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Abstract. We present TOPPSS, the most efficient Password-Protected
Secret Sharing (PPSS) scheme to date. A (t, n)-threshold PPSS, intro-
duced by Bagherzandi et al. [4], allows a user to share a secret among n
servers so that the secret can later be reconstructed by the user from any
subset of t+ 1 servers with the sole knowledge of a password. It is guar-
anteed that any coalition of up to t corrupt servers learns nothing about
the secret (or the password). In addition to providing strong protection
to secrets stored online, PPSS schemes give rise to efficient Threshold
PAKE (T-PAKE) protocols that armor single-server password authenti-
cation against the inherent vulnerability to offline dictionary attacks in
case of server compromise.

TOPPSS is password-only, i.e. it does not rely on public keys in re-
construction, and enjoys remarkable efficiency: A single communication
round, a single exponentiation per server and just two exponentiations
per client regardless of the number of servers. TOPPSS satisfies threshold
security under the (Gap) One-More Diffie-Hellman (OMDH) assumption
in the random-oracle model as in prior efficient realizations of PPSS/T-
PAKE [18,19]. Moreover, we show that TOPPSS realizes the Universally
Composable PPSS notion of [19] under a generalization of OMDH, the
Threshold One-More Diffie-Hellman (T-OMDH) assumption. We show
that the T-OMDH and OMDH assumptions are both hard in the generic
group model.

The key technical tool we introduce is a universally composable Thresh-
old Oblivious PRF which is of independent interest and applicability.

1 Introduction

Passwords have well-known weaknesses as authentication tokens, foremost be-
cause of their vulnerability to offline dictionary attacks in case of the all-too-
common leakage of the database of password hashes stored by the authentication
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server (see e.g., [1]). Worse still, most people re-use their passwords across mul-
tiple services, hence a break-in into one service effectively breaks the security of
others. Yet, because of their convenience, passwords are a dominant form of au-
thentication, and the amount and value of information protected using passwords
keeps growing. Defenses such as the use of secondary authentication factors (e.g.,
a PIN generated by a personal device or a USB dongle) increase protection
against on-line attacks but not against offline attacks upon server compromise.
Techniques such as Password Authenticated Key Exchange (PAKE) [6, 8] im-
prove on today’s de-facto standard of “password over TLS” authentication by
eliminating the reliance on a Public Key Infrastructure (PKI), but they do not
help against offline attacks after server compromise.

T-PAKE and PPSS. To address the threat of offline dictionary attacks on
the server, Mackenzie et al. [26] introduced (t, n)-Threshold PAKE (T-PAKE),
which replaces a single authentication server with a group of n servers and leaks
no information on passwords even if up to t servers are corrupted. Bagherzandi
et al. [4] proposed a related notion of Password-Protected Secret Sharing (PPSS)
which simplifies the notion of T-PAKE by reducing the goal of key exchange be-
tween user and servers to that of the user retrieving a single secret previously
shared with the servers. Specifically, a (t, n)-PPSS scheme, as formulated in the
PKI-free setting by [18], allows a user to share a random secret s among n servers
under the protection of her password pw s.t. (1) a reconstruction protocol in-
volving at least t+ 1 honest servers recovers s if the user inputs the (correct)
password pw; (2) the compromise of up to t servers leaks no information about
either s or pw; (3) an adversary who corrupts t′ ≤ t servers and has qU interac-
tions with the user and qS interactions with the uncorrupted servers can test at
most qS

t−t′+1 + qU passwords. (In the PKI setting one can set qU = 0.)

The PPSS notion is useful in the design of efficient T-PAKE’s because of the
low-overhead generic PPSS-to-TPAKE compiler [4, 18]. It is also an important
primitive in its own right, allowing for online storage of sensitive information like
keys, credentials, or personal records, with availability and privacy protection.
The only token needed for retrieving stored information is a single password,
and both information and password remain private if no more than t servers are
compromised (and if the adversary does not guess or learn the password).

In this paper we present TOPPSS, the most efficient PPSS scheme to date –
and using the PPSS-to-TPAKE compiler of [18] also the most efficient T-PAKE
– with a hard-to-beat complexity as detailed below. Our work builds on the
works of Jarecki et al. [18,19] who constructed PPSS protocols based on Oblivi-
ous Pseudorandom Functions (OPRF), formulated as a universally composable
(UC) functionality. The works of [18, 19] define UC OPRF differently, but each
instantiates its OPRF notion using the blinded Diffie-Hellman technique, fol-
lowing Ford-Kaliski [15], under the so-called (Gap) One-More Diffie-Hellman
(OMDH) assumption [5, 22] in the Random Oracle Model (ROM). Using one
OPRF construction, [18] showed a PPSS whose reconstruction phase takes a
single round between a user and t+ 1 servers, with 2 (multi)exponentiations per
server and 2t+ 3 for the user. The PPSS of [19] uses a simplified OPRF scheme
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secure under the same assumptions, with 1 exponentiation per server and t+ 2
for the user. In addition to improving on [18] in efficiency, the latter scheme sat-
isfies a stronger PPSS notion formulated as a UC functionality, which we adopt
here.

Our contributions. We present TOPPSS, a simple PPSS protocol with re-
markable and hard to beat performance. The reconstruction procedure requires
just one exponentiation per server and a total of two exponentiations for the
user (independent of the number of servers), plus O(t) modular multiplications
by each party. Communication is also optimal: The user sends a single group
element to a subset of t+1 servers and gets one group element from each server.
Furthermore, we show that this “minimal cost” (and PKI-free) PPSS satisfies
the strong UC notion of PPSS from [19]. This contribution is based on the ob-
servation that a more efficient PPSS can result from replacing the OPRF used
in the protocols of [18,19] with its threshold (or multi-party) counterpart which
we define as Threshold OPRF (T-OPRF). We provide a UC definition of T-
OPRF as a functionality that allows a group of servers to secret-share a key k
for PRF f with a shared PRF evaluation protocol which lets the user compute
fk(x) on her input x, s.t. both x and k are secret if no more than t of n servers
are corrupted. T-OPRF is an input-oblivious strengthening of Distributed PRF
(DPRF) of Naor et al. [27], hence in particular T-OPRF can replace DPRF
in all its applications, e.g. for corruption-resilient Key Distribution Center, and
long-term information protection (see [27]).

Using this strong notion of T-OPRF security we show a compiler which
transforms UC T-OPRF into UC PPSS at negligible additional cost (in ROM).
In particular, TOPPSS is obtained by designing a T-OPRF protocol, denoted
2HashTDH, with the efficiency parameters stated above. This T-OPRF protocol
is essentially a “threshold exponentiation” protocol, where each server computes
mki on input m where ki is the server’s secret-share of the PRF key k. We prove
that TOPPSS realizes UC T-OPRF under the following assumptions in ROM.
Let t′ ≤ t denote the number of parties actually controlled by an attacker. First,
our results imply that in the so-called full corruption case, i.e. if t′ = t, the same
(Gap) OMDH assumption used in [18, 19] implies that the attacker must query
one uncorrupted party per each input on which the attacker wants to obtain the
function value. Since this is the case when the attacker controls the full threshold
t of servers it is also the case for any t′ < t. In the application to PPSS this means
that the attacker can test up to qS+qU passwords, which matches the qS

t−t′+1 +qU
bound for t′ = t. Since many existing works on T-PAKE, e.g. [2,9,14,23,26,31],
implicitly assume the t′ = t case by defining security using the simplified qS+qU
bound on the number of passwords the adversary can test, we call this level of
security a standard threshold security for T-PAKE/PPSS.

Secondly, for the general case of t′ ≤ t, we show that TOPPSS achieves the
stronger qS

t−t′+1 +qU bound assuming a generalization of the OMDH assumption
which we call (Gap) Threshold One-More Diffie-Hellman (T-OMDH). As a san-
ity check for the T-OMDH assumption we show that the T-OMDH problem is
hard in the generic group model. Since OMDH is a special case of T-OMDH, to
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the best of our knowledge this is also the first generic group analysis of OMDH.
The stricter bound implies that an adversary controlling t′ ≤ t servers must con-
tact t− t′ + 1 uncorrupted servers for each input on which it wants to compute
the function, which coincides with the standard threshold security notion when
t′ = t, but it is stronger for t′ < t. For example, it means that the default network
adversary who does corrupt any party but runs q sessions with each server, can
test up to qn/(t + 1) passwords, whereas the standard threshold security would
in this case upper-bound the number of tested passwords only by qn.

As a point of comparison we consider a generic compiler from any OPRF to
T-OPRF. This compiler performs multi-party computation of the server code
in the underlying OPRF protocol, but in the case of the OPRF of [19] such
MPC protocol has the same low computational cost as the customized T-OPRF
protocol 2HashTDH discussed above, i.e. 1 exponentiation per server and 2 for
the user, with the only drawback of adding an additional communication round
to enforce an agreement between the servers on the client’s input to the MPC
protocol. On the other hand, since the security depends only on the base OPRF,
the resultant two-round T-OPRF protocol achieves the qS

t−t′+1 +qU bound based
solely on OMDH for all t′ ≤ t.

Other applications. Oblivious PRFs have found multiple applications which
can also enjoy the benefits of a threshold version, particularly given the remark-
able efficiency of our schemes. Examples of such applications include search on
encrypted data [13,17], set intersection [22], and multiple-server DE-PAKE (de-
vice enhanced PAKE) [21].

Related Work. The first (t, n)-Threshold PAKE (T-PAKE) by Mackenzie et
al. [26] required ROM in the security analysis and relied on PKI, namely, it
assumed that the client can validate the public keys of the servers during the
reconstruction phase.4 Gennaro and Raimondo [14] dispensed with ROM and
PKI (in authentication) but increased protocol costs. Abdalla et al. [2] showed
a PKI-free T-PAKE in ROM with fewer communication rounds than T-PAKE
of [26] but the client establishes a key with only one designated gateway server.
Yi et al. [31] showed a similar round-reduction without ROM. The case of n= 2
servers, known as 2-PAKE, received special attention starting with Brainard et
al. [9, 29] on 2-PAKE in ROM and PKI, and several works [7, 23–25] addressed
the non-PKI and no-ROM case. Still, each of these T-PAKE schemes requires
server-to-server communication. If communication is mediated by the client then
the lowest round complexity is 3 for n > 2 [2] and 2 for n = 2 [7,25].

Bagherzandi et al. [4] introduced the notion of Password-Protected Secret
Sharing (PPSS) with the goal of simplifying T-PAKE protocols. Specifically,
they showed a PPSS protocol in ROM assuming PKI, with 2 rounds, constant-
sized messages, and 8(t+1) (multi) exponentiations per client, and a low-cost

4 When we say that PPSS/T-PAKE assumes PKI we mean that it relies on it for the
security of the reconstruction/authentication phase. By contrast, the initialization
phase of any PPSS/T-PAKE solution must assume some trust infrastructure, e.g.
PKI, or otherwise each party could be initializing the scheme with an impostor.
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PKI-model compiler from PPSS to T-PAKE. Camenisch et al. [10] constructed
another PPSS scheme, called T-PASS, for Threshold Password-Authenticated
Secret Sharing, without assuming PKI but with 14n exponentiations for the
client, 7 exponentiations per server, and 5 rounds of communication.

Jarecki et al. [18,19] showed significantly faster PPSS protocols, also without
assuming PKI (in reconstruction): The PPSS of [18] takes a single round (two
messages) between a user and each server, and uses 2 (multi)exponentiations
per server and 2t + 3 (multi)exponentiations for the client, secure under (Gap)
OMDH in ROM. (They also show a 4-message non-ROM PPSS with O(n · |pw|)
exponentiations using Paillier encryption.) The PPSS of [19] improves upon this
with a single-round PPSS with 1 exponentiation per server and t+ 2 exponenti-
ations for the client, also under OMDH in ROM. In related works, [11] showed
a single-round proactive PPSS in the PKI setting for the case of t = n, and [3]
showed general methods for ensuring robustness in PPSS reconstruction, and a
non-ROM PPSS using O(|pw|) exponentiations in a prime-order group.

Another important aspect of these PPSS solutions is the type of security
notion they achieve. Both the PKI-model PPSS notion of [4] and the PKI-
free PPSS notion of [18] were indistinguishability-based, while [10, 19] provided
Universally Composable (UC) definitions of the PPSS functionality. The essence
of the UC PPSS definition of [19], which we adopt here, is that the only attack the
adversary can stage is the inevitable one, namely, an online dictionary attack
where validating a single password guess requires interaction with either t +
1 instances of the servers or with the user. The UC definitions have further
advantages for a password-based notion like PPSS, e.g. they imply security in
the presence of non-uniformly distributed passwords, correlated passwords used
for different services, and password mistyping.

Organization. In Section 2 we define the fundamental tool TOPPSS relies on,
namely T-OPRF, as a UC functionality. In Section 3 we show a single-round,
1exp/server + 2exp/client realization of T-OPRF, protocol 2HashTDH, secure
in ROM under the Threshold OMDH assumption we introduce in that section.
In Section 4 we show a low-cost compiler from T-OPRF to PPSS, which we
exemplify in Section 5 with a concrete instantiation using 2HashTDH. Finally,
in Section 6 we include a generic compiler from any OPRF to T-OPRF, which
yields a PPSS scheme similar to the one of Section 5 except for requiring two
communication rounds instead of one.

2 Universally Composable Threshold OPRF

Notation. We use “:=” for deterministic assignment, “←” for randomized as-
signment, and “←R” for uniform sampling from some set.

