids between the six consecutive pairs Hybridw1

and Hybridw2
, which is a contradiction,

since the distinguisher can have advantage at most ε + negl(κ) = ε′

7 + negl(κ) between each pair of
consecutive hybrids. This completes the proof of witness indistinguishability.

5.4 Distributional Weak Zero Knowledge

In this section, we have the following theorem:

Theorem 7. Assuming oblivious transfer (OT) secure against malicious PPT receivers, the protocol in
Figure 1 is distributional weak zero-knowledge against non-adaptive verifiers.

Proof. (Overview) The proof of weak zero-knowledge is more involved that WI, because weak ZK is
not closed under parallel composition. We develop an inductive analysis and a simulation strategy that
learns the receiver’s challenge bit-by-bit.

Fix any PPT V ∗, any distinguisher D, any distribution (X ,W,Z), and any ε > 0. We construct
a simulator Simε that obtains non-uniform advice z, pε = poly(1/ε) random instance-witness samples
(x∗1, w

∗
1), (x∗2, w

∗
2), . . . (x∗pε , w

∗
pε) from the distribution (X ,W). Or, if the distribution (X ,W) is efficiently

samplable, Simε samples (x∗1, w
∗
1), (x∗2, w

∗
2), . . . (x∗pε , w

∗
pε) these on its own.

At a high level, the simulator uses these instances to approximately-learn the verifier’s challenge
string e (call this approximation eapprox), and then generates a transcript corresponding to a random
x ∼ X , by using the honest-verifier ZK simulation strategy of the underlying Σ-protocol, corresponding
to verifier challenge eapprox.

We now describe a sequence of hybrid experiments, where hybrid HybridSimε
corresponds to our

simulator Simε.
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5.4.1 Proof via Hybrid Experiments

Hybrid0 := Hybrid0,ε :
This hybrid corresponds to an honest prover in the real world. That is, for i ∈ [κ], the challenger

samples (x,w)
$← (X ,W) and sends ai = f1(x,w, ri), z

0
i = f2(x,w, ri, ei = 0), z1

i = f2(x,w, ri, ei = 1) to
the verifier.

Hybrid1,ε :

This hybrid is indexed by a small error parameter ε = 1
poly(κ) for some polynomial poly(·), and proceeds

as follows. Fix the first message r of the verifier.

1. Run the algorithm in Figure 4 parameterized by I = 1 with oracle access to the distinguisher D,
and error parameter ε, to obtain guess eapprox,1 for the first bit of the verifier challenge.

2. Next, compute a1 = f1(x,w, r1), z0
1 = f2(x,w, r1, eapprox,1), z1

1 = f2(x,w, r1, eapprox,1).

3. For i ∈ [2, κ], compute (ai, z
0
i , z

1
i ) honestly.

4. Send prover message according to Figure 1 using the ai, zi computed for i ∈ [κ].

HybridI,ε for I ∈ [2, κ] :

This hybrid is indexed by a small error parameter ε = 1
poly(κ) for some polynomial poly(·), and proceeds

as follows.

1. Run the algorithm in Figure 4 parameterized by I with oracle access to the verifier V , distinguisher
D, and error parameter ε, to obtain guess eapprox for the first I bits of the verifier challenge.

2. Next, for i ∈ [I], compute ai = f1(x,w, ri), z
0
i = f2(x,w, ri, eapprox,i), z

1
i = f2(x,w, ri, eapprox,i).

3. For i ∈ [I + 1, κ], compute (ai, z
0
i , z

1
i ) honestly.

4. Send prover message according to Figure 1 using the ai, zi computed for i ∈ [κ].

Lemma 8. For all I ∈ [0, κ− 1],∣∣Pr[DV = 1|HybridI,ε]− Pr[DV = 1|HybridI+1,ε]
∣∣ ≤ ε

κ+ 1

Proof. The only difference between HybridI,ε and HybridI+1,ε is that in HybridI+1, eapprox,I+1 is computed
according to the algorithm in Figure 4 and the challenger sets aI+1 = f1(x,w, rI+1), z0

I+1 = z1
I+1 =

f2(x,w, rI+1, eguess,I+1), and then sends prover message according to Figure 1.
For the fixed verifier message OT1, for i ∈ [κ] and a fixed prefix eprefix = eapprox,[I], denoting the first

I bits of eapprox,

◦ Let Deprefix,0,x denote the actual distribution output by the distinguisher when the challenger sam-

ples random (x,w)
$← (X ,W),

– For j ≤ I, sets aj = f1(x,w, rj), z
0
j = z1

j = f2(x,w, rj , ej = eprefix,j), and using these sends

prover message according to Figure 1. Here, eprefix,j denotes the jth bit of eprefix.

– For j = I + 1, sets aj = f1(x,w, rj), z
0
j = z1

j = f2(x,w, rj , ej = 0), and using these sends
prover message according to Figure 1.
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Algorithm MV,DV to approximate the verifier’s challenge upto the Ith bit.

◦ Set p = κ2/ε3, i = 1, eapprox = ⊥. For fixed verifier message r,

◦ While i ≤ I, repeat:

– Set D0 = 0 and for j ∈ [p], repeat:

1. For k < i, sample fresh randomness rk and set ak = f1(x∗j , w
∗
j , rk), z

0
k = z1

k =
f2(x∗j , w

∗
j , rk, e = eapprox,k).

2. Sample fresh ri, set ai = f1(x∗j , w
∗
j , ri), z

0
i = z1

i = f2(x∗j , w
∗
j , a, e = 0, ri).

3. For k ∈ [i + 1, κ], sample fresh randomness rk and honestly set ak =
f1(x∗j , w

∗
j , rk), z

0
k = f2(x∗j , w

∗
j , a, e = 0, rk), z

1
k = f2(x∗j , w

∗
j , a, e = 1, rk)

4. Using (a, z) computed above, send prover message according to Figure 1, together
with the instance x∗j .

Set D0 = D0 + 1
p if the output of the distinguisher DV = 1 (w.l.o.g., we assume

that the distinguisher DV outputs either 0 or 1).

– Set D1 = 0 and for j ∈ [p], repeat:

1. For k < i, sample fresh randomness rk and set ak = f1(x∗j , w
∗
j , rk), z

0
k = z1

k =
f2(x∗j , w

∗
j , rk, e = eapprox,k).

2. Sample fresh ri, set ai = f1(x∗j , w
∗
j , ri), z

0
i = z1

i = f2(x∗j , w
∗
j , a, e = 1, ri).

3. For k ∈ [i + 1, κ], sample fresh randomness rk and honestly set ak =
f1(x∗j , w

∗
j , rk), z

0
k = f2(x∗j , w

∗
j , a, e = 0, rk), z

1
k = f2(x∗j , w

∗
j , a, e = 1, rk)

4. Using (a, z) computed above, send prover message according to Figure 1, together
with the instance x∗j .

Set D1 = D1 + 1
p if the output of the distinguisher DV = 1.

– Set Dw = 0 and for j ∈ [p], repeat:

1. For k < i, sample fresh randomness rk and set ak = f1(x∗j , w
∗
j , rk), z

0
k = z1

k =
f2(x∗j , w

∗
j , rk, e = eapprox,k).

2. For k ∈ [i, κ], sample fresh randomness rk and honestly set ak =
f1(x∗j , w

∗
j , rk), z

0
k = f2(x∗j , w

∗
j , a, e = 0, rk), z

1
k = f2(x∗j , w

∗
j , a, e = 1, rk).

3. Using (a, z) computed above, send prover message according to Figure 1, together
with the instance x∗j .

Set Dw = Dw + 1
p if the output of the distinguisher DV = 1.

– If |D1 −Dw| ≤ |D0 −Dw|, set eapprox,i = 1, else set eapprox,i = 0.

– Set i = i+ 1 and go to beginning of the while loop.

◦ Output eapprox.

Figure 4: Approximately Learning the Verifier’s Challenge

– For j ∈ [I+ 2, κ], sets aj = f1(x,w, rj), z
0
j = f2(x,w, rj , ej = 0), z1

j = f2(x,w, rj , ej = 1), and
using these sends prover message according to Figure 1.

We will abuse notation and also use Deprefix,0,x to denote the probability that the distinguisher
outputs 1 in this situation.
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◦ Let Deprefix,1,x denote the actual distribution output by the distinguisher when the challenger sam-

ples random (x,w)
$← (X ,W) and fresh randomness r,

– For j ≤ I, sets aj = f1(x,w, rj), z
0
j = z1

j = f2(x,w, rj , ej = eprefix,j), and using these sends
prover message according to Figure 1.

– For j = I + 1, sets aj = f1(x,w, rj), z
0
j = z1

j = f2(x,w, rj , ej = 1), and using these sends
prover message according to Figure 1.

– For j ∈ [I + 2, κ], sets aj = f1(x,w, rj), z
0
j = f2(x,w, rj , ej = 0), z1

j = f2(x,w, r, ej = 1, rj),
and using these sends prover message according to Figure 1.

We will abuse notation and also use Deprefix,1,x to denote the probability that the distinguisher
outputs 1 in this situation.

◦ Let Deprefix,w,x denote the actual distribution output by the distinguisher when the challenger

samples random (x,w)
$← (X ,W) and fresh randomness r,

– For j ≤ I, sets a = f1(x,w, rj), z
0
j = z1

j = f2(x,w, rj , ej = eprefix,j), and using these sends
prover message according to Figure 1.

– For j ∈ [I + 1, κ], sets a = f1(x,w, rj), z
0
j = f2(x,w, rj , ej = 0), z1

j = f2(x,w, rj , ej = 1), and
using these sends prover message according to Figure 1.

We will abuse notation and also use Deprefix,w,x to denote the probability that the distinguisher
outputs 1 in this situation.

Claim 3. Either of the following statements is true:

◦ For any prefix eprefix ∈ {0, 1}I , e |Pr[Deprefix,0,x = 1]− Pr[Deprefix,w,x = 1]| ≤ negl(κ)

◦ For any prefix eprefix ∈ {0, 1}I , e|Pr[Deprefix,1,x = 1]− Pr[Deprefix,w,x = 1]| ≤ negl(κ)

Proof. This claim follows from security of the OT. Assume, for contradiction, that there exist V and
DV for which the claim is not true. We will use them to break receiver security of the underlying OT.
Consider a reduction R that obtains the first OT message from V and forwards this message to the OT
challenger.

The reduction picks (x,w)
$← (X ,W), r

$← {0, 1}∗ and sets aI+1 = f1(x,w, r), z0
I+1 = f2(x,w, r, e =

0), z1
I+1 = f2(x,w, r, e = 1), and sends (z0

I+1, z
1
I+1) to the OT challenger.

The OT challenger generates either the real message OT2(z0
I+1, z

1
I+1) corresponding to verifier input,

or a simulated message OT2(z∗, z∗), for some z∗ ∈ {z0, z1}. The reduction sets all other (ai, zi0, z
i
1) for

i 6= (I + 1) according to HybridI , and generates sender message accordingly.
Then, the output of distinguisher DV on input the simulated message is either distributed identically

to Deprefix,0,x or Deprefix,1,x (depending upon whether z∗ is 0 or 1). The reduction mirrors the output of

DV and it holds that, Pr[DV = 1|real OT message] − Pr[DV = 1|simulated OT message] ≥ 1
poly(κ) for

some polynomial poly(·), for both z∗ = z0
I+1 and z∗ = z1

I+1, which is a contradiction.

