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Abstract. GGH13, CLT13 and GGH15 of multilinear maps suffer from
zeroizing attacks. In this paper, we present a new construction of mul-
tilinear maps using a variant of ring-LWE (vRLWE). Furthermore, we
also present two new variants of vRLWE, which respectively support the
applications of multipartite key exchange and witness encryption. The
security of our construction depends upon new hardness assumptions.
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1 Introduction

Multilinear maps have plenty of applications including multipartite key exchange
(MPKE), program obfuscation and efficient broadcast encryption [9,20,21,37].
However, current constructions GGH13, CLT13 and GGH15 [19,15,23] do not
depend upon classic hardness assumptions, and recent are proved to be insecure
[19,12,11,30,18], especially for MPKE using these constructions.

The GGH13 construction has the weak discrete logarithm attack (or called
zeroizing attack) presented by authors themselves [19]. By using the weak-DL
attack, one can get related information of some secret parameters of GGH13 such
as basis of secret element. As a result, some problems including the subgroup
membership problem and the decisional linear problem are become easy. Very
recently, Hu and Jia [30] presented an efficient weak-DL-based attack on the
GGH13 map, which breaks the GGH13-based applications on multipartite key
exchange and witness encryption (WE) based on the hardness of 3-exact cov-
er problem. To fix GGH13, Gentry, Halevi and Lepoint [28] recently described
a variant of the GGH13 scheme [19], in which the linear zero-testing proce-
dure from [19] is replaced by a quadratic (or higher-degree) procedure. However,
Brakerski et al. [5] showed that this variant of GGH13 fails to thwart zeroizing
attacks. On the other hand, Halevi [29] described a variant of GGH13. But,
Coron et al [18] proved that this variant is also insecure.

The CLT13 construction also has the problem of zeroizing attack. Cheon et
al. [12] broke CLT13 using an extension of zeroizing attack. To fix CLT13, Garg,
Gentry, Halevi and Zhandry [22], and Boneh, Wu and Zimmerman [8] respective-
ly described two variants of multilinear maps over the integers. However, Coron
et al. [11] extended Cheon et al.’s attack [12] to setting where no encoding of
zero below top level are available. Consequently, these variants [22,8] can also
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be defeated using an extension of Cheon et al.’s zeroizing attack [11]. Recent-
ly, Coron, Lepoint and Tibouchi [17] (CLT15) presented a new improvement of
CLT13 by modifying zero-testing parameter. However, the CLT15 construction
is also insecure [14,32].

Recently, the GGH15-based MPKE is attacked by using a variant of the
Cheon et al.’s attack [18]. While the public parameters in GGH15 does not in-
clude encodings of zero, each plaintext appears in the encoding of each path
of the directed graph of GGH15. Coron et al. [18] described an attack of G-
GH15, which broke GGH15-based MPKE in polynomial time by generating an
equivalent user private key.

Currently, it is still an open problem how to construct a secure multilinear
maps, in particular supporting MPKE.

1.1 Our contribution

Our main contribution is to present a new multilinear map using a variant of ring-
LWE. The security of our construction is still dependent on the new hardness
assumption. However, we observe that if a construction of multilinear maps
supports MPKE, it is impossible to completely avoid zeroizing attacks.

Our starting point is a new variant of LWE [35]. In the LWE problem, given
q a prime integer, and a list of samples (al, bl = [< al, s > +el]q), where s ∈ Znq ,
al ∈ Znq are chosen independently and uniformly from Znq , and el is chosen
independently according to the probability distribution χ = DZ,σ, find s. In
the first variant of LWE, s is chosen from the error distribution χn rather than
uniformly at random, the choice of other parameters remains unchanged. This
variant becomes no easier to solve than the decisional LWE [34,2].

In this paper, we introduce a new variant of LWE. Namely, we draw many
samples (al, bl = [< al, s > +el]q), where s ← Znq , al ← DZn,σ, el ← DZ,σ. To
directly support multiplication, we write samples in the matrix form. That is,
given many samples (Al,Bl = [AlS + El]q), where S ← Zn×mq , Al ← DZn×n,σ,
El ← DZn×m,σ, the problem is to find S. Since this new variant is also a special
form of LWE, its decisional version is equivalent to the search version. However,
at present this variant can not be reduced to LWE or other classical hardness
problems.

It is easy to see that this variant supports addition and multiplication. For
example, given samples (A1,B1), (A2,B2), for addition we have:{

A = A1 + A2,

B = B1 + B2 = (A1 + A2)S + (E1 + E2) = AS + E mod q.

Similarly, for multiplication we have:{
A = A1A2,

B = A1B2 = A1A2S + A1E2 = AS + E mod q,

where E = A1E2.
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Since A1,A2,E1,E2 are all “small”, as a consequence, A and E generated
by addition or multiplication are also “small”.

1.2 Applications

Similar to GGH15 [23], here we also describe two applications using our new
constructions. In order to improve efficiency, we switch to a ring version of the
variant LWE. That is, we sample scalars from a large polynomial ring R =
Z[x]/〈xn + 1〉, rather than the ring of integers Z.

MPKE. Let κ be the number of parties. Since the matrix product generally
does not satisfy the commutative law, we choose S = sI to construct MPKE.
Given many samples (Al,Bl = AlS+El) as the public parameters, each party i
generates a random linear combination (Ui,Vi) of these samples, publicly pub-
lishes Ui, and remains Vi secret. Applying an ordering of all parties generated
by Ui, (e.g. 1, 2, · · · , κ), then the i-th party computes an extracting encoding

Ci =
∏i−1

j=1
Uj ×Vi ×

∏κ

j=i+1
Uj =

∏κ

j=1
Uj × S + E

′

i

Finally, the i-th party extracts the shared secret key from the most significant
bits of each element of Ci.

The main difference between our scheme and their scheme is that in our
scheme, the product of the plaintexts Uj is not commutative, the matrix S is
commutative, whereas in their scheme, the situation is just the opposite.

Branching-program obfuscation. Branching program (BP) obfuscation
can be constructed by applying the variant of LWE. Given a length-κ matrix BP
{Aj,b, j ∈ [κ], b ∈ [2]}, we first use Kilian’s randomization to generate a matrix
encode BP as follow:

Aj,b = {T−1j−1Aj,bTj , j ∈ [κ− 1], b ∈ [2]},
Bκ,b = {T−1κ−1(Aκ,bS + Eκ,b)Tκ, b ∈ [2]},

u = uTT0,v = T−1κ v.

Now, we can compute an encoding of a product of matrices corresponding to

an input x. If
∏

j∈[κ]
Aj,xindj

= I, then we get uTSv + uTE′v. Hence, given

uTSv + e′ in the public parameters, we can compare them to obtain the result
of the computation.

Organization. Section 2 recalls some background. Section 3 describes our
new construction using a variant of the ring LWE. Section 4 and 5 describe
an asymmetric commutative variant and a symmetric commutative variant, re-
spectively. Section 6 presents some applications using our construction and its
variants.
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2 Preliminaries

2.1 Notations

Let Z,Q,R denote the ring of integers, the field of rational numbers, and the
field of real numbers. Let n be a positive integer and power of 2. Notation
[n] denotes the set {1, 2, ..., n}. Let R = Z[x]/〈xn + 1〉, Rq = Zq[x]/〈xn + 1〉,
and K = Q[x]/〈xn + 1〉. Vectors are denoted in bold lowercase (e.g. a), and
matrices in bold uppercase (e.g. A). We denote by aj the j-th entry of a vector
a, and ai,j the element of the i-th row and j-th column of A. We denote by
‖a‖2 (abbreviated as ‖a‖) the Euclidian norm of a. For A ∈ Rd×d, we define
‖A‖ = max{‖ai,j‖, i, j ∈ [d]}, where ‖ai,j‖ is the Euclidian norm corresponding
to the coefficient vector of ai,j .

Let [a]q denote the absolute minimum residual system, namely [a]q = a mod q ∈
(−q/2, q/2]. Similarly, for a ∈ Zn (or a ∈ R ), [a]q denotes each entry (or each
coefficient) [aj ]q ∈ (−q/2, q/2] of a (or a).

2.2 Lattices and Ideal Lattices

An n-dimensional full-rank lattice L ⊂ Rn is the set of all integer linear com-

binations
∑n

i=1
yibi of n linearly independent vectors bi ∈ Rn. If we arrange

the vectors bi as the columns of matrix B ∈ Rn×n, then L = {By : y ∈ Zn}.
We say that B spans L if B is a basis for L. Given a basis B of L, we define
P (B) = {By|y ∈ Rn and yi ∈ [−1/2, 1/2)} as the parallelization corresponding
to B. We let det(B) be the determinant of B.

Given g ∈ R, we let I = 〈g〉 be the principal ideal lattice in R generated by
g, whose Z-basis is Rot(g) = (g, x · g, ..., xn−1 · g).

