
Round-Preserving Parallel Composition of
Probabilistic-Termination Cryptographic Protocols∗

Ran Cohen† Sandro Coretti‡ Juan Garay§ Vassilis Zikas¶

September 28, 2017

Abstract

An important benchmark for multi-party computation protocols (MPC) is their round com-
plexity. For several important MPC tasks, such as broadcast, (tight) lower bounds on the round
complexity are known. However, some of these lower bounds can be circumvented when the
termination round of every party is not a priori known, and simultaneous termination is not
guaranteed. Protocols with this property are called probabilistic-termination (PT) protocols.

Running PT protocols in parallel affects the round complexity of the resulting protocol in
somewhat unexpected ways. For instance, an execution of m protocols with constant expected
round complexity might take O(logm) rounds to complete. In a seminal work, Ben-Or and El-
Yaniv (Distributed Computing ‘03) developed a technique for a parallel execution of arbitrarily
many broadcast protocols, while preserving expected round complexity. More recently, Cohen
et al. (CRYPTO ‘16) devised a framework for universal composition of PT protocols, and
provided the first composable parallel-broadcast protocol with a simulation-based proof. These
constructions crucially rely on the fact that broadcast is “privacy free,” and do not generalize to
arbitrary protocols in a straightforward way. This raises the question of whether it is possible
to execute arbitrary PT protocols in parallel, without increasing the round complexity.

In this paper we tackle this question and provide both feasibility and infeasibility results.
We construct a round-preserving protocol compiler, tolerating any dishonest minority of actively
corrupted parties, that compiles arbitrary protocols into a protocol realizing their parallel com-
position, while having a black-box access to the underlying protocols. Furthermore, we prove
that the same cannot be achieved, using known techniques, given only black-box access to the
functionalities realized by the protocols, unless merely security against semi-honest corruptions
is required, for which case we provide a protocol.

To prove our results, we utilize the language and results by Cohen et al., which we extend
to capture parallel composition and reactive functionalities, and to handle the case of an honest
majority.

∗An extended abstract of this work appeared at ICALP 2017 (Track A) [18].
†School of Computer Science, Tel Aviv University. E-mail: cohenran@tauex.tau.ac.il. Research supported by

ERC starting grant 638121.
‡Courant Institute of Mathematical Sciences, New York University. E-mail: corettis@nyu.edu. Author supported

by NSF grants 1314568 and 1319051.
§Yahoo Research. E-mail: garay@yahoo-inc.com.
¶Department of Computer Science, RPI. E-mail: vzikas@cs.rpi.edu.

Contents
1 Introduction 1

2 Model and Preliminaries 4
2.1 Synchronous Protocols in UC . 4
2.2 The Probabilistic-Termination Framework . 5
2.3 A Lemma on Termination Probabilities . 7

3 Probabilistic Termination with an Honest Majority 8
3.1 Fast Sequential Composition . 8
3.2 Fast Parallel Broadcast . 10
3.3 Fast SFE in the Point-to-Point Model . 11

4 Functionally Black-Box Protocols and Parallel Composition 12

5 Round-Preserving Parallel Composition: Passive Security 12

6 Round-Preserving Parallel Composition: Active Security 15
6.1 Feasibility of Round-Preserving Parallel Composition 15

6.1.1 The Setup-Commit-Then-Prove Functionality 17
6.1.2 Round-Preserving Parallel-Composition Compiler 21

6.2 An Impossibility of FBB Round-Preserving Parallel Composition 26

A Preliminaries (Cont’d) 36
A.1 Error-Correcting Secret Sharing . 36
A.2 Information-Theoretic Signatures . 36

B Synchronous Protocols in UC (Cont’d) 38

C The Probabilistic-Termination Framework (Cont’d) 40
C.1 Canonical Synchronous Functionalities . 40
C.2 Reactive CSFs . 41
C.3 Strict and Flexible Wrappers . 42
C.4 Slack-Tolerant Wrappers . 43
C.5 Compilers and Composition Theorems . 44

1 Introduction
Secure multi-party computation (MPC) [61, 31] allows a set of parties to jointly perform a compu-
tation on their inputs, in such a way that no coalition of cheating parties can learn any information
beyond what is revealed by their outputs (privacy) or affect the outputs of the computation in
any way other than by choosing their own inputs (correctness). Since the first seminal works
on MPC [61, 31, 6, 13, 56], it has been studied in a variety of different settings and for numer-
ous security notions: there exist protocols secure against passively corrupted (aka semi-honest)
parties and against actively corrupted (aka malicious) parties; the underlying network can be syn-
chronous or asynchronous; and the required security guarantees can be information-theoretic or
computational—to name but a few of the axes along which the MPC task can be evaluated.

The prevalent model for the design of MPC protocols is the synchronous model, where the
protocol proceeds in rounds. In this setting, the round complexity, i.e., the number of rounds it
takes for a protocol to deliver outputs, is arguably the most important efficiency metric. Tight
lower bounds are known on the round complexity of several MPC tasks. For example, for the
well-known problems of Byzantine agreement (BA) and broadcast [53, 48], it is known that any
protocol against an active attacker corrupting a linear fraction of the parties has linear round
complexity [26, 23]. This result has quite far-reaching consequences as, starting with the seminal
MPC works mentioned above, a common assumption in the design of secure protocols has been
that the parties have access to a broadcast channel, which they potentially invoke in every round.
In reality, such a broadcast channel might not be available and would have to be implemented
by a broadcast protocol designed for a point-to-point network. It follows that even though the
round complexity of many MPC protocols is linear in the multiplicative depth of the circuit being
computed, their actual running time depends on the number of parties, when executed over point-
to-point channels.

The above lower bound on the number rounds for BA holds when all honest parties are required
to complete the protocol together, at the same round [24]. Indeed, randomized BA protocols that
circumvent this lower bound and run in expected constant number of rounds (cf. [4, 55, 25, 27, 44,
50]) do not provide simultaneous termination, i.e., once a party completes the protocol’s execution
it cannot know whether all honest parties have also terminated or if some honest parties are still
running the protocol; in particular, the termination round of each party is not a priori known. A
protocol with this property is said to have probabilistic termination (PT).

As pointed out by Ben-Or and El-Yaniv [5], when several such PT protocols are executed in
parallel, the expected round complexity of the combined execution might no longer be constant
(specifically, might not be equal to the maximum of the expected running times of the individual
protocols). Indeed, when m protocols, whose termination round is geometrically distributed (and
so, have constant expected round complexity), are run in parallel, the expected number of rounds
that elapse before all of them terminate is Θ(logm) [16]. While an elegant mechanism was proposed
in [5] for implementing parallel calls to broadcast such that the total expected number of rounds
remains constant, it did not provide any guarantees to remain secure under composition, raising
questions about its usability in a higher-level protocol (such as the MPC setting described above).
Such a shortcoming was recently addressed by Cohen et al. [16] who provided a framework for
universal composition of PT protocols (building upon the universal-composition framework of [8]).
An application of their result was the first composable protocol for parallel broadcast (with a
simulation-based proof) that can be used for securely replacing broadcast channels in arbitrary
protocols, and whose round complexity is constant in expectation.

Indeed, an immediate application of the composable parallel-broadcast protocol from [16] is
plugging it into broadcast-model MPC protocols in order to obtain point-to-point protocols with

1

a round complexity that is independent of the number of parties. In the information-theoretic
setting, this approach yields protocols whose round complexity depends on the depth of the circuit
computing the function [6, 13, 56, 19], whereas in the computational setting, assuming standard
cryptographic assumptions, this approach yields expected-constant-round protocols [47, 3, 21, 39,
2, 30, 32, 51]. However, the resulting point-to-point protocols have probabilistic-termination on
their own. The techniques used for composing PT broadcast protocols in parallel crucially rely on
the fact that broadcast is a privacy-free functionality, and a naïve generalization of this approach
to arbitrary PT protocols fails to be secure. This raises the question of whether it is possible to
execute arbitrary PT protocols in parallel, without increasing the round complexity.

We remark that circumventing lower bounds on round complexity is just one of the areas where
such PT protocols have been successfully used. Indeed, randomizing the termination round has
been proven to be a very useful technique in circumventing impossibilities and improving efficiency
for many cryptographic protocols. Notable examples include non-committing encryption [22], cryp-
tographic protocols designed for rational parties [35, 28, 52, 1, 33, 29], concurrent zero-knowledge
protocols [10, 14], and parallel repetition of interactive arguments [34, 36]. The rich literature on
such protocols motivates a thorough investigation of their security and composability. As men-
tioned above, in [16] the initial foundations were laid out for such an investigation, but what was
proven for arbitrary PT protocols was a round-preserving sequential composition theorem, leaving
parallel composition as an open question.

Our contributions. In this work, we investigate the issue of parallel composition for arbitrary
protocols with probabilistic termination. In particular, we develop a compiler such that given
functionalities F1, . . . ,FM and protocols π1, . . . , πM, where for every i ∈ [M], protocol πi realizes Fi
(possibly using correlated randomness as setup1), then the compiled protocol realizes the parallel
composition of the functionalities, denoted (F1 ‖ · · · ‖ FM).

Our compiler uses the underlying protocols in a black-box manner,2 is robust (i.e., secure
without abort), and resilient against a computationally unbounded active adversary, adaptively
corrupting up to t < n/2 parties (which is optimal [56]). Moreover, our compiler is round-preserving,
meaning that if the maximal (expected) round complexity of each protocol is µ, then the expected
round complexity of the compiled protocol is O(µ). For example, if each protocol πi has constant
expected round complexity, then so does the compiled protocol. Recall that this task is quite
complicated even for the simple case of BA (cf. [5, 16]). For arbitrary functionalities it is even more
involved, since as we show, the approach from [5] cannot be applied in a functionally black-box
way in this case.3 Thus, effectively, our result is the first round-preserving parallel composition
result for arbitrary multi-party protocols/tasks with probabilistic termination.

We now describe the ideas underlying our compiler. In [5] (see also [16]), a round-preserving
parallel-broadcast protocol was constructed by iteratively running, for a constant number of rounds,
multiple instances of BA protocols (each instance is executed multiple times in parallel, in a batch),
hoping that at least one execution of every BA instance will complete. By choosing the multiplicity
suitably, this would occur with constant probability, and therefore, the process is only needed to
be repeated a constant expected number of times.

1A trusted setup phase is needed for implementing broadcast in the honest-majority setting. Note that, as shown
in [15, 17], some interesting functions can be computed without such a setup phase.

2Following [38], by a black-box access to a protocol we mean a black-box usage of a semi-honest MPC protocol
computing its next-message function.

3Loosely speaking, a functionally black-box protocol, as defined in [57], is a protocol that can compute a function
f without knowing the code of f , i.e., given only an oracle access to the function f . Note that in this model, each
ideal functionality Fi has an oracle access to the function fi it computes.

2

At first sight it might seem that this idea can be applied to arbitrary tasks, but this is not the
case. Intuitively, the reason is that if the tasks that we want to compose in parallel have privacy
requirements, then making the parties run them in (parallel) “batches” with the same input might
compromise privacy, since the adversary will be able to use different inputs and learn multiple
outputs of the function(s). This issue is not relevant for broadcast, because it is a “privacy-free”
functionality; the adversary may learn the result of multiple computations using the same inputs
for honest parties, without compromising security.

To cope with the above issue, our parallel-composition compiler generalizes the approach of [5]
in a privacy-preserving manner. At a high level, it wraps the batching technique by an MPC
protocol which restricts the parties to use the same input in all protocols for the same function. In
particular, the compiler is defined in the Setup-Commit-then-Prove hybrid model [11, 41], where the
parties receive private correlated randomness that allows each party to commit to its input values
and later execute multiple instances of every protocol, each time proving that the same input value
is used in all executions.

The constructions in [11, 41] for realizing the Setup-Commit-then-Prove functionality are de-
signed for the dishonest-majority setting and therefore allow for a premature abort. Since we
assume an honest majority, we require security without abort. A possible way around would be, as
is common in the MPC literature, to restart the protocol upon discovering some cheating or add
for each abort a recovery round; this, however, would induce a linear overhead (in the number of
parties) on the round complexity of the protocol.

Instead, in order to recover from a misbehavior by corrupted parties, we modify the Setup-
Commit-then-Prove functionality and secret-share every committed random string between all the
parties, using an error-correcting secret-sharing scheme (aka robust secret sharing [56, 20, 12]).4
In case a party is identified as cheating, every party broadcasts the share of the committed ran-
domness corresponding to that party, reconstructs the correlated randomness for that party, and
locally computes the messages corresponding to this party in every instance of every protocol. We
also prove that the modified Setup-Commit-then-Prove functionality can be realized in a constant
number of rounds, thus yielding no (asymptotic) overhead on the round complexity of the compiler.

Next, given that using only black-box access to the protocols π1, . . . , πM, it is possible to compile
them into a protocol that implements the parallel composition (F1 ‖ · · · ‖ FM) of the functionalities
F1, . . . ,FM realized by protocols, we investigate the question of whether there exists a protocol
that securely realizes (F1 ‖ · · · ‖ FM) given only black-box access to the functionalities F1, . . . ,FM,
but not to protocols realizing them. This question only makes sense if asked for an entire class of
functionalities (cf. [57]), since otherwise a protocol may always ignore the functionalities F1, . . . ,FM
and implement (F1 ‖ · · · ‖ FM) from scratch.

On the one hand, we prove that against semi-honest corruptions, there indeed exists a protocol
for parallel composition of arbitrary functionalities F1, . . . ,FM in a functionally black-box manner.
On the other hand, in the case of active corruptions, we devise a class of functionalities for which,
when using a generalization of the “batching” technique from [5], such a black-box transformation
is not possible even in the presence of a single active corrupted party. More precisely, (1) calling to
each of the ideal functionalities Fi until termination (i.e., until all parties receive the output) will
not be round-preserving, (2) it is impossible to compute the parallel composition without calling
every ideal functionality (until some parties receive the output), and (3) using the same input value
in more than one call to any of the ideal functionalities will break privacy.5 This negative result

4A (t, n) secret-sharing scheme is error correcting, if the reconstruction algorithm outputs the correct secret even
when up to t shares are arbitrarily modified.

5We note that our negative result does not contradict Ishai et al. [40, 42] who constructed two-round protocols
with guaranteed output delivery for n ≥ 4 and t = 1 without broadcast. Indeed, the protocols in [40, 42] are

3

validates our choice of a protocol compiler, and is evidence that such a task, if at all possible, would
require entirely new techniques.

We phrase our results using the framework for composition of protocols with probabilistic
termination [16], and extend it (a side result of independent interest) to include parallel composition,
reactive functionalities (in order to capture the Setup-Commit-then-Prove functionality), and to
the higher corruption threshold of t < n/2.

Related work. Most relevant to our work are results on compositional aspects of broadcast
protocols with probabilistic termination. Lindell et al. [49] studied sequential composition of
probabilistic-termination Byzantine agreement protocols, and Ben-Or and El-Yaniv [5] a round-
preserving parallel composition of such protocols. A simplification for parallel composition of
probabilistic-termination BA protocols that are based on leader election was presented by Fitzi
and Garay [27], and was used by Katz and Koo [44] for analyzing the exact round complexity of
probabilistic-termination broadcast in the context of secure computation. Cohen et al. [16] studied
probabilistic-termination protocols in the UC framework and constructed a composable parallel
broadcast protocol with a simulation-based proof.

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we
describe the network model, the basics of the probabilistic-termination framework by Cohen et al.
[16], and other tools that are used throughout the paper. In Section 3 we extend the framework to
the honest-majority setting, and in Section 4 define parallel composition of PT protocols. Section 5
presents the protocol that achieves round-preserving parallel composition for arbitrary function-
alities in a functionally black-box manner against semi-honest adversaries. Section 6 is dedicated
to active corruptions; first, the round-preserving protocol-black-box construction is presented, fol-
lowed by the negative result on round-preserving functionally black-box composition in the case
of active corruptions. For ease of exposition, finer details of the model and PT framework are
presented in the appendix.

2 Model and Preliminaries
In the following, we introduce some necessary notation and terminology. We denote by κ the
security parameter. For n ∈ N, let [n] = {1, · · · , n}. Let poly denote the set of all positive
polynomials and let PPT denote a probabilistic algorithm that runs in strictly polynomial time. A
function ν : N→ [0, 1] is negligible if ν(κ) < 1/p(κ) for every p ∈ poly and large enough κ. Given a
random variable X, we write x← X to indicate that x is selected according to X.

The statistical distance between two random variables X and Y over a finite set U , de-
noted SD(X,Y), is defined as 1

2 ·
∑
u∈U |Pr [X = u]− Pr [Y = u]|. Two distribution ensembles

X = {X(κ)}κ∈N and Y = {Y (κ)}κ∈N are statistically close (denoted X s≡ Y) if SD(X,Y) ≤ ν(κ)
for a negligible function ν .

2.1 Synchronous Protocols in UC

We consider synchronous protocols in the model of Katz et al. [46], which is designed on top
of the universal composability framework of Canetti [8]. More specifically, we consider n parties
P1, . . . , Pn and a computationally unbounded, adaptive t-adversary that can dynamically corrupt up
to t parties during the protocol execution. Synchronous protocols in [46] are protocols that run in a

non-black-box with respect to the function to be computed.

4

hybrid model where parties have access to a simple “clock” functionality Fclock. This functionality
keeps an indicator bit, which is switched once all honest parties request the functionality to do so,
i.e., once all honest parties have completed their operations for the current round. In addition, all
communication is done over bounded-delay secure channels, where each party requests the channel
to fetch messages that are sent to him, such that the adversary is allowed to delay the message
delivery by a bounded and a priori known number of fetch requests. Stated differently, once the
sender has sent some message, it is guaranteed that the message will be delivered within a known
number of activations of the receiver. For simplicity, we assume that every message is delivered
within a single fetch request. A more detailed overview of [46] can be found in Appendix B.

2.2 The Probabilistic-Termination Framework

Cohen et al. [16] extended the UC framework to capture protocols with probabilistic termination,
i.e., protocols without a fixed output round and without simultaneous termination. This section
outlines their techniques; additional details can be found in Appendix C.

Canonical synchronous functionalities. The main idea behind modeling probabilistic termi-
nation is to separate the functionality to be computed from the round complexity that is required for
the computation. The atomic building block in [16] is a functionality template called a canonical
synchronous functionality (CSF), which is a simple two-round functionality with explicit (one-
round) input and (one-round) output phases. The functionality Fcsf has two parameters: (1) a
(possibly) randomized function f that receives n + 1 inputs (n inputs from the parties and one
additional input from the adversary) and (2) a leakage function l that determines what information
about the input values is leaked to the adversary.

The functionality Fcsf proceeds in two rounds: in the first (input) round, all the parties hand
Fcsf their input values, and in the second (output) round, each party receives its output. Whenever
some input is submitted to Fcsf, the adversary is handed some leakage function of this input; the
adversary can use this leakage for deciding which parties to corrupt and which input values to use
for corrupted parties. Additionally, he is allowed to input an extra message, which—depending on
the function f—might affect the output(s). The detailed description of Fcsf is given in Figure 7
in Appendix C.1. As a side contribution, in Definition C.1, we extend the definition of CSF to the
reactive setting.