This claim establishes that for any prefix, at least one of the distributions Deprefix,0,x and Deprefix,1,x is
negligibly close to Deprefix,w,x.

If both Deprefix,0,x and Deprefix,1,x are ε/(κ+ 1)-close to Deprefix,w,x, then for any value of eapprox,I+1 ∈
{0, 1},

∣∣Pr[DV = 1|HybridI,ε]− Pr[DV = 1|HybridI+1,ε]
∣∣ ≤ ε/(κ+ 1) and we are done.

Therefore, for the rest of this lemma, we restrict ourselves to the case where one and only one out
of Deprefix,0,x and Deprefix,1,x is ε

κ+1 -close to Deprefix,w,x. In particular, this also implies that |Deprefix,0,x −
Deprefix,1,x| > ε

κ+1 .
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If the challenger could “magically” set eapprox,I+1 to 0 if Deprefix,0,x was close to Deprefix,w,x, and to 1 if
Deprefix,0,x was close to Deprefix,w,x, then again we would have that∣∣Pr[DV = 1|HybridI,ε]− Pr[DV = 1|HybridI+1,ε]

∣∣ ≤ ε/(κ+ 1)

Unfortunately, the challenger cannot magically know which distributions are close, and will therefore
have to approximate these distributions to obtain an answer. We now bound the probability that the
challenger’s approximation eapprox,I is incorrect conditioned on |Deprefix,0,x − Deprefix,1,x| > ε

κ+1 , i.e., we
show:

Claim 4.

Pr
[
(eapprox,I = b)

∣∣(Deprefix,1,x −Deprefix,0,x >
ε

κ+ 1
) ∧ (|Dcorrect,w −Dcorrect,b,w| >

ε

κ+ 1
)
]
≤ negl(κ)

Proof. We note that for the (I + 1)th iteration of Figure 4, D0 just consists of p random samples of
a distribution with mean Deprefix,0,x, D1 just consists of p random samples of a distribution with mean
Deprefix,1,x, and Dw just consists of p random samples of a distribution with mean Deprefix,w,x.

Then, using a simple Chernoff bound, we have:

◦ Pr[
(
D0 > Deprefix,0,x(1 + α)

)
∨
(
D0 < Deprefix,0,x(1− α)

)
≤ 2 exp−

α2pD0
2 ]

◦ Pr[
(
D1 > Deprefix,1,x(1 + α)

)
∨
(
D1 < Deprefix,1,x(1− α)

)
≤ 2 exp−

α2pD1
2 ]

◦ Pr[
(
Dw > Deprefix,w,x(1 + α)

)
∨
(
Dw < Deprefix,w,x(1− α)

)
≤ 2 exp−

α2pD1
2 ]

Setting α = ε
2κ , and since p = κ2

ε3
, by a simple union bound we have that

Pr
[(
|Deprefix,0,x −D0| >

ε

2κ

)
∨
(
|Deprefix,1,x −D1| >

ε

2κ

)
∨
(
|Deprefix,w,x −Dw| >

ε

2κ

)]
≤ 6 exp−

1
8ε . Since ε will always be set to 1

poly(κ) for some polynomial poly(·),

Pr
[(
|Deprefix,0,x −D0| >

ε

2κ

)
∨
(
|Deprefix,1,x −D1| >

ε

2κ

)
∨
(
|Deprefix,w,x −Dw| >

ε

2κ

)]
≤ negl(κ).

Recall that one of Deprefix,0,x and Deprefix,w,x is at least ε/(κ+ 1)-far from Deprefix,w,x, and the other is at
most negl(κ)-far. The bit eapprox,I is estimated via D0,D1,Dw which each have error at most ε

2κ , from
the corresponding
Deprefix,0,x,Deprefix,1,x,Deprefix,w,x. Thus,

Pr
[
eapprox,I = b

∣∣ |(Deprefix,1,x −Deprefix,0,x| > ε/(κ+ 1))
∧

(|Deprefix,w,x −Deprefix,b,x| > ε/(κ+ 1))
]
≤ negl(κ).

This completes the proof of the lemma.

33



HybridSim,ε : This hybrid corresponds to the interaction of the simulator with the verifier and distin-

guisher. It is indexed by a small error parameter ε = 1
poly(κ) for some polynomial poly(·), and proceeds

as follows.

1. Run the algorithm in Figure 4 parameterized by κ with oracle access to the verifier V , distinguisher
D, and error parameter ε, to obtain guess eapprox for the entire verifier challenge (all κ bits).

2. Next, for i ∈ [κ], compute (without using the witness), ai = f1(x,w, eapprox,i, ri), z
0
i = z1

i =
f2(x,w, eapprox,i, ri) and send prover message according to Figure 1.

Lemma 9.
∣∣∣Pr[DV(Hybridκ,ε) = 1]− Pr[DV(HybridSim,ε) = 1]

∣∣∣ ≤ negl(κ)

Proof. Assume, for contradiction, that there exist V and DV for which the claim is not true. We will
use them to break honest-verifier zero-knowledge of the underlying Σ-protocol.

Consider a reduction R that does the following: R computes eapprox using Figure 4. R then sends
eapprox to the honest-verifier ZK challenger, and obtains (a∗, z∗), that is either sampled honestly using
the instance x and witness w, and the verifier challenge eapprox, or sampled using the honest-verifier ZK
simulator and verifier challenge eapprox.

The reduction R then sends a∗,OT2(z∗, z∗) to the distinguisher DV as the output of the challenger
between Hybridκ,ε and HybridSim,ε. Note that the experiment corresponds to Hybridκ,ε if (a∗, z∗) is
sampled honestly using the instance x and witness w, and to HybridSim,ε if it is sampled using the
honest-verifier ZK simulator. Then, R can just mirror the output of the distinguisher DV such that,
Pr[DV = 1|real (a∗, z∗)]− Pr[DV = 1|simulated (a∗, z∗)] ≥ 1

poly(κ) for some polynomial poly(·), which is
a contradiction.

Suppose the distinguisher DV has a distinguishing advantage ε between Hybrid0 and HybridSimε
, then

it necessarily has advantage at least ε/(κ+ 1) in distinguishing one consecutive pair of hybrids between
Hybrid0 and HybridSimε

, which is a contradiction. This completes our proof.

5.5 Strong Witness Indistinguishability

We note that the simulator’s learning is monotone for two distributions, i.e., given two distributions
X1,X2, then the view generated by a simulator Simε that learns using samples from both distributions,
X1 ∪X2, but outputs the simulation for a sample from X1, is indistinguishable from the view generated
by a simulator Simε that learns using samples from only X1 and then outputs the simulation for a sample
from X1.

In other words, learning using additional distributions can only provide “more” information to the
simulator. This observation coupled with the proof of weak ZK, directly implies strong witness indistin-
guishability, when the instances are sampled either from distribution X1 or from (an indistinguishable)
distribution X2. This is because, the simulator can learn (in all hybrids) using instances from X1 ∪ X2,
and use these to simulate external samples generated according to either X1 or X2.

Corollary 8. Assuming oblivious transfer (OT) secure against malicious PPT receivers, the protocol
in Figure 1 is strong witness-indistinguishable against non-adaptive verifiers.
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5.6 Witness Hiding

It is easy to see that distributional weak zero-knowledge implies witness hiding. Suppose there exists a
distribution Xκ and a PPT verifier V ∗ with auxiliary input z, that interacts with prover P . P samples
random X ∼ Xκ together with some witness W (X) and generates a proof for V ∗ – such that V ∗

outputs a witness for X ∈ X with probability γ = 1
poly(κ) for some polynomial poly(·). Then, by the

distributional weak zero-knowledge property, there exists a non-uniform simulator Simε that uses V ∗ to
output a witness for X ∼ X with probability at least γ − ε. Setting ε = γ

2 , we obtain a non-uniform
polynomial size circuit (Simε, V

∗) that outputs a witness for X ∼ X with probability at least γ/2, which
is a contradiction to the assumption in Definition 7. This implies the following corollary.

Corollary 9. Assuming two-message oblivious transfer (OT) secure against malicious PPT receivers,
the protocol in Figure 1 is witness-hiding against non-adaptive verifiers.

5.7 Extensions

In this section, we sketch some simple extensions of our main results.
So far, we assumed that the Σ-protocol contains three messages, denoted by (a, e, z) and that these

messages can be parsed as a = (a1, . . . , aκ), e = (e1, . . . , eκ), and z = (z1, . . . , zκ), where for each
i ∈ [κ], the triplet (ai, ei, zi) are messages corresponding to an underlying Σ-protocol with a single-bit
challenge (i.e., where ei ∈ {0, 1}). We denote by f1 and f2 the functions that satisfy ai = f1(x,w; ri)
and zi = f2(x,w, ri, ei), where ri is uniformly chosen randomness.

However, there is a large class of Σ-protocols that do not have this special structure. In Figure 5, we
describe how any Σ-protocol can be compiled into 2-message WI and 2-message distributional weak ZK,
assuming 2-message malicious-secure OT and garbled circuits. Our protocol is described in Figure 5.

Witness Indistinguishable and Distributional Weak Zero-Knowledge Argument
Prover Input: Instance x ∈ L, witness w such that RL(x,w) = 1.
Verifier Input: Instance x, language L.

◦ Verifier Message: The verifier picks challenge e
$← {0, 1}κ for the Σ-protocol, and for

i ∈ [κ], sends OT1,i(ei) in parallel. Each ei is encrypted with a fresh OT instance.

◦ Prover Message: The prover samples a, and then constructs a garbled circuit GC(a, ·)
for a function that on input e (the verifier challenge), outputs the corresponding message z
of the underlying Σ-protocol. Let (label0i , label1i )i∈[κ] denote the labels of the garbled circuit.

The prover sends a,GC(a, ·), together with OT2,i(label0i , label1i ) for all i ∈ [κ].

◦ Verifier Output: The verifier V recovers z as the output of the garbled circuit on the
labels obtained via OT, and outputs accept if (a, e, z) is an accepting transcript of the
underlying Σ-protocol.

Figure 5: Two Round Argument System for NP from any Σ-Protocol

6 Three Round Protocols from Polynomial Assumptions.

Our three round protocol from polynomial assumptions is described in Figure 6. We denote the three
messages of a Σ-protocol by (a, e, z), and assume that the Σ-protocol is a parallel repetition of protocols
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with a single bit receiver challenge, and where the third message consists only of subsets of decom-
mitments to messages committed in the first round. We further assume that a consists of a string of
commitments, and z contains decommitment information for some of these commitments. We denote
the ith set of commitments (in the ith parallel repetition of the Σ-protocol) by ai = commit(hi). We
will implement this commitment differently in our protocol in Figure 6. We let com denote a non-
interactive statistically binding commitment scheme, and let wi = (wi1,wi2,wi3) denote the messages of
a 3-message delayed-input WI argument for NP. We also assume the existence of dense cryptosystems
which are known based on DDH, QR, RSA, etc.

Theorem 10. There exists a 3-message argument that satisfies distributional weak zero-knowledge,
strong witness indistinguishability, witness hiding and witness indistinguishability against non-adaptive
malicious verifiers, assuming either polynomially-hard DDH, N th-residuosity or Quadratic Residuosity.

