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Abstract

Quantum Key Recycling (QKR) is a quantum-cryptographic primitive that allows one to
re-use keys in an unconditionally secure way. By removing the need to repeatedly generate
new keys it improves communication efficiency. Škorić and de Vries recently proposed a QKR
scheme based on 8-state encoding (four bases). It does not require quantum computers for
encryption/decryption but only single-qubit operations. We provide a missing ingredient in
the security analysis of this scheme in the case of noisy channels: accurate bounds on the
privacy amplification. We determine optimal attacks against the message and against the
key, for 8-state encoding as well as 4-state and 6-state conjugate coding. We show that
the Shannon entropy analysis for 8-state encoding reduces to the analysis of Quantum Key
Distribution, whereas 4-state and 6-state suffer from additional leaks that make them less
effective. We also provide results in terms of the min-entropy. Overall, 8-state encoding
yields the highest capacity.

1 Introduction

1.1 Quantum Key Recycling

Quantum communication differs significantly from classical communication. On a classical channel
it is trivial to read and copy all messages. On a quantum channel, on the other hand, any form
of eavesdropping is detectable. This fact has been exploited by cryptographers since the 1980s,
most notably by the introduction of Quantum Key Distribution (QKD). However, even before
the invention of BB84 another concept was studied: information-theoretically secure re-use of
encryption keys. If Bob detects no disturbance on the quantum channel, it may be safe to re-
use the encryption key, in stark contrast to e.g. One Time Pad (OTP) encryption on a classical
channel. This idea was proposed in the paper “Quantum Cryptography II: How to re-use a one-
time pad safely even if P = NP” [1] by Bennett, Brassard and Breidbart in 1982. However, after
the discovery of QKD the idea of Quantum Key Recycling (QKR) received very little attention
for several decades. The thread was picked up again in 2003 by Gottesman [2] and in 2005 by
Damg̊ard, Pedersen and Salvail [3, 4]. Gottesman’s Unclonable Encryption offers a limited re-
usability of key material. Damg̊ard et al introduced a full key re-use scheme based on mutually
unbiased bases in high-dimensional Hilbert space. A drawback of their scheme is that it requires
a quantum computer to perform encryption and decryption. In 2016 Fehr and Salvail [5] and
Škorić and de Vries [6] returned to qubit-based schemes that do not require a quantum computer.
Fehr and Salvail [5] used BB84 states and introduced a new proof technique. Their scheme is
provably secure when there is very little channel noise. Škorić and de Vries [6] showed that it
is advantageous to switch from 4-state conjugate coding to 8-state encoding, and that 8-state
encoding is equivalent to applying the Quantum One Time Pad (QOTP) [7, 8, 9]. Their scheme is
designed to work at similar noise levels as QKD. The proof technique of [5] can be directly applied
to it, but needs an accurate bound on the required amount of privacy amplification, which was
provided only for the noiseless case.
The long neglect of QKR is undeserved. In a QKD-equipped world, QKR has an important role to
play. The process of repeatedly generating new QKD keys and then using them up with classical
OTP encryption is very wasteful of bandwidth. One QKD instance followed by repeated QKR
runs is more communication-efficient.
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1.2 Contributions and outline

• We determine optimal attacks against individual qubits in qubit-based QKR, such that
Eve introduces channel noise parametrised by the bit error rate β. We apply the standard
Shor-Preskill technique [10] to reformulate state preparation as a measurement on an EPR
state. We apply noise symmetrisation [11] to Alice and Bob’s noisy EPR state, followed by
purification to obtain a worst-case description of Eve’s ancilla state. We find optimal POVM
measurements by which Eve extracts from her ancilla information about the plaintext, as
well as POVMs for attacking the key in the known-plaintext setting. We obtain POVMs for
Shannon entropy as well as min-entropy.

• From the optimal POVMs we determine how much privacy amplification is needed: this is
dictated by the most powerful attack. We find that it depends on β which attack ‘wins’.

– Shannon entropy. For 4-state and 6-state encoding, the winning attack at low β is
Eve stealing all qubits and performing a measurement to estimate the plaintext.1 At
larger β, Eve collects ancillas from many QKR rounds and then performs a measurement
on all the ancillas that are protected by the same basis key; we show that this attack is
(asymptotically) as powerful as the optimal qubit-wise attack on QKD [12]. For 8-state
encoding, the QKD-like attack is always the winning one.
The QKR channel capacity of 4-state encoding is always below 6-state. 8-state has
higher capacity than 6-state at β ∈ [0, 0.1061], after which they are the same and equal
to the QKD capacity.

– Min-entropy. For 4-state and 6-state, the winning attacks are as for the Shannon
entropy case. For 8-state, however, the winning attack is an ancilla attack on the key.
If capacity is computed using min-entropy loss as the measure of Eve’s knowledge, then
the QKR capacity of 8-state is higher than 6-state on the range β ∈ [0, 0.0612]. There
is a tiny interval β ∈ (0.0612, 0.0638) where 6-state outperforms 8-state; at β > 0.0638
all capacities are zero. 4-state is always worse than 6-state.

Overall, 8-state encoding requires the least privacy amplification.

• We notice a duality relation in the optimal POVMs for the known-plaintext attack on the
key. It turns out that the POVMs which minimise Eve’s Shannon entropy are in a sense
‘dual’ to the POVMs associated with the min-entropy: The min-entropy-POVM for plaintext
x is the Shannon-entropy-POVM for plaintext 1−x. It would be very useful if such dualities
hold more generally. While there exists a simple test [13] to check if a POVM is optimal for
min-entropy, there is no such test for Shannon entropy.

• As a byproduct of our analysis we find a particularly easy and insightful way to derive the
QKD capacity in a scenario where Alice adds artificial preprocessing noise. By identifying
conditional channels in Eve’s mixed state we are able to simplify the results of [14]. The
noise-adding trick can be applied in QKR in exactly the same way as in QKD.

In Section 2 we introduce notation, and briefly recap 8-state QKR. In Section 3 we go to the EPR
version of the protocol, apply noise symmetrisation and obtain Eve’s state by purification. Attacks
on the plaintext are described in Section 4, and known-plaintext attacks on the key in Section 5.
We aggregate all the results in Section 6 and we determine the QKR capacities. Insertion of
artificial noise is discussed in Section 7.

2 Preliminaries

2.1 Notation and terminology

Classical Random Variables (RVs) are denoted with capital letters, and their realisations with
lowercase letters. The probability that a RV X takes value x is written as Pr[X = x]. The expec-

1This is due to the fact that conjugate coding is not a particularly good encryption.
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tation with respect to RV X is denoted as Exf(x) =
∑
x∈X Pr[X = x]f(x). The Shannon entropy

of an RV X is written as H(X). Sets are denoted in calligraphic font. The notation ‘log’ stands
for the logarithm with base 2. The min-entropy of X ∈ X is Hmin(X) = − log maxx∈X Pr[X = x],
and the conditional min-entropy is Hmin(X|Y ) = − log Ey maxx∈X Pr[X = x|Y = y]. The notation
h stands for the binary entropy function h(p) = p log 1

p + (1− p) log 1
1−p . Sometimes we will write

h({p1, . . . , pn}) meaning
∑
i pi log 1

pi
. Bitwise XOR of binary strings is written as ‘⊕’. The inverse

of a bit b ∈ {0, 1} is written as b̄ = 1− b.
For quantum states we use Dirac notation, with the standard qubit basis states |0〉 and |1〉 rep-
resented as

(
1
0

)
and

(
0
1

)
respectively. The Pauli matrices are denoted as σx, σy, σz, and we write

σ = (σx, σy, σz). The standard basis is the eigenbasis of σz, with |0〉 in the positive z-direction.
We write 1 for the identity matrix. The notation ‘tr’ stands for trace. The Hermitian conjugate of
an operator A is written as A†. When A is a complicated expression, we sometimes write (A+h.c.)
instead of A+A†. The complex conjugate of z is denoted as z∗.
We use the Positive Operator Valued Measure (POVM) formalism. A POVM M consists of
positive semidefinite operators, M = (Mx)x∈X , Mx ≥ 0, and satisfies the condition

∑
xMx = 1.

