
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Removal Attacks on Logic Locking and
Camouflaging Techniques

Muhammad Yasin, Student Member IEEE , Bodhisatwa Mazumdar, Member IEEE , Ozgur
Sinanoglu, Senior Member IEEE , and Jeyavijayan (JV) Rajendran, Member IEEE

Abstract—With the adoption of a globalized and distributed IC design flow, IP piracy, reverse engineering, and counterfeiting threats
are becoming more prevalent. Logic obfuscation techniques including logic locking and IC camouflaging have been developed to
address these emergent challenges. A major challenge for logic locking and camouflaging techniques is to resist Boolean satisfiability
(SAT) based attacks that can circumvent state-of-the-art solutions within minutes. Over the past year, multiple SAT attack resilient
solutions such as Anti-SAT and AND-tree insertion (ATI) have been presented. In this paper, we perform a security analysis of these
countermeasures and show that they leave structural traces behind in their attempts to thwart the SAT attack. We present three
attacks, namely “signal probability skew” (SPS) attack, “AppSAT guided removal (AGR) attack, and “sensitization guided SAT” (SGS)
attack”, that can break Anti-SAT and ATI, within minutes.

Index Terms—Hardware security, Logic locking, Logic encryption, IC camouflaging, Boolean satisfiability, SAT.

F

1 INTRODUCTION

1.1 The need for hardware IP protection
In present-day semiconductor manufacturing, integrated cir-

cuits (ICs) are designed and fabricated in a globalized multi-
vendor environment, leading to concerns such as IC piracy,
overproduction and counterfeiting [2]. A malicious foundry can
reverse-engineer a GDSII layout file to obtain its gate-level netlist,
or overbuild ICs to sell them illegally, leading to a serious
economic loss to IC design companies [3], [4]. Moreover, the
design may be pirated during test/assembly stages [5], or malicious
circuits in the form of Hardware trojans may be embedded in
the design [4]. Even an end-user may pirate the design using the
state-of-the-art reverse engineering tools [6]. Reverse engineering
can can extract design/technology details of an IC using imaging
techniques. It involves several steps that include: depackaging an
IC, delayering and imaging individual layers, and analyzing the
collected images to identify design/IP details [6].

1.2 Design-for-trust techniques
Several design-for-trust countermeasures, including logic lock-

ing [7], IC camouflaging [8], and split manufacturing [9] have
been developed to prevent IP piracy and reverse engineering at-
tacks [10], [11]. Among these countermeasures, logic locking [5],
[7], [12]–[16] and IC camouflaging [8], [17], [18] have gained
significant interest from the research community as they can be
easily integrated within the existing IC design flow. Moreover,
as opposed to split manufacturing, both of these countermeasures
provide security against reverse engineering attacks carried out
by a malicious end-user. Logic locking and IC camouflaging are
typically referred to as hardware obfuscation techniques as they
obfuscate/hide critical design details from the attacker.

Logic locking. Logic locking is a gate-level technique; a
design is locked by inserting additional locking circuitry post logic
synthesis [11], [20], [21] as illustrated in Figure 1. The design

A preliminary version of this paper was presented at IEEE Asia and South
Pacific Design Automation Conference 2017 [1].

can be unlocked/made functional by only loading the secret key
onto on-chip tamper-proof memory. An example locked netlist
constructed using XOR/XNOR key gates is shown in Figure 2(c).

IC camouflaging. IC camouflaging is a layout level technique;
selected gates in the design are replaced with their camouflaged
counterparts [8], [17]–[19], [22]. Camouflaged gates look identical
from the top-view but can implement different functions. An
example INV/BUF camouflaged gate is shown in Figure 3 [23];
the gate behaves either as a buffer or an inverter as dictated by
the configuration of contacts 1 and 2 being either real or dummy.
Transformations between logic locking and IC camouflaging have
been proposed, enabling security analysis of both techniques using
the same set of tools/algorithms [19]. Throughout this paper, we
discuss the security aspects using the terminology associated with
logic locking.

Traditional locking locking. An important research question
in logic locking (and IC camouflaging) is to find the gate locations
in a netlist that can be locked (or camouflaged) with maximum
security benefits per unit implementation overhead. The earlier re-
search efforts focused on developing gate selection strategies (e.g.,
random [7], fault analysis-based [14], or interference-based [20])
that determine the gates to be locked (camouflaged) within the
netlist [7], [8], [14], [20].

SAT attack resilient logic locking. Since the inception of
a Boolean satisfiability (SAT) based attack against logic lock-
ing/camouflaging techniques, the focus of research has shifted
towards developing countermeasures that offer strong resilience
against the SAT attack [17], [18], [24] (see Section 2.4 for
details.). The attack uses specialized distinguishing input pat-
terns (DIPs) for iteratively refining the key search space. The
techniques developed recently to mitigate the SAT attack include
SARLock [25], Anti-SAT [26], CamoPerturb [23], and AND-tree
insertion (ATI) [27] (See Section 2.5 for details). The fundamental
theme underlying these techniques is to utilize point functions
implemented by AND/NAND/OR/NOR trees to minimize the
number of keys eliminated per DIP.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Logic

synthesis

Physical

Synthesis
Fabrication Packaging

Functional IC

Third

party IP

System

specs.

Original

layout
Original

netlist
Wafer

Logic

locking

Locked

netlist

Camouflaging

Camouflaged

layout

Fig. 1. An illustration of logic locking and IC camouflaging in the context of IC design and fabrication flow.

G5

G3

G2

G1
G4

a

b

c

O1

(a)

G3

G2

G1
G4

a

b

c

O1G5

G6

(b)

G3

G2

G1
G4

a

b

c

O1

K1

G5

K2

K1

K2

K3
K3 G6

(c)

oi
0

1
i o

k

K1
K1

o
i

(d)

Fig. 2. (a) The original circuit. (b) A camouflaged circuit consisting of INV/BUF camouflaged gates. (c) Equivalent logic locked circuit constructed
by replacing INV/BUF camouflaged gates with XOR key gates. (d) Transforming an INV/BUF camouflaged to its logic locking counterpart using a
MUX; further simplification of the MUX-based gate to an XOR key gate [19].

Removal attack. In the SAT attack resilient techniques men-
tioned above, the protection circuitry (implementation of a point
function) may be decoupled from the original circuit that needs to
be protected, rendering these techniques vulnerable to the removal
attack. The removal attack aims at retrieving the original circuit
by identifying and removing/bypassing the protection circuitry.
The first step is to identify the protection circuitry, which may be
hampered due to layers of obfuscation in the design. This paper fo-
cuses on evaluating the resilience of the SAT attack resilient logic
locking/camouflaging techniques against the removal attacks. The
contributions of the paper are as follows:

1) We develop signal probability skew (SPS) attack that breaks
Anti-SAT [26]. The SPS attack leverages the structural traces
in the netlist to identify and remove the Anti-SAT block within
minutes. The attack is scalable to large circuits; moreover, it
becomes more effective with increasing key size.

2) We identify the security vulnerabilities in the ATI tech-
nique [27] and develop sensitization guided SAT (SGS) attack
that circumvents ATI in most of the circuits by exploiting the
bias in the input distribution of the inserted AND-tree.

3) We demonstrate how SARLock [25] is vulnerable to simple re-
moval attacks, whereas, CamoPerturb [23] exhibits resiliency
against the aforementioned attacks.

4) The simple yet effective attacks we propose emphasize the
importance of developing countermeasures without leaving
structural traces, which could be exploited in ways much

Fig. 3. Camouflaged layout of an INV/BUF gate. The gate behaves as
an inverter or a buffer based on the configuration of circled contacts.
When contact 1 is real and contact 2 is dummy, the gate behaves as
an inverter. The gate behaves as a buffer when contact 1 is dummy and
contact 2 is real [23].

simpler than the main expected threat (i.e., the SAT attack).

2 BACKGROUND AND RELATED WORK

2.1 Definitions
Logic locked netlist. The original netlist F is a Boolean

function F : I → O, where I = {0, 1}n and O = {0, 1}m.
The locked netlist is a Boolean function L : I × K → O,
where K = {0, 1}q . Upon activation using the secret key ks,
L(i, ks) = F (i),∀i ∈ I . There are v key gates in L, each
implementing p possible Boolean functions, determined by the
key k (consisting of dlog2pe-bits) .

Security of logic locking. A logic locking technique is con-
sidered secure if the effort required by an attacker to determine the
correct key value ks, or equivalently, retrieve the original circuit
functionality is exponential in the number of key gates: O(2v).

Camouflaged netlist. The camouflaged netlistC : I×A→ O
consists of u camouflaged gates, where the assignment A :
[1, · · · , u] → G maps each camouflaged gate to an element
in G, the set of possible Boolean functions that a camouflaged
gate can implement. For the correct assignment As, C(i, As) =
F (i),∀i ∈ I .

Security of IC camouflaging. An IC camouflaging technique
is considered secure if the effort required by an attacker to de-
termine the correct assignment value As, or equivalently, retrieve
the original circuit functionality is exponential in the number of
camouflaged gates: O(2u).

Transformations. Transformations between logic locking and
IC camouflaging enable security analysis of both techniques using
the same set of algorithms [19]. The transformation T : C → L
replaces each camouflaged gate with p gates (each implementing
one of the functions in G) and a p : 1 MUX having dlog2pe select
inputs. The transformation for an INV/BUF camouflaged gate is
illustrated in Figure 2(d). The logic locked netlist is Figure 2(c)
is generated by replacing each INV/BUF in the camouflaged
netlist in Figure 2(b) with its logic locking counterpart, i.e., an
XOR/XNOR key gate [19].

Removal attack. A removal attack is a transformation R :
L(I,K) → H(I) such that H(i) = F (i),∀i ∈ I . Thus, upon
the removal of the protection circuit, an attacker can obtain an

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

implementation that produces the correct output for every input
irrespective of the key value. For logic locking solutions that
combine two or more logic locking techniques, it is essential that
an attacker is not able to target the techniques on an individual
basis.

2.2 Traditional obfuscation techniques
In this subsection, we present a summary of traditional obfus-

cation techniques and attacks.
Logic locking primitives. A wide variety of logic locking

primitives have been used. The combinational primitives include
XOR/XNOR gates [7], [14], [20], [21], AND/OR gates, multiplex-
ers, whereas the sequential primitives include look-up tables [12]
and obfuscated finite state machines (FSMs) [15], [30].