6.1 Construction

Distributional Weak Zero-Knowledge Argument
Prover Input: Instance x ∈ L, witness w such that RL(x,w) = 1.
Verifier Input: Instance x, language L.

◦ Prover Message: Pick r1, r2, r
′
1, r
′
2

$← {0, 1}∗, send c1 = com(r1; r′1), c2 = com(r2; r′2)
using non-interactive statistically binding commitment com. Also, send wi1 as the first
message of the WI argument.

◦ Verifier Message: Pick challenge e
$← {0, 1}κ for the Σ-protocol, and for i ∈ [κ], send

OT1,i(ei) in parallel. Each ei is encrypted with a fresh OT instance. Additionally send

r̃1, r̃2
$←{0, 1}∗, and send wi2 as the second message of the WI argument.

◦ Prover Message: Send r1, r2 with wi3 as the third message of the WI argument proving
that ∃r′1 such that c1 = com(r1; r′1) OR ∃r′2 such that c2 = com(r2; r′2). Set pk1 = r1 ⊕
r̃1, pk2 = r2 ⊕ r̃2 as public keys for a dense cryptosystem.

Define commit(M ;R) = encpk1(M ; s1), encpk2(M ; s2) and R = s1||s2, which is decommitted
by revealing R. For i ∈ [κ], and send commit(hi),OT2,i(z

0
i , z

1
i ) in parallel using the scheme

commit. The decommitment information in z0
i , z

1
i corresponding to any commitment, only

consists of the randomness R used to generate the commitment using commit.

◦ Verifier Output: The verifier V recovers zi as the output of OTi for i ∈ [κ], and outputs
accept if and only if wi is an accepting transcript and (ai, ei, zi)i∈[κ] is an accepting transcript
of the underlying Σ-protocol, according to the commitment scheme commit.

Figure 6: Three Round Argument System for NP

6.2 Adaptive Soundness

Theorem 11 (Adaptive Soundness). The protocol in Figure 6 satisfies adaptive soundness against
malicious PPT provers.

Proof. We will use any prover P ∗ that breaks soundness to break receiver security of the underlying
oblivious transfer.
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The prover P ∗ generates the first message of the protocol (including the commitments to r1, r2, and

wi1). The reduction then samples two strings e0, e1
$← {0, 1}∗ and then sends them to an external OT

challenger. The external OT challenger picks b
$← {0, 1}, and outputs message ch = {OT1(ei,b)}i∈[κ],

which the reduction forwards to the cheating prover P ∗ as the OT receiver challenge for the second

round of the protocol. The reduction also picks r̃
$←{0, 1}∗ and sends it together with honestly sampled

wi2 to P ∗.
We assume, for the sake of contradiction, that the cheating prover P ∗ generates an accepting tran-

script with probability at least p(κ) = 1
poly(κ) : thus, it reveals r1 and r2 together with wi3 that one out

of r1 and r2 was correctly decommitted. If P ∗ aborts or generates a non-accepting transcript, then the
reduction aborts, and if it doesn’t, then the reduction records (r1, r2) and then rewinds the prover to
the end of the first message. We will condition the rest of the experiment on extraction being successful
at the end of this step, which occurs with probability at least p− negl(κ).

Next, the reduction does the following: Sample pk1, pk2
$← {0, 1}∗, together with their secret keys

sk1, sk2. Then, set r̃1, r̃2 = (pk1⊕r1, pk2⊕r2). Send verifier message using the same (externally obtained)
OT challenge ch.

Suppose the prover responds and generates a third message such that wi3 verifies.The reduction will
use sk1, sk2 to extract the values inside the commitments using commit. By our assumption, in any such
attempt, the prover generates an accepting transcript with probability at least p(κ) for some x 6∈ L, and
hence the extractor’s success probability is at least p(κ) − negl(κ). If the extractor did not succeed, it
outputs ⊥. On the other hand, if the extractor succeeds in extracting the committed value, it proceeds
as follows.

By special soundness of the underlying Σ-protocol against unbounded provers, in any accepting
transcript, the values extracted from the commitments necessarily encode the verifier challenge according
to the Σ-protocol, or, encode the witness itself. For example, when using the Blum Σ-protocol for
Hamiltonicity (where the prover commits to the entire hamiltonian cycle and the permutation graph in
within the first message of the Σ-protocol), when x 6∈ L, in any accepting transcript the values within
the commitments can either correspond to a Hamiltonian cycle or a permutation depending on whether
the verifier challenge bit for that index is 0 or 1. If the reduction extracts a witness (then x ∈ L), and
the reduction outputs ⊥.

If it does not extract a witness, then the reduction checks if the extracted value corresponds to verifier
message being e0 or e1. If the value is neither e0 or e1, the reduction outputs ⊥. Then, since the prover
generates accepting transcripts with probability at least p(κ)−negl(κ), such a reduction still necessarily
outputs eb with probability at least p(κ)−negl(κ). On the other hand, e1−b is information-theoretically
hidden from the prover and the prover cannot guess e1−b with probability greater than negl(κ). Since
such a reduction directly contradicts receiver input-hiding security of the two-message oblivious transfer
against PPT adversaries, this proves that the protocol satisfies adaptive soundness.

6.3 Witness Indistinguishability

Theorem 12 (Witness Indistinguishability). The protocol in Figure 6 is witness-indistinguishable
against malicious PPT verifiers.

Proof. Recall that witness indistinguishability (WI) is closed under parallel composition [29], therefore
it suffices to prove WI for a single repetition (i.e., for some i ∈ [κ]) of the protocol in Figure 6.

Our proof proceeds via a sequence of hybrid arguments, where, in an intermediate hybrid, we con-
struct a distinguisher-dependent simulator, that learns (using both witnesses w1 and w2), an approxima-
tion for the verifier’s challenge bit e. Upon learning the challenge, the simulator uses the honest-verifier
ZK property to generate a simulated proof, without using any of the witnesses.
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6.3.1 Proof via Hybrid Experiments

For an NP language L with corresponding relation RL, consider an instance x ∈ L and let w1, w2 be
two witnesses such that RL(x,w1) = 1 and R(x,w2) = 1.

We prove witness indistinguishability by contradiction: suppose there exists a distinguisher DV that
distinguishes between experiments where the prover generates a proof using witness w1 versus an ex-
periment where the prover generates a proof using witness w2, with advantage greater than ε′. We then
consider a sequence of 6 hybrid experiments, indexed by error parameter ε = ε′/7, and by the previous
statement, DV must distinguish two consecutive hybrids in the sequence with advantage greater than
ε′/6. But this is a contradiction, because we prove that the advantage of the distinguisher DV between
every two consecutive hybrids (indexed by ε) is at most ε+ negl(κ).

Hybridw1
:

This hybrid corresponds to an honest prover that generates a proof for x ∈ L using witness w1. That
is, the challenger computes a = f1(x,w1, r), z

0 = f2(x,w1, r, e = 0), z1 = f2(x,w1, r, e = 1), and sends
the prover message according to Figure 6.

The output of this hybrid denoted by DV (Hybridw1
) is the output of the distinguisher on input the

view of the verifier in this experiment.

Hybrid1,ε :
In this hybrid, with probability at least 1−2−κ, the view of the verifier will be identical to Hybridw1

, and
with probability at most 2−κ, the output view is ⊥. This ensures that the advantage of the distinguisher
between the previous hybrid and this hybrids is at most 2−κ.

This hybrid is indexed by a small error parameter ε = 1
poly(κ) for some polynomial poly(·), and

proceeds as follows. The challenger sets a counter count = 0 and while count ≤ κ, repeats the following
two steps:

Step1 : The first step of this experiment is the same as Hybridw1
, that is, first compute a =

f1(x,w1, r), z
0 = f2(x,w1, r, e = 0), z1 = f2(x,w1, r, e = 1), and send prover message according to

Figure 6. Denote the view of the verifier at the end of this step, by View1.

Step2 : Additionally, (unlike Hybridw1
), guess eguess

$←{0, 1}. Then, run the algorithm in Figure 7 with
oracle access to the V and distinguisher D, and error parameter ε, to obtain eapprox. This corresponds,
roughly, to approximating the verifier’s challenge e, with error at most ε (this approximation is called
eapprox).

If eguess = eapprox, set the output of the distinguisher on input the view View1, as the output of the
experiment, and stop.

Else, set count = count + 1 and continue (go to start of while loop).
We will add a more detailed explanation of the approximating algorithm in the next hybrid. In this

hybrid, it suffices to note that independently with probability at least 1
2 in any iteration, eguess = eapprox.

Conditioned on eguess = eapprox in at least one iteration, the view of the distinguisher in this hybrid
remains the same as Hybridw1

.
If count > κ, abort and output 0 as the output of the experiment.

Lemma 10. |Pr[DV(Hybridw1
) = 1]− Pr[DV(Hybrid1,ε) = 1]| ≤ negl(κ)

Proof. The experiments are identical conditioned on the challenger not aborting. Since eguess is sampled
independently at random from eapprox, Pr[eguess = eapprox] = 1

2 independently in every iteration. Thus,
the advantage of the distinguisher is at most the probability of abort, which is 1

2κ .
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Algorithm MV,DV to approximate the verifier’s challenge.

1. Set p = 1/ε3.

2. For w ∈ {w1, w2}, and for the same fixed first two messages, repeat the following changing
the last message each time:

◦ Set j = 1,D0,w = 0 and repeat:

(a) If j = p, then halt.

(b) Sample fresh randomness rj , set a = f1(x,w, rj), z
0 = z1 = f2(x,w, e = 0, rj), and

send the prover message according to Figure 6.
Set D0,w = D0,w+ 1

p if the output of the distinguisher DV = 1 (w.l.o.g., we assume
that the distinguisher DV outputs either 0 or 1).

◦ Set j = 1,D1,w = 0 and repeat:

(a) If j = p, then halt.

(b) Sample fresh randomness rj , set a = f1(x,w, rj), z
0 = z1 = f2(x,w, a, e = 1, rj),

and send the prover message according to Figure 6.
Set D1,w = D1,w+ 1

p if the output of the distinguisher DV = 1 (w.l.o.g., we assume
that the distinguisher DV outputs either 0 or 1).

◦ Set j = 1,Dw = 0 and repeat:

(a) If j = p, then halt.

(b) Sample fresh randomness rj , set a = f1(x,w, rj), z
0 = f2(x,w, a, e = 0, rj), z

1 =
f2(x,w, a, e = 1, rj), and send the prover message according to Figure 6.
Set Dw = Dw + 1

p if the output of the distinguisher DV = 1 (w.l.o.g., we assume
that the distinguisher DV outputs either 0 or 1).

3. If |D1,w2 −Dw2 | ≥ |D0,w2 −Dw2 |+ ε, set eapprox = 0.

4. Else if |D0,w2 −Dw2 | ≥ |D1,w2 −Dw2 |+ ε, set eapprox = 1.

5. Else if |D1,w1 −Dw1 | ≥ |D0,w1 −Dw1 |+ ε, set eapprox = 0.

6. Else set eapprox = 1.

Figure 7: Approximately Learning the Verifier’s Challenge

Hybrid2,ε : In this hybrid, at an intuitive level, the challenger approximates the receiver’s challenge
(i.e., the bit er), and replaces the sender’s oblivious transfer messages with simulated messages, corre-
sponding to the approximated value of er.

