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Abstract

We show that indistinguishability obfuscation (IO) for all circuits can be constructed solely from secret-key
functional encryption (SKFE). In the construction, SKFE need to be able to issue a-priori unbounded number of
functional keys, that is, collusion-resistant.

Our strategy is to replace public-key functional encryption (PKFE) in the construction of IO proposed by
Bitansky and Vaikuntanathan (FOCS 2015) with puncturable SKFE. Bitansky and Vaikuntanathan introduced the
notion of puncturable SKFE and observed that the strategy works. However, it has not been clear whether we can
construct puncturable SKFE without assuming PKFE. In particular, it has not been known whether puncturable
SKFE is constructed from ordinary SKFE.

In this work, we show that a relaxed variant of puncturable SKFE can be constructed from collusion-resistant
SKFE. Moreover, we show that the relaxed variant of puncturable SKFE is also sufficient for constructing IO.

Keywords: Indistinguishability obfuscation, Secret-key functional encryption, Puncturable secret-key func-
tional encryption
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1 Introduction
1.1 Backgrounds
Program obfuscation is now one of the central topics in cryptography. Program obfuscation aims to turn programs
“unintelligible” while preserving its functionality. The theoretical study of program obfuscation was initiated by
Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+01]. They introduced virtual-black-box
obfuscation as a formal definition of obfuscation. The definition of virtual black-box obfuscation is intuitive and
naturally captures the requirement that obfuscators hide information about programs. However, Barak et al. showed
that it is impossible to achieve virtual black-box obfuscation for all circuits. In order to avoid the impossibility
result, they also defined an weaker variant of obfuscation called indistinguishability obfuscation (IO). Impossibility
of IO for all circuits is not known.

Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13] proposed the first candidate construction of IO
for all circuits. Subsequently, many works have shown that IO is powerful enough in the sense that we can achieve
a wide variety of cryptographic primitives based on IO though it is weaker than virtual-black-box obfuscation
[GGH+13, SW14, HSW14, BGMS15, KLW15, BGL+15, CHJV15, BPW16, CHN+16, HJK+16].

While we know the usefulness of IO well, we know very little about how to achieve IO. Although the first
candidate construction was demonstrated, we are still at the embryonic stage for constructing IO. All known
constructions of IO are based on a little-studied cryptographic tool called multi-linear maps [GGH+13, BGK+14,
BR14, AGIS14, PST14, Zim15, AB15, BMSZ16, GMM+16, Lin16a, LV16, AS17, Lin16b, FRS16]. Moreover,
security flaws were discovered in some IO constructions [CGH+15, MSZ16, ADGM17, CLLT17, CGH17].

Therefore, constructing IO based on a standard assumption is still standing as a major open question in the study
of cryptography. As a stepping-stone for solving the question, it is important to find a seemingly weaker primitive
that implies IO. As such a cryptographic primitive, we already have functional encryption.

Functional encryption is one of the most advanced cryptographic primitives which enable a system having
flexibility in controlling encrypted data [SW05, BSW11, O’N10]. In functional encryption, an owner of a master
secret key MSK can generate a functional decryption key skf for a function f belonging to a function family F . By
decrypting a ciphertext of a messagem using skf , a holder of skf can learn only a value f(m). No information about
x except f(m) is revealed from the ciphertext ofm. This feature enables us to construct a cryptographic system
with fine-grained access control. In addition, it is known that functional encryption is a versatile building block
to construct other cryptographic primitives. In particular, we can construct IO for all circuits by using functional
encryption that satisfies certain security notions and efficiency requirements [AJ15, BV15, AJS15, BNPW16].

Bitansky and Vaikuntanathan [BV15] and Ananth and Jain [AJ15] independently showed that we can construct
IO based on public-key functional encryption (PKFE) which supports a single functional key and whose encryption
circuit size is sub-linear in the size of functions. A functional encryption scheme that supports a single key is
called a single-key scheme. A functional encryption scheme that satisfies the efficiency property above is said to be
weakly-succinct.

Bitansky, Nishimaki, Passelègue, and Wichs [BNPW16] subsequently showed that collusion-resistant secret-key
functional encryption (SKFE) is powerful enough to yield IO if we additionally assume plain public key encryption.
Collusion-resistant functional encryption is functional encryption that can securely issue a-priori unbounded number
of functional keys.

From these results, we see that the combination of functional encryption with some property and a public-key
cryptographic primitive is sufficient for achieving IO. This fact is a great progress as a stepping-stone for achieving
IO based on a standard assumption.

However, one natural question arises for this situation. The question is whether we really need public-key
primitives to constructing IO or not. In other words, we have the following fundamental question:

Is it possible to achieve IO for all circuits based solely on secret-key primitives?

SKFE is the best possible candidate for a secret-key cryptographic primitive that gives an affirmative answer to
this question. However, Asharov and Segev [AS15] gave a somewhat negative answer to the question. Their result
can be seen as a substantial evidence that SKFE is somewhat unlikely to imply IO as long as we use black-box
techniques.1 Thus, we need a non-black-box technique to achieve IO based on SKFE.

The real power of IO appears in the fact that it can transform secret-key primitives into public-key ones.
Therefore, solving the above problem is a key advancement to discover the exact requirements for achieving IO.

1More precisely, Asharov and Segev [AS15] introduced an extended model for black-box reductions to include a limited class of non-black-box
reductions into their impossibility results.
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1.2 Our Results
We give an affirmative answer to the question above. More precisely, we prove the following theorem.

Theorem 1.1 (Informal). Assuming there exists sub-exponentially secure collusion-resistant SKFE for all circuits.
Then, there exists IO for all circuits.

Since our construction of IO is non-black-box, we can circumvent the impossibility result shown by Asharov
and Segev [AS15].

The security loss of our construction of IO is exponential in the input length of circuits, but is independent
of the size of circuits. Thus, if the input length of circuits is poly-logarithmic in the security parameter, our
construction of IO incurs only quasi-polynomial security loss regardless of the size of circuits. Therefore, we can
obtain IO for circuits of polynomial size with input of poly-logarithmic length from quasi-polynomially secure
collusion-resistant SKFE for all circuits. This is an improvement over the IO construction by Komargodski and
Segev [KS17]. They showed that IO for circuits of sub-polynomial size with input of poly-logarithmic length is
constructed from quasi-polynomially secure collusion-resistant SKFE for all circuits.

We show Theorem 1.1 by using puncturable SKFE. The notion of puncturable SKFE was introduced by Bitansky
and Vaikuntanathan [BV15]. They showed that in their construction of IO, the building block PKFE can be replaced
with puncturable SKFE. However, it has been an open issue whether we can achieve puncturable SKFE without
assuming the existence of PKFE.

In this work, we show how to construct puncturable SKFE that is sufficient for constructing IO, based solely on
SKFE. More precisely, we show the following theorem.

Theorem 1.2 (Informal). Assuming there exists collusion-resistant SKFE for all circuits. Then, there exists
single-key weakly-succinct puncturable SKFE for all circuits.

Note that our definition of puncturable SKFE is slightly different from that proposed by Bitansky and
Vaikuntanathan. Our requirement for puncturable SKFE looks weaker than that of Bitansky and Vaikuntanathan.
However, they are actually incomparable. In fact, we show that puncturable SKFE defined in this paper is also
sufficient for a building block of IO. See Section 2 for the details of the notion of puncturable SKFE and the
difference between our definition and that of Bitansky and Vaikuntanathan.

Our construction is a generic transformation and does not yield a new instantiation of IO. This is because all
known assumptions that imply SKFE also imply PKFE. However, SKFE is an weaker primitive than PKFE, and
thus the requirements for constructing IO looks to be relaxed than ever by our result. We believe that our result
makes easier to design IO based on other cryptographic primitives. Moreover, our result makes a progress on the
study of IO and functional encryption as we note in the next paragraph.

Impacts on the hierarchy of cryptographic primitives. It is known that we can classify cryptographic primitives
into two hierarchies Minicrypt and Cryptomania since the beautiful work of Impagliazzo and Rudich [IR89]
showed that public-key encryption is not implied by one-way functions via black-box reductions. The terminologies,
Minicrypt and Cryptomania, were introduced by Impagliazzo [Imp95]. In Minicrypt, one-way functions exist,
but public-key encryption does not. In Cryptomania, public-key encryption also exists.

We have recently started to consider a new hierarchy called Obfustopia. Garg, Pandey, Srinivasan, and
Zhandry [GPSZ17] introduced the term Obfustopia, which seems to indicate the “world” where there exists IO.
Garg et al. did not give a formal definition of Obfustopia. In this paper, we explicitly define Obfustopia as the
“world” where there exists efficient IO for all circuits and one-way functions.2 It is known that we can construct
almost all existing cryptographic primitives which are stronger than public-key encryption by using IO. This is the
reason why we consider the new hierarchy beyond Cryptomania.3

The landscape of Obfustopia is not clear while those of Minicrypt and Cryptomania are. In particular, we
do not know how to construct IO based on standard assumptions. There has been significant effort to find out
cryptographic primitives that are in Obfustopia. That is, we have been asking what kind of cryptographic primitive

2 Komargodski, Moran, Naor, Pass, Rosen, and Yogev proved that IO implies one-way functions under a mild complexity theoretic
assumption [KMN+14]. More specifically, the complexity assumption is NP 6⊆ io-BPP, where io-BPP is the class of languages that is decided
by probabilistic polynomial-time algorithms for infinitely many input sizes. Therefore, under the assumption, we say that Obfustopia is the
complexity spectrum where efficient IO for all circuits exists.

3Strictly speaking, it was known that there are stronger primitives than public-key encryption before the candidate of obfuscation appeared.
For example, public-key encryption does not imply identity-based encryption [BPR+08].
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implies the existence of IO. We know that sub-exponentially-secure succinct PKFE exists in Obfustopia [BV15,
AJ15].

It is natural to ask whether SKFE is also in Obfustopia or not since SKFE seems to be a strong primitive
similarly to PKFE. Asharov and Segev [AS15] gave a somewhat negative answer to this question. They showed that
SKFE is unlikely to imply IO as long as we use well-known black-box techniques. They also showed that SKFE
does not imply any primitive in Cryptomania via black-box reductions. Moreover, it was not known whether SKFE
implies any primitive outside Minicrypt even if we use it in a non-black-box manner before the work of Bitansky et
al. [BNPW16].

Bitansky et al. showed that the combination of sub-exponentially secure collusion-resistant SKFE and
exponentially secure one-way functions implies quasi-polynomially secure public-key encryption. This also implies
that the above combination yields quasi-polynomially secure succinct PKFE from their main result showing that the
combination of collusion-resistant SKFE and PKE implies succinct PKFE.

Komargodski and Segev [KS17] showed that quasi-polynomially secure IO for circuits of sub-polynomial size
with input of poly-logarithmic length can be constructed from quasi-polynomially secure collusion-resistant SKFE
for all circuits. In addition, they showed that by combining quasi-polynomially secure collusion-resistant SKFE and
sub-exponentially secure one-way functions, we can construct quasi-polynomially secure succinct PKFE. However,
in this construction, the resulting PKFE supports only circuits of sub-polynomial size with input of poly-logarithmic
length though the building block SKFE supports all polynomial size circuits.

These two results surely demonstrated that SKFE is stronger than we thought. Nevertheless, we see that both
two results involves degradation of security level or functionality. Thus, it is still open whether SKFE implies
a cryptographic primitive other than those in Minicrypt without such degradation, and especially SKFE is in
Obfustopia or not.

We gives an affirmative answer to this question. More concretely, we can construct sub-exponentially secure IO
for all circuits from sub-exponentially secure collusion-resistant SKFE for all circuits through our transformation
by setting security parameter appropriately. This result means that sub-exponentially secure collusion-resistant
SKFE exists in Obfustopia. In addition, by combining this result and the result by Garg et al. [GGH+13], we
see that the existence of sub-exponentially secure collusion-resistant PKFE for all circuits is equivalent to that of
sub-exponentially secure collusion-resistant SKFE for all circuits.

Organization. The rest of this paper consists of the following parts. In Section 2, we provide an informal overview
of our constructions and proofs so that readers understand our main ideas. In Section 3, we provide notations and
definitions of cryptographic primitives. In Section 4, we present our definition of puncturable SKFE. In Section 5,
we provide the construction of single-key non-succinct puncturable SKFE and prove its security. In Section 6, we
provide transformation from a non-succinct puncturable SKFE scheme to an weakly succinct one and prove its
security. In Section 7, we provide our IO for all circuits based on single-key weakly succinct puncturable SKFE and
analyze its security and efficiency.

2 Overview of Our Technique
Before we introduce formal definitions and constructions, we give an overview of our construction of IO based on
SKFE in this section.

Our basic strategy is to replace PKFE in the construction of Bitansky and Vaikuntanathan [BV15] with
puncturable SKFE. Bitansky and Vaikuntanathan observed that this strategy works. However, it is not known
whether puncturable SKFE is constructed from cryptographic primitives other than PKFE or IO.

In this work, we show that we can construct a relaxed variant of puncturable SKFE that is a single-key scheme
and weakly-succinct from collusion-resistant SKFE. Moreover, we show that such a relaxed variant of puncturable
SKFE is sufficient for constructing IO.

We first give an overview of the construction of Bitansky and Vaikuntanathan [BV15] in Section 2.1 and explain
why SKFE must be “puncturable” when we replace PKFE with SKFE in their construction in Section 2.2. Next,
we give an overview of how to construct our puncturable SKFE scheme and IO in Section 2.3 and Section 2.4,
respectively.
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2.1 Construction of IO based on PKFE
The main idea of Bitansky and Vaikuntanathan is to design an obfuscator iOi for circuits with i-bit input from an
obfuscator iOi−1 for circuits with (i − 1)-bit input. If we can design such a bit extension construction, for any
polynomial n, we can construct an obfuscator iOn for circuits with n-bit input since we can easily achieve iO1 for
circuits with 1-bit input by outputting an entire truth table of a circuit with 1-bit input.

When we construct IO based on the bit extension construction above, it is important to avoid a circuit-size blow-up
of circuits to be obfuscated at each recursive step. In fact, if we allow a circuit-size blow-up, we can obtain the
bit extension construction by defining iOi(C(x1 · · ·xi)) := iOi−1(C(x1 · · ·xi−1‖0))‖iOi−1(C(x1 · · ·xi−1‖1)).
However, this construction obviously incurs an exponential blow-up and thus we cannot rely on this solution.
Bitansky and Vaikuntanathan showed how to achieve the bit extension construction without an exponential blow-up
using weakly-succinct PKFE.

In their construction, a functional key of PKFE should hide information about the corresponding circuit. Such
security property is called function privacy. However, it is not known how to achieve function private PKFE.
Then, Bitansky and Vaikuntanathan explicitly accommodated the technique for function private SKFE proposed by
Brakerski and Segev [BS15] to their IO construction based on PKFE.

We review their construction based on PKFE. For simplicity, we ignore the issue of the randomness for
encryption algorithms. It is generated by puncturable pseudorandom function (PRF) in the actual construction.

iOi based on iOi−1 and PKFE works as follows. The construction additionally uses plain secret key encryption
(SKE) to implement the technique used by Brakerski and Segev [BS15]. To obfuscate a circuit C with i-bit input, it
first generates a key pair (PKi,MSKi) of PKFE. Then, using MSKi, it generates a functional key skC∗ tied to the
following circuitC∗. C∗ has hardwired two SKE ciphertexts CTske

0 and CTske
1 of plaintextC under independent keys

K0 andK1, respectively. C∗ expects as an input not only an i-bit string xi but also an SKE keyKb. On those inputs,
C∗ first obtains C by decrypting CTske

b byKb and outputs U(C,xi) = C(xi), where U(·, ·) is an universal circuit.
Finally, the construction obfuscates the following encryption circuit Ei−1 by iOi−1. Ei−1 has hardwired PKi and
Kb. On input (i− 1)-bit string xi−1, it outputs ciphertexts Enc(PKi, (xi−1‖0,Kb)) and Enc(PKi, (xi−1‖1,Kb)),
where Enc is the encryption algorithm of PKFE. The resulting obfuscation of C is a tuple (skC∗ , iOi−1(Ei−1)).
Note that we always set the value of b as 0 in the actual construction. We set b as 1 only in the security proof.

// Description of (simplified) C∗
Hard-Coded Constants: CTske

0 , CTske
1 .

Input: xi,Kb

1. Compute C = D(Kb,CTske
b ).

2. Return U(C,xi).

// Description of (simplified) Ei−1
Hard-Coded Constants: PKi,Kb.
Input: xi−1 ∈ {0, 1}i−1

1. Compute CTi,xi
r←− Enc(PKi, (xi−1‖xi,Kb)).

2. Output CTi,0 and CTi,1.

When we evaluate the above obfuscated C on input xi = x1 · · ·xi−1xi ∈ {0, 1}i, we first invoke iO(Ei−1) on
input xi−1 = x1 · · ·xi−1 and obtain Enc(PKi, (xi−1‖0,Kb)) and Enc(PKi, (xi−1‖1,Kb)). Then, by decrypting
Enc(PKi, (xi−1‖xi,Kb)) by skC∗ , we obtain C(xi).

Consequently, by using this bit extension construction, the obfuscation of a circuit C with n-bit input consists of
n functional keys sk1, · · · , skn each of which is generated under a different master secret key MSKi, and pair of
ciphertexts of 0 and 1 under PK1 corresponding to MSK1. For any xn = x1 · · ·xn ∈ {0, 1}n, we can first compute
a ciphertext of xn by repeatedly decrypting a ciphertext of xi−1 = x1 · · ·xi−1 by ski−1 and obtaining a ciphertext
of xi = x1 · · ·xi for every i ∈ {2, · · · , n}. We can finally obtain C(xn) by decrypting the ciphertext of xn by skn.

In this construction, each instance of PKFE needs to issue only one functional key. This is a minimum
requirement for functional encryption. However, for efficiency, PKFE in the construction above should satisfy a
somewhat strong requirement, that is, weak-succinctness to avoid a circuit-size blow-up of circuits to be obfuscated
at each recursive step. Therefore, we need to use a single-key weakly-succinct PKFE scheme in the IO construction
above.

We can prove the security of the construction recursively. More precisely, we can prove the security of iOi
based on those of iOi−1, PKFE, and SKE. Note that it is sufficient that PKFE satisfies a mild selective-security to
complete the proof. Their security proof relies on the argument of probabilistic IO formalized by Canneti, Lin,
Tessaro, and Vaikuntanathan [CLTV15], and thus the security loss of each recursive step is exponential in i, that is
2i. This is the reason their building block PKFE must be sub-exponentially secure.
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2.2 Replacing PKFE with SKFE: Need of Puncturable SKFE
The security proof of Bitansky and Vaikuntanathan relies on the fact that we can use the security of PKFE even
when its encryption circuit is publicly available. Concretely, PKi is hardwired into obfuscated encryption circuit
iOi−1(Ei−1) and this encryption circuit is public when we use the security of PKFE under the key pair (PKi,MSKi).