IC camouflaging primitives. Camouflaged gates can be con-
structed by using real/dummy contacts [8], [31], manipulating
polarities of dopants in the active regions of transistors [32]–[34],
or adjusting the threshold voltage of transistors in a circuit [22].
Available spaces in the design can also be filled using metal
layers and filler cells to prevent insertion of malicious logic in
the design [35].

Traditional attacks. There exist multiple attacks, applicable
to both logic locking and IC camouflaging, that can compromise
their security. A summary of these attacks is presented in Table 1.
In the sensitization attack, key bits are individually sensitized1 to
the outputs by applying judiciously crafted input patterns. Test-
data mining [5] and hill climbing attack [21] leverage the vulnera-
bilities associated with test data. Differential power analysis attack
exploits the correlation between power consumption and key value
to extract the secret key [28]. The aforementioned attacks basically
rely on divide-and-conquer approaches that are no more applicable
to SAT attack resilient logic locking techniques, where standalone
implementations of point functions (e.g. AND/NAND trees) are
integrated at with the original circuit.

2.3 Threat model(s)
Logic locking and IC camouflaging have slightly different

threat models that differ basically in only one aspect. Logic
locking assumes an untrusted foundry, whereas IC camouflaging
assumes a trusted foundry. However, both techniques assume
that the attacker has access to the same set of assets: a reverse-
engineered netlist and a functional IC. The attacker uses computa-
tional/simulation tools on the reverse-engineered (but obfuscated)
netlist, while he/she exercises the functional IC (oracle) to produce
chip outputs for input patterns of interest.

The difference between logic locking and camouflaging at-
tacks lies in when/how the attacker gets access to the required
assets. Thus, both techniques can be evaluated for security on a
uniform basis. In this paper, we address security from a logic
locking perspective.

2.4 SAT attack
The SAT attack is applicable to both logic locking [24] and IC

camouflaging [17], [18]. As per the SAT attack threat model, the
attacker has access to a reverse-engineered netlist and a functional
IC [17], [18], [24]. The main idea of the SAT attack is to reveal the
correct key (or the correct functionality of camouflaged gates) by
selectively applying the DIPs to a functional IC [24]. The attack

1. Sensitization of an internal line l to an output O refers to the condition
(values applied from the primary inputs to justify the side input of gates on the
path from l to O to the non-controllable values of the gates) which surjectively
maps l to O and thus renders any change on l observable on O.

rules out incorrect key values by using DIPs iteratively. A DIP is
an input value for which at least two unique key values, k1 and
k2, produce differing outputs, o1 and o2, respectively. Since o1
and o2 are different, at least one of the key values is incorrect. A
single DIP may rule out multiple incorrect key values, reducing
the computational effort of the attack.

Example. Let us consider an example SAT attack on the
logic locked circuit shown in Figure 2(c). Table 2 represents the
output values of the locked circuit for different key and input
combinations. The values (k0, . . . , k7) represent all possible
values for three key inputs {K1,K2,K3}. When the attack is
launched, it takes four DIPs to obtain the correct key. The last
column in the table lists the keys eliminated in each iteration. For
example, in iteration 4, the pattern 010 is used that eliminates all
incorrect keys, and thus identifies k5 as the correct key.

The efficiency of the SAT attack depends on the order of
choosing the DIPs. The total execution time of the SAT attack
comprising λ iterations with ti as the execution time for the i-th

iteration is T =
λ∑
i=1

ti [26]. The SAT attack can be mitigated if

either ti or λ increases exponentially with the key size.

2.5 SAT attack resilient obfuscation
Figure 4 presents the recent SAT attack resilient logic lock-

ing/camouflaging techniques. The underlying idea of all these
techniques is to utilize point functions to control the amount of
error injected into a circuit on the application of incorrect key
values. A point function is a Boolean function that produces the
output value 1 at exactly one point. Example implementations
include AND gates and password checkers.

SARLock. As shown in Figure 4(a), SARLock integrates a
comparator and a mask block with the original circuit to be
protected [25]. For the correct key value, no error is injected in
the circuit and the correct output is retained. For each incorrect
key value, an error is injected into the circuit for only one
input pattern, leading to an incorrect output for the specific
pattern. Assuming that F (I) is the original circuit, the output
O of the circuit locked using SARLock can be presented as
O = F (I) ⊕ ((I == K) ⊕ (I == ks)), where K denotes
the key inputs, and ks is the correct key value.

Anti-SAT. The Anti-SAT block shown in Figure 4(b) com-
prises two blocks, B1 = g(X,Kl1) and B2 = g(X,Kl2) [26].
These blocks share the same inputs X , but are locked with
different keys Kl1 and Kl2. The outputs of B1 and B2 drive an
AND gate to produce the output signal Y . The two blocks produce
complementary outputs when correct key value is applied; for
all inputs, Y = 0, leading to a correct output. For an incorrect
key value, the output of B1 and B2 is 1 for a specific input
pattern; for that pattern, Y = 1, leading to an incorrect output.
Assuming that Anti-SAT protects one of the primary outputs of the
original circuit F (I), the protected output O can be represented
as O = F (I,Kl0) ⊕ (g(X ⊕Kl1) ∧ g(X ⊕Kl2)), where Kl0

represents the key for the logic locked circuit. We elaborate on the
security properties of Anti-SAT in Section 3.1.

CamoPertub. In CamoPerturb, the original logic cone F (I)
is perturbed for exactly one minterm is to hide the true imple-
mentation from an attacker [23]. The output of the logic cone for
the perturbed minterm is then restored using a camouflaged secret
and a comparator block, as illustrated in Figure 4(c). Let F ′(I)
represent the Boolean function for the perturbed logic cone, then
O = F ′(I)⊕ (I == cs), where cs is the camouflaged secret.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE 1
A comparison of the attacks against logic locking. The attacks are also applicable to the counterpart camouflaging techniques.

Attack Attacker
location Attacker assets Attack method Proposed defense

Sensitization [8], [20] Foundry /
end-user

1) Locked netlist
2) Functional IC

Sensitization of key bits to circuit outputs Key-interference based logic
locking [13]

SAT [17], [24] Foundry /
end-user

1) Locked netlist
2) Functional IC

SAT-based algorithm that rules out
incorrect keys iteratively

AES-based [13], Anti-SAT [26],
SARLock [25], CamoPerturb
[23], ATI [27]

Hill climbing [21] Foundry / test
facility

1) Locked netlist
2) Test data

Start with a random key CK. Flip the bits
in CK based on the Hamming distance Test-aware logic locking [21]

Test-data mining [5] Foundry / test
facility

1) Locked netlist
2) Test data

Find the key that maximizes fault
coverage and satisfies test data constraints Post-test activation [5]

Differential power
analysis [28]

Foundry /
end-user

1) Locked netlist
2) Functional IC

Generate a differential trace from power
samples for each key value –

AppSAT [29] Foundry /
end-user

1) Locked netlist
2) Test data

Reduce a multi-layered defense to
single-layered defense by augmenting
SAT attack with random oracle queries

SARLock, Anti-SAT

Signal probability
skew

Foundry /
end-user 1) Locked netlist

Trace the Anti-SAT block using signal
skew and remove it CamoPerturb

AppSAT guided
removal

Foundry /
end-user

1) Locked netlist
2) Functional IC

Use AppSAT to find FLL key bits; trace
keys to identify and remove Anti-SAT CamoPerturb

Sensitization guided
SAT

Foundry /
end-user

1) Locked netlist
2) Functional IC

Guide the SAT attack using patterns from
sensitization attack CamoPerturb

Logic-Locked

Circuit
I O

G(X,Kl1)

G(X,Kl2)

X

Kl2

Kl1

O
Flip

(b)

Tamper-proof

Memory

Logic

cone

?= Mask
Flip

I

K

(a)

Tamper-proof

Memory

Perturbed

logic cone

?=
Restore

I

K

(c)

Camouflaged

secret

O

OI

(d)

Fig. 4. SAT attack resilient logic locking/camouflaging techniques. a) SARLock [25], b) Anti-SAT [26], c) CamoPerturb [23], and d) ATI [27].

TABLE 2
Analysis of the SAT attack [24] against random logic locking [7]. The
red entries represent the keys identified as incorrect. k5 is the correct

key; the columns with all correct output values are shaded blue.

abc Y k0 k1 k2 k3 k4 k5 k6 k7 Incorrect keys identified
000 0 1 1 1 1 1 0 1 1
001 0 1 1 1 1 1 0 1 1
010 0 1 1 1 1 1 0 1 1 iter 4: rest incorrect keys
011 1 1 1 1 1 1 1 1 1
100 0 1 1 1 1 1 0 1 0
101 1 1 0 1 1 1 1 1 1 iter 3 : k1
110 1 1 1 1 1 0 1 1 1 iter 1: k4
111 1 1 1 0 1 1 1 1 1 iter 2: k2

AND/OR-tree insertion (ATI). While Anti-SAT [26], SAR-
Lock [25], and CamoPerturb [23] add external point functions
to the original netlist, ATI aims at identifying these structures
inside the original netlist in an attempt to decrease the imple-
mentation overhead [27]. The inputs of the identified AND/OR
tree are camouflaged by inserting INV/BUF camouflaged gates as
illustrated in Figure 4(d). The INV/BUF gates can be replaced
with the XOR/XNOR counterparts to obtain a logic locked AND-
tree. Let us assume the original circuit can be represented as being
composed of two functions, F (I) = Tand(I) ◦ F ′(I), where
Tand(I) is the AND-tree, F ′(I) is the rest of the circuit, and ◦ is
the Boolean operator integrating the two sub-circuits. The output
of the ATI circuit with the locked AND-tree can be represented as
O = Tand(I,K) ◦ F ′(I). We discuss the security aspects of ATI
in Section 4.1.