Wrappers and traces. Computation with probabilistic termination is captured by defining
output-round randomizing wrappers. Such wrappers address the issue that while an ideal function-
ality abstractly describes a protocol’s task, it does not describe its round complexity. Each wrapper
is parametrized by a distribution (more precisely, an efficient probabilistic sampling algorithm) D
that may depend on a specific protocol implementing the functionality. The wrapper samples a
round ρterm ← D, by which all parties are guaranteed to receive their outputs. Two wrappers are
considered: the first, denoted Wstrict, ensures in a strict manner that all (honest) parties terminate
together in round ρterm; the second, denoted Wflex, is more flexible and allows the adversary to
deliver outputs to individual parties at any time before round ρterm. The detailed descriptions of
the two wrappers can be found in Appendix C.3.

As pointed out in [16], it is not sufficient to inform the simulator S about the round ρterm. In
many cases, the wrapper should explain to S how this round was sampled; concretely, the wrapper
provides S with the random coins that are used to sample ρterm. In particular, S learns the entire
trace of calls to ideal functionalities that are made by the protocol in order to complete by round
ρterm. A trace basically records which hybrids were called by a protocol’s execution, and in a

5

recursive way, for each hybrid, which hybrids would have been called by a protocol realizing that
hybrid. The recursion ends when the base case is reached, i.e., when the protocol is defined using
the atomic functionalities that are “assumed” by the model.6 Formally, a trace is defined as follows:

Definition 2.1 (Traces). A trace is a rooted tree of depth at least 1, in which all nodes are labeled
by functionalities and where every node’s children are ordered. The root and all internal nodes are
labeled by wrapped CSFs (by either of the two wrappers), and the leaves are labeled by unwrapped
CSFs. The trace complexity of a trace T , denoted ctr(T), is the number of leaves in T . Moreover,
denote by flextr(T) the number nodes labeled by flexibly wrapped CSFs in T .

In this work, we consider an augmented definition of traces, which allows parallel calls to ideal
functionalities at the same round. Specifically, a trace is augmented with another (potentially
empty) layer of nodes, such that each leaf, in the original definition of a trace, may have a list of
(unordered) children. The trace complexity is defined as in Definition 2.1, as the number of original
leaves (before augmenting with unsorted node-lists). We note that the composition theorems (be-
low) trivially extend to use this augmented definition of a trace. To simplify notations, we denote
by [F1, . . . ,Fm] the node with unordered list of children F1, . . . ,Fm (modeling a parallel call to
these functionalities). We will also denote by(([

[F1]k , . . . , [Fm]k
])l)

a trace consisting of l (ordered) sequences of leaves, each augmented with an (unordered) list of k
nodes of each Fi. This corresponds to l sequential calls to k parallel instances of each Fi.

Sequential composition of probabilistic-termination protocols. When a set of parties
execute a probabilistic-termination protocol, or equivalently, invoke a flexibly wrapped CSF, they
might get out-of-sync and start the next protocol in different rounds. The approach in [16] for
dealing with sequential composition is to start by designing simpler protocols, that are in a so-
called synchronous normal form, where the parties remain in-sync throughout the execution, and
next, compile these protocols into slack-tolerant protocols.

Definition 2.2 (Synchronous normal form). Let F1, . . . ,Fm be canonical synchronous functional-
ities. A synchronous protocol π in the (F1, . . . ,Fm)-hybrid model is in synchronous normal form
(SNF) if in every round exactly one ideal functionality Fi is invoked by all honest parties, and in
addition, no honest party hands inputs to other CSFs before this instance halts.

SNF protocols are designed as an intermediate step only, since the hybrid functionalities F1, . . . ,Fm
are two-round CSFs and, in general, cannot be realized by real-world protocols. In order to obtain
protocols that can be realized in the real world, [16] introduced slack-tolerant variants of both the
strict and the flexible wrappers, denoted Wsl-strict and Wsl-flex. These wrappers are parametrized
by a slack parameter c ≥ 0 and can be used even if parties provide inputs within c+ 1 consecutive
rounds (i.e., they tolerate input slack of c rounds); furthermore, the wrappers ensure that all honest
parties obtain output within two consecutive rounds (i.e., they reduce the slack to c = 1). The
detailed definitions of the slack-tolerant wrappers are given in Appendix C.4. In order to con-
vert SNF protocols into protocols that realize functionalities with slack tolerance, [16] constructed
a deterministic-termination compiler Compdt, a probabilistic-termination compiler Comppt and a

6The atomic functionalities considered in this work are the CSFs for the point-to-point communication function-
ality Fsmt and the correlated-randomness functionality for broadcast Fcorr-bc.

6

probabilistic-termination with slack-reduction compiler Compptr. Loosely speaking, the composi-
tion theorems provide the following guarantees:

1. If an SNF protocol π realizes a wrapped CSF WD
strict(F) in the (F1, . . . ,Fm)-hybrid model,

then Compcdt(π) realizes WD′,c
sl-strict(F) in the (WD1,c

sl-strict(F1), . . . ,WDm,c
sl-strict(Fm))-hybrid model

(where D′ is defined using D,D1, . . . , Dm).

2. If an SNF protocol π realizes a wrapped CSF WD
strict(F) in the (F1, . . . ,Fm)-hybrid model,

then Compcpt(π) realizesWD′,c
sl-flex(F) in the (WD1,c

sl (F1), . . . ,WDm,c
sl (Fm))-hybrid model (where

WDi,c
sl (Fi) is WDi,c

sl-flex(Fi) if i ∈ I and WDi,c
sl-strict(Fi) if i /∈ I, given a subset I ⊆ [m] (of indices)

of functionalities to be wrapped using the flexible wrapper).

3. If an SNF protocol π realizes a wrapped CSF WD
flex(F) in the (F1, . . . ,Fm)-hybrid model,

then Compcptr(π) realizesWD′,c
sl-flex(F) in the (WD1,c

sl (F1), . . . ,WDm,c
sl (Fm))-hybrid model (where

WDi,c
sl (Fi) is WDi,c

sl-flex(Fi) if i ∈ I and WDi,c
sl-strict(Fi) if i /∈ I, for a subset I as above).

The compilers maintain the security and the asymptotic (expected) round complexity of the original
SNF protocols. At the same time, the compilers take care of any potential slack that is introduced
by the protocol and ensure that the resulting protocol can be safely executed even if the parties do
not start the protocol simultaneously. More precise descriptions of the compilers can be found in
Appendix C.5. As a side contribution, we extend this framework to the honest-majority setting in
Appendix 3.

Finally, in [16], the authors also provided protocols for realizing wrapped variants of the atomic
CSF functionality for secure point-to-point communication. This suggested the following design
paradigm for realizing a wrapped functionality Wsl-strict(F) (resp., Wsl-flex(F)): First, construct
an SNF protocol for realizing Wstrict(F) (resp., Wflex(F)) using CSF hybrids F1, . . . ,Fm. Next,
for each of the non-atomic hybrids Fi, show how to realize Wstrict(Fi) (resp., Wflex(Fi)) using
CSF hybrids F′1, . . . ,F′m′ . Proceed in this manner until all CSF hybrids are atomic functionalities.
Finally, repeated applications of the composition theorems above yield a protocol for Wsl-strict(F)
(resp., Wsl-flex(F)) using only atomic functionalities as hybrids.

2.3 A Lemma on Termination Probabilities

The following lemma, which will be used in our positive results, provides a constant lower bound
on the probability that when running simultaneously (i.e., in parallel) N copies of M probabilistic-
termination protocols π1, . . . , πM, at least one copy of each πi will complete after R rounds, for
suitable choices of N and R.

Lemma 2.3. Let M, N, R ∈ N. For i ∈ [M] and j ∈ [N], let Xij be independent random variables over
the natural numbers, such that Xi1, . . . , XiN are identically distributed with expectation µi. Denote
Yi = min{Xi1, . . . , XiN} and µ = max{µ1, . . . , µM}. Then, for any constant 0 < ε < 1, if R > µ and
N > log(M/ε)

log(R/µ) , it holds that Pr [∀i : Yi < R] ≥ 1− ε.

7

Proof. First, notice that

Pr[∃i : Yi ≥ R] ≤
∑
i∈[M]

Pr[Yi ≥ R]

≤
∑
i∈[M]

∏
j∈[N]

Pr[Xij ≥ R]

(∗)
≤

∑
i∈[M]

∏
j∈[N]

(
µj
R

)
≤

∑
i∈[M]

∏
j∈[N]

(
µ

R

)
= M ·

(
µ

R

)N
,

where (∗) follows from Markov’s inequality. Therefore,

Pr[∀i : Yi < R] = 1− Pr[∃i : Yi ≥ R] ≥ 1− M ·
(
µ

R

)N
.

Finally, since R > µ it holds that 1 > µ/R. Therefore, for constant 0 < ε < 1, by setting

N >
log(M/ε)
log(R/µ) ,

it holds that
Pr[∀i : Yi < R] ≥ 1− M ·

(
µ

R

)N
≥ 1− ε.

3 Probabilistic Termination with an Honest Majority
In this section, we extend the probabilistic-termination framework [16] to the honest majority
regime.

3.1 Fast Sequential Composition

The composition theorems from [16] are defined for t < n/3 (as they focused on prefect secu-
rity). When moving to the honest-majority setting, i.e., t < n/2, the compilers and composition
theorems follow in a straightforward way. The main difference lies in the usage of the Bracha-
termination technique (specifically, in Theorem 3.2), where the “termination messages” in the
compiled protocol π′ = Compcptr(π,D1, . . . , Dm, I) must be authenticated. Therefore, there is an
additional hybrid functionality that is required for generating correlated randomness to be used
for authenticating messages. If information-theoretic security is required, correlated randomness
for information-theoretic signatures [54] can be used, whereas if computational security suffices, a
public-key infrastructure (PKI) can be used.

Correlated Randomness. The correlated-randomness functionality, parametrized by a dis-
tribution D, is defined as follows. The function to compute is fcorr(λ, . . . , λ, a) = (R1, . . . , Rn),

8

where (R1, . . . , Rn)← D, and the leakage function is lcorr(λ, . . . , λ) = ⊥. We denote by FDcorr
the functionality Fcsf when parametrized with the above functions fcorr and lcorr. We denote
by Fcorr-bc the functionality FDbc

corr, where Dbc is the distribution for correlated randomness
needed for information-theoretic broadcast [54], and by Fpki functionality FDpki

corr, where Dpki is
the distribution for correlated randomness needed for a public-key infrastructure using standard
digital signatures.

We state without proof the composition theorems for the honest-majority setting. The proofs follow
in similar lines to [16]. See Appendix C.5 for additional details.

Theorem 3.1. Let F,F1, . . . ,Fm be canonical synchronous functionalities, let t < n/2, and let π
be an SNF protocol that UC-realizes WD

strict(F), with information-theoretic (resp., computational)
security, in the (F1, . . . ,Fm)-hybrid model, for some depth-1 distribution D, in the presence of an
adaptive, malicious t-adversary, and assuming that all honest parties receive their inputs at the same
round. Let D1, . . . , Dm be arbitrary distributions over traces, let Dfull = full-trace(D,D1, . . . , Dm),
and let c ≥ 0.

Then, protocol π′ = Compcdt(π,D1, . . . , Dm) UC-realizes WDfull,c
sl-strict(F), with information-theoretic

(resp., computational) security, in the (WD1,c
sl-strict(F1), . . . ,WDm,c

sl-strict(Fm))-hybrid model, in the pres-
ence of an adaptive, malicious t-adversary, assuming that all honest parties receive their inputs
within c+ 1 consecutive rounds.

Furthermore, the expected round complexity of the compiled protocol π′ is

Bc ·
∑
i∈[m]

di · E[ctr(Ti)],

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled from Di, and
Bc = 3c+ 1 is the blow-up factor.

Theorem 3.2. Let F,F1, . . . ,Fm be canonical synchronous functionalities, let t < n/2, and let
π be an SNF protocol that UC-realizes WD

flex(F), with information-theoretic (resp., computational)
security, in the (F1, . . . ,Fm)-hybrid model, for some depth-1 distribution D, in the presence of an
adaptive, malicious t-adversary, and assuming that all honest parties receive their inputs at the same
round. Let I ⊆ [m] be the subset (of indices) of functionalities to be wrapped using the flexible wrap-
per, let D1, . . . , Dm be arbitrary distributions over traces, denote Dfull = full-trace(D,D1, . . . , Dm),
and let c ≥ 0. Assume that F and Fi, for every i ∈ I, are public-output functionalities.

Then, the compiled protocol π′ = Compcptr(π,D1, . . . , Dm, I) UC-realizes WDfull,c
sl-flex (F), with

information-theoretic (resp., computational) security, in the (Fcorr-bc,W(F1), . . . ,W(Fm))-hybrid
model, where W(Fi) = WDi,c

sl-flex(Fi) if i ∈ I and W(Fi) = WDi,c
sl-strict(Fi) if i /∈ I, in the presence

of an adaptive, malicious t-adversary, assuming that all honest parties receive their inputs within
c+ 1 consecutive rounds.

Furthermore, the expected round complexity of the compiled protocol π′ is

Bc ·
∑
i∈[m]

di · E[ctr(Ti)] + 2 ·
∑
i∈[m]

di · E[flextr(Ti)] + 2,

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled from Di, and
Bc = 3c+ 1 is the blow-up factor.

Theorem 3.3. Let F,F1, . . . ,Fm be canonical synchronous functionalities, let t < n/2, and let π
be an SNF protocol that UC-realizes WD

strict(F), with information-theoretic (resp., computational)
security, in the (F1, . . . ,Fm)-hybrid model, for some depth-1 distribution D, in the presence of an

9

adaptive, malicious t-adversary, and assuming that all honest parties receive their inputs at the same
round. Let I ⊆ [m] be the subset (of indices) of functionalities to be wrapped using the flexible wrap-
per, let D1, . . . , Dm be arbitrary distributions over traces, denote Dfull = full-trace(D,D1, . . . , Dm),
and let c ≥ 0. Assume that F and Fi, for every i ∈ I, are public-output functionalities.

Then, the compiled protocol π′ = Compcpt(π,D1, . . . , Dm, I) UC-realizes WDfull,c
sl-flex (F), with

information-theoretic (resp., computational) security, in the (W(F1), . . . ,W(Fm))-hybrid model,
where W(Fi) = WDi,c

sl-flex(Fi) if i ∈ I and W(Fi) = WDi,c
sl-strict(Fi) if i /∈ I, in the presence of an

adaptive, malicious t-adversary, assuming that all honest parties receive their inputs within c + 1
consecutive rounds.

Furthermore, the expected round complexity of the compiled protocol π′ is

Bc ·
∑
i∈[m]

di · E[ctr(Ti)] + 2 ·
∑
i∈[m]

di · E[flextr(Ti)],

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled from Di, and
Bc = 3c+ 1 is the blow-up factor.

3.2 Fast Parallel Broadcast

Cohen et al. [16], based on Hirt and Zikas [37], defined the unfair parallel-broadcast functionality, in
which the functionality informs the adversary which messages it received, and allows the adversary,
based on this information, to corrupt senders and replace their input messages.

Unfair Parallel Broadcast. In the unfair parallel broadcast functionality, each party
Pi with input xi distributes its input to all the parties. The adversary is allowed to learn
the content of each input value from the leakage function (and so it can corrupt parties and
change their messages prior to their distribution, based on this information). The function
to compute is fupbc(x1, . . . , xn, a) = ((x1, . . . , xn), . . . , (x1, . . . , xn)) and the leakage function is
lupbc(x1, . . . , xn) = (x1, . . . , xn). We denote by Fupbc the functionality Fcsf when parametrized
with the above functions fupbc and lupbc.

The protocol of Katz and Koo [45] realizes (a wrapped version of) Fupbc when the parties have
correlated-randomness setup. The following result follows.

Theorem 3.4. Let c ≥ 0 and t < n/2. There exists an efficiently sampleable distribution D such
that the functionality WD,c

sl-flex(Fupbc) has an expected constant round complexity, and can be UC-
realized in the (Fsmt,Fcorr-bc)-hybrid model, with information-theoretic security, in the presence
of an adaptive, malicious t-adversary, assuming that all honest parties receive their inputs within
c+ 1 consecutive rounds.

The parallel broadcast functionality is similar to the unfair version, except that the adversary
cannot corrupt parties based on the messages they send.

Parallel Broadcast. In the parallel broadcast functionality, each party Pi with input xi
distributes its input to all the parties. Unlike the unfair version, the adversary only learns
the length of the honest parties’ messages before their distribution, i.e., the leakage function
is lpbc(x1, . . . , xn) = (|x1| , . . . , |xn|). It follows that the adversary cannot use the leaked infor-
mation in a meaningful way when deciding which parties to corrupt. The function to compute
is identical to the unfair version, i.e., fpbc(x1, . . . , xn, a) = ((x1, . . . , xn), . . . , (x1, . . . , xn)). We
denote by Fpbc the functionality Fcsf when parametrized with the above functions fpbc and lpbc.

10

We next show how to realize the parallel-broadcast functionality Fpbc in the Fupbc-hybrid model,
in the honest-majority setting. The construction follows [16], where the only difference is that for
t < n/2, perfectly correct error-correcting secret sharing (cf. Definition A.1) cannot be achieved,
and a negligible error probability is introduced. We describe this protocol, denoted πpbc, in Figure 1.

Protocol πpbc

1. In the first round, upon receiving (input, sid, xi) with xi ∈ V from the environment, Pi secret
shares xi using a (t, n) error-correcting secret sharing scheme, (x1

i , . . . , x
n
i) ← Share(xi). Next,

Pi sends for every party Pj its share (sid, xji). Denote by x̃ij the value received from Pj (replace
invalid/missing values by zero).

2. In the second round, Pi broadcasts the values xi = (x̃i1, . . . , x̃in) using the unfair parallel-
broadcast functionality, i.e., Pi sends (input, sid,xi) to Fupbc. Denote by yj = (yj1, . . . , yjn) the
value received from Pj (replace invalid/missing values by zero). Next, Pi reconstructs all the
input values, i.e., for every j ∈ [n] computes yj = Recon(y1

j , . . . , y
n
j) (in case yj = ⊥ set yj ← 0),

and outputs (output, sid, (y1, . . . , yn)) .

Figure 1: The parallel-broadcast protocol, in the (Fpsmt,Fupbc)-hybrid model

Theorem 3.5. Let c ≥ 0 and t < n/2. There exists an efficiently sampleable distribution D such
that the functionality WD,c

sl-flex(Fpbc) has an expected constant round complexity, and can be UC-
realized in the (Fsmt,Fcorr-bc)-hybrid model, with information-theoretic security, in the presence
of an adaptive malicious t-adversary, assuming that all honest parties receive their inputs within
c+ 1 consecutive rounds.

The proof of the theorem follows in the same lines of the proof of [16, Thm. 5.6].

3.3 Fast SFE in the Point-to-Point Model

We conclude this section by showing how to construct a UC-secure SFE protocol which computes a
given circuit in expected O(d) rounds, independently of the number of parties, in the point-to-point
channels model. The protocol is obtained by taking the protocol of Cramer et al. [19], denoted πsfe.
This protocol relies on (parallel) broadcast and (parallel) point-to-point channels, and therefore it
can be described in the (Fpsmt,Fpbc)-hybrid model.

Theorem 3.6. Let f be an n-party function, let C an arithmetic circuit computing f with multi-
plicative depth d, let c ≥ 0, and let t < n/2. Then, there exists an efficiently sampleable distribution
D such that the functionality WD,c

sl-flex(Ffsfe) has round complexity O(d) in expectation, and can be
UC-realized in the (Fsmt,Fcorr-bc)-hybrid model, with information-theoretic security, in the pres-
ence of an adaptive, malicious t-adversary, assuming that all honest parties receive their inputs
within c+ 1 consecutive rounds.

The following result follows using the protocol of Damgård and Ishai [21].