The notation M(ρ) stands for the classical RV resulting when M is applied to mixed state ρ.
Consider a bipartite system ‘AB’ where the ‘A’ part is classical, i.e. the state is of the form
ρAB = Ex∈X |x〉〈x| ⊗ ρx with the |x〉 forming an orthonormal basis. The min-entropy of the
classical RV X given part ‘B’ of the system is [15]

Hmin(X|ρX) = − log max
M

Ex∈X tr [Mxρx]. (1)

Here M denotes a POVM. Let Λ
def
=
∑
x ρxMx. If a POVM can be found that satisfies the

condition2 [13]
∀x∈X : Λ− ρx ≥ 0, (2)

then there can be no better POVM (but equally good ones may exist).
For states that also depend on a classical RV Y ∈ Y, the min-entropy of X given the quantum
state and Y is

Hmin(X|Y, ρX(Y )) = − log Ey∈Y max
M

Ex∈X tr [Mxρx(y)]. (3)

A simple expression can be obtained when X is a binary variable. Let X ∈ {0, 1}. Then

X ∼ (p0, p1) : Hmin(X|Y, ρX(Y )) = 1− log

(
1 + Eytr

∣∣∣∣p0ρ0(y)− p1ρ1(y)

∣∣∣∣) . (4)

For the Shannon entropy of a classical RV given a quantum system we have

H(X|ρX)
def
= min
M

H(X|M(ρX)). (5)

If the ensemble (ρx)x∈X has a symmetry, i.e. ∀x∈X ,g∈G : UgρxU
†
g = ρg(x) for some group G acting

on X , and unitary representation U of G, then it suffices [13] to consider only POVMs that obey
the same symmetry, UgMxU

†
g = Mg(x).

2.2 Eight-state Quantum Key Recycling

We briefly review the main properties of the 8-state QKR scheme (“scheme #2” in [6]). A classical
bit g ∈ {0, 1} is encoded into a qubit state using one of four possible bases. The basis is labeled
b ∈ {0, 1, 2, 3}, and for convenience the notation b = 2u+w is introduced, with u,w ∈ {0, 1}. The
labels b and (u,w) are used interchangeably. The encoding of g in basis (u,w) is expressed on the
Bloch sphere as a unit vector

nuwg =
(−1)g√

3

(−1)u

(−1)u+w

(−1)w

 , (6)

2Ref. [13] specifies a second condition, namely Λ† = Λ. However, the hermiticity of Λ already follows from the
condition (2).
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i.e. the eight corner points of a cube. The corresponding states in Hilbert space are

|ψuwg〉 = (−1)gu
[
(−
√
i)g cos α2 |g ⊕ w〉+ (−1)u(

√
i)1−g sin α

2 |g ⊕ w〉
]

(7)

in the z-basis. The angle α is defined as cosα = 1/
√

3. The four states |ψuwg〉, for fixed g, are
the Quantum One-Time Pad (QOTP) encryptions of |ψ00g〉.
The bit error rate (BER) on the quantum channel is denoted as β ∈ [0, 1

2 ]. The key recycling
scheme makes use of a Secure Sketch S : {0, 1}n → {0, 1}a, with a > nh(β). (Asymptotically
a approaches nh(β)). Furthermore the scheme uses an extractor Ext : {0, 1}n → {0, 1}` and a
message-independent, key-private [5] MAC function that produces a tag of length λ. The message
is µ ∈ {0, 1}`. The key material shared between Alice and Bob consists of three parts: a basis
sequence b ∈ {0, 1, 2, 3}n, a MAC key KM and a classical OTP KSS ∈ {0, 1}a for protecting the
secure sketch.
Encryption
Alice performs the following steps. Generate random g ∈ {0, 1}n. Compute s = KSS ⊕ S(g) and
z = Ext g. Compute the ciphertext c = µ⊕z and authentication tag T = M(KM, g||c||s). Prepare
the quantum state |Ψ〉 =

⊗n
i=1 |ψbigi〉. Send |Ψ〉, s, c, T .

Decryption
(Bob gets |Ψ′〉, s′, c′, T ′). Bob performs the following steps. Measure |Ψ′〉 in the b-basis. This
yields g′ ∈ {0, 1}n. Recover ĝ from g′ and KSS ⊕ s′ (by the syndrome decoding procedure of
the Secure Sketch primitive). Compute ẑ = Ext ĝ and µ̂ = c′ ⊕ ẑ. Accept the message µ̂ if the
syndrome decoding succeeded and T ′ = M(KM, ĝ||c′||s′). Communicate Accept/Reject to Alice.
Key update
Alice and Bob perform the following actions. If Bob Accepts, replace KSS. If Bob Rejects, replace
KSS and compute the updated key b′ as a function of b and n fresh secret bits.

In case of Bob accepting the transmission, an `-bit message has been communicated while only
a ≈ nh(β) bits of key material have been spent.3 The aim of the current paper is to find out how
large ` is allowed to be as a function of the noise parameter β.

3 EPR formulation, noise symmetrisation, and purification

Apart from QKR employing the 8-state (QOTP) encoding as described above, we also investigate
4-state (BB84) and 6-state conjugate coding. For the security analysis of qubit-based QKR we
piggyback on (i) proof techniques [16] that use e.g. quantum de Finetti [17] to reduce the analysis
to individual-qubit attacks; (ii) the proof technique for qubit-based QKR introduced in [5], which
can directly be applied to the scheme of [6] provided that correct values are known for the required
amount of privacy amplification as a function of the noise parameter β.
We study optimal attacks against individual qubits, making use of the standard Shor-Preskill
technique [10] and the noise symmetrisation technique introduced by [11].

3.1 EPR version of the QKR protocol

We follow the standard Shor-Preskill technique [10] and re-formulate the QKR protocol (Sec-
tion 2.2) using EPR pairs. The step where Alice prepares the state |Ψ〉 and sends it to Bob is
replaced by the following procedure.
Alice prepares a two-qubit singlet state. She keeps one qubit (‘A’) and sends the other qubit (‘B’)
to Bob. Eve is allowed to manipulate the whole ‘AB’ system4 in any way, including coupling to
ancillas. Then Alice and Bob perform their projective measurements in the correct basis (basis
bi for the i’th bit). Let the outcome of Alice’s measurement be x ∈ {0, 1}, and Bob’s outcome
y ∈ {0, 1}. Alice sends e = x⊕ g to Bob. Bob computes ĝ = ȳ⊕ e, which is guaranteed to equal g

3“Scheme #3” in [6] greatly reduces the key material expenditure.
4Note that this attacker model gives Eve more power than she can actually have in real life. Realistically, she

would be able to manipulate only the ‘B’ subsystem.
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if Eve has done nothing (β = 0).5 Security of this EPR-version of the protocol implies security of
the original protocol.
Note that the above description is agnostic of the number of bases used in the encoding. We will
use the notation B to denote the set of bases in an encoding scheme. For 4-state encoding we
write B = {0, 1}, and the states are the spin states | ± z〉 (at b = 0) and | ± x〉 (at b = 1). For
6-state we write B = {1, 2, 3}, with spin states | ± x〉 (at b = 1), | ± y〉 (at b = 2) and | ± z〉 (at
b = 3). For 8-state we have B = {00, 01, 10, 11}, and the states are defined in (7). The number of
bases is |B|.

