
Too Simple to be UC-Secure:
On the UC-Insecurity of the “Simplest Protocol
for Oblivious Transfer” of Chou and Orlandi

Ziya Alper Genç, Vincenzo Iovino, and Alfredo Rial

University of Luxembourg
ziya.genc@uni.lu, vinciovino@gmail.com, alfredo.rial@uni.lu

Abstract. In 2015, Chou and Orlandi presented an oblivious transfer
protocol that already drew a lot of attention both from theorists and
practitioners due to its extreme simplicity and high efficiency. Chou and
Orlandi claimed that their protocol is UC-secure under dynamic corrup-
tions, which is a very strong security guarantee. Unfortunately, in this
work we point out a serious flaw in their security proof. Moreover, we
show that their protocol cannot be proven UC-secure even under static
corruptions unless some computational assumption, which we conjecture
to hold, is false.
Keywords: oblivious transfer, universal composability.

1 Introduction

Oblivious Transfer. In an oblivious transfer (OT) protocol, a sender receives as
input messages M1, . . .MN and a receiver receives as input indices σ1, . . . , σk ∈
[1, N]. At the end of the protocol, the receiver outputs Mσ1

, . . . ,Mσk
and learns

nothing about the other messages. The sender does not learn anything about
the indices.

OT was introduced by Rabin [?] and generalized by Even, Goldreich and
Lempel [?] and Brassard, Crépeau and Robert [?]. (The notion of OT was also
developed independently by Wiesner in the 1970’s but published only later [?].)
OT has a lot of applications and it is at the core of multi-party computation
[?,?,?].

Chou and Orlandi’s OT Protocol. Chou and Orlandi (CO) [?] present a novel
OT protocol and claim that it is universally composable (UC) [?] under dynamic
corruptions. Their protocol has the advantages of being extremely simple and
efficient in comparison to known protocols that offer the same security level.
They also report an implementation of the protocol that is orders of magnitude
more efficient than previous ones. The work of CO has already gained some
popularity both from theorists and practitioners and has so far been cited 21
times according to Google Scholar.

CO present a 1-out-of-2 OT protocol and extend it to a 1-out-of-n OT pro-
tocol in a straightforward manner. For the purpose of this work, which focuses

on negative results about the security of the CO protocol, it suffices to analyze
the 1-out-of-2 OT protocol. We note that our negative results also apply to the
1-out-of-n OT protocol.

The 1-out-of-2 OT protocol by CO is depicted in Figure 1. To run the pro-
tocol, Alice (the sender) and Bob (the receiver) have first to agree on a group
G and a generator g of prime order p. In the first message, Alice samples a
random element a in Zp and sends A = ga to Bob. Bob picks random b in Zp
and, depending on his index c ∈ [0, 1], sends either B = gb or B = Agb to Alice.
Then, Alice derives two keys k0 and k1 from (B)a and (B/A)a respectively. Alice
encrypts the messages M0 and M1 by using the keys k0 and k1 respectively. Bob
can derive the key kR from Ab, which allows Bob to obtain Mc. However, it is
computationally hard for him to compute the key that allows the obtention of
M1−c.

The protocol uses as building block a symmetric-key encryption scheme given
by two algorithms Enc and Dec. CO claim that, if the encryption scheme satisfies
a property that they call robustness, then the resulting OT protocol is UC-secure
under dynamic corruptions in the random oracle (RO) model [?]. They present
a definition of robustness and claim a construction for a robust symmetric-key
encryption scheme (see Section 3).

Sender Receiver
Input: (M0,M1) Input: c
Output: none Output: Mc

a← Zp b← Zp

A=ga−−−−−−−→
if c = 0 : B = gb

if c = 1 : B = A · gb
B←−−−−−

k0 = H(Ba) kR = H(Ab)
k1 = H((B

A
)a)

e0 ← Enc(k0,M0)
e1 ← Enc(k1,M1)

e0,e1−−−−−−−→
Mc = Dec(kR, ec)

Fig. 1. Chou and Orlandi’s 1-out-of-2 OT Protocol.

2

1.1 Our Results

In this paper, we present several issues in the work of CO, which range from
minor mistakes to a proof that, if some computational assumption holds, then the
CO’s OT protocol cannot be proven UC-secure, even under static corruptions.
We summarize the issues we found in the work of CO, from the least to the most
serious, as follows.

Shortcomings in the definition of OT functionality. The ideal function-
ality for OT described by CO has several shortcomings, which we describe
in Section 2.

Unclear construction for robust encryption. We cast doubts on the con-
struction for robust encryption proposed by CO in Section 3.

Incorrect security proof. In Section 4, we report mistakes in the security
proof given by CO for their OT protocol, both for the case of sender cor-
ruption and for the case of receiver corruption. These mistakes show that
the simulators described by CO for those cases are incorrect, even when
considering static corruptions.