The above security argument might not work if ordinary SKFE is used instead of PKFE. This intuition comes
from the impossibility result shown by Barak et al. [BGI+01]. In fact, Bitansky and Vaikuntanathan showed that it
is impossible to instantiate their IO by using SKFE. More precisely, they showed that there exists a secure SKFE
scheme such that their transformation results in insecure IO if the SKFE scheme is used as the building block.
This is why they adopted PKFE as their building block. Therefore, in order to replace PKFE with SKFE in the
construction above, we need SKFE whose security holds even when its encryption circuit is publicly available. As
one of such primitives, Bitansky and Vaikuntanathan proposed puncturable SKFE.

In puncturable SKFE defined by Bitansky and Vaikuntanathan, there are a puncturing algorithm Punc and a
punctured encryption algorithm PEnc in addition to algorithms of ordinary SKFE. We can generate a punctured
master secret key MSK∗{m0,m1} at two messages m0 and m1 from a master secret key MSK by using Punc.
Puncturable SKFE satisfies the following two properties: functionality preserving under puncturing and semantic
security at punctured point. Functionality preserving under puncturing requires that

Enc(MSK,m; r) = PEnc(MSK∗{m0,m1},m; r)

holds for any messagem other thanm0 andm1 and for any randomness r. Semantic security at punctured point
requires that

(MSK∗{m0,m1},Enc(MSK,m0) c
≈ (MSK∗{m0,m1},Enc(MSK,m1))

holds for all adversaries, where
c
≈ denotes computational indistinguishability.

Bitansky and Vaikuntanathan showed that single-key weakly-succinct puncturable SKFE is also a sufficient
building block for their IO construction while ordinary SKFE is not. Note that weak-succinctness of puncturable
SKFE requires that not only the encryption circuit but also the punctured encryption circuit should be weakly-succinct.
However, as stated earlier, there was no instantiation of puncturable SKFE other than regarding PKFE as puncturable
SKFE at that point. In particular, it was not clear whether we can construct puncturable SKFE based on ordinary
SKFE.

2.3 Puncturable SKFE from SKFE
In this work, we show we can construct single-key weakly-succinct puncturable SKFE from collusion-resistant
SKFE. More specifically, we show the following two results. First, we show how to construct single-key non-succinct
puncturable SKFE based only on one-way functions. In addition, we show that we can transform it into single-key
weakly-succinct one using collusion-resistant SKFE. Our formalization of puncturable SKFE is different from that
of Bitansky and Vaikuntanathan [BV15] in several aspects. Nevertheless, we show that our puncturable SKFE is
also sufficient for constructing IO.

Below, we give the overview of these two constructions.

Single-Key Non-Succinct Puncturable SKFE based on One-Way Functions

Our starting point is the SKFE variant of the single-key non-succinct PKFE scheme proposed by Sahai and
Seyalioglu [SS10]. It is constructed from garbled circuit and SKE, which are implied by one-way functions. Their
construction is as follows.

Setup: A master secret key consists of 2s secret keys {Kj,α}j∈[s],α∈{0,1} of SKE, where s is the length of a binary
representation of functions supported by the resulting SKFE scheme.

Enc: When we encrypt a messagem, we first generates a garbled circuit Ũm with labels {Lj,α}j∈[s],α∈{0,1} by
garbling an universal circuit U(·,m) into which m is hardwired. Then, we encrypt Lj,α under Kj,α and
obtain an SKE ciphertext cj,α for every j ∈ [s] and α ∈ {0, 1}. The resulting ciphertext of the scheme is
(Ũm, {cj,α}j∈[s],α∈{0,1}).

KeyGen: A functional key skf for a function f consists of {Kj,f [j]}j∈[s], where f [1] · · · f [s] is the binary
representation of f and each f [j] is a single bit.
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Dec: A decryptor who has a ciphertext (Ũm, {cj,α}j∈[s],α∈{0,1}) and a functional key {Kj,f [j]}j∈[s] can compute
{Lj,f [j]}j∈[s] by decrypting each cj,f [j] byKj,f [j] and obtain Ũm({Lj,f [j]}j∈[s]) = U(f,m) = f(m).

In the construction above, we observe that if we use puncturable PRF instead of SKE, the resulting scheme is
puncturable in some sense. More specifically, a master secret key now consists of 2s puncturable PRF keys
{Sj,α}j∈[s],α∈{0,1}. When we encrypt a messagem, we first generate (Ũm, {Lj,α}j∈[s],α∈{0,1}) and encrypt each
label by using a puncturable PRF value. That is, cj,α ← Lj,α ⊕ FSj,α(tag), where F is puncturable PRF and tag is
a public tag chosen in some way.

In this case, we can generate a punctured master secret key MSK∗{tag} at a tag tag. Thus, we define an
encryption algorithm in a tag-based manner. The encryption algorithm Enc, given MSK, tag, and m, outputs
a ciphertext of m under the tag tag. That is, Enc(MSK, tag,m) = (Ũm, {Lj,α ⊕ FSj,α(tag)}j∈[s],α∈{0,1}). A
punctured master secret key MSK∗{tag} consists of 2s puncturable PRF keys {S∗j,α{tag}}j∈[s],α∈{0,1} all of which
are punctured at tag.

By using MSK∗{tag}, we can generate a ciphertext of any messagem under a tag tag′ different from tag, that
is, PEnc(MSK∗{tag}, tag′,m) = (Ũm, {Lj,α ⊕ FS∗

j,α
{tag}(tag′)}j∈[s],α∈{0,1}). Then, we have

Enc(MSK, tag′,m; r) = PEnc(MSK∗{tag}, tag′,m; r)

for any tag tag and tag′ such that tag 6= tag′, messagem, and randomness r due to the functionality preserving
property of puncturable PRF. Namely, this scheme satisfies functionality preserving under puncturing.

In addition, we can prove that Enc(MSK, tag,m0) and Enc(MSK, tag,m1) are indistinguishable for adversaries
that have MSK∗{tag} based on the security of puncturable PRF. In other words, it satisfies semantic security at
punctured tag.

This formalization is different from that proposed by Bitansky and Vaikuntanathan. Nevertheless, our
formalization of puncturable SKFE is sufficient for constructing IO. In fact, when we construct IO, we set the tag
same as the message to be encrypted itself. Then, our formalization is conceptually the same as that of Bitansky
and Vaikuntanathan. Our tag-based definition is well-suited for our constructions.

Achieving Weak-Succinctness via Collusion-Succinctness

We cannot directly use the puncturable SKFE scheme above as a building block of IO since it is non-succinct. We
need to transform it into an weakly-succinct scheme while preserving security and functionality.

We accomplish this transformation via a collusion-succinct scheme. Collusion-succinctness requires that each
size of the encryption circuit and punctured encryption circuit is sub-linear in the number of functional keys that the
scheme can issue. Note that when we consider collusion-succinctness, the size of these circuits can be polynomial
of the size of functions. We first show that we can construct collusion-succinct puncturable SKFE based on
single-key non-succinct puncturable SKFE constructed above and collusion-resistant SKFE. Then, we transform the
collusion-succinct scheme into an weakly-succinct scheme via a transformation based on decomposable randomized
encoding. The transformation is similar to that proposed by Bitansky and Vaikuntanathan [BV15]. We give an
illustration of our construction path in Figure 1.

There is a technical hurdle in the former transformation while we can accomplish the latter based on a known
technique. We show the overview of the former transformation and explain the technical hurdle.

Construction of collusion-succinct scheme. Our goal of this step is to construct a collusion-succinct scheme,
that is, a scheme which supports q functional keys and the size of whose encryption and punctured encryption
circuits are sub-linear in q, where q is an a-priori fixed polynomial. The key tool for achieving this goal is strong
exponentially-efficient IO (SXIO) proposed by Lin, Pass, Seth, and Telang [LPST16].

SXIO is a relaxed variant of IO. SXIO is required that, given a circuit C with n-bit input, it runs in
2γn · poly(λ, |C|)-time, where γ is a constant smaller than 1, poly is some polynomial, and λ is the security
parameter. We call γ the compression factor since it represents how SXIO can compress the truth table of
the circuit to be obfuscated. SXIO with arbitrarily small constant compression factor can be constructed from
collusion-resistant SKFE [BNPW16].

We show how to construct collusion-succinct puncturable SKFE from single-key non-succinct one and SXIO.
To achieve a collusion-succinct scheme, we need to increase the number of functional keys to some polynomial q
while compressing the size of its encryption circuits into sub-linear in q.
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Figure 1: Illustration of our construction path. pSKFE denotes puncturable SKFE. Dashed lines denote known or trivial
implications. White boxes denote our ingredients or goal. Purple boxes denote our core schemes. A transformation from an
object in a rectangle to one in a rectangle incurs only polynomial security loss. A transformation from an object in a rectangle to
one in a circle incurs super-polynomial security loss.

The most naive way to increase the number of functional keys is to run multiple instances of the single-key
scheme. If we have q master secret keys MSK1, · · · ,MSKq , we can generate q functional keys since we can generate
one functional key under each master secret key. In this case, to ensure that we can decrypt a ciphertext using every
functional key under different master secret keys MSKi for every i ∈ [q], a ciphertext should be composed of q
ciphertexts each of which is generated under MSKi for every i ∈ [q]. In addition, when we generate a punctured
master secret key punctured at tag, we generate q punctured master secret keys MSK∗i {tag} for every i ∈ [q] all of
which are punctured at tag.

In the naive construction above, we see that if the single-key scheme satisfies functionality preserving under
puncturing and semantic security at punctured tag, then so does the resulting scheme since a ciphertext of the
resulting scheme consists of only ciphertexts of the single-key scheme. However, if a ciphertext of the resulting
scheme consists of q ciphertexts of the single-key scheme, the encryption time is obviously at least linear in q.
Therefore, we cannot construct a collusion-succinct scheme based on this naive idea.

We then consider to compress the encryption time by using SXIO. We extend the technique used by Lin et
al. [LPST16] and Bitansky et al. [BNPW16]. Let sxiO be SXIO. We set a ciphertext as a circuit computing
q ciphertexts obfuscated by sxiO instead of setting it as q ciphertexts themselves. Concretely, we obfuscate the
following circuit E1Key using sxiO. E1Key has hardwired messagem, tag tag, and puncturable PRF key S, and on
input i ∈ [q], it first generates MSKi pseudorandomly from S and i, and then outputs a ciphertext ofm under MSKi
and tag. Note that the master secret key of this scheme is now one puncturable PRF key S. In other words, the

Hard-Coded Constants: S, tag,m. // Description of (simplified) E1Key
Input: i ∈ [q]

1. Compute riSetup ← FS(i).
2. Compute MSKi ← Setup(1λ; riSetup).
3. Return CTi ← Enc(MSKi, tag,m).

scheme generates q master secret keys of the single-key scheme from one puncturable PRF key. For the formal
description of E1Key, see Figure 2 in Section 6.1.

The size of E1Key is independent of q since E1Key consists of one PRF evaluation and setup and encryption
procedure of the single-key scheme.4 Therefore, the time needed to compute sxiO(E1Key) is bounded by
2γ log q · poly(λ, |m|) = qγ · poly(λ, |m|) for some constant γ < 1 and polynomial poly, that is, sub-linear in q.
Namely, we succeeds in reducing the encryption time from linear to sub-linear in q.

However, we need more complicated structure to compress the running-time of a punctured encryption algorithm
into sub-linear in q. The main reason is that we cannot give master secret key S in the clear in the punctured
encryption circuit to reduce the security to that of the building block single-key scheme.

We first argue how to set a punctured master secret key. We cannot rely on the trivial way that sets q punctured
master secret keys of the single-key scheme as a punctured master secret key since the size of the punctured
encryption circuit becomes linear in q in this trivial way. Our solution is to set a punctured master secret key as also
an obfuscated circuit under SXIO. More precisely, we obfuscate the following circuit P1Key. P1Key has hardwired

4Strictly speaking, the domain of PRF is [q], and thus the size of E1Key depends on q in logarithmic. However, it does not matter since
logarithmic factor is absorbed by sub-linear factor. We ignore this issue here for simplicity.
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tag tag and puncturable PRF key S. Note that S is the master secret key thus is the same puncturable PRF key as
that hardwired into E1Key. On input i ∈ [q], P1Key first generates MSKi pseudorandomly from S and i, and then
outputs a punctured master secret key MSK∗i {tag} of the single-key scheme. For the formal description of P1Key,
see Figure 3 in Section 6.1.

// Description of (simplified) P1Key
Hard-Coded Constants: S, tag.
Input: i ∈ [q]

1. Compute riSetup ← FS(i).
2. Compute MSKi ← Setup(1λ; riSetup).
3. Return MSK∗i {tag} ← Punc(MSKi, tag).

// Description of (simplified) PE1Key
Hard-Coded Constants: MSK∗{tag}, tag′,m.
Input: i ∈ [q]

1. Parse sxiO(P1Key)← MSK∗{tag}.
2. Compute MSK∗i {tag} ← sxiO(P1Key)(i).
3. Return CTi ← PEnc(MSK∗i {tag}, tag′,m).

In addition, we define the punctured encryption algorithm as follows. On input MSK∗{tag} that is sxiO(P1Key),
tag tag′, and messagem, the punctured encryption algorithm obfuscates the following circuit PE1Key using sxiO
and outputs the obfuscated circuit. PE1Key has hardwired MSK∗{tag}, tag′, and m, and on input i ∈ [q], it first
generates the i-th punctured key MSK∗i {tag} by feeding i into MSK∗{tag} = sxiO(PE1Key), and then outputs a
ciphertext ofm under MSK∗i {tag} and tag′ using the punctured encryption algorithm of the single-key scheme. If
the compression factor of sxiO is sufficiently small, we ensure that the running time of this punctured encryption
algorithm is sub-linear in q. For the formal description of PE1Key, see Figure 4 in Section 6.1.

We can prove the semantic security at punctured tag by the punctured programming technique proposed by Sahai
and Waters [SW14]. However, the construction above does not satisfy functionality preserving under puncturing.
This is because ciphertexts output by the encryption and punctured encryption algorithms are different. The
ciphertexts are obfuscation of different circuits E1Key and PE1Key.

In fact, it seems difficult to avoid this problem as long as we use SXIO to gain succinctness. To the best of our
knowledge, how to achieve succinctness in a generic way without using SXIO is not known.

Indistinguishability of functionality under puncturing. To overcome the problem above, we introduce a
relaxed variant functionality preserving property that is compatible with the construction based on SXIO. We call it
indistinguishability of functionality under puncturing. Informally speaking, the property requires that

(MSK,MSK∗{tag},Enc(MSK, tag′,m)) c
≈ (MSK,MSK∗{tag},PEnc(MSK∗{tag}, tag′,m))

holds for any tag tag and tag′ such that tag 6= tag′, and messagem, where
c
≈ denotes computational indistinguisha-

bility. In other words, it requires that no distinguisher can distinguish ciphertexts output by Enc and PEnc even
given both the master secret key and punctured master secret key.

We see that the collusion-succinct construction based on SXIO above satisfies indistinguishability of functionality
under puncturing. This comes from the security guarantee of SXIO and the fact thatE1Key andPE1Key are functionally
equivalent as long as the above tag and tag′ are different.

Overall, we can construct collusion-succinct puncturable SKFE with indistinguishability of functionality under
puncturing from a single-key non-succinct scheme and SXIO.

Transforming into an weakly-succinct scheme. As stated earlier, we can in turn transform a collusion-succinct
scheme into an weakly-succinct one based on the transformation using decomposable randomized encoding proposed
by Bitansky and Vaikuntanathan [BV15]. In this transformation, a ciphertext of the weakly-succinct scheme is
a ciphertext of the collusion-succinct scheme itself. Thus, if the collusion-succinct scheme satisfies semantic
security at punctured tag and indistinguishability of functionality under puncturing, then so does the weakly-succinct
scheme. Therefore, we can construct a single-key weakly-succinct puncturable SKFE with indistinguishability of
functionality under puncturing.

Indistinguishability of functionality under puncturing looks to be insufficient for constructing IO. Nevertheless,
we show that we can replace PKFE in the construction of IO proposed by Bitansky and Vaikuntanathan with our
puncturable SKFE that satisfies only indistinguishability of functionality under puncturing if we allow more but
asymptotically the same security loss.
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2.4 IO from Puncturable SKFE
Finally, we give an overview of our IO construction below.

The construction of IO based on puncturable SKFE is almost the same as that based on PKFE proposed by
Bitansky and Vaikuntanathan [BV15]. It does not depend on which functionality preserving property puncturable
SKFE satisfies. Recall that, in their construction, a key pair (PKi,MSKi) of PKFE is generated and the circuit Ei−1
that has hardwired PKi is obfuscated at every recursive step. In our construction based on puncturable SKFE, a
master secret key MSKi of puncturable SKFE is generated and Ei−1 that has hardwired MSKi is obfuscated at
each recursive step. Concretely, we construct Ei−1 as a circuit that has hardwired MSKi and a SKE keyK, and on
(i − 1)-bit input xi−1, it outputs a ciphertext of (xi−1‖xi,K) for xi ∈ {0, 1} under MSKi and a tag xi−1, that
is, Enc(MSKi,xi−1, (xi−1‖xi,K)) for xi ∈ {0, 1}. In the proof, we replace MSKi hardwired into Ei−1 with the
tuple of a punctured master secret key MSK∗i {j} punctured at j ∈ {0, 1}i−1 and a ciphertext of (j‖xi,K) for
xi ∈ {0, 1}, where j is a string in {0, 1}i−1 that we focus on at that time.

Outline of Security Proof

We give an overview of the security proof of IO based on puncturable SKFE. If the building block puncturable
SKFE satisfies functionality preserving under puncturing, the security proof is almost the same as that of Bitansky
and Vaikuntanathan. However, our puncturable SKFE satisfies only indistinguishability of functionality under
puncturing, and thus we need more complicated arguments. The first half of the following overview is similar
to that of Bitansky and Vaikuntanathan. The rest is an overview of proofs that we additionally need due to
indistinguishability of functionality under puncturing.

Analogous to IO based on PKFE, we can accomplish this proof recursively. More precisely, we can prove the
security of iOi based on those of iOi−1, puncturable SKFE, and plain SKE. We proceed the proof as follows. Note
again that, we ignore the issue of the randomness for the encryption algorithm and punctured encryption algorithm
for simplicity. It is generated by puncturable PRF in the actual construction.

Suppose that we have two functionally equivalent circuits C0 and C1 both of which expect an i-bit input. We
show that no efficient distinguisher D can distinguish iOi(C0) and iOi(C1). We consider the following sequence
of hybrid experiments. Below, for two hybridsH andH′, we writeH ∼ H′ to denote that the behavior of D does
not change betweenH andH′.

In the first hybrid H0, D is given iOi(C0). Recall that iOi(C0) consists of skC∗ and iOi−1(Ei−1). C∗ has
hardwired two SKE ciphertexts CTske

0 and CTske
1 of C0 under independent keysK0 andK1. On i-bit input xi and

SKE keyKb, C∗ first obtains C by decrypting CTske
b byKb and outputs C(xi).

In the next hybridH1, we change how CTske
1 hardwired in C∗ is generated. Concretely, we generate CTske

1 as a
ciphertext of C1 under the keyK1. It holds thatH0 ∼ H1 due to the security of SKE. Then, in the next hybridH2,
we change the circuit Ei−1 so that, on (i− 1)-bit input xi−1, it outputs a ciphertext of (xi−1‖xi,K1) instead of
(xi−1‖xi,K0) for xi ∈ {0, 1} under MSKi and a tag xi−1.