3.2 Noise symmetrisation

After Eve’s interference, the bipartite system held by Alice and Bob is no longer a pure singlet
state but a general mixed state ρAB. As the singlet state is invariant under unitary transformations
of the form ρAB 7→ U⊗UρABU†⊗U† (where U acts on a single qubit), Alice and Bob are ‘allowed’
to perform the following sequence of actions.

Preparation phase, before the protocol
Alice and Bob agree on a single basis b∗ ∈ B.

During the protocol
For each bit, just before they execute their measurement

• Alice and Bob publicly draw a random number γ ∈ {0, 1, 2, 3}.

• They both apply to their own qubit the Pauli operator σγ , defined with respect to the b∗

basis. Here σ0 is the identity matrix.

• They forget γ.

These actions have no effect on the original state (the desired singlet) but they dramatically
simplify the noise in ρAB.

Lemma 3.1 Consider 6-state or 8-state encoding. Let |Ψ±〉 = |01〉∗±|10〉∗√
2

and |Φ±〉 = |00〉∗±|11〉∗√
2

denote the Bell basis states with respect to the b∗ basis. Let Eve introduce a bit error rate of exactly
β between Alice and Bob’s measurement results. Then the mixed state of the ‘AB’ system after
the above described symmetrisation procedure is given by

ρ̃AB = (1− 3

2
β)|Ψ−〉〈Ψ−|+ β

2

(
|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Φ+〉〈Φ+|

)
. (8)

Proof: In [18] it was shown that the AB state reduces to the form ρ̃ = λ0|Ψ−〉〈Ψ−|+λ1|Φ−〉〈Φ−|+
λ2|Ψ+〉〈Ψ+| + λ3|Φ+〉〈Φ+|, with λ0 + λ1 + λ2 + λ3 = 1. We impose the constraint (|ψbg〉 ⊗
|ψbg〉)†ρ̃|ψbg〉⊗ |ψbg〉 = β/2 for all b ∈ B, g ∈ {0, 1}.6 For the 6-state case it was shown in [11] that
these constraints yield (8). We next study the 8-state case. Taking b = b∗, the above constraints
yield 1

2λ2 + 1
2λ3 = β

2 . The case b 6= b∗ is more complicated. Without loss of generality we take b∗ =

00. Then the b = 01 and b = 11 constraints each give, after some algebra, 1
18 (7λ1 +8λ2 +3λ3) = β

2 .

The b = 10 constraint gives 1
18 (λ1 + 8λ2 + 9λ3) = β

2 . Solving for the λ-parameters finally yields

λ1 = λ2 = λ3 = β
2 . �

Note that setting b∗ ∈ B is important: if the Pauli operators σγ ⊗ σγ are chosen with respect to a
different basis, then Lemma 3.1 does not necessarily hold.
Also note that Lemma 3.1 usually does not hold for 4-state (BB84) conjugate coding. 4-state
encoding has fewer noise-related constraints, and hence Eve has more freedom. However, one can
imagine a protocol variant where Alice and Bob spend some extra key material7 in order to agree
on qubit positions which they sacrifice for noise testing purposes. With Lemma 3.1 holding for

5In the singlet state the x and y are anti-correlated, i.e. y = x̄.
6From the above constraints and tr ρ̃ = 1 it follows that (|ψbg〉 ⊗ |ψbḡ〉)†ρ̃|ψbg〉 ⊗ |ψbḡ〉 = 1−β

2
.

7This key has to be refreshed every time, otherwise Eve may find out which positions are test positions.
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4-state too, we can now treat all three encoding methods on an equal footing. We will see in
Section 6 that even with this advantage given to Alice and Bob for 4-state, the 4-state encoding
still performs worst.

3.3 Purification

The ρ̃AB can be purified as follows, under the worst-case assumption that all noise is caused by
Eve. Denoting Eve’s four-dimensional subsystem as ‘E’, with orthonormal basis |mi〉, we can write

|ΨABE〉 =
√

1− 3
2β|Ψ

−〉 ⊗ |m0〉+
√

β
2

(
−|Φ−〉 ⊗ |m1〉+ i|Ψ+〉 ⊗ |m2〉+ |Φ+〉 ⊗ |m3〉

)
. (9)

Alice and Bob know in which basis to measure. They both do a projective measurement on
their own subsystem. They measure the spin component in the direction v = (vx, vy, vz) =
(sin θ cosϕ, sin θ sinϕ, cos θ). The eigenstates of this measurement are |v〉 = e−iϕ/2 cos θ2 |0〉 +

eiϕ/2 sin θ
2 |1〉 (with eigenvalue ‘0’) and |v〉 = −e−iϕ/2 sin θ

2 |0〉+ eiϕ/2 cos θ2 |1〉 (with eigenvalue ‘1’).
We rewrite the state (9) using |v〉, |v〉 as the basis of the A and B subsystem,

|ΨABE〉 =
√

1−β
2 |vv〉 ⊗ |E

v
01〉 −

√
1−β

2 |vv〉 ⊗ |E
v
10〉+

√
β
2 |vv〉 ⊗ |E

v
00〉 −

√
β
2 |v v〉 ⊗ |E

v
11〉

|Ev
01〉 =

1√
1− β

[√
1− 3

2β|m0〉+
√

β
2 (vx|m1〉+ vy|m2〉+ vz|m3〉)

]
|Ev

10〉 =
1√

1− β

[√
1− 3

2β|m0〉 −
√

β
2 (vx|m1〉+ vy|m2〉+ vz|m3〉)

]
|Ev

00〉 =
1√

2(1− v2
z)

[
(−vxvz − ivy)|m1〉+ (−vyvz + ivx)|m2〉+ (1− v2

z)|m3〉
]

|Ev
11〉 =

1√
2(1− v2

z)

[
(−vxvz + ivy)|m1〉+ (−vyvz − ivx)|m2〉+ (1− v2

z)|m3〉
]
. (10)

A number of things are worth noting about this representation of the purification.

• With probability 1− β, Alice and Bob’s measurement outcomes are opposite. With proba-
bility β they are equal.

• |Ev
10〉 = |E−v01 〉 and |Ev

11〉 = |E−v00 〉. Furthermore 〈Ev
00|Ev

11〉 = 0, and |Ev
00〉, |Ev

11〉 span a
subspace orthogonal to |Ev

01〉, |Ev
10〉. Furthermore, 〈Ev

01|Ev
10〉 = 1−2β

1−β . This structure makes
it particularly easy to analyse QKD. See Section 4.4.1.