Impossibility of proving UC security. The mistakes in the security proof of
CO cannot be corrected. In Section 5, we show that the CO’s OT protocol
cannot be proven UC-secure (in the random oracle model). More concretely,
we show that, when the sender is corrupt, there exists an adversary and an
environment such that a correct simulation cannot be provided unless the
simulator is able to solve a number-theoretic problem that we assume to be
computationally hard.
In a nutshell, our impossibility result states the following. In the case of
sender corruption, the simulator needs to be able to extract the messages
M0 and M1 from the adversary in order to send them to the ideal function-
ality. We show that there exists an adversary such that, if a simulator that
correctly extracts the messages from this adversary exists, then this simula-
tor can be used to solve a computationally hard problem. Consequently, a
simulator for the CO protocol cannot be provided and thus the protocol is
not UC secure.
To the best of our knowledge, all the ideal functionalities for 1-out-of-2 OT
in the literature require that the sender sends two messages M0 and M1

to the functionality. Indeed, this seems a basic requirement, because other-
wise the functionality cannot send to the receiver the message Mc for her
choice of index c. Therefore, an OT protocol that realizes any existing ideal
functionality for OT must allow the construction of a simulator that ex-
tracts from a corrupt sender the messages M0 and M1 in order to send them
to the functionality. In conclusion, our impossibility result applies to all OT
functionalities and thus is independent of the shortcomings in the ideal func-
tionality for OT defined by CO, which we describe in Section 2. We remark
that the impossibility result holds even if the scheme is instantiated with a
correct robust symmetric-key encryption scheme.

3

We assume that the simulator has full control of the random oracle (i.e., we
are in the random oracle model) and this makes our impossibility result as
strong as possible.

2 On the CO’s Ideal Functionality for OT

CO defines an ideal functionality form parallel executions of 1-out-of-N oblivious
transfer. Because in this work we focus on negative results that show that the
CO’s OT protocol cannot be proven UC-secure, for simplicity we analyze the
ideal functionality when m = 1 and n = 2. We remark that the shortcomings
mentioned here apply to any values of m and n.

The ideal functionality for OT described by CO has several shortcomings,
which we describe as follows.

– The ideal functionality for OT described by CO does not communicate with
the simulator. This means that the ideal functionality for OT in CO cannot
be realized at all. The reason is that, in the security proof, it is impossible to
design a simulator for the case in which both the sender and the receiver are
honest. As can be seen, in this case the simulator does not receive anything
from the functionality, and thus it cannot provide a simulation.

– The description of the ideal functionality is incomplete. For example, the
functionality expects to receive two l-bit messages from the sender and one
bit c from the receiver. However, the behavior of the functionality is not
specified if the inputs from the sender or from the receiver are not in the
right domains. For example, if the messages input by the sender are not l-bit,
what should the functionality do?
It turns out that this question is very relevant for the mistakes in the security
proof by CO, which we describe in Section 4, and for our impossibility result
in Section 5. In Appendix B, we describe two ideal functionalities for OT
and we show the behavior of the functionalities when the input is not in the
right domain. When the sender is honest, the functionalities send an error
message ⊥ to the sender if the input is not in the right domain. When the
sender is corrupt, a functionality accepts an error message ⊥ from the sender
or interprets any message not in the right domain as ⊥, and sends ⊥ to the
receiver.

– The functionality defined by CO does not impose any restriction on the
order in which the sender and the receiver send their inputs to the ideal
functionality. I.e., the functionality allows the sender to send the messages
before the receiver sends her input bit and viceversa.
It turns out that this is a problem to prove secure the OT protocol by CO.
In the OT protocol by CO, the receiver has to decide his input bit in order
to compute the second message of the protocol. The sender decides what
messages he inputs in order to compute the third message. In the security
proof for the case of sender corruption, the simulator needs to extract the
messages from the adversary. The simulator cannot perform such extraction
until receiving the third message of the protocol from the adversary. However,

4

to receive this third message, the simulator has to send before the second
message to the adversary. The problem here is that the simulator does not
know whether the receiver has already input his bit to the functionality,
because the functionality does not tell the sender that the receiver has sent
her input. Consequently, the simulator does not know whether it can send
the second message to the adversary, and so it cannot provide a correct
simulation.
In the security proof by CO, this problem is overlooked. The simulator de-
scribed by CO always sends a second message to the adversary, regardless
of whether the receiver has already input a bit to the functionality, and
therefore the simulator is not correct. The reason is that the environment
can distinguish between the real world and the ideal world as follows. If the
receiver gets c ∈ ⊥ as input, in the real world, the honest receiver does not
send any message, and thus the adversary does not receive any message from
the honest receiver. However, in the ideal world, the simulator sends a mes-
sage to the adversary. Therefore, the environment can distinguish real and
ideal world.
This problem in the proof by CO was already observed by Li and Mic-
ciancio [?]. Li and Micciancio provide an alternative ideal functionality that
informs the sender when the receiver sends her input bit. They also show
a simulator that corrects this problem. They claim that their simulator is
correct. However, in Section 4, we show that Li and Micciancio overlooked
other problems in the simulator by CO, and thus their simulator is not cor-
rect either. We analyze more in detail the contribution by Li and Micciancio
in Section 6.
In Appendix B, we describe two ideal functionalities for OT. The first func-
tionality is for the case in which the sender inputs the messages before the
receiver inputs her bit. This functionality tells the receiver that the sender
has sent his input. The second functionality is for the case in which the re-
ceiver inputs her bit before the sender inputs his messages. This functionality
tells the sender that the receiver has input her bit. This second functionality
would be the one that the protocol by CO could realize. However, we show
that the CO protocol has other problems that prevent it from being proven
UC-secure.