That is, the challenger sends the first round message honestly, after which the (malicious) receiver
sends the second message consisting of oblivious transfer message r, that could possibly correspond
to OT1(er) for some challenge bit er (or to no er at all). The challenger verifies that r is a valid
message according to the underlying OT scheme. By security of the underlying OT against malicious
receivers (refer Definition 2), for any fixed r sent by a malicious receiver that the challenger verifies
to be a valid OT message, and any auxiliary input z, the following statement is true: Conditioned on
r being the first message of R, either the distribution of receiver views ViewR(〈S(m0,m1), R(z))〉 ≈c
ViewR(〈S(m0,m0), R(z))〉 for all (m0,m1), or, ViewR(〈S(m0,m1), R(z)〉) ≈c ViewR(〈S(m1,m1), R(z)〉)
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for all (m0,m1). That is, every r generated by a malicious receiver that verifies as a valid OT message,
behaves like OT1(er) for some bit er.

In other words, for any distinguisher that has input the view of the verifier, at least one out of
ViewR(〈S(m0,m0), R(z)〉) and ViewR(〈S(m1,m1), R(z)〉) is negl(κ)- close to the correct distribution
ViewR(〈S(m0,m1), R(z)〉) (or, both could be negl(κ)-close, which we do not discuss here because the
distinguisher is a trivial distinguisher, and the proof becomes easier). When only one of the distributions
ViewR(〈S(m0,m0), R(z)〉) and ViewR(〈S(m1,m1), R(z)〉) is close to the correct distribution, the chal-
lenger computes which distribution is close by sending many randomly chosen sender messages to the
distinguisher, according to all three distributions, and learning whether the output of the distinguisher
on ViewR(〈S(m0,m0), R(z)〉) or the output of the distinguisher on input ViewR(〈S(m1,m1), R(z)〉) is
close to the output of the distinguisher on input ViewR(〈S(m0,m1, z)〉), upto error ε = 1

poly(κ) .

Formally, the experiment is indexed by an error parameter ε = 1
poly(κ) , and proceeds as follows.

Step1 : First, guess eguess
$← {0, 1}. Next, compute a = f1(x,w1, r), z

0 = f2(x,w1, r, eguess), z
1 =

f2(x,w1, r, eguess), and send prover message according to Figure 6.
Step2 : Then, run the protocol in Figure 7 with error parameter ε to compute eapprox. If eguess =

eapprox, set the output of the distinguisher on input the view of the verifier in Step1 of this experiment,
as the output of the experiment DV (Hybrid2,ε), and stop.

Else, set count = count + 1 and continue (go to start of while loop).
If count > κ, abort and output 0 as the output of the experiment.

Lemma 11. ∣∣Pr[DV = 1|Hybrid1,ε]− Pr[DV = 1|Hybrid2,ε]
∣∣ ≤ ε+ negl(κ)

Proof. For the fixed verifier message OT1(e) corresponding to the receiver challenge bit er, and witness
w ∈ {w1, w2},

◦ Let Dcorrect,0,w denote the actual distribution output by the distinguisher when the challenger
samples fresh randomness rj , sets a = f1(x,w, rj), z

0 = z1 = f2(x,w, e = 0, rj), and send the
prover message according to Figure 6. We will abuse notation and also use Dcorrect,0,w to denote
the probability that the distinguisher outputs 1 in this situation.

◦ Let Dcorrect,1,w denote the actual distribution output by the distinguisher when the challenger
samples fresh randomness rj , sets a = f1(x,w, rj), z

0 = z1 = f2(x,w, e = 1, rj), and send the
prover message according to Figure 6. We will abuse notation and also use Dcorrect,1,w to denote
the probability that the distinguisher outputs 1 in this situation.

◦ Let Dcorrect,w denote the actual distribution output by the distinguisher when the challenger sam-
ples fresh randomness rj , sets a = f1(x,w, rj), z

0 = f2(x,w, e = 0, rj), z
1 = f2(x,w, a, e = 1, rj),

and send the prover message according to Figure 6. We will abuse notation and also use Dcorrect,w

to denote the probability that the distinguisher outputs 1 in this situation.

◦ We note that D0,w1 ,D1,w1 ,D0,w2 ,D1,w2 ,Dw1 ,Dw2 denote the approximate distributions that the
simulator lerans (refer Figure 7), while Dcorrect,0,w,Dcorrect,1,w and Dcorrect,w denote the actual
distributions (output by the distinguisher) themselves.

Claim 5. Either of the following statements is true:

◦ For all witnesses w,

|Pr[Dcorrect,0,w = 1]− Pr[Dcorrect,w = 1]| ≤ negl(κ)
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◦ For all witnesses w,

|Pr[Dcorrect,1,w = 1]− Pr[Dcorrect,w = 1]| ≤ negl(κ)

Proof. Assume, for contradiction, that there exist V and DV for which the claim is not true. We will
use them to break sender security of the underlying OT. Consider a reduction R that behaves honestly
in the first round, then obtains the OT receiver message from V and forwards this message to the OT
challenger.

The reduction sets a = f1(x,w, rj), z
0 = f2(x,w, e = 0, rj), z

1 = f2(x,w, e = 1, rj), and sends
(z0, z1) to the OT challenger.

The OT challenger generates either the real message OT2(z0, z1), or a simulated message OT2(z∗, z∗),
for some (fixed) z∗ ∈ {z0, z1}. The reduction forwards this message to the distinguisher.

The reduction mirrors the output of DV and it holds that,
|Pr[DV = 1|real OT message]−Pr[DV = 1|simulated OT message]| ≥ 1

poly(κ) for some polynomial poly(·),
for both z∗ = z0 and z∗ = z1, which is a contradiction.

This claim establishes that at least one of the distributions Dcorrect,0,w and Dcorrect,1,w is negligibly
close to Dcorrect,w.

If both Dcorrect,0,w and Dcorrect,1,w are ε-close to Dcorrect,w for w = w1, then for any value of eguess in
{0, 1},

∣∣Pr[DV = 1|Hybrid1,ε]− Pr[DV = 1|Hybrid2,ε]
∣∣ ≤ ε+ negl(κ) and we are done.

Therefore, for the rest of this lemma, we restrict ourselves to the case where for w = w1, one and
only one out of Dcorrect,0,w and Dcorrect,1,w is ε-close to Dcorrect,w. In particular, this also implies that
|Dcorrect,0,w −Dcorrect,1,w| > ε for w = w1.

If the challenger could “magically” set eguess to 0 if Dcorrect,0,w was close to Dcorrect,w, and to 1 if
Dcorrect,0,w was close to Dcorrect,w, then again we would have that∣∣Pr[DV = 1|Hybrid1,ε]− Pr[DV = 1|Hybrid2,ε]

∣∣ ≤ ε.
Unfortunately, the challenger cannot magically know which distributions are close, and will therefore

have to approximate these distributions to obtain an answer. We now bound the probability that the
challenger’s approximation eapprox is incorrect conditioned on |Dcorrect,0,w−Dcorrect,1,w| > ε, i.e., we show:

Claim 6.

Pr
[
(eapprox = b)

∣∣(|Dcorrect,1,w−Dcorrect,0,w| > ε)∧ (|Dcorrect,w−Dcorrect,b,w| > ε)
]
≤ negl(κ) where w = w1.

Proof. We note that for w ∈ {w1, w2},D0,D1,Dw consist of p random samples from the distributions:
Dcorrect,0,w,Dcorrect,1,w,Dcorrect,w.

Then, using a simple Chernoff bound, we have that for w ∈ {w1, w2}:

◦ Pr[(D0 > Dcorrect,0,w(1 + α)) ∨ (D0 < Dcorrect,0,w(1− α))] ≤ 2 exp−
α2pDcorrect,0,w

2

◦ Pr[(D1 > Dcorrect,1,w(1 + α)) ∨ (D1 < Dcorrect,1,w(1− α))] ≤ 2 exp−
α2pDcorrect,1,w

2

◦ Pr[(Dw > Dcorrect,w(1 + α)) ∨ (Dw < Dcorrect,w(1− α))] ≤ 2 exp−
α2pDcorrect,w

2

Setting α = ε
2 , by a simple union bound we have that for w ∈ {w1, w2},

Pr
[(
|Dcorrect,0,w −D0| >

ε

2

)
∨
(
|Dcorrect,1,w −D1| >

ε

2

)
∨
(
|Dcorrect,w −Dw| >

ε

2

)]
≤ 6 exp−

1
2ε
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Since ε will always be set to 1
poly(κ) for some polynomial poly(·), for w ∈ {w1, w2},

Pr
[(
|Dcorrect,0,w −D0| >

ε

2

)
∨
(
|Dcorrect,1,w −D1| >

ε

2

)
∨
(
|Dcorrect,w −Dw| >

ε

2

)]
≤ 6 exp−

1
8ε

We consider the event that the approximation eapprox is incorrect, and perform a case-analysis of
this event.

◦ Case I: Suppose that the value eapprox was fixed in Step 5 or Step 6 (i.e., by using witness w1

to approximate). Recall that one of Dcorrect,0,w and Dcorrect,1,w is at least ε-far from Dcorrect,w,
and the other is at most negl(κ)-far, for w = w1. The bit b is estimated via D0,D1,Dw which
each have error at most ε

2 , from the corresponding distributions Dcorrect,0,w,Dcorrect,1,w,Dcorrect,0,w.
Thus, Pr[eapprox is incorrect in Case I] ≤ negl(κ).

◦ Case II: Suppose that the value eapprox was fixed in Step 3 or Step 4 of Figure 7 (i.e., by using
witness w2 to approximate). Recall that there exists a bit b such that Dcorrect,b,x is at least ε-far
from Dcorrect,w, and Dcorrect,b,w is at most negl(κ)-far, for w = w1. By Claim 5, even for w = w2,
Dcorrect,b,w is at most negl(κ)-far from Dcorrect,w.

Then, eapprox is incorrect if Step 3 and Step 4 result in output b = 1−b, which happens if and only if
|Db,w2−Dw2 | > |Db,w2

−Dw2 |+ε. However, note that Pr[|Db,w2−Dw2 | > ε
∣∣|Dcorrect,b,w−Dcorrect,w| =

negl(κ)] ≤ negl(κ) by the Chernoff bounds above. Therefore, Steps 3 and 4 result in incorrect
output eapprox with probability at most negl(κ).

Summing up, Pr
[
eapprox = b

∣∣|(Dcorrect,1,w −Dcorrect,0,w| > ε) ∧ (|Dcorrect,w −Dcorrect,b,w| > ε)
]
≤ negl(κ)

for w = w1.

This completes the proof of the lemma.

Hybrid3,ε : In this experiment, the challenger approximates the verifier challenge and conditions on
eguess = eapprox as before. In Hybrid2,ε, the challenger response OT2(zeapprox , zeapprox) was fixed and did
not encode the witness, but the message a still possibly encoded witness w1. In this hybrid, instead of
sampling (a, zeguess) using the witness w1, the challenger simulates (a, zeguess) without any witness, instead
essentially relying on the honest-verifier ZK simulator of the underlying Σ-protocol.

Formally, the experiment is indexed by an error parameter ε = 1
poly(κ) , and proceeds as follows.

Step1 : First, guess eguess
$←{0, 1}. Next, compute without using the witness w1, a = f1(x, r, eguess), z

0 =
z1 = f2(x, r, eguess), and send prover message according to Figure 6.