• |−vxvz−ivy√
1−v2z

|2 = 1− v2
x and |−vyvz+ivx√

1−v2z
|2 = 1− v2

y.

In the analysis of QKD schemes, it suffices to express (10) only for a single choice of v, because
the basis is eventually revealed to Eve. In QKR the basis is not revealed. In our treatment of
known plaintext attacks (Section 5) we will need to evaluate (10) for different bases.

3.4 Eve’s mixed state

After Alice and Bob have performed their measurement, Eve possesses one of the 4|B| pure states

ρ
v(b)
xy , with x, y ∈ {0, 1}, b ∈ B

ρvxy
def
= |Ev

xy〉〈Ev
xy|, (11)

coupled to the unknown (to her) classical random variables B,X, Y . The whole system of B,X, Y
and E can be represented as a four-part system in the following mixed state,

ΩBXY E =
1

|B|
∑
b∈B

Ex∈{0,1}Ey|x|b〉〈b| ⊗ |x〉〈x| ⊗ |y〉〈y| ⊗ ρv(b)
xy . (12)
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At given x, the probability of y 6= x is 1− β. (Before the introduction of noise, the x and y were
perfectly anti-correlated.)
In Section 5 we will study known plaintext attacks, i.e. Eve knows g and wants to learn the basis b.
If Eve knows that x = 0, then she has to distinguish between the following |B| states,

ζb
def
= (1− β)ρ

v(b)
01 + βρ

v(b)
00 , b ∈ B. (13)

The case x = 1 will not be treated separately as it is analogous to x = 0.

4 Security of the message

4.1 Attacks targeting the message

We consider attacks by which Eve tries to gain information about Alice’s plaintext x.

M1 Eve steals one whole transmission |Ψ〉 and performs a measurement. (No matter what Eve
sends to Bob, Bob rejects with overwhelming probability.)

M2 Eve couples each qubit individually to an ancilla, and transfers information into the ancilla
in such a way that the bit error rate is exactly β. She does this for N transmissions (N � 1)
before finally performing a measurement on her ancillas.

Attack M1 is the worst case scenario given that Bob does not accept. M2 is the worst case given
that Bob accepts N times in a row.
Attack M1 has no effect against 8-state encoding (since it is a QOTP), but is important in the
case of 4-state and 6-state encoding. Below we briefly recap the results of [6]. In Section 4.4 we
will see that the analysis of M2 reduces to the analysis of QKD.

4.2 Attack M1 on 4-state encoding

Eve intercepts the whole n-qubit state |Ψ〉 and immediately does a measurement. She subjects
each qubit i individually to the spin measurement (σx + σz)/

√
2. The probability distribution of

Xi given the outcome always consists of the numbers (cos π8 )2 and (sin π
8 )2. In terms of Shannon

entropy this corresponds to the following mutual information per qubit,

IM1,4state
AE = 1− h([sin π

8 ]2) ≈ 0.399. (14)

The min-entropy loss per qubit is

4HM1,4state
min = 1− log

1

(cos π8 )2
≈ 0.772. (15)

4.3 Attack M1 on 6-state encoding

Eve’s spin measurement is (σx + σy + σz)/
√

3. The probability distribution for Xi given the
outcome always consists of the numbers (cos α2 )2 and (sin α

2 )2. This yields

IM1,6state
AE = 1− h([sin α

2 ]2) ≈ 0.256 (16)

4HM1,6state
min = 1− log

1

(cos α2 )2
≈ 0.658. (17)

4.4 Attack M2: All Your Basis Are Belong To Us.

Attack M2 is effective because Eve is attacking N qubits that are encrypted with the same key b.
Eve collects N ancillas containing partial information about the message bits; these message bits
are protected by a total of log |B| key bits. Hence, for large N the key b offers essentially no
protection of the information drawn into the ancillas. (On the other hand, the key prevents Eve
from absorbing full information into her ancillas. And the key itself does not become known to
Eve.)
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Lemma 4.1 Let Alice and Bob take fresh keys and then run the EPR version of the QKR protocol

N times, with Bob Accepting each time. Let X
(j)
i , with j ∈ {1, . . . , N}, be Alice’s measurement

result in qubit position i ∈ {1, . . . , n} in the j’th run of the protocol and Bi the basis key used to

encode all the X
(j)
i . Let E

(j)
i denote Eve’s corresponding ancilla system, created without knowledge

of Bi. Then

1

N
H(X

(1)
i , . . . , X

(N)
i | E(1)

i , . . . , E
(N)
i ) ≥ H(X

(j)
i |BiE

(j)
i ) j arbitrary. (18)

Proof: LetM denote a POVM. We have H(Xi|Ei) = minM H(Xi|M(Ei))≥ minM H(Xi|BiM(Ei))

= N minM H(X
(j)
i |BiM(E

(j)
i )) = NH(X

(j)
i |BiE

(j)
i ) for arbitrary j. �

For N � 1 the bound is tight. The left hand side of (18) is the leakage per qubit. The right hand
side is precisely the quantity that determines the security of QKD: the uncertainty about X given
a noise-constrained ancilla and the basis B revealed to Eve after she has created the ancilla states.
Lemma 4.1 allows us to obtain a tight lower bound on the QKR capacity, namely the QKD
capacity, whenever M2 is the dominant attack.

4.4.1 QKD, Shannon entropy

The computation of H(X|BE) for BB84 and 6-state (or more) QKD is well known. Here we
combine the two standard approaches: (i) the simplest possible description of the noise, i.e. noise
symmetrisation, (ii) specifying optimal measurements instead of bounds based on von Neumann
entropy. The results are of course not new, but we present the matter in a particularly clean
way which helps when protocol embellishments are considered (e.g. addition of artificial noise, see
Section 7).
Informal treatment
Eve knows v. Eve does a projective measurement |Ev

00〉〈Ev
00| + |Ev

11〉〈Ev
11|. This measurement

does not destroy any information. With probability β the outcome is ‘1’; next Eve can perfectly
distinguish between the orthogonal states |Ev

00〉, |Ev
11〉 and hence learns X with 100% accuracy.

With probability 1−β the outcome is ‘0’; now Eve has to handle the trickier task of distinguishing

between the non-orthogonal |Ev
01〉 and |Ev

10〉, which have inner product c
def
= 〈Ev

01|Ev
10〉 = 1−2β

1−β .
This is done optimally using a projective measurement in the following orthonormal basis,

|µ01〉 = γ+|Ev
01〉+ γ−|Ev

10〉
|µ10〉 = γ+|Ev

10〉+ γ−|Ev
01〉

γ± =
1

2
√

1 + c
± 1

2
√

1− c
(19)

and has error probability

pβ = |〈Ev
01|µ10〉|2 = |〈Ev

10|µ01〉|2 = 1
2 −

1
2

√
1− c2 = 1

2 − (1− β)−1
√

β
2 (1− 3

2β). (20)

The channel capacity from Alice to Eve is

IAE(β) = β · [1− h(0)] + (1− β)[1− h(pβ)]. (21)

The secrecy capacity is

C(β) = IAB(β)− IAE(β) = 1− h(β)− IAE(β). (22)

Formal treatment
Eve has to guess X from a state ρvXY = |Ev

XY 〉〈Ev
XY |. We write Y = X̄ ⊕ R, with R ∈ {0, 1}

the noise. Eve does not know R. Let Q = (Qx)x∈{0,1} be a POVM applied by Eve, and let
Q(ρvXY ) ∈ {0, 1} be the outcome of the measurement. The main quantity to compute is

H(X|ρvX,X̄⊕R) = min
Q

H(X|Q(ρvX,X̄⊕R)) = min
Q

ErH(X|Q(ρvX,X̄⊕r))

= min
Q

[
(1− β)H(X|Q(ρv

XX
)) + βH(X|Q(ρvXX))

]
. (23)
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The optimal POVM is given by Q0 = |Ev
00〉〈Ev

00|+ |µ01〉〈µ01|, Q1 = |Ev
11〉〈Ev

11|+ |µ10〉〈µ10|. This
is equivalent to the two-step procedure detailed in the informal treatment above, and yields

H(X|ρvXY ) = (1− β)h(pβ) + β · 0. (24)

Eve’s knowledge about X is IAE = H(X)− H(X|ρvXY ), which precisely equals (21).