2.6 Signal probability skew

The signal probability skew attack, to be presented in Sec-
tion 3.3, is based on the notion of probability skew. We define

signal probability skew sx of a signal x as,

sx = Pr[x = 1]− 0.5 (1)

where, Pr[x = 1] indicates the probability that signal x is 1. As
0 ≤ Pr[x = 1] ≤ 1, the range of s is [−0.5, 0.5]. The SPS of
a signal denotes the amount by which a signal is distinguishable
from a random guess, i.e., Pr[x = 1] = 0.5. An attacker has a
negligible advantage of guessing the signal value over a random
guess if the corresponding SPS s is close to zero. For instance,
all primary inputs and key inputs (unknown to the attacker) are
equiprobable, hence their skew is zero.

Consider a two-input AND gate with inputs in1 and in2 with
the corresponding SPS values s1 and s2, respectively. The SPS of
the output, sAND is defined as,

sAND = Pr[y = 1]− 0.5 = Pr[in1 = 1]Pr[in2 = 1]− 0.5

= 0.5(s1 + s2) + s1s2 − 0.25 (2)

If the inputs to an AND gate have zero SPS values, then sAND =
−0.25, demonstrating the skew that every AND gate introduces.
The SPS of an OR gate and an XOR gate is shown in Figure 5.
It can also be noted that OR gates add a positive skew, while
XOR gates reduce the absolute skew, restoring it closer to zero.
XOR/XNOR key gates, where the key inputs are treated as primary
inputs, introduce a skew of zero.

In MUX-based logic locking [14], the select input of a MUX
is a key input with zero skew; the data inputs are intermediate
signals from the original circuit. The SPS of a MUX output can
be derived as,

sMUX = 0.5(s1 + s2) (3)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

!"#

!$#
!%&#'#()$*#+#()*,!"+!$-#.#!"!$##

!$#

!"#
!/%&#'#.#$!"!$##

Fig. 5. SPS of OR and XOR gate outputs where s1 and s2 are the SPS
of the inputs of the gates.

where s1 and s2 are the SPS of the inputs.

2.7 AppSAT attack

AppSAT, a recent variant of SAT attack, aims at reducing a
multi-layered defense to single- layer (e.g. Anti-SAT+FLL to Anti-
SAT) [29]. The AppSAT attack builds upon the SAT attack by
querying the functional IC with a fixed number of random DIPs
at regular intervals and augmenting the CNF formula with new
constraints based on these DIPs. The attack terminates when the
Hamming distance between the correct output from the functional
IC and the locked netlist is very low (≈ 1

2n), where n is the key
size. Upon termination, the attack returns an approximately correct
key that yields an approximate netlist [29].

While the AppSAT attack can produce only an approximate
netlist, it can be used as a pre-processing attack to peel off defenses
one at a time. Subsequently, other attacks can be used to obtain
the exact netlist, as we will show in Section 3.6.

3 REMOVAL ATTACK ON ANTI-SAT

Fig. 6. An instance of the Anti-SAT block consisting of AND/NAND
trees [26].

3.1 Anti-SAT

As already mentioned in Section 2.5, the Anti-SAT block
consists of two complementary blocks B1 = g(X,Kl1) and
B2 = g(X,Kl2). The blocks integrated together render the
SAT attack effort exponential in key size, i.e., in the number
of key bits. An instance of the Anti-SAT block is shown in
Figure 6 [26]. At the inputs of B1 and B2, a set of XOR/XNOR
key gates is inserted. The number of key inputs is the same as
the number of signals tapped from the logic locked circuit, i.e.,
|Kl1| = |Kl2| = |X| = n. The resulting key size is thus 2n. The
output Y is implemented as Y = g(X ⊕ Kl1) ∧ g(X ⊕Kl2).
The output Y is 0 for all inputs when the correct keys Kl1 and
Kl2 are applied. For incorrect keys, Y may take on the value 1,
injecting error on an internal net in the netlist.

SAT attack resilience. The computational effort required by
the SAT attack decode the 2n key bits is defined in terms of the
number of input vectors that make the function g equal to 1, i.e.,
the on-set of g [26]. For an n-bit input vector L ∈ {0, 1}n, such
input vectors are elements of the set,

LT = {L|g(L) = 1}, |LT | = p (4)

Anti-SAT constructs g in such a way that p is close to either 1 or
2n − 1. For the Anti-SAT block in Figure 6, p = 1. The lower

bound on the number of SAT attack iterations (number of DIPs)
to recover the 2n key bits of the Anti-SAT block is [26]:

λl =
22n − 2n

p(2n − p)
. (5)

For p ∈ {1, 2n − 1}, the number of required iterations λl is 2n,
i.e., exponential in the number of key bits in the Anti-SAT block.
So, the SAT attack resilience of Anti-SAT hinges on p being either
very small or very large. As Anti-SAT provides a provable measure
to increase the SAT attack effort exponentially in key size, the
conventional logic locking techniques need to be combined with
the Anti-SAT block to obtain foolproof logic locking.

Secure and Random Integration. The SAT attack resilience
of Anti-SAT also depends on the internal nets that drive the inputs
of Anti-SAT block. Two integrations of Anti-SAT with original
logic locked circuit are considered in [26]: secure integration and
random integration.

Secure Integration. In this scheme, the n inputs of the Anti-
SAT block are driven by n primary inputs of the logic locked
circuit. The output Y is connected to a wire in the original logic
locked circuit that is among the top 30% in observability.

Random Integration. In this scheme, the inputs as well as the
output of the Anti-SAT block are connected to random wires in
the logic locked circuit. The SAT attack results show that secure
integration provides a higher resilience than random integration as
it requires more iterations, resulting in a larger execution time to
reveal the secret key [26].

3.2 Security vulnerabilities in Anti-SAT
The main vulnerability of Anti-SAT is that it is incorporated

into the netlist at a single point, where its output Y is XORed with
an internal net. Therefore, Anti-SAT defense has to rely on differ-
ent obfuscation schemes that make the identification of the block
(and, thus, signal Y) difficult for an attacker. At the same time,
SAT attack resilience is ensured by choosing a skewed p value, as
dictated by Equation 5, irrespective of the structural and functional
obfuscation. This basic construction principle inevitably leads to
structural traces that help identify the Anti-SAT block output in
a given netlist; the proposed SPS attack exploits these traces to
break Anti-SAT.

3.3 Signal probability skew attack
In this section, we present signal probability skew attack that

detects the output signal Y of the Anti-SAT block. We show that
the absolute difference of the probability skew (ADS) of the inputs
of a gate is the maximum for the gate G, which produces the
output Y of the Anti-SAT block.

Threat model. The threat model of the SPS attack is weaker
than that of the SAT attack [24] and Anti-SAT [26]. SPS attack
does not require access to a functional IC; the attack requires only
a reverse-engineered netlist. In contrast, the SAT attack requires a
functional IC as well.

Let us consider the skew of individual gates in the Anti-SAT
block shown in Figure 6. The XOR key gates produce zero skew
signals. The blocks g(X,Kl1) and g(X,Kl2) comprise an n-
input AND and an n-input NAND gate, respectively. The SPS
sn−AND for the AND gate is defined as,

sn−AND =
n∏
i=1

(0.5 + si)− 0.5 (6)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

where si is the SPS of the ith input. As si = 0, the SPS of n-input
AND gate in g(X,Kl1) is,

sg(X,Kl1) = 0.5n − 0.5 (7)

For large n, sg(X,Kl1) ≈ −0.5, indicating p ≈ 1. Similarly, for
the n-input NAND gate output in g(X,Kl2), the SPS is,

sn−NAND = 0.5−
n∏
i=1

(0.5 + si) (8)

As si = 0, the SPS of the NAND gate in g(X,Kl1) is,

sg(X,Kl1)
= 0.5− 0.5n. (9)

For large n, sg(X,Kl1)
≈ 0.5, indicating p ≈ 2n−1. The absolute

difference of the probability skew of the inputs of the AND gate
G, ADSG, can be computed as,

ADSG = |sg(X,Kl1) − sg(X,Kl1)
| = 1− 2× 0.5n (10)

If the number of inputs to the Anti-SAT block is high, ADSG =
|sg(X,Kl1) − sg(X,Kl1)

| ∼= 1. ADSG close to 1 indicates that
the two inputs of the gate G exhibit the highest skews but with
opposite polarity. This property of gate G distinguishes it from
the rest of the gates not only in the Anti-SAT block but also in
the entire circuit. The SPS attack on a logic locked circuit with
the Anti-SAT block comprises computing the SPS values of all
the gates in the circuit. The gate with the highest SPS value, i.e.,
a gate with oppositely skewed inputs is the suspect gate G, the
output gate of the Anti-SAT block. The SPS attack is described in
Algorithm 1.

SPS attack applies to arbitrary g and ḡ. In case of n-input
OR gate and n-input NOR gate for the functions g and ḡ, the
corresponding SPS values are,

sn−OR = 0.5−
n∏
i=1

(0.5− si), (11)

sn−NOR =
n∏
i=1

(0.5− si)− 0.5 (12)

The ADSG value will again be close to 1 for large n.
SPS vs. SAT resilience. SPS attack is highly effective when

p ∈ {1, 2n − 1}; these values of p lead to the maximum ADSG.
One option to reduce the effectiveness of the attack is to use a
value of p far from 1 and 2n− 1, reducing the signal skew values.
However, any such attempt would make Anti-SAT vulnerable to
SAT attacks as dictated by equation 5. Anti-SAT is thus cornered
by SAT attack and the proposed SPS attack. This is further
illustrated in Section 3.4.3.

Algorithm 1: Signal probability skew attack.
Input : Cantisat // Locked netlist with Anti-SAT
Output: Clock // Locked netlist after removing Anti-SAT

block
1 ADSarr ← {}
2 for gj ∈ Cantisat do
3 ADSarr(gj)←compute ADS(Cantisat, gj)
4 end
5 G← find maximum (ADSarr) // Anti-SAT output
6 Y ← find value from skew (G) // Correct value of Y
7 Clock ← remove TFI(Cantisat, G, Y) // Remove the gates

that are in TFI of gate G alone

10 20 30 40 50 60
key size n

0.50

0.25

0.00

0.25

0.50

0.75

1.00

 S
ke

w

SPS(g)

SPS(g)

ADSG

Fig. 7. Impact of n on ADSG, the absolute difference of skew at the
inputs of gate G, the output of Anti-SAT block, for p = 1. SPS(g) and
SPS(ḡ) represent the skew of the AND and NAND tree in the Anti-SAT
block.