Given c ∈ Rn , σ > 0, the Gaussian distribution of a lattice L is defined
as DL,σ,c = ρσ,c(x)/ρσ,c(L) for x ∈ L , where ρσ,c(x) = exp(−π‖x − c‖2/σ2)),

ρσ,c(L) =
∑

x∈L
ρσ,c(x). In the following, we will write DL,σ,0 as DL,σ . We

denote a Gaussian sample as x ← DL,σ (or d ← DI,σ ) over the lattice L (or
ideal lattice I ).

Micciancio and Regev [33] introduced the smoothing parameter of lattices.
For an n-dimensional lattice L, and positive real ε > 0, we define its smoothing
parameter ηε(L) to be the smallest s such that ρ1/s(L

∗\{0}) ≤ ε, where L∗ is
the dual lattice of L.

Lemma 2.1 (Lemma 3.3 [33]). For any n-dimensional lattice L and posi-
tive real ε > 0, ηε(L) ≤

√
ln(2n(1 + 1/ε))/π · λn(L).

Lemma 2.2 (Lemma 4.4 [33]). For any n-dimensional lattice L, vector
c ∈ Rn and reals 0 < ε < 1, s ≥ ηε(L), we have

Pr
x←DL,s,c

{‖x− c‖ > s
√
n} ≤ 1 + ε

1− ε
· 2−n.
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2.3 Multilinear Maps

In the following, we give the definition of multilinear maps.
Definition 2.3 (Multilinear Map [7]). For κ+1 cyclic groupsG1, ..., Gκ, GT

of the same order q, a κ-multilinear map e : G1× ...×Gκ → GT has the following
properties:

(1) Elements {gj ∈ Gj}j=1,...,κ , index j ∈ [κ] , and integer a ∈ Zq hold that

e(g1, ..., a · gj , ..., gκ) = a · e(g1, ..., gκ)

(2) Map e is non-degenerate in the following sense: if elements {gj ∈ Gj}j∈[κ]
are generators of their respective groups, then e(g1, ..., gκ) is a generator of GT .

Definition 2.4 (κ-Graded Encoding System [19]). A κ-graded encoding

system over R is a set system of S = {S(a)
j ∈ R : a ∈ R, j ∈ [κ]} with the

following properties:

(1) For every index j ∈ [κ] , the sets S = {S(a)
j ∈ R : a ∈ R} are disjoint.

(2) Binary operations ‘+’ and ‘-’ exist, such that every a1, a2 , every index

j ∈ [κ] , and every u1 ∈ S(a1)
j and u2 ∈ S(a2)

j hold that u1 + u2 ∈ S(a1+a2)
j and

u1− u2 ∈ S(a1−a2)
j , where a1 + a2 and a1 − a2 are the addition and subtraction

operations in R respectively.
(3) Binary operation ‘×’ exists, such that every a1, a2, every index j1, j2 ∈ [κ]

with j1+j2 ≤ κ, and every u1 ∈ S(a1)
j1

and u2 ∈ S(a2)
j2

hold that u1×u2 ∈ S(a1×a2)
j1+j2

,
where a1 × a2 is the multiplication operation in R and j1 + j2 is the integer
addition.

3 Our construction

In this section, we first describe our construction using a variant of ring LWE
(vRLWE), then show its correctness, and finally give its hardness assumption.

3.1 Construction

Setting the parameters. Let λ be the security parameter, κ the multilinearity
level (or the number of times to support multiplication). For simplicity, concrete
parameters are set as n = O(λ), σ = O(n), O(n6.4κ+11.2) < q < O(n8κ+14),
d ≥ 2, τ = λd2.

Instance generation: (par)← InstGen(1λ, 1κ).
(1) Choose a prime O(n6.4κ+11.2) < q < O(n8κ+14).
(2) Choose a random matrix S← Rd×dq .

(3) For l ∈ [τ ], sample Al,El ∈ Rd×d such that al,i,j , el,i,j ← DZn,σ, i, j ∈ [d].
(4) Sample u,v ∈ Rd such that ui, vi ← DZn,σ, i ∈ [d].
(5) For l ∈ [τ ], set Bl = [AlS + El]q.
(6) Output the public parameters par =

{
q, (Al,Bl)l∈[τ ],u,v

}
.

Generating a random encoding: (U,V)← Enc(par).
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Given rl ← DZn,σ, l ∈ [τ ], generate

U =
[∑τ

l=1
rl ·Al

]
q
,V =

[∑τ

l=1
rl ·Bl

]
q
.

Adding encodings: (U,V)← Add(par, (U1,V1), (U2,V2)).

Given two encodings (U1,V1), (U2,V2), compute

U = [U1 + U2]q,V = [V1 + V2]q.

Multiplying encodings: (U,V)← Mul(par, (U1,V1), (U2,V2)).

Given two encodings (U1,V1), (U2,V2), compute

U = [U1U2]q,V = [U1V2]q.

Zero-testing: isZero(par, (U,V)):

Given an encoding (U,V) , we check whether ‖uTVv‖ is short:

isZero(par, (U,V)) =

{
1, if ‖uTVv‖ < q7/8;

0, otherwise.

Extract: sk ← Ext(par, (U,V)).

Given an encoding (U,V), we extract the η = (logq)/8− λ most-significant
bits from each of the n coefficients of uTVv :

Ext(par, (U,V)) = msbsη(uTVv),

where msbsη extracts the η most significant bits from each coefficient of uTVv.

Remark 3.1 (1) Similar to GGH13 [20], we can construct graded encoding
scheme by introducing a random ring element z ∈ Rq. That is, we generate the
following parameters:

Al = [Al/z]q,

Bl = [(AlS + El)z
κ]q

(2) Using Kilian randomization, we can also construct an asymmetric version
as follows: For l ∈ [τ ], k ∈ [κ+ 1],

Al,k = [T−1k−1Al,kTk]q,

Bl,k = [T−1k−1(Al,kS + El,k)Tk]q,

uT = uTT0,v = Tκv,

where S,Tk ∈ Rd×dq , and Al,k,El,k ∈ Rd×d such that el,k,i,j , al,k,i,j ← DZn,σ.
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3.2 Correctness

Correctness of our construction follows from a fact, which says that the encodings
returned by Enc,Add,Mul are all legal samples of vRLWE. For completeness,
we give the brief proof of correctness in the following.

Lemma 3.2 The algorithm InstGen(1λ, 1κ) runs in polynomial time.
Proof. Since each step in InstGen runs in polynomial time, the result is

directly obtained.
Lemma 3.3 The encoding (U,V)← Enc(par) is a sample of vRLWE.

Proof. By U =
[∑τ

l=1
rl ·Al

]
q

with rl ← DZn,σ , l ∈ [τ ], we have

V =
[∑τ

l=1
rl ·Bl

]
q

= US + E,

where E =
∑τ

l=1
rlEl.

Lemma 3.4 The encoding (U,V)← Add(par, (U1,V1), (U2,V2)) is a sam-
ple of vRLWE.

Proof. By Vi = UiS + Ei, i ∈ [2] , we have

U = [U1 + U2]q,V = [V1 + V2]q = [US + E]q,

where E = E1 + E2.
Lemma 3.5 The encoding (U,V)← Mul(par, (U1,V1), (U2,V2)) is a sam-

ple of vRLWE.
Proof. By Vi = UiS + Ei, i ∈ [2] , we have

U = [U1U2]q,V = [U1V2]q = [US + E]q,

where E = U1E2.
Lemma 3.6 The procedure isZero(par, (U,V)) can correctly determine whether

(U,V) is an encoding of zero.
Proof. By Lemma 2.1, σ = O(n) > ηε(Zn). Using Lemma 2.2, we have

‖Al‖ = O(σ
√
n) = O(n1.5) with overwhelming probability.

Given an encoding (U1,V1) returned by Enc, we have

‖U1‖ = ‖
∑τ

l=1
rlAl‖ = O(τ · n · ‖rl‖ · ‖Al‖) = O(n4),

where ‖rl‖ = O(σ
√
n) = O(n1.5) for rl ← DZn,σ.

Since V1 =
∑τ

l=1
rlBl = U1S +

∑τ

l=1
rlEl = U1S + Ẽ1 mod q, we have

‖Ẽ1‖ = ‖
∑τ

l=1
rlEl‖ = O(τ · n ·O(n1.5) ·O(n1.5)) = O(n4).

Since the above construction supports κ multiplications, without loss of gen-
erality, we assume that (Ui,Vi = UiS+Ẽi), i ∈ [κ+1] is the encodings returned
by Enc, and (U,V) is their product generated by using Mul.
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By ‖Ui‖ = O(n4), i ∈ [κ+ 1], we get

‖U‖ = ‖
∏κ+1

i=1
Ui‖ = O(nκO(n4(κ+1))) = O(n5κ+4).

For simplicity, let V =
∏κ

i=1
Ui ×Vκ+1 = US + E. Hence, we have

‖E‖ = ‖
∏κ

i=1
Ui × Ẽκ+1‖ = n×O(n5(κ−1)+4)×O(n4) = O(n5κ+4).