Step2 : Then, run the protocol in Figure 7 with error parameter ε to compute eapprox. If eguess =
eapprox, set the output of the distinguisher on input the view of the verifier in Step1 of this experiment,
as the output of the experiment DV (Hybrid3,ε), and stop.

Else, set count = count + 1 and continue (go to start of while loop).
If count > κ, then abort and output 0 as the output of the experiment.

Lemma 12. |Pr[DV(Hybrid1,ε) = 1]− Pr[DV(Hybrid2,ε) = 1]| ≤ negl(κ)

Proof. Assume, for contradiction, that there exist V and DV for which the claim is not true. We will
use them to break hiding of the non-interactive commitment scheme com, or the IND-CPA security of
the the dense cryptosystem (which essentially is responsible for honest-verifier ZK of the underlying
Σ-protocol).

In the first sub-hybrid, the challenger C first conducts the experiment identically to Hybrid1,ε except
that it obtains a public key pk2 externally and sets the opening of the second commitment to r′2 = pk2⊕r̃2
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(which is different from the value r2 that it committed to in the first round). It uses r1 as witness for
wi. The view of a verifier in this experiment remains computationally indistinguishable from the view
in Hybrid1,ε because of hiding of the commitment scheme com.

In the next sub-hybrid, only for Step1, it changes the second set of encryptions encpk2 to be computed
without using the witness, corresponding to eguess. Since these are never opened, this experiment remains
indistinguishable by the IND-CPA security of the dense public key encryption scheme.

In the next sub-hybrid, the challenger opens r2 honestly (instead of setting it as pk2⊕r̃2 for externally
obtained pk2. The view of a verifier in this experiment remains computationally indistinguishable from
the view in Hybrid1,ε because of hiding of the commitment scheme com.

In the next sub-hybid, the challenger uses r2 as witness for wi instead of using r1. Since the
experiment is conducted with a single set of (fixed) first two messages, or in other words, since the
challenger is never rewound, this remains indistinguishable by the witness indistinguishability of wi.

Next, following the same sequence of sub-hybrids again, again, only for Step1, the challenger also
changes the first set of encryptions encpk1 to be computed without using the witness, corresponding to
verifier challenge eguess for the Σ-protocol. At this point, the challenger computes the prover message
in Step1 without using the witness, exactly as in Hybrid2,ε. This proves the lemma.

Hybrid4,ε :
This hybrid is identical to Hybrid2,ε except that in Step1, a = f1(x,w2, r), z

0 = f2(x,w2, r, eguess), z
1 =

f2(x,w2, r, eguess). That is, the challenger starts using witness w2 to compute (a, zeguess).

Lemma 13. |Pr[DV(Hybrid3,ε) = 1]− Pr[DV(Hybrid4,ε) = 1]| ≤ negl(κ)

Proof. The proof of this lemma follows in the same way as the proof of Lemma 12.

Hybrid5,ε :
This is identical to Hybrid1,ε, except that in Step1, a = f1(x,w2, r), z

0 = f2(x,w2, r, e = 0), z1 =
f2(x,w2, r, e = 1). That is, the challenger now starts using the witness w2 to compute (a, z0, z1), and
the experiment is identical to an honest challenger using w2 to generate the proof, except it aborts with
probability 1

2κ .

Lemma 14. |Pr[DV(Hybrid4,ε) = 1]− Pr[DV(Hybrid5,ε) = 1]| ≤ ε+ negl(κ)

Proof. The proof of this lemma follows in the same way as the proof of Lemma 11.

Hybridw2
:

This is the real experiment corresponding to generating the proof with witness w2, where the challenger
computes a = f1(x,w2, r), z

0 = f2(x,w2, r, e = 0), z1 = f2(x,w2, r, e = 1) and sends the prover message
according to Figure 6.

Lemma 15. |Pr[DV(Hybrid5,ε) = 1]− Pr[DV(Hybridw2
) = 1]| ≤ negl(κ)

Proof. The proof of this lemma follows in the same way as the proof of Lemma 10.

Suppose there exists a verifier V , a distinguisherDV , and a polynomial p(·) such that Pr[DV (Hybridw1
) =

1]− Pr[DV (Hybridw2
) = 1] = ε′ ≥ 1

p(·) . Consider the family of hybrids parameterized by ε = ε′

7 .

Then, the distinguisher must necessarily have advantage at least ε′

6 in distinguishing one pair of
consecutive hybrids between the six consecutive pairs Hybridw1

and Hybridw2
, which is a contradiction,
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since the distinguisher can have advantage at most ε + negl(κ) = ε′

7 + negl(κ) between each pair of
consecutive hybrids. This completes the proof of witness indistinguishability. Furthermore, the same
protocol is also reusable witness indistinguishable, that is, it remains witness indistinguishable even
when proofs of several instances are provided using the same first two messages – this follows by a
simple sequence of hybrid experiments going over all instances.

6.4 Distributional Weak Zero-Knowledge

Theorem 13 (Distributional Weak Zero-Knowledge). The protocol in Figure 6 is distributional weak
zero-knowledge against malicious PPT verifiers.

Proof. Fix any PPT V ∗, any distinguisher D, any distribution (X ,W,Z), and any ε > 0. We construct
a simulator Simε that obtains non-uniform advice z, pε = poly(1/ε) random instance-witness samples
(x∗1, w

∗
1), (x∗2, w

∗
2), . . . (x∗pε , w

∗
pε) from the distribution (X ,W). Or, if the distribution (X ,W) is efficiently

samplable, Simε samples (x∗1, w
∗
1), (x∗2, w

∗
2), . . . (x∗pε , w

∗
pε) these on its own.

At a high level, the simulator uses these instances to approximately-learn the verifier’s challenge
string e (call this approximation eapprox), and then generates a transcript corresponding to a random
x ∼ X , by using the honest-verifier ZK simulation strategy of the underlying Σ-protocol, corresponding
to verifier challenge eapprox. We now describe a sequence of hybrid experiments, where hybrid HybridSimε

corresponds to our simulator Simε.

6.4.1 Proof via Hybrid Experiments

Hybrid0 := Hybrid0,ε :
This hybrid corresponds to an honest prover in the real world. That is, for i ∈ [κ], the challenger

samples (x,w)
$← (X ,W) and sends ai = f1(x,w, ri), z

0
i = f2(x,w, ri, ei = 0), z1

i = f2(x,w, ri, ei = 1) to
the verifier.

Hybrid1,ε :

This hybrid is indexed by a small error parameter ε = 1
poly(κ) for some polynomial poly(·), and proceeds

as follows. Fix the first message r of the verifier.

1. Run the algorithm in Figure 8 parameterized by I = 1 with oracle access to the distinguisher D,
and error parameter ε, to obtain guess eapprox,1 for the first bit of the verifier challenge.

2. Next, compute a1 = f1(x,w, r1), z0
1 = f2(x,w, r1, eapprox,1), z1

1 = f2(x,w, r1, eapprox,1).

3. For i ∈ [2, κ], compute (ai, z
0
i , z

1
i ) honestly.

4. Send prover message according to Figure 6 using the ai, zi computed for i ∈ [κ].

HybridI,ε for I ∈ [2, κ] :

This hybrid is indexed by a small error parameter ε = 1
poly(κ) for some polynomial poly(·), and proceeds

as follows.

1. Run the algorithm in Figure 8 parameterized by I with oracle access to the verifier V , distinguisher
D, and error parameter ε, to obtain guess eapprox for the first I bits of the verifier challenge.

2. Next, for i ∈ [I], compute ai = f1(x,w, ri), z
0
i = f2(x,w, ri, eapprox,i), z

1
i = f2(x,w, ri, eapprox,i).
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3. For i ∈ [I + 1, κ], compute (ai, z
0
i , z

1
i ) honestly.

4. Send prover message according to Figure 6 using the ai, zi computed for i ∈ [κ].

Algorithm MV,DV to approximate the verifier’s challenge upto the Ith bit.

◦ Set p = κ2/ε3, i = 1, eapprox = ⊥. For fixed verifier message r,

◦ While i ≤ I, repeat:

– Set D0 = 0 and for j ∈ [p], repeat:

1. For k < i, sample fresh randomness rk and set ak = f1(x∗j , w
∗
j , rk), z

0
k = z1

k =
f2(x∗j , w

∗
j , rk, e = eapprox,k).

2. Sample fresh ri, set ai = f1(x∗j , w
∗
j , ri), z

0
i = z1

i = f2(x∗j , w
∗
j , a, e = 0, ri).

3. For k ∈ [i + 1, κ], sample fresh randomness rk and honestly set ak =
f1(x∗j , w

∗
j , rk), z

0
k = f2(x∗j , w

∗
j , a, e = 0, rk), z

1
k = f2(x∗j , w

∗
j , a, e = 1, rk)

4. Using (a, z) computed above, send prover message according to Figure 6, together
with the instance x∗j .

Set D0 = D0 + 1
p if the output of the distinguisher DV = 1 (w.l.o.g., we assume

that the distinguisher DV outputs either 0 or 1).

– Set D1 = 0 and for j ∈ [p], repeat:

1. For k < i, sample fresh randomness rk and set ak = f1(x∗j , w
∗
j , rk), z

0
k = z1

k =
f2(x∗j , w

∗
j , rk, e = eapprox,k).

2. Sample fresh ri, set ai = f1(x∗j , w
∗
j , ri), z

0
i = z1

i = f2(x∗j , w
∗
j , a, e = 1, ri).

3. For k ∈ [i + 1, κ], sample fresh randomness rk and honestly set ak =
f1(x∗j , w

∗
j , rk), z

0
k = f2(x∗j , w

∗
j , a, e = 0, rk), z

1
k = f2(x∗j , w

∗
j , a, e = 1, rk)

4. Using (a, z) computed above, send prover message according to Figure 6, together
with the instance x∗j .

Set D1 = D1 + 1
p if the output of the distinguisher DV = 1.

– Set Dw = 0 and for j ∈ [p], repeat:

1. For k < i, sample fresh randomness rk and set ak = f1(x∗j , w
∗
j , rk), z

0
k = z1

k =
f2(x∗j , w

∗
j , rk, e = eapprox,k).

2. For k ∈ [i, κ], sample fresh randomness rk and honestly set ak =
f1(x∗j , w

∗
j , rk), z

0
k = f2(x∗j , w

∗
j , a, e = 0, rk), z

1
k = f2(x∗j , w

∗
j , a, e = 1, rk).

3. Using (a, z) computed above, send prover message according to Figure 6, together
with the instance x∗j .

Set Dw = Dw + 1
p if the output of the distinguisher DV = 1.

– If |D1 −Dw| ≤ |D0 −Dw|, set eapprox,i = 1, else set eapprox,i = 0.

– Set i = i+ 1 and go to beginning of the while loop.

◦ Output eapprox.