Theorem 3.7. Let f be an n-party function, let c ≥ 0, let t < n/2, and assume that one-way func-
tions exist. Then, there exists an efficiently sampleable distribution D such that the functionality
WD,c

sl-flex(Ffsfe) has round complexity O(1) in expectation, and can be UC-realized in the (Fsmt,Fpki)-
hybrid model, with computational security, in the presence of an adaptive, malicious t-adversary,
assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.

11

4 Functionally Black-Box Protocols and Parallel Composition
In this section, we extend the probabilistic-termination framework [16] to capture the notions of
functionally black-box protocols [57] and of parallel composition of canonical synchronous function-
alities.

Functionally black-box protocols. We formalize the notion of functionally black-box protocols
of Rosulek [57] in the language of canonical synchronous functionalities. As in [57], we focus
on secure function evaluation. The SFE functionality Fgsfe (cf. Section C.1), parametrized by
an n-party function g, is defined as the CSF Ffsfe,lsfe

csf , where fsfe(x1, . . . , xn, a) = g(x1, . . . , xn)
(i.e., computes the function g while ignoring the adversary’s input a) and the leakage function is
lsfe(x1, . . . , xn) = (|x1|, . . . , |xn|). The following definition explains what we mean by a protocol
that realizes the secure function evaluation functionality in a black-box way with respect to the
function g.

Definition 4.1. Let C = {g : ({0, 1}∗)n → ({0, 1}∗)n} be a class of n-party functions. Denote
by FCsfe the CSF, implemented as an (uninstantiated) oracle machine that in order to compute
fCsfe(x1, . . . , xn, a), queries the oracle with (x1, . . . , xn) and stores the response (y1, . . . , yn). The
leakage function lsfe(x1, . . . , xn) = (|x1|, . . . , |xn|) is unchanged.

Then, a protocol π = (π1, . . . , πn) is a functionally black-box (FBB) protocol for (a wrapped
version of) FCsfe, if for every f ∈ C, the protocol πf = (πf1 , . . . , πfn) UC-realizes Ffsfe.

Parallel Composition of CSFs The parallel composition of CSFs is defined in a natural way
as the CSF that evaluates the corresponding functions in parallel.

Definition 4.2. Let f1, . . . , fM be n-input functions. We define the (n ·M)-input function (f1 ‖ · · · ‖
fM) as follows. Upon input (x1, . . . ,xn), where each xi is an M-tuple (x1

i , . . . , x
M
i), the output is the

M-tuple defined as

(f1 ‖ · · · ‖ fM)(x1, . . . ,xn) =
(
(y1

1, . . . , y
M
1), . . . , (y1

n, . . . , y
M
n)
)
,

where (yj1, . . . , yjn) = fj(xj1, . . . , xjn).
Let Ff1,l1

csf , . . . ,FfM,lM
csf be CSFs and denote Fi = Ffi,licsf . The parallel composition of F1, . . . ,FM,

denoted as (F1 ‖ · · · ‖ FM), is the CSF defined by the function (f1 ‖ · · · ‖ fM) and the leakage
function (l1 ‖ · · · ‖ lM).

5 Round-Preserving Parallel Composition: Passive Security
In this section, we show that round-preserving parallel composition is feasible, in a functionally
black-box manner, facing semi-honest adversaries. The underlying idea of our protocol πpfbb (stand-
ing for parallel functionally black box), formally presented in Figure 2, is based on a simplified form
of the parallel-broadcast protocol of Ben-Or and El-Yaniv [5]. The protocol proceeds in iterations,
where in each iteration, the parties invoke, in parallel and using the same input values, suffi-
ciently many instances of each (oracle-aided) ideal functionality, but only for a constant number
of rounds. If some party received an output in at least one invocation of every ideal functionality,
it distributes all output values and the protocol completes; otherwise, the protocol resumes with
another iteration. This protocol retains privacy for deterministic functions with public output,7

7Although the result holds for deterministic functionalities, we note that using standard techniques every func-
tionality can be transformed to an equivalent deterministic functionality in a black-box way.

12

since the adversary is semi-honest, and so corrupted parties will provide the same input values to
all instances of each ideal functionality.

Protocol πpfbb(N, R, L)

1. Each party Pi, upon receiving (input, sid,xi) with xi = (x1
i , . . . , x

M
i), initializes the iteration

index α← 0.

2. Initiate (in parallel) N instances of every ideal functionality WDj

flex(FCj

sfe) as follows:

(a) For every j ∈ [M] and k ∈ [N], send (input, sidj,k̃, x
j
i) to WDj

flex(FCj

sfe) (where k̃ = α · N + k

and sidj,k̃ = sid ◦ j ◦ k̃).
(b) Execute for rounds ρ = 1, . . . , R:

i. Every party Pi sends (fetch-output, sidj,k̃) to WDj

flex(FCj

sfe).
ii. If received (output, sidj,k̃, yj) with yj 6= ⊥, add yj to the (initially empty) set Sji .

(c) If for every j ∈ [M], Sji 6= ∅, then set y = (y1, . . . , yM), where yj ∈ Sji is arbitrarily chosen,
and send (sid,y) to all parties.

(d) If Pi received a value (sid,y) from some party, it outputs (output, sid,y) and halts. Else,
set α← α+ 1. If α < L, goto Step 2; else, output ⊥ and halt.

Figure 2: FBB parallel composition in the (Fsmt,WD1
flex(FC1sfe), . . . ,WDM

flex(FCM
sfe))-hybrid model

Intuitively, during the simulation of the protocol, the simulator should imitate every call for
every ideal functionality towards the adversary. A subtle issue is that in order to do so, the simulator
must know the exact trace that is sampled by each instance of each ideal functionality during the
execution of the real protocol. Therefore, it is indeed essential for the simulator to receive the
random coins used to sample the trace for the entire protocol, by the ideal functionality computing
the parallel composition (cf. Section 2.2). By defining the trace-distribution sampler in a way that
consists of all (potential) sub-traces for every instance of every ideal functionality, the simulator
can induce the exact random coins used to sample the correct sub-trace for every ideal functionality
that is invoked.

Theorem 5.1. Let C1, . . . , CM be deterministic function classes with public output, let FC1sfe, . . . ,FCM
sfe

be oracle-aided secure function evaluation functionalities, and let t < n/2. Let D1, . . . , DM be
distributions, such that for every j ∈ [M], the round complexity of WDj

flex(FCjsfe) has expectation µj.
Denote µ = max{µ1, . . . , µM}.

Then, there exists a distribution D with expectation µ′ = O(µ) such thatWD
flex(FC1sfe ‖ · · · ‖ FCM

sfe)
can be UC-realized by an FBB protocol in the (Fsmt,WD1

flex(FC1sfe), . . . ,WDM
flex(FCM

sfe))-hybrid model, with
information-theoretic security, in the presence of an adaptive, semi-honest t-adversary, assuming
that all honest parties receive their inputs at the same round.

In particular, if for every j ∈ [M], the expectation µj is constant, then µ′ is constant.

The proof of Theorem 5.1 follows immediately from the following lemma.

Lemma 5.2. Consider the notations in Theorem 5.1 and let 0 < ε < 1.
Then, for any R > µ, N > log(M/ε)

log(R/µ) and L = poly(κ), protocol πpfbb(N, R, L) is an FBB proto-
col for WDpfbb

flex (FC1sfe ‖ · · · ‖ FCM
sfe), for a distribution Dpfbb with expectation µpfbb = O(R), in the

13

(Fsmt,WD1
flex(FC1sfe), . . . ,WDM

flex(FCM
sfe))-hybrid model, with information-theoretic security, in the pres-

ence of an adaptive, semi-honest t-adversary, assuming that all honest parties receive their inputs
at the same round.

Proof. We start by defining the sampling algorithm for the distribution Dpfbb, parametrized by
N, R, L, and distributions D1, . . . , DM. The sampler initially sets α ← 0 and a trace T with a root
labeled by WDpfbb

flex (FC1sfe ‖ · · · ‖ FCM
sfe) and no children. Next, independently sample traces T k̃j ← Dj ,

for j ∈ [M] and k ∈ [N] (where k̃ = α · N + k), and append(([[
WD1

flex(FC1sfe)
]N
, . . . ,

[
WDM

flex(FCM
sfe)

]N])R
,Fpsmt

)

to the (initially empty) ordered set of leaves of the trace T (i.e., calling sequentially R times, to N
parallel instances of each of the functionalities WDj

flex(FCjsfe) (for every j ∈ [M]), followed by a call to
Fpsmt). If for every j ∈ [M], there exists k ∈ [N], such that ctr(T k̃j) < R, then output T and halt.
Else, set α← α+ 1. If α < L, repeat the sampling process; otherwise output T and halt.

Following Lemma 2.3, for R > µ and N > log(M/c)
log(R/µ) , it holds that in every iteration, at least

one invocation of WDj
flex(FCjsfe) will produce output, for every j ∈ [M], with a constant probability.

It follows that the expected number of iterations until all honest parties receive output and the
protocol terminates is constant, and since each iteration consists ofO(R) rounds, the entire execution
completes within O(R) rounds in expectation, as required. The failure probability that the protocol
will not terminate within L = poly(κ) iterations is negligible.

Let A be a semi-honest adversary, we now construct a simulator S for A. Initially, S sets the
values α ← 0 and y ← ⊥, and starts by receiving leakage messages (leakage, sid, Pi, (l1, . . . , lM))
and a trace message (trace, sid, T) from WDpfbb

flex (FC1sfe ‖ · · · ‖ FCM
sfe), where T is a depth-1 trace of

the form ((([[
WD1

flex(FC1sfe)
]N
, . . . ,

[
WDM

flex(FCM
sfe)

]N])R
,Fpsmt

)q)

(i.e., q iterations of calling sequentially R times, to N parallel instances of eachWDj
flex(FCjsfe), for every

j ∈ [M], followed by a call to Fpsmt). More precisely, S receives the coins that were used by the
functionality WDpfbb

flex (FC1sfe ‖ · · · ‖ FCM
sfe) to sample the trace T and using these coins, S samples the

same traces T k̃j that were used to define T .
In order to simulate the α’th iteration, S sends the message (leakage, sidj,k̃, Pi, lj) to A, for

every j ∈ [M], every k ∈ [N], and every honest Pi (where k̃ = α ·N+k), and receives (input, sidj,k̃, x
j
i)

from A on behalf of every corrupted party Pi. Since A is semi-honset, it holds that the same xji
is used for each corrupted party Pi in all instances of the functionality WDj

flex(FCjsfe). In the first
iteration, S sends to WDpfbb

flex (FC1sfe ‖ · · · ‖ FCM
sfe), on behalf of every corrupted party Pi, the message

(input, sid,xi), with xi = (x1
i , . . . , x

M
i). When A sends (fetch-output, sidj,k̃) requests in round ρ,

S answers with ⊥ if ctr(T k̃j) < ρ, and with (output, sidj,k̃, yj) otherwise, where y = (y1, . . . , yM); if
y = ⊥ (i.e., on the first time), send (early-output, sid, Pi) to WDpfbb

flex (FC1sfe ‖ · · · ‖ FCM
sfe), receive

(output, sid,y) and store y = (y1, . . . , yM). In case A sends (early-output, sidj,k̃, Pi), for some
corrupted Pi, send (output, sidj,k̃, yj) to A. If the simulated protocol completes during the α’th
iteration, S sends (early-output, sid, Pi) to the functionality WDpfbb

flex (FC1sfe ‖ · · · ‖ FCM
sfe) on behalf

of every party.

14

Proving that no environment can distinguish between its view in an execution of πpfbb in the
(Fsmt,WD1

flex(FC1sfe), . . . ,WDM
flex(FCM

sfe))-hybrid model, and its view when interacting with S in the ideal
computation of WDpfbb

flex (FC1sfe ‖ · · · ‖ FCM
sfe), follows via a standard hybrid argument. Starting with

the execution of πpfbb, the invocations of the ideal functionalities WD1
flex(FC1sfe), . . . ,WDM

flex(FCM
sfe) are

replaced, one-by-one, with the answers of the simulator S. Since S perfectly emulates each such
call using the trace it received from the ideal functionality WDpfbb

flex (FC1sfe ‖ · · · ‖ FCM
sfe), it follows

immediately that the views of the environment in two neighbouring hybrids are indistinguishable,
therefore, the view of the environment in the simulation is indistinguishable from its view in the
execution of πpfbb.

6 Round-Preserving Parallel Composition: Active Security
In this section, we consider security against active adversaries. First, in Section 6.1, we show how to
compute the parallel composition of probabilistic-termination functionalities, in a round-preserving
manner, using a black-box access to protocols realizing the individual functionalities. In Section 6.2,
we investigate the question of whether there exists a functionally black-box round-preserving ma-
licious protocol for the parallel composition of probabilistic-termination functionalities, and show
that for a natural extension of protocols, following the techniques from [5], this is not the case—i.e.,
there exist functions such that no such protocol with black-box access to them can compute their
parallel composition, in a round-preserving manner, tolerating even a single adversarial party.

6.1 Feasibility of Round-Preserving Parallel Composition

In this section, we show how to compile multiple protocols, realizing probabilistic-termination
functionalities, into a single protocol that realizes the parallel composition of the functionalities, in
a round-preserving manner, and while only using black-box access to the underlying protocols. We
start by providing a high-level description of the compiler.

The compiler receives as input protocols π1, . . . , πM, where each protocol πj is defined in the
point-to-point model, in which the parties are given correlated randomness in a secure setup phase,
i.e., in the (Fsmt,F

Dcorr
j

corr)-hybrid model.8 It follows that the next-message function for each party
in each protocol is a deterministic function that receives the input value, correlated randomness,
private randomness, and history of incoming messages, and outputs a vector of nmessages to be sent
in the following round (one message for each party); we denote by fπj ,inxt-msg the next-message function
for party Pi in protocol πj . In particular, we note that the entire transcript of the protocol is fixed
once the input value, correlated randomness, and private randomness of each party are determined.

The underlying ideas of the compiler are inspired by the constructions in [5, 16], where a round-
preserving parallel-broadcast protocol was constructed by iteratively running, for a constant number
of rounds, multiple instances of BA protocols (each instance is executed multiple times in parallel),
until at least one execution of every BA instance is completed. This approach is indeed suitable for
computing “privacy-free” functionalities (such as broadcast), where the adversary may learn the
result of multiple computations using the same inputs for honest parties, without compromising
security. However, when considering the parallel composition of arbitrary functions, running two
instances of a protocol using the same input values will violate privacy, since the adversary can use
different inputs to learn multiple outputs of the function.

8This captures, for example, broadcast-model protocols, where the broadcast channel is realized using an expected-
constant-round protocol, cf. Theorems 3.6 and 3.7.

15

The parallel-composition compiler generalizes the above approach in a privacy-preserving man-
ner. The compiler follows the GMW paradigm [31] and is defined in the Setup-Commit-then-Prove
hybrid model [11, 41], which generates committed correlated randomness for the parties and en-
sures that all parties follow the protocol specification. This mechanism allows each party to commit
to its input values and later execute multiple instances of each protocol, while proving that the
same input value is used in all executions. For simplicity and without loss of generality, we assume
that each function is deterministic and has a public output. In this case, it is ensured that if two
parties receive output values in two executions of πj , then they receive the same output value.
The private random coins that are used in each execution only affect the termination round, but
not the output value. Using this simplification, we can remove the leader-election phase from the
output-agreement technique in [5, 16] and directly use the termination technique from Bracha [7].

Another obstacle is to recover from corruptions without increasing the round complexity. In-
deed, in case some party misbehaves, e.g., by using different input values in different instances
of the same protocol πj , then the Setup-Commit-then-Prove functionality ensures that all honest
parties will identify the cheating party. In this case, the parties cannot recover by, for example,
backtracking and simulating the cheating party, as this will yield a round complexity that is linear
in the number of parties. Furthermore, the protocol must resume in a way such that all instances of
a specific protocol πj will use the same input value that the identified corrupted party used through-
out the protocol’s execution until it misbehaved (since the cheating party might have learned an
output value in one of the executed protocols).

To this end, we slightly adjust the Setup-Commit-then-Prove functionality and secret-share
every committed random string ri (the correlated randomness for party Pi) among all the parties,
using an error-correcting secret-sharing scheme (cf. Section A.1). Note that this can be done
information theoretically as we assume an honest majority [56, 20, 12]. In case a party is identified
as cheating, every party broadcasts the share of the committed randomness corresponding to that
party, reconstructs the correlated randomness for that party, and from that point onwards, locally
computes the messages corresponding to this party in every instance of every protocol. Using this
approach, every round in the original protocols π1, . . . , πM is expanded by a constant number of
rounds, and the overall round complexity is preserved.

We prove the following theorem.

Theorem 6.1. Let F1, . . . ,FM be CSFs, let t < n/2, and let c ≥ 1. Let π1, . . . , πM be SNF protocols
such that for every j ∈ [M], protocol πj UC-realizes WDj

flex(Fj) with expected round complexity µj
and information-theoretic security, in the (Fsmt,F

Dcorr
j

corr)-hybrid model (for a distribution Dj and a
distribution Dcorr

j in NC0), in the presence of an adaptive, malicious t-adversary, assuming that
all honest parties receive their inputs at the same round. Denote µ = max{µ1, . . . , µM}.

Then, WD,c
sl-flex(F1 ‖ · · · ‖ FM), for some distribution D with expectation µ′ = O(µ), can be UC-

realized with information-theoretic security by a protocol π in the (Fsmt,Fcorr-bc)-hybrid model,
in the same adversarial setting, assuming that all honest parties receive their inputs within c + 1
consecutive rounds. In addition, protocol π requires only black-box access to the protocols π1, . . . , πM.

In particular, if for every j ∈ [M], the expectation µj is constant, then µ′ is constant.

Proof (sketch). Without loss of generality, we assume that every CSF Fj is deterministic and has
public output. The proof for randomized functionalities with private output follows using standard
techniques. In Lemma 6.3, we prove that the compiled protocol πpbb = Comp(π1, . . . , πM, N, R, L),
for R > µ, N > log(M/ε)

log(R/µ) and L = poly(κ), UC-realizesWDpbb
flex (F1 ‖ · · · ‖ FM) with expected round com-

plexity O(R) and information-theoretic security, in the (Fpbc,Fscp)-hybrid model. In Lemma 6.2, we
show that a wrapped version of Fscp(P,Dparallel(π1, . . . , πM, N · L, R, `), ~Rparallel,Π) (explained below)

16

can be implemented, such that every call can be UC-realized in the (Fpsmt,Fpbc)-hybrid model with
constant round complexity and information-theoretic security. Following Theorem 3.5, Fpbc can be
UC-realized in the Fsmt-hybrid model with expected constant round complexity and information-
theoretic security. The proof follows from the sequential composition theorems, Theorems 3.1, 3.2
and 3.3.

We now proceed to define the Setup-Commit-Then-Prove Functionality Fscp and prove
Lemma 6.2 in Section 6.1.1, and to prove Lemma 6.3 in Section 6.1.2.

6.1.1 The Setup-Commit-Then-Prove Functionality

An important building block in our parallel-composition compiler is the Setup-Commit-then-Prove
functionality. This functionality is used in order to allow parties to execute multiple instances of
a protocol, using the same inputs, while ensuring input consistency. In addition, in case a party
misbehaves and tries to deviate from the protocol or to use different inputs in different executions,
the functionality allows all parties to identify this misbehaviour and recover, while increasing the
round complexity only by a constant factor. This functionality was defined by Ishai et al. [41], based
on the Commit-then-Prove functionality of Canetti et al. [11], and was used in order to compile
any semi-honest protocol into a protocol that is secure with identifiable abort, facing malicious
adversaries, by generating committed setup for the parties and allow them to prove NP-statements
in zero knowledge.