In Figure 2, we show a functionality for 1-out-of-2 OT for static corruptions.
This functionality takes into account the problems raised above regarding inputs
in the wrong domain and the order of inputs from sender and receiver. We note
that this functionality, like the one by CO, skips many details, such as the
communication with the simulator and many other elements that are necessary
in the UC framework (session identifiers, . . .). We describe a fully specified ideal
functionality for OT in Appendix B.

We would like to stress that our impossibility result holds for any existing 1-
out-of-2 OT functionality, because all existing functionalities require the sender
to send the messages to the functionality. Therefore, our impossibility result is

5

independent of the shortcomings described in this section, and also holds for a
correct 1-out-of-2 OT functionality.

Ideal
(
2
1

)
-OT Functionality

The functionality waits for some input c from the receiver R and before receiving
any input from R will ignore any input coming from the sender S. When the input
c is received from R, if c /∈ {0, 1}, the functionality sends an error message ⊥ to
the receiver, otherwise it notifies the sender by transmitting a special symbol OK.
The functionality will ignore further inputs from R.
After receiving c ∈ {0, 1} from R, if the functionality did not abort, the function-
ality waits for either a pair of messages (M0,M1) or an error message ⊥ from the
sender S. If the input of S is ⊥ or a non-valid pair of messages (in the message
space) the functionality sends ⊥ to the receiver, otherwise it sends Mc to the
receiver. The functionality ignores further inputs from S.

Fig. 2. Ideal functionality for 1-out-of-2 OT.

3 On the CO’s Definition and Construction for Robust
Encryption

The OT protocol by CO uses as building block an encryption scheme given by an
encryption algorithm Enc and a decryption algorithm Dec. CO do not explicitly
specify a key generation algorithm but they define a key space K from which the
keys have to be sampled. CO require two properties for this encryption scheme.
First, they require the scheme to be non-committing. Second, they require the
scheme to satisfy what they call robustness.

If S is a set of keys from K, let VS,e ⊆ S be the subset of valid keys for a
given ciphertext, i.e., the keys in S such that Dec(k, e) 6= ⊥. The CO’s definition
of robustness states that for all ciphertexts e adversarially generated by a PPT
algorithm A on input a set S randomly chosen among the subsets of K, then
|VS,e| ≤ 1, except with negligible probability.

CO do not make the probability space explicit. Our interpretation is that
the probability is taken over the choices of S. Informally speaking, robustness
requires that, for a given ciphertext, there is at most one key such that the result
of decryption is not ⊥.

CO propose the following scheme as an example of robust encryption scheme.
The message space of the scheme is {0, 1}l and both the key space and the
ciphertext space are {0, 1}l+λ. The encryption algorithm Enc(k,m) parses k as
(α, β) and outputs the ciphertext e = (m XOR α, β). The decryption algorithm
Dec(k, e) parses k = (α, β) and e = (e1, e2) and, if e2 6= β, outputs ⊥, else
outputs m = e1 XOR α.

6

CO claim that the above scheme is robust. It is easy to see that, if the keys
are not picked randomly, this is false. For instance, given a ciphertext e = (α, β),
the keys k1 = (α, β) and k2 = (α XOR γ, β) for some γ 6= 0l are different but
induce the decryption algorithm to return respectively 0l and γ.

In the OT protocol by CO, the keys are computed by a random oracle, which
forces keys to be random. We think that, for the scheme described by CO to be
robust, a key generation algorithm needs to be specified that is able to force keys
to be random. Using a random oracle can be useful for this purpose. Nevertheless,
we would like to stress that the problems in the security proof by CO, which we
describe in Section 4, and our impossibility result in Section 5 hold when the
protocol is instantiated with any robust encryption scheme.

4 On the Incorrectness of CO’s Security Proof for Their
OT Protocol

In this section, we analyze the security proof provided by CO both for the
case of sender corruption and for the case of receiver corruption. We show that
the simulators described by CO for both cases are incorrect. For simplicity,
we analyze the instantiation of the protocol as a 1-out-of-2 OT scheme, but we
remark that the mistakes we found also hold for the case of m parallel executions
of 1-out-of-n OT for other values of m and n.

Sender corruption. The simulator needs to extract the messages from the corrupt
sender in order to send them to the ideal functionality. To do this, when the
corrupt sender makes a random oracle query, the simulator described by CO picks
a random key, stores it and replies the query with this random key. After that,
when the corrupt sender sends the ciphertexts, the simulator tries to decrypt
the ciphertexts (e0, e1) by using all the stored keys until the result of one of
the decryptions is not ⊥. If the result of decryption is ⊥ in all cases, then the
message is set to ⊥.