4.4.2 QKD, min-entropy

Expressed as min-entropy loss, Eve’s knowledge is Hmin(X)− Hmin(X|ρv
X,X̄⊕R) for known v and

unknown noise R ∈ {0, 1}. We have

Hmin(X|ρv
X,X⊕R) = − log pguess(X|Q(Erρ

v
X,X⊕r))

= − log Erpguess(X|Q(ρv
X,X⊕r))

= − log
[
βpguess(X|Q(ρvXX)) + (1− β)pguess(X|Q(ρv

XX
))
]

= − log [β · 1 + (1− β)(1− pβ)]

= Hmin(X)− log[1 +
√

2
√
β(1− 3

2β) + β]. (25)

5 Security of the key

5.1 Known plaintext attacks on the key

We have to take into account the possibility that Eve knows the plaintext µ. Then Ψ may give
Eve information on the (basis) key b. We focus on attacks that lead Bob to Accept. (A Reject
causes Alice and Bob to refresh their keys.) We look at the two types of attack available to Eve,

K1 Eve intercepts a fraction 3β of the qubits, does a measurement on them, and sends the
resulting states on to Bob.

K2 Eve lets every qubit individually interact with an ancilla. She forwards the qubits to Bob.

In attack K1 Eve receives a state
ωBx = |ψBx〉〈ψBx| (26)

for known x and unknown B. For attack K2 Eve’s view is the mixed state ζB as defined in (13),
for unknown B.

Lemma 5.1 The Shannon entropy of B given ζB can be written as

H(B|ζB) = log |B| −max
M

[
h({trMm

∑
b ζb
|B|
}m∈B)− 1

|B|
∑
b∈B

h({trMmζb}m∈B)

]
(27)

where maxM is maximisation over POVMs (Mm)m∈B. If we impose the symmetry relations ∀b∈B :
trMbζb = pOK and ∀m,b∈B,m 6=b : trMmζb = 1−pOK

|B|−1 then the expression for the entropy reduces to

H(B|ζB) = min
symmetricM

[
h(pOK) + (1− pOK) log(|B| − 1)

]
. (28)

Proof: LetM(ζB) be the classical random variable describing the outcome of the POVM measure-
mentM on state ζB . We have H(B|ζB) = minM H(B|M(ζB)), with H(B|M(ζB)) =

∑
m Pr[M(ζB) =

m]H(B|M(ζB) = m). We write Pr[B = b|M(ζB) = m] = 1
|B| [trMmζb]/Pr[M(ζB) = m] and

Pr[M(ζB) = m] = 1
|B|
∑
b trMmζb. After some manipulation (27) follows. In the first h(· · · ) of

(27) we then write 1
|B|
∑
b tr ζbMm = 1

|B| [pOK + (|B| − 1) 1−pOK

|B|−1 ] = 1
|B| . The h( 1

|B| ) cancels the

log |B|. The second h(· · · ) in (27) is the same for all b ∈ B, namely h({pOK,
1−pOK

|B|−1 , . . . ,
1−pOK

|B|−1 })
= −pOK log pOK − (|B| − 1) · 1−pOK

|B|−1 log 1−pOK

|B|−1 = h(pOK) + (1− pOK) log(|B| − 1). �
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5.2 Attack K1, 4-state

Eve scrutinises ωBx. If x = 0 then the state is either the +x or +z spin state. If x = 1 then the
state is either −x or −z. In both cases, the optimal way to distinguish between the states is to
measure the spin (σx − σz)/

√
2. Given the measurement outcome, the probabilities for the two

key values are (cos π8 )2 and (sin π
8 )2. This holds for x = 0 as well as x = 1. Eve’s knowledge about

B is

H(B)− H(B|X,ωBX) = 1− h([sin π
8 ]2) ≈ 0.399 (29)

Hmin(B)− Hmin(B|X,ωBX) = 1− log
1

(cos π8 )2
≈ 0.772. (30)

The effect on the whole n-bit string is obtained by multiplying (29,30) times 3βn.

5.3 Attack K1, 6-state

Consider x = 0. (The analysis for x = 1 is analogous). Eve has to distinguish between the spin
states +x, +y, +z using a POVM M = (Mb)b∈{1,2,3}. For the min-entropy the best POVM is

given by Mb = 1
31− 1

3nb ·σ, with n1 = (−2, 1, 1)T/
√

6, n2 = (1,−2, 1)T/
√

6, n3 = (1, 1,−2)T/
√

6.
It yields the following probability distribution for B: { 1

3 + 2
3
√

6
, 1

3 −
1

3
√

6
, 1

3 −
1

3
√

6
}.

Hmin(B)− Hmin(B|X,ωBX) = log 3 + log( 1
3 + 2

3
√

6
) ≈ 0.861. (31)

For the Shannon entropy the best POVM is of the same form as above but with nb → −nb. The
probability distribution for B is { 1

3 + 1
3
√

6
, 1

3 + 1
3
√

6
, 1

3 −
2

3
√

6
}.

H(B)− H(B|X,ωBX) = log 3− h({ 1
3 + 1

3
√

6
, 1

3 + 1
3
√

6
, 1

3 −
2

3
√

6
}) ≈ 0.314. (32)

The effect on the whole n-bit string is obtained by multiplying (31,32) times 3βn.

5.4 Attack K1, 8-state

Consider x = 0. (The analysis for x = 1 is analogous). Eve has to distinguish between the
four states |ψb0〉 with a POVM M = (Mb)b∈B. For the min-entropy the optimal POVM is
Mb = 1

2 |ψb0〉〈ψb0|, yielding probability distribution { 1
2 ,

1
6 ,

1
6 ,

1
6}. For the Shannon entropy the

optimum is Mb = 1
2 |ψb1〉〈ψb1|, yielding distribution {0, 1

3 ,
1
3 ,

1
3}.

Hmin(B)− Hmin(B|X,ωBX) = 2− 1 = 1 (33)

H(B)− H(B|X,ωBX) = 2− log 3 ≈ 0.415. (34)

The effect on the whole n-bit string is obtained by multiplying (33,34) times 3βn.

5.5 Attack K2, 4-state

Eve has to distinguish between B = 0 (z-basis) and B = 1 (x-basis) by inspecting her ancilla
state ζB .