The T-OPRF Functionality. In the introduction we gave an informal overview
of the notion of Threshold Oblivious PRF (T-OPRF) and its applicability, e.g.
to PPSS schemes. Here we provide a formal definition of this notion as a secure
realization of the UC functionality FTOPRF shown in Figure 1 which generalizes
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the single-server (non-verifiable) OPRF functionality of [19] to the multi-party
setting. In the FTOPRF setting, the PRF key is effectively controlled by a col-
lection of n servers and it remains secret as long as no more than a threshold t
of these servers are corrupted. Such (t, n)-threshold “collective control” over a
functionality can be realized as we show in our 2HashTDH realization in Section
3. We chose to base the T-OPRF notion on the non-verifiable OPRF notion
of [19] rather than the verifiable OPRF notion of [18] because the former was
shown to have a more efficient realization under the same assumptions, and be-
cause this form of OPRF suffices in the key application of interest to us, namely,
Password-Protected Secret-Sharing.

Assume tx(p, S) and T (p, x) are undefined for all p, x, S.

Initialization

– On message (Init, sid ,SI) from S, ignore it if |SI|6=n or S is active. Otherwise
mark S as “active” and if no record 〈sid , [...]〉 exists, pick any previously
unused label p and record 〈sid ,SI, p〉. Send (Init, sid , S,SI, p) to A∗.

– On message (Init, sid ,A∗, p) from A∗, check that p is a label that has not
been used before, record 〈A∗, p〉 and return (Init, sid ,A∗, p) to A∗.

– On message (InitComplete, sid , S) from A∗, retrieve tuple 〈sid , SI, p〉. Ig-
nore the message if there is no such tuple or S 6∈ SI or not all servers in SI are
active. Otherwise, send (InitComplete, sid) to S and mark S as “initialized.”

Evaluation

– On message (Eval, sid , ssid ,SE , x) from P ∈ {U,A∗}, retrieve 〈sid ,SI, p〉
if P = U or 〈A∗, p〉 if P = A∗. Ignore this message if there is no such tu-
ple, if |SE| 6= t+1, or if tuple 〈ssid , P, ·, ·, ·〉 already exists. Otherwise record
〈ssid , P, p,SE , x〉 and send (Eval, sid , ssid , P,SE) to A∗.

– On message (SndrComplete, sid , ssid , S) fromA∗, retrieve tuple 〈sid ,SI, p〉.
Ignore this message if there is no such tuple, or if S 6∈ SI, or if S is not
initialized. Otherwise, set tx(p, S)++ (or set it to 1 if tx(p, S) is undefined),
and send (SndrComplete, sid , ssid) to S.

– On message (RcvComplete, sid , ssid , P, p∗) from A∗, retrieve
〈ssid , P, p,SE , x〉. Ignore this message if there is no such tuple, or if any of
the following conditions fails: (i) if p∗ = p then |{S ∈ SI | tx(p, S) > 0}| > t,
(ii) if all servers in SE are honest then p∗ = p. Otherwise, if p∗ = p then set
tx(p, S)−− for any t + 1 distinct S ∈ SI s.t. tx(p, S) > 0, and if T (p∗, x)
is undefined then pick ρ ←R {0, 1}` and set T (p∗, x) := ρ. Finally, send
(Eval, sid , ssid , T (p∗, x)) to P .

Fig. 1. Functionality FTOPRF with parameters t, n.

The T-OPRF functionality of Figure 1 has two stages, Initialization and
Evaluation. The functionality enforces that the outputs of any such function are
uniformly disributed, similarly to the single-server OPRF notion of [19], even in
the case that the adversary controls the private key and/or its sharing among the

6



n servers. In more detail, in the initialization stage, a set of n servers, denoted
SI, are activated at the discretion of the adversary. The stage is complete when
all servers become active. Note that the set may include adversarial servers, yet
the functionality guarantees that all servers identified in SI become active by
the end of the initialization stage. The initialization also specifies a parameter
p used to identify a table T (p, ·) of random values that defines the proper PRF
values computed by the user when interacting with any subset of t + 1 honest
servers from the set SI. Additional parameters p∗, and corresponding tables
T (p∗, ·), can be specified by the adversary to represent rogue tables with values
computed by the user in interaction with corrupted servers (see more on this
below). The parameter p is also used to identify a counter tx(p, S) for each
S ∈ SI as specified below.

In the evaluation stage, users connect to an arbitrary set of servers SE chosen
by the adversary and which may arbitrarily overlap with SI (representing the
fact that the user has no memory of who the servers in SI are). When, at
the discretion of the adversary, a server S ∈ SI completes its interaction, the
functionality increases the counter tx(p, S). Eventually, the adversary can trigger
a response to the user which will be drawn from one of the tables maintained by
the functionality. Recall that in addition to the proper table T (p, ·) the adversary
can register additional function tables T (p∗, ·) and may connect an evaluation
request from a user to any such table of its choice.

The security guarantees provided by the T-OPRF functionality are the fol-
lowing: (1) it enforces the use of the proper function table p whenever the set of
servers SE selected for an evaluation are all honest; (2) it “charges” t+ 1 server
tickets for accessing the proper table p by decrementing (non-zero) ticket coun-
ters tx(p, S) for an arbitrary set of t+ 1 servers in SI; and (3) all tables T (the
proper table p as well as any additional ones set by the adversary with p∗ 6= p)
are filled with random entries that are chosen on demand as the functionality
responds back to the user. These guarantees ensure that at least t+1− t′ honest
servers from SI need to be contacted for the proper function to be evaluated
once. To see why this is the case observe that t + 1 tickets are “spent” (decre-
mented) during evaluation which correspond to at least t + 1 − t′ tickets from
honest ticketing counters. This implies that t+1 servers from SI have registered
a SndrComplete message as this is the only event that triggers a counter incre-
ment. In the real world this corresponds to the event that a server has completed
its interaction with a user that attempts to perform an evaluation.

It is important to highlight that the functionality does not necessarily decre-
ment the ticketing counters of the servers identified in the chosen evaluation set
SE ; rather, it decrements an arbitrary set of t+1 non-zero counters for servers in
SI. This reflects the fact that the functionality does not provide any guarantee
about the identities of the responding servers. For instance, this means that we
allow for an implementation of T-OPRF where an honest user U attempts to
connect to a set of servers SE1 that are corrupted and its message is rerouted by
the adversary so that, unbeknownst to U , an honest set of servers servers SE2
becomes the responder set.
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PRF Definition
G: a group of prime order m; H,H ′: hash functions with resp. ranges {0, 1}` and G.

PRF f from {0, 1}∗ to {0, 1}`: For a key k ←R Zm, define fk(x) = H(x, (H ′(x))k).

Oblivious Computation of PRF fk(x) between user U and server S

1. On input x, U chooses r ←R Zm; sends a = (H ′(x))r to S.
2. S verifies that the received a is in group G and if so it responds with b = ak.
3. U outputs fk(x) = H(x, b1/r).

Fig. 2. The 2HashDH OPRF [19]

Another important point regarding the T-OPRF functionality is that while it
guarantees correct OPRF evaluation in case the user completes an undisturbed
interaction with t + 1 honest servers in SI, the ideal world adversary may also
maintain an arbitrary collection of random tables and connect a user to them, if
desired, as long as the responder set is not composed of honest servers only. For
instance, the adversary can assign to a subset of corrupted servers SE1 a certain
function table, while it can assign a different function table to a different subset
of corrupted servers SE2. While the two function tables will be independent, they
are not under the control of the ideal world adversary completely: their contents
will be populated by the ideal functionality with random values independently
of each other. In practice this means that we allow for an implementation where
two successive evaluation requests for the same x value result in a different
(but still random) value to be produced, depending on which set of servers the
user connects to. We stress that the secrecy of the input x is always preserved
irrespectively of the subset of servers the user communicates with. At the same
time, observe that the randomness requirement imposed for adversarial tables
restricts our ability to implement the functionality to the random oracle setting.

3 Threshold OPRF Protocol from OMDH and T-OMDH

Here we present our Threshold Oblivious PRF protocol, called 2HashTDH, that
instantiates the FTOPRF functionality defined in Section 2. Thus, 2HashTDH
provides a secure T-OPRF for use in general applications and, in particular, as
the basis for our PPSS scheme, TOPPSS, presented in Section 4. The 2HashTDH
scheme is formally defined as a realization of FTOPRF in Figure 3. In a nutshell,
it is a threshold version of the 2HashDH OPRF from [19], recalled in Figure 2.
The underlying PRF, fk(x) = H2(x, (H1(x))k), remains unchanged, but the
key k is shared using Shamir secret-sharing across n servers, where server Si
stores the key share ki. The initialization of such secret-sharing can be done via
a Distributed Key Generation (DKG) for discrete-log-based systems, e.g. [16],
and in Figure 2 we assume it is done with a UC functionality FDKG which we
discuss further below. For evaluation, given any subset SE of t + 1 servers, the
user U sends to each of them the same message a = (H ′(x))r for random r,
exactly as in the single-server OPRF protocol 2HashDH. If each server Si in SE
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returned bi = aki then U could reconstruct the value ak using standard Lagrange
interpolation in the exponent, i.e. ak =

∏
i∈SE b

λi
i with the Lagrange coefficients

λi computed using the indexes of servers in SE . After computing ak, the value
of fk(x) is computed by U by deblinding ak exactly as in the case of protocol
2HashDH. Note that this takes a single exponentiation for each server and two
exponentiations for the user (to compute a and to deblind ak) plus one multi-
exponentiation by U to compute the Lagrange interpolation on the bi values. We
optimize this function evaluation by having each server Si compute bi = aλi·ki ,
which costs one exponentiation and O(t) multiplications and divisions in Zm to
compute λi. (Note that Si must know set SE to compute λi.) This way U can
compute ak using only t multiplications instead of a multi-exponentiation, and
the total costs are 1 exps for each Si and 2 exps for U .

Protocol 2HashTDH can be also be seen as a simplification of a protocol
which results from a generic transformation of any OPRF to T-TOPRF using
multi-party secure computation of the server code, and then applying this trans-
formation to the 2HashDH OPRF of [19]. The server in 2HashDH computes
ak on input a, and the MPC protocol for it is exactly the threshold exponen-
tiation protocol described above, except that this generic OPRF to T-OPRF
transformation must assure that the servers perform the MPC subprotocol on
the same input a, and this involves an additional round of server-to-server inter-
action, which the 2HashTDH protocol avoids. For completeness, we include the
specification of this general OPRF to T-OPRF compiler in Section 6.

Roadmap. In Section 3.1 we show protocol 2HashTDH and explain the as-
sumptions taken in its specification. In Section 3.2 we introduce the T-OMDH
assumption, a generalization of OMDH, and we show that it is equivalent to
OMDH in several cases, including the full corruption case t′= t discussed in
the introduction. In Section 3.3 we show that protocol 2HashTDH realizes the
Threshold OPRF functionality FTOPRF under the T-OMDH assumption in ROM
for any threshold parameters (t, n) and any number t′<t of corrupted servers. It
follows that protocol 2HashTDH achieves the standard threshold security prop-
erty, which corresponds to the full corruption case, under just OMDH in ROM.
Note that the non-threshold OPRF 2HashDH of [19] also relies on OMDH.

3.1 T-OPRF Protocol based on T-OMDH Assumption

The 2HashTDH T-OPRF protocol is shown in Figure 3, relying on realiza-
tions of functionalities FDKG,FAUTH and FSEC, which model, respectively, the
distributed key generation, authenticated channel, and secure channel. Assuming
these functionalities, the 2HashTDH protocol realizes the UC T-OPRF function-
ality defined in Section 2, under the T-OMDH assumption in ROM. As we argue
in Section 3.2, this implies security under OMDH in ROM in several cases, in-
cluding the full corruption case, where the adversary corrupts t′= t servers, and
the additive sharing case, where t=n−1. Functionalities FDKG,FAUTH,FSEC all
have well-known efficient realizations in ROM under the Diffie-Hellman assump-
tion which is implied by OMDH, and hence also by T-OMDH.
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Let FDKG,FAUTH and FSEC be, respectively, the distributed key generation, au-
thenticated channel, and secure channel functionalities; Let G be a cyclic group
of prime order m; Let H1, H2 be hash functions with resp. ranges G and {0, 1}`.

Initialization

S1: On input (Init, sid ,SI=(S1, . . . , Sn)), server S forwards this input to FDKG.
S2: On message (InitComplete, sid , y, ki) from FDKG, server S records

(sid ,SI, y, i, ki), marks itself active, and outputs (InitComplete, sid).

Evaluation

U1: On input (Eval, sid , ssid ,SE , x), U picks r ←R Zm, computes a := H1(x)r,
and sends (Send, (sid , ssid , 1), S, (SE , a)) to FAUTH for all S ∈ SE .

S1: On message (Sent, (sid , ssid , 1), U, (SE , a)) from FAUTH, server S, provided it
is active, computes bi := aλi·ki where λi is a Lagrange interpolation coefficient
for index i and index set SE , sends (Send, (sid , ssid , 2), U, bi) to FAUTH, and
outputs (SndrComplete, sid , ssid).

U2: When U receives (Sent, (sid , ssid , 2), Si, bi) from FAUTH for all Si ∈ SE , it
outputs (Eval, sid , ssid , H2(x, (

∏
Si∈SE bi)

1/r)).

Fig. 3. Protocol 2HashTDH realizing FTOPRF assuming FDKG,FSEC,FAUTH.

Note on Authentic and Secret Channels. In Figure 3 protocol 2HashTDH
is presented in the (FAUTH,FSEC,FDKG)-hybrid world, i.e., assuming that there
are both authenticated and secure (i.e. authenticated and secret) channels be-
tween protocol participants. We refer to [12] for the UC models of authenticated
and secret channels, but simply speaking, what the authenticated and secure
channel functionalities model is that if party P1 sends message m to party P2

using FAUTH command (Send, sid , P2,m), then P2 will be able to authenti-
cate m as originated from P1, i.e. if P2 receives command (Sent, sid , P1,m

′),
it is guaranteed that m′ = m, and if P1 sends m to P2 using FSEC command
(Send, sid , P2,m), then P2 can verify authenticity of P1’s message as above, but
in addition m will be hidden to the adversary unless P2 is corrupted.