If we proveH1 ∼ H2, we also proveH0 ∼ H2 and almost complete the security proof. This is because we can
argue that the behavior of D does not change betweenH2 and the hybrid where D is given iOi(C1) by a similar
argument forH0 ∼ H2.

Therefore, the main part of the proof is how we change the circuit Ei−1 from encryptingK0 inH1 to encrypting
K1 inH2. As mentioned earlier, we accomplish this task by relying on the argument of probabilistic IO formalized
by Canneti et al. [CLTV15].

Concretely, we consider 2i−1 + 1 intermediate hybrid experimentsH1,j for j ∈ {0, · · · , 2i−1} betweenH1 and
H2. BetweenH1,j andH1,j+1, we change Ei−1 so that on input j ∈ {0, 1}i−1, it outputs ciphertexts of (j‖xi,K1)
instead of (j‖xi,K0) for xi ∈ {0, 1}, where j is the binary representation of j. More precisely, we construct Ei−1
inH1,j as follows. Ei−1 has hardwired MSKi,K0, andK1. On (i− 1)-bit input xi−1,

• if xi−1 < j, it outputs a ciphertext of (xi−1‖xi,K1) for xi ∈ {0, 1} under MSKi and a tag xi−1.

• Otherwise, it outputs a ciphertext of (xi−1‖xi,K0) for xi ∈ {0, 1} under MSKi and a tag xi−1.

We see that Ei−1 inH1 has the same functionality as Ei−1 inH1,0. In addition, Ei−1 inH2 has the same functionality
as Ei−1 inH1,2i−1 . Therefore, we haveH1 ∼ H1,0 andH2 ∼ H1,2i−1 from the security guarantee of iOi−1.

We show how to prove H1,j ∼ H1,j+1. For simplicity, we first assume that puncturable SKFE satisfies
functionality preserving under puncturing. In this case, we showH1,j ∼ H1,j+1 by the following three steps.
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(1) In the first step, we hardwire ciphertexts of (j‖xi,K0) under MSKi and a tag j for xi ∈ {0, 1} in Ei−1. In
addition, we replace hardwired MSKi in Ei−1 with MSK∗i {j} that is a master secret key punctured at a tag j.
On (i− 1)-bit input xi−1,

• if xi−1 = j, Ei−1 outputs hardwired ciphertexts of (j‖xi,K0) for xi ∈ {0, 1}.
• if xi−1 6= j, it generates ciphertexts of (xi−1‖xi,Kβ) under MSK∗i {j} and a tag xi−1 and outputs
them, where β = 1 if xi−1 < j and β = 0 otherwise.

We see that this change does not affect the functionality of Ei−1 if puncturable SKFE satisfies functionality
preserving under puncturing. Thus, this step is done by the security of iOi−1.

(2) In the second step, we change the hardwired ciphertexts to ciphertexts of (j‖xi,K1) for xi ∈ {0, 1}. This is
done by the semantic security at punctured tag of puncturable SKFE.

(3) In the final step, we change Ei−1 so that it does not have hardwired ciphertexts of (j‖xi,K1) for xi ∈ {0, 1}.
Moreover, we change Ei−1 so that Ei−1 has hardwired MSKi and use it to generate the output ciphertexts.
This change also does not affect the functionality of Ei−1, and thus we can accomplish this step by relying on
the security of iOi−1 again.

From the above, if puncturable SKFE satisfies functionality preserving under puncturing, we haveH1,j ∼ H1,j+1
for every j ∈ {0, · · · , 2i−1 − 1}. By combiningH1 ∼ H1,0 andH1,2i−1 ∼ H2, we obtainH1 ∼ H2.

Therefore, we complete the entire proof. In fact, in this case, the proof is essentially the same as that for the case
where PKFE is used as a building block shown by Bitansky and Vaikuntanathan.

Additional hybrids for the case of indistinguishability of functionality under puncturing. Recall that our
puncturable SKFE satisfies only indistinguishability of functionality under puncturing. Thus, the above argument for
steps 1 and 3 do not work straightforwardly. This is because if puncturable SKFE satisfies only indistinguishability
of functionality under puncturing, the functionality of Ei−1 might change at each step of 1 and 3. Therefore, we
cannot directly use the security of iOi−1.

Nevertheless, even if puncturable SKFE satisfies only indistinguishability of functionality under puncturing, we
can proceed steps 1 and 3 by introducing more additional hybrids. Since steps 1 and 3 are symmetric, we focus on
proceeding the step 1. We can apply the following argument for the step 3. Below, we letH0

1,j denote the hybrid
experiment after applying the step 1 toH1,j .

To accomplish the step 1, we introduce the additional intermediate hybridsH1,j,k for every k ∈ {0, · · · , 2i−1} \
{j} between H1,j and H0

1,j . Between H1,j,k and H1,j,k+1, we change Ei−1 so that, on input k ∈ {0, 1}i−1, it
outputs ciphertexts under MSK∗i {j} instead of ciphertexts under MSK, where k is the binary representation of k.
More precisely, we construct Ei−1 inH1,j,k as follows. Ei−1 has hardwired MSK∗i {j} in addition to MSKi,K0,
andK1. On (i− 1)-bit input xi−1, it runs as follows.

• If xi−1 < j, it sets β = 1 and β = 0 otherwise.

• If xi−1 < k and xi−1 6= j, for xi ∈ {0, 1}, it outputs a ciphertext of (xi−1‖xi,Kβ) under MSK∗i−1{j} and
a tag xi−1, that is, PEnc(MSK∗i {j},xi−1, (xi−1‖xi,Kβ)).

• Otherwise (xi−1 ≥ k or xi−1 = j), for xi ∈ {0, 1}, it outputs a ciphertext of (xi−1‖xi,Kβ) under MSKi
and tag xi−1, that is, Enc(MSKi,xi−1, (xi−1‖xi,Kβ)).

We see that Ei−1 in H1,j and H0
1,j have the same functionality as that in H1,j,0 and H1,j,2i−1 , respectively.

In addition, Ei−1 in H1,j,j has the same functionality as that in H1,j,j+1. Therefore, we have H1,j ∼ H1,j,0,
H0

1,j ∼ H1,j,2i−1 , andH1,j,j ∼ H1,j,j+1 from the security guarantee of iOi−1.
We can prove H1,j,k ∼ H1,j,k+1 for every k ∈ {0, · · · , 2i−1} \ {j} by three steps again based on indistin-

guishability of functionality under puncturing.

(1) We hardwire ciphertexts of (k‖xi,Kβ) under MSKi and a tag k, that is, Enc(MSKi,k, (k‖xi,Kβ)) for
xi ∈ {0, 1} in Ei−1 in the first step. In addition, we change Ei−1 so that it outputs the hardwired ciphertext
of (k‖xi,K0) for xi ∈ {0, 1} if the input is k. We see that this change does not affect the functionality of
Ei−1. Thus, this step is done by the security of iOi−1.

10



(2) In the second step, we change the hardwired ciphertexts to a ciphertext of (k‖xi,Kβ) under MSK∗i {j}, that is
PEnc(MSKi{j},k, (k‖xi,Kβ)) for xi ∈ {0, 1}. This is done by the indistinguishability of functionality
under puncturing of puncturable SKFE.

(3) In the final step, we change Ei−1 so that it does not have a hardwired ciphertext of (k‖xi,K1) for xi ∈ {0, 1}.
Namely, we change Ei−1 so that on input k, Ei−1 generates ciphertexts of k under MSK∗i {j} and outputs
them. This change does not affect the functionality of Ei−1, and thus we can accomplish this step by relying
on the security of iOi−1 again.

From the above, we see that H1,j,k ∼ H1,j,k+1 holds for every k ∈ {0, · · · , 2i−1} \ {j}. By combining
H1,j ∼ H1,j,0,H0

1,j ∼ H1,j,2i−1 , andH1,j,j ∼ H1,j,j+1, we obtainH1,j ∼ H0
1,j .

Therefore, we obtainH1,j ∼ H0
1,j even if puncturable SKFE satisfies only indistinguishability of functionality

under puncturing. Overall, we can complete the entire security proof.
We note that our security proof incurs more security loss than those of Bitansky and Vaikuntanathan [BV15]

and the case where puncturable SKFE satisfies functionality preserving under puncturing. Our security proof incurs
roughly 22·i security loss while the latter proofs incurs 2i security loss when we prove the security of iOi based on
that of iOi−1. Nevertheless, this difference is not an issue in the sense that if the building block primitives are
roughly 2Ω(n2)-secure, we can prove the security of our indistinguishability obfuscator. This requirement is the
same as that of Bitansky and Vaikuntanathan.

3 Preliminaries
We define some notations and cryptographic primitives here.

3.1 Notations
We write x r←− X to denote that an element x is chosen from a finite setX uniformly at random and y ← A(x; r) to
denote that the output of an algorithm A on an input x and a randomness r is assigned to y. When there is no need
to write the randomness explicitly, we omit it and simply write y ← A(x). For strings x and y, x‖y denotes the
concatenation of x and y. Throughout this paper, λ denotes a security parameter. A function f(λ) is a negligible
function if f(λ) tends to 0 faster than 1

λc for every constant c > 0. We write f(λ) = negl(λ) to denote that f(λ) is
a negligible function. PPT stands for probabilistic polynomial time. Let [`] denote the set of integers {1, · · · , `}.

3.2 Standard Cryptographic Tools
In this section, we review standard cryptographic tools, pseudorandom function (PRF), puncturable PRF, secret-key
encryption (SKE), garbling scheme, and decomposable randomized encoding.

Definition 3.1 (Pseudorandom functions). For sets D and R, let {FS(·) : D → R|S ∈ {0, 1}λ} be a family of
polynomially computable functions. We say that F is pseudorandom if for any PPT adversary A, it holds that

Advprf
F,A(λ) = |Pr[AFS(·)(1λ) = 1 : S r←− {0, 1}λ]

− Pr[AR(·)(1λ) = 1 : R r←− U ]| = negl(λ) ,

where U is the set of all functions from D toR. Moreover, for some concrete negligible function ε(·), we say that F
is ε-secure if for any PPT A the above indistinguishability gap is smaller than ε(λ)Ω(1).

Theorem 3.2 ([GGM86]). If one-way functions exist, then for all efficiently computable functions n(λ) andm(λ),
there exists a pseudorandom function that maps n(λ) bits tom(λ) bits (i.e.,D := {0, 1}n(λ) andR := {0, 1}m(λ)).

Definition 3.3 (Puncturable pseudorandom function). For sets D andR, a puncturable pseudorandom function
PPRF consists of a tuple of algorithms (F,Punc) that satisfies the following two conditions.

Functionality preserving under puncturing: For all polynomial size subset {xi}i∈[k] of D, and for all x ∈
D \ {xi}i∈[k], we have Pr[FS(x) = FS∗(x) : S ← {0, 1}λ, S∗ ← Punc(S, {xi}i∈[k])] = 1.
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Pseudorandomness at punctured points: For all polynomial size subset {xi}i∈[k] of D, and any PPT adversary
A, it holds that

Pr[A(S∗, {FS(xi)}i∈[k]) = 1]− Pr[A(S∗, Uk) = 1] = negl(λ) ,

where S r←− {0, 1}λ, S∗ ← Punc(S, {xi}i∈[k]), and U denotes the uniform distribution overR.
Moreover, for some concrete negligible function ε(·), we say that PPRF is ε-secure if for any A the above
indistinguishability gap is smaller than ε(λ)Ω(1).

Theorem 3.4 ([GGM86, BW13, BGI14, KPTZ13]). If one-way functions exist, then for all efficiently computable
functions n(λ) andm(λ), there exists a puncturable pseudorandom function that maps n(λ) bits tom(λ) bits (i.e.,
D := {0, 1}n(λ) andR := {0, 1}m(λ)).

Definition 3.5 (Secret key encryption). An SKE scheme SKE is a two tuple (E,D) of PPT algorithms.

• The encryption algorithm E, given a keyK ∈ {0, 1}λ and a messagem ∈M, outputs a ciphertext c, where
M is the plaintext space of SKE.

• The decryption algorithm D, given a key K and a ciphertext c, outputs a message m̃ ∈ {⊥} ∪M. This
algorithm is deterministic.

Correctness: We require D(K,E(K,m)) = m for everym ∈M and keyK ∈ {0, 1}λ.

CPA security: We define the security game between a challenger and an adversary A as follows.

1. The challenger generatesK r←− {0, 1}λ and chooses the challenge bit b r←− {0, 1}. Then, the challenger
sends 1λ to A.

2. A may make polynomially many encryption queries adaptively. A sends (m0,m1) ∈M×M to the
challenger. Then, the challenger returns c← E(K,mb).

3. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advcpa
SKE,A(λ) = 2|Pr[b = b′]− 1

2 | = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

For a negligible function ε(·), We say that SKE is ε-secure if for any PPTA, we haveAdvcpa
SKE,A(λ) < ε(λ)Ω(1).

Theorem 3.6 ([LR88]). If there exists one-way functions, there exists a CPA-secure SKE scheme.

Definition 3.7 (Garbling scheme). Let {Cn}n∈N be a family of circuits where each circuit in Cn takes an n-bit
input. A circuit garbling scheme GC is a two tuple (Grbl,Eval) of PPT algorithms.

• The garbling algorithm Grbl, given a security parameter 1λ and a circuit C ∈ Cn, outputs a garbled circuit
C̃, together with 2n labels {Lj,α}j∈[n],α∈{0,1}.

• The evaluation algorithm, given a garbled circuit C̃ and n labels {Lj}j∈[n], outputs y.

Correctness: We require Eval(C̃, {Lj,xj}j∈[n]) = C(x) for every n ∈ N, C ∈ Cn, and x ∈ {0, 1}n, where
(C̃, {Lj,α}j∈[n],α∈{0,1})← Grbl(1λ, C) and xj is the j-th bit of x for every j ∈ [n].

Security: Let Sim be a PPT simulator. We define the following game between a challenger and an adversary A as
follows.

1. The challenger chooses the challenge bit b r←− {0, 1} and sends security parameter 1λ to A.
2. A sends a circuit C ∈ Cn and an input x ∈ {0, 1}n for the challenger.

3. If b = 0, the challenger computes (C̃, {Lj,α}j∈[n],α∈{0,1})← Grbl(1λ, C) and returns (C̃, {Lj,xj}j∈[n])
to A. Otherwise, the challenger returns (C̃, {Lj}j∈[n])← Sim(1λ, |C|, C(x)).

4. A outputs b′ ∈ {0, 1}.
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In this game, we define the advantage of A as

Advgc
GC,A,Sim(λ) = 2|Pr[b = b′]− 1

2 | = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

For a concrete negligible function ε(·), We say that GC is ε-secure if there exists a PPT Sim such that for any
PPT A, we have Advgc

GC,A,Sim(λ) < ε(λ)Ω(1).

Theorem 3.8 ([Yao86, BHR12, LP09]). If there exists one-way functions, there exists a secure garbling scheme
for any polynomial size circuits.

Definition 3.9 (Decomposable randomized encoding). Let c ≥ 1 be an integer constant. A c-local decomposable
randomized encoding RE, given security parameter 1λ and a function f of size s and n-bit input, outputs a
function f̂ : {0, 1}n × {0, 1}ρ → {0, 1}µ with the following properties. ρ and µ are polynomials bounded by
s · polyRE(λ, n), where polyRE is a fixed polynomial.

Correctness: There is a polynomial time decoder that, given f̂(x; r), outputs f(x) for any x ∈ {0, 1}n and
r ∈ {0, 1}ρ.

Decomposability: Computation of f̂ can be decomposed into computation of µ functions. That is, there exist µ
functions f̂1, · · · , f̂µ such that f̂(x; r) = (f̂1(x; r), · · · , f̂µ(x; r)). Each f̂i depends on a single bit of x at
most and c bits of r. We write f̂(x; r) = (f̂1(x; rS1), · · · , f̂µ(x; rSµ)), where Si denotes the subset of bits of
r that f̂i depends on.

Security: Let Sim be a PPT simulator. We define the following game between a challenger and an adversary A as
follows.

1. The challenger chooses a bit b r←− {0, 1} and sends security parameter 1λ to A.
2. A sends a function f of size s and n-bit input and an input x ∈ {0, 1}n to the challenger.

3. If b = 0, the challenger computes f̂ ← RE(1λ, f), generates r ← {0, 1}ρ, and returns f̂(x; r) to A.
Otherwise, the challenger returns Sim(1λ, s, f(x)).

4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advre
RE,Sim,A(λ) = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

For a negligible function ε(·), we say that RE is ε-secure if there exists a PPT Sim such that for any PPT A,
we have Advre

RE,Sim,A(λ) < ε(λ)Ω(1).

It is known that a decomposable randomized encoding can be based on one-way functions.

Theorem 3.10 ([Yao86, AIK06]). If there exists one-way functions, there exists a secure decomposable randomized
encoding for all polynomial size functions.

3.3 Secret-Key Functional Encryption
We review the definition of ordinary secret-key functional encryption (SKFE).

Definition 3.11 (Secret-key functional encryption). An SKFE scheme SKFE is a four tuple of PPT algorithms
(Setup,KG,Enc,Dec). Below, letM and F be the message space and function space of SKFE, respectively.

• The setup algorithm Setup, given a security parameter 1λ, outputs a master secret key MSK.

• The key generation algorithm KG, given a master secret key MSK and a function f ∈ F , outputs a functional
decryption key skf .

• The encryption algorithm Enc, given a master secret key MSK and a messagem ∈M, outputs a ciphertext
CT.

13



• The decryption algorithm Dec, given a functional decryption key skf and a ciphertext CT, outputs a message
m̃ ∈ {⊥} ∪M.

Correctness: We require Dec(KG(MSK, f),Enc(MSK,m)) = f(m) for every m ∈ M, f ∈ F , and MSK ←
Setup(1λ).

Next, we introduce selective-message message privacy for SKFE schemes.

Definition 3.12 (Selective-message message privacy). Let SKFE be an SKFE scheme whose message space and
function space areM and F , respectively. Let q be a polynomial of λ. We define the selective-message message
privacy game between a challenger and an adversary A as follows.

1. The challenger generates a master secret key MSK← Setup(1λ) and chooses the challenge bit b r←− {0, 1}.
Then, the challenger sends security parameter 1λ to A.

2. A sends {(m`
0,m

`
1)}`∈[p] to the challenger, where p is an a-priori unbounded polynomial of λ.

3. The challenger generates ciphertexts CT(`) ← Enc(MSK,m`
b)(` ∈ [p]) and sends them to A.

4. A may adaptively make key queries q times at most. For a key query f ∈ F from A, the challenger generates
skf ← KG(MSK, f), and returns skf to A. Here, f needs to satisfy f(m`

0) = f(m`
1) for all ` ∈ [p].

5. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advsm-mp
SKFE,A(λ) = 2|Pr[b = b′]− 1

2 | = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

A is said to be valid if each function query f made by A satisfies that f(m`
0) = f(m`

1) for all ` ∈ [p] in the above
game. For a negligible function ε(·), We say that SKFE is (q, ε)-selective-message message private if for any valid
PPT A, we have Advsm-mp

SKFE,A(λ) < ε(λ)Ω(1).