Theorem 5.2 In the case of 4-state encoding, the min-entropy of the basis B given the mixed
state ζB is

Hmin(B|ζB) = Hmin(B)− log(1 +
√
β(1− 3

2β) +
β√
2

). (35)

The corresponding POVM M = (Mb)b∈{0,1} is given by

M0 = |γ1〉〈γ1|+ |γ2〉〈γ2| ; M1 = |γ3〉〈γ3|+ |γ4〉〈γ4| (36)

|γ1〉 =
|m0〉√

2
+
|m3〉 − |m1〉

2
; |γ3〉 =

|m0〉√
2
− |m3〉 − |m1〉

2

|γ2〉 =
|m2〉√

2
+ i
|m1〉+ |m3〉

2
; |γ4〉 =

|m2〉√
2
− i |m1〉+ |m3〉

2
. (37)
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Proof:

|E(0,0,1)
01 〉 =

√
1− 3

2β|m0〉+
√

β
2 |m3〉

√
1− β

; |E(1,0,0)
01 〉 =

√
1− 3

2β|m0〉+
√

β
2 |m1〉

√
1− β

|E(0,0,1)
00 〉 ∝ |m1〉 − i|m2〉√

2
; |E(1,0,0)

00 〉 =
i|m2〉+ |m3〉√

2
(38)

ζ0 − ζ1 =
√
β(1− 3

2β)

[
|m0〉

〈m3| − 〈m1|√
2

+ h.c.

]
+

β√
2

[
−i|m2〉

〈m1|+ 〈m3|√
2

+ h.c.

]
. (39)

The two expressions between square brackets act on orthogonal two-dimensional subspaces and

both have the form of a Pauli operator. It directly follows that the eigenvalues are ±
√
β(1− 3

2β)

and ±β/
√

2. Finally we apply (4) with p0 = p1 = 1
2 . �

Theorem 5.3 In the case of 4-state encoding, the Shannon entropy of the basis B given the mixed
state ζB is

H(B|ζB) = h(
1

2
+

1

2

√
β(1− 3

2β) +
β

2
√

2
). (40)

Proof: For binary B, the POVM associated with the min-entropy maximises trM0(ζ0 − ζ1) (see
Section 2.1). If we impose the symmetry trM0ζ1 = trM1ζ0 then this expression becomes trM0ζ0−
(1 − trM0ζ0) = 2trM0ζ0 − 1. (Imposing this symmetry is allowed, see Section 2.1). Hence the
optimisation in the min-entropy-POVM is the same as the optimisation in the Shannon-POVM,
and we conclude that the POVM associated with the min-entropy also minimises the Shannon
entropy. Applying the POVM from Theorem 5.2 to (28) yields (40). �

5.6 Attack K2, 6-state

Eve has to distinguish between B = 1 (x-basis), B = 2 (y-basis), and B = 3 (z-basis). We define
the permutation matrix S as

S
def
= |m0〉〈m0|+ |m2〉〈m1|+ |m3〉〈m2|+ |m1〉〈m3|. (41)

Theorem 5.4 In the case of 6-state encoding, the min-entropy of the basis B given the mixed
state ζB is

Hmin(B|ζB) = Hmin(B)− log

(
1 +

2
√

2√
3

√
β(1− β)

)
. (42)

The associated POVM is

M3 =
3− 4β

3(1− β)
|q〉〈q|+ 1

3(1− β)
|r〉〈r| (43)

|q〉 = −

√
1− β
3− 4β

|m0〉+

√
2− 3β√
3− 4β

|m1〉+ |m2〉 − 2|m3〉√
6

(44)

|r〉 =
√

1− β |m1〉+ |m2〉+ |m3〉√
3

+ i
√
β
|m1〉 − |m2〉√

2
(45)

and M1 = SM3S
†, M2 = SM1S

†.

Proof: For b ∈ {1, 2, 3} we have

ζb = (1− 3
2β)|m0〉〈m0|+ β

2 (|m1〉〈m1|+ |m2〉〈m2|+ |m3〉〈m3|)

+
√

β
2 (1− 3

2β)(|m0〉〈mb|+ h.c.) + β
2 (i|mb+1〉〈mb+2|+ h.c.) (46)
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where b+ 1 should be read as b+ 1 mod 3 ∈ {1, 2, 3}.
The matrix Λ as defined in Section 2.1 is given by

Λ =
∑
b

ζbMb = (1− 3
2β)(1 +

2
√
β√

6
√

1− β
)|m0〉〈m0|+ (

1

2
+

(2− β)
√
β

3
√

6
√

1− β
)

3∑
j=1

|mj〉〈mj | (47)

+

√
2

6

√
β(1− β)

 3∑
j=1

|m0〉〈mj |+ h.c.

+ [(
−iβ

2
− (1− 2β)

√
β

3
√

6
√

1− β
)

3∑
j=1

|mj+1〉〈mj |+ h.c.].

With some effort it is verified that indeed Λ− ζb ≥ 0 for b ∈ {1, 2, 3} and β ∈ [0, 1
2 ]. �

Conjecture 5.5 Consider 6-state encoding. In terms of Shannon entropy, Eve’s optimal POVM
Q = (Qb)b∈B for learning as much as possible about B from ζB is given by

Q3 =
3− 4β

3(1− β)
|q′〉〈q′|+ 1

3(1− β)
|r′〉〈r′| (48)

|q′〉 =

√
1− β
3− 4β

|m0〉+

√
2− 3β√
3− 4β

|m1〉+ |m2〉 − 2|m3〉√
6

(49)

|r′〉 = |r〉∗ (50)

with |r〉 as defined by (45), and Q1 = SQ3S
†, Q2 = SQ1S

†.

Evidence: The POVM Q is the ‘dual’ of M in the sense that it has v replaced by −v. (This fact
is not immediately evident. One can also take M and apply it to the state ζB with v → −v;
this is equivalent). It was noticed in [6] that such a ‘dual’ is the optimal POVM in the case of
the intercept attack K1. We have performed numerical POVM optimisations which find a local
minimum of the Shannon entropy, starting from 310 initial points in POVM space; all combinations
of a positive/zero/negative value for each of the 10 degrees of freedom that are left in the POVM
after imposing S-symmetry.8 Furthermore we did a Monte Carlo sampling of 1011 random POVMs.
We did not find a single POVM that performs better than Q. The numerical search did find M
and Q, as well as 200 POVMs with Shannon entropy between that of Q and M. �

Theorem 5.6 In case of the measurement Q specified in Conjecture 5.5, the entropy of B is given
by

H(B|Q(ζB)) = h(p6) + 1− p6 (51)

p6
def
=

1

3
− 2
√

2

3
√

3

√
β(1− β). (52)

Proof: After some algebra it can be seen that tr ζ3Q3 = p6. We apply (28) from Lemma 5.1. �
Some remarks on the case β ≥ 1

3 can be found in the Appendix.

5.7 Attack K2, 8-state

Theorem 5.7 Let β ≤ 1
3 . In the 8-state case, the min-entropy of B given the mixed state ζB is

Hmin(B|ζB) = Hmin(B)− log

(
1 +
√

6
√
β(1− 3

2β)

)
. (53)

The associated POVM (Muw)u,w∈{0,1} is

M00 =

∑3
a=0 |ma〉

2

∑3
a′=0〈ma′ |

2
; M01 = (σz ⊗ 1)M00(σz ⊗ 1) (54)

M10 = (σz ⊗ σz)M00(σz ⊗ σz) ; M11 = (1⊗ σz)M00(1⊗ σz). (55)

8Imposing symmetry is allowed, see Section 2.1.
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Proof: The states ζuw are given by

ζ00 = (1− 3
2β)|m0〉〈m0|+

β

2

3∑
j=1

|mj〉〈mj |+
√

β
2 (1− 3

2β)

[
|m0〉

〈m1|+ 〈m2|+ 〈m3|√
3

+ h.c.