Figure 8: Approximately Learning the Verifier’s Challenge

45



Lemma 16. For all I ∈ [0, κ− 1],∣∣Pr[DV = 1|HybridI,ε]− Pr[DV = 1|HybridI+1,ε]
∣∣ ≤ ε

κ+ 1

Proof. The only difference between HybridI,ε and HybridI+1,ε is that in HybridI+1, eapprox,I+1 is computed
according to the algorithm in Figure 8 and the challenger sets aI+1 = f1(x,w, rI+1), z0

I+1 = z1
I+1 =

f2(x,w, rI+1, eguess,I+1), and then sends prover message according to Figure 6.
For the fixed prover first message and fixed verifier message (which fixes OT1), for i ∈ [κ] and a

fixed prefix eprefix = eapprox,[I], denoting the first I bits of eapprox,

◦ Let Deprefix,0,x denote the actual distribution output by the distinguisher when the challenger sam-

ples random (x,w)
$← (X ,W),

– For j ≤ I, sets aj = f1(x,w, rj), z
0
j = z1

j = f2(x,w, rj , ej = eprefix,j), and using these sends

prover message according to Figure 6. Here, eprefix,j denotes the jth bit of eprefix.

– For j = I + 1, sets aj = f1(x,w, rj), z
0
j = z1

j = f2(x,w, rj , ej = 0), and using these sends
prover message according to Figure 6.

– For j ∈ [I+ 2, κ], sets aj = f1(x,w, rj), z
0
j = f2(x,w, rj , ej = 0), z1

j = f2(x,w, rj , ej = 1), and
using these sends prover message according to Figure 6.

We will abuse notation and also use Deprefix,0,x to denote the probability that the distinguisher
outputs 1 in this situation.

◦ Let Deprefix,1,x denote the actual distribution output by the distinguisher when the challenger sam-

ples random (x,w)
$← (X ,W) and fresh randomness r,

– For j ≤ I, sets aj = f1(x,w, rj), z
0
j = z1

j = f2(x,w, rj , ej = eprefix,j), and using these sends
prover message according to Figure 6.

– For j = I + 1, sets aj = f1(x,w, rj), z
0
j = z1

j = f2(x,w, rj , ej = 1), and using these sends
prover message according to Figure 6.

– For j ∈ [I + 2, κ], sets aj = f1(x,w, rj), z
0
j = f2(x,w, rj , ej = 0), z1

j = f2(x,w, r, ej = 1, rj),
and using these sends prover message according to Figure 6.

We will abuse notation and also use Deprefix,1,x to denote the probability that the distinguisher
outputs 1 in this situation.

◦ Let Deprefix,w,x denote the actual distribution output by the distinguisher when the challenger

samples random (x,w)
$← (X ,W) and fresh randomness r,

– For j ≤ I, sets a = f1(x,w, rj), z
0
j = z1

j = f2(x,w, rj , ej = eprefix,j), and using these sends
prover message according to Figure 6.

– For j ∈ [I + 1, κ], sets a = f1(x,w, rj), z
0
j = f2(x,w, rj , ej = 0), z1

j = f2(x,w, rj , ej = 1), and
using these sends prover message according to Figure 6.

We will abuse notation and also use Deprefix,w,x to denote the probability that the distinguisher
outputs 1 in this situation.

Claim 7. Either of the following statements is true:

◦ For any prefix eprefix ∈ {0, 1}I , e |Pr[Deprefix,0,x = 1]− Pr[Deprefix,w,x = 1]| ≤ negl(κ)

◦ For any prefix eprefix ∈ {0, 1}I , e|Pr[Deprefix,1,x = 1]− Pr[Deprefix,w,x = 1]| ≤ negl(κ)
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Proof. This claim follows from security of the OT. Assume, for contradiction, that there exist V and
DV for which the claim is not true. We will use them to break receiver security of the underlying OT.
Consider a reduction R that obtains the first OT message from V and forwards this message to the OT
challenger.

The reduction picks (x,w)
$← (X ,W), r

$← {0, 1}∗ and sets aI+1 = f1(x,w, r), z0
I+1 = f2(x,w, r, e =

0), z1
I+1 = f2(x,w, r, e = 1), and sends (z0

I+1, z
1
I+1) to the OT challenger.

The OT challenger generates either the real message OT2(z0
I+1, z

1
I+1) corresponding to verifier input,

or a simulated message OT2(z∗, z∗), for some z∗ ∈ {z0, z1}. The reduction sets all other (ai, zi0, z
i
1) for

i 6= (I + 1) according to HybridI , and generates sender message accordingly.
Then, the output of distinguisher DV on input the simulated message is either distributed identically

to Deprefix,0,x or Deprefix,1,x (depending upon whether z∗ is 0 or 1). The reduction mirrors the output of

DV and it holds that, Pr[DV = 1|real OT message] − Pr[DV = 1|simulated OT message] ≥ 1
poly(κ) for

some polynomial poly(·), for both z∗ = z0
I+1 and z∗ = z1

I+1, which is a contradiction.

This claim establishes that for any prefix, at least one of the distributions Deprefix,0,x and Deprefix,1,x is
negligibly close to Deprefix,w,x.

If both Deprefix,0,x and Deprefix,1,x are ε/(κ+ 1)-close to Deprefix,w,x, then for any value of eapprox,I+1 ∈
{0, 1},

∣∣Pr[DV = 1|HybridI,ε]− Pr[DV = 1|HybridI+1,ε]
∣∣ ≤ ε/(κ+ 1) and we are done.

Therefore, for the rest of this lemma, we restrict ourselves to the case where one and only one out
of Deprefix,0,x and Deprefix,1,x is ε

κ+1 -close to Deprefix,w,x. In particular, this also implies that |Deprefix,0,x −
Deprefix,1,x| > ε

κ+1 .
If the challenger could “magically” set eapprox,I+1 to 0 if Deprefix,0,x was close to Deprefix,w,x, and to 1 if

Deprefix,0,x was close to Deprefix,w,x, then again we would have that∣∣Pr[DV = 1|HybridI,ε]− Pr[DV = 1|HybridI+1,ε]
∣∣ ≤ ε/(κ+ 1)

Unfortunately, the challenger cannot magically know which distributions are close, and will therefore
have to approximate these distributions to obtain an answer. We now bound the probability that the
challenger’s approximation eapprox,I is incorrect conditioned on |Deprefix,0,x − Deprefix,1,x| > ε

κ+1 , i.e., we
show:

Claim 8.

Pr
[
(eapprox,I = b)

∣∣(Deprefix,1,x −Deprefix,0,x >
ε

κ+ 1
) ∧ (|Dcorrect,w −Dcorrect,b,w| >

ε

κ+ 1
)
]
≤ negl(κ)

Proof. We note that for the (I + 1)th iteration of Figure 8, D0 just consists of p random samples of
a distribution with mean Deprefix,0,x, D1 just consists of p random samples of a distribution with mean
Deprefix,1,x, and Dw just consists of p random samples of a distribution with mean Deprefix,w,x.

Then, using a simple Chernoff bound, we have:

◦ Pr[
(
D0 > Deprefix,0,x(1 + α)

)
∨
(
D0 < Deprefix,0,x(1− α)

)
≤ 2 exp−

α2pD0
2 ]

◦ Pr[
(
D1 > Deprefix,1,x(1 + α)

)
∨
(
D1 < Deprefix,1,x(1− α)

)
≤ 2 exp−

α2pD1
2 ]

◦ Pr[
(
Dw > Deprefix,w,x(1 + α)

)
∨
(
Dw < Deprefix,w,x(1− α)

)
≤ 2 exp−

α2pD1
2 ]

Setting α = ε
2κ , and since p = κ2

ε3
, by a simple union bound we have that

Pr
[(
|Deprefix,0,x −D0| >

ε

2κ

)
∨
(
|Deprefix,1,x −D1| >

ε

2κ

)
∨
(
|Deprefix,w,x −Dw| >

ε

2κ

)]
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≤ 6 exp−
1
8ε . Since ε will always be set to 1

poly(κ) for some polynomial poly(·),

Pr
[(
|Deprefix,0,x −D0| >

ε

2κ

)
∨
(
|Deprefix,1,x −D1| >

ε

2κ

)
∨
(
|Deprefix,w,x −Dw| >

ε

2κ

)]
≤ negl(κ).

Recall that one of Deprefix,0,x and Deprefix,w,x is at least ε/(κ+ 1)-far from Deprefix,w,x, and the other is at
most negl(κ)-far. The bit eapprox,I is estimated via D0,D1,Dw which each have error at most ε

2κ , from
the corresponding
Deprefix,0,x,Deprefix,1,x,Deprefix,w,x. Thus,

Pr
[
eapprox,I = b

∣∣ |(Deprefix,1,x −Deprefix,0,x| > ε/(κ+ 1))
∧

(|Deprefix,w,x −Deprefix,b,x| > ε/(κ+ 1))
]
≤ negl(κ).

This completes the proof of the lemma.

HybridSim,ε : This hybrid corresponds to the interaction of the simulator with the verifier and distin-

guisher. It is indexed by a small error parameter ε = 1
poly(κ) for some polynomial poly(·), and proceeds

as follows.

1. Run the algorithm in Figure 8 parameterized by κ with oracle access to the verifier V , distinguisher
D, and error parameter ε, to obtain guess eapprox for the entire verifier challenge (all κ bits).

2. Next, for i ∈ [κ], compute (without using the witness), ai = f1(x,w, eapprox,i, ri), z
0
i = z1

i =
f2(x,w, eapprox,i, ri) and send prover message according to Figure 6.

Lemma 17.
∣∣∣Pr[DV(Hybridκ,ε) = 1]− Pr[DV(HybridSim,ε) = 1]

∣∣∣ ≤ negl(κ)

Proof. Assume, for contradiction, that there exist V and DV for which the claim is not true. We will use
them to break hiding of the commitment scheme com or the IND-CPA security of the dense public-key
cryptosystem. In the first sub-hybrid, the challenger C first conducts the experiment identically to
Hybridκ,ε except that it obtains a public key pk2 externally and sets the opening r2 to pk2 ⊕ r̃2. It uses
r1 as witness for wi. The view of a verifier in this experiment remains computationally indistinguishable
from the view in Hybridκ,ε because of hiding of the commitment scheme com.

In the next sub-hybrid, after computing eapprox using Figure 8, it changes the second set of encryp-
tions encpk2 (only in the simulated transcript) to be computed without using the witness, corresponding
to eapprox. Since these are never opened, this experiment remains indistinguishable by the IND-CPA
security of the dense public key encryption scheme.

In the next sub-hybrid, the challenger opens r2 honestly (instead of setting it as pk2⊕r̃2 for externally
obtained pk2). The view of a verifier in this experiment remains computationally indistinguishable from
the view in Hybrid1,ε because of hiding of the commitment scheme com.

In the next sub-hybid, the challenger uses r2 as witness for wi instead of using r1. Since the
experiment is conducted with a single set of (fixed) first two messages, or in other words, since the
challenger is never rewound, this remains indistinguishable by the witness indistinguishability of wi.

Next, following the same sequence of sub-hybrids again, again, only for the final simulated transcript,
the challenger also changes the first set of encryptions encpk1 to be computed without using the witness,
corresponding to verifier challenge eapprox for the Σ-protocol. This proves the lemma.
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Suppose the distinguisher DV has a distinguishing advantage ε between Hybrid0 and HybridSimε
, then

it necessarily has advantage at least ε/(κ+ 1) in distinguishing one consecutive pair of hybrids between
Hybrid0 and HybridSimε

, which is a contradiction. This completes our proof.

Remark 2 (Weak Resettable Security.). The protocol in Figure 6 satisfies weak resettable security ac-
cording to Definition 9, when the WI proof (wi1,wi2,wi3) is instantiated with an appropriate resettable
WI (eg, a resettable reusable ZAP based on trapdoor permutations), and when the OT protocol is instan-
tiated with an appropriate 2-message resettable secure OT (i.e. the construction in [52, 44] modified a
là [16] such that the sender uses a PRF on the receiver’s message to compute the randomness for sender
message).