We further say that an SKFE scheme is ε-secure collusion-resistant SKFE if it is (q, ε)-selective-message
message private for any polynomial q.

3.4 Indistinguishability Obfuscation
Definition 3.13 (Indistinguishability obfuscator (IO)). A PPT algorithm iO is an indistinguishability obfuscator
for a circuit class {Cλ}λ∈N if it satisfies the following two conditions.

Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1 .

Indistinguishability: for any poly-size distinguisher D, there exists a negligible function negl(·) such that the
following holds: for all security parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ of the same size and
such that C0(x) = C1(x) for all inputs x, then

|Pr
[
D(iO(1λ, C0)) = 1

]
− Pr

[
D(iO(1λ, C1)) = 1

]
| = negl(λ) .

We further say that iO is ε-secure, for some concrete negligible function ε(·), if for any PPT distinguisher the
above advantage is smaller than ε(λ)Ω(1).
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3.5 Strong Exponentially-Efficient Indistinguishability Obfuscation
Definition 3.14 (Strong Exponentially-Efficient Indistinguishability Obfuscation (SXIO)). Let γ < 1 be a
constant. A PPT algorithm sxiO is a γ-compressing strong exponentially-efficient indistinguishability obfuscator
(SXIO) for a circuit class {C}λ∈N if it satisfies the functionality and indistinguishability in Definition 3.13 and the
following efficiency requirement:

Non-trivial time efficiency We require that the running time of sxiO on input (1λ, C) is at most 2nγ · poly(λ, |C|)
for every λ ∈ N and circuit C ∈ {Cλ}λ∈N with input length n.

We have the following theorem.

Theorem 3.15 ([BNPW16]). Assuming there exists ε-secure collusion-resistant SKFE for all circuits, where ε(·) is
a negligible function. Then, for any constant γ < 1, there exists ε-secure γ-compressing SXIO for polynomial-size
circuits with logarithmic size input.

4 Puncturable Secret-Key Functional Encryption
In this section, we introduce puncturable secret-key functional encryption (puncturable SKFE).

The notion of puncturable SKFE was introduced by Bitansky and Vaikuntanathan [BV15]. They showed that in
their construction of IO, the building block PKFE can be replaced with puncturable SKFE. However, it has been
open whether we can achieve puncturable SKFE without assuming the existence of PKFE.

In this work, we answer the question affirmatively. We show how to construct a relaxed variant of puncturable
SKFE scheme that is single-key weakly-succinct. Our relaxed variant is sufficient for constructing IO. Our
construction consists of two steps.

1. We prove that a single-key non-succinct puncturable SKFE scheme is constructed only from one-way
functions.

2. We prove that we can transform the non-succinct scheme into a weakly-succinct scheme by using SXIO.

We can construct SXIO based on standard (i.e., not puncturable) SKFE by Theorem 3.15. Therefore, we can
construct our puncturable SKFE from standard SKFE.

4.1 Syntax
Our definition of puncturable SKFE introduced below is slightly different from that proposed by Bitansky and
Vaikuntanathan [BV15]. However, we show that puncturable SKFE defined in this paper is also a sufficient building
block of IO. We state differences between our definition and theirs after describing the syntax and security of our
puncturable SKFE.

Definition 4.1 (Puncturable secret-key functional encryption). A puncturable SKFE scheme pSKFE is a tuple
(Setup,KG,Enc,Dec,Punc,PEnc) of six PPT algorithms. Below, letM, F , and T be the message space, function
space, and tag space of pSKFE, respectively. In addition, let q be a polynomial denoting the upper bound of the
number of issuable functional keys.

• The setup algorithm Setup, given a security parameter 1λ, outputs a master secret key MSK.

• The key generation algorithm KG, given a master secret key MSK, function f ∈ F , and an index i ∈ [q],
outputs a functional key skf .

• The encryption algorithm Enc, given a master secret key MSK, a tag tag, and a messagem ∈M, outputs a
ciphertext CT.

• The decryption algorithm Dec, given a functional key skf , a tag tag, and a ciphertext CT, outputs a message
m̃ ∈ {⊥} ∪M.

• The puncturing algorithm Punc, given a master secret key MSK and a tag tag, outputs a punctured master
secret key MSK∗{tag}
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• The punctured encryption algorithm PEnc, given a punctured master secret key MSK∗, a tag tag′, and a
messagem, outputs a ciphertext CT.

We require the following property.

Correctness: For everym ∈M, f ∈ F , i ∈ [q], tag ∈ T , and MSK← Setup(1λ), it holds that

Dec(KG(MSK, f, i), tag,Enc(MSK, tag,m)) = f(m) .

4.2 Security
In this section, we introduce two variants of security. Their difference is the functionality of punctured encryption
algorithms.

Definition 4.2 (Secure puncturable SKFE). Let pSKFE = (Setup,KG,Enc,Dec,Punc,PEnc) be puncturable
SKFE. Below, letM, F , and T be the message space, function space, and tag space of pSKFE, respectively. In
addition, let q be a polynomial denoting the upper bound of the number of issuable functional keys. We say that
pSKFE is secure puncturable SKFE if it satisfies the following properties.

Functionality preserving under puncturing: For every m ∈ M, (tag, tag′) ∈ T × T such that tag 6= tag′,
randomness r, MSK← Setup(1λ), and MSK∗{tag} ← Punc(MSK, tag), it holds that

PEnc(MSK∗{tag}, tag′,m; r) = Enc(MSK, tag′,m; r) .

Semantic security at punctured tag: We define punctured semantic security game between a challenger and an
adversary A as follows.

1. The challenger generates a master secret keyMSK← Setup(1λ) and chooses a challenge bit b r←− {0, 1}.
The challenger sends security parameter 1λ to A.

2. A sends (m0,m1) ∈ M×M, tag ∈ T , and {fi}i∈[q] ∈ Fq to the challenger. We require that for
every i ∈ [q] it holds that fi(m0) = fi(m1).

3. The challenger computes CT ← Enc(MSK, tag,mb), skfi ← KG(MSK, fi, i) for every i ∈ [q], and
MSK∗{tag} ← Punc(MSK, tag).
Then, the challenger returns (MSK∗{tag},CT, {skfi}i∈[q]) to A.

4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advss
pSKFE,A(λ) = 2|Pr[b = b′]− 1

2 | = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

A is said to be valid if fi(m0) = fi(m1) holds for every i ∈ [q] in the above game. We say that pSKFE
satisfies semantic security at punctured tag if for any valid PPT A, we have Advss

pSKFE,A(λ) = negl(λ).
We further say that pSKFE satisfies ε-semantic security at punctured tag, for some concrete negligible
function ε(·), if for any valid PPT A the above advantage Advss

pSKFE,A(λ) is smaller than ε(λ)Ω(1).

In addition, we say that pSKFE is ε-secure puncturable SKFE if it satisfies functionality preserving under puncturing
and ε-semantic security at punctured tag.

Instead of functionality preserving under puncturing, we can consider a relaxed variant which we call
indistinguishability of functionality under puncturing. This property requires that any PPT distinguisher cannot
distinguish ciphertexts output by Enc and PEnc even given both master secret key and punctured master secret key.
The formal definition is as follows.

Definition 4.3 (Indistinguishability of functionality under puncturing). Let pSKFE = (Setup,KG,Enc,Dec,
Punc,PEnc) be puncturable SKFE whose message space and tag space areM and T , respectively. We define
indistinguishability of functionality game between a challenger and an adversary A as follows.
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1. The challenger generates a master secret key MSK← Setup(1λ) and chooses a challenge bit b r←− {0, 1}.
The challenger sends security parameter 1λ to A.

2. A sendsm ∈M and (tag, tag′) ∈ T × T such that tag 6= tag′ to the challenger.

3. The challenger first computes MSK∗{tag} ← Punc(MSK, tag). Then, the challenger computes CT ←
Enc(MSK, tag′,m) if b = 0, and CT← PEnc(MSK∗{tag}, tag′,m) otherwise.
Then, the challenger returns (MSK,MSK∗{tag},CT) to A.

4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advif
pSKFE,A(λ) = 2|Pr[b = b′]− 1

2 | = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

We say that pSKFE satisfies indistinguishability of functionality under puncturing if for any PPT A, we have
Advif

pSKFE,A(λ) = negl(λ).
We further say that pSKFE satisfies ε-indistinguishability of functionality under puncturing, for some concrete

negligible function ε(·), if for any PPT A the above advantage Advif
pSKFE,A(λ) is smaller than ε(λ)Ω(1).

Definition 4.4 (Secure puncturable SKFEwith indistinguishability of functionality). Let pSKFE be puncturable
SKFE. For some concrete negligible functions ε1(·) and ε2(·), if pSKFE satisfies ε1-semantic security at punctured
tag and ε2-indistinguishability of functionality under puncturing, then we say that pSKFE is (ε1, ε2)-secure
puncturable SKFE with indistinguishability of functionality.

Efficiency. We introduce the notion of succinctness for puncturable SKFE.

Definition 4.5 (Succinctness). Let λ be a security parameter, n the input length of functions in F , and s the
maximum size of circuits contained in F .

Weakly succinct: A puncturable SKFE scheme is said to be weakly succinct if the size of both the encryption
circuit and punctured encryption circuit are bounded by sγ · poly(λ, n), where γ < 1 is a fixed constant and
poly is a fixed polynomial. We call γ the compression factor.

Collusion-succinct: We say that a puncturable SKFE scheme is said to be collusion succinct if the size of both the
encryption circuit and punctured encryption circuit are bounded by qγ · poly(n, λ, s), where q is the upper
bound of issuable functional decryption keys, γ < 1 is a fixed constant, and poly is a fixed polynomial. We
call γ the compression factor.

4.3 Difference from Definition of Bitansky and Vaikuntanathan
There are three main differences between our definition of puncturable SKFE and that of Bitansky and Vaikun-
tanathan [BV15]. Two are about syntax. The other is about security.

Syntactical differences are as follows.

Tag-based encryption and decryption: In the definition of Bitansky and Vaikuntanathan, a master secret key is
punctured at two messages. Their semantic security requires that no PPT adversary can distinguish ciphertexts
of these two messages given the punctured master secret key.
We adopt the tag based syntax for the encryption and decryption algorithmswhile Bitansky andVaikuntanathan
do not. A tag-based definition is well-suited for our non-succinct puncturable SKFE scheme. When our
non-succinct scheme encrypts a message, it generates a garbled circuit of an universal circuit into which the
message is hardwired, and then masks labels of the garbled circuit by a string generated by puncturable PRF.
A tag fed to the encryption algorithm is used as an input to puncturable PRF. See Section 5 and 6 for details.
In our construction of IO in Section 7, we use an input to an obfuscated circuit as a tag for ciphertexts of
puncturable SKFE. Therefore, our IO construction is not significantly different from the IO construction
based on puncturable SKFE by Bitansky and Vaikuntanathan from the syntactical point of view though ours
is based on tag-based puncturable SKFE.
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Index based key generation: We define the key generation algorithm as a stateful algorithm. In other words, for
the i-th invocation, we need to feed an index i to the key generation algorithm in addition to a master secret
key and a function. This is because we transform a non-succinct scheme into a weakly-succinct one via a
collusion-succinct scheme whose key generation algorithm is stateful in Section 6.
We note that our stateful collusion-succinct scheme is just an intermediate scheme to achieve IO. We also
emphasize the fact that the index-based key generation is not an issue to construct IO because our main
building block is a single-key weakly-succinct puncturable SKFE scheme. For a single-key scheme, we do
not need any state for key generation because it can issue only a single functional key.
Hereafter, we omit the index of single-key schemes in the syntax for simplicity.

Functionality under puncturing. In addition to the syntactic differences above, there is a difference about
security. We defined indistinguishability of functionality under puncturing in Definition 4.3. The reason why
we introduce the relaxed notion of functionality preserving property is that our weakly-succinct scheme does not
satisfy functionality preserving under puncturing in Definition 4.2 but the relaxed one. Our non-succinct scheme
satisfies functionality preserving under puncturing. One might think that a puncturable SKFE scheme that satisfies
indistinguishability of functionality under puncturing is not sufficient to construct IO. This is not the case. We show
that indistinguishability of functionality under puncturing suffices for constructing IO and our weakly-succinct
scheme satisfies the property.

5 Construction of Single-Key Non-Succinct Puncturable SKFE
We show we can construct a single-key (non-succinct) puncturable SKFE scheme assuming only one-way functions.
This construction is similar to that of a single-key non-succinct public-key functional encryption scheme proposed
by Sahai and Seyalioglu [SS10]. Their construction is based on garbling scheme and public-key encryption. In our
construction, we use puncturable PRF instead of public-key encryption, and, as a result, achieve the puncturable
property. We recall that we can realize both garbling scheme and puncturable PRF assuming only one-way functions.
We give the construction below.

Let GC = (Grbl,Eval) be a garbling scheme, and PPRF = (F,PuncF) be a puncturable PRF. Using GC and
PPRF, we construct a puncturable SKFE schemeOneKey = (1Key.Setup, 1Key.KG, 1Key.Enc, 1Key.Dec, 1Key.Punc,
1Key.PEnc) supporting only one functional key as follows. Note that the tag space of OneKey is the same as the
domain of PPRF. In addition, the index space of OneKey is [1], and thus we omit the index from the description by
assuming the index is always fixed to 1. Below, we assume that we can represent every function f by an n-bit string
(f [1], · · · , f [s]).

Construction. The scheme consists of the following algorithms.

1Key.Setup(1λ) :

• Generate Sj,α
r←− {0, 1}λ for every j ∈ [s] and α ∈ {0, 1}.

• Return MSK← {Sj,α}j∈[s],α∈{0,1}.

1Key.KG(MSK, f) :

• Parse {Sj,α}j∈[s],α∈{0,1} ← MSK and (f [1], · · · , f [s])← f .
• Return skf ← (f, {Sj,f [j]}j∈[s]).

1Key.Enc(MSK, tag,m) :

• Parse {Sj,α}j∈[s],α∈{0,1} ← MSK.

• Compute (Ũ , {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·,m)).
• For every j ∈ [s] and α ∈ {0, 1}, compute Rj,α ← F(Sj,α, tag) and cj,α ← Lj,α ⊕Rj,α.

• Return CT← (Ũ , {cj,α}j∈[s],α∈{0,1}).

1Key.Dec(skf , tag,CT) :
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• Parse (f, {Sj}j∈[s])← skf and (Ũ , {cj,α}j∈[s],α∈{0,1})← CT.
• For every j ∈ [s], compute Rj ← F(Sj , tag) and Lj ← cj,f [j] ⊕Rj .

• Return y ← Eval(Ũ , {Lj}j∈[s]).

1Key.Punc(MSK, tag) :

• Parse {Sj,α}j∈[s],α∈{0,1} ← MSK.
• For every j ∈ [s] and α ∈ {0, 1}, compute S∗j,α{tag} ← PuncF(Sj,α, tag).
• Return MSK∗{tag} ← {S∗j,α{tag}}j∈[s],α∈{0,1}.

1Key.PEnc(MSK∗, tag′,m)

• Parse {S∗j,α}j∈[s],α∈{0,1} ← MSK∗.

• Compute (Ũ , {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·,m)).
• For every j ∈ [s] and α ∈ {0, 1}, compute Rj,α ← FS∗

j,α
(tag′) and cj,α ← Lj,α ⊕Rj,α.

• Return CT← (Ũ , {cj,α}j∈[s],α∈{0,1}).

Then, we have the following theorem.

Theorem 5.1. Let GC be a δ-secure garbling scheme, and PPRF a δ-secure puncturable PRF, where δ(·) is some
negligible function. Then, OneKey is a δ-secure single-key puncturable SKFE scheme.

Proof of Theorem 5.1. The correctness follows from those of GC and PPRF. We first prove the functionality
preserving under puncturing of OneKey. Then, we show that OneKey satisfies semantic security at punctured tag.

Functionality preservingunderpuncturing. Wehave 1Key.PEnc(MSK∗{tag}, tag′,m; r) = 1Key.Enc(MSK,
tag′,m; r) for everym ∈M, (tag, tag′) ∈ T × T such that tag 6= tag′, randomness r, MSK← 1Key.Setup(1λ),
and MSK∗{tag} ← 1Key.Punc(MSK, tag), since the underlying PPRF satisfies functionality preserving under
puncturing property. This implies that OneKey satisfies functionality preserving under puncturing property.

Semantic security at punctured tag. Let A be a valid adversary that attacks the semantic security at
punctured tag of OneKey. We proceed the proof via a sequence of games. Below, for every ` ∈ {0, · · · , 3}, let
SUC` be the event that A succeeds in guessing the challenge bit b in Game `.

Game 0: This is the original security game regarding OneKey. Then, we have Advss
pSKFE,A(λ) = 2|Pr[SUC0]− 1

2 |.
The detailed description is as follows.

1. The challenger generates Sj,α
r←− {0, 1}λ for every j ∈ [s] and α ∈ {0, 1}, and sets MSK ←

{Sj,α}j∈[s],α∈{0,1}. The challenger also chooses a challenge bit b r←− {0, 1}. The challenger sends
security parameter 1λ to A.

2. A sends (m0,m1) ∈M×M, tag ∈ T , and a function f to the challenger.

3. The challenger computes (Ũ , {Lj,α}j∈[s],α∈{0,1}) ← Grbl(1λ, U(·,mb)) and Rj,α ← F(Sj,α, tag)
and cj,α ← Lj,α ⊕Rj,α for every j ∈ [s] and α ∈ {0, 1}, and sets CT← (Ũ , {cj,α}j∈[s],α∈{0,1}).
Next, the challenger sets skf ← (f, {Sj,f [j]}j∈[s]).
Then, the challenger computes S∗j,α{tag} ← PuncF(Sj,α, tag) for every j ∈ [s] and α ∈ {0, 1}, and
sets MSK∗{tag} ← {S∗j,α{tag}}j∈[s],α∈{0,1}.
The challenger returns (MSK∗{tag},CT, skf ) to A.

4. A outputs b′ ∈ {0, 1}.

Game 1: Same as Game 1 except that the challenger generates {Rj,1−f [j]}j∈[n] as truly random strings.

From the pseudorandomness of punctured point of PPRF, we see that |Pr[SUC0]− Pr[SUC1]| ≤ δΩ(1).
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Game 2: Same as Game 2 except that for every j ∈ [n], the challenger generates cj,1−f [j] ← Rj,f [j].
In Game 1, cj,1−j[j] is generated as cj,1−f [j] ← Lj,1−f [j] ⊕Rj,1−f [j] for every j ∈ [n]. However, in Game
1, Rj,1−f [j] is generated as a truly random string for every j ∈ [n], and thus the distribution of c[j, 1− f [j] is
uniformly random. Therefore, In Game 1 and 2, the distribution of cj,1−f [j] for every j ∈ [n] is the same and
we have |Pr[SUC1]− Pr[SUC2]| = 0.