The problem in this simulator is the following. The corrupt sender can submit
an oracle query on input X 6= Ba (resp. Y 6= (BA)

a) and compute the ciphertexts
e0 (resp. e1) using key k′0 = H(X) (resp. k′1 = H(Y)). Then the simulator would
decrypt using (k′0, k

′
1) and obtain messages different from ⊥. However, the honest

receiver in the real world would obtain ⊥ because the oracle query made by the
receiver is for the correct value Z = Ab, and so the key kR that the honest
receiver obtains is different from both k′0 and k′1.

CO argue that their simulator is correct thanks to the robustness of the
encryption scheme. They claim that, because there is only one key that, for any
ciphertext, decrypts the cipherteext to a message different from ⊥, then the
message decrypted by the simulator and the one obtained by the honest receiver
have to be equal. However, this is untrue. The problem is that the corrupt sender
can compute a ciphertext with a key different from the correct key used by the
honest receiver. I.e., the corrupt sender can send a random oracle query for an
incorrect value and then compute a ciphertext by using the key obtained for this

7

query. In this case, the honest receiver obtains ⊥, but the simulator decrypts the
ciphertext to a message different from ⊥ by using the key that was sent to the
corrupt sender to answer the random oracle query for an incorrect value.

To fix the simulator, we would need a mechanism that allows the simulator
to check whether a random oracle query from the corrupt sender is for a correct
value, i.e., X = Ba or Y = (BA)

a, or not. In Section 5, we show that the simulator
cannot perform this check for bothX and Y unless the simulator can solve a hard
number-theoretic problem. More formally, we prove that, if a correct simulator
exists for a certain environment and adversary, then the simulator can be used
to solve this number-theoretic problem. Consequently, the security proof in CO
cannot be patched in any way.

Receiver corruption. We point out that the security proof by CO is also incorrect
for the case of a corrupt receiver. We show two problems in the simulator.

When the receiver is corrupt, the simulator must extract the bit c in order
to send it to the ideal functionality. The simulator described by CO uses the
random oracle queries sent by the adversary in order to extract the bit c. The
problem is that, in the protocol, the receiver only needs to send random oracle
queries in order to decrypt the ciphertexts, which is the last step of the protocol.
The simulator described by CO assumes that the random oracle queries are sent
by the corrupt receiver before the simulator sends the ciphertexts to the corrupt
receiver. This is incorrect.

We show that there exists an adversary that allows the environment to dis-
tinguish between real and ideal world. This adversary simply behaves like the
honest receiver, except that it does not send the random oracle query for Ab
until it receives the ciphertexts (e0, e1). In the real world, the adversary receives
the first message A from the honest sender, sends the second message B to the
honest sender, receives (e0, e1) from the honest sender, runs a random oracle
query for Ab to get the key kR, uses kR to decrypt the ciphertext ec correspond-
ing to her choice c and finally outputs the message Mc. In the ideal world, the
adversary receives the first message A from the simulator, sends the second mes-
sage B to the simulator, and after that waits indefinitely for the ciphertexts (e0,
e1), which the simulator cannot send because, to compute (e0, e1), it needs to
send c to the functionality in order to receive the message Mc. Therefore, the
environment can distinguish between the real world and the ideal world.

Although we do not show an impossibility result for the construction of this
simulator (because showing one impossibility result is enough), we note that
fixing this problem does not seem possible. Intuitively, for the simulator to be
correct, the simulator must be able to extract the bit c from the second message
of the protocol, i.e., B. Because B is a random value, performing this extraction
does not seem possible.

A second problem in the simulator by CO is the following. CO claim that the
probability that the simulator fails is negligible because, if an adversary makes
the simulator fail, that adversary can be used to break the CDH assumption. The
reduction to the CDH assumption is given in Lemma 2 in [?]. This reduction
needs to run the adversary three times to send different values in the CDH

8

instance as the first message of the OT protocol in order to solve the CDH
problem for that instance. This means that the adversary needs to be rewound,
which is not allowed in the UC framework.

5 Impossibility of the UC-security of the CO’s OT
protocol

Before showing our impossibility result, we introduce the computational assump-
tion it is based on. The assumption is an interactive assumption for discrete-log
groups.

Assumption 1. Let G be a group generator that on input a security parameter
λ outputs a group description (G, p, g). To state the assumption we define the
following game between a challenger and an adversary A. The challenger runs
G on input the security parameter λ to get a group description (G, p, g) for a
group G of prime order p with generator g. The challenger picks a random value
a from Zp. The adversary A receives as input the group description (G, p, g) and
ga. The adversary returns to the challenger a group element B. The challenger
aborts if B = ga. Otherwise B draws a bit b at random and proceeds as follows:

– If b = 0, set Z0 = Ba and Z1 = Ba/ga
2

.
– If b = 1, draw randomly another bit d and proceed as follows.

• If d = 0, set Z0 as a random element in G and Z1 = Ba/ga
2

.
• If d = 1, set Z0 = Ba and set Z1 as a random element in G.