This requires that the real transcript in the main execution, be ε-indistinguishable from the simulated
transcript in the main execution, even in the presence of a verifier that obtains multiple “lookahead”
transcripts, where all lookahead transcripts contain honestly generated proofs, using the same first
message of the argument. Note that this first message only consists of non-interactive commitments
com(r1), com(r2). Thus in fact, the same sequence of hybrids, Hybrid0, . . .Hybridκ,ε goes through as
before, where the hybrids remain indistinguishable because of resettable security of the ZAP and two-
message OT. Finally, Hybridκ,ε and HybridSim,ε remain indistinguishable by the same proof as that of
Lemma 17, except that in the first sub-hybrid corresponding to Lemma 17, the challenger sets the
opening of the second commitment to r2 = (pk2⊕ r̃2) for the main execution, and use the same opening
for all look-ahead executions. Again, in the final sub-hybrid, this step is reversed and the challenger
opens r2 correctly, for the main as well as all look-ahead executions.

We also note that a malicious verifier that first observes the openings r1, r2 of the prover, and
then rewinds and chooses r̃1, r̃2 for the main execution based on the values r1, r2, can directly break
simulation security by extracting from commit. However, note that such a verifier is disallowed by our
definition of weak resettable security, where the verifier is strongly non-adaptive, that is, it is committed
to the second message of the main execution, before it even observes any lookahead executions. Indeed,
our proof breaks down against such a verifier since we can no longer consistently set the opening of the
second commitment to r2 = (pk2 ⊕ r̃2) for r̃2 that was sent in the main execution.

Strong WI and Witness Hiding. The proof of strong witness indistinguishability and witness hiding,
even in the weak resettable setting, follows from distributional weak ZK with extended simulation as in
Section 5.4.

7 Three Round Extractable Commitments

We use three round adaptively sound weak ZK arguments against non-adaptive verifiers, according to
Definition 5 to construct three-round extractable commitments.

We begin by modifying standard constructions of WIPoK to obtain a 3-round delayed-input reusable
witness indistinguishable argument of knowledge, that ensures witness indistinguishability, even when
the verifier obtains poly(1/ε) third round messages, possibly corresponding to multiple different instances
and witnesses. This is described in Figure 9.

7.1 Reusable Witness Indistinguishable Argument of Knowledge

We now prove that the protocol in Figure 9 is a reusable witness indistinguishable argument of knowl-
edge.

Lemma 18. The protocol in Figure 9 is an adaptive argument of knowledge.
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Reusable Witness Indistinguishable Argument of Knowledge.
Input: Prover P has input x and witness w such that R(x,w) = 1.

◦ Let com = overext-com1, overext-com2, overext-com3 denote the three messages of a three
round extractable commitment scheme, with over-extraction.

◦ Let wi = wi1,wi2,wi3 denote the messages of an adaptively sound 3-round delayed-input
reusable witness indistinguishable argument (this need not be an argument of knowledge).

◦ Let com denote a non-interactive statistically binding commitment scheme, which can be
based on one-one one-way functions.

1. The prover P samples random r1, r2
$← {0, 1}2κ and sends overext-com1(r1), overext −

com1(r2) to V, together with wi1.

2. V sends wi2 to P, together with overext-com2 for both extractable commitments.

3. P sends overext-com3(r1), overext-com3(r2) to V, together with instance x. P samples ran-

dom (a1, a2)
$← {0, 1}2κ, and sends a1, x1 = w ⊕ PRF(r1, a1), a2, x2 = w ⊕ PRF(r2, a2). P

also sends wi3 proving that:

(∃r1, a1 such that x1 = w ⊕ PRF(r1, a1) ∧ overext-com(r1)

is correctly constructed for R(x,w) = 1)
∨

(∃r2, a2 such that x2 = w ⊕ PRF(r2, a2) ∧ overext-com(r2)

is correctly constructed for R(x,w) = 1)

4. V accepts if and only if wi, com verify.

Figure 9: Reusable Witness Indistinguishable Argument of Knowledge

Proof. (Sketch) For any accepting transcript (main thread) generated by the prover, because of adap-
tive soundness of wi, the ith extractable commitment is generated as a valid extractable commitment to
randomness ri, such that PRF(ri, ai)⊕ xi yields a witness for the corresponding (distributional) state-
ment x, for some i ∈ {1, 2}. When the prover is rewound to the end of the first message, then with
overwhelming probability, the prover produces O(κ) accepting transcripts within κ2 rewinds. Again, by
a simple probabilistic argument, with overwhelming probability at least one of the accepting transcripts
(in the rewinding thread) produce a valid extractable commitment for the same index i as the main
thread (even though they may use different witnesses w).

Thus, by the extraction property of the over-extractable commitments, such an extractor can use
the underlying extractor for the overextracting commitments, to extract ri, and therefore extract a valid
witness for the main thread.

We note that when wi is instantiated by a 2-round ZAP, we obtain a proof of knowledge assuming
ZAPs, and additionally DDH/QR/N th residuosity. On the other hand, when it is instantiated by
our 2-round WI system, we obtain an argument of knowledge based on quasi-polynomial hardness
of DDH/QR/N th residuosity. When instantiated by our 3-round (reusable) WI argument described
in Section 5.7, we obtain an argument of knowledge based on polynomial hardness of DDH/QR/N th

residuosity.
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Lemma 19. The protocol in Figure 9 is reusable witness indistinguishable according to Definition 10.

Proof. (Sketch) Suppose we want to prove witness indistinguishability for a subset S of statements
generated in the third round, using witness w1 versus w2. We consider the following sequence of simple
hybrid experiments:

Hybrid0 : This corresponds to the real experiment where the prover generates the protocol transcript of
Figure 9 using a valid witness w1 in both extractable commitments, and generates proofs for multiple
statements (given fixed first and second messages), according to the strategy in Figure 9. The prover

picks b
$←{0, 1}, and uses rb as witness for the wi.

Hybrid1 : In this hybrid, the prover samples r′
$← {0, 1}κ and generates the 3− bth overext-com to

r′. However, it still generates x3−b, r3−b, a3−b the same way as in Hybrid0. It continues to use rb as
witness for the wi. This hybrid is indistinguishable from Hybrid0 by hiding of the 3− bth overext-com,
because the receiver challenge for the extractable commitment is fixed for multiple third round messages
sent by the challenger.

Hybrid2 : Here, the prover generates x3−b
$← {0, 1}κ for all statements in S, uniformly at random.

This hybrid is indistinguishable from Hybrid1 by the security of the PRF using key r3−b.

Hybrid3 : In this hybrid, the prover generates x3−b = PRF(r3−b, a3−b) ⊕ w2, for all statements in S.
Again, this hybrid is indistinguishable from Hybrid2 by the security of the PRF using key r3−b.

Hybrid4 : Now, the prover generates r′ = r3−b while generating the 3− bth overext-com to r′. This
hybrid is indistinguishable from Hybrid3 by hiding of the 3− bth overext-com, because the receiver chal-
lenge for the extractable commitment is fixed for multiple third round messages sent by the challenger.

Hybrid5 : The prover generates wi2 using x3−b, r3−b, a3−b as witness for all statements, both in and
outside the set S. This hybrid is indistinguishable from Hybrid4 by the security of wi2 generated for multi-
ple instances, given fixed receiver message. Note that statements outside the set S still use w1 as witness.

Hybrid6 : In this hybrid, the prover samples r′
$← {0, 1}κ and generates the bth over-extcom to r′. This

is indistinguishable from Hybrid5 by hiding of over-ext-com, because the receiver challenge for the ex-
tractable commitment is fixed for multiple third round messages sent by the challenger.

Hybrid7 : Here, the prover generates xb
$← {0, 1}κ for all statements in S, uniformly at random. This

hybrid is indistinguishable from Hybrid6 by the security of the PRF using key rb.

Hybrid8 : In this hybrid, the prover generates xb = PRF(rb, ab)⊕w2, for all statements in S. Again, this
hybrid is indistinguishable from Hybrid7 by the security of the PRF using key rb.

Hybrid9 : Now, the prover generates r′ = rb while generating the bth overext-com to r′. This hybrid
is indistinguishable from Hybrid8 by hiding of the bth overext-com, because the receiver challenge for the
extractable commitment is fixed for multiple third round messages sent by the challenger. This is the
final hybrid where w2 is used as a witness for all statements in S, while w1 continues to be used for all
statements outside of the set S.

Next, in Figure 10, we construct a 3-round weak ZK adaptive argument of knowledge against non-
adaptive verifiers and extended simulation security, by composing our weak ZK argument with extended
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simulation security, with the reusable delayed-input witness indistinguishable argument of knowledge.

7.2 Distributional Weak ZK/Strong WI Argument of Knowledge

We now prove that the protocol in Figure 10 is a distributional weak zero-knowledge argument of
knowledge, and a distributional strong WI argument of knowledge.

Weak Zero-Knowledge Argument of Knowledge.
Input: Prover P has input a distribution (X ,W).
Let wzk = wzk1,wzk2,wzk3 denote an adaptively sound three round weak ZK argument with
extended simulation security, against non-adaptive verifiers.
Let wipok = wipok1,wipok2,wipok3 denote an adaptively sound delayed-input three round
reusable witness indistinguishable argument of knowledge.
Let com = com1, com2 denote a non-interactive statistically binding commitment scheme, which
can be based on injective one-way functions.

1. The prover P sends wipok1,wzk1 to V.

2. V sends wipok2,wzk2 to P, together with com1.

3. P samples (x,w)
$←(X ,W), together with c = com2(0; r) and computes wzk3,wipok3 where:

wipok proves that ∃r such that c = com(1; r) OR x ∈ L

wzk proves that ∃r such that c = com(0; r)

4. V accepts if and only if wipok, com and wzk verify.

Figure 10: Weak Zero-Knowledge Argument of Knowledge

Lemma 20. The protocol in Figure 10 is an adaptive argument of knowledge.

Proof. (Sketch) Suppose there exists an adversarial prover that adaptively picks a statement x and
generates an argument using the protocol in Figure 10. Then, by the adaptive argument of knowledge
property of wipok, there exists an extractor that extracts a witness for either x ∈ L or c = com(1; r).
Moreover, by the adaptive soundness of wzk against unbounded provers, with overwhelming probability
in the real and rewinding executions, if the transcript is accepted by a verifier, then c = com(0; r)
for some randomness r. Furthermore, by the statistical binding property of the commitment, with
probability at least 1− negl(n), there cannot exist a string r such that c = com(1; r). Thus, the witness
extracted by the extractor must necessarily be a witness for x ∈ L. That is, the extractor succeeds in
extracting a witness for (possibly adaptively chosen) x ∈ L with probability at least 1− negl(κ).

Lemma 21. The protocol in Figure 10 is weak zero knowledge and strong witness indistinguishable.

Proof. (Sketch) The proof of weak zero-knowledge/strong WI of the protocol proceeds in the following
sequence of hybrid experiments:

Hybrid0 : This corresponds to real execution where the prover generates the protocol transcript of
Figure 10 using valid witnesses for instances x.
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Hybrid1 : This experiment is the same as Hybrid0, except that the simulator generates a simulated
wzk proof by learning the receiver challenge, rewinding and observing the output of the distinguisher
multiple times. The view of the verifier and distinguisher in this hybrid is indistinguishable from Hybrid1,
by the weak ZK/strong WI property of wzk.