We note that using ideal functionalities such FAUTH,FSEC in the hybrid
world, does not determine their implementation when the UC protocol is de-
ployed in the real world. This is because they only describe how the adversarial
model against the protocol is envisioned. For instance, FAUTH may be realized
using a PKI involving all connected participants, or it may be simply substituted
by unauthenticated TCP/IP communication in case it is deemed that modifying
message contents is not a relevant threat in the protocol deployment. Indeed,
this will also be the case in our setting since we allow the (adversarial) envi-
ronment to choose the servers that a user connects in the evaluation stage of
the protocol in a way that is independent from the initialization servers; in this
way, any man-in-the-middle scenario can be simulated by the adversary without
violating the FAUTH constraints. Similarly, FSEC may be implemented by TLS,
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but may also be achieved in other ways, e.g., physically transferring private state
between the parties engaged in the protocol.

A second important point is that if a user U initializes a T-OPRF instance
with a server set SI = {S1, ..., Sn} such that some subset B of SI is made of
corrupt entities (which models both the fact that some SI members are corrupt
and the fact that U can execute T-OPRF initialization on an incorrect set of
servers), then in this case command (Send, sid , Si,m) for Si ∈ B will leak m to
the adversary, and if U receives (Sent, sid , Si,m) from FAUTH for Si ∈ B, we can
assume that the adversary supplies message m. In other words, the FAUTH and
FSEC channels implement authenticated and/or secret point-to-point message
delivery only if they are executed for a proper and non-corrupt server. We note
that we assume a secret channel FSEC in addition to an authenticated channel
FAUTH solely to simplify the description of T-OPRF initialization. Indeed, the
former can be built from the latter [12], e.g. by having each server Si first send
its encryption public key to U using the authenticated channel.

Note on Distributed Key Generation. Protocol 2HashTDH assumes that
servers in SI establish a secret-sharing (k1, ..., kn) of a random key k over authen-
ticated channels via a Distributed Key Generation (DKG) functionality FDKG,
shown in Figure 4. The DKG sub-protocol for discrete-log based cryptosystems
can be efficiently realized without user’s involvement [16, 30], but if the call to
initialize a TOPRF instance is executed by an honest user U then the DKG
subprotocol can be even simpler, because U can generate sharing (k1, ..., kn) of
k and then distribute the shares among the servers in SI. Note that since our
realizations of FTOPRF pertains only to the static adversarial model, where the
identity of corrupt parties is determined at the outset, we would not explicitly
require that the parties erase the information used in the initialization, but any
implementation should erase such information. In our specification of protocol
2HashTDH we rely on the FDKG functionality to abstract from any specific DKG
implementation, e.g. whether it is done by the server or by an honest user.

3.2 Threshold OMDH Assumption

Notation. If n is an integer, then [n] = {1, ..., n}. If D is a set, then |D| is
its cardinality. We use bold font to denote vectors, e.g. a = [a1, ..., an]. If a
and b are two vectors of the same dimension, then a � b is their Hadamard
(component-wise) product. If |a| = n and J is a sequence in [n] then aJ denotes
the components of a with indices in J , i.e. [ai1 , ..., aik ]T if J = (i1, ..., ik).

Let Iw be the set of w-element subsets of [n], i.e. Iw = {I ⊆ [n] s.t. |I| = w}.
Let W (a) be the hamming weight of a. Let Vw be the set of n-bit binary vectors q
s.t. W (q) = w, i.e. Vw = {v ∈ {0, 1}n s.t. vi = 1 iff i ∈ Iw}. For q = [q1, . . . , qn]
define Cw(q) as the maximum integer m for which there exist v1, ...,vm ∈ Vw
(not necessarily distinct) s.t. v1 + ... + vm ≤ q. In other words, Cw(q) is the
maximum number of times one can subtract elements in Vw from q s.t. the
result remains ≥ 0. For example if and q = [3, 3, 4] then C2(q) = 4 because
q = 2× [1, 0, 1] + [1, 1, 0] + 2× [0, 1, 1].
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Let g generate a cyclic group G of prime order m; Let t, n be integers s.t. t < n.

– On message (Init, sid ,SI) from S, ignore it if |SI|6=n or S is active or
S 6∈ SI. Otherwise, if no record 〈sid , [...]〉 exists, let Corrupted be the sub-
set of SI that is corrupted and set t′ = |Corrupted|. If t′ ≤ t then pick
a0, a1, . . . , at−t′ ←R Zm, record 〈sid , SI, a0, a1, . . . , at−t′〉 else record 〈sid ,
SI〉. Irrespectively, mark S as “active”, and send (Init, sid , P,SI) to A∗.

– On message (Init, sid ,SI, s) from a corrupted S ∈ SI, if the record
〈sid ,SI, [...]〉 exists, record 〈A∗, S, s〉, mark S as active and send
(Init, sid ,A∗, S) to A∗.

– On message (InitComplete, sid , Si) from A∗, retrieve tuple 〈sid ,
SI, a0, a1, . . . , at−t′〉. Ignore the message, if there is no such tuple, or
if Si 6∈ SI or not all servers in SI are active. Otherwise, send
(InitComplete, sid , ga0 , i, si) to Si and (InitComplete, sid , Si, g

a0) to A∗,
where si = p(i) and p(x) is a polynomial whose first t − t′ + 1 coefficients
match a0, a1, . . . , at−t′ and p(j) = sj for each j such that Sj ∈ Corrupted and
〈A∗, Sj , sj〉 has been previously recorded.

Fig. 4. Distributed Key Generation Functionality FDKG [30].

T-OMDH Intuition. Let 〈g〉 be a cyclic group of prime order m > n. The
T-OMDH assumption considers the setting where a random exponent k ∈ Zm is
secret-shared using a random t-degree polynomial p(·), and the n trustees holding
shares k1=p(1), . . . , kn=p(n) implement a “threshold exponentiation” protocol
which computes ak for any given a ∈ 〈g〉 and k = p(0). Let TOMDHp(·, ·) be
an oracle which on input (i, a) ∈ [n] × 〈g〉 outputs ap(i). The standard way
to implement threshold exponentiation is to choose a set I ∈ It+1, compute
bi = TOMDHp(i, a) = aki for each i in I and derive ak as

∏
i∈I b

λi
i using La-

grange interpolation coefficients λi s.t. k =
∑
i∈I λi·ki. The T-OMDH assump-

tion states that querying oracle TOMDHp(·, ·) on at least t + 1 different points
i ∈ [n] is necessary to compute ap(0) for a given random challenge a. More gen-
erally, T-OMDH considers an experiment where the attacker A receives a chal-
lenge set R = {g1, ..., gN} of random elements in 〈g〉 and is given access to the
TOMDHp(·, ·) oracle for random t-degree polynomial p. T-OMDH assumption
states that A can compute gj

k for k = p(0) for no more than Ct+1(q1, . . . , qn)
elements gj ∈ R, where qi is the number of A’s queries to TOMDHp(i, ·).

The above intuition and Definition 1 below correspond to the setting where
the attacker does not control any of the trustees holding shares of p, hence it
needs t+1 queries to TOMDHp(·, ·) to compute ap(0) for each random challenge a.
Later we extend this definition to the case where A controls a subset of trustees.

Definition 1. The (t, n,N,Q)-Threshold One-More Diffie Hellman (T-OMDH)
assumption holds in group 〈g〉 of prime order m if the probability of any polynomial-
time adversary A winning the following game is negligible. A receives challenge
set R = {g1, . . . , gN} where gi ←R 〈g〉 for i ∈ [N ], and is given access to an
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oracle TOMDHp(·, ·) for a random t-degree polynomial p(·) over Zm. A wins
if it outputs gj

k where k = p(0) for Q + 1 different elements gj in R, and if
Ct+1(q1, . . . , qn) ≤ Q where qi is the number of A’s queries to TOMDHp(i, ·).

Note that the (N,Q)-OMDH assumption [5, 22] is the (t, n,N,Q)-T-OMDH
assumption for t = 0 and any n ≥ 1, because then p(·) is a constant polynomial
and C1(q) = W (q), i.e. the total number of A’s TOMDHp(·, ·) queries.

T-OMDH: The General Case. In its general form, the T-OMDH assumption
corresponds to computing gkj if some subset of t′ ≤ t trustees holding shares
ki = p(i) is corrupt, and hence the adversary can not only learn these shares but
can also set them at will.

Definition 2. The (t′, t, n,N,Q)-T-OMDH assumption holds in group 〈g〉 of
prime order m if for any B ⊆ [n] s.t. |B| = t′ ≤ t, the probability of any
polynomial-time adversary A winning the following game is negligible. On input
a challenge set R = {g1, . . . , gN} where gi ←R 〈g〉 for i ∈ [N ], adversary A
specifies a set of t′ values {αj}j∈B in Zm. A random t-degree polynomial p(·)
over Zm is then chosen subject to the constraint that p(j) = αj for j ∈ B, and
the adversary A is given access to oracle TOMDHp(·, ·). We say that A wins
if it outputs gkj where k = p(0) for Q + 1 different elements gj in R, and if
Ct−t′+1(q1, . . . , qn) ≤ Q where qi for i /∈ B is the number of A’s queries to
TOMDHp(i, ·), and qi = 0 for i ∈ B.

Note that (t′, t, n,N,Q)-T-OMDH is identical to (t, n,N,Q)-T-OMDH for t′ = 0.

Gap T-OMDH. In order to prove the security of T-OPRF, we need to extend
the T-OMDH assumption stated in Definition 2 to its “gap” form, i.e. suppose
〈g〉 is a gap group where A is in addition given access to the DDH oracle in 〈g〉.

Definition 3. The Gap (t′, t, n,N,Q)-T-OMDH assumption is the T-OMDH
assumption of Definition 2 except that A is also given access to the DDH oracle in
group 〈g〉, which on input (a, b, c, d) outputs 1 if loga b = logc d and 0 otherwise.

In Theorem 7 in Section A we show that the (Gap) (t, t′, n,N,Q)-T-OMDH
assumption holds in the generic group model for any (t′, t, n). Specifically, the
advantage of a T-OMDH adversary restricted to r generic group operations is
upper-bounded by O(Qr2/m), assuming r ≥ Q ≥ N . This is larger by factor Q
from the O(r2/m) upper-bounds on generic group attacks against many static
problems related to discrete logarithm [28], and this weakening is caused by the
presence of up to Q-degree polynomials of the “target” secret k = p(0) in the
representation of the group elements which the adversary can compute given
access to TOMDHp(·, ·) using the query pattern q = [q1, ..., qn] s.t. Ct−t′+1(q) ≤
Q. Since (Q,N)-OMDH is identical to (t′, t, n,N,Q)-T-OMDH for (t′, t) = (0, 0)
and any n, the same upper-bound applies applies to OMDH, and to the best of
our knowledge this is the first generic model security hardness argument for the
OMDH (or Gap OMDH) assumption.

T-OMDH = OMDH in Full Corruption and Additive Sharing Cases.
The T-OMDH and OMDH assumptions are equivalent in two important cases,
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namely the full corruption case of t′ = t, for any (t, n), and in the additive
sharing case of t = n − 1, for any t′. The following two theorems relate the
non-gap versions of T-OMDH and OMDH, but equivalent statements hold for
the gap versions of these assumptions as well.

Theorem 1. (t′, t, n,N,Q)-T-OMDH is equivalent to (N,Q)-OMDH for t′= t.

Proof. If t′= t, the bound Ct−t′+1(q) on Q simplifies to
∑
i6∈B qi, i.e. the bound

on the number of gj ’s for which A can compute (gj)
p(0) is the total number of

A’s queries to non-corrupted trustees.
Let A be an adversary that breaks the (t, t, n,N,Q)-T-OMDH assumption

making total Q =
∑
i 6∈B qi queries, for some t-element set B = {α1, ..., αt} and

an assignment F : B → Zm of shares of corrupt trustees. Note that k,B, F
define a unique t-degree polynomial p(·) s.t. p(0) = k and p(α) = F (α) for all
α ∈ B. For any i ∈ [n] \ B, let λi,0, . . . , λi,t be the Lagrange coefficients s.t.

p(i) = λi,0p(0) +
∑t
j=1 λi,jp(αj).

Consider reduction R which breaks (N,Q)-OMDH using A as follows: Given
the challenge set C = {g1, . . . , gN} and Q accesses to oracle (·)k for k ←R Zm,
reduction R passes C to A, and given F : B → Zm and any (i, a) query of
A to TOMDHp(·, ·), R queries (·)k on a to get b = ak and sends b′ = bλi,0 ·
aλi,1F (α1)+...+λi,tF (αt) to A. In this way R consistently answers A’s queries to
TOMDHp(·, ·) for the unique t-degree polynomial p(·) s.t. p(0) = k and p(α) =
F (α) for α ∈ B. Hence in particular if A wins, i.e. its output V includes (gj)

p(0)

for at least Q + 1 of gj ’s, if R copies A’s output then R will break its (N,Q)-
OMDH challenge.

Theorem 2. (t′, t, n,N,Q)-T-OMDH is equivalent to (N,Q)-OMDH for n= t+ 1.