On one hand, if U = 0, then V = [E]q = E. Namely, V is not reduced
modulo q. Hence, we obtain

‖uTVv‖ = ‖uTEv‖
< n2‖u‖‖E‖‖v‖
< n2O(n1.5)O(n5κ+4)O(n1.5)

= O(n5κ+9)

< q7/8.

In the setting of parameters, we set O(n5.7κ+10.3) < q < O(n6.7κ+4) to satisfy
the condition q3/4 < O(n5κ+9) < q7/8.

On the other hand, if U 6= 0, then ‖uTVv‖ ≈ ‖uTUSv‖ ≈ q > q7/8 with
overwhelming probability, since ‖S‖ ≈ q.

Thus, the zero-test procedure isZero(par, (U,V)) is correct.
Lemma 3.7 For two encodings (U1,V1), (U2,V2), if U1 = U2, then

Ext(par, (U1,V1)) = Ext(par, (U2,V2)).
Proof. Since Vi = UiS + Ei, i ∈ [2], we have

uTV1v = uTU1Sv + uTE1v,

uTV2v = uTU2Sv + uTE2v.

By U1 = U2, we obtain uTV1v− uTV2v = uTE1v− uTE2v.
Again since ‖uTEiv‖ < q7/8, i ∈ [2], we have ‖uTE1v− uTE2v‖ ≤ 2q7/8.
Furthermore, when Ui 6= 0, i ∈ [2], by Lemma 3.6, ‖uTUiSv‖ ≈ q with

overwhelming probability.
Hence, the η = (logq)/8 − λ most-significant bits from each of the n coeffi-

cients of uTViv is determined by the term uTUiSv. That is, Ext(par, (U1,V1)) =
Ext(par, (U2,V2)) with overwhelming probability.

3.3 Hardness Assumptions

The security of our construction depends on the hardness of vRLWE, and cannot
be reduced to classic hard problems, such as hard lattice problems or Ring-
LWE/LWE. Similarly [31], we define the extraction version of GCDH/GDDH
for our construction. Consider the following security experiment:

(1) (par)← InstGen(1λ, 1κ).
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(2) For j = 1 to k ≤ κ+ 1:
(2.1) Sample dl,j ← DZn,σ, l ∈ [τ ],

(2.2) Generate an encoding Uj =
∑τ

l=1
dl,jAl, Vj =

[∑τ

l=1
dl,jBl

]
q
.

(3) Set U =
∏k

j=1
Uj ,V =

[∏k−1

j=1
UjVk

]
q
.

(4) Set wC = wD = Ext(par, (U,V)).
(5) Sample rl ← DZn,σ, l ∈ [τ ], and set

Ur =
∑τ

l=1
rlAl,Vr =

[∑τ

l=1
rlBl

]
q
,

Ũr =
∏k−1

j=1
Uj ×Ur, Ṽr =

[∏k−1

j=1
Uj ×Vr

]
q
,

wR = Ext(par, (Ũr, Ṽr)).

Definition 3.8 (Ext-GCDH/Ext-GDDH). According to the security ex-
periment, the Ext-GCDH and Ext-GDDH are defined as follows:

Extraction CDH (Ext-GCDH): Given
{
par,Uj , j ∈ [k]

}
, output a level-

k extraction bits string w such that w = vC .
Extraction DDH (Ext-GDDH): Given

{
par,Uj , j ∈ [k], w

}
, distinguish

between DExt-GDDH, and DExt-RAND:

DExt-GDDH =
{
par,Uj , j ∈ [k], wD

}
, DExt-RAND =

{
par,Uj , j ∈ [k], wR

}
.

For the above construction, we assume that the Ext-GCDH/Ext-GDDH is
hard.

3.4 Cryptanalysis

This variant can be transform into S = A−1, that is A−11 B1 = [S + A−11 E1]q,
A−12 B2 = [S + A−12 E2]q, then we have A1(A−11 B1 −A−12 B2) = A1(A−11 E1 −
A−12 E2) = E1 −A1A

−1
2 E2. Solving this problem is not easier than LWE.

4 Asymmetric Commutative Variant

In the above construction, the plaintext matrices Al and the secret matrix S
of encoding do not support the commutative law of multiplication. However,
there exist some applications that require at least one of them to satisfy the
commutative law of multiplication. To meet these applications, we construct an
asymmetric variant by using a secret commutative matrix S = sI. But, when
S is chosen to be a ring element s, it is necessary to deploy some additional
safeguards in order to guarantee the security of this variant.

4.1 Construction

Setting the parameters. We let λ be the security parameter, κ the length of
multilinearity edges, and take n = O(λ), µ = κ + 1, σ0 = O(n3), σ1 = O(n),
O(n8κ+13) < q < O(n9κ+17), σ2 = O(n3), d ≥ 2, τ = λd2.



10 Gu Chunsheng

Instance generation: (par)← InstGen(1λ, 1κ).
(1) Choose a prime O(n8κ+13) < q < O(n9κ+17).
(2) Choose random matrices Tk ← Rd×dq , k = 0, · · · , µ such that T−1k ∈

Rd×dq .
(3) Choose random elements s, z ∈ Rq.
(4) For l ∈ [τ ], k ∈ [µ], sample Al,k,El,k ∈ Rd×d such that al,k,i,j ←

DZn,σ0
, el,k,i,j ← DZn,σ2

, i, j ∈ [d].
(5) Sample u,v ∈ Rd such that ui, vi ← DZn,σ1

, i ∈ [d].
(6) For l ∈ [τ ], k ∈ [µ], set

Al,k = [T−1k−1Al,kTk/z]q,

Bl,k = [T−1k−1(Al,k · s+ El,k)Tk · zκ]q,

uT = uTT0,v = T−1µ v.

(7) Output the public parameters par =
{
q, (Al,k,Bl,k)l∈[τ ],k∈[µ],u,v

}
.

Generating a k-edge encoding: (Uk,Vk)← Enc(par, k).
Given rl,k ← DZn,σ1

, l ∈ [τ ], generate

Uk =
[∑τ

l=1
rl,k ·Al,k

]
q
,Vk =

[∑τ

l=1
rl,k ·Bl,k

]
q
.

Adding same edge encodings:
(Uk,Vk)← Add(par, (U1,k,V1,k), (U2,k,V2,k)).
Given two k-edge encodings (U1,k,V1,k), (U2,k,V2,k), compute

Uk = [U1,k + U2,k]q,Vk = [V1,k + V2,k]q.

In the following, we use the subscript k1 → k2 to denote a connected path
encoding from k1-edge to k2-edge.

Multiplying adjacent edge encodings:
(Uk−1→k,Vk−1→k)← Mul(par, (U1,k−1,V1,k−1), (U2,k,V2,k)).
Given two adjacent edge encodings (U1,k−1,V1,k−1), (U2,k,V2,k), compute

Uk−1→k = [U1,k−1U2,k]q,Vk−1→k = [U1,k−1V2,k]q.

Given the connected edge encodings (Uk1→k2 ,Vk1→k2), (Uk2+1→k3 ,Vk2+1→k3),
we can similarly multiply them to generate a (k1 → k3) encoding as follows:

Uk1→k3 = [Uk1→k2Uk2+1→k3 ]q,Vk1→k3 = [Uk1→k2Vk2+1→k3 ]q.

Zero-testing: isZero(par, (U1→µ,V1→µ)):
Given an encoding (U1→µ,V1→µ) , we check whether ‖uTV1→µv‖ is short:

isZero(par, (U1→µ,V1→µ)) =

{
1, if ‖uTV1→µv‖ < q7/8;

0, otherwise.

Extract: sk ← Ext(par, (U1→µ,V1→µ)).
Given an encoding (U1→µ,V1→µ), we extract the η = (logq)/8 − λ most-

significant bits from each of the n coefficients of uTV1→µv:
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Ext(par, (U1→µ,V1→µ)) = msbsη(uTV1→µv),

where msbsη extracts the η most significant bits from each coefficient of uTV1→µv.
Remark 4.1 (1) For the asymmetric variant, we can generate a new form by

modifying Bl,k = [T−1k−1(Al,k ·s+El,k ·zκ)Tk]q. In essence, this form is equivalent

to the above asymmetric variant, since Bl,k = [T−1k−1(Al,k ·(s/zκ)+El,k)Tk ·zκ]q.
(2) In the asymmetric variant, we can also choose u,v such that ui, vi ←

DZn,q1/4 , i ∈ [d]. In this case, we set σ0 = O(n) to reduce the size of modulus q
and improve efficiency.

(3) We can construct a symmetric variant. To immune the possible subfield
lattice attack [1], we choose u,v such that ui, vi ← DZn,q1/4 , i ∈ [d]. That is, we
generate the following public parameters:

Al = [TAlT
−1/z]q,

Bl = [T(Al · s+ El)T
−1zκz1]q,

uT = uTT−1z0,v = Tv/(z0z1),

where z0, z1, z ∈ Rq are the random ring elements.
(4) To improve the security of the symmetric variant, we can also choose a

ring that can immune the possible subfield lattice attack [1], e.g.R = Z[x]/〈f(x)〉,
where f(x) = xp − 1 with p a safe prime (or f(x) = xp − x− 1 with p a prime).