Removing the Anti-SAT block. In SPS attack, the gate G is
identified using the highest ADS trace. The logic locked circuit
may contain a few signals that exhibit high ADS values, close to
ADSG. These false candidates can be filtered out by checking for
simple structural traces. By analyzing the transitive fan-in (TFI) of
the candidate gates and eliminating the gates whose TFI does not
include at least 2n key inputs, we can correctly identify the gate
G.

Identifying value of Y . Once G has been identified, the
value of the output signal Y can be determined from sY . If
sY < 0, the value of Y in the functional IC is 0; otherwise,
it is 1. Knowing the correct value of Y , one can trace back
and discard the gates that are in the fan-in of signal Y alone.
The remaining circuit re-synthesized the circuit using the correct
value of Y . Upon removal, the Anti-SAT stripped circuit can be
represented as O = F (I,Kl0). To identify Kl0 for the logic
locked circuit (which is locked using traditional SAT attack-
vulnerable techniques such as fault analysis-based logic locking),
SAT attack can be launched.

Example. The objective of the SPS attack on the circuit in
Figure 10 is to identify the output gate of the Anti-SAT block,
i.e., G11. The highest five ADS values for the circuit are shown
in Table 4. The pair of complementary signals, G8 and G10 with
opposite SPS values leads to the highest ADS for G11, enabling
the precise detection of the output of the Anti-SAT block. The SPS
for the output of G11 is sY = −0.398, implying that the signal
is skewed towards 0.

3.4 SPS attack results
3.4.1 Experimental setup

The SPS attack experiments are conducted using ISCAS
benchmark circuits [36] and OpenSPARC microprocessor con-
trollers [37]. The SPS attack and the SAT attack are executed on a
server with 6-core Intel Xeon W3690 CPU, running at 3.47GHz,
with 24 GB RAM [24]. The Anti-SAT block is integrated with
fault analysis based logic locking [14], which is referred to as
TOC’13(5%), following the convention used in [26].

3.4.2 Impact of key size (n)
The number of keys in the basic Anti-SAT block is 2n, where

n is the number of keys in the individual blocks g and ḡ. For the
SPS attack to be effective, ADSG must increase with n. Figure 7

Fig. 8. Normalized attack resistance of the Anti-SAT block for n = 16. For
the SAT attack, the resistance is the number of iterations of the attack
normalized by 65536. For the SPS attack, the resistance is specified as
1−ADSG. The SPS attack is highly effective in region shaded red; the
SAT attack is effective in the region shaded blue.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

demonstrates that as n increases, ADSG increases exponentially
initially and then saturates close to a value of 1. The SPS attack is
successful when ADSG is close to 1, representing a gate whose
inputs are skewed towards opposite values. As an example, for
n = 16, the skew at the output of the block g (an AND tree)
will be ≈ −0.5, whereas the the skew at the output of the block
ḡ (a NAND tree) will be ≈ 0.5. The ADSG will be ≈ 1. For
larger n values, ADSG approaches 1 even further. Thus, the
attack effectiveness increases with n, which is counter-intuitive
for any attack.

3.4.3 SAT attack vs. SPS attack
Impact of p on attack success. The Anti-SAT block offers the

highest resistance against the SAT attack when p ≈ 1 or p ≈ 2n;
then, the number of iterations for the SAT attack is ≈ 2n. The
resistance is the least when p ≈ 2n−1. Figure 8 displays the SAT
attack resistance normalized by 2n = 65536 for n = 16.

The resistance to the SPS attack can be represented as 1 −
ADSG. When ADSG ≈ 0, the resistance is the maximum; this
also implies p≈ 2n−1 and the minimum resistance to the SAT
attack. The resistance to the SPS attack is the minimum when
p ≈ 1 or p ≈ 2n as demonstrated in Figure 8; for these values
of p, the SAT attack resistance is the maximum. Thus, the two
attacks are complementary to each other. One of the attacks is
highly effective for any value of p. The regions of effectiveness of
the SPS and the SAT attack are shown as red and blue regions,
respectively, in Figure 8.

Attack execution time. Figure 9 shows that the execution time
of the SAT attack depends on the value of p, which dictates the
number of iterations of the attack. For p = 1 and p = 65535,
the attack takes more than a day to complete. For the SPS attack,
which involves computing the signal probabilities of few gates (≈
100 for n = 16), the attack time is a few seconds, and practically
negligible compared to the execution time of the SAT attack.

3.4.4 SPS attack on multi-layered defense
In practical settings, the Anti-SAT block is integragted with an

existing (SAT attack vulnerable) logic locking technique such as
FLL [14]. For maximum SAT attack resistance, secure integration
is utilized. In secure integration of Anti-SAT (referred to as
TOC’13(5%)+n-bit BA in [26]), n inputs of the Anti-SAT block
are connected to n primary inputs of the logic locked circuit [26].
ADSG is represented as 1 − 0.5n−1, irrespective of the logic
locked circuit. For a successful attack, ADSG must be higher
than the ADS of all the other gates in the circuit.

Table 3 presents the results for the SPS attack on secure inte-
gration. The column “HC ADS” displays the highest ADS value
for the gates in the original circuit (excluding the gates in the Anti-
SAT block). With n = 16, the gates with ADS ≥ (1 − 0.515)
are candidates for the gate G. We observe that there is only one
candidate for gate G in all the circuits except for s15850. The

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
15

2
16
−
2
14

2
16
−
2
12

2
16
−
2
10

2
16
−
2
8

2
16
−
2
6

2
16
−
2
4

2
16
−
2
2

2
16
−
2
0

p

0.0

0.4

0.8

1.2

1.6

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

1e5

24 hours

SAT attack

SPS attack

Fig. 9. Execution time of the SAT attack and the SPS attack on basic
Anti-SAT block for n = 16. The execution time of the SAT attack is more
than a day for p ∈ {1, 2n − 1}, whereas, the execution time of the SPS
attack is less than 2 minutes for all values of p.

TABLE 3
SPS attack on secure integration for p = 1. HC ADS represents the
highest ADS value for the gates in the locked circuit (excluding the

gates in the Anti-SAT block). #cand represents the number of
candidates for gate G.

n = 16 n = 64
Benchmark # gates HC ADS #cand Exec. time (s) #cand Exec. time (s)
fpu in 1501 0.8125 1 0.3 1 0.6
lsu rw 1501 0.8125 1 0.7 1 1.1
lsu excp 1651 0.81211 1 0.9 1 0.6
s9234 1677 0.98526 1 0.6 1 0.8
fpu div 2137 0.8125 1 0.5 1 1.0
lsu stb 2371 0.93749 1 1 1 0.7
c5315 2695 0.5616 1 0.6 1 0.8
c7552 2697 0.58069 1 0.8 1 1.1
ifu ifq 3663 0.92281 1 2 1 1.9
tlu mmu 5559 0.98828 1 4.8 1 4.6
s13207 13371 0.99994 1 18.2 1 20.1
s15850 15876 0.99999 3 18.3 1 19.1
s35932 16457 0.60127 1 47.8 1 43.4
s38584 19511 0.99805 1 55.7 1 56.2
s38417 22501 0.99644 1 54.4 1 57.7
b18 111176 0.99512 1 1300.2 1 1351.1
b19 224511 0.99512 1 5010.3 1 5028.4

!"#

!$#

!%#

!&#
!'#

(#

)#

*#

+,#

!
-"#

-"
.#

-$
.#

-%
.#

!
-$#

!
-%#

!/#

!
0"#

!
.%#

!
."#

!
0$#

!
.$#

!
./#

!
.&#

!
0%#

!
.'#

-"
1#

-$
1#

-%
1#

-&
1#

-'
1#

-/
1#

!
-%#

-"
02#

-$
02#

-%
02#

-"
32#

-$
32#

4"#

4$#

!5#

!6#

!7#

!"8#

!""#
9#

Fig. 10. Functional and structural obfuscation between Anti-SAT and
logic locked circuit of Figure 2(c). {K1A, . . . ,K3A} are the key inputs to
the logic locked circuit, {K1B , . . . ,K6B} are the key inputs to the Anti-
SAT circuit, {K1LF , . . . ,K3LF } (blue) are the key inputs for functional
obfuscation, and {K1SF ,K2SF } (green) are the key inputs for struc-
tural obfuscation. M1 and M2 are used for MUX-based logic locking.

circuit s15850 has two other gates whose ADS values are higher
than the ADSG.

As mentioned in Section 3.2, the false candidates for G are
filtered out by analyzing the TFI of the candidate gates and
eliminating the gates whose TFI does not include 2n key inputs.
The attack then correctly identifies G in all of the circuits. The
execution time of the SPS attack is in the order of seconds for
most of the circuits. For the largest circuit b19, which has more
than 200K gates, the attack completes within an hour and a half.
Thus, the attack scales well for large circuits.

3.5 Structural/functional obfuscation in Anti-SAT

A trivial attack could simulate the reverse-engineered netlist
and find the complementary pair of signal outputs of g and
ḡ, leading to the identification and removal of the Anti-SAT
block [26]. To prevent this, n additional XOR/XNOR key gates are
inserted randomly at the inputs of the Anti-SAT block, obscuring
the complementary relations between signals, thereby, providing
functional obfuscation.

Another simple attack could be in the form of circuit partition-
ing to identify the isolated Anti-SAT block and remove it from the
netlist [26]. To thwart such attacks, structural obfuscation based
on MUX-based logic locking was proposed to increase the inter-
connectivity between the logic locked circuit and the basic Anti-
SAT (BA) block [26]. The resultant obfuscated Anti-SAT (OA)
block will have 4n key gates.

Example. Functional and structural obfuscation as applied to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

x
1

x
n

2

x
n

2
+1

x
n

Y!"

(a)

x
1

x
n

Y

!"

(b)

Fig. 11. (a) Key gate inserted inside the tree of n-input AND gate; the
change in probability skew assists the SPS attack. (b) Key gate inserted
at the output of n-input AND gate assists the SAT attack [24].

TABLE 4
ADS values of the gates in the Anti-SAT block in Figure 10 in

descending order.