Hybrid2 : This experiment is the same as Hybrid1, except that the simulator generates c = com(1; r)

for r
$← {0, 1}. The wzk proof is simulated the same way as Hybrid1, i.e., by sending multiple proofs

using multiple c = com(0; r′) for third round messages, together with wiaok using (x̃, w̃) chosen from the
distribution, and learning the output of the distinguisher. The view of the verifier and distinguisher in
this hybrid is indistinguishable from Hybrid1, by the hiding property of the commitment used to obtain
string c.

Hybrid3 : This experiment is the same as Hybrid1, except that the simulator generates wiaok3 in the
main thread using c = com(1; r) as witness instead of using (x,w) as witness (but only in the main
thread). The wzk proof is simulated the same way as Hybrid1, i.e., by sending multiple proofs using
multiple c = com(0; r′) for third round messages, together with wiaok using (x̃, w̃) chosen from the
distribution, and learning the output of the distinguisher. The view of the verifier and distinguisher in
this hybrid is indistinguishable from Hybrid1, by the reusable WI property of wiaok.

This hybrid also describes the simulation strategy for the simulator of the WZKAoK. Since the ac-
tual witness for the instance x in the main thread is no longer required in this hybrid, in order to prove
strong WI, the same sequence of hybrids can be repeated in reverse order, after (indistinguishably)
changing the instance, similar to Section 5.5.

7.3 Extractable Commitments

We construct three round extractable commitments in Figure 11, where an extractor extracts the value
committed by a (possibly adversarial) committer with overwhelming probability.

Three Round Extractable Commitment Scheme.
Committer Input. Committer C has input message m.
Let wzkaok = wzkaok1,wzkaok2,wzkaok3 denote a three round weak ZK adaptive argument of
knowledge with extended simulation security, against non-adaptive verifiers.
Let com denote a non-interactive statistically binding commitment scheme, which can be based
on one-one one-way functions.

Commit Phase.

1. The committer C sends wzkaok1 to the receiver R.

2. R sends wzkaok2 to C.

3. C sends c = com(m; r) and computes wzkaok3 proving ∃(m, r) such that c = com(m; r).

4. R accepts the commitment if and only if wzkaok and com verify.

Decommit Phase. C sends (m, r) to R, who accepts iff it is a valid decommitment of c.

Figure 11: Extractable Commitments

53



Lemma 22. The scheme in Figure 11 is extractable, without over-extraction or under-extraction.

Proof. (Sketch) Consider a main-thread transcript generated by a committer. By the argument of
knowledge property of wzkaok, given any fixed main-thread transcript, a unique (m, r) can be extracted
from the weak ZK argument of knowledge with overwhelming probability, from any transcript generated
by a (possibly unbounded) committer.

Lemma 23. The protocol in Figure 11 is computationally hiding.

Proof. (Sketch) The proof of hiding of the scheme follows from the distributional strong WI property of
the underlying wzkaok and the hiding of com. This can be proved via the following sequence of hybrid
experiments:
Hybrid0: The challenger generates an honest commitment to message m according to the strategy in
Figure 11.
Hybrid1: The challenger replaces this with an honest commitment to message 0 according to the strategy
in Figure 11. Since com(m) is indistinguishable from com(0), the computational hiding property follows
from strong WI of the underlying wzkaok for indistinguishable instance distributions.

In some more detail (opening up the strong WI argument), the challenger can begin by simulating the
wzk protocol using extended simulation, i.e., by using instances from both distributions com(m; r) and
com(0; r) to honestly generate the WIPoK and learn the receiver’s challenge. Next, in the main thread,
the instance com(m; r) can be replaced with com(0; r) externally, while simulating the wzk argument6.
Finally, this can be replaced by an honestly generated commitment to 0 according to Figure 11.

8 Two-Party Computation

In this section, we construct three round two-party secure computation between two parties where
only the receiver obtains the output, with distributional distinguisher-dependent simulation security
for the receiver and (standard) simulation security for the other party. Our construction is described
in Figure 12. We show that the same protocol is input-indistinguishable with respect to a malicious
receiver.

We prove that this protocol satisfies (standard) simulation security against a malicious sender, and
distributional distinguisher-dependent security against a malicious receiver. We also remark that a two-
round version of the same protocol (with the three round WZKPoK replaced with a WZK argument),
gives a way of performing secure two-party computation in two rounds, with (efficient) distributional
distinguisher-dependent simulation against malicious receivers, and super-polynomial simulation against
malicious senders (or polynomial-time simulation against semi-honest senders).

Theorem 14. The protocol in Figure 12 is a secure protocol for two party computation with distri-
butional distinguisher-dependent security against a malicious receiver and standard simulation security
against a malicious sender.

To prove Theorem 14, we describe the simulation strategy against a malicious sender in Figure 13
and the simulation strategy against a malicious receiver in Figure 14.

Lemma 24. The view IDEALF ,Sim generated by the simulator Sim in Figure 13 is such that for all PPT
distinguishers D, ∣∣Pr

[
D
(
IDEALF ,Sim(κ, x, y)κ∈N,(x,y)s.t.|x|=|y|

)]
−Pr

[
D
(
REALΠ,S(κ, x, y)κ∈N,(x,y)s.t.|x|=|y|

)]∣∣ ≤ negl(κ)
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Three Round Secure Two Party Computation.
Sender Input. Sender S has (public) input distribution Q.
Receiver Input. Receiver R has private input distribution R.

◦ Let wzkaok = wzkaok1,wzkaok2,wzkaok3 denote a three round weak ZK adaptive argument
of knowledge against non-adaptive verifiers.

◦ Let OT = OT1,OT2 denote the messages of a two-round OT, according to Definition 2.

◦ Let {GC, (labeli)i∈[κ]}(f) denote a garbled circuit with its labels generated corresponding
to functionality f .

Protocol Description.

1. The sender S sends wzkaok1 to the receiver R.

2. R samples y ← R and sends wzkaok2 to C, together with OT1(y).

3. S samples x← Q and computes {GC, (labeli)i∈[κ]}(U(x, ·)), where U is the universal func-
tion. S then sends GC(U(x, ·)), together with o = OT2(i) for i ∈ [κ]. Additionally, S
sends wzkaok3 proving: ∃(x, r) such that {GC, (labeli)i∈[κ]}(U(x, ·)) and o = OT2(labeli) for
i ∈ [κ].

4. If wzkaok verifies, R obtains labels labelyi for i ∈ [κ] corresponding to his input y, and
outputs z = GC(labely). Optionally, if the sender requires the output, R sends z to S.

Figure 12: Two Party Computation with Distributional Distinguisher-Dependent Security

Proof. (Sketch) By (computational) hiding of OT1, the probability of abort between the real and sim-
ulated views, is at most negl(κ). Otherwise, upon successful extraction of the sender’s input from
wzkaok3, Sim sends this input to the ideal functionality and obtains output z, which it (optionally)
sends to S. By hiding of OT1, the real view is indistinguishable from the ideal view.

Lemma 25. For every PPT distinguisher D that obtains the view of the receiver, and every ε = 1
poly(κ) ,

there exists a simulator Simε where the view IDEALF ,Simε in Figure 14 is such that∣∣Pr
[
D
(
IDEALF ,Simε(κ, x, y)κ∈N,(x,y)s.t.|x|=|y|

)]
−Pr

[
D
(
REALΠ,R(κ, x, y)κ∈N,(x,y)s.t.|x|=|y|

)]∣∣ ≤ ε
Proof. (Sketch) By distributional simulation security of wzkaok3, when the weak ZK simulator is exe-
cuted with error parameter ε, the output of the distinguisher remains ε

2 -close to its output in the real
world. Furthermore, for fixed public input of the receiver, the learning strategy of Simε is identical to
that in Figure 4. Thus, by the analysis in Claim 3 and Claim 4, Simε learns approximately the correct
input of the receiver, corresponding to distinguisher D. In other words, letting yi denote the receiver
input learned by Simε, the distinguisher’s output on input OT2(labelyii , labelyii ) for i ∈ [κ] remains ε

2 -close
to the distinguisher output on input the correct set of labels. Given fixed receiver input yi, by secu-
rity of garbled circuits, the simulator can indistinguishably replace the garbled circuit with a constant
circuit that generates the output of F on input yi. In particular, this implies distinguisher-dependent
security for FIIF functionalities where an honest sender’s input can be sampled from an independent
public distribution.
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Simulation strategy against Malicious Sender.
In this description, if the adversary S aborts at any stage in the main thread, Sim outputs ⊥.

1. The simulator Sim obtains wzkaok1 from the sender S.

2. Sim samples 0κ and sends wzkaok2 to C, together with OT1(0κ).

3. Sim then obtains GC, together with OT2 and wzkaok3. It aborts if wzkaok3 doesn’t verify.

4. Sim then rewinds and again sends the message in Step 2, with a different value for the
challenge wzkaok2. It obtains S’s response, wzkaok3. It continues rewinding this way, until
it succeeds in extracting the witness for wzkaok for the main thread. If it does not succeed
after κ2 tries, it aborts. The extracted witness includes the input x of S.

5. Sim sends x to the ideal functionality, and obtains the output z, which it (optionally) sends
to S, if the protocol demands.

Figure 13: Sender Simulation

Theorem 15. The protocol in Figure 12 is a secure protocol for two party computation with input-
indistinguishable security against a malicious receiver and standard simulation security against a mali-
cious sender.

Security against malicious senders is already proven in Lemma 25. We prove input-indistinguishable
security against malicious receivers in the following lemma.

Lemma 26 (Input-Indistinguishable Security against Malicious Receivers). The protocol in Figure 12
satsifies input-indistinguishable security against malicious receivers according to Definition 16.

Proof. (Sketch) We observe that implicit computation follows because the receiver message is statisti-
cally binding to the receiver’s input. Moreover, independence of receiver input follows because receiver
message is sent before the sender sends a message depending on his input.

To prove input indistinguishability, we consider a sequence of hybrids, where we gradually move
from the real world execution with sender input x1 to an execution with sender input x2. We begin
by simulating the weak ZK argument of knowledge: then by distributional simulation security (with
extended simulation) of wzkaok3, when the weak ZK simulator is executed with error parameter ε starts
simulating wzkaok3, the output of the distinguisher remains ε

2 -close to its output in the real world.
Furthermore, the learning strategy of Simε is identical to that in Figure 4. Thus, by the analysis in
Claim 3 and Claim 4, Simε learns approximately the correct input of the receiver, corresponding to
distinguisher D. In other words, letting y∗ denote the receiver input learned by Simε, the distinguisher’s

output on input OT2(label
y∗i
i , label

y∗i
i ) for i ∈ [κ] remains ε

2 -close to the distinguisher output on input
the correct set of labels. Given fixed receiver input y∗, by security of garbled circuits, the simulator can
indistinguishably replace the garbled circuit with a constant circuit that generates the output f(x1, y

∗).
Since, f(x2, y

∗) = f(x1, y
∗), the sequence of hybrids described above can be repeated in reverse order

such that in the final hybrid, the sender executes the protocol honestly with input x2.
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