(5) If we set s = h/g with g ← DZn,σ0
, h ← DZn,σ0

, then our construction
becomes a new variant of GGH13 [19].

4.2 Correctness

In the asymmetric variant, we replace S with a commutative matrix sI, use
Kilian randomization method, and remain others unchanged. So, its correctness
directly follows that of the above construction. For completeness, we give the
brief proof of correctness in the following.

Lemma 4.2 The algorithm InstGen(1λ, 1κ) runs in polynomial time.
Proof. Since each step in InstGen takes in polynomial time, the result directly

follows.
Lemma 4.3 (Uk,Vk)← Enc(par, k) is a k-layer encoding.
Proof. Given rl,k ← DZn,σ1 , l ∈ [τ ], we have

Uk = [
∑τ

l=1
rl,k ·Al,k]q = [T−1k−1CkTk/z]q,

Vk = [
∑τ

l=1
rl,k ·Bl,k

]
q

= [T−1k−1(Ck · s+ Dk)Tk · zκ]q,

where Ck =
∑τ

l=1
rl,kAl,k, Dk =

∑τ

l=1
rl,kEl,k.

Lemma 4.4 The encoding (Uk,Vk) ← Add(par, (U1,k,V1,k), (U2,k,V2,k))
is a level-k random encoding.

Proof. Given two level-k encodings (U1,k,V1,k), (U2,k,V2,k), we have

Uk = [U1,k + U2,k]q = [T−1k−1CkTk/z]q,

Vk = [V1,k + V2,k]q = [T−1k−1(Ck · s+ Dk)Tk · zκ]q,
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where Ui,k = [T−1k−1Ci,kTk/z]q, Vi,k = [T−1k−1(Ci,k · s + Di,k)Tk · zκ]q, and

Ck = C1,k + C2,k, Dk = D1,k + D2,k.
Lemma 4.5 (Uk−1→k,Vk−1→k)← Mul(par, (U1,k−1,V1,k−1), (U2,k,V2,k))

a level-(k − 1)→ k random encoding.
Proof. Given a level-(k−1) encoding (U1,k−1,V1,k−1) and a level-k encoding

(U2,k,V2,k), we have

Uk−1→k = [U1,k−1U2,k]q = [T−1k−2Ck−1→kTk/z
2]q,

Vk−1→k = [U1,k−1V2,k]q = [T−1k−1(Ck−1→k · s+ Dk−1→k)Tk · zκ−1]q,

where Ui,j = [T−1j−1Ci,jTj/z]q, Vi,j = [T−1j−1(Ci,j · s + Di,j)Tj · zκ]q, and

Ck−1→k = C1,k−1C2,k, Dk−1→k = C1,k−1D2,k.
Furthermore, we can also perform multiplication as follows:

V
′

k−1→k = [V1,k−1U2,k]q = [T−1k−1(C
′

k−1→k · s+ D
′

k−1→k)Tk · zκ−1]q,

where C
′

k−1→k = C1,k−1C2,k, D
′

k−1→k = D1,k−1C2,k.

It is easy to see that the plaintexts C
′

k−1→k · s = Ck−1→k · s, but the noise

terms Dk−1→k 6= D
′

k−1→k.
For two connected level encodings (Uk1→k2 ,Vk1→k2), (Uk2+1→k3 ,Vk2+1→k3),

we can similarly show that their product is a (k1 → k3) encoding.
Lemma 4.6 The procedure isZero(par, (U1→µ,V1→µ)) can correctly deter-

mine whether (U1→µ,V1→µ) is an encoding of zero.
Proof. Given a level-1 → µ encoding (U1→µ,V1→µ), we assume that it is

the product of encodings (Uk,Vk), k ∈ [µ], which are encodings generated by
Enc(par, k), respectively.

Without loss of generality, we further assume

U1→µ =
[∏µ

k=1
Uk

]
q
,

V1→µ =
[∏j−1

k=1
Uk ×Vj ×

∏µ

k=j+1
Uk

]
q
, j ∈ [µ].

By Uk = [T−1k−1CkTk/z]q, and Vk = [T−1k−1(Ck · s+ Dk)Tk · zκ]q, we have

U1→µ =
[
T0

∏µ

k=1
CkTµ/z

µ
]
q
,

V1→µ =
[
T0(

∏µ

k=1
Ck · s+

∏j−1

k=1
Ck ×Dj ×

∏µ

k=j+1
Ck)Tµ

]
q

=
[
T0(C1→µ · s+ D1→µ)Tµ

]
q
,

where C1→µ =
∏µ

k=1
Ck, D1→µ =

∏j−1

k=1
Ck ×Dj ×

∏µ

k=j+1
Ck.

Hence, we obtain [uTV1→µv]q = [uT (C1→µ · s+ D1→µ)v]q.
Now, we evaluate the value ‖[uT (C1→µ · s+ D1→µ)v]q‖.
By Lemma 4.3, we know Ck =

∑τ

l=1
rl,kAl,k. Using Lemma 2.2, we have

‖Al,k‖ = O(σ0
√
n) = O(n3.5), ‖rl,k‖ = O(σ1

√
n) = O(n1.5).
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So, we get ‖Ck‖ = τ · n ·O(n1.5) ·O(n3.5) = O(n6).

Again by Lemma 2.2 and Lemma 4.3, we have Dk =
∑τ

l=1
rl,kEl,k, and

‖rl,k‖ = O(n1.5), ‖El,k‖ = O(σ2
√
n) = O(n3.5). So, ‖Dk‖ = O(n6).

On one hand, if C1→µ = 0, then we have

[uT (C1→µ · s+ D1→µ)v]q = [uTD1→µv]q = uTD1→µv.

Namely, uTD1→µv is not reduced modulo q. Hence, we obtain

‖[uTV1→µv]q‖ = ‖uTD1→µv‖
< n2‖u‖‖D1→µ‖‖v‖
< n2O(n1.5)O(nκ · (n6)κ ·O(n6))O(n1.5)

= O(n7κ+11)

< q7/8.

Furthermore, to immune the possible subfield lattice [1], we require

‖uT
∏µ

k=1
Al,kv‖ = O(n2 ·O(n1.5) ·O(nκ · (n3.5)κ+1) ·O(n1.5))

= O(n4.5κ+8.5)

> q1/2.

(1)

So, we set O(n8κ+13) < q < O(n9κ+17), the above conditions are satisfied.
On the other hand, if C1→µ 6= 0, then

‖[uTV1→µv]q‖ = ‖[uT (C1→µ · s+ D1→µ)v]q‖
> ‖[uT (C1→µ · s)v]q‖ − ‖[uTD1→µv]q‖
> q − q7/8

> q7/8,

where ‖s‖ ≈ q.
Thus, the zero-test procedure isZero(par, (U1→µ,V1→µ)) is correct.

Lemma 4.7 Given two encodings (U
(t)
1→µ,V

(t)
1→µ), t ∈ [2], if U

(1)
1→µ = U

(2)
1→µ,

then Ext(par, (U
(1)
1→µ,V

(1)
1→µ)) = Ext(par, (U

(2)
1→µ,V

(2)
1→µ)).

Proof. For the encodings (U
(t)
1→µ,V

(t)
1→µ), t ∈ [2], we have

U
(t)
1→µ =

[
T0C

(t)
1→µTµ/z

µ
]
q
,

V
(t)
1→µ =

[
T0(C

(t)
1→µ · s+ D

(t)
1→µ)Tµ

]
q
.

So, [uTV
(t)
1→µv]q = [uT (C

(t)
1→µ · s)v + uTD

(t)
1→µv]q, t ∈ [2].

By U
(1)
1→µ = U

(2)
1→µ, we get C

(1)
1→µ = C

(2)
1→µ. Hence, we obtain

[uTV
(1)
1→µv− uTV

(2)
1→µv]q = [uTD

(1)
1→µv− uTD

(2)
1→µv]q.
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Again by Lemma 4.6, ‖uTD
(t)
1→µv‖ < q7/8, t ∈ [2]. Namely, ‖uTD

(1)
1→µv −

uTD
(2)
1→µv‖ < 2q7/8.

Futhermore, when C
(t)
1→µ 6= 0, t ∈ [2], we have ‖[uT (C

(t)
1→µ · s)v]q‖ ≈ q with

overwhelming probability.
Hence, the η = (logq)/8 − λ most-significant bits from each of the n coef-

ficients of [uTV
(t)
1→µv]q is determined by the term ‖[uT (C

(t)
1→µ · s)v]q‖. That is,

Ext(par, (U
(1)
1→µ,V

(1)
1→µ)) = Ext(par, (U

(2)
1→µ,V

(2)
1→µ)) with overwhelming proba-

bility.