Game 3: Same as Game 2 except that the challenger computes (Ũ , {Lj}j∈[n]) ← Sim(1λ, y) and cj,f [j] ←
Rj,f [j] ⊕ Lj , where y = f(m0) = f(m1).
In both Game 2 and 3, A is not given any information of labels {Lj,1−f [j}j∈[n]. Therefore, we can use the
security guarantee of GC, and obtain |Pr[SUC2]− Pr[SUC3]| ≤ δΩ(1).

In Game 3, the choice of the challenge bit b is information theoretically hidden from the view of A, and thus we
have |Pr[SUC3]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2Advss

OneKey,A(λ) = |Pr[SUC0]− 1
2 |

≤ |Pr[SUC0]− Pr[SUC3]|

≤
2∑
`=0
|Pr[SUC`]− Pr[SUC`+1]| . (1)

From the above argument, each term of the right side of inequality 1 is bounded by δΩ(1). Therefore, we see
that Advss

OneKey,A(λ) ≤ δΩ(1). Since the choice of A is arbitrary, OneKey satisfies δ-semantic security at punctured
tag. � (Theorem 5.1)

6 Weakly-Succinct Puncturable SKFE from Non-Succinct One
In this section, we show how to transform a single-key non-succinct puncturable SKFE scheme into a single-key
weakly-succinct one using SXIO. Note that the resulting scheme satisfies only indistinguishability of functionality
under puncturing property even if we start the transformation with a non-succinct scheme satisfying functionality
preserving under puncturing property.

The transformation consists of 2 steps. First, we show how to construct a collusion-succinct puncturable SKFE
scheme from a single-key non-succinct puncturable SKFE scheme and SXIO. Then, we give the transformation
from a collusion-succinct scheme to a weakly-succinct scheme.

In fact, the intermediate collusion-succinct scheme satisfies only indistinguishability of functionality under
puncturing property. This is because we adopt a construction technique similar to that proposed by Lin et
al. [LPST16], and thus we use an obfuscated encryption circuit of the building block scheme by SXIO as a
ciphertext of the resulting scheme. This fact is the reason the resulting weakly-succinct scheme satisfies only
indistinguishability of functionality under puncturing property.

Below, we start with the first step.

6.1 From Non-Succinct to Collusion-Succinct by Using SXIO
For any q which is a fixed polynomial of λ, we show how to construct a puncturable SKFE scheme whose index
space is [q] based on a single-key puncturable SKFE scheme. The construction is collusion-succinct, that is, the
running time of both the encryption algorithm and the punctured encryption algorithm are sub-linear in q. We show
the construction below.

LetOneKey = (1Key.Setup, 1Key.KG, 1Key.Enc, 1Key.Dec, 1Key.Punc, 1Key.PEnc) be a puncturable SKFE
scheme that we constructed in Section 5. Let sxiO be an SXIO and PPRF = (F,PuncF) a puncturable PRF. Using
OneKey, sxiO, and PPRF, we construct a puncturable SKFE scheme CollSuc = (CS.Setup,CS.KG,CS.Enc,
CS.Dec,CS.Punc,CS.PEnc) as follows. We again note that q is a fixed polynomial of λ. The tag space of CollSuc
is the same as that of OneKey.
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Construction. The scheme consists of the following algorithms.

CS.Setup(1λ) :

• Generate S r←− {0, 1}λ.
• Return MSK← S.

CS.KG(MSK, f, i) :

• Parse S ← MSK.
• Compute riSetup ← FS(i) and MSKi ← 1Key.Setup(1λ; riSetup).
• Compute 1Key.skf ← 1Key.KG(MSKi, f).
• Return skf ← (i, 1Key.skf ).

CS.Enc(MSK, tag,m) :

• Parse S ← MSK.
• Generate SEnc

r←− {0, 1}λ.
• Return CT← sxiO(E1Key[S, SEnc, tag,m]). The circuit E1Key is defined in Figure 2.

CS.Dec(skf , tag,CT) :

• Parse (i, 1Key.skf )← skf .
• Compute CTi ← CT(i).
• Return y ← 1Key.Dec(1Key.skf , tag,CTi).

CS.Punc(MSK, tag) :

• Parse S ← MSK.
• Generate SPunc

r←− {0, 1}λ.
• Compute P̃← sxiO(P1Key[S, SPunc, tag]). The circuit P1Key is defined in Figure 3.

• Return MSK∗{tag} ← P̃.

CS.PEnc(MSK∗, tag′,m) :

• Parse P̃← MSK∗.
• Generate SEnc

r←− {0, 1}λ.
• Return CT← sxiO(PE1Key[P̃, SEnc, tag′,m]). The circuit PE1Key is defined in Figure 4.

Encryption circuit E1Key[S, SEnc, tag,m](i) :

Hardwired: Two PRF keys S and SEnc, a tag tag, and a messagem.
Input: An index i ∈ [q].
Padding: This circuit is padded to size padE := padE(λ, n, s), which is determined in analysis.

1. Compute riSetup ← FS(i) and rEnc ← FSEnc(i).

2. Compute MSKi ← 1Key.Setup(1λ; riSetup).

3. Return CTi ← 1Key.Enc(MSKi, tag,m; rEnc).

Figure 2: The description of E1Key.

Then, we have the following theorem.
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Punctured key generation circuit P1Key[S, SPunc, tag](i) :

Hardwired: Two PRF keys S and SPunc, and a tag tag.
Input: An index i ∈ [q].
Padding: This circuit is padded to size padP := padP(λ, n, s), which is determined in analysis.

1. Compute riSetup ← FS(i) and rPunc ← FSPunc(i).

2. Compute MSKi ← 1Key.Setup(1λ; riSetup).

3. Return MSK∗i {tag} ← 1Key.Punc(MSKi, tag; rPunc).

Figure 3: The description of P1Key.

Punctured encryption circuit PE1Key[P̃, SEnc, tag,m](i) :

Hardwired: A circuit P̃, a PRF key SEnc, a tag tag, and a messagem.
Input: An index i ∈ [q].
Padding: This circuit is padded to size padE := padE(λ, n, s), which is determined in analysis.

1. Compute MSK∗i ← P̃(i) and rEnc ← FSEnc(i).

2. Return CTi ← 1Key.PEnc(MSK∗i , tag,m; rEnc).

Figure 4: The description of PE1Key.

Theorem 6.1. Let δ(·) be some negligible function. Let OneKey be a δ-secure single-key puncturable SKFE scheme
constructed in Section 5. Let sxiO be a δ-secure γ-compressing SXIO, where γ < 1 is a constant. Let PPRF a
δ-secure puncturable PRF. Then, CollSuc is a (δ, δ)-secure puncturable SKFE scheme with indistinguishability of
functionality that is collusion-succinct with compression factor γ̂, which is a constant smaller than 1.

The concrete value of γ̂ is determined in the efficiency analysis in the following proof of Theorem 6.1. As we
will see, we can make γ̂ arbitrarily small by using SXIO with appropriate compression factor.

Proof of Theorem 6.1. We first determine the size of padding parameters. Then, we analyze the efficiency.
Finally, we complete the security proof.

Below, let s and n be the upper bound of size and input length of functions supported by CollSuc.

Padding Parameter. In order to complete this proof, we ensure that the encryption circuits E1Key, PE1Key,
and Ei∗1Key for every i∗ ∈ [q] are indistinguishable when we obfuscate them by SXIO. Moreover, the obfuscated
P1Key and Pi∗1Key also need to be indistinguishable. For this reason, we need appropriate size padding for these
circuits. Below, we first analyze the size of padding for P1Key and Pi∗1Key because the description of PE1Key includes
obfuscated P1Key.

To guarantee the indistinguishability of P1Key and Pi∗1Key when we obfuscate them, we need to set

padP := max(|P1Key|, |Pi
∗

1Key|) .

Both P1Key and Pi∗1Key includes two PRF evaluation over the domain [q], and the key generation and puncturing
procedure of OneKey. Since OneKey is a single-key scheme, and q is determined independently of OneKey, the
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Encryption circuit Ei∗1Key[S∗, S∗Enc, tag,m0,m1,CTi∗ ](i) :

Hardwired: Two punctured PRF keys S∗ and S∗Enc, a tag tag, two messagesm0 andm1, and a ciphertext
CTi∗ .

Input: An index i ∈ [q].
Padding: This circuit is padded to size padE := padE(λ, n, s), which is determined in analysis.

1. If i = i∗ and CTi∗ 6= ⊥, return CTi∗ .

2. Else, compute as follows:

• Compute riSetup ← FS∗(i) and rEnc ← FS∗Enc
(i).

• Compute MSKi ← 1Key.Setup(1λ; riSetup).
• If i ≤ i∗, compute CTi ← 1Key.Enc(MSKi, tag,m1; rEnc), and otherwise compute CTi ←

1Key.Enc(MSKi, tag,m0; rEnc).
• Return CTi.

Figure 5: The description of Ei
∗

1Key. The circuit is defined for every i∗ ∈ [q].

Punctured key generation circuit Pi∗1Key[S∗, S∗Punc, tag,MSK∗i∗ ](i) :

Hardwired: Two PRF keys S and SPunc, a tag tag, and a punctured master secret key MSK∗i∗ .
Input: An index i ∈ [q].
Padding: This circuit is padded to size padP := padP(λ, n, s), which is determined in analysis.

1. If i = i∗, return MSK∗i∗ .

2. Else, compute as follows:

• Compute riSetup ← FS∗(i) and rPunc ← FS∗Punc
(i).

• Compute MSKi ← 1Key.Setup(1λ; riSetup).
• Return MSK∗i {tag} ← 1Key.Punc(MSKi, tag; rPunc).

Figure 6: The description of Pi
∗

1Key. The circuit is defined for every i∗ ∈ [q].

running time of each algorithm of OneKey is independent of q. Therefore, we have

padP ≤ poly(λ, log q) + poly(λ, n, s)
≤ polyP(λ, n, s, log q) ,

where poly denotes an unspecified polynomial and polyP is some fixed polynomial.
Then, we move on to the analysis of the padding parameter for encryption algorithms.
We need to set padE as

padE := max(|E1Key|, |PE1Key|, |Ei
∗

1Key|) .

E1Key and Ei∗1Key for every i∗ ∈ [q] consists of two PRF evaluation over the domain [q], and the key generation
and encryption procedure of OneKey. Therefore, we have

max(|E1Key|, |Ei
∗

1Key|) ≤ poly(λ, n, s, log q) , (2)
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where poly is an unspecified polynomial.
In addition, PE1Key includes one PRF evaluation over the domain [q], the execution of P̃ that is obfuscated P by

sxiO, and the punctured encryption procedure of OneKey. Then, since the non-trivial efficiency of sxiO, when we
obfuscate a circuitC with input space [N ] by sxiO, we can bound the size of obfuscatedC byNγ · |C|c ·polysxiO(λ),
where γ < 1 and c are constants. Thus, we have

|P̃| ≤ qγ · |P|c · polysxiO(λ)
= qγ · |polyP(λ, n, s, log q)|c · polysxiO(λ)
≤ qγ1 · poly(λ, n, s) ,

where γ1 is an arbitrary constant such that γ < γ1 < 1. Hence, we obtain

|PE1Key| ≤ poly(λ, log q) + qγ1 · poly(λ, n, s) + poly(λ, n, s)
≤ qγ1 · poly(λ, n, s) , (3)

where poly denotes an unspecified polynomial.
Therefore, from inequalities 2 and 3, we have

padE ≤ qγ1 · polyE(λ, n, s) , (4)

where polyE is some fixed polynomial.

Efficiency. To simplify the efficiency analysis, we assume that we use two different SXIO sxiO and sxiO′.
We use sxiO to obfuscate P1Key. We use sxiO′ to obfuscate E1Key and PE1Key.

We assume that when we obfuscate a circuit C with input space [N ] by sxiO and sxiO′, we can bound the size
of sxiO(C) and sxiO′(C) by

Nγ · |C|c · polysxiO(λ) and Nγ′ · |C|c
′
· polysxiO′(λ) ,

respectively, where γ and γ′ are constants strictly smaller than 1, and c and c′ are constants.
Then, from inequality 4, we can bound the running time of both CS.Enc and CS.PEnc by

qγ
′
· (padE)c

′
· polysxiO(λ) ≤ qγ

′
· (qγ1 · polyE(λ, n, s))c

′
· polysxiO(λ) ≤ qγ

′+c′γ1 · poly(λ, n, s) ,

where poly denote an unspecified polynomial and γ1 is an arbitrary constant such that γ < γ1 < 1.
Therefore, if we have γ′ + c′γ1 < 1, we can conclude that CollSuc is collusion-succinct. From Theorem 3.15,

using a collusion-resistant SKFE scheme, we can construct SXIO with arbitrary constant compression factor. Thus,
we can use SXIO with compression factor smaller than 1−γ′

c′ as sxiO, and ensure that γ̂ := γ′ + c′γ1 < 1 in our
construction by assuming a collusion-resistant SKFE scheme. Note that γ, γ′, and γ1 are arbitrarily small constants
such that γ < γ1 and c′ is a constant. Thus, γ̂ could be an arbitrarily small constant by taking sufficiently small γ
and γ′. This completes the efficiency analysis.

Indistinguishability of functionality under puncturing. A ciphertext output by the standard encryption
algorithm is an obfuscated circuit ofE1Key. A ciphertext output by the punctured encryption algorithm is an obfuscated
circuit of PE1Key. Thus, if we prove that E1Key and PE1Key are functionally equivalent, δ-indistinguishability of
functionality under puncturing of CollSuc holds due to the δ-security of sxiO.

Note that P̃ in PE1Key has the exactly same functionality as P1Key due to the functionality preserving property
of sxiO. Thus, on input i ∈ [q], E1Key and PE1Key basically compute the followings:

1. Compute riSetup ← FS(i) and rEnc ← FSEnc(i).

2. Compute MSKi ← 1Key.Setup(1λ; riSetup).

3. E1Key and PE1Key respectively computes CTi as follows:

• E1Key computes CTi ← 1Key.Enc(MSKi, tag′,m; rEnc)
• PE1Key computesCTi ← 1Key.PEnc(MSK∗i {tag}, tag′,m; rEnc) by usingMSK∗i {tag} ← 1Key.Punc

(MSKi, tag; rPunc) and rPunc ← FSPunc(i).
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4. Return CTi.

Recall that OneKey satisfies functionality preserving under puncturing property defined in Definition 4.2. Thus,
both E1Key and PE1Key compute the same CTi as long as tag′ 6= tag holds and the same SEnc is used in both circuits.

Thus, we can conclude that CollSuc satisfies δ-indistinguishability of functionality under puncturing by the
δ-security of sxiO.

Semantic security at punctured tag LetA be a valid adversary that attacks the semantic security at punctured
tag of CollSuc. We proof it via a sequence of games. Let SUCj denote the event that A succeeds in guessing the
challenge bit b in Game j.

Game 0 This is the punctured semantic security game regarding CollSuc. Then, we have Advss
CollSuc,A(λ) =

2|Pr[SUC0]− 1
2 |. The detailed description is as follows.

1. The challenger generates S r←− {0, 1}λ and sets MSK← S. The challenger also chooses a challenge bit
b

r←− {0, 1}. The challenger sends security parameter 1λ to A.
2. A sends (m0,m1) ∈M×M, tag ∈ T , and {fi}i∈[q] to the challenger.

3. The challenger generates SEnc
r←− {0, 1}λ and computes CT← sxiO(E1Key[S, SEnc, tag,m]).

Next, for every i ∈ [q], the challenger computes as follows. The challenger computes riSetup ← FS(i),
MSKi ← 1Key.Setup(1λ; riSetup), and 1Key.skfi ← 1Key.KG(MSKi, fi). Then, the challenger sets
skfi ← (i, 1Key.skfi).
Then, the challenger generates SPunc

r←− {0, 1}λ and computes P̃← sxiO(P1Key[S, SPunc, tag]). Then,
the challenger sets MSK∗{tag} ← P̃.
The challenger returns (MSK∗{tag},CT, {skfi}i∈[q]) to A.

4. A outputs b′ ∈ {0, 1}.

Then, for every i∗ ∈ [q], we define the following games. We define Game (6, 0) as the same game as Game
0. Let SUC(`,i∗) denote the event that A succeeds in guessing the challenge bit b in Game (`, i∗) for every
` ∈ {1, · · · , 6} and i∗ ∈ [q].

Game (1, i∗) Same as Game (6, i∗−1) except the followings. The challenger generatesCT← sxiO(Ei∗1Key[S∗{i∗},
S∗Enc{i∗}, tag,mb,m1,CTi∗ ]), where CTi∗ ← 1Key.Enc(MSKi∗ , tag,mb; ri

∗

Enc), MSKi∗ ← 1Key.Setup
(1λ; ri∗Setup), ri∗Setup ← FS(i∗), and ri∗Enc ← FSEnc(i∗).
The only difference betweenGame (6, i∗−1) and (1, i∗) is howCT is generated. InGame (6, i∗−1),CT is gen-
erated byCT← sxiO(Ei

∗−1
1Key [S, SEnc, tag,mb,m1,⊥]). However, we see that Ei

∗−1
1Key [S, SEnc, tag,mb,m1,⊥]

and Ei∗1Key[S∗{i∗}, S∗Enc{i∗}, tag,mb,m1,CTi∗ ] have exactly the same functionality. Therefore, by the indis-
tinguishability guarantee of sxiO, we have |Pr[SUC(6,i∗−1)]− Pr[SUC(1,i∗)]| ≤ δΩ(1) for every i∗ ∈ [q].

Game (2, i∗) Same as Game (1, i∗) except the followings. The challenger generates P̃ ← sxiO(Pi∗1Key[S∗{i∗},
S∗Punc{i∗}, tag,MSK∗i∗{tag}]), where MSK∗i∗{tag} ← 1Key.Punc(MSKi∗ , tag; ri∗Punc).
Similarly to the analysis between Game (6, i∗ − 1) and (1, i∗), due to the indistinguishability guarantee of
sxiO and the fact that P1Key[S, SPunc, tag] and Pi∗1Key[S∗{i∗}, S∗Punc{i∗}, tag,MSK∗i∗{tag}] have the same
functionality, we have |Pr[SUC(1,i∗)]− Pr[SUC(2,i∗)]| ≤ δΩ(1) for every i∗ ∈ [q].

Game (3, i∗) Same as Game (2, i∗) except that the challenger generates ri∗Setup, ri
∗

Enc, and ri
∗

Punc as truly random
strings.
From the pseudorandomness of PPRF, it holds that |Pr[SUC(2,i∗)]−Pr[SUC(3,i∗)]| ≤ δΩ(1) for every i∗ ∈ [q].

Game (4, i∗) Same as Game (3, i∗) except that the challenger generates CTi∗ ← 1Key.Enc(MSKi∗ , tag,m1).
In both Game (3, i∗) and (4, i∗), all of MSKi∗ , MSK∗i∗{tag}, and CTi∗ are generated under truly random
strings. In addition, since A is a valid adversary, it holds that fi∗(m0) = fi∗(m1). Therefore, from the
semantic security at punctured tag of OneKey, we obtain |Pr[SUC(3,i∗)]− Pr[SUC(4,i∗)]| ≤ δΩ(1) for every
i∗ ∈ [q].
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Game (5, i∗) Same as Game (4, i∗) except that the challenger generates ri∗Setup, ri
∗

Enc, and ri
∗

Punc using PPRF.