Gate G11 M1 M2 G8 G10
ADS 0.6875 0.5 0.25 0.25 0.125

the logic locked circuit in Figure 2(c) is shown in Figure 10.
The outputs of gates G8 and G10 form the output signals of
the functions g and ḡ, and hence are complementary signals; an
attacker can attempt to find the potential complementary pair of
signals, leading to the identification of the Anti-SAT block. The
Anti-SAT block, comprising an additional set of three key gates
{GL1, GL2, GL3}, obfuscates the pair of complementary signal
outputs. Further, the MUXes M1 and M2 are used to increase
the inter-connectivity of the logic locked circuit and the Anti-
SAT block. This structural obfuscation of Anti-SAT renders the
identification of the Anti-SAT block difficult for the attacker, as
the boundary between the two blocks is obscured.

SPS attack effectiveness on obfuscated Anti-SAT. The SPS
attack is successful against obfuscated Anti-SAT (OA) as long
as ADSG values do not deviate significantly as a conseqence of
obfuscation. Let us consider an n-input AND gate that constitutes
the function g in the Anti-SAT block. In Figure 11(a), the XOR
key gate is inserted at a net inside the AND-tree, at the input
of final AND gate in this specific case. Let us assume s1 and
s2 denote the skew at the inputs of the final AND gate. Prior
to insertion of the key gate, s1 = s2 = 0.5

n
2 − 0.5, and

sn−AND = 0.5n − 0.5 for the AND-tree. After the insertion
of the key gate, s1 = 0, and hence the modified skew of the
n-input AND becomes s′n−AND = 0.5

n
2 +1 − 0.5. When the

key gate is moved further to the output of AND gate as shown
in Figure 11(b), sY = 0. The SPS attack, in its original form,
would not be able to identify the gate G in such scenarios.
Thus, by carefully inserting the key gates for functional/structural
obfuscation, a designer can defend against the SPS attack. While
one can develop stronger variants of the SPS attack that rely on
better heuristics to guide the attack in the presence of obfuscation,
in this paper, we focus our efforts on developing a strong removal
attack against OA that makes use of the recently developed attack
known as AppSAT [29].

3.6 AppSAT guided removal attack (AGR)

We propose AGR attack that integrates AppSAT with a simple
structural analysis of the locked netlist to develop a strong removal
attack on OA. As opposed to the AppSAT attack, the AGR attack
recovers the exact netlist.

Threat model. The threat model for the AGR attack is same as
the threat model of the SAT attack [24] or ATI [27]. The attacker
has access to a locked netlist and a functional IC.

The attack begins by applying AppSAT to reduce FLL+OA to
OA. As the AppSAT attack terminates, the key bits corresponding
to FLL settle; i.e., their values don’t change over successive attack

Algorithm 2: AppSAT guided removal attack.
Input : Cantisat // Locked netlist with Anti-SAT
Input : n // Key size for Anti-SAT
Output: Clock // Locked netlist after removing Anti-SAT

1 #cand← num gates(Cantisat)
2 while (#cand > 1 and !timeout) do
3 launch appsat(4); // make 4 appsat calls
4 candidates= {}
5 for gj ∈ Cantisat do
6 If Cgj ≈ 4n and R1(gj) ≈ R2(gj) ≈ 0.5
7 add gj to candidates
8 end
9 end

10 G← find maximum key count (candidates) // sort
candidates by Cg and pick the top-ranking one

11 Clock ← remove TFI(Cantisat, G) // Remove the gates
that are exclusively in the TFI of the gate G

iterations. The key bit stability serves for distinguishing the Anti-
SAT key bits from the FLL key bits.

Having peeled off the FLL layer, we next target the obfuscated
Anti-SAT through a simple structural analysis. The Anti-SAT
block has 4n key inputs, all of which converge at the gate G,
the output of Anti-SAT block. We determine the gate G by tracing
the transitive fan out of the Anti-SAT key inputs; it is the gate
where all the 4n key bits converge.

In a real setting, AppSAT can only partially distinguish the
FLL key bits from the Anti-SAT key bits. Similar to the FLL
key bits, certain Anti-SAT key bits (particularly those close to
the AntiSAT output) remain relatively stable over many iterations.
Since the stable key bits could belong to either Anti-SAT or FLL,
we use only the fluctuating key bits for structural analysis. We
expect close to Cg = 4n fluctuating key bits to converge at
the gate G, while about 2n keys bits to converge at each of
its inputs, which are driven by the two trees that produce the
complementary functions in the Anti-SAT block. At the inputs
of gate G, the ratios R1 = Cin1

Cg
and R2 = Cin2

Cg
are close

to 0.5; here Cx represents the number of fluctuating keys that
converge at a given gate. We identify the candidates for gate G
by checking for this property for each gate in the circuit. If the
attack yields multiple candidate gates, we sort them based on
the number of key inputs that converge at a gate and pick the
top-ranking candidate as the gate G. Algorithm 2 describes the
AGR attack. The attack further demonstrates that simple heuristics
could be used to build powerful attacks even on “provably-secure”
hardware implementations.

3.7 AGR attack results
In this section, we present the results for the proposed AGR at-

tack against obfuscated Anti-SAT. Following the convention used
by [26], the attack results are presented for the secure integration
of OA with FLL, referred to as TOC’13(5%) + n-bit OA. Apart
from the 2n key gates at the inputs for the Anti-SAT block,
n additional XOR/XNOR key gates and n MUX key gates are
inserted at the internal wires of the Anti-SAT block for functional
and structural obfuscation, respectively. In our implementation,
each gate in Anti-SAT has two inputs.

Key bit stability. Figure 12 demonstrates the stability of the
key bits for the circuit c5315 when AppSAT attack is launched.
The figure displays the percentage of consecutive previous itera-
tions over which the value of a key bit has remained stable during

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

FLL
(138)

Anti-SAT
128x4=512

Fig. 12. Stability of key bits during AppSAT attack for the c5315
TOC’13(5%)+128-bit circuit. The FLL key bits mostly remain stable and
are easily distinguishable from the Anti-SAT key bits.

the attack; as soon as a key bit value flips, the count for the bit
is reset to zero. It can be observed that most of the Anti-SAT key
bits keep fluctuating and are easily distinguishable.

Attack success. Table 5 presents the results of the AGR attack.
#cand denotes the number of valid candidates for gate G. We
report #cand upon timeout of one hour to provide insights into
the attack behaviour. In most of the circuits, there is only one
candidate for G, demonstrating the effectiveness of the AGR
attack. In a few cases, the attack may return more than one
candidate for G, since certain FLL bits may not have settled yet.
We observe that these candidates are often the Anti-SAT gates
located close to the gate G. Upon sorting the candidate gates
based on the number of key inputs that converge at the gate (Cg),
we identify gate G at the top of the ranked list of candidates. Gate
G was therefore identified successfully in 100% of the cases.

Execution time. The attack execution time is dominated by
the time for AppSAT. In our experiments, we set the AGR attack
timeout to one hour. This is sufficient for the attack to terminate
successfully since we are not interested in the values of the key
bits. We rather need to classify key bits as stable or fluctuating
based on their activity over successive attack iterations.

For the smaller circuits such as s5378, the attack terminates
successfully within a few seconds with a single candidate. Even
for the circuit b19 with more than 200K gates, the attack reduces
the valid candidates to 938 within one hour. These 938 candidates
are then sorted to identify gate G successfully.

TABLE 5
AGR attack on TOC’13(5%) + n-bit OA for n = 128 and p = 1. #cand
denotes the number of valid candidates for the gate G upon a timeout
of one hour. Upon sorting the list of candidates based on Cg , the gate

G always has the first rank, implying 100% success rate.

Benchmark #cand Rank of G Exec. time (s)
s5378 1 1 8.5
ifu dcl 1 1 8.9
fpu in 1 1 10.7
lsu rw 1 1 10.7
lsu excp 1 1 8.9
s9234 1 1 9.4
fpu div 1 1 9.4
lsu stb 1 1 10.2
c5315 1 1 11.7
c7552 1 1 10.5
ifu ifq 1 1 1.0
tlu mmu 14 1 3600.0
s13207 10 1 3600.0
s15850 28 1 3600.0
s35932 1 1 57.6
s38584 22 1 3600.0
b18 710 1 3600.0
b19 938 1 3600.0

(a) (b)

Fig. 13. Examples of AND/OR-tree insertion: a) A camouflaged AND-
tree with camouflaged INV/BUF gates inserted at its inputs [27], b) The
locked counterpart of the AND-tree with XOR/XNOR key gates inserted
at its inputs, using the transformations in [19]. Both trees achieve the
same level of security against the SAT attack [17], [24].

TABLE 6
SAT attack resilience of ATI [27] for a 3-input AND gate with XOR key
gates inserted at the inputs. For any DIP, the SAT attack can eliminate

at most one key value: the one that injects an error at the output. 3
denotes correct output; 7 denotes incorrect output.

Key/DIP 0 1 2 3 4 5 6 7
k0 3 3 3 3 3 3 3 3
k1 3 3 3 3 3 3 7 7
k2 3 3 3 3 3 7 3 7
k3 3 3 3 3 7 3 3 7
k4 3 3 3 7 3 3 3 7
k5 3 3 7 3 3 3 3 7
k6 3 7 3 3 3 3 3 7
k7 7 3 3 3 3 3 3 7

4 REMOVAL ATTACK ON ATI
4.1 AND tree insertion

As opposed to Anti-SAT [26], SARLock [25], and CamoPer-
turb [23] that integrate external point functions with the original
netlist, ATI identifies and reuses such structures inside the original
netlist in order to decrease the implementation overhead [27].
Once an AND/OR tree is identified in the netlist, the inputs of the
tree are camouflaged by inserting INV/BUF camouflaged gates.
Alternatively, using the transformations described in Section 1.2,
the same tree may be locked by inserting XOR/XNOR key-gates
at the inputs, delivering the same level of security against the SAT
attack [19]. To be consistent with the previous discussion on SAT
attack, we will discuss the security of ATI from a logic locking
perspective. Figure 13 shows a camouflaged AND tree and its
logic locked counterpart.

4.1.1 ATI resilience to SAT attack
Similar to other SAT attack resilient logic locking techniques,

ATI attempts to render the number of DIPs exponential in the
number of key gates by controlling the distinguishing ability of
individual DIPs [27]. This is illustrated in Table 6 for a 3-input
AND-tree. It can be noted that exactly one incorrect key value
can be eliminated by any of the input patterns, except for one
special input pattern which, if applied, can identify all incorrect
keys. There exists no known algorithm that can identify the special
DIP from the analysis of the logic locked neltist. The number
of patterns that an attacker is expected to try (in a random trial
approach) prior to exercising the special input pattern is 2n−1.