Proof. If n = t+ 1 then shares ki = p(i) for i ∈ [n] \ B are uniformly random in
Zm and p(0) =

∑n
i=1 λip(i) for known constants λi. Note also that Cn−t′(q) =

mini 6∈B qi, i.e. the bound on the number of gj ’s for which A can compute (gj)
p(0)

is the minimal number of queries the adversary makes to an uncorrupted trustee.
Let A be an adversary that breaks the (t′, t, n,N,Q)-T-OMDH for n = t+1,

making qi queries to uncorrupted trustee i 6∈ B s.t. mini 6∈B qi ≤ Q, for some
t′-element subset B ⊆ [n] and an assignment F : B → Zm of shares of corrupt
trustees. Consider reduction R which breaks (N,Q)-OMDH using A as follows:
R passes C to A, guesses the index i∗ ←R ([n] \ B) of the trustee whom A will
query the least, picks shares ki ∈ Zm for i ∈ [n] \ (B ∪ {i∗}), sets ki = F (i)
for i ∈ B, and replies to each TOMDHp(·, ·) query (i, a) for i 6= i∗ with aki ,
while given each query (i∗, a) reduction R queries oracle (·)k to compute b = ak

and replies to A with [b·(a)
∑

i6i∗ λiki ]1/λi . In this way R consistently answers A’s
queries to TOMDHp(·, ·) for the random (n−1)-degree polynomial p s.t. p(0) = k
and p(i) = F (i) for i ∈ B. If R guesses index i∗ correctly then it makes at most
mini qi = Q queries to (·)k, and if A computes (gj)

p(0) = (gj)
k for at least Q+ 1

of gj ’s then so does R. Since R guesses i∗ correctly with probability at least 1/n,
R’s advantage against (Q,N)-OMDH is ε/n where ε is A’s advantage against
(t′, t, n,Q,N)-T-OMDH for n = t+ 1.
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T-OMDH vs. OMDH for General Threshold Parameters. It is less clear
how to relate the T-OMDH and OMDH problems for any t′, t, i.e. if t′ < t,
and t < n− 1. To simplify the notation take t′= 0 and n= 2(t + 1). Adver-
sary A breaks the T-OMDH assumption if, for example, it computes (gj)

k

on 2s + 1 challenges after making s queries to TOMDHp(i, ·) for each i ∈ [n]
where k = p(0) and ki = p(i) for i ∈ [n]. (Note that if q = [s, . . . , s]T and
n = 2(t + 1) then Ct+1(q) = 2s, hence computing (gj)

k on 2s + 1 challenges
breaks the assumption.) It is not clear how an efficient reduction R can break
the OMDH problem given access to A, because reduction R would seemingly
have to satisfy the following constraints: (1) R would have to make only 2s
queries to (·)k, but it would have to service s queries to TOMDHp(i, ·) for
each i, i.e. ns queries to TOMDHp(·, ·) in total, and n = 2(t + 1) ≥ 4; (2)
R would presumably need to equate secret k in its OMDH challenge with value
p(0) in the T-OMDH challenge; (3) R would presumably need to answer each
TOMDHp(i, ·) query consistently, i.e. R has to reply to TOMDHp(i, a) with
aki for some fixed vector of exponents k = [k1, . . . , kn]T , because otherwise
A can distinguish interaction with R from the real security game by checking
if (TOMDHp(i, a))r = TOMDHp(i, a

r). Since ar and a are independent group
elements for r ←R Zm, it is not clear how R could detect A’s queries which
are designed to test if R responds to A’ TOMDHp queries (i, ·) with consis-
tent answers; (4) Finally, values (k1, . . . , kn) = (p(1), . . . , p(n)) would need to
satisfy linear constraints imposed by the polynomial of degree t < n− 1, be-
cause A could test that R’s responses to TOMDHp queries satisfy these con-
straints, similarly as described above. Conditions (2-4) can be met e.g. if R
picks ki = p(i) at random for i = 1, . . . , t, and sets p(i) for i > t as a linear
function of k = p(0) and these first t values of p(·). But then it is not clear how
R could reply to any TOMDHp(i, ·) query for i > t without querying (·)k, thus
making (n− t)s = (t+ 2)s > 2s queries to (·)k, violating condition (1).

3.3 Security Analysis of 2HashTDH

Protocol 2HashTDH protocol of Figure 3 is secure under the T-OMDH assump-
tion. As a corollary of Theorem 1 from Section 3.2, Theorem 3 implies that
protocol 2HashTDH is secure under OMDH in ROM in the full corruption case
of t′ = t. The proof of Theorem 3 appears in Appendix B.

Theorem 3. Protocol 2HashTDH realizes functionality FTOPRF with parame-
ters t, n in the (FAUTH,FSEC,FDKG)-hybrid model, assuming static corruptions,
hash functions H1(·) and H2(·, ·) modelled as Random Oracles, and the Gap
(t′, t, n,N,Q)-T-OMDH on group 〈g〉, where Q is the number of Eval messages
sent by any user, N = Q + q1 where q1 is the number of H1(·) queries the
adversary makes, and t′ < t is the number of corrupted servers in SI.

Specifically, for any efficient adversary A against protocol 2HashTDH, there
is a simulator SIM s.t. no efficient environment Z can distinguish the view of A
interacting with the real 2HashTDH protocol and the the view of SIM interacting
with the ideal functionality FTOPRF, with advantage better than qT · ε(N,Q) +
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N2/m, where qT is the number of TOPRF instances, ε(N,Q) is the bound on the
probability that any algorithm of the same cost violates the Gap (t′, t, n,N,Q)-
T-OMDH assumption, and m = | 〈g〉 |.

4 TOPPSS: A PPSS Scheme Based on T-OPRF

In Figure 5 we show a compiler which converts a T-OPRF scheme which realizes
the UC T-OPRF notion of Section 2 into a PPSS scheme, called TOPPSS, which
realizes UC PPSS functionality of [19].(We include this PPSS functionality for
reference in Appendix D.) The terminology of the UC setting might obscure
the amazing practicality of this construction, so in Section 5 we show a concrete
implementation of this scheme with the FTOPRF functionality implemented using
the T-OPRF instantiation 2HashTDH from Section 3.

TOPPSS Overview. To explain the mechanics of TOPPSS based on the T-
OPRF functionality, it is instructive to compare it to the OPRF-based PPSS
scheme of [19]. In that scheme each server holds its own independently random
key ki for an OPRF f . At initialization, the secret to be protected is processed
with a (t, n) secret sharing scheme and each share is stored at one of n servers,
where server Si stores the i-th share encrypted under fki(pw). At reconstruction,
the user receives the encrypted shares from t+ 1 servers which it decrypts using
the values fki(pw) that it learns by running the OPRF on pw with each of these
servers. By contrast, in our TOPPSS scheme, which is T-OPRF-based, the (ran-
dom) secret to be protected is defined as a single PRF value v = fk(pw) where k
is a key secret-shared as part of a T-OPRF scheme. This provides a significant
performance gain by reducing the number of exponentiations performed by the
user from t+ 2 to just 2. In the scheme of [19] implemented with 2HashDH, the
user computes the OPRF sub-protocol with each server independently, which
involves one blinding operation re-used across all servers, but requires one de-
blinding operation per server for a total of t+ 2 exponentiations. By contrast, in
the T-OPRF protocol 2HashTDH of Section 3 the user performs a single blind-
ing and de-blinding, hence just 2 exponentiations, regardless of the number of
servers and threshold t.

Note that the T-OPRF functionality allows the user to evaluate function
fk(·) on the user’s password pw, without leaking any information about pw, but
it does not let the user verify whether the function is computed correctly. Indeed,
following the rules of functionality FTOPRF, either corrupt servers or a man-in-
the-middle adversary could make the user compute fk(pw) on key k of their
choice. If the dictionary D from which the user draws her password is small, the
adversary can potentially pick k s.t. function fk(·) behaves on domain D in some
ways the adversary can exploit (e.g., reducing the number of possible outputs).
However, since FTOPRF assures that fk(·) behaves like a random function for all
k’s, even for k’s chosen by the adversary, it suffices to include a commitment to
the master secret v = fk(pw) in the information that the servers send to the user,
so that the user can verify its correctness. The adversary can still pick k but if
fk(·) is pseudorandom for all k then the adversary cannot change either k or v
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Let FAUTH and FTOPRF be, respectively, the authenticated channel and the T-
OPRF functionality; Let H(·) be a hash function with range {0, 1}`.

Init for user U :

1. On input (Init, sid ,SI, pw), send (Send, (sid , 0), S,SI) to FAUTH for all S in
SI.

2. On (Sent, (sid , 1), S,done) from FAUTH for all S ∈ SI, send
(Eval, sid , 0,SE , pw) to FTOPRF for any SE ⊆ SI such that |SE| = t+ 1.

3. On FTOPRF’s response (Eval, sid , 0, v), parse H(v) as [C|K] and send
(Send, (sid , 2), S, C) to FAUTH for every S ∈ SI.

4. On (Sent, (sid , 3), S,ack) for all S ∈ SI from FAUTH, output (UInit, sid ,K).

Init for server S:

1. On (Sent, (sid , 0), U,SI) from FAUTH, send (Init, sid ,SI) to FTOPRF.
2. On (InitComplete, sid) from FTOPRF, send (Send, (sid , 1), U,done) to
FAUTH.

3. On (Sent, (sid , 2), U, C) from FAUTH, record (sid , C), send
(Send, (sid , 3), U,ack) to FAUTH, and output (SInit, sid).

Rec for user U :

1. On input (Rec, sid , ssid ,SR, pw′) send (Eval, sid , [1|ssid ],SR, pw′) toFTOPRF.
2. On FTOPRF’s response (Eval, sid , [1|ssid ], v′) and (Sent, (sid , ssid , 1), S, C′)

from FAUTH for all S ∈ SR, if each message contains C′ s.t. [C′|K′] =
H(v′), then set Res := K′, otherwise set Res := Fail. Output
(URec, sid , ssid ,Res).

Rec for server S:

1. On (SndrComplete, sid , [1|ssid ]) from FTOPRF, if S holds record (sid , C),
then send (Send, (sid , ssid , 1), U, C) to FAUTH and output (SRec, sid , ssid).

Fig. 5. The TOPPSS Protocol

without guessing pw. Note that the randomness for verifying this commitment
must be derived from the committed plaintext fk(pw) itself as this is the only
value the user can retrieve using its only input pw. Although this mechanism
requires the commitment scheme to be deterministic, the hiding property of the
commitment is still satisfied thanks to the pseudorandomness of the committed
plaintext v = fk(pw) (and assuming no more than t corruptions).

Since our realizations of FTOPRF, protocol 2HashTDH, requires the Random
Oracle Model (ROM) for hash functions in the security analysis, we implement
this commitment simply with another hash function modeled as a random oracle.
Finally, since the user needs to verify the master-secret v as well as to derive a
key K from it, we implement both operation using a single hash function call,
i.e. we set [C|K] to H(v) where H hashes onto strings of length 2`.
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The proof of the following theorem is in Appendix C.

Theorem 4. The TOPPSS scheme of Figure 5 UC-realizes the PPSS function-
ality FPPSS assuming access to the T-OPRF functionality FTOPRF and to the
authenticated message delivery functionality FAUTH, and assuming that hash
function H is a random oracle.

5 Concrete Instantiation of TOPPSS Using 2HashTDH

For concreteness we show an instantiation of TOPPSS with the T-OPRF func-
tionality realized by protocol 2HashTDH from Figure 3 in Section 3. In this
figure we realize the FDKG subprotocol assuming an honest user U , because in
the context of a PPSS protocol, we only care about security for PPSS instances
which were initialized with an honest user. Hence we simply have U create the
sharing of the T-OPRF key and distributing it among the servers in SI (see
a note on DKG in section 3.1). Note that if we implement FDKG in this user-
centric way then we do not have to execute T-OPRF evaluation for U to compute
v = fk(pw) as part of the initialization: User U can just compute v = fk(pw)
locally because U picked the TOPRF key k.

On the role of Secure Channels. The communication in such instantiation
of TOPPSS must go over secure channels in the initialization phase, which in
practice could be implemented using e.g. TLS.5 In the reconstruction phase, the
communication does not have to go over secure channels, because TOPPSS is
secure in the password-only, i.e. PKI-free, model. However using TLS would
offer a security benefit against the network adversary as a hedge against any
server-spoofing attacks due to which the user might be tricked to run the PPSS
reconstruction with the wrong set of servers. To see the benefit of running a
PPSS protocol over TLS channels, denote the set of server identities which U
inputs in the reconstruction as SR. In the case of running PPSS reconstruction
over TLS these can be equated with the public keys the user would use in the
TLS sessions with the t+ 1 servers in the reconstruction. Consider the following
two cases, and refer to the specification of the UC PPSS functionality FPPSS

of [19], which we include in Figure 10 in Appendix D.

Case I: Every server S′ in set SR is either incorrect (i.e. S′ 6∈ SI) and w.l.o.g.
represents a malicious entity, or it is correct (i.e. S′ ∈ SI) but it is corrupted.
In this case, according to FPPSS specifications (see line 3b of the reconstruction
phase), the adversary can perform one on-line password guess on such session.
In other words, if the user runs reconstruction with incorrect/corrupt servers,
the security is as in a (password-only) PAKE, i.e. the adversary can attempt to
authenticate to such user using a password guess pw∗, and test if pw∗ = pw.

5 Note that if the FDKG was instantiated with the distributed key generation then au-
thenticated channels would suffice for the communication between the user and the
servers because the TOPRF evaluation protocol does not need secure channels. How-
ever, the standard realization of FDKG [30] would require secure channels between
the servers.
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Parameters: Security parameter `, threshold parameters t, n, cyclic group 〈g〉 of
prime order m, hash functions H1, H2, H3 with ranges 〈g〉, {0, 1}2` and {0, 1}2`.
Communication Setting: Communication between U and Si’s in Init goes over
secure channels, e.g. TLS, communication in Rec not necessarily (see text).

Init for user U on input (sid ,SI, pw) where SI = {S1, ..., Sn} :

1. Pick k ←R Zm, generate (k1, . . . , kn) as a (t, n)-Shamir’s secret sharing of k
over Zm, and send (sid ,SI, i, ki) to each Si ∈ SI.

2. After receiving ack’s from all servers in SI, compute v := H2(pw, H1(pw)k),
parse H3(v) as [C|K], send (sid , C) to all Si ∈ SI and output K.