4.3 Hardness Assumptions

The security of our asymmetric variant depends on new hardness assumption,
which is similar to the hardness assumption of vRLWE. For completeness, we
also define the extraction version of GCDH/GDDH for this variant. Consider
the following security experiment:

(1) (par)← InstGen(1λ, 1κ).
(2) For k = 1 to µ:
(2.1) Sample dl,k ← DZn,σ1

, l ∈ [τ ],

(2.2) Generate an encoding Uk =
∑τ

l=1
dl,kAl,k, Vk =

[∑τ

l=1
dl,kBl,k

]
q
.

(3) Set U1→µ =
∏µ

k=1
Uk,V1→µ =

[∏κ

k=1
Uk ×Vµ

]
q
.

(4) Set wC = wD = Ext(par, (U1→µ,V1→µ)).
(5) Sample rl ← DZn,σ, l ∈ [τ ], and set

Ur =
∑τ

l=1
rlAl,k,Vr =

[∑τ

l=1
rlBl,k

]
q
,

Ũ1→µ =
∏κ

k=1
Uk ×Ur, Ṽ1→µ =

[∏κ

k=1
Uk ×Vr

]
q
,

wR = Ext(par, (Ũ1→µ, Ṽ1→µ)).

Definition 4.8 (Ext-GCDH/Ext-GDDH). According to the security ex-
periment, the Ext-GCDH and Ext-GDDH are defined as follows:

Extraction CDH (Ext-GCDH): Given
{
par,Uk, k ∈ [µ]

}
, output a level-

κ extraction bits string w such that w = vC .
Extraction DDH (Ext-GDDH): Given

{
par,Uk, k ∈ [µ], w

}
, distinguish

between DExt-GDDH, and DExt-RAND:

DExt-GDDH =
{
par,Uk, k ∈ [µ], wD

}
, DExt-RAND =

{
par,Uk, k ∈ [µ], wR

}
.

Note that in the above security experiment, if assuming V
(j)
1→µ =

[∏j−1

k=1
Uk×

Vj ×
∏µ

k=j+1
Uk

]
q
, j ∈ [µ], then wC = Ext(par, (U1→µ,V

(j)
1→µ)). Namely, the

extraction bit strings of V
(j)
1→µ, j ∈ [µ] are all same with overwhelming probabil-

ity.
For this asymmetric variant, we also assume that its Ext-GCDH/Ext-GDDH

is hard.



Multilinear Maps Using a Variant of Ring-LWE 15

4.4 Cryptanalysis

In this section, we give easily computable some quantities in our asymmetric
variant, and analyze possible attacks using these quantities. According to our
analysis, currently known attacks does not seem to work for our asymmetric
construction.

1. Easily computable quantities
Given the public parameters par, we can perform cross-multiplication be-

tween encodings of the asymmetric variant to obtain some non-reduced quanti-
ties.

For notational simplicity, we denote

C
(j)
l,r,s,t = [

∏j−1

k=1
Al,k ·Br,jAs,j+1 ·

∏µ

k=j+2
At,k]q,

D
(j)
l,r,s,t = [

∏j−1

k=1
Al,k ·Ar,jBs,j+1 ·

∏µ

k=j+2
At,k]q.

So, we have

c
(j)
l,r,s,t = [uT (C

(j)
l,r,s,t −D

(j)
l,r,s,t)v]q

= [uT
∏j−1

k=1
Al,k(Er,jAs,j+1 −Ar,jEs,j+1)

∏µ

k=j+2
At,kv]q,

= [uT
∏j−1

k=1
Al,k(E(j)

r,s)
∏µ

k=j+2
At,kv]q

where E(j)
r,s = Er,jAs,j+1 −Ar,jEs,j+1.

According to the setting of parameters, c
(j)
l,r,s,t is not reduced modulus q.

Now, we can write c
(j)
l,r,s,t in the following matrix forms:

c
(j)
l,r,s,t = uT

∏j−1

k=1
Al,k(Er,jAs,j+1 −Ar,jEs,j+1)

∏µ

k=j+2
At,kv

=
(
uT(l)Er,j −uT(l)Ar,j

)(As,j+1v(t)

Es,j+1v(t)

)
=
(
uT(l)

)(
E(j)
r,s

) (
v(t)

) (2)

where uT(l) = uT
∏j−1

k=1
Al,k, v(t) =

∏µ

k=j+2
At,kv.

2. Cheon et al.’s attack [12]
To break CLT13 [15], Cheon et al. [12] first generated two matrices Ci =

UEiV, i ∈ [2] from some non-reduced quantities obtained by the public param-
eters of CLT13, then computed the secret parameters from the eigenvalues of
the quotient C1C

−1
2 . The successful key of the Cheon et al.’s attack is that

Ei, i ∈ [2] are the diagonal matrices. Consequently, Cheon et al. [12] completely
broke CLT13.

To perform the Cheon et al.’s attack [12], we generate similar matrices by

using the above form (1) of c
(j)
l,r,s,t. Without loss of generality, for l, t ∈ [d], we
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generate C(j)
r,s as follows:

C(j)
r,s =

uT(1)
...

uT(d)

(E(j)
r,s

) (
v(1) · · · v(d)

)
=
(
U
) (

E(j)
r,s

) (
V
)
.

So, given C(j)
r1,s1 , C(j)

r2,s2 , we have

C(j)
r1,s1(C(j)

r2,s2)−1 = U×E(j)
r1,s1(E(j)

r2,s2)−1 ×U−1.

According to sampling Er,j ,As,j+1,Ar,j ,Es,j+1 in the procedure InstGen,

E(j)
r,s ∈ Rd×d is not a diagonal matrix with overwhelming probability.

Using the Cheon et al.’s attack [12], we can not find useful information from

C(j)
r1,s1(C(j)

r2,s2)−1 since the matrices E(j)
r1,s1 ,E

(j)
r2,s2 are not the diagonal matrices.

On the other hand, for r, s ∈ [2d], we can generate the following matrix C
(j)
l,t .

C
(j)
l,t =

 uT(l)E1,j −uT(l)A1,j

...
...

uT(l)E2d,j −uT(l)A2d,j

(A1,j+1v(t) · · · A2d,j+1v(t)

E1,j+1v(t) · · · E2d,j+1v(t)

)
,

= U(l)V(t).

Similarly, given C
(j)
l,t1

, C
(j)
l,t2

, we can compute

(C
(j)
l,t1

)−1C
(j)
l,t2

= (V(t1))
−1V(t2),

C
(j)
l,t1

(C
(j)
l,t2

)−1 = U(l) ·V(t1)(V(t2))
−1 · (U(l))

−1.

Since U(l),V(t1),V(t2) ∈ Rd×d are not the diagonal matrices, we can not

obtain useful information from this form matrix of C
(j)
l,t .

In summary, our asymmetric variant avoids the Cheon et al.’s attack [12].
3. Coron et al.’s attack [18]
To break GGH15-based MPKE [23], the Coron et al.’s attack [18] includes two

steps. First, they express one secret exponent s1 of User 1 as a linear combination
of the other exponents tl,1 using a variant of the Cheon et al.’s attack. Second,
they generate an equivalent private encoding corresponding to s1 by correcting
the large noise term.

To perform the Coron et al.’s attack [18], we express c
(j)
l,r,s,t as the following

form

c
(j)
l,r,s,t = uT

∏j−1

k=1
Al,k(E(j)

r,s)
∏µ

k=j+2
At,kv

= uTAl,1

∏j−1

k=2
Al,k(E(j)

r,s)
∏µ

k=j+2
At,kv

= uT(l,1)v
(j)
t,2→µ,

(3)
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where uT(l,1) = uTAl,1, v
(j)
t,2→µ =

∏j−1

k=2
Al,k(E(j)

r,s)
∏µ

k=j+2
At,kv.

For, given l ∈ [d+ 1], t ∈ [d], we generate a matrix C
(j)
1,2→µ as follows:

C
(j)
1,2→µ =

 uT(1,1)
...

uT(d+1,1)

(v
(j)
1,2→µ · · · v

(j)
d,2→µ

)
= U1V2→µ ∈ R(d+1)×d.

Then, we can compute a vector k ∈ Rd+1 such that kTC
(j)
1,2→µ = 0. Since

V2→µ is invertible with overwhelming probability, hence kTU1 = 0.
Hence, given the encoding A1 of a sample (A1,B1), we assume A1 = T0A1T1.

Note that except with the public parameters of the asymmetric variant, for a
sample (A1,B1), one only publicly publishes A1, remains B1 secret.

Then, we write C
(j)
1′,2→µ as follows:

C
(j)
1′,2→µ =


uTA1

uT(2,1)
...

uT(d+1,1)

(v
(j)
1,2→µ · · · v

(j)
d,2→µ

)
= U1′V2→µ ∈ R(d+1)×d.

Now, we can generate a linear combination for such that αuTA1 =
∑d+1

l=2
αlu

TAl,1.