From the pseudorandomness of PPRF, it holds that |Pr[SUC(4,i∗)]−Pr[SUC(5,i∗)]| ≤ δΩ(1) for every i∗ ∈ [q].

Game (6, i∗) Same asGame (5, i∗) except that the challenger generatesCT← sxiO(Ei∗1Key[S, SEnc, tag,mb,m1,⊥])
and P̃← sxiO(P1Key[S, SPunc, tag]).
Similarly to the analysis between Game (6, i∗ − 1) and (1, i∗), due to the indistinguishability guarantee of
sxiO and the fact that Ei∗1Key[S∗{i∗}, S∗Enc{i∗}, tag,mb,m1,CTi∗ ] and Ei∗1Key[S, SEnc, tag,mb,m1,⊥] have
exactly the same functionality, we have |Pr[SUC(5,i∗)]− Pr[SUC(6,i∗)]| ≤ δΩ(1) for every i∗ ∈ [q].
We define one additional game.

Game 7 Same asGame (6, q) except the followings. The challenger generatesCT← sxiO(E1Key[S, SEnc, tag,m1]).
InGame (6, q),CT is generated byCT← sxiO(Eq1Key[S, SEnc, tag,mb,m1,⊥]). Eq1Key[S, SEnc, tag,mb,m1,⊥]
always ignoresmb and outputs a ciphertext ofm1. Therefore, Eq1Key[S, SEnc, tag,mb,m1,⊥] and E1Key[S,
SEnc, tag,m1] have the same functionality. Therefore, from the indistinguishability guarantee of sxiO, we
have |Pr[SUC(6,q)]− Pr[SUC7]| ≤ δΩ(1).

In Game 7, the choice of the challenge bit b is information theoretically hidden from the view of A, and thus we
have |Pr[SUC7]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2Advss

CollSuc,A(λ) = |Pr[SUC0]− 1
2 |

≤ |Pr[SUC0]− Pr[SUC7]|

≤ |Pr[SUC0]− Pr[SUC(1,1)]|+
∑
i∗∈[q]

5∑
`=1
|Pr[SUC(`,i∗)]− Pr[SUC(`+1,i∗)]|

+ |Pr[SUC(6,q)]− Pr[SUC7]| . (5)

From the above argument, each term of the right side of inequality 5 is bounded by δΩ(1). Therefore, we see
that Advss

CollSuc,A(λ) ≤ δΩ(1). Since the choice of A is arbitrary, CollSuc satisfies δ-semantic security at punctured
tag. � (Theorem 6.1)

6.2 From Collusion-Succinct to Weakly-Succinct
In this section, we show how to construct a single-key weakly-succinct puncturable SKFE scheme from a
collusion-succinct one.

This transformation is based on that proposed by Bitansky and Vaikuntanathan [BV15], and thus utilizes a
decomposable randomized encoding. The difference is that we must consider puncturing and punctured encryption
algorithms since we construct a puncturable SKFE scheme. In fact, we show their construction works for puncturable
SKFE schemes. In addition, we consider semantic security defined in the weakly selective security manner while
they considered selective security. Below, we give the construction.

We construct a single-key puncturable SKFE scheme WeakSuc = (WS.Setup,WS.KG,WS.Enc,WS.Dec,
WS.Punc,WS.PEnc). Let s and n be the maximum size and input length of functions supported by WeakSuc.
Let RE be a c-local decomposable randomized encoding, where c is a constant. We suppose that the number of
decomposed encodings of RE for a function of size s is µ. Then, µ is a polynomial bounded by s · polyRE(λ, n),
where polyRE(λ, n) is a fixed polynomial. We also suppose that the randomness space of RE is {0, 1}ρ, where ρ is a
polynomial bounded by s ·polyRE(λ, n). Let CollSuc = (CS.Setup,CS.KG,CS.Enc,CS.Dec,CS.Punc,CS.PEnc)
be a puncturable SKFE scheme whose index space and tag space are [µ] and T , respectively. Let SKE = (E,D) be
an SKE scheme and F a PRF. In the scheme, we use F : {0, 1}λ × ({0, 1}λ × [ρ])→ {0, 1}. Using CollSuc, RE,
SKE, and F, we construct WeakSuc as follows. The tag space of WeakSuc is T .

WS.Setup(1λ) :

• Return MSK← CS.Setup(1λ).

WS.KG(MSK, f) :
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• GenerateK r←− {0, 1}λ and t← {0, 1}λ.

• Compute f̂ ← RE(1λ, f) and decomposed encodings f̂1, · · · f̂µ together with sets of integers
(R1, · · · , Rµ). Ri indicates which bit of a randomness f̂i depends on for every i ∈ [µ]. Note
that Ri ⊆ [ρ] and |Ri| = c for every i ∈ [µ].

• Generate CTske
i ← E(K, 0|f̂i(·,·)|), and compute skEni ← CS.KG(MSK,Endre[f̂i, Ri, t,CTske

i ], i) for
every i ∈ [µ]. Endre defined in Figure 7.

• Return skf ← (skEn1 , · · · , skEnµ).

WS.Enc(MSK, tag,m) :

• Generate Sencd ← {0, 1}λ.
• Return CT← CS.Enc(MSK, tag, (m,Sencd,⊥)).

WS.Dec(skf , tag,CT) :

• Parse (skEn1 , · · · , skEnµ)← skf .
• For every i ∈ [µ], compute ei ← CS.Dec(skEni , tag,CT).
• Decode y from (e1, · · · , eµ).
• Return y.

WS.Punc(MSK, tag) :

• Return MSK∗{tag} ← CS.Punc(MSK, tag).

WS.PEnc(MSK∗, tag′,m) :

• Generate Sencd ← {0, 1}λ.
• Return CT← CS.PEnc(MSK∗, tag′, (m,Sencd,⊥)).

Decomposable Randomized Encoding Circuit Endre[f̂i, Ri, t,CTske
i ](m,Sencd,K)

Hardwired: A randomized encoding f̂i, a set Ri, a string t, and a ciphertext CTske
i .

Input: A messagem, a PRF key Sencd, and an SKE secret keyK.

1. Ifm = ⊥, return ei ← D(K,CTske
i ).

2. Else, compute as follows:

• For j ∈ Ri, compute rj ← PRF(Sencd, t‖j), set rRi ← {rj}j∈Ri .

• Return ei ← f̂i(m; rRi).

Figure 7: The description of Endre.

Theorem 6.2. Let δ(·) be a negligible function. Let CollSuc be a (δ, δ)-secure puncturable SKFE scheme with
indistinguishability of functionality that can issue µ functional keys and is collusion-succinct with compression
factor γ, where γ < 1 is a constant. Let RE, SKE, and F be δ-secure decomposable RE, SKE scheme, and PRF,
respectively. Then, WeakSuc be a (δ, δ)-secure single-key puncturable SKFE scheme with indistinguishability of
functionality that is weakly-succinct with compression factor γ.

Proof of Theorem 6.2. We start with analyzing the weak succinctness of WeakSuc, and then move on to the
security proof.
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Succinctness. Let Enidre denote the circuit Endre[f̂i, Ri, t,CTske
i ]. In order to issue one functional key, the

construction needs to issue 1 · µ ≤ s · polyRE(λ, n) keys of CollSuc since we consider functions of size s and
n-bit input. Thus, we choose µ as the number of issuable keys of CollSuc. The size of Enidre is bounded by
polyEn(λ, n, log s) since |f̂i| is independent of s, the running time of the PRF evalusation is poly(λ, log s), and
the size of Ri, t, and CTske

i are bounded by O(λ) from the decomposability of RE, where polyEn is a polynomial.
Since CollSuc is collusion-succinct, the encryption time of WeakSuc is bounded by

µγ · poly(λ, n, |Enidre|) ≤ (s · polyRE(λ, n))γ · poly(λ, n,polyEn(λ, n, log s)) ≤ sγ
′
· poly(λ, n) ,

where γ′ is a constant such that γ < γ′ < 1, γ is an arbitrarily small constant and poly denotes an unspecified
polynomial. This implies that WeakSuc is weakly-succinct.

Indistinguishability of functionality under puncturing. WS.Enc and WS.PEnc just outputs a ciphertext
output by CS.Enc and CS.PEnc, respectively. Therefore, we can see that if CollSuc satisfies δ-indistinguishability
of functionality under puncturing, then so does WeakSuc.

Semantic security at punctured tag. Let A be an adversary that attacks the semantic security at punctured
tag of WeakSuc. We prove it via sequence of games. Below, for every ` ∈ {0, · · · , 4}, let SUC` be the event that A
succeeds in guessing the challenge bit b in Game `.

Game 0: This is the punctured semantic security game regarding WeakSuc. Then, we have Advss
WeakSuc,A(λ) =

2|Pr[SUC0]− 1
2 |. The detailed description is as follows.

1. The challenger generate Sencd ← {0, 1}λ and computes CT ← CS.Enc(MSK, tag, (mb, Sencd,⊥)).
The challenger sends security parameter 1λ to A.

2. A sends (m0,m1) ∈M×M, tag ∈ T , and a function f to the challenger.
3. The challenger generates MSK ← CS.Setup(1λ). The challenger also chooses a challenge bit
b

r←− {0, 1}.
Next, the challenger generates K r←− {0, 1}λ and t ← {0, 1}λ, and computes f̂ ← RE(1λ, f) and
decomposed encodings f̂1 · · · f̂µ together with sets (R1, · · · , Rµ). Then, the challenger generates
CTske

i ← E(K, 0|f̂i(·,·)|), and computes skEni ← CS.KG(MSK,Endre[f̂i, Ri, t,CTske
i ], i) for every

i ∈ [µ]. Moreover, the challenger sets skf ← (skEn1 , · · · , skEnµ).
Then, the challenger computes MSK∗{tag} ← CS.Punc(MSK, tag).
The challenger returns (MSK∗{tag},CT, skf ) to A.

4. A outputs b′ ∈ {0, 1}.

Game 1 Same as Game 0 except that the challenger generates CTske
i ← E(K, ei) for every i ∈ [µ], where

ei ← f̂i(mb; rRi).
In Game 0 and 1, A is not given any information of secret key K of SKE. Therefore, from the security
guarantee of SKE, we have |Pr[SUC0]− Pr[SUC1]| ≤ δΩ(1).

Game 2 Same as Game 1 except that the challenger generates CT← CS.Enc(MSK, tag, (⊥,⊥,K)).
We can see that for every i ∈ [µ], we have

Endre[f̂i, Ri, t,CTske
i ](mb, Sencd,⊥) = f̂i(mb; rRi) = Endre[f̂i, Ri, t,CTske

i ](⊥,⊥,K).

Therefore, from the semantic security at punctured tag ofCollSuc, it holds that |Pr[SUC1]−Pr[SUC2]| ≤ δΩ(1).

Game 3 Same as Game 2 except that the challenger generates rj as a truly random string for every j ∈ [ρ].
From the pseudorandomness of F, we have |Pr[SUC2]− Pr[SUC3]| ≤ δΩ(1).

Game 4 Same as Game 3 except that the challenger generates {ei}i∈[µ] ← Sim(1λ, s, y), where Sim is a simulator
for RE and y = f(m0) = f(m1).
In Game 3 and 4, for every i ∈ [µ], ei hardwired into Endre after encrypted is generated with a truly random
string. Therefore, from the security guarantee of RE, we have |Pr[SUC3]− Pr[SUC4]| ≤ δΩ(1).
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In Game 4, the choice of the challenge bit b is information theoretically hidden from the view of A, and thus we
have |Pr[SUC4]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2Advss

WeakSuc,A(λ) = |Pr[SUC0]− 1
2 |

≤ |Pr[SUC0]− Pr[SUC4]|

≤
3∑
`=0
|Pr[SUC`]− Pr[SUC`+1]| . (6)

From the above argument, each term of the right side of inequality 6 is bounded by δΩ(1). Therefore, we see that
Advss

WeakSuc,A(λ) ≤ δΩ(1). Since the choice of A is arbitrary, WeakSuc satisfies δ-semantic security at punctured
tag. � (Theorem 6.2)

7 Indistinguishability Obfuscation from Puncturable SKFE
In this section, we show how to construct IO from puncturable SKFE satisfying only indistinguishability of
functionality under puncturing. Formally, we prove the following theorem.

Theorem 7.1. Let δ(λ) = 2−λε , where ε < 1 is a constant. Assuming there exists (δ, δ)-secure single-key
weakly-succinct puncturable SKFE with indistinguishability of functionality for all circuits. Then, there exists
secure IO for all circuits.

In addition, by combining Theorems 3.15, 5.1, 6.1, and 6.2, we also obtain the following theorem.

Theorem 7.2. Assuming there exists δ-secure collusion-resistant SKFE for all circuits, where δ(·) is a negligible
function. Then, there exists (δ, δ)-secure single-key weakly-succinct puncturable SKFE with indistinguishability of
functionality for all circuits.

In order to obtain Theorem 7.2, we also use δ-secure PRF, puncturable PRF, plain SKE, garbling scheme, and
decomposable randomized encoding as building blocks. From Theorems 3.2, 3.4, 3.6, 3.8, and 3.10, all of these
primitives are implied by δ-secure one-way functions thus implied by δ-secure collusion-resistant SKFE for all
circuits.

By combining Theorems 7.1 and 7.2, we obtain the following main theorem.

Theorem 7.3. Let δ(λ) = 2−λε , where ε < 1 is a constant. Assuming there exists δ-secure collusion-resistant
SKFE for all circuits. Then, there exists secure IO for all circuits.

Remark 7.4 (IO for circuits with input of poly-logarithmic length). The security loss of our construction of IO
is exponential in the input length of circuits, but is independent of the size of circuits. Thus, if the input length
of circuits is poly-logarithmic in the security parameter, our construction of IO incurs only quasi-polynomial
security loss regardless of the size of circuits. Therefore, we can obtain IO for circuits of polynomial size with
input of poly-logarithmic length from quasi-polynomially secure collusion-resistant SKFE for all circuits. This is
an improvement over the IO construction by Komargodski and Segev [KS17]. They showed that IO for circuits
of sub-polynomial size with input of poly-logarithmic length is constructed from quasi-polynomially secure
collusion-resistant SKFE for all circuits.

Komargodski and Segev also showed that the combination of their IO and sub-exponentially secure one-way
functions yields succinct and collusion-resistant PKFE for circuits of sub-polynomial size with input of poly-
logarithmic length. We also observe that our IO for circuits of polynomial size with input of poly-logarithmic length
leads to succinct and collusion-resistant PKFE for circuits of polynomial size with input of poly-logarithmic length
by combining sub-exponentially secure one-way functions from the result of Komargodski and Segev.

To prove Theorem 7.1, we first give the construction of IO based on puncturable SKFE. Then, we analyze its
security and efficiency.
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7.1 Construction
Our construction of IO is almost the same as that of Bitansky and Vaikuntanathan [BV15]. The notable difference
is that we use the relaxed variant of puncturable SKFE in Definition 4.4 instead of PKFE or their puncturable SKFE.
Thus, the security analysis of our IO is different from and more complex than that of Bitansky and Vaikuntanathan.

Let pSKFE = (Setup,KG,Enc,Dec,Punc,PEnc) be a single-key weakly-succinct puncturable SKFE scheme.
Let SKE = (E,D) be an SKE scheme and PPRF = (F,PuncF) a puncturable PRF. Below, let λ̃ denote the security
parameter given to these building block schemes. Let δ(λ̃) = 2−λ̃ε , where ε < 1 is a constant. We assume that
pSKFE is a (δ, δ)-secure puncturable SKFE with indistinguishability of functionality under puncturing. In addition,
we assume that SKE and PPRF are δ-secure. Note that the existence of such SKE and PPRF are implied by that of
pSKFE. Using pSKFE, SKE, and PPRF, we construct an indistinguishability obfuscation iO as follows.

Given a circuit C : {0, 1}n → {0, 1}m and a security parameter λ, the obfuscator iO first sets the security
parameter λ̃ for building block schemes as λ̃ = ω((n2 + log λ)1/ε). iO uses pSKFE whose tag space and message
space is {0, 1}n and {0, 1}n × {0, 1}λ̃ × {0, 1}, respectively. iO also uses PPRF whose domain is {0, 1}n. When
a shorter string than expected is used as an input to these schemes, we always consider that it is fed after padded
to the appropriate length. iO invokes the following recursive obfuscation procedure riO(1λ̃, n, C) in order to
obfuscate C.

riO(1λ̃, i, Ci) :

• If i = 1, return C̃i ← (Ci(0), Ci(1)).
• Else, runs as follows:

– GenerateKi,0,Ki,1
r←− {0, 1}λ̃ and compute CTske

i,0 ← E(Ki,0, Ci) and CTske
i,1 ← E(Ki,1, Ci).

– Generate MSKi ← Setup(1λ̃) and compute skEvi ← KG(MSKi,Ev[CTske
i,0 ,CTske

i,1 ]). The circuit
Evi is defined in Figure 8.

– Generate Si
r←− {0, 1}λ̃ and compute Ẽi−1 ← riO(1λ̃, i− 1,Ei−1,0[MSKi,Ki,0, Si]). The circuit

Ei−1,0 is defined in Figure 9.
– Return C̃i ← (skEvi , Ẽi−1).

The corresponding recursive evaluation procedure is as follows. We can evaluate C(xn) by invoking
rEval(n, C̃,xn), where C̃ ← riO(1λ̃, n, C) and xn ∈ {0, 1}n.

rEval(i, C̃i,xi) :

• If i = 1, parse (CT1,0,CT1,1)← C̃i and return CT1,xi .
• Else, runs as follows:

– Parse (skEvi , Ẽi−1)← C̃i and xi−1‖xi ← xi.
– Compute (CTi,0,CTi,1)← rEval(i− 1, Ẽi−1,xi−1).
– Return y ← Dec(skEvi ,xi−1,CTi,xi).

Evaluation Circuit Evi[CTske
i,0 ,CTske

i,1 ](xi,K, α)

Hardwired: Two ciphertexts CTske
i,0 and CTske

i,1 .
Input: A string xi ∈ {0, 1}i, a SKE keyK, and a bit α ∈ {0, 1}.

1. Compute Ci ← D(K,CTske
i,α).

2. Return U(Ci,xi).

Figure 8: The description of Evi for every i ∈ {2, · · · , n}. In the description, U(·, ·) is an universal circuit.
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Encryption Circuit Ei−1,α[MSKi,Ki, Si](xi−1)

Hardwired: A master secret key MSKi, a SKE keyKi, and a PRF key Si.
Input: A string xi−1 ∈ {0, 1}i−1.
Padding: This circuit is padded to size padi−1

E := padi−1
E (λ, n, s), which is determined in analysis.

1. For xi ∈ {0, 1}, compute as follows:

• Compute rxi−1‖xi
Enc ← FSi(xi−1‖xi).

• Compute CTi,xi ← Enc(MSKi,xi−1, (xi−1‖xi,Ki, α); rxi−1‖xi
Enc ).

2. Return (CTi,0,CTi,1).

Figure 9: The description of Ei−1,α for every i ∈ {3, · · · , n} and α ∈ {0, 1}.