The challenger sends the pair (Z0, Z1) to the adversary. The adversary out-
puts its guess b′. The adversary wins the game if b′ = b.

Following standard terminology, we define AdvA1 (λ) to be the advantage of Adv in
winning the above game. We say that Assumption 1 holds for generator G if for
all probabilistic polynomial-time algorithms A, AdvA1 (λ) is a negligible function
of λ.

Discussion on the assumption. We conjecture that this assumption holds for
some generator G for which standard Diffie-Hellman-like assumptions hold. As
can be seen, the hardness of the assumption is based on the hardness of comput-
ing ga

2

. Our assumption is non-standard and as such is a very strong assumption.
Nonetheless, we believe that even basing our impossibility result on this sort of
assumption furnishes evidence of the implausibility of the UC-security of the
CO’s protocol. In fact, any proof of UC-security of the CO’s protocol would
necessarily have to entail a refutation of our assumption. Thus, coming up with
a UC-security proof of the CO’s OT protocol would require substantial new
techniques.

9

Env

Adv HR

1. bit c = 1

2. M0 = 0,M1 = 0
3. ga

4. ga

5. B

6. B

7. Z0, Z1

8. Z0, Z1

9. k0, k1

10. e0 ← Enc(k0, 0), e1 ← Enc(k1, 0)

11. M ′
1 = Dec(H(gab), e1)

12. b′ = (M ′
1 = ⊥) ? 1 : 0

Fig. 3. Interaction in the real world between adversary A and environment Env and the
parties explained pictorially. The messages in the interaction are exchanged in sequence
from 1 to 12. Env chooses a random value a and computes values ga for an instance of
Assumption 1 (here and in the Figure we do not explicitly mention the group parameters
G, g, p). Furthermore, Env chooses two random bits b and d and after receiving value B in
message 6, it computes (Z0, Z1) as in Assumption 1. For simplicity we assume that the
sender and the adversary are one entity and that corruptions are not explicitly modeled;
e.g., message 2 is supposed to go from the environment to the sender. The expression
b′ = (M ′

1 = ⊥) ? 1 : 0 is a shorthand for “if M ′
1 = ⊥ set b′ = 1 else set b′ = 0” and represents

the output of the environment, i.e., an alleged guess for b.

UC-security. We assume that the reader is familiar with the notion of UC-
security [?], in particular we refer to the full version [?]. We provide a summary
in Appendix A.

Theorem 1 If Assumption 1 holds, the CO’s OT protocol instantiated with
an arbitrary robust encryption scheme is not UC-secure (in the random oracle
model).

Proof. Canetti [?] shows that the standard definition of UC is equivalent to one
in which the simulator can depend on the code of the environment, i.e., in which
the quantification is of the type “for any adversary and environment there exists
a simulator..” (rather than “for any adversary there exists a simulator such that
for any environment...”).

Therefore, to show that the CO’s OT protocol cannot be proven UC-secure,
it suffices to define a specific adversary A and environment Env such that the
following holds. If there exists a simulator Sim such that Env cannot tell whether
it is interacting with the CO’s protocol and A or with the ideal OT functionality
and Sim, then that simulator can be used to break Assumption 1. Here, in the
random oracle model the simulator has full control of the random oracle.

We now define the adversaryA and environment Env used in our impossibility
result. We invite the reader to refer to Figure 3 for a pictorial description of the
interaction between A, Env and the parties running the CO’s protocol (i.e., a
“real world” execution) is detailed pictorially. We assume that the adversary

10

Challenger B Env

Sim HF

1. ga, (. . . Z0, Z1) 2. ga, (. . . Z0, Z1)

3. bit c = 1

4. M0 = 0,M1 = 0
5. ga

6. B

7. Z0, Z1

8. Z0, Z1

9. k0, k1
10. M ′

0,M
′
1

11. M ′
1

12. b′ = (M ′1 = ⊥) ? 1 : 013. b′

Fig. 4. Our reduction explained pictorially. Adversary B plays against the challenger of As-
sumption 1. B writes the values ga on the work tape of Env and starts the execution of Env
from the point in which such values are computed. The messages in the interaction are ex-
changed in sequence from 1 to 13. For simplicity we assume that the dummy sender and the
simulator are one entity and that corruptions and delays are not explicitly modeled; e.g., mes-
sage 4 is supposed to go from the environment to the dummy sender and from that to the
functionality (see Theorem 1 for more details). Note also that, being the sender corrupted, it is
the simulator (implicitly controlling the dummy sender) to decide when to hand the messages
to the functionality. The challenger chooses a random bit b. After receiving the value B from
Sim, Env forwards B to the challenger that returns Z0, Z1 to Env computed as in Assumption 1;
in order not to complicate the picture, we do not make explicit these last steps in the figure
and we write “(. . . Z0, Z1)” to mean that such values are not sent in step 1 and 2 (but only
later) and we do not show the transmission of B from Env to B and from B to the challenger.
The expression b′ = (M ′

1 = ⊥) ? 1 : 0 is a shorthand for “if M ′
1 = ⊥ set b′ = 1 else set b′ = 0” and

represents the output of the environment that B outputs as its own alleged guess for b. The
random oracle H is controlled by the simulator.

corrupts the sender at the beginning of the protocol. The environment Env and
the adversary Adv are next defined by describing the flow of messages exchanged
by the interactive Turing machines.