Init for server Si:

1. On (sid ,SI, i, ki) from U , abort if sid not unique or Si 6∈ SI, otherwise record
(sid ,SI, i, ki) and send (sid ,ack) to U .

2. On (sid , C) from U , append C to tuple (sid ,SI, i, ki).

Rec for user U on input (sid , ssid ,SR, pw) where SR = {S′1, ..., S′t+1}:

1. Pick r ←R Zm, set a := H1(x)r, send ((sid , ssid), (SR, a)) to all S′i ∈ SR.
2. After receiving message ((sid , ssid), bi, C) from all servers in SR, abort if not

all C’s are the same. Otherwise compute b :=
∏
S′i∈SR

bi and v := H2(x, b1/r).

3. Parse H3(v) as [C′|K′]. If C′ = C then output K′, otherwise output Fail.

Rec for server Si ∈ SR:

1. On message ((sid , ssid), (SR, a)) from U , recover stored tuple
(sid ,SI, i, ki, C). (Abort if there is no such tuple or if a 6∈ 〈g〉.) Com-
pute bi := aλi·ki where λi is an interpolation coefficient for index i and the
subset of t+1 indices defined by SR ⊆ SI, and send ((sid , ssid), bi, C) to U .

Fig. 6. Concrete Instantiation of TOPPSS based on 2HashTDH T-OPRF.

Case II: There are some servers S′ in set SR which are both correct (i.e. S′ ∈ SI)
and uncorrupted. In this case, according to FPPSS specifications (lines 3a and
3b of FPPSS), the adversary cannot learn anything from such instance, and can
only either let it execute (line 3a) in which case U reconstructs the (correct!)
secret K, or interfere with the protocol (line 3c) and make U output Fail.

In short, if PPSS reconstruction is executed over insecure channels then the
man-in-the-middle adversary could make every reconstruction instance fall into
Case I. By contrast, executing it over TLS forces the reconstruction instances
to fall into Case II, unless the adversary tricks U to execute the reconstruction
for the set of servers SR which includes only corrupt entities, in which case such
reconstruction instance (and only such instance) falls back into Case I.
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Note on sid/ssid monikers. As we explain above, it is not essential for security
of reconstruction that the user remembers the servers in the initialization set SI.
It might also be helpful to clarify the potential security implications of sid/ssid
monikers which we assume are inputs in the initialization and the reconstruction
phase. String sid (which stands for “session ID” in the AKE and UC terminology)
in the context of a PPSS scheme can be equated with a “user ID”, because it
is a string which servers in SI will use to disambiguate between multiple PPSS
instances which they can potentially service. It is therefore sensible to require
that U remembers this user ID string sid in addition to her password pw. On
the other hand, string ssid could be a nonce, or some application-determined
identifier of a unique PPSS reconstruction session.

6 Generic T-OPRF Construction from any OPRF

One can use generic Multi-Party Computation to convert any OPRF scheme into
a Threshold OPRF protocol. The following is a blueprint for a T-OPRF with
threshold parameters (t, n) given an OPRF scheme, a Message Authentication
Code (MAC) scheme, and a generic MPC protocol:

(I) T-OPRF Initialization. The initialization runs a (t, n)-threshold MPC
for the the U -S initialization protocol of the OPRF, where S’s output state k
is replaced by the secret-sharing (k1, ..., kn) of k where each Si receives ki. In
addition, each pair of servers (Si, Sj) establishes a shared MAC key Kij .

(II) T-OPRF Evaluation. The user’s T-OPRF evaluation algorithm is as in
the underlying OPRF, except that U broadcasts each message to all servers Si.
However, the server’s evaluation algorithm is replaced by the following protocol.
Let ri be the randomness Si chooses in its first protocol message. Then in each
protocol round p the servers do the following: (1) S1, . . . , Sn agree on the message
a(p) which U sent in this protocol round as follows: For every i and j, server Si
sends a MAC on this message using key Kij to Sj . Sj aborts if any server does
not send a valid MAC on a(p) to Sj . (2) S1, . . . , Sn run a (t, n)-threshold MPC
protocol for computing S’s response in p-th round of the OPRF protocol, given
the public input U ’s messages a(1), ..., a(p) and server S’s local input k, r. The
local input of Si in this MPC is (ki, ri) where (k1, ..., kn) is the secret-sharing of
k and r = r1 ⊕ ... ⊕ rn. The MPC protocol computes S’s response in the p-th
round of the OPRF protocol, and this output is received by U .

When applying this transformation to the OPRF from Figure 2 where the
only operation by the server is to raise the value a sent by the client to the power
of k, we get a T-OPRF protocol where each server Si first verifies the MAC’s on
value a from all other servers and then computes an exponentiation aki where
k1, . . . , kn is a secret sharing of k. Hence, this is the same protocol as 2HashTDH
except for the added MAC-verification round. While a round of MAC broadcast
would be computationally inexpensive, requiring an extra round of interaction
would make this protocol less practical. However, while less efficient than 2Hash-
TDH, the security of such generically constructed T-OPRF can be shown based
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on the same assumption needed for the base OPRF, namely, Gap-OMDH. Note
that the PPSS scheme can be obtained from this T-OPRF, at the same cost and
under the same assumptions, using the T-OPRF-to-PPSS compiler of Section 4.
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A Threshold-OMDH Assumption in Generic Groups

We show the hardness of the (Gap) T-OMDH problem defined in Section 3.2
in the generic group model. First in Theorem 6 we argue the t′ = 0 case of the
non-gap version of this problem, then in Theorem 7 we extend it to general t′,
and in Theorem 8 we explain how the proof is adapted to the case of a gap
group. To the best of our knowledge, this is also the first analysis of generic
group hardness of the (gap) OMDH assumption.

Equivalence of (N,Q)-T-OMDH and (Q+1, Q)-T-OMDH. Note that the
point which Bellare et al. [5] made about the One-More RSA assumption, namely
that the (N,Q)-One-More problem for any N > Q is equivalent to the (N,Q)-
One-More problem for N = Q+ 1, holds for the (Gap) T-OMDH problem as
well, and it is a simple observation in this case because we specify the T-OMDH
assumptions only in the context of a group of a known prime order. This implies
in particular that in Theorems 6, 7, and 8 below it suffices to consider the case
N = Q+ 1. The theorem below is stated (and argued) for the non-gap version
of the T-OMDH assumption, but the corresponding fact holds also in the case
of the gap version of this assumption.

Theorem 5. (t′, t, n,N,Q)-T-OMDH is equivalent to (t′, t, n,Q+1, Q)-T-OMDH.

Proof. Given attacker A against (t′, t, n,N,Q)-T-OMDH, reduction R attacks
(t′, t, n,Q + 1, Q)-T-OMDH as follows: On a challenge vector [g1, ..., gQ+1], R
picks N sequences of random linear coefficients (β[i, 1], ..., β[i, Q + 1]) in Zm,
for i = 1, ..., N , sets g′i = (g1)β[i,1] · ... · (gQ+1)β[i,Q+1], and sends [g′1, ..., g

′
N ] as

a challenge set to A. R passes assignment F of shares of corrupted trustees
as A chooses them, and answers its TOMDH oracle query of A by making the
same query itself. Finally, if A outputs some (Q+1)-element subset J ⊂ [n]
and vj = (g′j)

p(0) for each j ∈ J , then the (Q+1)-by-(Q+1) matrix M s.t.
the k-th row of M is (β[jk, 1], ..., β[jk, Q+1]), satisfies that [g′j1 , ..., g

′
jQ+1

] =

[g1, ..., gQ+1] ·MT , where matrix multiplication stands for exponentiation, i.e.
g′jk = (g1)M [k,1] · ... · (gQ+1)M [k,Q+1]. Since β’s are random in Zm and gj ’s
are random in 〈g〉, the probability that M is non-invertible is negligible (see
[5]), in which case [g1, ..., gQ+1] = [g′j1 , ..., g

′
jQ+1

] · (M−1)T , and if R outputs

[z1, ..., zQ+1] = [vj1 , ..., vjQ+1
] · (M−1)T then zi = (gi)

p(0) for each i.

Before moving on to the proof of the main theorem, we briefly review the
definition and some basic properties of the Hadamard product of two vectors.
Recall that the Hadamard product of a = [a1, . . . , an]T and b = [b1, . . . , bn]T is
defined as
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a� b =

a1...
an

�
b1...
bn

 =

a1b1...
anbn

 =

b1 . . .

bn

a.

From the rule above, we can see the following four properties:

(i) a�
(∑m

j=1 bj

)
=
∑m
j=1 (a� bj),

(ii) a� (xb) = x(a� b) where x is a scalar,
(iii) If k � a = 0 and none of k’s entries is 0, then a = 0,

And by (i) and (iii) we also get:
(iv) If

∑m
j=1 (k � aj) = 0 and none of k’s entries is 0, then

∑m
j=1 aj = 0.

Lemma 1. Let t be any positive integer. Then there does not exist n-dimensional
vector q such that

(1) w ≥ Qt, and
(2) for any qi (i = 1, . . . , n), qi ≤ Q,
where w = W (q), and Q = bq/Vtc+ 1.

Proof. We prove the proposition by induction on Q. If Q = 1, Ct(q) = 0, which
implies that there are at most t− 1 non-zero entries in q; if q satisfies (2), then
w is at most t− 1, so (1) cannot be satisfied.

Now suppose the proposition holds for Q− 1, but not for Q, i.e. there exists
q which satisfies both (1) and (2). Note that q can have at most t − 1 entries
that are larger than or equal to Q (otherwise those t entries that are larger than
or equal to Q can be decreased Q times, so Ct(q) ≥ Q). Let q′ be q with the
largest t entries decreased, and w′ = W (q′). Then (1) w′ = w− t ≥ (Q−1)t, (2)
for any q′i (i = 1, . . . , n), q′i ≤ Q− 1 according to the above, and Ct(q) = Q− 2.
Therefore, q′ is a counterexample for Q− 1, which contradicts our assumption.

Lemma 2. Let t be any non-negative integer, n be any positive integer, q be an
n-dimensional vector, w = W (q), Q = Ct+1(q) + 1, and k be a w-dimensional
vector where there are qi i’s as its entries (i = 1, . . . , n). Then for any w-
dimensional vectors b1, . . . , bQ, the set V = {kj � bi}j∈{0,...,t},i∈[Q] is linearly
dependent.

Proof. Let M : w ×Q(t + 1) be the matrix whose columns are vectors in V . It
is sufficient to show rank(M) < Q(t+ 1).

For i = 1, . . . , n, there are qi positions in k where the entry is i. Consider the
corresponding rows in M ; denote the qi ×Q(t+ 1) sub-matrix as Mi. Note that
rank(Mi) ≤ Q since all its columns are multiples of its 1st, (t + 1) + 1-th, . . . ,
(Q − 1)(t + 1)-th columns; therefore, for any qi > Q, we can select Q rows of
Mi forming matrix M ′i such that rank(M ′i) = rank(Mi). For all other qi’s, let
M ′i = Mi. Let q′i be the number of rows of Mi, i.e. for qi > Q, let q′i = Q, and
for all other qi’s, let q′i = qi; then q′i ≤ Q for all i = 1, . . . , n. Let w′ = W (q′).

Now let M ′ : w′ ×Q(t+ 1) be the concatenation of M1, . . . ,Mn. We can see
that rank(M ′) = rank(M). But Ct+1(q′) = Ct+1(q) = Q− 1. (The reason is as
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follows: obviously Ct+1(q′) ≤ Q−1. On the other hand, let v1, . . . ,vQ−1 ∈ Vt+1

such that v1 + . . .+ vQ−1 ≤ q. Clearly each entry of v1 + . . .+ vm−1 is at most
Q− 1; therefore, v1 + . . .+ vQ−1 ≤ q′ since q′ is simply q with entries greater
than Q decreased to Q. That implies Ct+1(q′) ≥ Q − 1.) According to Lemma
1, we have w′ < Q(t+ 1). So rank(W ) = rank(W ′) ≤ w′ < Q(t+ 1).

Lemma 3. Let t, n, q, w, Q be the same with those in Lemma 2. Then there do
not exist matrices A : Q×w, B : w×Q and full-rank diagonal matrix K : w×w
where there are qi i’s as its entries on the diagonal (i = 1, . . . , n), such that
AB = I and AKB = . . . = AKtB = O, where I is the identity matrix and O is
the zero matrix.

Proof. Suppose K =

k1 . . .

kw

. Let aT1 , . . . ,a
T
Q be the rows of A, b1, . . . , bQ

be the columns of B, and k = [k1, . . . , kw]T . Then a1, . . . ,aQ, b1, . . . , bQ,k are
all w-dimension column vectors, and all entries of k are not 0.

Let kj denote [kj1, . . . , k
j
w]T , and V = {kj�bi}j∈{0,...,t},i∈[Q]. The conditions

can be written as

aTi b =

{
1 (b = bi)

0 (b ∈ V \ {bi})
(i ∈ [Q]).

Therefore, bi cannot be linearly expressed by V \ {bi}.
We claim that V \ {b1, . . . , bQ} = {kj � bi}j∈[t],i∈[Q] is linearly dependent.

Otherwise since b1 cannot be linearly expressed by V \{b1}, it cannot be linearly
expressed by its subset V \ {b1, . . . , bQ} as well; therefore, adding b1 to V \
{b1, . . . , bQ}, that is, V \ {b2, . . . , bQ}, is still linearly independent. Similar with
above, we can add b2, . . . , bQ to the set and remain its linear independency, i.e.
V is also linearly independent. But this is impossible according to Lemma 2.

Since {kj�bi}j∈[t],i∈[Q] is linearly dependent, there exists xij (j ∈ [t], i ∈ [Q])
such that

t∑
j=1

Q∑
i=1

xijk
j � bi = 0.