Remark 7.5 (On the parameter setting of λ̃). In the construction we set the security parameter λ̃ for building blocks as
λ̃ = ω

(
(n2 + log λ)1/ε). In fact, this setting is the same as that of Bitansky and Vaikuntanathan [BV15]. However,

the security loss is different between this work and the work by Bitansky and Vaikuntanathan. In our construction,
2O(n2) security loss occurs while the construction of Bitansky and Vaikuntanathan incurs 2O(n2/2) loss. The
difference occurs due to our additional exponential hybrids that we need to complete the security proof while
the building block puncturable SKFE scheme satisfies only indistinguishability of functionality under puncturing
property. For the detailed security analysis, see Section 7.2.

Note that the size of padding for the encryption circuit Ei−1,α is determined in the security analysis of our
indistinguishability obfuscator iO. We need to know the size of padding in order to analyze the efficiency of iO.
Therefore, we first analyze the security of iO in Section 7.2. Then, we analyze the efficiency of iO in Section 7.3.
We complete the proof of Theorem 7.1 by completing the analysis of security and efficiency.

7.2 Security Analysis
Our goal is to prove that for any PPT distinguisher D and circuits C0 and C1 of the same functionality, we have

|Pr
[
D(iO(1λ, C0)) = 1

]
− Pr

[
D(iO(1λ, C1)) = 1

]
|

= |Pr
[
D(riO(1λ̃, n, C0)) = 1

]
− Pr

[
D(riO(1λ̃, n, C1)) = 1

]
| = negl(λ) .

In order to prove this, for every i ∈ [n], we define

δi := max
Ci,0,Ci,1

|Pr
[
Di(riO(1λ̃, i, Ci,0)) = 1

]
− Pr

[
Di(riO(1λ̃, i, Ci,1)) = 1

]
| ,

where Di is a PPT distinguisher and Ci,0 and Ci,1 are pair of any circuits with i-bit input that are the same
functionality. Then, our goal is restated to show that δn ≤ 2−ω(logλ) holds.

Note that we have δ1 = 0. This is because circuits with 1-bit input C1,0 and C1,1 of the same functionality are
both obfuscated to the same truth table. Our goal is to prove the following lemma.

Lemma 7.6. Let δ(λ̃) = 2−λ̃ε . Assuming that SKE and PPRF are δ-secure and pSKFE is a (δ, δ)-secure
puncturable SKFE with indistinguishability of functionality. It holds that

δi ≤ 22(i−1) ·O(δi−1 + 2−Ω(λ̃ε)) (7)

for every i ∈ {2, · · · , n}.
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By this lemma, we can estimate δn as

δn ≤ 22(n−1) ·O(δn−1 + 2−Ω(λ̃ε))

≤ 22(n−1) ·O(δn−1) + 22(n−1) ·O(2−Ω(λ̃ε))

≤ · · · ≤

 n∑
i=1

i∏
j=1

22(n−j)

 ·O(2−Ω(λ̃ε)) ≤ n · 2n
2
·O(2−ω(n2+logλ)) ≤ 2−ω(logλ) .

This inequality shows that we complete the proof of Theorem 7.3.
Therefore, if we prove that inequality 7 holds for every i ∈ {2, · · · , n}, that is Lemma 7.6, we can conclude that

our iO is a secure indistinguishability obfuscator. In the rest of this section, we prove that inequality 7 holds for
every i ∈ {2, · · · , n}.

Let i ∈ {2, · · · , n}. Let Di be any PPT distinguisher again. In addition, let Ci,0 and Ci,1 be circuits with i-bit
input of the same functionality that maximize the value of δi. First, we consider the following sequence of hybrid
experiments.

H0 : In this experiment, Di is given an obfuscation of the circuit Ci,0, that is riO(1λ̃, i, Ci,0).

H1 : Same asH0 except that CTske
i,1 is generated as CTske

i,1 ← E(Ki,1, Ci,1). Note that inH0, CTske
i,1 is generated as

CTske
i,1 ← E(Ki,1, Ci,0).

H2 : Same as H1 except that Ẽi−1 is generated as Ẽi−1 ← riO(1λ̃, i− 1,Ei−1,1[MSKi,Ki,1, Si]). Note that in
H1, Ẽi−1 is generated as Ẽi−1 ← riO(1λ̃, i− 1,Ei−1,0[MSKi,Ki,0, Si]).

H3 : Same asH2 except that CTske
i,0 is generated as CTske

i,0 ← E(Ki,0, Ci,1). Note that inH2, CTske
i,0 is generated as

CTske
i,0 ← E(Ki,1, Ci,0).

H4 : Same as H3 except that Ẽi−1 is generated as Ẽi−1 ← riO(1λ̃, i− 1,Ei−1,0[MSKi,Ki,0, Si]). Note that in
this experiment, the distribution of the input to Di is exactly the same as an obfuscation of the circuit Ci,1,
that is riO(1λ̃, i, Ci,1).

For an experimentH, we let Di(H) denote the event that Di outputs 1 inH. Then, we can estimate δi as

δi ≤
3∑
`=0
|Pr[Di(H`)]− Pr[Di(H`+1)]| . (8)

In the following, by estimating each term of the right hand side of inequality 8, we prove that inequality 7 holds
for every i ∈ {2, · · · , n}. We give relations of hybrid experiments in Figure 10 and 14 in order to see easily the
dependences of hybrid experiments.

FromH0 toH1 and FromH2 toH3

First, we estimate |Pr[Di(H0)] − Pr[Di(H1)]| and |Pr[Di(H2)] − Pr[Di(H3)]|. In fact, we can easily bound
these values by the security of SKE. Formally, we have the following lemma.

Lemma 7.7. Let SKE be δ-secure, where δ(λ̃) = 2−λ̃ε . Then, |Pr[Di(H0)] − Pr[Di(H1)]| ≤ 2−Ω(λ̃ε) and
|Pr[Di(H2)]− Pr[Di(H3)]| ≤ 2−Ω(λ̃ε).

The proof of this lemma is straightforward and thus we omit it.
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H0
∼

Lemma 7.7

H1 H2
∼

Lemma 7.7

H3 H4

Reverse ofH1 toH2

∼

H1,0 H1,2i−1

∼

Lemma 7.8

∼

Lemma 7.8

H1,j H1,j+1
∼∼ · · · · · · ∼∼

H0
1,j H1

1,j
Lemma 7.9

∼

∼ Lemma 7.10 ∼ Reverse ofH1,j toH0
1,j

Figure 10: Relations of the hybrid experiments from H0 to H4 for the security of riO. Solid lines denote that the
indistinguihability is proven by one step. Dashed lines denote that we use a few hybrid experiments to prove the indistinguishability.
Dotted lines denote that we use many hybrid experiments to prove the indistinguishability (Figure 14 illustrates those of hybrid
experiments for Lemma 7.10).

FromH1 toH2 and FromH3 toH4

Next, we estimate |Pr[Di(H1)] − Pr[Di(H2)]| and |Pr[Di(H3)] − Pr[Di(H4)]|. Since the difference between
H1 and H2, and that of H3 and H4 are almost symmetric, we focus on estimating |Pr[Di(H1)] − Pr[Di(H2)]|
here. We can apply the following arguments for the estimation of |Pr[Di(H3)]− Pr[Di(H4)]|.

In order to accomplish the estimation of |Pr[Di(H1)]− Pr[Di(H2)]|, we first introduce intermediate hybrid
experimentsH1,j betweenH1 andH2, where j ∈ {0, · · · , 2i−1}. In the following, let j ∈ {0, 1}i−1 ∪ {1‖0i−1}
be the binary representation of j.

H1,j : In this experiment, Ẽi−1 is computed as Ẽi−1 ← riO(1λ̃, i− 1,Eji−1[MSKi,Ki,0,Ki,1, Si]). The circuit
Eji−1 is defined in Figure 11.

Then, we have

|Pr[Di(H1)]− Pr[Di(H2)]| ≤ |Pr[Di(H1)]− Pr[Di(H1,0)]|+
2i−1−1∑
j=1

|Pr[Di(H1,j)]− Pr[Di(H1,j+1)]|

+ |Pr[Di(H1,2i−1)]− Pr[Di(H2)]| .

If we use a PKFE scheme instead of our puncturable SKFE scheme, we can directly prove the indistinguishability
betweenH1,j andH1,j+1. However, to estimate each term of the right hand size of the above inequality, we need
introduce the following additional hybrid experiments for every j ∈ {1, · · · , 2i−1} since we use a puncturable
SKFE scheme.

H0
1,j : Ẽi−1 is computed as Ẽi−1 ← riO(1λ̃, i− 1,PEji−1[MSK∗i {j},Ki,0,Ki,1, Si{j‖0, j‖1}, ui,0, ui,1]) in this

experiment, where ui,b ← Enc(MSKi, j, (j‖b,Ki,0, 0); rj‖b
Enc) and rj‖b

Enc ← FSi(j‖b) for every b ∈ {0, 1}.
The circuit PEji−1 is defined in Figure 12. The other part of this experiment is same asH1,j .
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Encryption Circuit Eji−1[MSKi,Ki,0,Ki,1, Si](xi−1)

Hardwired: A master secret key MSKi, two SKE keysKi,0 andKi,1, and a PRF key Si.
Input: A string xi−1 ∈ {0, 1}i−1.
Padding: This circuit is padded to size padi−1

E := padi−1
E (λ, n, s), which is determined in analysis.

1. If xi−1 < j, set α← 1, and otherwise, set α← 0.
2. For xi ∈ {0, 1}, compute as follows:

• Compute rxi−1‖xi
Enc ← FSi(xi−1‖xi).

• Compute CTi,xi ← Enc(MSK,xi−1, (xi−1‖xi,Ki,α, α); rxi−1‖xi
Enc ).

3. Return (CTi,0,CTi,1).

Figure 11: The description of Eji−1. The red underline is the difference from Ei−1,α.

H1
1,j : Same asH0

1,j except thatui,b is computed byui,b ← Enc(MSK, j, (j‖b,Ki,1, 1); rj‖b
Enc) and rj‖b

Enc ← FSi(j‖b)
for every b ∈ {0, 1}.

Punctured Encryption Circuit PEji−1[MSK∗i {j},Ki,0,Ki,1, S
∗
i {j‖0, j‖1|}, ui,0, ui,1](xi−1)

Hardwired: A punctured master secret key MSK∗i {j}, two SKE keysKi,0 andKi,1, a punctured PRF key
S∗i {j‖0, j‖1}, and two ciphertexts ui,0 and ui,1.

Input: A string xi−1 ∈ {0, 1}i−1.
Padding: This circuit is padded to size padi−1

E := padi−1
E (λ, n, s), which is determined in analysis.

1. If xi−1 = j, return (ui,0, ui,1).
2. Else, set α← 1 if xi−1 < j and α← 0 otherwise.
3. For xi ∈ {0, 1}, compute as follows:

• Compute rxi−1‖xi
Enc ← FS∗

i
{j‖0,j‖1|}(xi−1‖xi).

• Compute CTi,xi ← PEnc(MSK∗i {j},xi−1, (xi−1‖xi,Ki,α, α); rxi−1‖xi
Enc ).

4. Return (CTi,0,CTi,1).

Figure 12: The description of PEji−1. Red underlines are differences from Eji−1.

Then, we can estimate |Pr[Di(H1)]− Pr[Di(H2)]| in more detail and obtain

|Pr[Di(H1)]− Pr[Di(H2)]| ≤ |Pr[Di(H1)]− Pr[Di(H1,0)]|

+
2i−1−1∑
j=0

|Pr[Di(H1,j)]− Pr[Di(H0
1,j)]|

+
2i−1−1∑
j=0

|Pr[Di(H0
1,j)]− Pr[Di(H1

1,j)]|

+
2i−1−1∑
j=0

|Pr[Di(H1
1,j)]− Pr[Di(H1,j+1)]|

+ |Pr[Di(H1,2i−1)]− Pr[Di(H2)]| . (9)
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In the rest of this section, we estimate each term of the right side of inequality 9 by Lemma 7.8, 7.9, and 7.10.

FromH1 toH1,0 and fromH1,2i−1 toH2. We have the following lemma.

Lemma 7.8. |Pr[Di(H1)]− Pr[Di(H1,0)]| ≤ δi−1 and |Pr[Di(H1,2i−1)]− Pr[Di(H2)]| ≤ δi−1 hold.

Proof of Lemma 7.8. We focus on proving |Pr[Di(H1)]− Pr[Di(H1,0)]| ≤ δi−1 here.
The only difference between H1 and H1,0 is how Ẽi−1 is generated. In H1, Ẽi−1 is generated by Ẽi−1 ←

riO(1λ̃, i − 1,Ei−1,0[MSKi,Ki,0, Si]). On the other hand, in H1,0, Ẽi−1 is generated by Ẽi−1 ← riO(1λ̃, i −
1,E0

i−1[MSKi,Ki,0,Ki,1, Si]). We can see that circuits obfuscated in each experiment have the same functionality.
Moreover, both circuits are padded to the same size padi−1

E . Therefore, we have |Pr[Di(H1)]− Pr[Di(H1,0)]| ≤
δi−1.

By analyzing similarly, we also obtain |Pr[Di(H1,2i−1)]− Pr[Di(H2)]| ≤ δi−1. � (Lemma 7.8)

FromH0
1,j toH1

1,j . Next, we estimate |Pr[Di(H0
1,j)]− Pr[Di(H1

1,j)]| for every j ∈ {0, · · · , 2i−1 − 1}.
We can estimate |Pr[Di(H0

1,j)]− Pr[Di(H1
1,j)]| by the semantic security at punctured tag of pSKFE and the

security of PPRF. Formally, we have the following lemma.

Lemma 7.9. Let δ(λ̃) = 2−λ̃ε . Let pSKFE satisfy δ-semantic security at punctured tag. Let PPRF be δ-secure.
Then, |Pr[Di(H0

1,j)]− Pr[Di(H1
1,j)]| ≤ 2−Ω(λ̃ε) holds for every i ∈ {0, · · · , 2i−1 − 1}.

Proof of Lemma 7.9. In order to use the semantic security at punctured tag of pSKFE, we change the randomness
r

j‖b
Enc used in ui,b into truly random for every b ∈ {0, 1}. Thus, we introduce the following intermediate hybrid
experimentsH0,rnd

1,j andH1,rnd
1,j betweenH0

1,j andH1
1,j .

H0,rnd
1,j : Same asH0

1,j except that r
j‖b
Enc is generated as a truly random string for every b ∈ {0, 1}.

By the pseudorandomness of PPRF, we have |Pr[Di(H0
1,j)]− Pr[Di(H0,rnd

1,j )]| ≤ 2−λ̃ε .

H1,rnd
1,j : Same asH1

1,j except that r
j‖b
Enc is generated as a truly random string for every b ∈ {0, 1}.

Note that the only difference between H0,rnd
1,j and H1,rnd

1,j is how ui,b is generated for every b ∈ {0, 1}. In
H0,rnd

1,j , ui,b is generated by ui,b ← Enc(MSKi, j, (j‖b,Ki,0, 0)). On the other hand, in H1,rnd
1,j , ui,b is

generated by ui,b ← Enc(MSKi, j, (j‖b,Ki,1, 1)). Now, in both experiments, the ciphertext ui,b is generated
using a truly random string for every b ∈ {0, 1}. In addition, in both experiments, CTske

i,α is a ciphertext of
Ci,α under the SKE keyKi,α for every α ∈ {0, 1}. Hence, we have

Evi[CTske
i,0 ,CTske

i,1 ](j‖b,Ki,0, 0) = Ci,0(j‖b) = Ci,1(j‖b) = Evi[CTske
i,0 ,CTske

i,1 ](j‖b,Ki,1, 1),

since Ci,0 and Ci,1 are functionally equivalent.

Therefore, from the semantic security at punctured tag ofpSKFE, we obtain |Pr[Di(H0,rnd
1,j )]−Pr[Di(H1,rnd

1,j )]| ≤
2−λ̃ε .

By the pseudorandomness of PPRF, we also have |Pr[Di(H1,rnd
1,j )]− Pr[Di(H1

1,j)]| ≤ 2−λ̃ε .
From these, we see that |Pr[Di(H0

1,j)]− Pr[Di(H1
1,j)]| ≤ 2−Ω(λ̃ε). � (Lemma 7.9)

FromH1,j toH0
1,j and fromH1

1,j toH1,j+1. In the rest of this proof, we estimate |Pr[Di(H1,j)]−Pr[Di(H0
1,j)]|

and |Pr[Di(H1
1,j)]− Pr[Di(H1,j+1)]| for every j ∈ {0, · · · , 2i−1 − 1}. Since the difference between H1,j and

H0
1,j , and that ofH1

1,j andH1,j+1 are almost symmetric, we focus on evaluating |Pr[Di(H1,j)]− Pr[Di(H0
1,j)]|

here. More precisely, we prove the following lemma.

Lemma 7.10. Let δ(λ̃) = 2−λ̃ε . Let pSKFE satisfy δ-indistinguishability of functionality under puncturing. Let
PPRF be δ-secure. Then, for every {0, · · · , 2i−1 − 1}, we have

|Pr[Di(H1,j)]− Pr[Di(H0
1,j)]| ≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)) .

We can apply the following arguments for the evaluation of |Pr[Di(H1
1,j)]− Pr[Di(H1,j+1)]|.

35



Proof of Lemma 7.10. If the underlying puncturable SKFE scheme satisfies functionality preserving under
puncturing property, we can directly estimate |Pr[Di(H1,j)] − Pr[Di(H0

1,j)]| for every j ∈ {0, · · · , 2i−1 − 1}
by using the property. However, our pSKFE satisfies only indistinguishability of functionality under puncturing
property. Thus, we need more hybrid experiments betweenH1,j andH0

1,j defined for every k ∈ {0, · · · , 2i−1} as
follows. Below, let k ∈ {0, 1}i−1 ∪ {1‖0i−1} be the binary representation of k.

H1,j,k : Ẽi−1 is computed as Ẽi−1 ← riO(1λ̃, i − 1,HEj,ki−1[MSKi,MSK∗i {j},Ki,0,Ki,1, Si,⊥,⊥]) in this
experiment. The circuit HEj,ki−1 is defined in Figure 13.

Figure 14 illustrates an overview of hybrid experiments fromH1,j−1 toH0
1,j .

Hybrid Encryption Circuit HEj,ki−1[MSKi,MSK∗i {j},Ki,0,Ki,1, Si, vk,0, vk,1](xi−1)

Hardwired: A master secret key MSKi, punctured master secret key MSK∗i {j}, two SKE keys Ki,0 and
Ki,1, PRF key Si, and two ciphertexts vk,0 and vk,1.

Input: A string xi−1 ∈ {0, 1}i−1.
Padding: This circuit is padded to size padi−1

E := padi−1
E (λ, n, s), which is determined in analysis.

1. If (vi,0, vi,1) 6= (⊥,⊥) and xi−1 = k, return (vk,0, vk,1).
2. Else, compute as follows:

• If xi−1 < j, set α← 1, and otherwise, set α← 0.
• For xi ∈ {0, 1}, compute as follows:

– Compute rxi−1‖xi
Enc ← FSi(xi−1‖xi).