Flow of messages for the environment Env.
– Env chooses values random value a ∈ Zp (we are implicitly assuming that

it also chooses a random group instance G, p, g but for not overburden
the details henceforth and in the Figure 3 we omit such details) for an
instance of Assumption 1 and computes ga. Furthermore Env chooses
two random bits b and d.

– Env hands input c = 1 to the (honest) receiver R. This corresponds to
step 1 in Figure 3.

11

– Env hands the messages M0 = 0 and M1 = 1 to the sender. This cor-
responds to step 2 in Figure 3. Note that in step 2 of the figure such
message is sent to the adversary that is assumed to control the sender.
Formally in UC the inputs should flow from the environment to the par-
ties and the corruptions are modeled explicitly at protocol level but in
this work, for sake of simplicity, we do not explicitly deal with corrup-
tions and these details.

– Env receives a value B from the adversary Adv. This corresponds to step
6 in Figure 3.

– Env uses the bits b and d and the value B to compute the values Z0 and
Z1 as in Assumption 1 (it can compute such values because it knows a)
and sends (Z0, Z1) to Adv. This corresponds to step 7 in Figure 3.

– Env receives message M ′1. If M ′1 = ⊥, Env outputs 1 otherwise outputs
0.

Flow of messages for the adversary Adv.

– Adv, impersonating the sender (recall that we do not explicitly model
corruptions), receives messages M0 = 0 and M1 = 0 from the environ-
ment Env. This corresponds to step 2 in Figure 3.

– Adv receives value ga from Env. This corresponds to step 3 in Figure 3.
– Adv forwards ga to the (honest) receiver R. This corresponds to step 4

in Figure 3.
– Adv receives value B from R. This corresponds to step 5 in Figure 3.
– Adv forwards B to Env. This corresponds to step 6 in Figure 3.
– Adv receives values Z0 and Z1 from Env. This corresponds to step 7 in

Figure 3.
– Adv makes queries Z0 (resp. Z1) to the random oracle H and receives

answers k0 (resp. k1). This corresponds to steps 8 and 9 in Figure 3.
– Adv computes and sends ciphertexts e0 ← Enc(k0, 0) and e1 ←

Enc(k1, 0) to R. This corresponds to step 10 in Figure 3.

Fact 2 Observe now that the value M ′1 sent in message 11 from the receiver to
the environment is equal, with all except negligible probability, to ⊥ if b = 1 and
d = 1 and to 0 otherwise; this is because, by the robustness of the encryption
scheme, e1 is computed with key k1 = H(Z1) but decrypted with key H(gab)
and the latter keys differ w.v.h.p if b = 1 and d = 1 (i.e., if Z is a random group
element) and are equal otherwise (i.e., if Z = Ba/ga

2

). This implies that the bit
b′ output in message 12 by Env is equal, with all except negligible probability,
to 1 if b = 1 and d = 1 and to 0 otherwise.

Note that Fact 2 holds for any robust encryption scheme.

12

Towards a contradiction, we assume that the CO’s OT protocol is UC-secure.
Hence, there exists a simulator Sim such that Env cannot tell whether it is
interacting with the CO’s protocol and A or with the ideal OT functionality
and Sim.

By hypothesis, the output of the environment when interacting with Adv and
when interacting with Sim are computationally indistinguishable. Let us call Real
the interaction between Env, Adv and the real parties (i.e., the real experiment)
and Ideal the interaction between Env,Sim and the ideal functionality (i.e., the
ideal experiment).

We construct an adversary B against Assumption 1 interacting with the
challenger of the assumption. First of all, B receives an instance of Assumption
1 and executes Env from the point in which Env generates the value of the
assumption ga. That is, B runs Env and when Env computes such value, B
overwrites the aforementioned values with the one coming from the challenger
of the assumption. B forwards to the challenger of the assumption the value B
sent by Env and after receiving the pair (Z0, Z1) forwards it to Env and finally
forwards to the challenger the bit b′ output by Env.

Observe that the values coming from the challenger and overwritten by B on
the work tape of Env are identically distributed to the ones computed by the
environment.

Note also the above Env gives two outputs, firstly the element B and then the
bit b′. This is in contrast with the standard UC setting; in fact in the standard
UC setting the environment is not allowed to communicate during the execution
with parties external either from the ones of the protocol or the adversary. This
is only for simplicity and later we will show how to adapt it to the standard UC
setting.

Let H1 be an experiment between Env, A, B, the real parties and the chal-
lenger of assumption analogous to an execution between Env,A and the real
parties but modified in the same way (i.e., replacing the values of the assump-
tion computed by Env with the values coming from the challenger of Assumption
1). It is easy to see that the output of Real is identically distributed to the output
of H1.