4.2 Security challenges for ATI
There are multiple aspects that need to be considered prior to

identification/insertion of logic locked AND/OR trees in order to
achieve strong resilience against SAT attack.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Node1

PO1

(a)

Node1

PO1
PO2

(b)

Fig. 14. a) A non-decomposable AND tree, and b) a decomposable
AND-tree [27]. Attacks on the decomposable tree can leverage divide-
and-conquer strategies.

Node2Node1

stuck-at-0

Real AND tree Dummy AND tree

Fig. 15. Insertion of dummy AND-tree in the circuit. A stuck-at-0 fault is
introduced at the dummy input of the OR gate [27].

Existence of large non-decomposable trees. The security
of ATI is dictated by the size of the largest non-decomposable
AND/OR-tree in the circuit, i.e., a tree where all internal nodes
have a fanout of 1. If the internal nodes of an AND/OR-tree have
multiple fanouts, an attacker can partition the tree into subtrees
and attack the sub-trees on an individual basis. An example non-
decomposable AND tree and a decomposable tree are presented in
Figure 14(a) and (b), respectively. For sufficient security against
the SAT attack, large non-decomposable AND/OR trees, e.g., with
64 or 128 inputs, are required. Such large trees are rare in common
benchmark circuits as will be illustrated in the experimental results
(Section 4.4).

Bias in the input distribution. Contrary to the externally
integrated AND/OR trees in Anti-SAT, the inputs of an internal
AND/OR-tree may not be the primary inputs. Consequently, the
input distribution of the tree will be biased; not all input values
will be equiprobable at the tree inputs. An attacker may exploit
this bias to reduce the attack effort.

Dummy AND/OR trees. To ensure the formation of a large
enough non-decomposable AND/OR tree, Li et al. [27] propose to
insert dummy AND/OR trees in the circuit and integrate them
with an original tree identified in the circuit, as illustrated in
Figure 15. The dummy AND-tree Tdummy(I,K1), with key
input K1, is integrated with the original AND-tree in the circuit
using a camouflaged OR gate. A permanent stuck-at-0 fault is
introduced at the input of the OR gate by manipulating the
dopant polarities [27]. With the addition of the dummy AND-
tree, the output of the ATI-locked circuit can be represented as
O = F ′(I) ◦ Tand(I,K) ◦ Tdummy(I,K1). However, since the
inserted tree is fake and disconnected functionally from the circuit,
it is prone to removal attacks. We elaborate on this in Section 4.3.

Flexibility. Another major drawback of ATI is that it can only
protect the parts of a circuit where the desired AND/OR trees are

Fig. 16. Proposed SGS attack on ATI-locked netlist. The sensitization
attack computes a reduced set of attack patterns. The SAT attack uses
the computed patterns in conjunction with the functional IC output to
determine the correct key value.

present inherently. It does not offer a designer the flexibility to
choose the logic to be protected.

4.3 Sensitization-guided SAT attack
In this section, we present the sensitization-guided SAT attack

that exploits the security vulnerabilities of ATI to discover the
correct key values using a small number of DIPs (� 2n). The
attack consists of two main stages, sensitization and the SAT attack
as illustrated in Figure 16. The sensitization stage computes attack
patterns that are used to guide the SAT attack described in [24].

Threat model. The threat model for the SGS attack is same as
the threat model of the SAT attack [24] or ATI [27]. The attacker
has access to a locked netlist and a functional IC.

4.3.1 Stage 1. Sensitization
The objective of the sensitization stage is to compute attack

patterns that are used as DIPs by the SAT attack. This stage
exploits two observations about the inserted AND(/OR) tree, as
illustrated in Figure 17:

1. Bias in the input distribution. The bias in the input
distribution of an n-input AND-tree implies that the tree inputs
take on only a subset of 2n possible values. This reduction is due
to the logic in the transitive fanin (TFI) of the AND-tree, i.e., the
logic between the primary inputs of the circuit and the AND-tree
inputs. This bias in input distribution allows an attacker to apply
only a subset of DIPs, i.e., those that bring unique values to the
AND-tree inputs.

2. Sensitization of the injected error. The AND/OR-tree
introduces an error in the tree output for certain incorrect key
values. However, even if an error is injected at tree output, it may
not be sensitized to a primary output of the netlist; the effect of the
error may be masked by the logic in the transitive fanout (TFO)
of the AND-tree. In VLSI testing, detection of a stuck-at-0 (1)
fault requires that the fault be a) activated by assigning a value 1
(0) to the fault location, and b) propagated to a primary output.

K0 K1 K2 K3 K4

I0

I1

I2

I3

I4

O0

O1

O2

O3

O4

TFI TFO
AND-

tree

All DIPs DIPs at AND-tree inputs DIPs sensitizing faults to POs

P
ri

m
a

ry
 i

n
p

u
ts

P
ri

m
a

ry
 o

u
tp

u
ts

Key inputs

Fig. 17. An illustration of how the sensitization stage reduces the number
of the required DIPs. The gates in the TFI of the tree introduce bias and
reduce the number of patterns received at the tree inputs. The gates in
the TFO hamper the sensitization of errors activated at the output of the
AND tree and further narrow down the attack pattern space.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

G2

G1a
b

c

G3

G4

g1

g3

g2 K1

K2

K3

O1G5

Fig. 18. An example of pruned input pattern space as identified by the
sensitization stage. The locked AND tree G4 has three inputs: g1, g2,
and g3. The TFI logic prevents the tree inputs from taking on the values
001,010, and 101. The TFO logic further reduces the number of feasible
inputs; overall, only two out of eight possible input combinations, 011
and 000, are feasible for the AND tree inputs.

Thus, the manifestation of the effect of an incorrect key at the
primary outputs is analogous to the detection of a stuck-at fault
at the output of the AND-tree. If the ATI defense was constrained
to identify AND trees that directly feed a PO, the error would be
guaranteed to be sensitized; however, there would be further need
for dummy AND-trees as well.

Feasible input patterns. Overall, only a subset of total 2n (n
is number of inputs of the AND tree) DIPs are deemed feasible,
i.e., they can manifest the error in the circuit output. The SAT
attack uses the error at the output as a hint for identifying incorrect
key values [17], [24]. The smaller the number of input patterns
used by the attack, the lower the computational effort of the attack.
The effectiveness of the sensitization stage is determined by the
reduction in the number of attack patterns.

Example. For the netlist in Figure 18, the locked AND-tree
has three inputs: g1, g2 and g3. Due to the impact of the TFI
logic, the input values, 001, 010 and 101 cannot be assigned to
the tree inputs. The TFO logic further narrows down the feasible
input space; only two input patterns 011 and 000 are feasible for
the tree inputs. Thus, the SAT attack can be launched using only
two input patterns. While the reduction ratio is relatively small for
this illustrative example, a significant reduction is achievable for
larger circuits as will be demonstrated in Section 4.4.

4.3.2 Stage 2. SAT attack
The attack patterns computed by the sensitization stage are

used to guide the SAT attack and extract the correct key by
eliminating all the incorrect keys. The set of computed patterns
is sufficient for a successful SAT attack since the set contains
all the patterns that introduce observable error(s) in the circuit.
The SAT attack does not need to compute any further DIPs and
completes within a single iteration. The SAT solvers can inherently
leverage the input bias and, apparently, render the sensitization
stage redundant. However, as explained in the next subsection,
the sensitization stage helps identify real/dummy AND trees and
prevents the SAT attack from running into long trails.

4.3.3 Identifying dummy AND/OR trees
To tackle the challenge of dummy AND/OR trees, we follow

a simple divide-and-conquer strategy. We assume that
1) The attacker knows the location of the key gates (or alterna-

tively, the camouflaged gates).
2) The dummy AND tree inputs are the primary inputs of the

circuit (or wires close to the primary inputs) so that the issues
related to the input bias are resolved [27].

3) The dummy AND-tree is large (e.g. 64 or 128) inputs.
4) None of the gates inside the dummy tree fan out to the gates

in the original circuit. Only the output of AND (OR) tree
is connected to a dummy OR (AND) gate; one input of the

connecting OR (AND) gate is stuck-at-0 (1) [27] as illustrated
in Figure 15.

Based on these realistic assumptions, which are in line with the
threat model in [27], we identify a candidate dummy AND/OR
tree in the netlist based on the input bias, and remove it from the
netlist. To quantify the input bias precisely, we use the notion of
feasible input patterns. In the sensitization stage, we compute the
number of feasible input patterns DIPSGS for each tree using
sharpSAT solver. The tree with the higher DIPSGS is assumed to
be dummy. Compared to KL divergence, which is an approximate
metric [27], DIPSGS is a precise metric, derived from VLSI test
principles, that can be efficiently computed using the sharpSAT
solver. We could launch the SAT attack directly on a tree without
pre-computation of DIPSGS ; but then the SAT attack would
possibly run into long trails. Pre-computation of feasible input
patterns prevents such situations. Upon removal of the dummy
AND-tree, the ATI netlist reduces to F ′(I) ◦ Tand(I,K), where
Tand denotes the real AND-tree. Mounting removal attack on the
real AND-tree Tand is not meaningful as it leads to extraction of
F ′(I), as opposed to F (I). We, therefore, proceed with the SGS
attack on the tree that is assumed to be real. A successful SGS
attack and the retrieval of the correct key validates the decision
about the dummy AND-tree.

To verify the correctness of the key, we conduct the following
simple test. From the correct key value returned by the attack, we
can determine the input pattern for which the AND(OR)-tree will
output a 1(0). We need to verify the circuit operation for only one
input pattern; the tree output is a 0(1) for the rest of the input
patterns. Otherwise, we repeat the experiment by switching the
dummy/real trees.

4.4 SGS attack results
In this section, we present the results for the SGS attack

on ISCAS, benchmark circuits [36], MCNC circuits [38], and
OpenSPARC microprocessor controllers [37]. The experimental
setup is the same as that for the Anti-SAT attack (presented in Sec-
tion 3.4.1). The sensitization stage is launched using Minisat [39]
solver. A miter circuit is constructed to find a pattern that can
detect a stuck-at fault at the output of the AND/OR tree [40]. The
CNF formula for the miter is fed to the SAT solver to compute the
attack patterns.