– If xi−1 < k and xi−1 6= j,
then compute CTi,xi ← PEnc(MSK∗i {j},xi−1, (xi−1‖xi,Ki,α, α); rxi−1‖xi

Enc ).
Otherwise, compute CTi,xi ← Enc(MSKi,xi−1, (xi−1‖xi,Ki,α, α); rxi−1‖xi

Enc ).
• Return (CTi,0,CTi,1).

Figure 13: The description of HEj,ki−1. Red underlines are differences from Eji−1.

Then, we have

|Pr[Di(H1,j)]− Pr[Di(H0
1,j)]| ≤ |Pr[Di(H1,j)]− Pr[Di(H1,j,0)]|

+
2i−1−1∑
k=0

|Pr[Di(H1,j,k)]− Pr[Di(H1,j,k+1)]|

+ |Pr[Di(H1,j,2i−1)]− Pr[Di(H0
1,j)]| .

To estimate each term of the right hand size of the above inequality, we introduce the following hybrid
experiments for k ∈ {0, · · · , 2i−1 − 1} \ {j}.

Henc
1,j,k : Ẽi−1 is computed as Ẽi−1 ← riO(1λ̃, i−1,HEj,ki−1[MSKi,MSK∗i {j},Ki,0,Ki,1, S

∗
i {k‖0,k‖1}, vk,0, vk,1])

in this experiment, where vk,b ← Enc(MSKi,k, (k‖b,Ki,α, α); rk‖b
Enc ) for every b ∈ {0, 1}.

Hpenc
1,j,k : In this experiment, vk,b is computed by vk,b ← PEnc(MSK∗i {j},k, (k‖b,Ki,α, α); rk‖b

Enc ) for every
b ∈ {0, 1}.
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H1,j H0
1,j

∼ Lemma 7.11 ∼ Lemma 7.11

H1,j,0 H1,j,2i−1H1,j,k H1,j,k+1

Lemma 7.11
only for k = j

∼∼ · · · · · · ∼∼

Henc
1,j,k Hpenc

1,j,k
∼

Lemma 7.13
(k 6= j)

∼ Lemma 7.12
(k 6= j)

∼ Lemma 7.12
(k 6= j)

Figure 14: Relations of the hybrid experiments fromH1,j−1 toH0
1,j for Lemma 7.10. Solid lines denote that the indistinguiha-

bility is proven by one step. Dashed lines denote that we use for loop with variable k. Note that, only for k = j, we do not need
Henc

1,j,k andH
penc
1,j,k (H

penc
1,j,j is not well-defined).

Then, we can estimate |Pr[Di(H1,j)]− Pr[Di(H0
1,j)]| in more detail and obtain

|Pr[Di(H1,j)]− Pr[Di(H0
1,j)]| ≤ |Pr[Di(H1,j)]− Pr[Di(H1,j,0)]|

+
∑

k∈{0,··· ,2i−1−1}\{j}

|Pr[Di(H1,j,k)]− Pr[Di(Henc
1,j,k)]|

+
∑

k∈{0,··· ,2i−1−1}\{j}

|Pr[Di(Henc
1,j,k)]− Pr[Di(Hpenc

1,j,k)]|

+
∑

k∈{0,··· ,2i−1−1}\{j}

|Pr[Di(Hpenc
1,j,k)]− Pr[Di(H1,j,k+1)]|

+ |Pr[Di(H1,j,j)]− Pr[Di(H1,j,j+1)]|
+ |Pr[Di(H1,j,2i−1)]− Pr[Di(H0

1,j)]| . (10)

To bound the right hand side of inequality 10, we prove Lemma 7.11, 7.12, and 7.13.

Lemma 7.11. It holds that

|Pr[Di(H1,j)]− Pr[Di(H1,j,0)]| ≤ δi−1 ,

|Pr[Di(H1,j,j)]− Pr[Di(H1,j,j+1)]| ≤ δi−1 ,

|Pr[Di(H1,j,2i−1)]− Pr[Di(H0
1,j)]| ≤ δi−1 .

Lemma 7.12. For k ∈ {0, · · · , 2i−1 − 1} \ {j}, it holds that

|Pr[Di(H1,j,k)]− Pr[Di(Henc
1,j,k)]| ≤ δi−1 ,

|Pr[Di(Hpenc
1,j,k)]− Pr[Di(H1,j,k+1)]| ≤ δi−1 .

Proof of Lemma 7.11. The only difference between two experiments in each inequality is how Ẽi−1 is generated.
Thus, we verify that circuits of the same functionality are obfuscated to generate Ẽi−1 in those two experiments
related to each inequality.

For the first inequality, it is easy to verify that Eji−1 inH1,j is equivalent to HEj,0i−1 inH1,j,0 since HEj,0i−1 does
not compute PEnc. Thus, the first inequality holds due to the security of riO.
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We next show the second inequality. For xi−1 ≤ j − 1 and xi−1 ≥ j + 1, the behavior of HEj,ji−1 and HEj,j+1
i−1

are the same. On input xi−1 = j, HEj,ki−1 always computes output ciphertexts by using Enc with MSKi regardless
of the value of k, and thus HEj,ji−1 and HEj,j+1

i−1 behave in exactly the same way on input xi−1 = j. Thus, HEj,ji−1
and HEj,j+1

i−1 are functionally equivalent and the second inequality holds due to the security of riO.
We finally show the third inequality. On input xi−1, if xi−1 = j, PEji−1 in H0

1,j outputs hardwired ui,0 and
ui,1 that are ciphertexts of j generated by using Enc with MSKi. Otherwise, it generates ciphertexts of xi−1 using
PEnc and MSK∗i {j}, and outputs them. On input xi−1, HEj,2

i−1

i−1 inH0
1,j,2i−1 computes output ciphertexts by using

Enc with MSKi if xi−1 = j, and by using PEnc with MSK∗i {j} otherwise. From this fact, we see that HEj,2
i−1

i−1 in
H1,j,2i−1 is functionally equivalent to PEji−1 inH0

1,j . Thus, the third inequality holds due to the security of riO.
� (Lemma 7.11)

Proof of Lemma 7.12. We first show the first inequality. On input xi−1 6= k, HEj,ki−1 inH1,j,k runs in exactly the
same way as HEj,ki−1 in Henc

1,j,k. On input xi−1 = k, HEj,ki−1 in H1,j,k generate ciphertexts of k by using Enc with
MSKi, and outputs them. On input xi−1 = k, HEj,ki−1 inHenc

1,j,k outputs hardwired vk,0 and vk,1 that are ciphertexts
of k generated by using Enc with MSKi. Thus, these circuits are functionally equivalent and the inequality holds
due to the security of riO.

We next show the second inequality. In Hpenc
1,j,k, Ẽi−1 is generated by obfuscating HEj,ki−1 that has hardwired

ciphertexts of k, that is vk,0 and vk,1 generated by using PEnc with MSK∗i {j}. InH1,j,k+1, Ẽi−1 is generated by
obfuscating HEj,k+1

i−1 that does not have hardwired ciphertexts. On input xi−1 6= k, these two circuits runs in exactly
the same way. On input xi−1 = k, HEj,ki−1 inHpenc

1,j,k outputs hardwired vk,0 and vk,1. On input xi−1 = k, HEj,k+1
i−1

in H1,j,k+1 generates ciphertexts of k by using PEnc with MSK∗i {j}, and outputs them. Thus, two circuits are
functionally equivalent and the second inequality holds due to the security of riO. � (Lemma 7.12)

Finally, we estimate the term |Pr[Di(Henc
1,j,k)]− Pr[Di(Hpenc

1,j,k)]| for every k ∈ {0, · · · , 2i−1 − 1} \ {j}. We
can bound this term by using the indistinguishability of functionality under puncturing of pSKFE. Formally, we
have the following lemma.

Lemma 7.13. Let δ(λ̃) = 2−λ̃ε . Let pSKFE satisfy δ-indistinguishability of functionality under puncturing. Let
PPRF be δ-secure. Then, |Pr[Di(Henc

1,j,k)]−Pr[Di(Hpenc
1,j,k)]| ≤ 2−Ω(λ̃ε) holds for every j ∈ {0, · · · , 2i−1−1}\{j}.

Proof of Lemma 7.13. Let k be any integer in {0, · · · , 2i−1 − 1} \ {j}. In order to use the indistinguishability
of functionality under puncturing of pSKFE, we change the randomness rk‖b

Enc used in vk,b into truly random for
every b ∈ {0, 1}. Thus, we introduce the following intermediate hybrid experimentsHenc,rnd

1,j,k andHpenc,rnd
1,j,k between

Henc
1,j,k andH

penc
1,j,k.

Henc,rnd
1,j,k : Same asHenc

1,j,k except that r
k‖b
Enc is generated as a truly random string for every b ∈ {0, 1}.

By the pseudorandomness of PPRF, we have |Pr[Di(Henc
1,j,k)]− Pr[Di(Henc,rnd

1,j,k )]| ≤ 2−λ̃ε .

Hpenc,rnd
1,j,k : Same asHpenc

1,j,k except that r
k‖b
Enc is generated as a truly random string for every b ∈ {0, 1}.

Note that the only difference betweenHenc,rnd
1,j,k andHpenc,rnd

1,j,k is how vk,b is generated for every b ∈ {0, 1}. In
Henc,rnd

1,j,k , vk,b is generated by vk,b ← Enc(MSKi,k, (k‖b,Ki,α, α)). On the other hand, inHpenc,rnd
1,j,k , vk,b is

generated by vk,b ← PEnc(MSK∗i {j},k, (k‖b,Ki,α, α)). Now, in both experiments, the ciphertext vk,b is
generated using a truly random string for every b ∈ {0, 1}.
Therefore, from the indistinguishability of functionality under puncturing ofpSKFE, we obtain |Pr[Di(Henc,rnd

1,j,k )]−
Pr[Di(Hpenc,rnd

1,j,k )]| ≤ 2−λ̃ε .

By the pseudorandomness of PPRF, we alos have |Pr[Di(Hpenc,rnd
1,j,k )]− Pr[Di(Hpenc

1,j,k)]| ≤ 2−λ̃ε .
From these, we obtain |Pr[Di(Henc

1,j,k)]− Pr[Di(Hpenc
1,j,k)]| ≤ 2−Ω(λ̃ε) for every k ∈ {0, · · · , 2i−1 − 1} \ {j}.

� (Lemma 7.13)

38



From inequality 10, and Lemma 7.11, 7.12, and 7.13, it holds that

|Pr[Di(H1,j)]− Pr[Di(H0
1,j)]| ≤ 3 · δi−1 + 2(2i−1 − 1) · δi−1 + (2i−1 − 1) · 2−Ω(λ̃ε)

≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)) . (11)

This completes the estimation of |Pr[Di(H1,j)] − Pr[Di(H0
1,j)]| for every j ∈ {0, · · · , 2i−1 − 1}, that is,

completes the proof of Lemma 7.10. � (Lemma 7.10)
From the symmetry of the difference ofH1,j andH0

1,j , and that ofH1
1,j andH1,j+1, by analyzing similarly, we

obtain

|Pr[Di(H1
1,j)]− Pr[Di(H1,j+1)]| ≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)) (12)

for every j ∈ {0, · · · , 2i−1 − 1}.

From inequality 11 and 12, inequality 9, and Lemma 7.8 and 7.9, we have

|Pr[Di(H1)]− Pr[Di(H2)]| ≤ 2 · δi−1 + 2 · 2i−1 · 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)) + 2i−1 · 2−Ω(λ̃ε)

≤ 22(i−1) ·O(δi−1 + 2−Ω(λ̃ε)) . (13)

From the symmetry of the difference ofH1 andH2, and that ofH3 andH4, by analyzing similarly, we also have

|Pr[Di(H3)]− Pr[Di(H4)]| ≤ 22(i−1) ·O(δi−1 + 2−Ω(λ̃ε)) . (14)

This completes the estimation of |Pr[Di(H1)]− Pr[Di(H2)]| and |Pr[Di(H3)]− Pr[Di(H4)]|.

By combining inequality 13 and 14, Lemma 7.7, and inequality 8, we obtain inequality 7 in Lemma 7.6.
This completes the security analysis for iO(1λ, C) = riO(1λ̃, n, C) in Section 7.1.

7.3 Efficiency Analysis
In this section, we prove that iO(1λ, C) = riO(1λ̃, n, C) runs in polynomial time. In this analysis, let s and n
be the upper bound of the size and input length of circuits supported by iO. When we invoke riO(1λ̃, n, C) for
some circuit C with n-bit input, iO generates total n− 1 master secret keys MSK2, · · · ,MSKn. In other words,
iO includes n− 1 instances of pSKFE. If all of these n− 1 instances runs in polynomial of λ̃, n and s, then so
does iO. Below, we show it.

In order to accomplish the above task, we clearly distinguish each of these instances. Below, let pSKFEi denote
the instance of pSKFE with respect to MSKi. Especially, let Enci denote the encryption circuit Enc corresponding
to MSKi, that is Enc(MSKi, ·). Moreover, let PEnci denote the punctured encryption circuit PEnc with respect to
MSK∗i , that is PEnc(MSK∗i , ·), where MSK∗i is the punctured master secret key generated by puncturing MSKi.
Note that which tag is punctured does not affect the running time of PEnc, and thus we omit to write the tag.

We start with the estimation of the size of padding padi−1
E of encryption circuits for every i ∈ {3, · · · , n}.

Then, using the bound of padi−1
E , we complete the efficiency analysis of iO.

In the above security analysis, in addition to the encryption circuits Ei−1,α, we introduce encryption circuits
PEji−1, Eji−1, and HEj,ki−1, where j, k ∈ {0, · · · , 2i−1}. We need to ensure that all of them have the same size, and
thus we set

padi−1
E := max(|Ei−1,α|, |PEji−1|, |E

j
i−1|, |HEj,ki−1|) .

All of above circuits evaluates a puncturable PRF over the domain {0, 1}n, and then computes either Enci or PEnci.
Without loss of generality, we assume that Enci and PEnci have the same size for every i ∈ {2, · · · , n}. This can
be done by appropriate size padding. In this case, for every i ∈ {3, · · · , n}, we can bound padi−1

E as

padi−1
E ≤ |Enci| · polypad(λ̃, n) , (15)

where polypad is a fixed polynomial.
We move on to the analysis of the running time of iO. Especially, as stated earlier, we show that |Enci| is

polynomial of λ̃, n and s for every i ∈ {2, · · · , n}.
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First, for every i ∈ {2, · · · , n}, we specify the upper bound of the size si of circuits that pSKFEi has to support.
Before analysis, we introduce some notations. For every i ∈ {2, · · · , n} and circuit Ci with i-bit input, let

Evi[Ci] denote the evaluation circuit Evi defined in Figure 8 into which Ci is hardwired after encrypted by SKE. In
addition, for every i ∈ {2, · · · , n}, let Ei−1 denote the encryption circuit Ei−1,0[MSKi,Ki, Si] defined in Figure 9.

Using this notation, we see that pSKFEi has to support Evi[Ei] for every i ∈ {2, · · · , n − 1}. In addition,
pSKFEn has to support Evn[C]. Below, we bound the size of these circuits.

From inequality 15, for every i ∈ {3, · · · , n}, we have

|Ei−1| ≤ |Enci| · polypad(λ̃, n) . (16)

In addition, we can analyze the size of Evi[Ci] as follows. Evi[Ci] includes a decryption procedure of encrypted Ci
by SKE, and evaluation of an universal circuit U(Ci,xi), where xi ∈ {0, 1}i. Decryption procedure of SKE is
done in linear time in |Ci|. In addition, we can perform the evaluation of an universal circuit in quasi-linear time in
|Ci| [Val76]. Thus, for every i ∈ {2, · · · , n}, we have

|Evi[Ci]| ≤ |Ci| · log |Ci| · polyEv(λ̃, n) ≤ |Ci|1+γ1 · polyEv(λ̃, n) , (17)

where polyEv is a fixed polynomial and γ1 < 1 is an arbitrary constant. By combining inequalities 16 and 17, for
every i ∈ {3, · · · , n}, we obtain

|Evi−1[Ei−1]| ≤ |Ei−1|1+γ1 · polyEv(λ̃, n)

≤
(
|Enci| · polypad(λ̃, n)

)1+γ1 · polyEv(λ̃, n)
≤ |Enci|1+γ1 · poly1(λ̃, n) , (18)

where poly1 is some fixed polynomial.
Therefore, for every i ∈ {3, · · · , n}, we have

si−1 ≤ |Enci|1+γ1 · poly1(λ̃, n) . (19)

Moreover, from inequality 17, we have

sn ≤ |C|1+γ1 · polyEv(λ̃, n) = s1+γ1 · polyEv(λ̃, n) . (20)

Using the bound of si, we complete the efficiency analysis by estimating |Enci| for every i ∈ {2, · · · , n}.
Recall that the building block pSKFE is weakly succinct, and for every i ∈ {2, · · · , n}, pSKFEi encrypts

n+ λ̃+ 1 bit plaintexts in the construction. Therefore, for every i ∈ {2, · · · , n}, we have

|Enci| ≤ sγi · poly(λ̃, n+ λ̃+ 1)
≤ sγi · polyE(λ̃, n) , (21)

where γ < 1 is some constant, poly denotes unspecified polynomials, and polyE denotes some fixed polynomial.
By substituting inequality 19 into 21, for every i ∈ {3, · · · , n}, we obtain

|Enci−1| ≤
(
|Enci|1+γ1 · poly1(λ̃, n)

)γ · polyE(λ̃, n)
≤ |Enci|γ2 · poly2(λ̃, n) , (22)

where γ is a constant such that (1 + γ1)γ < γ2 < 1 and poly2 is some fixed polynomial. Note that since we can
choose γ1 as an arbitrary small constant and γ < 1, by setting γ1 <

1−γ
γ , γ2 satisfying the above condition exists.

In addition, from inequality 20, we also have

|Encn| ≤
(
s1+γ1 · polyEv(λ̃, n)

)γ · polyE(λ̃, n)
≤ sγ2 · poly3(λ̃, n) , (23)

where poly3 is some fixed polynomial.
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Then, from inequalities 22 and 23, for every i ∈ {2, · · · , n}, it holds that

|Enci| ≤ |Encn|γ
n−i
2 ·

n−i∏
j=1

poly2(λ̃, n)γ
j−1
2

≤
(
sγ2 · poly3(λ̃, n)

)γn−i2 ·
n−i∏
j=1

poly2(λ̃, n)γ
j−1
2

≤ sγ2 · poly3(λ̃, n) · poly2(λ̃, n)
1

1−γ2 .

The third inequality follows from the fact that γ2 < 1. The above inequality means that the encryption algorithm of
pSKFEi runs in polynomial time of λ̃, n and s for every i ∈ {2, · · · , n}.

In that case, all of the algorithms of pSKFEi runs in polynomial of λ̃, n and s for every i ∈ {2, · · · , n}. Thus,
we conclude that iO runs in polynomial of λ̃, n and s.

We completed the analysis of security and efficiency. Thus, we completed the proof of Theorem 7.1 and proved
that we can construct IO for all circuits solely from SKFE for all circuits.
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