Let H2 be an experiment identical to Ideal but modified in the same way
(i.e., replacing the values of the assumption computed by Env with the values
coming from the challenger of Assumption 1) and where the random oracle
H is controlled by the simulator (i.e., H is programmable by the simulator).
Analogously, the output of Ideal is identically distributed to the output of H2.

The interaction between B, Env, Sim and the ideal functionality F in exper-
iment H2 is depicted in Figure 4. As we assume that the adversary in the real
world corrupts the sender at the beginning of the protocol, we are implicitly
assuming that the simulator does the same.

We remark that, in order not to overburden the presentation with too many
details, in Figure 4 we let message 4 flow from Env to the simulator whereas
formally in UC the message should be sent from the environment to the dummy
sender and from it to the functionality. In the full details of UC, since we are

13

in the case of sender corruption (that, as we said, we also model implicitly), the
simulator would then have the possibility of replacing the input of the sender as
done in Step 10 of Figure 4.

Moreover, we do not make explicit the OK message from the functionality
to the sender/simulator as described in our definition of the OT functionality,
and we do not show the transmission of B from Env to B and from B to the
challenger. See the caption of the Figure for more details.

As Real ≡ H1, Ideal ≡ H2,Real ≈c Ideal and Fact 2 holds, then the bit b′
sent in message 12 of Figure 4 from Env to B is equal, with all except negligible
probability, to 1 if b = 1 and d = 1, and to 0 otherwise. Therefore, the guess b′
output by B is correct with all except negligible probability whenever b = 1 and
d = 1. Therefore, the advantage of the reduction B to break Assumption 1 is
non-negligibly greater than 1/2. This means that Assumption 1 would not hold,
which is a contradiction.

In the argument above we defined an environment Env that returns two
outputs (i.e., B and b′) used for the reduction. This diverges from the standard
UC setting. To adapt the previous reasoning to the standard UC setting (i.e., in
which the environment returns only one output and cannot communicate with
parties different than the one of the protocol and the adversary), the algorithm
Env can be adapted as follows. The environment is changed so as to be executed
on an auxiliary input consisting either of the group parameters and the element
ga or an elementB and in addition a bit z that indicates whether the environment
is in the first or second “round”.

If z = 0 the environment is in the first round, and does the computation
as the algorithm Env above except that the group parameters and ga are taken
as input (instead of being computed by the algorithm itself) and outputs the
value B received by Adv.1 If z = 1 the environment is in the second round,
and is executed on input the pair (Z0, Z1) computed using the bits b, d and the
exponent a as in Assumption 1 and the same random tape as in the first round
and outputs a bit b′.

Then, it is easy to see that the previous adversary B can be easily adapted
to use such algorithm Env to break Assumption 1 as argued before.

6 Related work

Li and Micciancio [?] raise different security issues about CO’s OT protocol in
comparison to ours. Li and Micciancio find out a problem shared by OT protocols
in which the receiver chooses his bit before the sender chooses the messags. The
problem is that, in the typical OT functionality, the sender is not told whether
the receiver sends a choice c ∈ {0, 1} or not. To prove secure this type of OT
protocol, the functionality for OT can be modified so that the functionality tells
the sender whether c has been sent by the receiver.
1 The output of the environment would be then non-binary but Canetti [?] shows that
UC with environments with binary outputs is equivalent to UC with environments
with non-binary outputs.

14

The following quote is from Li and Micciancio:

“We simply use the equational framework to model and analyze the pro-
tocol as described in the original paper of CO. We had noticed that this
work appeared to use the traditional OT definition, and our original goal
was to show that the protocol does not satisfy it, but it can be proved
secure if the OT ideal functionality is revised as in the OT transforma-
tion case. We still find it rather surprising that the protocol cannot be
proved secure according to either definition.”

Li and Micciancio try to prove the security of the OT protocol by CO using
the modified OT functionality. They claim that, with the modified functionality,
sender security can be proven, but that then receiver security does not hold
anymore. In particular, they provide a simulator for the case of sender corruption
to realize the modified OT functionality and say “we leave the verification that
the simulator is indeed correct to the reader.” As we show in this paper, this
simulator is not correct either because it does not extract the messages from the
corrupt sender correctly. The following quote is from Li and Micciancio:

“We remark that what we mean by cannot be proved secure is that for
any candidate simulator (within the model) there exists a distinguishing
environment that can tell the real system and ideal system apart. We
do not have a direct attack to the protocol. So, by no means our results
should be interpreted as a cryptanalysis of [?], and, in fact, we believe
that the protocol provides some meaningful form of security. Also, our
results do not point to any specific bug in the (informal) proof in the
original paper [?].”

In contrast, we show several bugs in the proof by CO. In addition, we show an
impossibility result on the ability to provide a correct proof.

7 Conclusions and future directions

In this work, we pointed out several issues of the Chou and Orlandi’s OT pro-
tocol, culminating in a formal proof that the aforementioned protocol cannot be
proven UC-secure (unless some computational assumption that we conjecture
to hold is false). This negative result raises the question of whether the CO’s
protocol can be patched or tweaked to meet UC-security or whether it can be
proven secure according to less stringent security notions. While we believe that
the answer to the second question might be positive, we have to stress that a
positive answer to the first question can be considered satisfactory only if a po-
tential corrected protocol retained approximately the same efficiency benefits of
the CO’s OT protocol.