The Setup-Commit-then-Prove functionality Fscp is a reactive functionality. (The notion of
CSF is extended to the reactive setting in Appendix C.2.) The functionality is formally defined in
Figure 3 and is parametrized by a party-set P, a distribution D, a vector of n NP-relations ~R and
a (t, n) error-correcting secret-sharing scheme Π. In the first call to the functionality, the parties
don’t send inputs (more precisely, send the empty input λ). The functionality samples correlated
randomness (r1, . . . , rn) ← D, hands ri to Pi and stores ri as the committed witness for Pi. In
addition, the functionality secret shares ri between all parties. All subsequent calls are used to
prove NP-statements on the committed witnesses, i.e., on the k’th call, for k > 1, Pi sends as its
input a statement xi,k; the functionality verifies whether Ri(xi,k, ri) = 1 and sends xi,k and the
result to all parties.

Functionality Fscp(P,D, ~R = (R1, . . . ,Rn),Π))

The functionality Fscp is a reactive CSF, with vectors f scp = (f1
scp, . . . , f

q
scp) and lscp = (l1scp, . . . , l

q
scp)

of functions (defined below). Fscp is parametrized by party-set P = {P1, . . . , Pn}, a distribution D, a
vector ~R of NP relations and a (t, n) error-correcting secret-sharing scheme Π = (Share,Recon).

Setup-Commit Phase: The function f1
scp(x1,1, . . . , xn,1, a1) is defined as follows. Initially, sample

(r1, . . . , rn)← D and for every i ∈ [n], compute (v1
i , . . . , v

n
i)← Share(ri). The output for party

Pi is yi,1 = (ri, vi1 . . . , vin). The leakage function is l1scp(x1,1, . . . , xn,1) = λ.

Prove Phase: For k > 1, the function fkscp(sk−1, x1,k, . . . , xn,k, ak) is defined as follows. For every
i ∈ [n], check if the relation Ri(xi,k, ri) = 1. If so, set bi = 1, else set bi = 0. The output for
every party Pi is yi,k = ((x1,k, b1) . . . , (xn,k, bn)). The leakage function is lkscp(x1,1, . . . , xn,k) =
(x1,k, . . . , xn,k).

Figure 3: The Setup-Commit-then-Prove functionality

17

Ishai et al. [41] showed how to realize a slightly reduced version of the Setup-Commit-then-Prove
functionality (in which the functionality does not secret share the witnesses), unconditionally, with
identifiable abort, facing an arbitrary number of corrupted parties. Here we adjust and simplify
the protocol from [41] for the honest-majority setting, and show how to realize Fscp without abort.

Lemma 6.2. Let ~R = (R1, . . . ,Rn) be a vector of NP-relations, let D be an efficiently sam-
pleable distribution in NC0, and let t < n/2. Consider the representation of the reactive CSF,
Fscp(P,D, ~R,Π), as a sequence of (non-reactive) CSFs (F f̃

1
scp,l

1
scp

csf , . . . ,F f̃
q
scp,l

q
scp

csf), where f̃ jscp is de-
fined as in Definition C.1. Denote F jscp = F f̃

j
scp,l

j
scp

csf .
Then, there exists a vector of distributions D = (D1, . . . , Dq) such that for every j ∈ [q], the

wrapped functionality WDj
strict(F

j
scp) can be UC-realized in the (Fpsmt,Fpbc)-hybrid model with con-

stant round complexity and information-theoretic security, in the presence of an adaptive, malicious
t-adversary.

Proof (sketch). We start with a high-level description of the protocol in [41], for a single prover that
proves a single statement (the extension to the multi-instance version of many provers that prove
many statements follows via the JUC theorem [9]). The protocol follows the “MPC-in-the-head”
approach [38, 39], where the prover emulates in its head a protocol, where m servers, each has as
input a share of the witness ω, compute for a public statement x the function b = R(x, ω), and
output (x, b). The prover publicly commits to the view of each server, and the verifiers challenge
the prover to open the views of some of the servers. The verifiers accept the statement x, if and
only if all opened views are consistent.

More specifically, in the setup-commit phase, the parties receive the following correlated ran-
domness:

• The prover receives signed secret shares of the witness (ωi, σ(ωi)), for i ∈ [n], where
(ω1, . . . , ωn) are shares of the prover’s witness ω, and σ(ωi) is an information-theoretic signa-
ture of ωi.

• The prover also receives random strings v1, . . . , vm along with corresponding signatures
σ(v1), . . . , σ(vm), that will be used for committing to the server’s views in the m-party pro-
tocol.

• Every party Pi receives a challenge string ci along with an information-theoretic signature
σ(ci).

• Every party Pi receives a verification key for each of the signature values (note that all of the
signing keys are hidden from the parties).

The prove phase, consists of three rounds:

1. The prover emulates in its head the protocol computing b = R(x, ω) and broadcasts, for every
j ∈ [m], a commitment to the view of the j’th server as viewj ⊕ vj along with σ(vj).

2. Every party Pi broadcasts the committed random string ci along with its commitment σ(ci).
All parties locally compute c =

∑
cj and use it to choose a subset J ⊆ [m]. In case some

party Pi sends invalid values, all parties identify Pi as corrupted and abort.

3. The prover broadcasts viewj and σ(ωj), for every j ∈ J , and all parties validate consistency.

18

Since we consider an honest majority, we can simplify the protocol and achieve security without
abort. In the second round, instead of broadcasting committed randomness, the parties jointly
compute the XOR function, where each party enters a (locally chosen) random string as its input.
Since this functionality can be represented using a constant-depth circuit, we can use the protocol
of Cramer et al. [19], whose round complexity is O(d), where d is the depth of the circuit, and
provides information-theoretic security in the broadcast-hybrid model. A second modification we
require is to secret share the witness ω between all parties using an error-correcting secret-sharing
scheme, which can be easily achieved in the honest-majority setting.

It is left to show that the sampling algorithm for the correlated randomness that is used in [41]
can be represented using a constant-depth circuit; the proof will then follow using the protocol
from [19]. By assumption, sampling a value from the distribution D can be done using a constant-
depth circuit. In addition, the information-theoretic commitments in [41] are computed using
information-theoretic signatures (cf. Section A.2), such that no party knows the signing key. This
means that the adversary cannot generate signatures on its own. In addition, each signature will
only need to verified once (by each party). Using the information-theoretic signatures construction
from [60] (cf. Theorem A.3), the degree of the polynomial, that is used to generate the signature, is
bounded by the number of signatures the adversary is allowed to see from each honest party, which
in our case is constant. We conclude that the randomness-sampling algorithm can be represented
using a constant-depth circuit.

In the following, we will consider the distribution Dparallel(π1, . . . , πM, q, R, `) for protocols
π1, . . . , πM, where each πj is defined in the (Fpsmt,F

Dcorr
j

corr)-hybrid model, that prepares (at most)
q executions of each protocol, for exactly R rounds. For each of the q instances of every protocol
πj , the correlated randomness consists of three parts: first, sample correlated randomness for πj
from the distribution Dcorr

j ; next, sample independent random coins (local for each party) from
the corresponding distribution Dπj , suitable for R rounds; finally, sample random coins that are
used to mask all the communication (explained below). The parameter ` = poly(κ) represents the
maximum between the input length and the maximal message length in the protocols π1, . . . , πM.
The distribution is formally defined in Figure 4.

The masking of the communication in the ρ’th round of the k’th instance of protocol πj is
performed as follows:

• When Pi wants to send messages (m1
i , . . . ,m

n
i) (where mu

i is sent privately to Pu), party Pi
sets for every u ∈ [n], m̃u

i = mu
i ⊕ rmask

i,j,k,ρ,u and broadcasts m̃i = (m̃1
i , . . . , m̃

n
i).

• When Pi receives messages m̃u = (m̃1
u, . . . , m̃

n
u) from Pu, Pi computes mi

u = m̃i
u ⊕ rmask

u,j,k,ρ,i,
and uses mi

u as the message Pu sent him.

19

Distribution Dparallel(π1, . . . , πM, q, R, `)

The distribution Dparallel is parametrized by protocols π1, . . . , πM, where each πj is defined in the
(Fpsmt,F

Dcorr
j

corr)-hybrid model, and integers q, R, `. Denote by Dπj
(R) the distribution that samples

independent random coins for each party for R rounds of protocol πj .

1. For every j ∈ [M]:

(a) For every k ∈ [q]:
i. Sample correlated randomness for the k’th instance of protocol πj ,

(rcorr
1,j,k, . . . , r

corr
n,j,k)← Dcorr

j .

ii. Sample independent random coins for R rounds in the k’th instance of protocol πj ,

(rprot
1,j,k, . . . , r

prot
n,j,k)← Dπj (R).

iii. Sample randomness (rmask
1,j,k, . . . , r

mask
n,j,k) to mask the communication in the k’th instance

of πj , where for every i ∈ [n], rmask
i,j,k is set as follows:

A. For every ρ ∈ [R] and u ∈ [n], sample rmask
i,j,k,ρ,u ← {0, 1}` (used to mask the message

from Pi to Pu in the ρ’th round of the k’th execution of πj),
B. For every ρ ∈ [R], set rmask

i,j,k,ρ as (rmask
i,j,k,ρ,1, . . . , r

mask
i,j,k,ρ,n) and (rmask

1,j,k,ρ,i, . . . , r
mask
n,j,k,ρ,i).

C. Set rmask
i,j,k = (rmask

i,j,k,1, . . . , r
mask
i,j,k,R).

(b) For every i ∈ [n], denote the random coins as rcorr
i,j = (rcorr

i,j,1, . . . , r
corr
i,j,q), r

prot
i,j = (rprot

i,j,1, . . . , r
prot
i,j,q)

and rmask
i,j = (rmask

i,j,1 , . . . , r
mask
i,j,q); in addition, denote rji = (rcorr

i,j , r
prot
i,j , r

mask
i,j).

2. For every i ∈ [n], sample randomness rinput
i ← ({0, 1}`)M to mask the input value and denote

ri = (rinput
i , r1

i , . . . , r
M
i).

3. Return (r1, . . . , rn).

Figure 4: The correlated-randomness distribution for parallel composition

The vector of relations ~Rparallel = (R1
parallel, . . . ,Rnparallel), described below, will be used to verify

that every party sends its messages in multiple executions of a protocol according to the specification
of the protocol, while using the same input value in all executions. Formally, for every i ∈ [n], the
relation Riparallel consists of pairs ((α, ρ, m̃, h̃), ri), satisfying:

α is an integer representing the iteration number.
ρ is an integer representing the round number.
The vector of messages m̃ = (m̃i,1,ρ, . . . , m̃i,M,ρ) is structured such that for every j ∈ [M],
m̃i,j,ρ = (m̃i,j,1,ρ, . . . , m̃i,j,N,ρ), and for every k ∈ [N], m̃i,j,k,ρ = (m̃i,j,k,ρ,1, . . . , m̃i,j,k,ρ,n) repre-
sents the message Pi broadcasts in the ρ’th round of the k’th execution of protocol πj , in the
α’th iteration.
The vector of history-messages h̃ = (h̃input

, h̃1, . . . , h̃M) is structured such that h̃
input =

(m̃input
1 , . . . , m̃input

n) and for j ∈ [M], h̃j = (h̃j,1, . . . , h̃j,N), and each h̃j,k represents the history-
transcript until the ρ’th round of the k’th execution of protocol πj , in the α’th iteration.
The random coins are ri = (rinput

i , r1
i , . . . , r

M
i), with rji = (rcorr

i,j , r
prot
i,j , r

mask
i,j), as defined inDparallel.

For every j ∈ [M] and k ∈ [N], denote by mi,j,k,ρ = (mi,j,k,ρ,1, . . . ,mi,j,k,ρ,n) the unmasked
messages, where for every u ∈ [n], mi,j,k,ρ,u = m̃i,j,k,ρ,u ⊕ rmask

i,k̃,j,ρ,u
, with k̃ = α · N + k. Similarly,

20

denote by hi,j,k the unmasked history obtained from h̃i,j,k using the corresponding randomness
in rmask

i,j,k̃
. Denote (x1

i . . . , x
M
i) = m̃input

i ⊕ rinput
i . Then, for every j and k, it holds that

mi,j,k,ρ = f
πj ,i
nxt-msg(xji , r

corr
i,j,k̃

, rprot
i,j,k̃

, hi,j,k).

That is, mi,j,k,ρ is the output of the next-message function of Pi in protocol πj on input xji ,
correlated randomness rcorr

i,j,k̃
, private randomness rprot

i,j,k̃
and history hi,j,k.

In the sequel, for simplicity, we will denote by Fscp the functionality

Fscp(P,Dparallel(π1, . . . , πM, N · L, R, `), ~Rparallel,Π).

6.1.2 Round-Preserving Parallel-Composition Compiler

We are now ready to present our protocol-black-box (PBB) parallel-composition compiler, formally
described in Figure 5.

Lemma 6.3. Consider the notation in Theorem 6.1 and let 0 < ε < 1.
Then, for parameters R > µ, N > log(M/ε)

log(R/µ) , and L = poly(κ), the compiled protocol πpbb =
Comp(π1, . . . , πM, N, R, L) UC-realizes WDpbb

flex (F1 ‖ · · · ‖ FM) with expected round complexity µpbb =
O(R), in the (Fpbc,Fscp)-hybrid model and same adversarial setting, assuming that all honest parties
receive their inputs at the same round. In addition, the compiler requires only black-box access to
the protocols π1, . . . , πM.

To prove security of the construction, we construct a simulator for the dummy adversary, which
simulates the functionality Fscp and all honest parties. At a high level, the simulation proceeds as
follows. Since every protocol πj realizes Fj , there exists a simulator Sj for the dummy adversary.
In order to simulate the k’th instance of each protocol πj , the simulator S invokes an instance of Sj ,
denoted Skj , and receives correlated randomness r̃corr

i,j,k for every corrupted party Pi. The simulator
S samples randomness from the distribution Dparallel, adjusts the correlated randomness for every
corrupted party accordingly and hands the adversary (ri, vi1, . . . , vin) as the answer from the first call
to Fscp, where (v1

i , . . . , v
n
i) are shares of zero, for every i ∈ [n]. For the input-commitment message,

the simulator broadcasts commitments of zero for the honest parties (i.e., random messages). The
k’th instance of πj is simulated now using Skj , where S masks/unmasks the messages between A
and Skj , appropriately. Every message sent by A on behalf of a corrupted party Pi is validated by S
according to the relation Riparallel, and in case it is invalid, S locally computes the messages for Pi,
using its input and correlated randomness. In case party Pi gets corrupted, the simulator corrupts
the dummy party in the ideal computation and learns its input; next, S hands the input to each
simulator Skj , receives the random coins for Pi in each instance of πj , updates the random coins ri
accordingly and hands it to A. This is a valid simulation for the dummy adversary, following the
security guarantees of each simulator Sj and of the secret-sharing scheme Π.

Proof. For simplicity of notation, denote Fpbb = WDpbb
flex (F1 ‖ · · · ‖ FM). We start by defining the

sampling algorithm for the distribution Dpbb, parametrized by N, R, L and distributions D1, . . . , DM.
The sampler initially sets α← 0 and a trace T with root labeled by Fpbb and children (F1

scp,Fpbc).
Next, independently sample traces T k̃j ← Dj , for j ∈ [M] and k ∈ [N] (where k̃ = α · N + k), and
append ((

F iscp,Fpbc
)R
,Fpbc,Fpbc,Fpbc

)

21

Protocol Comp(π1, . . . , πM, N, R, L)

1. Each party Pi, upon receiving (input, sid,xi) with xi = (x1
i , . . . , x

M
i), sends (input, sid, λ) to

Fscp and receives back (output, sid, (ri, vi1 . . . , vin)), where ri = (rinput
i , r1

i , . . . , r
M
i) with rji =

(rcorr
i,j , r

prot
i,j , r

mask
i,j), for j ∈ [M], as defined in Dparallel, and viu is the i’th share of the committed

randomness ru of party Pu. In addition, set the iteration index α← 0.

2. Every party Pi broadcasts m̃input
i = xi ⊕ rinput

i .

3. Denote m̃input = (m̃input
1 , . . . , m̃input

n). In case some party Pi didn’t broadcast a valid value, each
party locally sets for Pi a default input value x̃i = (x̃1, . . . , x̃n) and default random coins r̃i,
and locally computes m̃input

i for that party.

4. initiate (in parallel) N instances of every protocol πj as follows:

(a) For every j ∈ [M] and k ∈ [N], initialize the history of each execution, hi,j,k, h̃i,j,k ← λ.
Denote the private history of all instances of πj as hji = (hi,j,1, . . . , hi,j,N), and the public
history as h̃

j

i = (h̃i,j,1, . . . , h̃i,j,N); finally, denote the public history of the entire protocol
as h̃i = (m̃input, h̃

1
i , . . . , h̃

M
i).

(b) Execute for rounds ρ = 1, . . . , R:
i. Every party Pi computes its ρ-round messages for the k’th execution of πj , for every
j ∈ [M] and k ∈ [N]:

mi,j,k,ρ = (mi,j,k,ρ,1, . . . ,mi,j,k,ρ,n) = f
πj ,i
nxt-msg(xji , r

corr
i,j,k̃

, rprot
i,j,k̃

, hi,j,k),

where k̃ = α · N + k. Next, mask the messages as m̃i,j,k,ρ = (m̃i,j,k,ρ,1, . . . , m̃i,j,k,ρ,n),
where for u ∈ [n], set m̃i,j,k,ρ,u = mi,j,k,ρ,u ⊕ rmask

i,j,k̃,ρ,u
. Finally, prepare the message

m̃i,ρ = (m̃i,1,ρ, . . . , m̃i,M,ρ), where for every j ∈ [M], m̃i,j,ρ = (m̃i,j,1,ρ, . . . , m̃i,j,N,ρ).
ii. Every party Pi sends (input, sid, (α, ρ, m̃i,ρ, h̃i)) to Fscp, and receives back the mes-

sage (output, sid, (((α, ρ, m̃1,ρ, h̃1), b1), . . . , ((α, ρ, m̃n,ρ, h̃n), bn))).
iii. For every u ∈ [n] with bu = 0, every Pi broadcasts viu and all parties reconstruct the

committed randomness of Pu as ru = Recon(v1
u, . . . , v

n
u).

iv. For every u ∈ [n] with bu = 1, party Pi unmasks the message m̃u,ρ sent by Pu, by
computing mu,j,k,ρ,i = m̃u,j,k,ρ,i ⊕ rmask

u,j,k̃,ρ,i
, for j ∈ [M] and k ∈ [N].

v. Every party Pi locally computes the ρ-round messages m̃u,ρ on behalf of all parties
Pu that have been identified as corrupted thus far, using the committed input m̃input

u

and reconstructed randomness ru.
vi. Every party Pi appends all unmasked ρ-round messages (m1,j,k,ρ,i, . . . ,mn,j,k,ρ,i) to

hi,j,k, and all masked ρ-round messages (m̃1,j,k,ρ, . . . , m̃n,j,k,ρ) to h̃i,j,k.
(c) For every j ∈ [M] and k ∈ [N], if party Pi completed the k’th execution of πj with output,

let yi,j,k be the output value (yi,j,k = ⊥ otherwise). Denote Sji = {yi,j,k | yi,j,k 6= ⊥}. If
for every j ∈ [M], Sji 6= ∅, then set y = (y1, . . . , yM), where yj ∈ Sji is arbitrarily chosen,
and broadcasts (sid,y).