Similarly, we can choose a new group uT(1,1), · · · ,u
T
(d,1) to generate another

linear combination βuTA1 =
∑d

l=1
βlu

TAl,1.

By the Coron et al.’s result [18], the elements α, β are relatively prime, which

happens with significant probability. So, we can obtain uTA1 =
∑d+1

l=1
λlu

TAl,1.

Namely, A1 =
∑d+1

l=1
λlAl,1.

However, since ‖λl‖, l ∈ [d+ 1] are not small, we cannot perform the second
step in the Coron et al.’s attack [18]. Consequently, we can not remove the noise
term generated by λl for our asymmetric construction.

Hence, the Coron et al.’s attack [18] cannot break the hardness assumption
Ext-GCDH/Ext-GDDH in the asymmetric variant.

4. Subfield lattice attack [1]
To break the overstretched NTRU assumption, Albrecht et al. [1] presented a

subfield lattice attack. Given an overstretched instantiation of NTRU h = [f/g]q,
Albrecht et al.’s attack consists of three steps: mapping the secret key from full
field to a subfield, running lattice reduction in subfield to solve smaller lattice
problem, and lifting the solution back to the full field.

Using the subfield lattice attack, Albrecht et al. provided a quantum polynomial-
time [10] and classical subexponential attack [3,4] for the GGH13 construction
[20], regardless of whether the public parameter contains encodings of zero. How-
ever, this attack can be completely thwarted by setting Gaussian sample param-
eter σ ≈ q1/4, that is, f, g ← DZn,σ.
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Cryptanalysis of the asymmetric variant. Given the public parameters,
we compute

cl = [uT
∏µ

k=1
Al,kv]q

= [uT
∏µ

k=1
Al,kv/z

µ]q

= [cl/z
µ]q,

where cl = uT
∏µ

k=1
Al,kv.

So, we can obtain an instantiation of NTRU:
cl1
cl2

=
cl1
cl2

. By the equation

(1), we know ‖cli‖ = ‖uT
∏µ

k=1
Ali,kv‖ > q1/2, i ∈ [2]. Stehlé and Steinfeld

[36] proved that
cl1
cl2

is statistically close to uniform when ‖uT
∏µ

k=1
Ali,kv‖ >

q1/2, i ∈ [2]. Hence, using the subfield lattice attack [1], we can not obtain
cli , i ∈ [2], and zµ.

Thus, our asymmetric variant can resist the subfield lattice attack in [1].
Cryptanalysis of the symmetric variant. For the symmetric variant in

Remark 4.1 (2), by the public parameters we can compute

c0 = [uTv]q = [uTv/z1]q = [c0/z1]q

cl = [uTAlv]q = [uTAlv/z1z]q = [cl/z1z]q,

where c0 = uTv, cl = uTAlv.

Similarly, we generate an instantiation of NTRU:
cl1
cl2

=
cl1
cl2

. According to the

setting of parameters, we have ‖cli‖ = ‖uTAliv‖ > q1/2, i ∈ [2]. As a result,
cl1
cl2

is statistically close to uniform. Hence, the symmetric variant can immune the
subfield lattice attack.

Remark 4.9 (1) The immune ring proposed by Albrecht et al. [1] can further
enhance the security of the symmetric variant. However, this countermeasure
may not be essential for the security of construction.

(2) We observe that our asymmetric variant seems to avoid the principal
ideal lattice problem [19,10].

4.5 Impossible results

In this section, we prove that it is impossible to completely avoid zeroizing attack.
All previous constructions based on noise have the zeroizing attack problem.
Why does this happen? Here, we will prove that the zeroizing attack problem
is inherent in a noise-based construction of multilinear maps, as long as the
construction supports the application of MPKE.

Lemma 4.10 Suppose that e is an ideal noise-based κ-level construction of
multilinear maps and supports the application of MPKE. Then, there exists a
zeroizing attack problem in the construction e.
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proof. Without loss of generality, assume that di ∈ R, i ∈ [κ+1] are plaintext
encodings and ri ∈ R, i ∈ [κ+1] are random noise terms. Using di, ri, i ∈ [κ+1],
we generate 1-level encodings ui = e(di, {ri}). Since e supports the application
of MPKE, we can obtain a κ-level encoding as follows:

u = d1
∏κ+1

i=2
ui − dκ+1

∏κ

i=1
ui

= e(
∏κ+1

i=1
di, {r2, · · · , rκ+1})− e(

∏κ+1

i=1
di, {r1, · · · , rκ})

= e(0, {d1, · · · , dκ+1; r1, · · · , rκ+1}),

where the final equation follows the definition 2.4.
Namely, u is a κ-level encoding of plaintext “0”. Furthermore, since e is a

noise-based κ-level construction, the probability u = 0 is negligible. Thus, given
e, an attacker can generate a top-level encoding of zero.

According to Lemma 4.10, it is easy to see that it is impossible to construct
a graded encoding scheme without zeroizing attack. Because the MPKE ap-
plication itself contains the top-level encodings of zero. Consequently, the best
possible multilinear map we can expect is to construct a graded encoding scheme,
whose security is not compromised by the top-level encodings of zero.

5 Symmetric Commutative Variant

Since the encodings in the asymmetric variant above are not commutative, as a
result, it cannot be applied to some applications with commutative encodings,
such as witness encryption (WE) based on 3-exact cover. To support these ap-
plications, we present a new symmetric variant, which uses the matrix form of
approximate GCD.

5.1 Construction

Setting the parameters. Let λ be the security parameter, κ the multilinearity
level. For simplicity, concrete parameters are set as n = O(λ), σ = O(n), ρ = 2λ,
q = O(κ2λ15κ+202λ(κ+1)), β = O(q1/4), d = O(λ), τ = λd2. Let c be a small
positive constant. We note that σ, d, τ can set small constants.

Instance generation: (par)← InstGen(1λ, 1κ).
(1) Choose a prime q = O(κ2λ15κ+202λ(κ+1)).
(2) Choose a monic irreducible polynomial f(y) ∈ Z[y] with degree d and

‖f(y)‖ = c. Let R(y) = R[y]/〈f(y)〉, R(y,q) = Rq[y]/〈f(y)〉.
(3) Choose an invertible element z ← Rq, and two randomly invertible ma-

trices T,T1 ← Rd×dq .

(4) Sample S← Rd×dσ .
(5) For l ∈ [τ ],

Sample al ← R(y,ρ), and set Al = Rot(y)(al).

Sample El,Rl ← Rd×dσ .
Set Xl = [T(Al + El)T

−1/z]q, Yl = [zκ ·T(AlS + Rl)T
−1
1 ]q.
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(6) Sample u,v← Rdβ , and set uT = uTT−1,v = T1v.

(7) Output the public parameters par =
{
q, (Xl,Yl)l∈[τ ],u,v

}
.

Generating a 1-level encoding: (U,V)← Enc(par).
Given rl ← Rσ, l ∈ [τ ], generate

U =
[∑τ

l=1
rl ·Xl

]
q
,V =

[∑τ

l=1
rl ·Yl

]
q
.

Adding encodings: (U,V)← Add(par, (U1,V1), (U2,V2)).
Given two k-level encodings (U1,V1), (U2,V2), compute

U = [U1 + U2]q,V = [V1 + V2]q.

Multiplying encodings: (U,V)← Mul(par, (U1,V1), (U2,V2)).
Given a i-level encoding (U1,V1) and a j-level encoding (U2,V2), compute

a i+ j-level encoding (U,V) as follows

U = [U1U2]q,V = [U1V2]q.

Zero-testing: isZero(par, (U,V)):
Given a (κ+ 1)-level encoding (U,V) , we check whether ‖uTVv‖ is short:

isZero(par, (U,V)) =

{
1, if ‖uTVv‖ < λ6q/2λ;

0, otherwise.

Extract: sk ← Ext(par, (U,V)).
Given a (κ + 1)-level encoding (U,V), we extract the η = O(λ − 6 log λ)

most-significant bits from each of the n coefficients of uTVv :

Ext(par, (U,V)) = msbsη(uTVv).

Remark 5.1 (1) We remain f(y) secret to improve the security of the sym-
metric variant. In fact, currently we do not find any possible attack when f(y)
is public. For efficiency, we can set d to constant.

(2) In the variant, we set Al = Rot(y)(al) to enable commutative plaintexts.
Namely, given any plaintexts Ai,Aj , we have AiAj = AjAi = Rot(y)(aiaj). To

correctly extract the most significant bits, we set ρ = 2λ and sample al ← R(y,ρ).

5.2 Correctness

Correctness of our construction follows from the commutative plaintexts of en-
codings. In the following we give the brief proof of correctness.