Size of typical AND/OR trees (ST). To evaluate the effective-
ness of ATI, we first report the size of the largest AND/OR trees
in the benchmarks circuits under study. The AND/OR trees are
identified using the algorithm in [27]. We report only 22 circuits
with the largest AND/OR trees. Table 7 shows that the size of
the trees identified in the benchmark circuits is rather small. Only
11 out of the 22 reported circuits have a tree with 20 or more
inputs. Thus, to attain sufficiently large trees, e.g., with 64 or 128
inputs, it becomes mandatory to add a dummy AND tree. In all
experiments, we assume a target tree size of 64. To identify and
remove the dummy AND tree, we follow the procedure described
in section 4.3.3.

Percentage reduction in DIPs. Table 7 also shows DIPSGS ,
which denotes the number of DIPs computed by the SGS attack;
these patterns are sufficient to retrieve the correct key for the target
circuit. It can be observed that the number of attack patterns �
2ST , where ST represents the size of the identified AND/OR tree.
The percentage reduction R in DIPSGS compared to DIPEXP ,
computed as R = DIPEXP−DIPSGS

DIPEXP
× 100%, is close to 100%

for about 50% of the circuits. Only a fraction of the DIPEXP

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 7
SGS attack results. ST denotes the number of inputs of the largest
AND/OR tree in the circuit. DIPSGS denotes the number of attack

patterns returned by the SGS attack. DIPEXP is the expected number
of DIPs required by the SAT attack [17], [18], [27]. R is the percentage
reduction in the number of DIPs. Texec denotes the execution time in

seconds.

Benchmark ST DIPEXP DIPSGS R(%) Texec(s)
k2 104 1.01E+31 273 100.0 6.1
s38417 35 1.72E+10 NA NA NA
s15850 28 1.34E+08 NA NA NA
des 27 6.71E+07 28 100.0 1.3
s38584 27 6.71E+07 1024 100.0 12.4
b18 26 3.35E+07 NA NA NA
b19 26 3.35E+07 NA NA NA
tlu mmu 25 1.68E+07 NA NA NA
lsu stb 24 8.39E+06 NA NA NA
s13207 21 1.05E+06 6 100.0 1.3
ifu ifq 20 5.24E+05 39680 92.4 6269.0
c2670 18 1.31E+05 NA NA NA
lsu excp 18 1.31E+05 2624 98.0 29.3
c3540 17 65536 4096 93.8 100.1
c1908 14 8192 2 100.0 1.3
c880 14 8192 3072 62.5 32.0
c5315 13 4096 991 75.8 10.3
c432 12 2048 257 87.5 3.3
fpu in 10 512 59 88.5 2.5
ifu dcl 10 512 510 0.4 4.6
lsu rw 10 512 59 88.5 2.8
i8 9 256 70 72.7 9.9

patterns are sufficient to break circuits, such as k2 and des, with the
largest size of identified AND trees. For the same circuits, the SAT
attack alone requires DIPEXP = 2ST−1 patterns. For example,
for the circuit k2 with ST = 104, DIPSGS = 273, compared to
DIPEXP = 2103. The actual number of attack patterns used by
the SAT attack is almost the same as DIPSGS .

However, there are certain circuits, such as c2670, for which
the SGS attack cannot complete within the allocated time of 10
hours (and are marked as NA). For these circuits, the bias in the
input distribution of the tree is very small as most of the tree
inputs are either the primary inputs of the circuit or the wires
close to the primary inputs. As we discussed in Section 4.3.1, the
sensitization stage leverages the bias in the input distribution to
attain a reduction in the number of the required DIPs. When there
is zero or a very small bias in the input distribution, the attack
effectiveness reduces. Alternatively, ATI can be utilized only for
those circuits where large AND/OR trees exist close to the primary
inputs. Our empirical evaluation shows large trees (with larger than
64 inputs) are rather rare; so, the designer has to resort to insertion
of dummy AND trees, which can be easily removed using the
proposed attacks.

Execution time. The execution time of the SGS attack de-
pends on the circuit size and the number of the iterations of the
attack. Each iteration computes a single attack pattern. Thus, for
the circuit ifu ifq with 39680 attack patterns, the execution time
is the highest. For most of the circuits, the execution time of the
attack is in the order of a few seconds. Even for the circuit k2 with
a 104-input AND tree, the attack completes in 6 seconds as the
number of computed attack patterns is only 273. The timeout was
set to 10 hours.

5 REMOVAL ATTACKS ON SARLOCK AND
CAMOPERTURB

5.1 Security analysis of SARLock

In SARLock circuit, shown in Figure 4(a), the original logic
cone is implemented intact without any modifications, which
makes it vulnerable to removal attacks. As already mentioned in

Section 2.5, in SARLock,O = F (I)⊕((I == K)∧(I == ks)).
An attacker has to isolate the protection circuitry comprising of
an XOR, comparator and mask block; he/she can then remove
the protection circuitry and extract/pirate the original IP. The
comparator is functionally composed of XNOR gates and an
AND tree, which can be easily identified using existing AND-tree
identification algorithms [27] or the k-cut detection used in [26].

SARLock is vulnerable to the proposed SPS attack. The
comparator logic comprises internally of an AND-tree, which can
be identified using the skew values computed by the SPS attack.
Upon the removal of the protection logic, the original function
O = F (I) is retrieved.

SARLock, however, is not vulnerable to the SGS attack.
The effectiveness of the SGS attack depends on the bias in the
input distribution. In SARLock, the comparator inputs are tied to
primary inputs that do not exhibit any bias. The attack fails to
achieve any reduction in the number of attack patterns.

5.2 Security analysis of CamoPerturb

As shown in Figure 4(c), the restore circuitry in CamoPer-
turb [23] consists only of a comparator and an XOR gate. In
CamoPerturb, O = F ′(I)⊕ (I == cs). Although the SPS attack
can identify the comparator logic comprising the AND-tree, the
removal of the protection logic leads to the retrieval of the per-
turbed/modified netlist F ′(I), as opposed to the targeted original
netlist F (I). The comparator inputs are connected to the primary
inputs of the circuit; thus, there is no bias in the input distribution,
and the SGS attack is ineffective against CamoPerturb.

5.3 Discussion

Table 8 summarizes the vulnerability of the existing SAT
attack resilient locking techniques to the proposed attacks. The
proposed SPS and SGS attacks are effective for specific coun-
termeasures, Anti-SAT and ATI, respectively. However, as the
empirical results demonstrate, the execution time of both attacks is
rather small. The attacks together serve as an evaluation platform
that can assist designers in quickly determining the possible
vulnerabilities of their logic locking/camouflaging solutions.

According to our analysis, CamoPerturb exhibits the best se-
curity properties among all SAT attack resilient countermeasures.
However, CamoPerturb protects the circuit for only one minterm.
Thus, CamoPertub has to be combined with traditional logic
locking/camouflaging techniques.

6 CONCLUSION

Several countermeasures such as Anti-SAT and ATI have been
developed to thwart the SAT attack, and prevent IP piracy through
reverse engineering. Our security analysis identifies security vul-
nerabilities in the existing countermeasures. We present three
simple attacks, SPS, AGR, and SGS, that can break Anti-SAT
and ATI, within minutes. The proposed attacks serve as a quick
evaluation platform for future logic locking and camouflaging
solutions. We also provide insights for developing SAT attack
resilient solutions that can withstand the proposed attacks.

7 ACKNOWLEDGEMENT

This work was supported in part by the Army Research Office
(ARO) under Grant number 65513-CS; the National Science Foun-
dation, Division Of Computer and Network Systems (NSF/CNS),
under Grant number 1652842; and the New York University/New

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 8
Attack/defense matrix for SAT attack resilient logic locking techniques and the proposed SPS and SGS attacks. 3 denotes that a technique is

vulnerable to an attack. When a technique is resilient to an attack, we provide a brief explanation. All vulnerability and resiliency expectations in
this table have been experimentally validated by running each attack on each defense for our largest benchmark circuits.

SPS+Removal AGR SGS+Removal
SARLock [25] 3 3 SARLock inputs are PIs (no bias)
Anti-SAT [26] Obfuscation may impact SPS values 3 Anti-SAT inputs are PIs (no bias)

ATI [27]
Dummy AND-tree identified and
removed, real AND-tree identified but
removal failed

Dummy AND-tree identified and removed,
real AND-tree identified but removal failed 3

CamoPerturb [23] Restore signal identified but removal
failed Restore signal identified but removal failed CamoPerturb inputs are PIs (no bias)

York University Abu Dhabi (NYU/ NYUAD) Center for Cyber
Security (CCS).

REFERENCES

[1] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Security
Analysis of Anti-SAT,” IEEE Asia and South Pacific Design Automation
Conference, pp. 342–347, 2016.

[2] “Defense Science Board (DSB) study on High Performance
Microchip Supply,” 2005, [March 16, 2015]. [Online]. Available:
www.acq.osd.mil/dsb/reports/ADA435563.pdf

[3] SEMI, “Innovation is at Risk Losses of up to $4 Billion Annually
due to IP Infringement,” 2008, [June 10, 2015]. [Online]. Available:
www.semi.org/en/Issues/IntellectualProperty/ssLINK/P043785

[4] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware
Security: Models, Methods, and Metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283–1295, 2014.

[5] M. Yasin, S. M. Saeed, J. Rajendran, and O. Sinanoglu, “Activation of
Logic Encrypted Chips: Pre-test or Post-test?” IEEE Design, Automation
Test in Europe, pp. 139–144, 2016.

[6] R. Torrance and D. James, “The State-of-the-art in Semiconductor
Reverse Engineering,” IEEE/ACM Design Automation Conference, pp.
333–338, 2011.

[7] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending Piracy of Integrated
Circuits,” IEEE Computer, vol. 43, no. 10, pp. 30–38, 2010.

[8] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis
of Integrated Circuit Camouflaging,” ACM/SIGSAC Conference on Com-
puter & Communications Security, pp. 709–720, 2013.

[9] R. W. Jarvis and M. G. McIntyre, “Split Manufacturing Method for
Advanced Semiconductor Circuits,” US Patent 7,195,931, 2007.