(d) If Pi received identical values (sid,y) from (at least) t+ 1 parties, it broadcasts (sid,y).
(e) If party Pi received identical values (sid,y) from (at least) n − t parties, it outputs

(output, sid,y) and halts. Else, set α ← α + 1. If α < L, goto Step 4; else, output
⊥ and halt.

Figure 5: The parallel-composition compiler in the (Fpbc,Fscp)-hybrid model

22

to the leaves of the trace T (i.e., calling R times, sequentially, to (F iscp,Fpbc), followed by three
sequential calls to Fpbc). If for every j ∈ [M], there exists k ∈ [N] such that ctr(T k̃j) < R, then output
T and halt. Else, set α ← α + 1. If α < L, repeat the sampling process; otherwise output T and
halt.

Following Lemma 2.3, for R > µ and N > log(M/ε)
log(R/µ) , it holds that in every iteration, at least one

execution of πj will produce output, for every j ∈ [M], with a constant probability. It follows that the
expected number of iterations until all honest parties receive output and the protocol terminates
is constant, and since each iteration consists of R rounds, the entire execution completes within
expected O(R) rounds, as required. The failure probability that the protocol will not terminate
within L = poly(κ) iterations is negligible.

We construct a simulator S for the dummy adversary A. Let Z be an environment. The
simulator S uses, in a black-box way, the simulators Sj , for j ∈ [M], where every Sj simulates
the dummy adversary for protocol πj . The simulators Sj are guaranteed to exist since every πj
UC-realizes Fj . Each simulator Sj is invoked (at most) q = L · N times; denote by Skj the k’th
invocation of Sj .

We consider the representation of the reactive CSF Fscp as a sequence of (non-reactive) CSFs

(F f̃
1
scp,l

1
scp

csf , . . . ,F f̃
q′
scp,l

q′
scp

csf), where f̃ jscp is defined as in Definition C.1 and q′ = L · R + 1. Denote
F jscp = F f̃

j
scp,l

j
scp

csf .
The simulator S proceeds as follows:

• Initially, set x1 = . . . = xn = ⊥ and y = ⊥.

• Simulating the first call to functionality Fscp:

1. Sample correlated randomness (r1, . . . , rn)← Dparallel(π1, . . . , πM, q, R, `), where q = N · L
and ri = (rinput

i , r1
i , . . . , r

M
i) with rji = (rcorr

i,j , r
prot
i,j , r

mask
i,j), for i ∈ [n] and j ∈ [M].

2. For every j ∈ [M] and k ∈ [q], invoke Skj , request the correlated randomness for every
corrupted party Pi and get from Skj the values r̃corr

i,j,k. Set rcorr
i,j,k ← r̃corr

i,j,k in ri.
3. Receive from A the message (input, sid, λ), for a corrupted Pi (that A sends to Fscp).
4. For every party Pi, compute (ṽ1

i , . . . , ṽ
n
i)← Share(0|ri|).

5. Send the message (output, sid, (ri, ṽi1 . . . , ṽin)) to A as the response from Fscp, for every
corrupted Pi.

• Simulating the first (input-commitment) message:

1. For every honest party Pi, send a random string m̃input
i to A.

2. For every corrupted party Pi, receive the message m̃input
i from A and extract the input

value xi = m̃input
i ⊕ rinput

i . In case A does not send a message for Pi, set xi and ri to
predetermined default values and locally compute m̃input

i = xi ⊕ ri.
3. Set m̃input = (m̃input

1 , . . . , m̃input
n).

• Send inputs to Fpbb:

1. For every corrupted party Pi, send the message (input, sid,xi) to Fpbb.
2. Upon receiving message (leakage, sid, Pi, (l1, . . . , lM)) from Fpbb, for an honest party Pi,

store the leakage information.

23

3. In addition, S receives (trace, sid, T), from Fpbb, where T is a depth-1 trace of the form(
F1

scp,Fpbc,

((
F iscp,Fpbc

)R
,Fpbc,Fpbc,Fpbc

)q′′)
,

(i.e., initially, calls to F1
scp and Fpbc, followed by q′′ iterations of calling R times

(F iscp,Fpbc) and 3 rounds of Fpbc in order to agree on termination). More precisely,
S receives the coins that were used by the functionality Fpbb to sample the trace T from
Dpbb. Using these coins, S samples the same traces T k̃j that were used to define T .

• Simulating the α’th iteration:

1. For every i ∈ [n], j ∈ [M] and k ∈ [N], set hi,j,k, h̃j,k ← λ. Denote hji = (hi,j,1, . . . , hi,j,N),
h̃
j = (h̃j,1, . . . , h̃j,N) and h̃ = (h̃1, . . . , h̃M). For k ∈ [N], let k̃ = α · N + k.

2. For j ∈ [M] and k ∈ [N], send to S k̃j , on behalf of every honest party, the leakage
messages (leakage, sid, Pi, lj), as well as (trace, sid, T k̃j). In addition, send to S k̃j the
message (input, sid, xji), for every corrupted party Pi, and receive from S k̃j the messages
(input, sid, xji) that are sent to WDj

flex(Fj), for the corrupted parties.
3. Execute for rounds ρ = 1, . . . , R:

(a) For every honest Pi, send (α, ρ, m̃i,ρ, h̃) to A as the leakage from Fscp for Pi, where
m̃i,ρ is prepared as follows. For every corrupted party Pu, receive from S k̃j the
message mi,j,k,ρ,u and set m̃i,j,k,ρ,u = mi,j,k,ρ,u ⊕ rmask

i,j,k̃,ρ,u
. For every honest Pu,

sample a random message m̃i,j,k,ρ,u. Set m̃i,ρ = (m̃i,1,ρ, . . . , m̃i,M,ρ), where m̃i,j,ρ =
(m̃i,j,1,ρ, . . . , m̃i,j,N,ρ) with m̃i,j,k,ρ = (m̃i,j,k,ρ,1, . . . , m̃i,j,k,ρ,n).

(b) For every corrupted party Pi, receive from A the message (input, sid, (α, ρ, m̃i,ρ, h̃i))
(intendend to Fscp), and check whether h̃i = h̃ and Riparallel((α, ρ, m̃i,ρ, h̃i), ri) = 1.
If so, set bi = 1 else bi = 0.

(c) For every corrupted party Pi with bi = 1, it holds that m̃i,ρ = (m̃i,1,ρ, . . . , m̃i,M,ρ),
where m̃i,j,ρ = (m̃i,j,1,ρ, . . . , m̃i,j,N,ρ) and m̃i,j,k,ρ = (m̃i,j,k,ρ,1, . . . , m̃i,j,k,ρ,n). De-
note, for every honest Pu, mi,j,k,ρ,u = m̃i,j,k,ρ,u ⊕ rmask

i,j,k̃,ρ,u
.

(d) For every honest party Pi, denote h̃i = h̃ and bi = 1, and send to A
(output, sid, (((α, ρ, m̃1,ρ, h̃1), b1), . . . , ((α, ρ, m̃n,ρ, h̃n), bn))) as the response from
Fscp, on behalf of every corrupted party.

(e) For every corrupted party Pi with bi = 1 and every honest Pu, forward to S k̃j the
message mi,j,k,ρ,u.

(f) For every corrupted party Pi with bi = 0, compute (v1
i , . . . , v

n
i) ← Share(ri) and

send vui to A, on behalf of every honest party Pu. (Note that ri may change as the
simulation proceeds, in case Pi gets corrupted dynamically.)

(g) For every corrupted party that has been previously identified, locally compute the
messagesmi,j,k,ρ,u, for every honest party Pu, using (xi, ri) and hi,j,k, and send them
to S k̃j .

(h) Append the messages (m̃1,ρ, . . . , m̃n,ρ) to the global history h̃. For every corrupted
party Pi, append the messages (m1,j,k,ρ,i, . . . ,mn,j,k,ρ,i) to the local history hi,j,k.

(i) Upon receiving (early-output, sid, Pi) from Skj for an honest party Pi, simulate the
honest party receiving the output message.

24

(j) Upon receiving (early-output, sid, Pi) from S k̃j for a corrupted party Pi, if y = ⊥,
send (early-output, sid, Pi) to Fpbb and receive back (output, sid,y), with y =
(y1, . . . , yM). Send (output, sid, yj) to S k̃j .

(k) For every j ∈ [M] and k ∈ [N], check whether ρ = ctr(T k̃j). If so and y = ⊥,
send (early-output, sid, Pi) to Fpbb and receive back (output, sid,y), with y =
(y1, . . . , yM). Send (output, sid, yj) to S k̃j for every corrupted party.

• Explaining corruption requests: upon a corruption request for Pi, proceed as follows.

1. Corrupt the dummy party Pi and learn its input xi = (x1
i , . . . , x

M
i).

2. For every j ∈ [M] and k ∈ [L · N]:
(a) Instruct Skj to corrupt Pi and provide it with input xji .
(b) Receive from Skj the view of Pi, i.e., its internal randomness r̃prot

i,j,k, correlated ran-
domness r̃corr

i,j,k and history hi,j,k.
(c) For every u ∈ [n] and every message mu,j,k,ρ,i in hi,j,k (message from Pu to Pi in the

ρ’th round of the k’th instance of πj , for ρ ∈ [R]), compute r̃mask
u,j,k,ρ,i = mu,j,k,ρ,i ⊕

m̃u,j,k,ρ,i. Similarly, compute r̃mask
i,j,k,ρ,u = mi,j,k,ρ,u ⊕ m̃i,j,k,ρ,u.

(d) Compute r̃input
i = m̃input

i ⊕ xi.
(e) Adjust the random coins rcorr

i,j,k ← r̃corr
i,j,k, r

prot
i,j,k ← r̃prot

i,j,k, rmask
i,j,k ← r̃mask

i,j,k and rinput
i ←

r̃input
i in ri.

3. Provide the input xi and the adjusted correlated randomness ri to Z as the internal
state of Pi.

We next prove that no environment can distinguish between interacting with the dummy adver-
sary and the honest parties running protocol π′ in the (Fpbc,Fscp)-hybrid model, from interacting
with the simulator S and the dummy honest parties computing Fpbb, except for a negligible prob-
ability. We prove this using a series of hybrid games. The output of each game is the output of the
environment.

The game HYB1
πpbb,A,Z . This is exactly the execution of the protocol πpbb in the (Fpbc,Fscp)-

hybrid model with environment Z and dummy adversary A.

The games HYB2,i∗
πpbb,A,Z , for 0 ≤ i∗ ≤ n. In these games, we modify HYB1

πpbb,A,Z as follows.
During the first call to Fscp, for i∗ < i ≤ n, compute (v1

i , . . . , v
n
i)← Share(ri) (as before) and send

(vi1, . . . , vin) as the shares for every party Pi. For every i ≤ i∗, compute (v1
i , . . . , v

n
i) ← Share(ri)

and (ṽ1
i , . . . , ṽ

n
i) ← Share(0|ri|). Next, send to every corrupted Pk the shares (ṽk1 , . . . , ṽkn) and to

every honest party the shares (vi1, . . . , vin).

Claim 6.4. HYB1
πpbb,A,Z

s≡ HYB2,n
πpbb,A,Z .

Proof. Note that HYB1
πpbb,A,Z ≡ HYB2,0

πpbb,A,Z . For every 0 ≤ ĩ < n, it holds that HYB2,̃i
πpbb,A,Z

s≡
HYB2,̃i+1

πpbb,A,Z . This follows from the security of the ECSS scheme and the honest-majority assumption.
In particular, the shares {vu1 , . . . , vun}u held by the adversary (for all corrupted Pu), completely hide
for that random coins ri of every honest party Pi, and are compatible even if Pi gets adaptively
corrupted and ri is revealed. This holds since all honest parties receive valid shares of ri, therefore,
ri will be correctly reconstructed even if all corrupted parties have incorrect shares. The claim
follows using a standard hybrid argument.

25

The game HYB3
πpbb,A,Z . In this game, we modify HYB2,n

πpbb,A,Z as follows. The input-commitment
message m̃input

i , sent by an honest party is uniformly chosen. In addition, in every call to Fscp the
returned value bi for every honest party Pi is always set to 1. Finally, the random coins for honest
parties that are corrupted adaptively are set as rinput

i = m̃input
i ⊕ xi.

Claim 6.5. HYB2,n
πpbb,A,Z ≡ HYB3

πpbb,A,Z .

Proof. The claim immediately follows since honest parties always send correct messages.

The games HYB4,j∗,k∗
πpbb,A,Z , for 0 ≤ j∗ ≤ M and 0 ≤ k∗ ≤ q = N · L. In these games, we modify

HYB3
πpbb,A,Z as follows. For (j, k) < (j∗, k∗) (i.e., for j < j∗, or j = j∗ and k < k∗), the k’th

execution of protocol πj is replaced with the simulated transcript generated by Skj .
More specifically, the experiment interacts with the ideal functionality Fpbb. Initially, it receives

the leakage messages (leakage, sid, Pi, (l1, . . . , lM)) and the coins used to sample a trace T from Dpbb
(via the message (trace, sid, T)); using these random coins, sample the traces T kj from Dj .

Each simulator Skj (for (j, k) < (j∗, k∗)) is invoked and is given the leakage information lj and
the trace T kj . The simulator Skj provides correlated randomness r̃corr

i,j,k for every corrupted party; the
random coins ri for corrupted Pi are adjusted accordingly. Once A sends the input-commitment
message m̃input

i , for a corrupted Pi, extract the input value xi = (x1
i , . . . , x

M
i) and hand Skj the value

xji as the input value for Pi. The interaction with Skj is done as in the simulation, i.e., validate the
messages from A and unmask valid messages before forwarding to Skj , and mask messages from Skj
using rcorr

i,j,k. Messages from identified corrupted parties are locally computed and sent to Skj . When
Skj sends (early-output, sid, ·) requests, respond with the output value yj from y = (y1, . . . , yj),
where if y = ⊥, then forward the message to Fpbb.

Claim 6.6. HYB3
πpbb,A,Z

s≡ HYB4,M,q
πpbb,A,Z .

Proof. Note that HYB3
πpbb,A,Z ≡ HYB4,0,0

πpbb,A,Z . For every 0 ≤ j < M and 0 ≤ k < q, it holds
that HYB4,j,k

πpbb,A,Z
s≡ HYB2,j,k+1

πpbb,A,Z and similarly, HYB4,j,q
πpbb,A,Z

s≡ HYB2,j+1,1
πpbb,A,Z ; otherwise, there exists an

environment that violates the simulation of Sj (resp., Sj+1). The claim follows using a standard
hybrid argument.

The proof of Lemma 6.3 follows since HYB4,M,q
πpbb,A,Z (for q = N · L) exactly describes the simulation

done by S.

6.2 An Impossibility of FBB Round-Preserving Parallel Composition

In this section, we prove that for a natural class of protocols, following and/or extending in various
ways the techniques from Ben-Or and El-Yaniv [5],9 there exist functions such that no protocol can
compute their parallel composition in a round-preserving manner, while accessing the functions
in a black-box way, tolerating even a single adversarial party. Although this is not a general
impossibility result, it indicates that the batching approach of [5] is limited to semi-honest security
(cf. Section 5) and/or functionally white-box transformations.

We observe that this impossibility serves as an additional justification for the optimality of
our protocol-black-box parallel composition (cf. Section 6.1). Indeed, on the one hand, it formally
confirms the generic observation that the naïve parallel composition of a set of PT functionalities

9To our knowledge, the only known techniques for round-preserving parallel composition are those of Ben-Or and
El-Yaniv [5] and are only for the specific case of Byzantine agreement.

26

does not preserve their round complexity. On the other hand, and most importantly, it proves
that all existing techniques for composing PT functionalities in parallel in the natural (FBB)
manner fail in preserving the round complexity. Hence, the only known existing round-preserving
composition for such functionalities are the protocol-black-box compiler presented in Section 6.1
or more inefficient non-black-box techniques. The wideness of the class of excluded protocols by
our impossibility result justifies our conjecture that there exists no round-preserving FBB protocol
for parallel composition of PT functionalities. Proving this conjecture is in our opinion a very
interesting research direction.

We first argue informally why the approach of [5], cannot be directly extended to privacy-
sensitive functions. The idea in [5] for allowing each of the n parties to broadcast its value is to
have each of the n parties participate in m = O(logn) parallel invocations (hereafter called batches,
to avoid confusion with the goal of parallel broadcast for different messages) of broadcast as sender
with the same input. Each of those batches is executed in parallel for a fixed (constant) number
of rounds (for the same broadcast message); this increases the probability that sufficiently many
parties receive output from each batch. At the end of each batch execution, the parties check
whether they jointly hold the output, and if not, they repeat the computation of the batches. It
might seem that this idea can be applied to arbitrary tasks, but this is not the case. The reason is
that this idea fails if the functionality has any privacy requirements, is that the adversary can input
different values on different calls of the functionality within a batch and learn more information on
the input.

Batched parallel composition. The above issue with privacy appears whenever a function is
invoked twice in the same round on the same inputs from honest parties. Indeed, in this case the
adversary can use different inputs to each invocation and learn information as sketched above. The
same attack can be extended to composition-protocols which invoke the function in two different
rounds ρ and ρ′; as long as the adversary knows these rounds he can still launch the above attack
on privacy. Generalizing the claim even further, for specific classes of functions, it suffices that
there are two (possibly different) functions which are evaluated on the same inputs in rounds ρ
and ρ′. This excludes protocols that might attempt to avoid using some functionality WDj

flex(Fj) by
invoking some other WDj′

flex (Fj′).
To capture the above generalization, we define the class of batched-parallel composition pro-

tocols: A protocol π implementing the PT parallel composition WD
flex(F1 ‖ · · · ‖ FM) in the

(WD1
flex(F1), . . . ,WDM

flex(FM))-hybrid model (for some distributions D,D1, . . . , DM) is a batched-parallel
composition protocol if it has the following structure: It proceeds in rounds, where in each round
the protocol might initiate (possibly multiple) calls to any number of the hybrid functionalities
WDj

flex(Fj) and/or continue calls that were initiated in previous rounds. Furthermore, there exist
two publicly known protocol rounds ρ and ρ′, and indices j, j′, ` ∈ [M], such that for the input
vector x = (x1, . . . ,xn) that π gives toWD

flex(F1 ‖ · · · ‖ FM) (where xi = (x1
i , . . . , x

M
i)) the following

properties are satisfied:

1. In round ρ the functionality WDj
flex(Fj) is called on input x` = (x`1, . . . , x`n) and at least two

of its rounds are executed.10

2. In round ρ′ the functionality WDj′
flex (Fj′) is also called on input x` and at least two of its

rounds are executed.
10Note that any call to a PT (i.e., wrapped) functionality that executes less than two rounds is useless as it can

be simulated by the protocol that does nothing (without of course increasing the round complexity). The reason is
that, by definition of PT functionalities, any such call gives no output (the first round is an input-only round).

27

Note that the protocol in [5] (as well as our semi-honest protocol from Section 5) is an example of
a batched-parallel composition protocol for ρ = ρ′ = 1 and for j = j′ = ` being the index of any
one of the hybrid functionalities. Indeed, in the first round of these protocols, each functionality is
invoked at least twice on the same inputs. In particular, protocols that follow this structure, e.g.,
even ones that do not call all functionalities in every phase, or those that have variable batch sizes,
can be described as such batched-parallel composition protocols.