Because none of k’s entries is 0, we can derive

t∑
j=1

Q∑
i=1

xijk
j−1 � bi = 0,

i.e.
Q∑
i=1

xi1bi +

t−1∑
j=1

Q∑
i=1

xi,j+1k
j � bi = 0.

Recall that bi cannot be linearly expressed by V \ {bi}, so x11 = . . . = xQ1 = 0.
We get

t−1∑
j=1

Q∑
i=1

xi,j+1k
j � bi = 0.
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Using the same steps above, we can see x12 = . . . = xQ2 = 0, then x13 = . . . =
xQ3 = 0, . . . , finally x1Q = . . . = xQQ = 0. That is, all xij ’s (j ∈ [t], i ∈ [Q]) are
0, which contradicts the claim above.

Theorem 6. (generic group hardness of (0, t, n,Q+ 1, Q)-T-OMDH) Let
〈g〉 be a generic group of prime order m. We use ξ(a) for a ∈ Zm to denote
elements in 〈g〉, where ξ(·) is a random 1−1 function mapping Zm to bitstrings of
sufficient size. Let A be an algorithm which can query the following two oracles:

– Group operation oracle, which on input (ξ(a1), ξ(a2)) and an operan, either
+ or −, respectively outputs ξ(a1 + a2) or ξ(a1 − a2);

– Oracle TOMDHp(·, ·), where p(·) is a t-degree polynomial over Zm, which on
input (k, ξ(a)) for k ∈ [n] outputs ξ(a · p(k)).

If Adv
TOMDHp(·,·)
A (t, n,Q, r,m) is the probability that A(ξ(1), ξ(u1), . . . , ξ(uQ+1))

outputs (ξ(u1 · p(0)), . . . , ξ(uQ+1 · p(0))) after making r group operation queries
and qi queries to TOMDHp(i, ·) s.t. Ct+1(q) ≤ Q, then

Adv
TOMDHp(·,·)
A (t, n,Q, r,m) ≤ (w + 1)(w +Q+ r + 2)2 + 4

2m
,

where w = W (q) (i.e. w is the total number of queries to the T-OMDH oracle),
and the probability goes over the random choice of t-degree polynomial p, the
randomness of A and the randomness of oracle ξ(·).

Proof. The proof goes by construction of an algorithm B which simulates the real
challenger while interacting with A. B maintains a list T := {(Fs, ξs)}s=1,...,σ,
where Fs(U1, . . . , UQ+1, A0, A1, . . . , At) is a polynomial of degree at most w, and
ξs’s are random distinct elements in 〈g〉. At the beginning, B sets σ := Q + 2
and initializes T by setting F1 := 1, F2 := u1, . . . , FQ+2 := uQ+1, and picks
ξ1, . . . , ξQ+2 as random distinct elements in 〈g〉 and a0, a1, . . . , at ←R F. B sends
ξ1, . . . , ξQ+2 to A as ξ(1), ξ(u1), . . . , ξ(uQ+1). Then A can make the following
two types of queries to B (we assume that A only makes oracle queries on values
that are previously obtained from B):

– group operation query:A inputs two indices s1 and s2, as well as an operation
(either a multiplication or a division). B computes Fσ+1 := Fs1 + Fs2 if the
operation is a multiplication or Fσ+1 := Fs1 − Fs2 if the operation is a
division. If ∃ t ≤ σ s.t. Fs = Fσ+1, then B outputs ξt to A. Otherwise B
picks a group element ξσ+1 which is different from ξi for all i ≤ σ, outputs
ξσ+1 to A, and sets σ++.

– TOMDHp(·, ·) oracle query: A inputs a k ∈ [n] and an index s ∈ [σ]. Then B
sets Fσ+1 := (LTk a) · Fs and ξσ+1 to a random value which is different from
ξs for all s ≤ σ, outputs ξσ+1 to A, and sets σ++, where Lk = [1, k, . . . , kt]T

and a = [a0, a1, . . . , at]
T .

A finally outputs (Fs1 , . . . , FsQ+1
), and it wins if Fsi = ui · a0 for all i ∈ [Q+ 1].

Now we analyze the probability that A succeeds for a random assignment of
(u1, . . . , uQ+1, a0, a1, . . . , at). First, note that the output ofA comes from the two
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types of oracle queries listed above; therefore, for every s ∈ {s1, . . . , sQ+1}, Fs is
a linear combination of v1, . . . , vw, u1, . . . , uQ+1 and 1, where vi (i = 1, . . . , w)
is the value A obtains from the ith TOMDHp(·, ·) oracle query. That is,

Fs =

w∑
i=1

α
(s)
i vi +

Q+1∑
i=0

γ
(s)
i ui,

where

vi =
∑

Z⊆[i]s.t.i∈Z

Q+1∑
j=0

β
(i)
jZuj

∏
l∈Z

(LTkla)


(we set u0 = 1 in the two equations above), where αi’s, γi’s and βjZ ’s are all
elements in Zm specified by A. (Suppose that in the ith TOMDHp(·, ·) oracle
query, A’s second input is ki; then LTkia must appear in the output. That is why
i ∈ Z holds in expression of wi.)

Recall that A wins if and only if Fsi = ui ·a0 for all i = 1, . . . , Q+1. Suppose
that there exists an i ∈ [Q + 1] such that deg(Fsi) > 1 but A still wins, i.e.
Fsi = ui · a0 (we view Fsi as a polynomial of a0 here). Since deg(ui · a0) = 1,
the only possibility that this occurs is that the polynomials Fti and ui · a0
evaluates to the same value for random u1, . . . , uQ+1, a0, a1, . . . , at. Also note
that deg(Fsi) ≤ w, thus deg(Fsi −ui · a0) ≤ w; therefore, if the above occurs for
a certain i, either (i) 1 ≤ deg(Fsi − ui · a0) ≤ w, and random a0 is a solution of
Fsi − ui · a0, or (ii) Fsi − ui · a0 is zero polynomial for fixed u1, . . . , uQ+1 chosen
from random. The probability of (i) is at most w/m, while the probability of (ii)
is at most 1/p. Since there are Q + 1 possible values of i, the probability that
there exists an i ∈ [Q + 1] such that deg(Fsi) > 1 but A still wins is at most
(w+1)(Q+1)

m .
Next consider the case where deg(Fsi) ≤ 1 for all i = 1, . . . , Q+ 1. Let v′i be

vi with all terms whose degree greater than 1 eliminated, that is, v′i only remains
the single term in vi where Z = {i}, i.e.

v′i =

Q+1∑
j=0

β
(i)
j{1}uj

 (LTkia).

Then

Fs =

w∑
i=1

α
(s)
i v′i +

w+1∑
i=0

γ
(s)
i ui.

We rewrite the expression of Fs in matrix form below. Note that since deg(v′i) ≤
1, all β

(i)
jZ ’s for Z 6= {1} does not appear in the expression of v′i; therefore, we

denote β
(i)
j as β

(i)
j{1}: Fs1

...
FsQ+1

 = A

v
′
1
...
v′w

+ Cu +


γ
(s1)
0
...

γ
(sQ+1)
0

 , (1)
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v
′
1
...
v′w

 = (Bu + b0)�

L
T
k1
a

...
LTkwa

 , (2)

where

A =


α
(s1)
1 . . . α

(s1)
w

...
...

α
(sQ+1)
1 . . . α

(sQ+1)
Q


(Q+1)×w

, B =


β
(1)
1 . . . β

(1)
Q+1

...
...

β
(w)
1 . . . β

(w)
Q+1


w×(Q+1)

,

C =


γ
(1)
1 . . . γ

(1)
Q+1

...
...

γ
(Q+1)
1 . . . γ

(Q+1)
Q+1


(Q+1)×(Q+1)

,u =

 u1
...

uQ+1

 , b0 =


β
(1)
0
...

β
(w)
0

 .
Let b = Bu + b0. Substituting (2) into (1), we get Fs1

...
FsQ+1

 = A

b�

L
T
k1
a

...
LTkwa


+ Cu +


γ
(s1)
0
...

γ
(sQ+1)
0

 .
Note thatL

T
k1
a

...
LTkwa

 =

 a0 + a1k1 + . . .+ atk
t
1

...
a0 + awkw + . . .+ atk

t
w

 = a0

1
...
1

+ a1

k1...
kw

+ . . .+ at

k
t
1
...
ktw

 ,
using the properties of Hadamard product: Fs1

...
FsQ+1

 = A(a0Ib + a1Kb + . . .+ atK
tb) + Cu +


γ
(s1)
0
...

γ
(sQ+1)
0



= a0Ab + a1AKb + . . .+ atAK
tb + Cu +


γ
(s1)
0
...

γ
(sQ+1)
0

 ,

where K =

k1 . . .

kw


w×w

View the right side as a linear function of a0, a1 . . . , at, that is, consider the right
side for some fixed random u1, . . . , uw+1. If A wins, then Fs1

...
FsQ+1

 = a0u,
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comparing the two equations, we have

Ab = u, AKb = . . . = AKtb = 0,

except for the case where the two linear functions evaluate to the same value for
random a0, a1, . . . , at ∈ Zm. The probability that this occurs is at most 1/p.

Implementing the definition of b back, we get

ABu +Ab0 = u, i.e.(AB − I)u +Ab0 = 0,

AKBu +AKb0 = . . . = AKtBu +AKtb0 = 0.

Suppose any of AB − I, AKB, . . . , AKtB is not O. Then there exists at least
one row of one of the matrices above which is not 0; let it be the ith row of the
t0th matrix (t0 ∈ {0, . . . , t}). Denote that row as zT . Then we have

zTu +AKt0β
(i)
0 = 0

for random u1, . . . , uQ+1 ∈ Zm. The probability that this occurs is at most 1/p.

On the other hand, AB − I, AKB, . . . , AKtB cannot all be O according to
Lemma 3.

In sum, we have proved that the probability that A succeeds in the game
interacting with B is at most

(w + 1)(Q+ 1)

m
+

1

m
+

1

m
=

(w + 1)(Q+ 1) + 2

m
.

The difference between A’s views in the interaction with B and with the
real challenger of the T-OMDH assumption in the generic group model ap-
pears when there exist s1 and s2 such that Fs1(u1, . . . , uQ+1, a0, a1, . . . , at) =
Fs2(u1, . . . , uQ+1, a0, a1, . . . , at) for random u1, . . . , uQ+1, a0, a1, . . . , at, but the
polynomials Fs1 and Fs2 are not the same. There are

(
σ
2

)
possible (s1, s2) pairs,

and for each such pair, the probability that Fs1(u1, . . . , uQ+1, a0, a1, . . . , at) =
Fs2(u1, . . . , uQ+1, a0, a1, . . . , at) is at most (w+1)/m. Thus, the probability that
the event above occurs is at most

(
σ
2

)
· (w + 1)/m. Also note that each time A

queries one of the two oracles, σ either remains the same or increases by 1;
there are at most r + w such queries, and σ = Q + 2 at the beginning. So
σ ≤ w +Q+ r + 2.

Therefore, we have proved that the probability that A breaks the T-OMDH
assumption where t′ = 0 in the generic group model is at most

(w + 1)(Q+ 1) + 2

m
+

(
w +Q+ r + 2

2

)
· w + 1

m
≤ (w + 1)(w +Q+ r + 2)2 + 4

2m
.

ut

Next we consider the general case, i.e. t′ > 0 and B 6= ∅:
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Theorem 7. (generic group hardness of (t′, t, n,Q+ 1, Q)-T-OMDH) Let
〈g〉 and ξ(·) be the same with those in Theorem 6. Let B be any t-element subset
of [n]. A is given ξ(1), ξ(u1), . . . , ξ(uQ+1). Then A outputs a map F : B→ Zm.
After that, A can query the group operation oracle and the T-OMDH oracle as in
Theorem 6, with the exception that p(·) is a t-degree polynomial over Zm such that
p(α) = F (α) for all α ∈ B. A wins if it outputs (ξ(u1 · p(0)), . . . , ξ(uQ+1 · p(0))).

The bound on adversarial advantage, i.e. on probability that A(ξ(1), ξ(u1), . . . ,
ξ(uQ+1)) outputs (ξ(u1 ·p(0)), . . . , ξ(uQ+1 ·p(0))) after making r group operation
queries and qi queries to TOMDHp(i, ·) for i 6∈ B s.t. Ct−t′+1(q) ≤ Q, is exactly
the same as the bound on the adversarial advantage in Theorem 6.

Proof. The proof is an extension of that of Theorem 6, so we only provide a
sketch. At the beginning of the simulated game, A chooses F (α) = LTi a (α ∈ B).
Since A knows t′ of LTi a’s, there are t+1 variables and t′ linear equations (which
are linearly independent), so there are t − t′ + 1 free variables; in particular,
a0, . . . , at−t′ are still independently random from A’s view. The whole argument
holds until the following step:

Ab = u, AKb = . . . = AKtb = 0,

where t should be replaced by t − t′. After that, the argument still holds if we
replace t by t− t′. ut

Theorem 8. Suppose furthermore that 〈g〉 is a gap group, that is, A can make
the following type of oracle queries as well:

– DDH oracle, which on input ξ(a1), ξ(a2), ξ(a3), ξ(a4) which are different with
each other, outputs 1 if a1a4 = a2a3, and 0 otherwise. A can make such
queries at most q times.

Then the bound on adversarial advantage of Theorem 7 still holds, with an upper-

bound modified to AdvA ≤ (w+1)(w+Q+r+2)2+4
2m + (2w+1)q

m .

Proof. We construct an algorithm B′ which is exactly the same with B in the
previous proof, except that A can make the following oracle queries to B′ as well:

– DDH oracle query:A inputs four different indices s1, s2, s3 and s4. B′ outputs
1 to A if Fs1Fs4 = Fs2Fs3 , and 0 otherwise.