[10] J. Rajendran, O. Sinanoglu, and R. Karri, “Regaining Trust in VLSI
Design: Design-for-Trust Techniques,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1266–1282, 2014.

[11] Colombier, Brice and Bossuet, Lilian, “Survey of Hardware Protection
of Design Data for Integrated Circuits and Intellectual Properties,” IET
Computers & Digital Techniques, vol. 8, no. 6, pp. 274–287, 2014.

[12] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC Piracy Using
Reconfigurable Logic Barriers,” IEEE Design & Test of Computers,
vol. 27, no. 1, pp. 66–75, 2010.

[13] M. Yasin, J. Rajendran, O. Sinanoglu, and R. Karri, “On Improving
the Security of Logic Locking,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 9, pp. 1411–1424,
2016.

[14] J. Rajendran, H. Zhang, C. Zhang, G. Rose, Y. Pino, O. Sinanoglu, and
R. Karri, “Fault Analysis-Based Logic Encryption,” IEEE Transactions
on Computers, vol. 64, no. 2, pp. 410–424, 2015.

[15] R. S. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1493–1502, 2009.

[16] F. Koushanfar, “Provably Secure Active IC Metering Techniques for
Piracy Avoidance and Digital Rights Management,” IEEE Transactions
on Information Forensics and Security, vol. 7, no. 1, pp. 51–63, 2012.

[17] M. E. Massad, S. Garg, and M. V. Tripunitara, “Integrated Circuit
(IC) Decamouflaging: Reverse Engineering Camouflaged ICs within
Minutes,” Network and Distributed System Security Symposium, 2015.

[18] C. Yu, X. Zhang, D. Liu, M. Ciesielski, and D. Holcomb, “Incremental
SAT-based Reverse Engineering of Camouflaged Logic Circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. PP, no. 99, pp. 1–1, 2017.

[19] M. Yasin and O. Sinanoglu, “Transforming between Logic Locking and
IC Camouflaging,” IEEE International Design & Test Symposium, pp.
1–4, 2015.

[20] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security Analysis
of Logic Obfuscation,” IEEE/ACM Design Automation Conference, pp.
83–89, 2012.

[21] S. M. Plaza and I. L. Markov, “Solving the Third-Shift Problem in
IC Piracy With Test-Aware Logic Locking,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 6, pp. 961–971, 2015.

[22] M. I. M. Collantes, M. El Massad, and S. Garg, “Threshold-Dependent
Camouflaged Cells to Secure Circuits Against Reverse Engineering
Attacks,” IEEE Computer Society Annual Symposium on VLSI, pp. 443–
448, 2016.

[23] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “CamoPerturb:
Secure IC Camouflaging for Minterm Protection,” IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pp. 29:1–29:8, 2016.

[24] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the Security of Logic
Encryption Algorithms,” IEEE International Symposium on Hardware
Oriented Security and Trust, pp. 137–143, 2015.

[25] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu, “SARlock:
SAT Attack Resistant Logic Locking,” IEEE International Symposium
on Hardware Oriented Security and Trust, pp. 236–241, 2016.

[26] Y. Xie and A. Srivastava, “Mitigating SAT Attack on Logic Locking,”
International Conference on Cryptographic Hardware and Embedded
Systems, pp. 127–146, 2016.

[27] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan,
“Provably Secure Camouflaging Strategy for IC Protection,” IEEE/ACM
International Conference on Computer-Aided Design, pp. 28:1–28:8,
2016.

[28] M. Yasin, B. Mazumdar, S. S. Ali, and O. Sinanoglu, “Security Analysis
of Logic Encryption against the Most Effective Side-Channel Attack:
DPA,” IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems, pp. 97–102, 2015.

[29] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z., and Y. Jin, “AppSAT:
Approximately Deobfuscating Integrated Circuits,” in to appear in IEEE
International Symposium on Hardware Oriented Security and Trust,
2017.

[30] F. Koushanfar, “Integrated Circuits Metering for Piracy Protection and
Digital Rights Management: An Overview,” Great Lakes Symposium on
VLSI, pp. 449–454, 2011.

[31] J. P. Baukus, L. W. Chow, R. P. Cocchi, and B. J. Wang, “Method and
Apparatus for Camouflaging a Standard cell based Integrated Circuit with
Micro Circuits and Post Processing,” US Patent no. 20120139582, 2012.

[32] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
Dopant-Level Hardware Trojans,” Cryptographic Hardware and Embed-
ded Systems, pp. 197–214, 2013.

[33] S. Malik, G. Becker, C. Paar, and W. Burleson, “Development of a
Layout-Level Hardware Obfuscation Tool,” IEEE Annual Symposium on
VLSI, pp. 204–209, 2015.

[34] A. Vijayakumar, V. C. Patil, D. E. Holcomb, C. Paar, and S. Kundu,
“Physical Design Obfuscation of Hardware: A Comprehensive Investi-
gation of Device and Logic-Level Techniques,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 1, pp. 64–77, 2017.

[35] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang, “Circuit
camouflage integration for hardware ip protection,” IEEE/ACM Design
Automation Conference, pp. 1–5, 2014.

[36] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering,” IEEE Design &
Test of Computers, vol. 16, no. 3, pp. 72–80, 1999.

[37] “OpenSPARC T1 Processor,,” 2015, [Nov 1, 2015].
[Online]. Available: {http://www.oracle.com/technetwork/systems/
opensparc/opensparc-t1-page-1444609.html}

[38] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles of
Sequential Benchmark Circuits,” IEEE International Symposium on
Circuits and Systems, pp. 1929–1934, 1989.

[39] N. Sorensson and N. Een, “Minisat v1.13- A SAT Solver with Conflict-
Clause Minimization,” SAT, vol. 2005, no. 53, pp. 1–2, 2005.

[40] T. Larrabee, “Test Pattern Generation using Boolean Satisfiability,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 11, no. 1, pp. 4–15, 1992.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Muhammad Yasin (S’13) is a PhD candidate
in Electrical Engineering at New York University,
Tandon School of Engineering; and a Global
PhD Fellow at New York University Abu Dhabi,
U.A.E. He obtained an MS in Microsystems En-
gineering from Masdar Institute of Science and
Technology, UAE; and a BS in Electrical En-
gineering from University of Engineering and
Technology (UET) Lahore, Pakistan. He has
worked as a Research Officer at University Tech-
nologi Petronas, Malaysia and as a Lecturer at
COMSATS Institute of IT, Lahore, Pakistan. He

was awarded Dean’s Award for Academic Excellence by Masdar In-
stitute of Science and Technology. He holds two pending US patents,
and has published more than 10 journal and conference papers. His
research interests include Hardware Security and Design-for-Trust.

Muhammad Yasin (S’13) is a PhD candidate
in Electrical Engineering at New York University,
Tandon School of Engineering; and a Global
PhD Fellow at New York University Abu Dhabi,
U.A.E. He obtained an MS in Microsystems En-
gineering from Masdar Institute of Science and
Technology, UAE; and a BS in Electrical En-
gineering from University of Engineering and
Technology (UET) Lahore, Pakistan. He has
worked as a Research Officer at University Tech-
nologi Petronas, Malaysia and as a Lecturer at
COMSATS Institute of IT, Lahore, Pakistan. He

was awarded Dean’s Award for Academic Excellence by Masdar In-
stitute of Science and Technology. He holds two pending US patents,
and has published more than 10 journal and conference papers. His
research interests include Hardware Security and Design-for-Trust.

Ozgur Sinanoglu (M’10-SM’15) is an Associate
Professor of electrical and computer engineering
at New York University Abu Dhabi. He earned his
B.S. degrees, one in Electrical and Electronics
Engineering and one in Computer Engineering,
both from Bogazici University, Turkey in 1999. He
obtained his MS and PhD in Computer Science
and Engineering from University of California
San Diego in 2001 and 2004, respectively. He
has industry experience at TI, IBM and Qual-
comm, and has been with NYU Abu Dhabi since
2010. During his PhD, he won the IBM PhD

fellowship award twice. He is also the recipient of the best paper awards
at IEEE VLSI Test Symposium 2011 and ACM Conference on Computer
and Communication Security 2013.

Prof. Sinanoglu’s research interests include design-for-test, design-
for-security and design-for-trust for VLSI circuits, where he has around
160 conference and journal papers, and 20 issued and pending US
Patents. Sinanoglu has given more than a dozen tutorials on hardware
security and trust in leading CAD and test conferences, such as DAC,
DATE, ITC, VTS, ETS, ICCD, ISQED, etc. He is serving as track/topic
chair or technical program committee member in about 15 conferences,
and as (guest) associate editor for IEEE TIFS, IEEE TCAD, ACM JETC,
IEEE TETC, Elsevier MEJ, JETTA, and IET CDT journals.

Prof. Sinanoglu is the director of the Design-for-Excellence Lab at
NYU Abu Dhabi. His recent research in hardware security and trust is
being funded by US National Science Foundation, US Department of
Defense, Semiconductor Research Corporation, and Mubadala Tech-
nology.

Jeyavijayan (JV) Rajendran (S’09-M’15) is an
Assistant Professor in the Department of Electri-
cal and Computer Engineering at the University
of Texas at Dallas. He obtained his Ph.D. degree
in the Electrical and Computer Engineering De-
partment at New York University in August 2015.
His research interests include hardware security
and emerging technologies. His research has
won the NSF CAREER Award in 2017, the ACM
SIGDA Outstanding Ph.D. Dissertation Award
in 2017, and the Alexander Hessel Award for
the Best Ph.D. Dissertation in the Electrical and

Computer Engineering Department at NYU in 2016. He has won three
Student Paper Awards (ACM CCS 2013, IEEE DFTS 2013, and IEEE
VLSI Design 2012); four ACM Student Research Competition Awards
(DAC 2012, ICCAD 2013, DAC 2014, and the Grand Finals 2013); Ser-
vice Recognition Award from Intel; Third place at Kaspersky American
Cup, 2011; and Myron M. Rosenthal Award for Best Academic Perfor-
mance in M.S. from NYU, 2011. He organizes the annual Embedded
Security Challenge, a red-team/blue-team hardware security competi-
tion and has co-founded Hack@DAC, a student security competition co-
located with DAC. He is a member of IEEE and ACM.