We next show that the there are classes of functions C1, . . . , CM such and for any protocol π that
securely computes the parallel composition WD

flex(FC1sfe ‖ · · · ‖ FCM
sfe) while given hybrid access to

PT functionalities WDi
flex(FCisfe) the following properties hold simultaneously:

1. π has to call each of the hybrids WDi
flex(FCisfe) (for at least 2 rounds each).11

2. The naïve solution of π calling each of theWDi
flex(FCisfe)’s in parallel until they terminate is not

round-preserving (for an appropriate choice of Di’s.)

3. π cannot be a batched-parallel composition protocol.

The above shows that the classes C1, . . . , CM not only exclude the existence of a batched-parallel
composition protocol, but they also exclude all other known solutions. This implies that for this
classes of functions, every known approach—and generalizations thereof—fail to compute the par-
allel composition of the corresponding functionality in an FBB and round-preserving manner.

Theorem 6.7. Let M = O(κ). There exist n-party function classes C1, . . . , CM and distributions
D1, . . . , DM, such that the following properties hold in the presence of a malicious adversary cor-
rupting any one of the parties:

1. The protocol that calls each WDi
flex(FCisfe) in parallel (once) until it terminates is not round-

preserving (i.e., its expected round complexity is asymptotically higher than that of the distri-
butions Di).

2. Any (Fsmt,WD1
flex(FC1sfe), . . . ,WDM

flex(FCM
sfe))-hybrid protocol for computing WD

flex(FC1sfe ‖ · · · ‖
FCM

sfe) has to make a meaningful call (i.e., a call that executes at least two rounds) to each PT
hybrid WDi

flex(FCisfe).

3. There exists no functionally black-box batched-parallel composition protocol for computing
WD

flex(FC1sfe ‖ · · · ‖ FCM
sfe) in the (Fsmt,WD1

flex(FC1sfe), . . . ,WDM
flex(FCM

sfe))-hybrid model, where D has
(asymptotically) the same expectation as D1, . . . , DM.

Proof. Let D1 = . . . = DM be the geometric distribution with parameter 1/2. (This means that the
expected round complexity of each WDi

flex(FCisfe) is constant.) Then, Property 1 follows immediately
from the observation in [5] (see also [16]), which implies that the expectation of the round complexity
of the naïve protocol that executes each functionality in parallel until its completion will be Θ(log M),
which is super-constant.

We next turn to Property 2. Towards proving it we first prove the following useful lemma.

Lemma 6.8. There exists a family of functions C = {fα}α∈{0,1}κ such that there exists no FBB
protocol for computing the family of (oracle-aided) n-party SFE-functionalities {Ffα}fα∈C, which
is private against a semi-honest adversary corrupting any one of the n parties, and is correct with
noticeable probability.

11Note that this does not mean that π is not round preserving as the calls might be in parallel.

28

Proof. Let fα be the function that takes inputs x1 ∈ {0, 1}κ and x2 ∈ {0, 1}κ from P1 and P2,
respectively (and a default input λ from every Pj with j ∈ {3, . . . , n}) and outputs yi to each Pi as
follows:

• y1 =
{
x2 , if x1 ⊕ x2 = α
0κ , otherwise.

• y2 =
{
x1 , if x1 ⊕ x2 = α
0κ , otherwise.

• For every j ∈ {3, . . . , n}, yj =
{
x1 ⊕ x2 , if x1 ⊕ x2 = α
0κ , otherwise.

The argument that there exists no FBB protocol for the above function family is inspired by [43,
Theorem 1]. Concretely, assume towards contradiction that such a protocol π exists12 and consider
the following experiment. Pick x1, x2, α uniformly and independently at random and run πfα with
inputs x1 and x2 for P1 and P2, respectively, and input λ for all other parties. Then we argue that
the following events have negligible probability of occurring (where the probability is taken over
the choice of x1, x2, α and the random coins r = (r1, . . . , rn) of the parties):

(A) Any of the parties (i.e., any of the πi’s) queries its oracle fα with (p, q, λ, . . . , λ) such that
p⊕ q = α.

(B) Any of the parties queries its oracle fα with (p, q, λ, . . . , λ) such that p⊕ q = x1 ⊕ x2.

The fact that (A) occurs with negligible probability is due to the fact that α is uniformly
random.

The fact that (B) occurs with negligible probability follows from the protocol’s privacy (and is,
in fact, independent of the distribution of α). Indeed, suppose that the probability that Pi makes
a query (p, q, λ, . . . , λ) such that p ⊕ q = x1 ⊕ x2 is noticeable (i.e., not negligible). Consider an
adversary corrupting Pi and outputting the list of values p⊕q, for each (p, q, λ, . . . , λ) that Pi makes
to its oracle. By assumption, this list will include x1 ⊕ x2 with noticeable probability. However,
in the ideal-world execution, the simulator, even if he knows α, will be unable to produce a list
of values containing x1 ⊕ x2 with noticeable probability, since x1 and x2 are chosen uniformly at
random, and a simulator corrupting a single party cannot learn both x1 and x2. This implies that
the above adversary cannot be simulated, which contradicts the protocol’s privacy.

Let now R denote the set of all (r, x1, x2, α) such that in the above experiment, neither event
(A) nor (B) occurs. From the above argument we know that Pr[(r, x1, x2, α) ∈ R] > 1 − ν(κ), for
a negligible function ν.

Next, as in [43, Theorem 1], we consider the coupled experiment in which we use the same
r, x1, x2 as above, but run the protocol πfα∗ where α∗ = x1 ⊕ x2. As in [43, Theorem 1], we can
prove that this experiment proceeds identically as the original one (which, recall differs only on the
oracle calls); in particular, all oracle queries will be answered by 0κ to all parties. The reason for
this is that an oracle query (p, q, λ, . . . , λ) is answered by a value other than 0κ only if it has the
property that p⊕ q = x1⊕x2 which, for the combinations of (r, x1, x2, α) ∈ R does not occur. This
in particular implies that the output vector y = (y1, . . . , yn) that the parties P1, . . . , Pn receive
from the protocol will be identical in both experiments for (r, x1, x2, α) ∈ R.

12Note that by definition of FBB [57] protocols, π = (π1, . . . , πn) and each of the πi’s is an oracle machine which
can query the function fα is trying to compute (cf. Section 4).

29

But since Pr[(r, x1, x2, α) ∈ R] > 1 − ν(κ), the distribution of y in both experiments can be
at most negligible apart. However, since the protocol is required to output the correct value with
noticeable probability, this means that in the first experiment Pr[y = (0κ)n] = noticeable and in
the second experiment Pr[y 6= (0κ)n] = noticeable (where the latter holds because of the choice
of α∗ = x1 ⊕ x2). This creates a noticeable advantage in distinguishing the outputs of the two
experiments leading to contradiction.

Lemma 6.9. For the above function class C, let Ci = C for each i ∈ [M]. Then any FBB protocol
for computing WD

flex(FC1sfe ‖ · · · ‖ FCM
sfe) with hybrid access to all WDi

flex(FCisfe)’s needs to invoke at
least two rounds of every hybrid WDi

flex(FCisfe).

Proof. Assume towards contradiction that there exists a protocol π computing WD
flex(FC1sfe ‖ · · · ‖

FCM
sfe) such that for some i, protocol π might execute at most one round of WDi

flex(FCisfe). We will
prove that no such protocol can exists for a uniformly random choice of ~α = (α1, . . . , αM).13 This
is sufficient, since by an averaging argument, it implies that there exists no such protocol that is
secure for all choices of ~α, as required by the definition in [57]. (Indeed, if there exists a protocol
that is secure for all choices of ~α (independent of ~α) there exists one that is secure for a randomly
chosen ~α.)

First, we observe that any call to a functionalityWDj
flex(FCjsfe) that executes less than two rounds

can be simulated by the protocol that does nothing during this execution (without of course in-
creasing the round complexity). The reason is that, by definition of flexibly wrapped CSFs (cf. Sec-
tion 2.2), any such call gives no output (the first round is an input-only round). Thus, we can
assume without loss of generality that π makes no call to WDi

flex(FCisfe).
Next, observe that any protocol that computes WD

flex(FC1sfe ‖ · · · ‖ FCM
sfe) can be adjusted

to compute WDi
flex(FCisfe) for any i ∈ [M]. Indeed, one simply needs to invoke the protocol for

WD
flex(FC1sfe ‖ · · · ‖ FCM

sfe) and take its i’th output as the output of WDi
flex(FCisfe). Hence, π can

be trivially turned to a protocol for computing WDi
flex(FCisfe) (without ever accessing WDi

flex(FCisfe)).
Note that since we assume that π is FBB, the parties are given access to all other functionalities
WD1

flex(Ffα1
csf), . . . ,WDi−1

flex (Ffαi−1
csf),WDi+1

flex (Ffαi+1
csf), . . . ,WDM

flex(FfαM
csf), and can make oracle queries to

all underlying functions {fα1 , . . . , fαM} \ {fαi}.
Finally, we observe the argument of Lemma 6.8 can be easily extended to the above sce-

nario, where the aim is to compute {Ffαi}fαi∈C in an FBB manner, but where the par-
ties have oracle access to the function fαi (as required by the definition of FBB proto-
cols [57]) and, in addition, have oracle access to fα1 , . . . , fαi−1 , fαi+1 , . . . , fαM and ideal access to
WD1

flex(Ffα1
csf), . . . ,WDi−1

flex (Ffαi−1
csf),WDi+1

flex (Ffαi+1
csf), . . . ,WDM

flex(FfαM
csf). The reason is that the behavior

of functions fα1 , . . . , fαi−1 , fαi+1 , . . . , fαM is independent of fαi and can be therefore trivially sim-
ulated by means of an information-theoretic MPC protocol (recall we only have one corruption)
that implements a globally accessible oracle to fα1 , . . . , fαi−1 , fαi+1 , . . . , fαM and ideal functionalities
WD1

flex(Ffα1
csf), . . . ,WDi−1

flex (Ffαi−1
csf),WDi+1

flex (Ffαi+1
csf), . . . ,WDM

flex(FfαM
csf). (Since ~α is chosen uniformly at

random their role in computing fαi can be emulated by choosing independent αj ’s for j ∈ [M]\{i}.)
Thus, if there were a protocol which would compute {Ffαi}fαi∈C in the above hybrid world, then it
can be trivially converted to a protocol which does not access the hybrids or the oracle calls to the
functions other than fαi , which would contradict Lemma 6.8. Observe that the above extension is

13Consistently with [57], we assume that although ~α is chosen uniformly at random, it is known to the environment,
the adversary and the simulator in the proof (in particular, we can assume that the environment chooses ~α to be
uniformly random in each of the experiments and hands it to the adversary/simulator).

30

independent of the round complexity, and adding a PT structure to the hybrids does not affect the
impossibility.

We complete the proof of the theorem by proving Property 3 for the above choice of C1, . . . , CM
and D1, . . . , DM.

Lemma 6.10. There exists no functionally black-box batched-parallel composition protocol for com-
puting WD

flex(FC1sfe ‖ · · · ‖ FCM
sfe) in the (Fsmt,WD1

flex(FC1sfe), . . . ,WDM
flex(FCM

sfe))-hybrid model, tolerating
a static adversary actively corrupting any one of the parties.

Proof. As before, it suffices to prove that there exists no batched-parallel composition protocol π
that is secure for computing WD

flex(Ffα1
sfe ‖ · · · ‖ F

fαM
sfe) in the (Fsmt,WD1

flex(Ffα1
sfe), . . . ,WDM

flex(FfαM
sfe))-

hybrid model, for a uniformly random choice of ~α = (α1, . . . , αM).
Assume towards contradiction that such a protocol π exists, which is secure against a malicious

(i.e., active) adversary corrupting any one party, and assume without loss of generality that party
P1 is corrupted. Let (ρ, j), (ρ′, j′), and ` denote the values that are assumed to exists by the fact
that π is a batched-parallel composition protocol and denote by WDj

flex(F
fαj
sfe) and WDj′

flex (F
fαj′
sfe) the

corresponding functionalities indexed by j and j′. We will denote by x1 = (x1
1, . . . , x

M
1) ∈ ({0, 1}κ)M

the input of P1 and by x2 = (x1
2, . . . , x

M
2) ∈ ({0, 1}κ)M the input of P2 to WD

flex(Ffα1
sfe ‖ · · · ‖ F

fαM
sfe).

Consider an environment that chooses all inputs to the parties uniformly at random but hands its
adversary the first κ−2 bits of the input x`2. (Recall that the batched-parallel composition requires
that P2 inputs x`2 to WDj

flex(F
fαj
sfe) in round ρ and to WDj′

flex (F
fαj′
sfe) in round ρ′.)

Denote the output from the evaluation of WD
flex(Ffα1

sfe ‖ · · · ‖ F
fαM
sfe) as (y1, . . . ,yn), where

each yi = (y1
i , . . . , y

M
i) is the output of Pi. Because all inputs are independently and uniformly

distributed, the simulator gains no information on the missing (i.e., last) two bits of x`2 neither
by using its knowledge of the α`, nor by the inputs and outputs of any of the parallelly composed
WD

flex(Ffα1
sfe ‖ · · · ‖ F

fαM
sfe) other than its `’th output. In other words, the only way that the simulator

might learn additional information on the missing two last bits of the input x`2 of the honest party
P2 is from the corrupted P1’s `’th output y`1 of the ideal functionality WD

flex(Ffα1
sfe ‖ · · · ‖ F

fαM
sfe).

In the analysis below we use the following notation. Given a string x = (x1, . . . , xm) ∈ {0, 1}m,
denote by x[i,. . . ,j], for i < j, the substring (xi, . . . , xj). Consider the following cases for the input
x`1 that S hands to the `’th functionality in WD

flex(Ffα1
sfe ‖ · · · ‖ F

fαM
sfe):

1. x`1[1,. . . ,κ-2] 6= x`2[1,. . . ,κ-2] ⊕ α`[1,. . . ,κ-2]. In this case, by correctness of π, the `’th output y`1
equals 0κ independently of the last two bits of x`1. Hence, in this case the simulator is able
to output the last two bits of x`2 with probability 1/4 (i.e., the best he can do is guess).

2. x`1[1,. . . ,κ-2] = x`2[1,. . . ,κ-2]⊕ α`[1,. . . ,κ-2]. In this case, we consider the following event

E1 : x`1[κ-1,κ] = x`2[κ-1,κ]⊕ α`[κ-1,κ].

If E1 occurs, then the simulator will see that the output y`1 6= 0κ, so can output
x`2[κ-1,κ] = x`1[κ-1,κ] ⊕ α`[κ-1,κ] as his guess for the last two bits of x`2, which will al-
ways (with probability 1) be the correct guess (by definition of the function). Note that
Pr[E1] = 1/4 since the simulator knows α` (by the definition of FBB [57]) and has no
information on x`2[κ-1,κ].
If E1 does not occur, then S will see that y`1 = 0κ, from which it can deduce that
x`2[κ-1,κ] 6= x`1[κ-1,κ] ⊕ α`[κ-1,κ], but gets no more information on x`2[κ-1,κ]. Hence, the

31

probability of outputting x`2[κ-1,κ] in this case is at most 1/3 (i.e., the probability of
guessing amongst the 2-bit strings that are not equal to x`1[κ-1,κ]⊕ α`[κ-1,κ]).

Hence, the total probability that a simulator outputs a correct guess for x`2[κ-1,κ] is

PS ≤ 1/4 + (3/4)(1/3) = 1/2.

To complete the proof, we will describe an adversary who outputs the two last bits of x`2,
i.e., x`2[κ-1,κ], with probability noticeably higher than 1/2; this implies a noticeable distinguishing
advantage between the real world and the ideal world.

The adversary chooses two different random two-bit strings b, b′ ∈ {0, 1}2 and inputs
(x`2[1,. . . ,κ-2], b) ⊕ αj on the execution of WDj

flex(F
fαj
sfe) in round ρ and (x`2[1,. . . ,κ-2], b′) ⊕ αj′ on

the WDj′
flex (F

fαj′
sfe) in round ρ′. Once the adversary receives P1’s outputs from the above two func-

tionalities (denote them as ŷ1,j and ŷ1,j′)14 he does the following: If ŷ1,j 6= 0κ or ŷ1,j′ 6= 0κ (an event
that happens with probability 1/2 since there are four possible two-bit strings and one of them
makes the output 6= 0κ) then the adversary outputs b⊕αj [κ-1,κ] (or b′⊕αj′ [κ-1,κ], respectively) as
his guess of the last two bits of x`2. By correctness of the protocol, except for negligible probability
the guess will be correct in this case. Otherwise, the adversary outputs a random string from
T = {00, 01, 10, 00} \ {b, b′}; the probability of outputting a correct guess in this case is 1/2 since
it has to be one of the strings in T . Hence, the overall probability that this adversary outputs the
right guess for the last two bits of x2 is 3/4−ν, where ν is a negligible function implied by the error
probabilities in the above protocol. Hence, the output of the adversary is distinguishable from the
output of the best simulator which contradicts the assumed security of π.

This completes the proof of Theorem 6.7.

References
[1] G. Asharov and Y. Lindell. Utility dependence in correct and fair rational secret sharing. In S. Halevi,

editor, CRYPTO 2009, volume 5677 of LNCS, pages 559–576. Springer, Aug. 2009.

[2] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty com-
putation with low communication, computation and interaction via threshold FHE. In D. Pointcheval
and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501. Springer, Apr.
2012.

[3] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended abstract).
In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[4] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols (extended
abstract). In R. L. Probert, N. A. Lynch, and N. Santoro, editors, 2nd ACM PODC, pages 27–30. ACM
Press, Aug. 1983.

[5] M. Ben-Or and R. El-Yaniv. Resilient-optimal interactive consistency in constant time. Distributed
Computing, 16(4):249–262, 2003.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation (extended abstract). In 20th ACM STOC, pages 1–10. ACM Press,
May 1988.

14Recall that, by definition of probabilistic-termination SFE, the adversary is always able to learn the output in
the second round.

32

[7] G. Bracha. An asynchronou [(n-1)/3]-resilient consensus protocol. In R. L. Probert, N. A. Lynch, and
N. Santoro, editors, 3rd ACM PODC, pages 154–162. ACM Press, Aug. 1984.

[8] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, Oct. 2001.

[9] R. Canetti and T. Rabin. Universal composition with joint state. In D. Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 265–281. Springer, Aug. 2003.

[10] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-box concurrent zero-knowledge requires
omega (log n) rounds. In 33rd ACM STOC, pages 570–579. ACM Press, July 2001.

[11] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party
secure computation. In 34th ACM STOC, pages 494–503. ACM Press, May 2002.

[12] A. Cevallos, S. Fehr, R. Ostrovsky, and Y. Rabani. Unconditionally-secure robust secret sharing with
compact shares. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 195–208. Springer, Apr. 2012.

[13] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols (extended ab-
stract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.

[14] K.-M. Chung, R. Pass, and W.-L. D. Tseng. The knowledge tightness of parallel zero-knowledge. In
R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 512–529. Springer, Mar. 2012.

[15] R. Cohen and Y. Lindell. Fairness versus guaranteed output delivery in secure multiparty computation.
In ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 466–485. Springer, Dec. 2014.

[16] R. Cohen, S. Coretti, J. A. Garay, and V. Zikas. Probabilistic termination and composability of
cryptographic protocols. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III, volume 9816
of LNCS, pages 240–269. Springer, Aug. 2016.