Now the difference of A’s views in the interaction with B and in the interaction
with the real challenger appears in addition when there exist four different s1,
s2, s3, s4 such that

Fs1(u1, . . . , uQ+1, a0, a1, . . . , at)Fs4(u1, . . . , uQ+1, a0, a1, . . . , at) =

Fs2(u1, . . . , uQ+1, a0, a1, . . . , at)Fs3(u1, . . . , uQ+1, a0, a1, . . . , at)

for random u1, . . . , uQ+1, a0, a1, . . . , at, but the polynomials Fs1Fs4 and Fs2Fs3
are not the same. Note that deg(Fs1Fs4 −Fs2Fs3) < 2w, and there are at most q
such polynomials evaluated, so the probability that the above event occurs is at
most (2w+1)q/m. All other proof steps remain as in the proof of Theorem 7. ut
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B Proof of Theorem 3 of Section 3.3

Proof. We present a simulator SIM in Figure 7, and we show that for any poly-
nomial Z, SIM creates a view indistinguishable from the real world. Without
loss of generality, we assume that A is a “dummy” adversary that merely passes
over all messages it gets to Z.

The simulator SIM operates as follows. In general it follows the real world
protocol execution with the following important differences. First, it selects a
number of random group elements g1, . . . , gN ahead of time and stores them.
It uses those elements to respond to H1(·) queries (as opposed to answering
such queries on the fly, as it happens in the real world execution with a random
oracle). Second, in the case of queries to the H2(·) oracle, they are answered on
the fly except when it happens that they are of the relevant form (x,H1(x)k) for
some arbitrary k and an x which is already defined in the H1(·) table; note that
this is detected by SIM due to the fact that it has full control the H1(·) table. For
such queries the simulator uses the FTOPRF interface to answer them employing
suitably the table pointers p (either by creating new ones or by utilizing ones
that have been defined already). This evaluation is also the only moment where
the simulator may fail. A fail event happens when FTOPRF refuses to answer a
request for evaluation by the simulator. One of the important features of SIM
is the recording of triples of the form (p, gd, g

k
d) for relevant vales of the form

yp = gk which occur during the execution. In the analysis that follows we will
show that the failure event will imply the computation of sufficiently many such
triples so that the T-OMDH assumption is violated.

Based on the way the simulation is defined, we conclude that if Fail does
not happen, Z’s view in the real world and the simulated world are indistin-
guishable. Now we upper-bound Pr[Fail]. Recall that Fail occurs in the first
bullet of step 9, when H2(x, u) is queried, and there exists triples (x, rd, gd) and
〈sid ,SI, p, k〉 stored previously such that u = gkd . Therefore, every triggering
of Fail is associated to a specific session sid . It follows that we can bound the
distance between real and ideal world using qT hybrids and the reduction to the
T-OMDH assumption which works for a given sid as follows:

On input of a (Gap) T-OMDH instance (Q, g, g1, ..., gN ), initialize q1, . . . , qn
to 0 and revise algorithm SIM to interact with oracle TOMDHp as follows:

– In step 1, only set D := 1 and omit all other steps.

– In step 2 and step 6, use the instance elements g1, . . . , gN instead of random
elements in 〈g〉 as g1, . . . , gN . Furthermore, since there is no rD, only record
(x, gD) in step 2 and 〈U, sid, ssid,SE , gD〉 in step 6.

– In step 3, omit the choice of k and record simply 〈sid, S,SI, p〉 (omitting k).

– In step 4, when it receives (Init, sid,SI, s) from server Si and server Si is
marked as active, add s to the i-th location of the F vector. When F has all
corrupt, t′ in number, locations complete, set σ to be the complete view of
the SIM so far, generate (F, σ) in a special (private) output tape.
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1. Pick r1, . . . , rN ←R Zm, and set g1 := gr1 , . . . , gN := grN . Set counter D := 1.
2. Every time when there is a fresh query x to H1(·), answer it with gD, record

(x, rD, gD), and set D++.
3. Upon receiving (Init, sid , S,SI = {S1, . . . , Sn}, p) from FTOPRF, if no record
〈sid, . . .〉 exists, mark S as active, pick k ←R F, record 〈sid, S,SI, p, k〉, define
yp := gk and send (Init, sid , S,SI) to A using the interface of FDKG. In
the other case, mark S as active and send (Init, sid , S,SI) to A using the
interface of FDKG.

4. Upon receiving (Init, sid,SI, s) in the FDKG interface from a corrupted S, if
a record of the form 〈sid, P,SI, p, . . .〉 exists, mark S as active, record 〈A, S, s〉
and send (Init, sid,A, S) to A.

5. Upon receiving (InitComplete, sid, S) in the FDKG interface from A, check
that S is active, retrieve 〈sid, P,SI, p, k〉, check if all servers in SI are active
and S ∈ SI, and if no record 〈sid,SI, k1, . . . , kn〉 exists, create it by setting
ki = p(i) for each Si ∈ SI where p is a random polynomial subject to the
restriction p(i) = si for each record of the form 〈A, Si, si〉. Finally, record
〈sid, Si,SI, i, ki〉 and send (InitComplete, sid, S) to FTOPRF.

6. On (Eval, sid , ssid , U,SE) from FTOPRF, record 〈U, sid, ssid,SE , rD, gD〉,
send (Send, (sid , ssid , 1), U, S, (SE , gD)) to A for each S ∈ SE , and set D++.

7. On (Sent, (sid , ssid , 1), U, Si, (SE , a)) from A, recover (sid, Si,SI, i, ki) (ig-
nore if it does not exist), compute interpolation coefficient λi corre-
sponding to index i and subset SE of set SI, set bi := aλiki , and
send (Send, (sid , ssid , 2), U, bi) to A and (SndrComplete, sid , ssid , Si) to
FTOPRF.

8. When (Sent, (sid , ssid , 2), Sij , U, bj) for all Sj ∈ SE defined in a record
〈U, sid, ssid,SE , rd, gd〉 have been received from A, compute b :=

∏
Sj
bj and

find p s.t. b1/rd = yp. If such p does not exist choose a unique label p and set
yp := b1/rd and send (Init, sid,A∗, p) to FTOPRF. Record (p, gd, b) and send
(RcvComplete, sid , ssid , U, p) to FTOPRF.

9. Every time when there is a fresh query (x, u) to H2(·, ·), if there is
no tuple (x, rd, gd) stored in step 2 then set H2(x, u) to a random
string in {0, 1}` and return this value. Otherwise, if there is p, s.t.
yp = u1/rd then store (p, gd, u). If it does not exist choose unique la-
bel p, set yp := u1/rd , and send (Init, sid,A∗, p) to F . Pick a new
unique label ssid. Send (SndrComplete, sid , ssid , S) for the t′ mali-
cious servers S, followed by (Eval, sid, ssid, (A∗)t+1, x) to F followed by
(RcvComplete, sid , ssid ,A∗, p). If F ignores this message abort and out-
put Fail. Otherwise after receiving F ’s response (Eval, sid , ssid , ρ), set
H2(x, u) := ρ.

Fig. 7. The Simulator SIM for the Threshold 2HashTDH Protocol.
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– In step 5, in the case that no record 〈sid,SI, k1, . . . , kn〉 exists, send (0, g) in
order to receive the public-key gk from the TOMDHp(·, ·) oracle and record
yp := (g, gk) where p is recorded in step 3 inside the record 〈sid, S,SI, p〉.

– In step 6, the value rD is not recorded (it is unknown).

– In step 7, use a (i, a) query to the TOMDHp(·, ·) oracle in order to compensate
for the lack of knowledge of ki values for honest servers Si. Set qi++.

– In step 8, if a new pointer p∗ is to be created, the value yp = b1/rd cannot
be computed, therefore we store instead yp = (gd, b). Testing the predicate
“b1/rd = yp∗” for some pointer yp∗ = 〈gd∗ , b∗〉 can be accomplished by using
the DDH(·, ·, ·, ·) oracle on (gd∗ , b

∗, gd, b).

– In step 9, finding p such that yp = u1/rd where yp = 〈ap, bp〉, can be done
by using the DDH(·, ·, ·, ·) oracle on (ap, bp, gd, u) as above. New pointers are
handled by storing yp = 〈gd, u〉.
If the event fail is triggered, output in a special output tape, all pairs (gd, b)
collected from triples (p, gd, b) that were recorded in steps 8 and 9.

We now show a construction of adversary A′ against the T-OMDH assump-
tion using the above modified simulator. The adversary A′, given [g, g1, . . . , gN ],
simulates the UC execution with the dummy adversary A, the simulator SIM
modified as above and the environment Z, until the moment that the simula-
tor produces the special private output (F, σ). Observe that at this moment no
TOMDHp(·, ·) queries have been issued. A′ appends to σ the random coins of
Z up until this moment and produces (F, σ) as the output. In the second stage
A′ receives σ as the input and is thus capable of continuing the UC execution
with Z, dummy A and SIM while enjoying now access to the TOMDHp(·, ·)
with a polynomial p which is suitably defined based on the adversarial servers’
values. In this way the oracle queries of SIM can be served using the access
that A′ has to the TOMDHp(·, ·) and DDH(·, ·, ·, ·) oracles. Finally, A′ outputs
(J,V ) so that for each pair (gd, b) recorded in the special output tape of SIM,
J contains d and b is included in V (in case no pairs are found A′ fails). We
finally argue that A′ will break the T-OMDH assumption with the same prob-
ability of success as the fail event. Recall that the event fail in session sid is
associated with a pointer p and corresponds to the refusal of the ideal function-
ality FTOPRF to respond to the simulator’s (Eval, sid, ssid, (A∗)t+1, x) request
for some x followed by (RcvComplete, sid , ssid ,A∗, p). This can happen only
if |{S | tx(p, S) > 0}| ≤ t, i.e., there are not enough servers with positive
ticket counters. The ticket counters are incremented by FTOPRF whenever a
(SndrComplete, sid , ssid , S) message is delivered by SIM at step 7, which, in
turn is a reaction to the delivery of a message (SE , a) to the respective server,
originating from a user. In the reduction this only happens when an (i, a) query
that corresponds to that server is made to the TOMDHp(·, ·) oracle. We con-
sider the triples of the form (p, gd, u) that are recorded in steps 8,9 of the
modified simulator. First observe that they are all of the form (p, gd, g

k
d) for

the public-key gk of the T-OMDH assumption. Let Q be the total number of
TOMDHp(·, ·) queries made by the reduction - which correspond to the num-

33



ber of (SndrComplete, sid , ssid , Si) messages - and Q′ be the total number of
triples recorded. A failure event suggests that Q′ has exceeded Ct−t′+1(q). ut

C Proof of Theorem 4 of Section 4

Proof. For any environment Z and any adversary A, we construct a simulator
SIM as in Figure 8. Again, without loss of generality, we assume that A is a
“dummy” adversary that merely passes over all messages it gets to Z.

First of all, note that SIM assigns an H(·) value to a certain string in
steps 5, 10, 11 and 12; if there is a conflict in such assignments, that is, when SIM
is going to assign an H(·) value, it finds out that it has already been assigned to
a different value, SIM’s will output Fail. We show that such case can only occur
with negligible probability:

– Step 5: Here H(T (p, pw)) is set to [C|K] if at least t + 1 servers in SI are
corrupt. Suppose SIM finds in this step that H(T (p, pw)) is already assigned
to another value (i) in step 10: According to the syntax of FPPSS, Recon-
struction cannot be proceeded before Initialization, so this is impossible. (ii)
in step 11: If step 11 is proceeded before step 5, there is no C found, and
SIM will ignore U∗ and A’s message. So there will be no assignment. (iii) in
step 12: Unless and until Z queries T (p, pw), T (p, pw) is a random string in
{0, 1}` to Z, and the probability that Z queries H(T (p, pw)) is negligible.
Once Z queries T (p, pw) (note that this query can be done only in step 11),
this case transfers to case (ii).

– Step 11: Here H(T (p∗, x)) is set to [C|K] if there are at least t + 1 servers
in either tested(x) subset or corrupt server subset of SI, and also x = pw.
Suppose SIM finds in this step that H(T (p∗, pw)) is already assigned to
another value (i) in step 5: Note that in step 11, C and K are exactly
the same with those in step 5, so there is no possibility of conflict. (ii) in
step 10: In step 10, the computation of H(p∗, pw) may occur in case (c),
where T (p∗, pw) is already defined. However, T (p∗, pw) can be defined only
through querying it in step 11, and once it is queried, H(p∗, pw) will be
assigned to [C|K] immediately. Therefore, it is impossible that SIM wants to
set T (p∗, pw) to some value after it has already been assigned in step 10. (iii)
in step 12: Similar to case (iii) in the bullet above, in this case Fail occurs
with negligible probability.

– Steps 10 and 12: These two cases are trivial, since here H(·) is assigned to
a certain value only if it has not been set previously; that is, there is no
possibility that H(·) is assigned again after it has been assigned to another
value.

Since we have proved that Pr[Fail] is negligible, we assume below that Fail
does not occur.

Next we show that the real world and the simulated world are indistinguish-
able in Z’s view by a sequence of games, the first one, G0, describes interactions
with Z in the real world and the last one describes those in the simulated world.

34



Initialize count := 0 and tx(p, S) := 0 for all pairs (p, S).

1. On (Init, sid , U,SI) from FPPSS, ignore it if |SI| 6= n or tuple
〈U, sid , ·, ·〉 exists. Otherwise set count++, record 〈U, sid ,SI, count〉, and send
(Send, (sid , 0), U, S,SI) to A for all S∈SI. If FPPSS sends (pw,K), record it.

2. On (Sent, (sid , 0), S,SI) from A for some S ∈ SI, mark S as “active” and
send (Init, sid , S,SI, count) to A.

3. On (InitComplete, sid , S) from A for some S ∈ SI, retrieve
〈U, sid ,SI, count〉. Ignore the message if there is no such tuple, or not all
servers in SI are active. Otherwise send (Send, (sid , 1), S, U,done) to A.