Lemma 5.2 The algorithm InstGen(1λ, 1κ) runs in polynomial time.
Proof. Since each step in InstGen runs in polynomial time, the result is

directly obtained.
Lemma 5.3 The encoding (U,V)← Enc(par) is a 1-level encoding.
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Proof. By rl ← Rσ , l ∈ [τ ], we have

U =
[∑τ

l=1
rl ·Xl

]
q

=
[
T(A

′
+ E

′
)T−1/z

]
q

V =
[∑τ

l=1
rl ·Yl

]
q

=
[
zκ ·T(A

′
S + R

′
)T−11

]
q
,

where A
′

=
∑τ

l=1
rl · Al = Rot(y)(

∑τ

l=1
rl · al), E

′
=
∑τ

l=1
rl · El, R

′
=∑τ

l=1
rl ·Rl.

Lemma 5.4 Given two k-level encodings (U1,V1), (U2,V2), the encoding
(U,V)← Add(par, (U1,V1), (U2,V2)) is a k-level encoding.

Proof. Since (U1,V1), (U2,V2) are k-level encodings. That is, for i = 1, 2

Ui =
[
T(A

′

i + E
′

i)T
−1/zk

]
q
,

Vi =
[
zκ−k+1 ·T(A

′

iS + R
′

i)T
−1
1

]
q
.

Thus, we have

U1 + U2 =
[
T(A

′
+ E

′
)T−1/zk

]
q

V1 + V2 =
[
zκ−k+1 ·T(A

′
S + R

′
)T−11

]
q
,

where A
′

= A
′

1 + A
′

2, E
′

= E
′

1 + E
′

2, and R
′

= R
′

1 + R
′

2.
Lemma 5.5 The encoding (U,V)← Mul(par, (U1,V1), (U2,V2)) is a i+j-

level encoding.
Proof. Since a i-level encoding (U1,V1) has the following form:

U1 =
[
T(A

′

1 + E
′

1)T−1/zi
]
q
,

V1 =
[
zκ−i+1 ·T(A

′

1S + R
′

1)T−11

]
q
.

Similarly, the j-level encoding (U1,V1) also has the above form.
So, we get

U1U2 =
[
T(A

′
+ E

′
)T−1/zi+j

]
q
,

U1V2 =
[
zκ−(i+j)+1 ·T(A

′
S + R

′
)T−11

]
q
.

where A
′

= A
′

1A
′

2, E
′

= A
′

1E
′

2 + E
′

1(A
′

2 + E
′

2), R
′

= (A
′

1 + E
′

1)R
′

2.
Lemma 5.6 Given a (κ+1)-level encoding (U,V), the procedure isZero(par, (U,V))

can correctly determine whether (U,V) is an encoding of zero.
Proof. Since a (κ+ 1)-level encoding (U,V) has the following form:

U =
[
T(A

′
+ E

′
)T−1/z(κ+1)

]
q
,

V =
[
T(A

′
S + R

′
)T−11

]
q
.

So, uTVv =
[
uT (A

′
S + R

′
)v
]
q
.
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Given an encoding (U1,V1) returned by Enc, we have

U1 =
[
T(A

′

1 + E
′

1)T−1/z
]
q
,

V1 =
[
zκ ·T(A

′

1S + R
′

1)T−11

]
q
.

So, we obtain

‖A
′

1‖ = ‖
∑τ

l=1
rlAl‖ = O(τ · n · ‖rl‖ · ‖Al‖) = O(λ5.52λ),

‖E
′

1‖ = ‖
∑τ

l=1
rlEl‖ = O(λ7),

‖R
′

1‖ = ‖
∑τ

l=1
rlRl‖ = O(λ7),

where ‖rl‖ = O(σ
√
n) = O(n1.5) for rl ← Rσ.

Since the above construction supports κ multiplications, without loss of gen-
erality, we assume that (Ui,Vi), i ∈ [κ + 1] is the encodings returned by Enc,
and (U,V) is their product generated by using Mul.

For simplicity, we let U =
∏κ+1

i=1
Ui, V =

∏κ

i=1
Ui ×Vκ+1.

Hence, we have

V =
∏κ

i=1
Ui ×Vκ+1

=
[
T ·

∏κ

i=1
(A
′

i + E
′

i) · (A
′

κ+1S + R
′

κ+1) ·T−11

]
q

=
[
T · (

∏κ+1

i=1
A
′

i · S + R
′
) ·T−11

]
q

=
[
T · (A

′
· S + R

′
) ·T−11

]
q
,

where R
′

= R
′′

1 + R
′′

2 such that

R
′′

1 =
∑κ

j=1

∏j−1

i=1
(A
′

i + E
′

i) ·E
′

j ·
∏κ

i=j+1
(A
′

i + E
′

i) ·A
′

κ+1S,

R
′′

2 =
∏κ

i=1
(A
′

i + E
′

i) ·R
′

κ+1.

According to the setting of parameters, it is not difficult to get

‖R
′′

1‖ ≈ κ ·O(λ5.52λ)κ · (nd)κ+1 ·O(λ7) ·O(λ1.5) = O(κλ7.5κ+10.52λκ),

‖R
′′

2‖ ≈ ·O(λ5.52λ)κ · (nd)κ ·O(λ7)) = O(λ7.5κ+72λκ),

‖R
′
‖ ≈ ‖R

′′

1‖+ ‖R
′′

2‖ = O(κλ7.5κ+10.52λκ),

‖A
′
S‖ ≈ O(λ5.52λ)κ+1 · (nd)κ+1 ·O(λ1.5) = O(λ7.5κ+92λ(κ+1)).
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On one hand, if there exists some A
′

i = 0 for i ∈ [κ+ 1], then we obtain

‖uTVv‖ = ‖
[
uT (A

′
S + R

′
)v
]
q
‖

= ‖
[
uTR

′
v
]
q
‖

= ‖uTR
′
v‖

= (nd)2 · n · q1/2 ·O(κλ7.5κ+10.52λκ)

= O(κλ7.5κ+15.52λκ)q1/2

< λ6q/2λ.

On the other hand, if A
′
6= 0, then with overwhelming probability,

‖uTVv‖ = ‖
[
uT (A

′
S + R

′
)v
]
q
‖

≈ ‖A
′
Sv‖

≈ (nd)2 · n · q1/2 ·O(λ7.5κ+92λ(κ+1))

≈ q.

Thus, the zero-test procedure isZero(par, (U,V)) is correct.
Lemma 5.7 If the plaintexts of two encodings (U1,V1), (U2,V2) are same,

then Ext(par, (U1,V1)) = Ext(par, (U2,V2)).

Proof. By Vi =
[
T(A

′

iS + R
′

i)T
−1
1

]
q
, i ∈ [2], we have

uTViv =
[
uT (A

′

iS + R
′

i)v
]
q
.

Since A
′

1 = A
′

2, we obtain uTV1v− uTV2v = uTE1v− uTE2v.

Again since ‖uTR
′

iv‖ < λ6q/2λ, i ∈ [2], we have ‖uTR
′

1v − uTR
′

2v‖ ≤
2λ6q/2λ.

Furthermore, when A
′

i 6= 0, i ∈ [2], by Lemma 5.6, ‖uTA
′

iSv‖ ≈ q with
overwhelming probability.

Hence, the η = O(λ− 6 log λ) most-significant bits from each of the n coeffi-

cients of uTViv is determined by the term uTA
′

iSv. That is, Ext(par, (U1,V1)) =
Ext(par, (U2,V2)) with overwhelming probability.

5.3 Cryptanalysis

Since the plaintexts of encodings is commutative in the above symmetric variant,
as a result, one can obtain the encoding of zero by computing XiXj − XjXi

from par. So, there also exists the zeroizing attack problem for this variant.
However, our variant use new noise method to immunize the zeroizing attack. In
the following work, we will try to rigorously prove that this variant is resistant
to zeroizing attack.
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6 Applications

In this section, we describe MPKE based on our asymmetric variant and branching-
program obfuscation using vRLWE.

6.1 MPKE

Using the asymmetric variant, the MPKE protocol consists of three algorithms:
Setup, Publish, and KeyGen.

Setup(1λ, 1µ):
Let κ = µ− 1. Output the public parameter (par)← InstGen(1λ, 1κ).

Publish(par, k):
For k ∈ [µ] , the k-th party samples elements dl,k ← DZn,σ1 , l ∈ [τ ] , publish-

es the public key Uk =
[∑τ

l=1
dl,kAl,k

]
q
, and remains dl,k as the secret key.

KeyGen(par, k, dl,k, {Uj}µj=1):
(1) Using the secret key {dl,k, l ∈ [τ ]}, the k-th party computes Vk =[∑τ

l=1
dl,kBl,k

]
q
.

(2) The k-th party computes and extracts the common secret key as follows:

skk = msbsη

([
uT
(∏k−1

j=1
Uj ×Vk ×

∏µ

j=k+1
Uj

)
v

]
q

)
.

Correctness. The following lemma shows the correctness of MPKE.
Lemma 6.1 Suppose that skk, k ∈ [µ] are generated by the above MPKE

protocol. Then all skk, k ∈ [µ] are equal with overwhelming probability.

Proof. Let V
(k)
1→µ =

[∏k−1

j=1
Uj ×Vk ×

∏µ

j=k+1
Uj

]
q
.