]

+
β

2
√

3

i 3∑
j=1

|mj〉〈mj+1|+ h.c.

 (56)

and ζ01 = (σz ⊗ 1)ζ00(σz ⊗ 1), ζ10 = (σz ⊗ σz)ζ00(σz ⊗ σz), ζ11 = (1⊗ σz)ζ00(1⊗ σz). The matrix
Λ has a simple diagonal form,

Λ =
∑
uw

ζuwMuw =

(
1− 3

2β +
√

3
√

β
2 (1− 3

2β)

)
|m0〉〈m0|+ (

β

2
+

√
β
2 (1− 3

2β)
√

3
)

3∑
j=1

|mj〉〈mj |.

(57)
It is easily verified that Λ− ζuw ≥ 0 for all β ∈ [0, 1

3 ] and u,w ∈ {0, 1}. Furthermore we have

tr Λ = 1 +
√

6
√
β(1− 3

2β). (58)

�

Conjecture 5.8 Consider 8-state encoding. Let β ≤ 1
3 . In terms of Shannon entropy, Eve’s

optimal POVM R = (Ruw)u,w∈{0,1} for learning as much as possible about U,W from ζUW is
given by

R00 = |v〉〈v|, |v〉 =
|m0〉 − |m1〉 − |m2〉 − |m3〉

2
(59)

and R01 = (σz ⊗ 1)R00(σz ⊗ 1), R10 = (σz ⊗ σz)R00(σz ⊗ σz), R11 = (1⊗ σz)R00(1⊗ σz).

Evidence: Just as in the 6-state case, the POVM for the Shannon entropy is the ‘dual’ (v → −v)
of the POVM associated with the min-entropy. Numerical optimisations (from 312 initial points)
with imposed symmetry gave us no POVM that performs better than R. The numerical search
did find R and M, as well as 168 POVMs with Shannon entropy between that of R and M. �

Theorem 5.9 In case of the measurement R specified in Conjecture 5.8, the entropy of B is given
by

H(B|R(ζB)) = h(p8) + (1− p8) log 3 (60)

p8
def
=

1

4
−
√

3

2
√

2

√
β(1− 3

2β). (61)

Proof: A brief calculation gives tr ζuwRuw = p8 (for all u,w) with p8 as defined in (61). Then we
use (28). �
Some remarks on the case β ≥ 1

3 can be found in the Appendix.

6 Putting it all together

The amount of privacy amplification needed in the protocol (Section 2.2, Ext function) is deter-
mined by the strongest of the M1, M2, K1, K2 attacks. Below we combine all the results from
Sections 4 and 5.
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Shannon entropy leakage I(β) per qubit
4-state 6-state 8-state

M1 0.399 0.256 0

M2 β · 1 + (1− β)[1− h(pβ)], pβ = 1
2 −

√
β
2 (1− 3

2β)

1−β
K1 3β · 0.399 3β · 0.314 3β · 0.415

K2 1− h( 1
2 + 1

2

√
β(1− 3

2β) + β

2
√

2
) log 3− [h(p6) + 1− p6] 2− [h(p8) + (1− p8) log 3]

p6 = 1
3 −

2
√

2
3
√

3

√
β(1− β) p8 = 1

4 −
√

6
4

√
β(1− 3

2β)

Table 1: Shannon entropy loss I(β) as a function of noise β, for the attacks M1,M2,K1,K2. The
6-state and 8-state K2 results are conjectures.
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Figure 1: Shannon leakage I(β) per qubit as a function of the bit error rate β. The 6-state and
8-state K2 results are conjectures.
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Figure 2: QKR capacity 1− h(β)−maxattacks I(β) as a function of the bit error rate β. (Leakage
is expressed as mutual information). The strongest attack determines I(β).

6.1 Combined results for Shannon entropy

Table 1 shows an overview of the Shannon entropy losses in all the attacks. The individual
M1,M2,K1,K2 leakages (and the maximum) are plotted as a function of β in Fig. 1. Fig. 2 shows
the QKR capacity 1− h(β)− I(β).
For 4-state and 6-state encoding, the strongest attack at low β is M1. At larger β it is the QKD-like
attack M2. For 8-state encoding, M2 is always the strongest attack. The QKR channel capacity
of 4-state encoding is always below 6-state. 8-state has higher capacity than 6-state at β up to
≈ 0.1061, after which they are the same and equal to the QKD capacity.
Our plots do not go beyond β = 1

3 because intercept-resend attacks cause noise β = 1
3 . In attack

K1 the fraction of qubits intercepted by Eve is 3β, which at β > 1
3 would exceed 1. At β > 1

3 we
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have to be careful how we interpret K1. A discussion can be found in the Appendix. Note that
attacks K1 and K2 at β = 1

3 are not necessarily the same thing. Attack K2 restricts Eve’s options
by forcing her to first perform a specific ancilla operation, whereas attack K1 allows any POVM
on the intercepted qubit. Hence at β = 1

3 the K2 leakage cannot exceed the K1 leakage.

6.2 Combined results for min-entropy

Table 2 shows an overview of the min-entropy entropy losses in all the attacks. The individual
M1,M2,K1,K2 leakages (and the maximum) are plotted as a function of β in Fig. 3. Fig. 4 shows
the QKR capacity 1−h(β)−4Hmin(β). For 4-state and 6-state, the winning attacks are as for the
Shannon entropy case. For 8-state, however, the winning attack is K2. If capacity is computed
using min-entropy loss as the measure of Eve’s knowledge, then the QKR capacity of 8-state is
higher than 6-state on the range β ∈ [0, 0.0612]. There is a tiny interval β ∈ (0.0612, 0.0638] where
6-state outperforms 8-state; at β > 0.0638 all capacities are zero. 4-state is always worse than
6-state.

Min-entropy leakage per qubit
4-state 6-state 8-state

M1 0.772 0.658 0

M2 log[1 +
√

2
√
β(1− 3

2β) + β]

K1 3β · 0.772 3β · 0.861 3β · 1
K2 log(1 +

√
β(1− 3

2β) + β√
2
) log

(
1 + 2

√
2√
3

√
β(1− β)

)
log
(

1 +
√

6
√
β(1− 3

2β)
)

Table 2: Min-entropy loss as a function of noise β, for the attacks M1,M2,K1,K2.
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Figure 3: Min-entropy leakage per qubit as a function of the bit error rate β.