[17] R. Cohen, I. Haitner, E. Omri, and L. Rotem. Characterization of secure multiparty computation
without broadcast. In E. Kushilevitz and T. Malkin, editors, TCC 2016-A, Part I, volume 9562 of
LNCS, pages 596–616. Springer, Jan. 2016.

[18] R. Cohen, S. Coretti, J. A. Garay, and V. Zikas. Round-preserving parallel composition of probabilistic-
termination cryptographic protocols. In ICALP 2017, volume 80 of LIPIcs, pages 37:1–37:15, July 2017.

[19] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations
secure against an adaptive adversary. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS,
pages 311–326. Springer, May 1999.

[20] R. Cramer, I. Damgård, and S. Fehr. On the cost of reconstructing a secret, or VSS with optimal
reconstruction phase. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 503–523.
Springer, Aug. 2001.

[21] I. Damgård and Y. Ishai. Constant-round multiparty computation using a black-box pseudorandom
generator. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 378–394. Springer, Aug.
2005.

[22] I. Damgård and J. B. Nielsen. Improved non-committing encryption schemes based on a general com-
plexity assumption. In M. Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 432–450.
Springer, Aug. 2000.

[23] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM Journal on
Computing, 12(4):656–666, 1983.

33

[24] D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in byzantine agreement. Journal of the ACM,
37(4):720–741, 1990.

[25] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous byzantine agreement.
SIAM Journal on Computing, 26(4):873–933, 1997.

[26] M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive consistency. Information
Processing Letters, 14(4):183–186, 1982.

[27] M. Fitzi and J. A. Garay. Efficient player-optimal protocols for strong and differential consensus. In
E. Borowsky and S. Rajsbaum, editors, 22nd ACM PODC, pages 211–220. ACM Press, July 2003.

[28] G. Fuchsbauer, J. Katz, and D. Naccache. Efficient rational secret sharing in standard communication
networks. In D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 419–436. Springer, Feb.
2010.

[29] J. A. Garay, J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Rational protocol design: Cryptography
against incentive-driven adversaries. In 54th FOCS, pages 648–657. IEEE Computer Society Press, Oct.
2013.

[30] S. Garg, C. Gentry, S. Halevi, and M. Raykova. Two-round secure MPC from indistinguishability
obfuscation. In Y. Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 74–94. Springer, Feb. 2014.
doi: 10.1007/978-3-642-54242-8_4.

[31] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem
for protocols with honest majority. In A. Aho, editor, 19th ACM STOC, pages 218–229. ACM Press,
May 1987.

[32] S. D. Gordon, F. Liu, and E. Shi. Constant-round MPC with fairness and guarantee of output delivery.
In R. Gennaro and M. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–82.
Springer, Aug. 2015.

[33] A. Groce and J. Katz. Fair computation with rational players. In D. Pointcheval and T. Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 81–98. Springer, Apr. 2012.

[34] I. Haitner. A parallel repetition theorem for any interactive argument. In 50th FOCS, pages 241–250.
IEEE Computer Society Press, Oct. 2009.

[35] J. Y. Halpern and V. Teague. Rational secret sharing and multiparty computation: Extended abstract.
In L. Babai, editor, 36th ACM STOC, pages 623–632. ACM Press, June 2004.

[36] J. Håstad, R. Pass, D. Wikström, and K. Pietrzak. An efficient parallel repetition theorem. In D. Mic-
ciancio, editor, TCC 2010, volume 5978 of LNCS, pages 1–18. Springer, Feb. 2010.

[37] M. Hirt and V. Zikas. Adaptively secure broadcast. In H. Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 466–485. Springer, May 2010.

[38] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty com-
putation. In D. S. Johnson and U. Feige, editors, 39th ACM STOC, pages 21–30. ACM Press, June
2007.

[39] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently. In
D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572–591. Springer, Aug. 2008.

[40] Y. Ishai, E. Kushilevitz, and A. Paskin. Secure multiparty computation with minimal interaction. In
T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 577–594. Springer, Aug. 2010.

34

[41] Y. Ishai, R. Ostrovsky, and V. Zikas. Secure multi-party computation with identifiable abort. In J. A.
Garay and R. Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 369–386. Springer,
Aug. 2014.

[42] Y. Ishai, R. Kumaresan, E. Kushilevitz, and A. Paskin-Cherniavsky. Secure computation with minimal
interaction, revisited. In R. Gennaro and M. Robshaw, editors, CRYPTO 2015, Part II, volume 9216
of LNCS, pages 359–378. Springer, Aug. 2015.

[43] Y. Ishai, E. Kushilevitz, M. Prabhakaran, A. Sahai, and C. Yu. Secure protocol transformations. In
M. Robshaw and J. Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 430–458.
Springer, Aug. 2016.

[44] J. Katz and C.-Y. Koo. On expected constant-round protocols for byzantine agreement. In C. Dwork,
editor, CRYPTO 2006, volume 4117 of LNCS, pages 445–462. Springer, Aug. 2006.

[45] J. Katz and C.-Y. Koo. Round-efficient secure computation in point-to-point networks. In M. Naor,
editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 311–328. Springer, May 2007.

[46] J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable synchronous computation. In
A. Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 477–498. Springer, Mar. 2013.

[47] J. Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31. ACM Press,
May 1988.

[48] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4(3):382–401, 1982.

[49] Y. Lindell, A. Lysyanskaya, and T. Rabin. Sequential composition of protocols without simultaneous
termination. In A. Ricciardi, editor, 21st ACM PODC, pages 203–212. ACM Press, July 2002.

[50] S. Micali. Fast and furious byzantine agreement. In ITCS 2017. ACM, Jan. 2017.

[51] P. Mukherjee and D. Wichs. Two round multiparty computation via multi-key FHE. In M. Fischlin
and J. Coron, editors, EUROCRYPT 2016, volume 9666 of LNCS, pages 735–763. Springer, May 2016.

[52] S. J. Ong, D. C. Parkes, A. Rosen, and S. P. Vadhan. Fairness with an honest minority and a rational
majority. In O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 36–53. Springer, Mar. 2009.

[53] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal of
the ACM, 27(2):228–234, 1980.

[54] B. Pfitzmann and M. Waidner. Unconditional byzantine agreement for any number of faulty processors.
In STACS, volume 577 of LNCS, pages 339–350. Springer, 1992.

[55] M. O. Rabin. Randomized byzantine generals. In 24th FOCS, pages 403–409, Nov. 1983.

[56] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.

[57] M. Rosulek. Must you know the code of f to securely compute f? In R. Safavi-Naini and R. Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 87–104. Springer, Aug. 2012.

[58] T. Seito, T. Aikawa, J. Shikata, and T. Matsumoto. Information-theoretically secure key-insulated
multireceiver authentication codes. In D. J. Bernstein and T. Lange, editors, AFRICACRYPT 10,
volume 6055 of LNCS, pages 148–165. Springer, May 2010.

[59] J. Shikata, G. Hanaoka, Y. Zheng, and H. Imai. Security notions for unconditionally secure signature
schemes. In L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 434–449. Springer,
Apr. / May 2002.

35

[60] C. Swanson and D. R. Stinson. Unconditionally secure signature schemes revisited. In S. Fehr, editor,
ICITS 11, volume 6673 of LNCS, pages 100–116. Springer, May 2011.

[61] A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd FOCS, pages 160–164.
IEEE Computer Society Press, Nov. 1982.

A Preliminaries (Cont’d)

A.1 Error-Correcting Secret Sharing

Definition A.1. A (t, n) error-correcting secret sharing (ECSS) scheme over a message space M
consists of a pair of algorithms (Share,Recon) satisfying the following properties:

1. t-privacy: For every m ∈ M, and every subset I ⊆ [n] of size |I| ≤ t, the distribution of
{si}i∈I is independent of m, where (s1, . . . , sn)← Share(m).

2. Reconstruction from up to t erroneous shares: For every m ∈ M, every s =
(s1, . . . , sn), and every s′ = (s′1, . . . , s′n) such that PrS←Share(m) [S = s] > 0 and |{i | si =
s′i}| ≥ n− t, it holds that m = Recon(s′) (except for a negligible probability).

ECSS can be constructed information-theoretically, with a negligible positive error probability,
when t < n/2 [56, 20, 12].

A.2 Information-Theoretic Signatures

Parts of the following section are taken almost verbatim from [41].

P-verifiable Information-Theoretic Signatures. We recall the definition and construction of
information-theoretic signatures [59, 58] but slightly modify the terminology to what we consider
to be more intuitive. The signature scheme (in particular the key-generation algorithm) needs to
know the total number of verifiers or alternatively the list P of their identities. Furthermore, as
usually for information-theoretic primitives, the key-length needs to be proportional to the number
of times that the key is used. Therefore, the scheme is parameterized by two natural numbers `S
and `V which will be upper bounds on the number of signatures that can be generated and verified,
respectively, without violating the security.

A P-verifiable signature scheme consists of a triple of randomized algorithms (Gen,Sign,Ver),
where:

1. Gen(1κ, n, `S , `V) outputs a pair (sk, ~vk), where sk ∈ {0, 1}κ is a signing key, ~vk =
(vk1, . . . , vkn) ∈ ({0, 1}κ)n is a verification-key-vector consisting of (private) verification sub-
keys, and `S , `V ∈ N.

2. Sign(m, sk) on input a messagem and the signing-key sk outputs a signature σ ∈ {0, 1}poly(κ).

3. Ver(m,σ, vki) on input a message m, a signature σ and a verification sub-key vki, outputs a
decision bit d ∈ {0, 1}.

36

Key Generation: The algorithm for key generation Gen(1κ, n, `S) is as follows:
1. For (j, k) ∈ {0, . . . , n − 1} × {0, . . . , `S}, choose aij ∈R F uniformly at random and set the

signing key to be (the description of) the multi-variate polynomial

sk := f(y1, . . . , yn−1, x) =
`S∑
k=0

a0,kx
k +

n−1∑
j=1

`S∑
k=0

aj,kyjx
k.

2. For i ∈ [n], choose vector ~vi = (vi,1, . . . , vi,n−1) ∈R Fn−1 uniformly at random and set the
i’th verification key to be

vki = (~vi, f~vi
(x)),

where f~vi
(x) = f(vi,1, . . . , vi,n−1, x).

Signature Generation: The algorithm for signing a message m ∈ F , given the above signing key, is
(a description of) the following polynomial

Sign(m, sk) := g(y1, . . . , yn−1) := f(y1, . . . , yn−1,m)

Signature Verification: The algorithm for verifying a signature σ = g(y1, . . . , yn) on a given message
m using the i’th verification key is

Ver(m,σ, vki) =
{

1, if g(~vi) = f~vi
(m)

0, otherwise

Figure 6: Construction of information-theoretic signatures [60]

Definition A.2. A P-verifiable signature scheme (Gen,Sign,Ver) is said to be information-
theoretically (`S , `V)-secure if it satisfies the following properties:

(completeness) A valid signature is accepted from any honest receiver:

Pr[Gen → (sk, (vk1, . . . , vkn)); for i ∈ [n] : (Ver(m, Sign(m, sk), vki) = 1)] = 1.

Let OSsk denote a signing oracle (on input m, OSsk outputs σ = Sign(m, sk)) and OV~vk denote a

verification oracle (on input (m,σ, i), OV~vk outputs Ver(m,σ, vki)). Also, let AO
S
sk ,OV~vk denote a

computationally unbounded adversary that makes at most `S calls to OSsk and at most `V calls
to OV~vk, and gets to see the verification keys indexed by some subset I ([n]. The following
properties hold:

(unforgeability) AO
S
sk ,OV~vk cannot generate a valid signature on message m′ of his choice,

other than the one he queries OSsk on (except with negligible probability). Formally,

Pr

Gen → (sk, ~vk); for some I ([n] chosen by AO

S
sk ,OV~vk :(

A
OSsk ,OV~vk

(
~vk|I

)
→ (m,σ, j)

)
∧ (m was not queried to OSsk) ∧

(j ∈ [n] \ I) ∧
(
Ver(m,σ, vkj) = 1

)
 = negl.

(consistency)15 AO
S
sk ,OV~vk cannot create a signature that is accepted by some (honest) party

and rejected by some other even after seeing `S valid signatures and verifying `V signatures

15This property is often referred to as transferability.

37

(except with negligible probability). Formally,

Pr

 Gen → (sk, ~vk); for some I ([n] chosen by AO
S
sk ,OV~vk (sk) :

A
OSsk ,OV~vk (sk, ~vk|I)→ (m,σ)

∃i, j ∈ [n] \ I s.t. Ver(m,σ, vki) 6= Ver(m,σ, vkj)

 = negl.

In [59, 60] a signature scheme satisfying the above notion of security was constructed. These
signatures have a deterministic signature generation algorithm Sign. In the following (Figure 6) we
describe the construction from [59] (as described by [60] but for a single signer). We point out that
the keys and signatures in the described scheme are elements of a sufficiently large finite field F
(i.e., |F | = O(2poly(κ)); one can easily derive a scheme for strings of length ` = poly(κ) by applying
an appropriate encoding: e.g., map the i’th element of F to the i’th string (in the lexicographic
order) and vice versa. We say that a value σ is a valid signature on message m (with respect to a
given key setup (sk, ~vk)), if for every honest Pi it holds that Ver(m,σ, vki) = 1.

Theorem A.3 ([60]). Assuming |F | = Ω(2κ) and `S = poly(κ) the above signature scheme (Fig-
ure 6) is an information-theoretically (`S , poly(κ))-secure P-verifiable signature scheme.

B Synchronous Protocols in UC (Cont’d)
In this section, we give complementary material to Section 2.1 and in particular we include a high-
level overview of the formulation of synchronous UC from [46]. More concretely, Katz et al. [46]
introduced a framework for universally composable synchronous computation. For self contain-
ment we describe here the basics of the model and introduce some terminology that simplifies the
description of corresponding functionalities.

Synchronous protocols can be cast as UC protocols which have access to a special clock function-
ality Fclock, which allows them to coordinate round switches as described below, and communicate
over bounded-delay channels.16 In a nutshell, the clock-functionality works as follows: It stores a
bit b which is initially set to 0 and it accepts from each party two types of messages: clock-update
and clock-read. The response to clock-read is the value of the bit b to the requestor. Each
clock-update is forwarded to the adversary, but it is also recorded, and upon receiving such a
clock-update message from all honest parties, the clock functionality updates b to b⊕ 1. It then
keeps working as above, until it receives again a clock-update message from all honest parties,
in which case it resets b to b⊕ 1 and so on.

Such a clock can be used as follows to ensure that honest parties remain synchronized, i.e.,
no honest party proceeds to the next round before all (honest) parties have finished the current
round: Every party stores a local variable where it keeps (its view of) the current value of the
clock indicator b. At the beginning of the protocol execution this variable is 0 for all parties.
In every round, every party uses all its activations (i.e., messages it receives) to complete all its
current-round instructions, and only then sends clock-update to the clock signaling to the clock
that it has completed its round; following clock-update, all future activations result to the party
sending clock-read to the clock until its bit b is flipped; once the party observes that the bit b
has flipped, it starts its next round. For the sake of clarity, we do not explicitly mention Fclock in
our constructions.

16As argued in [46], bounded-delay channels are essential as they allow parties to detect whether or not a message
was sent within a round.

38

In [46], for each message that is to be sent in the protocol, the sender and the receiver are given
access to an independent single-use channel.17 We point out, that instead of the bounded-delay
channels, in this work we will assume very simple CSFs that take as input from the sender the
message he wishes to send (and a default input from other parties) and deliver the output to the
receiver in a fetch mode. Such a simple secure-channel SFE can be realized in a straightforward
manner from bounded-delay channels and a clock Fclock.

As is common in the synchronous protocols literature, throughout this work we will assume
that protocols have the following structure: In each round every party sends/receives a (potentially
empty) message to all parties and hybrid functionalities. Such a protocol can be described in UC in
a regular form using the methodology from [46] as follows: Let µ ∈ N denote the maximum number
of messages that any party Pi might send to all its hybrids during some round.18 Every party in
the protocol uses exactly µ activations in each round. That is, once a party Pi observes that the
round has changed, i.e., the indicator-bit b of the clock has being flipped, Pi starts its next round
as described above. However, this round finishes only after Pi receives µ additional activations.
Note that Pi uses these activations to execute his current round instructions; since µ is a bound
to the number of hybrids used in any round by any party, µ activations are enough for the party
to complete its round (If Pi finishes the round early, i.e., in less than µ activations, it simply does
nothing until the µ activations are received.) Once µ activations are received in the current round,
Pi sends clock-update to the clock and then keeps sending clock-read messages, as described
above, until it observes a flip of b indicating that Pi can go to the next round.

In addition to the regular form of protocol execution, Katz et al. [46] described a way of capturing
in UC the property that a protocol is guaranteed to terminate in a given number of rounds. The
idea is that a synchronous protocol in regular form, which terminates after r rounds, realizes the
following functionality F. The functionality F keeps track of the number of times every honest
party sends µ activations/messages and delivers output as soon as this has happened r times. More
concretely, imitating an r-round synchronous protocol with µ activations per party per round, upon
being instantiated, F initiates a global round-counter λ = 0 and an indicator variable λi := 0 for
each Pi ∈ P; as soon as some party Pi sends µ messages to F, while the round-counter λ is the
same, F sets λi := 1 and performs the following check:19 if λi = 1 for every honest Pi then increase
λ := λ+ 1 and reset λi = 0 for all Pi ∈ P. As soon as λ = r, the functionality F enters a “delivery”
mode. In this mode, whenever a message fetch-output is received from some party Pi, F outputs
to Pi its output. (If F has no output to Pi is outputs ⊥.)

We refer to a functionality that has the above structure, i.e., which keeps track of the current
round λ by counting how many times every honest party has sent a certain number µ of messages,
as a synchronous functionality. To simplify the description of our functionalities, we introduce the
following terminology. We say that a synchronous functionality F is in round ρ if the current value
of the above internal counter in F is λ = ρ.

We note that protocols in the synchronous model of [46] enjoy the strong composition properties
of the UC framework. However, in order to have protocols being executed in a lock-step mode, i.e.,
where all protocols complete their round within the same clock-tick, Katz et al. [46] make use of
the composition with joint-state (JUC) [9]. The idea is the parties use an Fclock-hybrid protocol

17As pointed out in [46], an alternative approach would be to have a multi-use communication channel; as modelling
the actual communication network is out of the scope of the current work, we will use the more standard and formally
treated model of single-use channels from [46].

18In the simple case where the parties only use point-to-point channels, µ = 2(n− 1), since each party uses n− 1
channels as sender and n− 1 as receiver to exchange his messages for each round with all other n parties.

19To make sure that the simulator can keep track of the round index, F notifies S about each received input,
unless it has reached its delivery state defined below.

39

π̂ that emulates towards each of the protocols, sub-clocks and assigns to each sub-clock a unique
sub-session ID (ssid). Each of these sub-clocks is local to its calling protocol, but π̂ makes sure that
it gives a clock-update to the actual (joint) clock functionality Fclock, only when all sub-clocks
have received such a clock-update message. This ensures that all clocks will switch their internal
bits at the same time with the bigger clock, which means that the protocols using them will be
mutually synchronized. This property can be formally proved by a direct application of the JUC
theorem. For further details the interested reader is referred to [46, 9].

C The Probabilistic-Termination Framework (Cont’d)
In this section, we provide supplementary material for Section 2.2.

C.1 Canonical Synchronous Functionalities

The description of the canonical synchronous functionality (CSF) is given in Figure 7. As a general-
ization of the SFE functionality, CSFs are powerful enough to capture any deterministic well-formed
functionality. In fact, all the basic (unwrapped) functionalities considered in this work will be CSFs.