According to the asymmetric variant, we have

uTV
(k)
1→µv =

[
uT
(∏k−1

j=1
Uj ×Vk ×

∏µ

j=k+1
Uj

)
v
]
q

=
[
uT
(∏k−1

j=1
Cj × (Ck · s+ Dk)×

∏µ

j=k+1
Cj

)
v
]
q

=
[
uT (

∏µ

j=1
Cj · s)v + uTD

(k)
1→µv

]
q
,

where Cj =
∑τ

l=1
dl,jAl,j , Dk =

∑τ

l=1
dl,kEl,k, D

(k)
1→µ =

∏k−1

j=1
Cj ×Dk ×∏µ

j=k+1
Cj .

By Lemma 4.6, we have ‖uTD
(k)
1→µv‖ < q7/8. By ‖s‖ ≈ q, we get ‖uT (

∏µ

j=1
Cj ·

s)v‖ ≈ q.
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Furthermore, all plaintexts in V
(k)
1→µ, k ∈ [µ] are

∏µ

j=1
Cj .

Hence, by Lemma 4.7, the result follows.
Security. Unfortunately, the security of our scheme only depends on new

hardness assumption Ext-GCDH/Ext-GDDH, and cannot be reduced to any
classical hardness assumption. However, at present the attacks that we know
against our scheme do not seem to apply to our MPKE protocol.

Remark 6.2 When constructing MPKE based on the symmetric variant, we
first require to determine the computing order of the encodings {Uk, k ∈ [µ]},
then generate the common secret key using the above same method.

6.2 BP Obfuscation

Our BP obfuscation construction is a slight variant of the GGH13-based BP in
[20] using a variant of vRLWE. Namely, in the vRLWE, we sample the secret
key S ← Rw×wq . For completeness, we concretely describe our construction in
the following.

A branching program consists of a sequence of steps, where each step is de-
fined by a pair of permutations. In each step, we choose one of the permutations
according to one input bit. We then multiply all these permutations chosen in
all steps, and output 1 if the resulting permutation is the identity.

Consider a dual-input branching program BP of width w and length κ over
l-bit inputs:

BP = (inp1(k), inp2(k), {Ak,b1,b2}b1,b2∈{0,1})
κ
k=1,

where the Ak,b1,b2 ’s are permutation matrices in {0, 1}w×w, and inp1(k), inp2(k) ∈
[l] are the input bit position examined in step k.

Without loss of generality, we assume that:
(1) Every step of BP examines two different input bits. Namely, for all k ∈ [κ],

we have inp1(k) 6= inp2(k).
(2) Every pair of different input bits are examined in some step of BP. That

is, for every pair j1, j2 ∈ [l] such that j1 6= j2 there exists a step k ∈ [κ] such
that (inp1(k), inp2(k)) = (j1, j2).

(3) Every input bit is examined by BP exactly l′ times. That is, for input
bit position j ∈ [l], if ind(j) denotes the set of steps that examine the j-th input
bit:

ind(j) = {k ∈ [κ] : inp1(k) = j} ∪ {k ∈ [κ] : inp2(k) = j},

then we have |ind(j)| = l′.
Now, we obfuscate BP as follows:
Step 1: Dummy branch. We introduce a “dummy branching program”:

BP′ = (inp1(k), inp2(k), {A′k,b1,b2}b1,b2∈{0,1})
κ
k=1,

where every A′k,b1,b2 = I is the identity matrix in {0, 1}w×w.
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Step 2: Bundle scalars. We first sample random scalars {βk,b, β′k,b ← Rσ :
k ∈ [κ], b ∈ {0, 1}} such that

αj,b =
∏

k∈ind(j)
βk,b =

∏
k∈ind(j)

β′k,b.

Then, we bundle scalars to generate

Ak,b1,b2 = βk,b1βk,b2Ak,b1,b2 ,

A
′
k,b1,b2 = β′k,b1β

′
k,b2A

′
k,b1,b2

Step 3: Kilian randomization on the plaintexts. We choose random
unimodular matrices Pk,P

′
k, k = 0, · · · , κ such that the norms of Pk,P

′
k and

their inverse matrices are small, and for k ∈ [κ] set

Ãk,b1,b2 = P−1k−1Ak,b1,b2Pk,

Ã
′
k,b1,b2 = P′−1k−1A

′
k,b1,b2P

′
k.

Step 4: Encoding using our vRLWE. We sample matrices S ← Rw×wq ,

and Eκ,b1,b2 ,E
′
κ,b1,b2 ← Rw×wσ , and set

Ãκ,b1,b2 = Ãκ,b1,b2P
−1
κ S + Eκ,b1,b2 = P−1κ−1Aκ,b1,b2S + Eκ,b1,b2 ,

Ã
′
κ,b1,b2 = Ã

′
κ,b1,b2P

′−1
κ S + E′κ,b1,b2 = P−1κ−1A

′
κ,b1,b2S + Eκ,b1,b2 ,

where we override the notations Ãκ,b1,b2 , Ã
′
κ,b1,b2 .

Step 5: Extend matrices. Let d = w + s with s ≥ 2.
For k ∈ [κ−1], we extend w×w-dimensional matrices into d×d-dimensional

matrices

Âk,b1,b2 =

(
Ãk,b1,b2 0

0 Rk,b1,b2

)
,

Â
′
k,b1,b2 =

(
Ã
′
k,b1,b2 0
0 R′k,b1,b2

)
,

where Rk,b1,b2 ,R
′
k,b1,b2 ← Rs×sσ .

For k = κ, we modify the above extension into the following form:

Âκ,b1,b2 =

(
Ãκ,b1,b2 R

(1,2)
κ,b1,b2

R
(2,1)
κ,b1,b2

Rκ,b1,b2

)
,

Â
′
κ,b1,b2 =

(
Ã
′
κ,b1,b2 R

′(1,2)
κ,b1,b2

R
′(2,1)
κ,b1,b2

R′κ,b1,b2

)
,

where R
(1,2)
κ,b1,b2

,R
′(1,2)
κ,b1,b2

← Rw×sσ , R
(2,1)
κ,b1,b2

,R
′(2,1)
κ,b1,b2

← Rs×wσ .
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Step 6: Kilian randomization on the encodings. We choose random
invertible matrices Tk,T

′
k ∈ Rd×dq , k = 0, · · · , κ, and for k ∈ [κ] set

Âk,b1,b2 = T−1k−1Âk,b1,b2Tk,

Â′k,b1,b2 = T′−1k−1Â
′
k,b1,b2T

′
k,

ûT = uTT0, v̂ = Tκv,

û′
T

= u′TT′0, v̂
′ = T′κv

′,

where u,v← Rdσ, u′,v′ ← Rdσ such that uj = u′j , vj = v′j , j ∈ [w].
Step 7: Straddling sets. We can further apply the level structure by using

the straddling sets defined in [6]. Because this level structure does not affect
the result of each honest evaluation. For simplicity, in the following we do not
concretely give the straddling set and still use the above notations.

Step 8: Output the obfuscation of BP. The obfuscation B̂P consists of
the following matrices and vectors:({

Âk,b1,b2 , k ∈ [κ], b1, b2 ∈ {0, 1}
}
, ûT , v̂

)
,({

Â′k,b1,b2 , k ∈ [κ], b1, b2 ∈ {0, 1}
}
, û′

T
, v̂′
)
.

Evaluation. Given the obfuscation B̂P and an arbitrary input x ∈ {0, 1}l,
we compute an honest evaluation as follows:

y = ûT ·
∏κ

k=1
̂Ak,xinp1(k),xinp2(k)

· v̂

= uT ·
∏κ

k=1
Âk,xinp1(k),xinp2(k)

· v

= uT ·

(
α ·
∏κ

k=1
Ak,xinp1(k),xinp2(k)

S + E(1,1) E(1,2)

E(2,1) E(2,2)

)
· v,

y′ = û′
T
·
∏κ

k=1

̂A′k,xinp1(k),xinp2(k)
· v̂′

= u′T ·
∏κ

k=1
Â
′
k,xinp1(k),xinp2(k)

· v′

= u′T ·

(
α ·
∏κ

k=1
A′k,xinp1(k),xinp2(k)

S + E′(1,1) E′(1,2)

E′(2,1) E′(2,2)

)
· v′

= u′T ·
(
α · S + E′(1,1) E′(1,2)

E′(2,1) E′(2,2)

)
· v′,

where α =
∏l

j=1
αj,xj

, the norms of E(i,j),E′(i,j) all are small.

Now, if
∏κ

k=1
Ak,xinp1(k),xinp2(k)

= I, then it is easy to verify that ‖y−y′‖ <
q7/8 and B̂P(x) = 1. Otherwise, B̂P(x) = 0.
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Security. Similarly, the security of this obfuscation only relies upon new
hardness assumption Ext-GCDH/Ext-GDDH, and cannot be reduced to any
classical hardness assumption. However, currently the attacks that we know
against our construction do not seem to apply to this BP obfuscation.
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