4. On (Sent, (sid , 1), S, U,done) from A for all S ∈ SI, send
(Eval, sid , 0, U,SE) to A for any SE ⊆ SI s.t. |SE| = t+ 1.

5. On (RcvComplete, sid , ssid , P, p∗) from A, recover p corresponding to U as
stored in step 1, and ignore this message if either of the following conditions
fails: (i) if p∗ = p then |{S | tx(p, S) > 0}| > t, (ii) if all servers in SE are honest
then p∗ = p. Otherwise pick C ←R {0, 1}`, append C to tuple 〈U, sid ,SI, p〉
stored in step 1, and send (Send, (sid , 2), U, S, C) to A for each S ∈ SI. If
there is a pair (pw,K) stored in step 1 and T (p, pw) is defined, then also set
H(T (p, pw)) := [C|K]. Otherwise also pick K ←R {0, 1}`. Furthermore, if
p∗ = p then also set tx(p∗, S)−− for any t+ 1 distinct S s.t. tx(p, S) > 0.

6. On (Sent, (sid , 2), U, S, C) from A for some S ∈ SI, send
(Send, (sid , 3), S, U,ack) to A and (SInit, sid , S) to FPPSS.

7. On (Send, (sid , 3), S, U,ack) from A where S ∈ SI, mark S as complete. If
all servers in SI are marked as complete, send (UInit, sid ,K) to FPPSS.

8. On (Rec, U, sid , ssid ,SR) from FPPSS, record 〈U, sid , ssid ,SR〉 and send
(Eval, sid , ssid , U,SR) to A.

9. On (SndrComplete, sid , ssid , S) from A, set tx(S)++ and send
(SRec, sid , ssid , S) to FPPSS.

10. On (RcvComplete, sid , ssid , U, p∗) and (Sent, (sid , ssid , i, 0), S, U,C′) from
A for all S ∈ SR, recover SR corresponding to U as stored in step 8 and p
corresponding to U as stored in step 1 (ignore this message if no corresponding
tuples exist), and ignore this message if either of the following conditions
fails: (i) if p∗ = p then |{S | tx(p, S) > 0}| > t, (ii) if all servers in SE are
honest then p∗ = p. Otherwise if p∗ = p then set tx(p∗, S)−− for any t + 1
distinct S s.t. tx(p, S) > 0, and send (URec, sid ,SR, flag, pw∗,K∗) to FPPSS

for (flag, pw∗,K∗) set as follows:
(a) If not all C′’s are the same, set (flag, pw∗,K∗) := (0,⊥,⊥).
(b) Otherwise recover p corresponding to U and sid as stored in step 1. If
p∗ = p and C′ = C, set (flag, pw∗,K∗) := (1,⊥,⊥).
(c) Otherwise define X as the set of values x in the dictionary such that
T (p∗, x) is defined. For every x ∈ X in lexicographic order, set v′ := T (p∗, x)
and check if C′ = HL(v′). If so, set K′ := HR(v′) and (flag, pw∗,K∗) :=
(2, x,K′), and break the loop. If the above loop processes all x ∈ X without
breaking, set (flag, pw∗,K∗) := (0,⊥,⊥).

11. On (Eval, sid , ssid ,SE , x) from party P ∈ {U,A} and
(RcvComplete, sid , ssid , P, p∗) from A, recover p corresponding to U
as stored in step 1 and C corresponding to U as in step 2 (ignore this message
if no corresponding tuples exist), and ignore this message if either of the
following conditions fails: (i) if p∗ = p then |{S | tx(p, S) > 0}| > t, (ii) if all
servers in SE are honest then p∗ = p. Otherwise pick T (p∗, x) ←R {0, 1}` if
it has not been defined, and send (Eval, sid , ssid , T (p∗, x)) to A. If p∗ = p
then also set tx(p∗, S)−− for any t+ 1 distinct S s.t. tx(p, S) > 0, add every
S ∈ SE to tested(x), send (TestPwd, sid , S, x) to FPPSS. If FPPSS replies K,
then also set H(T (p∗, x)) := [C|K].

12. On x from A as a query to the H(·) oracle, send H(x) to A.
H(x) is computed as follows: If it has not been set to a specific value, pick
v ←R {0, 1}2` and set H(x) := v.
If there is a conflict in the assignment of H(·) values, output Fail.

Fig. 8. Simulator SIM in the Proof of Theorem 4.
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G0 is shown in Figure 9, where we make a number of simplifications explained
below:

– For all messages input from and output to Z, entries such as Init and Rec,
and session IDs (i.e. sid and ssid) are omitted.

– There is no difference between the real world and the simulated world re-
garding done, ack (sent from S to U in Initialization) and (SRec, sid , ssid)
(output by S to Z in Reconstruction), so we omit these two messages below.

– Z’s input in FTOPRF queries includes (Eval, sid , ssid ,SE , x) (sent to SIM
via A or a corrupt user U∗) and (RcvComplete, sid , ssid , P, p∗) (sent to
SIM via A). The process proceeds only when SE and p∗ satisfy the condi-
tions listed as (i) and (ii) in Figure 8; therefore, if those conditions are not
met, the case is trivial and we do not consider such cases below. Once the
four conditions are satisfied, the output is computed as T (p∗, pw∗). There-
fore, step 8 of SIM is essentially querying the T (·, ·) functions maintained
by FTOPRF. Thus, we simplify the input to the function pointer p and the
variable x, and the output to the function value v = T (p, x), and omit all
other messages and entries exchanged among the participating parties.

– Z’s view in Reconstruction includes messages (Rec, [...], pw′) output by U ,
(SndrComplete, [...]) output by S, and (RcvComplete, [...], p∗) output
by U . As in the bullet above, if the whole process ends with U outputting
either a string K ′ ∈ {0, 1}` or Fail, then SR is not related to the final
result. Therefore, we do not show them below, and simplify Z’s input to pw′

and C ′. Furthermore, U outputs Fail immediately if U receives two different
C ′’s, so this case is trivial. We only consider the other case, i.e. all C ′’s are
the same, in the games.

Let G1 be a modification of G0, where Reconstruction is proceeded by the
following:

– If p∗ = p and C ′ = C (we denote such event as EC below), then output K
to Z if pw′ = pw, and Fail otherwise.

– Otherwise let X be the set of all x in the dictionary such that T (p∗, x) is
queried by Z. Iterate through all x ∈ X in lexicographic order and perform
Reconstruction as in G1, with the exception that pw′ is replaced by x; that
is, compute v′ := T (p∗, x), check if C ′ = HL(v′), and if so,
• if x = pw′, output K ′ := HR(v′) to Z,
• otherwise output Fail to Z.

In either case, break the loop. If the loop ends without a break (i.e. the check
does not pass for every x ∈ X), output Fail to Z.

We compare Z’s view in G1 and G0. Let K ′1 and K ′0 be the output at the
end of Reconstruction in G1 and G0, respectively. Let event E be K ′1 6= K ′0.

First of all, note that if K ′0 = Fail, then K ′1 = Fail as well. This is equivalent
to if K ′1 6= Fail, then K ′0 6= Fail. This is because: (i) If EC occurs and K ′1 6=
Fail, this means that pw′ = pw, and in this case, C = HL(T (p, pw)), so the check
in G0 passes; that is, K ′0 6= Fail. (ii) If EC does not occur and K ′1 6= Fail, then
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Set T (p, ·) to a random function onto {0, 1}`.

Initialization On Z’s inputs SI and pw:

1. Set p to a fresh non-negative integer and compute v := T (p, pw);
2. Output K := HL(v) and C := HR(v) to Z.

Reconstruction On Z’s inputs p∗, pw′, and C′:

1. Set v′ := T (p∗, pw′);
2. Check if C′ = HL(v′). If so, output K′ := HR(v′) to Z. Otherwise output

Fail to Z.

FTOPRF Query On Z’s inputs p∗ and x:

1. Output T (p∗, x) to Z.

Hash Function Query On Z’s input x:

1. Output H(x) to Z.

Fig. 9. G0: Security Game in the Real World.

C ′ = HL(T (p∗, pw′)), so the check in G0 passes; that is, K ′0 6= Fail. Therefore,
E can only occur when K ′0 6= Fail.

Next, we break E into several sub-events:

– E1: EC ∧K ′1 6= K ′0.

In this case, pw′ 6= pw must hold (otherwise K ′1 = K ′0 = K where K is the
output in Initialization of G1 and G0), and since K ′0 6= Fail, the check in
G0 passes; that is, C ′ = C = HL(v′). On the other hand, we know from
Initialization that C = HL(v). Note that v′ = T (p, pw′), v = T (p, pw), and
pw′ 6= pw, so v′ and v are two independently random strings in {0, 1}`.
Therefore, Pr[v′ = v] is negligible, so (v′, v) forms a collision of HL(·) with
overwhelming probability.

– E2: ¬EC ∧ pw′ /∈ X ∧K ′1 6= K ′0.

First consider the case where p∗ = p and pw′ = pw. If so, since K ′0 6= Fail,
we have C ′ = HL(T (p∗, pw′)) = HL(T (p, pw)) = C. However, since EC does
not occur and p∗ = p, C ′ 6= C must hold, which contradicts the former.
Therefore, if E2 occurs, we know p∗ 6= p or pw′ 6= pw. In either case, since
pw′ /∈ X, that is, Z does not query T (p∗, pw), T (p∗, pw) is independently
random from everything else in Z’s view. Thus, the probability that Z comes
up with a C ′ such that C ′ = HL(T (p∗, pw)) is negligible.

– E3: ¬EC ∧ pw′ ∈ X ∧K ′1 6= K ′0.
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In this case, G1 will searchX in lexicographic order, and once it comes to pw′,
it will find out that C ′ = HL(T (p∗, pw′)) (this is derived from K ′0 6= Fail)
and output K ′1 := HR(T (p∗, pw′)) = K ′0. Therefore, if E3 occurs, there exists
a x < pw′ such that C ′ = HL(T (p∗, x)). But C ′ = HL(T (p∗, pw′)) as well, so
(T (p∗, x), T (p∗, pw′)) forms a conflict of HL(·) unless T (p∗, x) = T (p∗, pw′);
that probability that the latter occurs is negligible.

We can see that

E1 ∨ E2 ∨ E3 = E,

so we have proved that Pr[E] is negligible; that is, Z’s views of G0 and G1 are
indistinguishable.

Let G2 be a modification of G1, where in Initialization, [C|K] is picked at
random from {0, 1}2`, and once T (p, pw) is queried, set H(T (p, pw)) := [C|K].
We can see that G2 is essentially the same with the security game in the simu-
lated world.

In G1, before T (p, pw) is queried, it is random in Z’s view, so the probability
that Z queries H(T (p, pw)) is negligible. If Z does not query H(T (p, pw)), C
and K are random strings to Z; that is what G2 does. After T (p, pw) is queried,
G2 are G1 are exactly the same. Therefore, G2 and G1 are indistinguishable in
Z’s view.

In sum, we have shown that Z’s views in the real world (G0) and the simu-
lated world (G2) are indistinguishable. ut

D Functionality FPPSS

For completeness, we present in Figure 10 the formalization of PPSS as a UC
functionality FPPSS, as defined in [19].
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Initialize tested(pw) to ∅ and tx(S) to 0 for all S.

Initialization

1. On message (Init, sid ,SI, pw) for |SI| = n from U , record 〈Init, sid ,SI, pw〉
and send (Init, U, sid ,SI) to A∗. (Ignore other Init commands.) Pick K ←R

{0, 1}`, and if |SI ∩ CorrSrv| ≥ t+ 1 then send (K, pw) to A∗.
2. Upon receiving (SInit, sid , S) from A∗, if record 〈Init, U, sid ,SI, pw〉 exists

and S ∈ SI then mark S as active and send (SInit, sid) to S.
3. Upon receiving (UInit, sid) from A∗, if record 〈Init, U, sid ,SI, pw〉 exists and

all servers in SI are marked active then add K to 〈Init, U, sid ,SI, pw〉 and
send (UInit, sid , K) to U .

Reconstruction

1. Upon receiving (Rec, sid , ssid ,SR, pw′) for |SR| = t + 1 from U ′, retrieve
record 〈Init, U, sid ,SI, pw,K〉, record 〈Rec, U ′, sid , ssid ,SI,SR, pw, pw′〉
and send (Rec, U ′, sid , ssid ,SR) to A∗. Ignore future Rec commands involv-
ing the same ssid .

2. Upon receiving (SRec, sid , ssid , S) from A∗, if S is marked active then set
tx(S)++ and send (SRec, sid , ssid) to S.

3. Upon receiving (URec, sid , ssid ,SC, flag, pw∗,K∗) for |SC| = t + 1 from
A∗, if a record 〈Rec, U ′, sid , ssid ,SI,SR, pw, pw′,K〉 exists such that SR \
CorrSrv ⊆ SC and tx(S) > 0 for all S in SC, then set tx(S)−− for all such S
and send (URec, sid , ssid ,Res) to U ′ such that:
(a) Res := K if (pw′ = pw) ∧ (SC ⊆ SI) ∧ [(flag = 1) ∨ (SR∩ CorrSrv = ∅)];
(b) Res := K∗ if (pw′ = pw∗) ∧ (SC ⊆ CorrSrv) ∧ (flag = 2);
(c) Res := Fail otherwise.

Password Test

Upon receiving (TestPwd, sid , Si, pw∗) from A∗, if tx(Si) > 0 then set
tested(pw∗) := tested(pw∗)∪{Si} and tx(Si)−−, retrieve 〈Init, U,SI, pw,K〉,
and if |SI ∩ (tested(pw∗)∪CorrSrv)| ≥ t+1, then return K to A∗ if pw∗ = pw,
else return Fail.

Fig. 10. (t, n)-Threshold PPSS Functionality FPPSS.
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