Functionality Ff,lcsf(P)

Fcsf proceeds as follows, parametrized by a function f : ({0, 1}∗ ∪ {⊥})n+1 × R → ({0, 1}∗)n and a
leakage function l : ({0, 1}∗ ∪ {⊥})n → {0, 1}∗, and running with parties P = {P1, . . . , Pn} and an
adversary S.

• Initially, set the input values x1, . . . , xn, the output values y1, . . . , yn, and the adversary’s value a
to ⊥.

• In round ρ = 1:

– Upon receiving (adv-input, sid, v) from the adversary, set a← v.
– Upon receiving a message (input, sid, v) from some party Pi ∈ P, set xi ← v and send

(leakage, sid, Pi, l(x1, . . . , xn)) to the adversary.

• In round ρ = 2:

– Upon receiving (adv-input, sid, v) from the adversary, if y1 = . . . = yn = ⊥, set a ← v. Other-
wise, discard the message.

– Upon receiving (fetch-output, sid) from some party Pi ∈ P, if y1 = . . . = yn = ⊥, then choose
r ← R and compute (y1, . . . , yn) = f(x1, . . . , xn, a, r). Next, send (output, sid, yi) to Pi and
(fetch-output, sid, Pi) to the adversary.

Figure 7: The canonical synchronous functionality

We now describe a few standard functionalities from the MPC literature as CSFs, we refer the
reader to [16] for additional examples.

Secure Message Transmission (aka Secure Channel). In the secure message trans-
mission (SMT) functionality, a sender Pi with input xi sends its input to a receiver Pj . The
function to compute is f i,jsmt(x1, . . . , xn, a) = (λ, . . . , xi, . . . , λ) (where xi is the value of the j’th
coordinate) and the leakage function is li,jsmt(x1, . . . , xn) = y, where y = |xi| in case Pj is honest
and y = xi in case Pj is corrupted. We denote by F i,jsmt the functionality Fcsf when parametrized
with the above functions f i,jsmt and li,jsmt, for sender Pi and receiver Pj .

40

Broadcast. In the (standard) broadcast functionality, a sender Pi with input xi distributes
its input to all the parties, i.e., the function to compute is f ibc(x1, . . . , xn, a) = (xi, . . . , xi).
The adversary only learns the length of the message xi before its distribution, i.e., the leakage
function is libc(x1, . . . , xn) = |xi|. This means that the adversary does not gain new information
about the input of an honest sender before the output value for all the parties is determined,
and in particular, the adversary cannot corrupt an honest sender and change its input after
learning the input message. We denote by F ibc the functionality Fcsf when parametrized with
the above functions f ibc and libc, for sender Pi.
Secure Function Evaluation. In the secure function evaluation functionality, the
parties compute a randomized function g(x1, . . . , xn), i.e., the function to compute is
fgsfe(x1, . . . , xn, a) = g(x1, . . . , xn). The adversary learns the length of the input values via
the leakage function, i.e., the leakage function is lsfe(x1, . . . , xn) = (|x1| , . . . , |xn|). We denote
by Fgsfe the functionality Fcsf when parametrized with the above functions fgsfe and lsfe, for
computing the n-party function g.

C.2 Reactive CSFs

In this section, we extend the notion of CSF to reactive CSFs (RCSFs), i.e., CSFs with multiple
input/output phases. Correspondingly, a reactive CSF is parametrized by two vectors of functions
f = (f1, . . . , fq) and l = (l1, . . . , lq). The description of reactive CSFs can be found in Figure 8.

Functionality Ff ,l
rcsf(P)

Frcsf proceeds as follows, parametrized by two vectors of functions f = (f1, . . . , fq) and l = (l1, . . . , lq),
where fk :

(
({0, 1}∗ ∪ {⊥})n+1 ×R

)k → ({0, 1}∗)n and lk : (({0, 1}∗ ∪ {⊥})n)k → {0, 1}∗ for each
k ∈ [q], and running with parties P = {P1, . . . , Pn} and an adversary S.

• Initially, set the input values x1,1, . . . , xn,q, the output values y1,1, . . . , yn,q and the adversary’s
values a1, . . . , aq to ⊥; in addition, set the state s0 = ⊥.

• In round ρ = 2k − 1, with k ∈ [q]:

– Upon receiving (adv-input, sid, v) from the adversary, set ak ← v.
– Upon receiving a message (input, sid, v) from some party Pi ∈ P, set xi,k ← v and send

(leakage, sid, Pi, lk(x1,1, . . . , xn,k)) to the adversary.

• In round ρ = 2k, with k ∈ [q]:

– Upon receiving (adv-input, sid, v) from the adversary, if y1,k = . . . = yn,k = ⊥, set ak ← v.
Otherwise, discard the message.

– Upon receiving (fetch-output, sid) from some party Pi ∈ P, if y1,k = . . . = yn,k = ⊥,
then choose rk ← R and compute (y1,k, . . . , yn,k) = f(sk−1, x1,k, . . . , xn,k, ak, rk). Next, set,
sk = (sk−1, x1,k, . . . , xn,k, ak, rk) send (output, sid, yi,k) to Pi and (fetch-output, sid, Pi) to the
adversary.

Figure 8: The reactive canonical synchronous functionality

Definition C.1. Let Ff ,l
rcsf be a reactive CSF, with f = (f1, . . . , fq) and l = (l1, . . . , lq), let

t < n/2, and let Π = (Share,Recon) be a (t, n) error-correcting secret-sharing scheme. For
every k ∈ [q], denote by f̃k the function that on inputs (x̃1, . . . , x̃n, a), with x̃i = (xi, si),
first reconstructs the state s = Recon(s1, . . . , sn), next samples random coins r and computes

41

(y1, . . . , yn) = fk(s, x1, . . . , xn, a, r), and finally shares the new state s′ = (s, x1, . . . , xn, a, r) as
(s′1, . . . , s′n)← Share(s′) and outputs ỹi = (yi, s′i) to Pi.

A protocol π UC-realizes WD
strict(F

f ,l
rcsf), for a vector of distributions D = (D1, . . . , Dq), if π

consists of q sub-protocols (π1, . . . , πq), such that for every k ∈ [q], sub-protocol πk UC-realizes
WDk

strict(F
f̃k,lk
csf). In addition, each party Pi in π keeps a value si, initially set to ⊥, that is used as

the second input for each sub-protocol. Upon completing the execution of each sub-protocol, party
Pi updates si to be the second output value received.

C.3 Strict and Flexible Wrappers

This section contains the definitions of the strict wrapper Wstrict and of the flexible wrapper Wflex.

Strict-wrapper functionality. The strict-wrapper functionality, formally defined in Figure 9, is
parametrized by (a sampler that induces) a distribution D over traces, and internally runs a copy
of a CSF functionality F. Initially, a trace T is sampled from D; this trace is given to the adversary
once the first honest party provides its input. The trace T is used by the wrapper to define the
termination round ρterm ← ctr(T). In the first round, the wrapper forwards all the messages from
the parties and the adversary to (and from) the functionality F. Next, the wrapper essentially
waits until round ρterm, with the exception that the adversary is allowed to send (adv-input, sid, ·)
messages and change its input to the function computed by the CSF. Finally, when round ρterm
arrives, the wrapper provides the output generated by F to all parties.

Wrapper Functionality WD
strict(F)

Wstrict, parametrized by an efficiently sampleable distribution D, internally runs a copy of F and
proceeds as follows:

• Initially, sample a trace T ← D and compute the output round ρterm ← ctr(T). Send (trace, sid, T)
to the adversary.a

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• In round ρ = 1: Forward (input, sid, ·) messages from each party Pi ∈ P to F. In addition, forward
(leakage, sid, ·) messages from F to the adversary.

• In rounds ρ > 1: Upon receiving a message (fetch-output, sid) from some party Pi ∈ P, proceed
as follows:

– If ρ = ρterm, forward the message to F, and the response (output, sid, yi) to Pi.
– Else, send (fetch-output, sid, Pi) to the adversary.

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

Figure 9: The strict wrapper functionality

Flexible-wrapper functionality. The flexible-wrapper functionality, defined in Figure 10, fol-
lows in similar lines as the strict wrapper. The difference is that the adversary is allowed to instruct
the wrapper to deliver the output to each party at any round. In order to accomplish this, the
wrapper assigns a termination indicator termi, initially set to 0, to each party. Once the wrapper
receives an (early-output, sid, ·) request from the adversary for Pi, it sets termi ← 1. Now, when

42

a party Pi sends a (fetch-output, sid) request, the wrapper checks if termi = 1, and lets the party
receive its output in this case (by forwarding the (fetch-output, sid) request to F). When the
guaranteed-termination round ρterm arrives, the wrapper provides the output to all parties that
didn’t receive it yet.

Wrapper Functionality WD
flex(F)

Wflex, parametrized by an efficiently sampleable distribution D, internally runs a copy of F and
proceeds as follows:

• Initially, sample a trace T ← D and compute the output round ρterm ← ctr(T). Send (trace, sid, T)
to the adversary.a In addition, initialize termination indicators term1, . . . , termn ← 0.

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• In round ρ = 1: Forward (input, sid, ·) messages from each party Pi ∈ P to F. In addition, forward
(leakage, sid, ·) messages from F to the adversary.

• In rounds ρ > 1:

– Upon receiving (fetch-output, sid) from some party Pi ∈ P, proceed as follows:
∗ If termi = 1 or ρ = ρterm (and Pi did not receive output yet), forward the message to F, and

the output (output, sid, yi) to Pi.
∗ Else, send (fetch-output, sid, Pi) to the adversary.

– Upon receiving (early-output, sid, Pi) from the adversary, set termi ← 1.

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

Figure 10: The flexible wrapper functionality

C.4 Slack-Tolerant Wrappers

Slack-tolerant strict wrapper. The slack-tolerant strict wrapper WD,c
sl-strict, formally defined in

Figure 11, is parametrized by an integer c ≥ 0, which denotes the amount of slack tolerance that
is added, and a distribution D over traces. The wrapper Wsl-strict is similar to Wstrict but allows
parties to provide input within a window of 2c+1 rounds and ensures that they obtain output with
the same slack they started with. The wrapper essentially increases the termination round by a
factor of Bc = 3c+ 1, which is due to the slack-tolerance technique used to implement the wrapped
version of the atomic parallel SMT functionality (see [16]).

Slack-tolerant flexible wrapper. The slack-tolerant flexible wrapper WD,c
sl-flex, formally defined

in Figure 12, is parametrized by an integer c ≥ 0, which denotes the amount of slack tolerance that
is added, and a distribution D over traces. The wrapperWsl-flex is similar toWflex but allows parties
to provide input within a window of 2c+ 1 rounds and ensures that all honest parties will receive
their output within two consecutive rounds. The wrapper essentially increases the termination
round to

ρterm = Bc · ctr(T) + 2 · flextr(T) + c,

where the blow-up factor Bc is as explained above, and the additional factor of 2 results from the
termination protocol of Bracha [7] used for every flexibly wrapped CSF, which increases the round
complexity by at most two additional rounds (recall that flextr(T) denotes the number of such

43

CSFs), and c is due to the potential slack. Wsl-flex allows the adversary to deliver output at any
round prior to ρterm but ensures that all parties obtain output with a slack of at most one round.
Moreover, it allows the adversary to obtain the output using the (get-output, sid) command, which
is necessary in order to simulate the termination protocol.

Wrapper Functionality WD,c
sl-strict(F)

Wsl-strict, parametrized by an efficiently sampleable distribution D and a non-negative integer c, in-
ternally runs a copy of F and proceeds as follows:

• Initially, sample a trace T ← D and compute the output round ρterm ← Bc ·ctr(T), where Bc = 3c+1.
Send (trace, sid, T) to the adversary.a Initialize slack counters c1, . . . , cn ← 0.

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• In rounds ρ = 1, . . . , 2c+ 1: Upon receiving a message from some party Pi ∈ P, proceed as follows:

– If the message is (input, sid, ·), forward it to F, forward the (leakage, sid, ·) message F subse-
quently outputs to the adversary, and set Pi’s local slack ci ← ρ− 1.

– Else, send (fetch-output, sid, Pi) to the adversary.

• In rounds ρ > 2c + 1: Upon receiving a message (fetch-output, sid) from some party Pi ∈ P,
proceed as follows:

– If ρ = ρterm + ci, send the message to F, and the output (output, sid, yi) to Pi.
– Else, send (fetch-output, sid, Pi) to the adversary.

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

Figure 11: The slack-tolerant strict wrapper functionality

C.5 Compilers and Composition Theorems

Deterministic-termination compiler. Let F,F1, . . . ,Fm be canonical synchronous function-
alities, and let π be an SNF protocol that UC-realizes the strictly wrapped functionalityWD

strict(F),
for some depth-1 distributionD, in the (F1, . . . ,Fm)-hybrid model, assuming that all honest parties
receive their inputs at the same round. The compiler Compcdt, parametrized with a slack parame-
ter c ≥ 0, receives as input the protocol π and distributions D1, . . . , Dm over traces and replaces
every call to a CSF Fi with a call to the wrapped CSF WDi,c

sl-strict(Fi). We denote the output of the
compiler by π′ = Compcdt(π,D1, . . . , Dm).

The compiled protocol π′ realizesWDfull,c
sl-strict(F), for a suitably adapted distributionDfull, assuming

all parties start within c+1 consecutive rounds. Consequently, the compiled protocol π′ can handle
a slack of up to c rounds while using hybrids that are realizable themselves. Calling the wrapped
CSFs instead of the original CSFs F1, . . . ,Fm affects the trace corresponding to F. The new trace
Dfull = full-trace(D,D1, . . . , Dm) is obtained as follows:

1. Sample a trace T ← D, which is a depth-1 tree with a root label WD
strict(F) and leaves from

the set {F1, . . . ,Fm}.
2. Construct a new trace T ′ with a root label WDfull

strict(F).
3. For each leaf node F ′ = Fi, for some i ∈ [m], sample a trace Ti ← Di and append the trace
Ti to the first layer in T ′ (i.e., replace the node F′ with Ti).

44

4. Output the resulting trace T ′.

Wrapper Functionality WD,c
sl-flex(F)

Wsl-flex, parametrized by an efficiently sampleable distribution D and a non-negative integer c, inter-
nally runs a copy of (the public-output functionality) F and proceeds as follows:

• Initially, sample a trace T ← D and compute the output round ρterm ← Bc · ctr(T) + 2 · flextr(T) +
c, where Bc = 3c + 1. Send (trace, sid, T) to the adversary.a Initialize termination indicators
term1, . . . , termn ← 0.

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• In rounds ρ = 1, . . . , 2c+ 1: Upon receiving a message from some party Pi ∈ P, proceed as follows:

– If the message is (input, sid, ·), send it to F and forward the (leakage, sid, ·) message F subse-
quently outputs to the adversary.

– Else, send (fetch-output, sid, Pi) to the adversary.

• In rounds ρ > 2c+ 1:

– Upon receiving a message (fetch-output, sid) from some party Pi ∈ P, proceed as follows:
∗ If termi = 1 or ρ = ρterm, forward the message to F, and the output (output, sid, y) to Pi.

Record the output value y.
∗ Else, output (fetch-output, sid, Pi) to the adversary.

– Upon receiving (get-output, sid) from the adversary, if the output value y was not recorded yet,
send (fetch-output, sid) to F on behalf of some party Pi. Next, send (output, sid, y) to the
adversary.

– Upon receiving (early-output, sid, Pi) from the adversary, set termi ← 1 and ρterm ←
min{ρterm, ρ+ 1}.

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

Figure 12: The slack-tolerant flexible wrapper functionality

Probabilistic-termination compiler. Let F,F1, . . . ,Fm be canonical synchronous functional-
ities, and let π be an SNF protocol that UC-realizes the flexibly wrapped functionality WD

flex(F)
in the (F1, . . . ,Fm)-hybrid model, for some depth-1 distribution D, assuming all parties start at
the same round. Define the following compiler Compcptr, parametrized by a slack parameter c ≥ 0.
The compiler receives as input the protocol π, distributions D1, . . . , Dm over traces, and a subset
I ⊆ [m] indexing which CSFs Fi are to be wrapped withWsl-flex and which withWsl-strict; every call
in π to a CSF Fi is replaced with a call to the wrapped CSF WDi,c

sl-flex(Fi) if i ∈ I or to WDi,c
sl-strict(Fi)

if i /∈ I.
In addition, the compiler adds the termination procedure, based on an approach originally

suggested by Bracha [7], which ensures all honest parties will terminate within two consecutive
rounds:

• As soon as a party is ready to output a value y (according to the prescribed protocol) or upon
receiving at least t+ 1 messages (end, sid, y) for the same value y (whichever happens first),
it sends (end, sid, y) to all parties.

45

• Upon receiving n − t messages (end, sid, y) for the same value y, a party outputs y as the
result of the computation and halts.

This termination technique only applies to public-output functionalities, therefore, only CSFs
with public output can be wrapped by Wsl-flex. We denote the output of the compiler by
π′ = Compcptr(π,D1, . . . , Dm, I).

The compiled protocol π′ UC-realizes the wrapped functionality WDfull,c
sl-flex (F), for the adapted

distribution Dfull = full-trace(D,D1, . . . , Dm). Consequently, the compiled protocol π′ can handle
a slack of up to c rounds, while using hybrids that are realizable themselves, and ensuring that the
output slack is at most one round (as opposed to π). Calling the wrapped hybrids instead of the
CSFs affects the trace corresponding to F in exactly the same way as in the case with deterministic
termination.20

The probabilistic-termination compiler Compcptr is suitable for SNF protocols that implement
a flexibly wrapped functionality, e.g., the (adjusted) protocol of Feldman and Micali [25] that
realizes randomized Byzantine agreement. Indeed, such protocols introduce new slack, hence, the
slack-reduction technique described above is needed to control the new slack and reduce it to
c = 1. As pointed out in [16], in some cases the SNF protocol may realize a strictly wrapped
functionality, however, some of the hybrids are to be wrapped using the flexible wrapper. An
example for the latter type of probabilistic-termination protocols is the BGW protocol [6] that has
deterministic termination in the broadcast model, yet, once the broadcast channel is implemented
using randomized protocols, the obtained protocol has probabilistic termination. For that reason,
a second probabilistic-termination compiler Compcpt, without the slack-reduction procedure, was
introduced in [16].

20Of course, the root of the trace T sampled fromD is a flexibly wrapped functionalityWD
flex(F) in the probabilistic-

termination case.

46

	Introduction
	Model and Preliminaries
	Synchronous Protocols in UC
	The Probabilistic-Termination Framework
	A Lemma on Termination Probabilities

	Probabilistic Termination with an Honest Majority
	Fast Sequential Composition
	Fast Parallel Broadcast
	Fast SFE in the Point-to-Point Model

	Functionally Black-Box Protocols and Parallel Composition
	Round-Preserving Parallel Composition: Passive Security
	Round-Preserving Parallel Composition: Active Security
	Feasibility of Round-Preserving Parallel Composition
	The Setup-Commit-Then-Prove Functionality
	Round-Preserving Parallel-Composition Compiler

	An Impossibility of FBB Round-Preserving Parallel Composition

	Preliminaries (Cont'd)
	Error-Correcting Secret Sharing
	Information-Theoretic Signatures

	Synchronous Protocols in UC (Cont'd)
	The Probabilistic-Termination Framework (Cont'd)
	Canonical Synchronous Functionalities
	Reactive CSFs
	Strict and Flexible Wrappers
	Slack-Tolerant Wrappers
	Compilers and Composition Theorems