7 Addition of artificial noise

The structure evident in the |Ev
xy〉 vectors (10) allows us to simplify the derivation of the capacity

of 6-state/8-state QKD with added artificial noise. (This also applies to attack M2.) In [14]
a derivation for 6-state QKD was given without noise symmetrisation, resulting in a lengthy
analysis. Moreover, the end result was presented in a less than elegant way. Here we give a
shorter derivation, and we present the end result in a very intuitive form.
Alice adds artificial noise to X. This is represented as a binary symmetric channel with bit error

rate ε. Let ε?β
def
= ε(1−β)+(1−ε)β be the bit error rate on the concatenated channel consisting

of Alice’s noise ε followed by the physical noise β introduced by Eve. The channel capacity from
Alice to Bob becomes I ′AB(ε, β) = 1−h(ε?β). Eve’s task of distinguishing between the various |Ev〉
states is not affected; the weights β and 1−β in (21) do not change. However, Eve’s inference about
X from her measurement outcomes has additional noise ε: the bit error rate of the ‘easy’ channel
changes from 0 to ε?0 = ε, and the bit error rate of the ‘difficult’ channel changes from pβ to ε?pβ .
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Figure 4: QKR capacity as a function of the bit error rate β, if leakage is expressed as min-entropy
loss.

Thus the channel from Alice to Eve now has capacity I ′AE(ε, β) = β[1−h(ε)]+(1−β)[1−h(ε?pβ)],
with pβ as defined in (20). The secrecy capacity is

C ′(ε, β) = I ′AB − I ′AE = 1− h(ε ? β)−
{
β[1− h(ε)] + (1− β)[1− h(ε ? pβ)]

}
= (1− β)h(ε ? pβ) + βh(ε)− h(ε ? β) (62)

which is precisely the result of [14] but in simplified form. Fig. 5 shows the optimal noise εopt(β) as
a function of β, and the resulting capacity Copt(β) = C ′(εopt(β), β). The original positive-capacity
region β ≤ 0.156 is extended to β ≤ 0.162.
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Figure 5: Left: The capacity C(β) without artificial noise and the capacity Copt = C ′(εopt(β), β)
for the best choice of artificial noise. Right: The optimal value of Alice’s noise parameter ε as a
function of the channel noise β. (Numerical optimisation.)

8 Discussion

The fact that M1 is the dominant attack against 4-state and 6-state encoding at low bit error rate,
and M2 at larger β, comes as no surprise. The vulnerability of the message is exactly the reason
why 8-state encoding was introduced in [6]. And as 8-state protects the message better, it is also
not surprising that an attack on the key dominates in the 8-state min-entropy analysis.
What we did not know a priori is the relative strength of the β-dependent attacks, and their
strength (at large β) compared to M1. Figs. 1 and 3 show complicated behaviour with various
intersections of curves.
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We were surprised to see M2 ‘winning’ in the 8-state Shannon entropy analysis. With M2 being
the relevant attack, a large part of the security analysis becomes identical, or at least very similar,
to well known QKD analysis. Hence the trick with Alice’s artificial noise is as relevant to QKR as
it is to QKD.
When the number of qubits (n) is very large, the relevant quantity to look at is Shannon en-
tropy. For small n it is min-entropy. In intermediate cases it is something in between. From our
results we conclude that 8-state encoding yields the highest QKR capacity under practically all
circumstances.

As topics for future work we see (i) Adaptation of the protocol so that the n-qubit quantum state
|Ψ〉 sent by Alice contains the message itself (in privacy-amplified form, as in [2]), instead of a
random mask. This would further improve communication efficiency. (ii) Determine the effect
of artificial noise on the min-entropy loss in the case of the K2 attack on 8-state encoding. (iii)
Determine how tight the bound in Lemma 4.1 (M2 reduces to QKD analysis) is as a function of N .
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Appendix: Attack K2 at high noise levels

For the sake of completeness we present entropy results for the K2 attack at very high noise levels.
As mentioned in Section 6.1, the K1 attack needs some interpreting at β > 1

3 : Eve does the
the optimal K1-POVM on all n qubits but then forwards badly chosen states to Bob which cause
β > 1

3 . Attack K2 is still defined as before: Eve couples her ancilla to the AB system in such a way
that noise β > 1

3 occurs. At β = 1
2 the point is reached where Eve might as well send a completely

random qubit state to Bob, and she extracts the maximum possible amount of information from
the scrutinised qubit. Hence the K2-leakage at β = 1

2 must equal the K1-leakage at β = 1
3 .

In the case of 4- and 6-state encoding we find that the POVMs (35) and (43,48) respectively are
optimal on the whole range β ∈ [0, 1

2 ]. In the 8-state case the situation is different: we find a
different POVM in the range β ∈ [ 1

3 ,
1
2 ].

Theorem .1 Let 1
3 ≤ β ≤ 1

2 . For 8-state encoding, the min-entropy of B given the mixed state
ζB is

Hmin(B|ζB) = Hmin(B)− 1 = 1. (63)

The associated POVM (Muw)u,w∈{0,1} is

M00 =
1− β

2β
|a〉〈a|+ 3β − 1

2β
|d〉〈d| (64)

|a〉 =

√
β/2√

1− β
|m0〉+

√
1− 3

2β√
1− β

· |m1〉+ |m2〉+ |m3〉√
3

(65)

|d〉 =
eiπ/3|m1〉+ e−iπ/3|m2〉 − |m3〉√

3
(66)

M01 = (σz ⊗ 1)M00(σz ⊗ 1);M10 = (σz ⊗ σz)M00(σz ⊗ σz);M11 = (1⊗ σz)M00(1⊗ σz). (67)

Proof: After some algebra it turns out that the matrix Λ has a simple diagonal form,

Λ =
∑
uw

ζuwMuw = (2− 3β) |m0〉〈m0|+ β

3∑
j=1

|mj〉〈mj |. (68)

It is easily verified that Λ− ζuw ≥ 0 for all β ∈ [ 1
3 ,

1
2 ] and u,w ∈ {0, 1}. �
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Lemma .2 Consider 8-state encoding. Let 1
3 ≤ β ≤ 1

2 . In terms of Shannon entropy, Eve’s
optimal POVM R = (Ruw)u,w∈{0,1} for learning as much as possible about U,W from ζUW is
given by

R00 =
1− β

2β
|a′〉〈a′|+ 3β − 1

2β
|d′〉〈d′| (69)

|a′〉 = −
√
β/2√

1− β
|m0〉+

√
1− 3

2β√
1− β

· |m1〉+ |m2〉+ |m3〉√
3

(70)

|d′〉 = |d〉∗ (71)

and R01 = (σz ⊗ 1)R00(σz ⊗ 1), R10 = (σz ⊗ σz)R00(σz ⊗ σz), R11 = (1⊗ σz)R00(1⊗ σz).

Proof: On the whole range β ∈ [ 1
3 ,

1
2 ] the POVM R gives H(B|R(ζB)) = log 3, which is the K1

result at β = 1
3 and therefore the minimum possible value. �

Just as in the 6-state case and in the 8-state for β ≤ 1
3 , the POVM R for the Shannon entropy is

the ‘dual’ (v → −v) of the POVM associated with the min-entropy.
Note that at β = 1

3 the POVMs for β ≤ 1
3 and β ≥ 1

3 match, as they should. The leakages for the
K1 and K2 attacks up to β = 1

2 are plotted in Figs. 6 and 7.
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Figure 6: Shannon leakage I(β) per qubit as a function of the bit error rate β up to β = 1
2 . The

K2 results for 6-state and 8-state encoding are conjectures.
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Figure 7: Min-entropy leakage per qubit as a function of the bit error rate β up to β = 1
2 .

For 4- and 6-state, K2 reaches it maximum at β = 1
2 , whereas in the 8-state case the maximum is

reached already at β = 1
3 .
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