A Universally Composable Security

The universal composability framework [?] is a framework for defining and ana-
lyzing the security of cryptographic protocols so that security is retained under

15

arbitrary composition with other protocols. The security of a protocol is defined
by means of an ideal protocol that carries out the desired task. In the ideal
protocol, all parties send their inputs to an ideal functionality F for the task.
The ideal functionality locally computes the outputs of the parties and provides
each party with its prescribed output.

The security of a protocol ϕ is analyzed by comparing the view of an en-
vironment Z in a real execution of ϕ against that of Z in the ideal protocol
defined in Fϕ. The environment Z chooses the inputs of the parties and collects
their outputs. In the real world, Z can communicate freely with an adversary A
who controls both the network and any corrupt parties. In the ideal world, Z
interacts with dummy parties, who simply relay inputs and outputs between Z
and Fϕ, and a simulator S. We say that a protocol ϕ securely realizes Fϕ if Z
cannot distinguish the real world from the ideal world, i.e., Z cannot distinguish
whether it is interacting with A and parties running protocol ϕ or with S and
dummy parties relaying to Fϕ.

A.1 Notation

A binary distribution ensemble X = {X(k, a)}k∈N,a∈{0,1}∗ and another ensemble
Y = {Y (k, a)}k∈N,a∈{0,1}∗ are indistinguishable (X ≈ Y) if for any c, d ∈ N there
exists k0 ∈ N such that for all k > k0 and all a ∈ ∪κ≤kd{0, 1}κ, |Pr [[]X(k, a) =
1]−Pr [[]Y (k, a) = 1]| < k−c. Let REALϕ,A,Z(k, a) denote the distribution given
by the output of Z when executed on input a with A and parties running ϕ, and
let IDEALFϕ,S,Z(k, a) denote the output distribution of Z when executed on
input a with S and dummy parties relaying to Fϕ. We say that the protocol ϕ
securely realizes Fϕ if, for all polynomial-time A, there exists a polynomial-time
S such that, for all polynomial-time Z, REALϕ,A,Z ≈ IDEALFϕ,S,Z .

A protocol ϕG securely realizes F in the G-hybrid model when ϕ is allowed
to invoke the ideal functionality G. Therefore, for any protocol ψ that securely
realizes the functionality G, the composed protocol ϕψ, which is obtained by
replacing each invocation of an instance of G with an invocation of an instance
of ψ, securely realizes F .

A.2 Conventions

When describing ideal functionalities, we use the following conventions:

Interface Naming Convention. An ideal functionality can be invoked by using
one or more interfaces. The name of a message in an interface consists of three
fields separated by dots. The first field indicates the name of the functionality
and is the same in all interfaces of the functionality. This field is useful for dis-
tinguishing between invocations of different functionalities in a hybrid protocol
that uses two or more different functionalities. The second field indicates the
kind of action performed by the functionality and is the same in all messages
that the functionality exchanges within the same interface. The third field dis-
tinguishes between the messages that belong to the same interface, and can take

16

six different values. A message ∗. ∗ .ini is the incoming message received by the
functionality, i.e., the message through which the interface is invoked. A message
∗. ∗ .end is the outgoing message sent by the functionality, i.e., the message that
ends the execution of the interface. The message ∗. ∗ .sim is used by the func-
tionality to send a message to the simulator, and the message ∗. ∗ .rep is used
to receive a message from the simulator. The message ∗. ∗ .req is used by the
functionality to send a message to the simulator to request the description of
algorithms from the simulator, and the message ∗. ∗ .alg is used by the simulator
to send the description of those algorithms to the functionality.

Network vs. local communication. The identity of an interactive Turing machine
(ITM) instance (ITI) consists of a party identifier pid and a session identifier
sid . A set of parties in an execution of a system of ITMs is a protocol instance
if they have the same session identifier sid . ITIs can pass direct inputs to and
outputs from “local” ITIs that have the same pid . An ideal functionality F
has pid = ⊥ and is considered local to all parties. An instance of F with the
session identifier sid only accepts inputs from and passes outputs to machines
with the same session identifier sid . Some functionalities require the session
identifier to have some structure. Those functionalities check whether the session
identifier possesses the required structure in the first message that invokes the
functionality. For the subsequent messages, the functionality implicitly checks
that the session identifier equals the session identifier used in the first message.
Communication between ITIs with different party identifiers must take place
over the network. The network is controlled by the adversary, meaning that he
can arbitrarily delay, modify, drop, or insert messages.

B Ideal Functionalities for Oblivious Transfer with Static
Corruptions

The functionality for OT given in CO is not realizable. The reason is that the
functionality does not communicate with the simulator at all. Additionally, the
functionality for OT in CO is not fully specified. For example, the behavior of the
functionality when the sender sends messages that do not belong to the message
space is not specified.

Here we provide a functionality for OT with static corruptions that is real-
izable and whose behavior is fully specified. First, we describe the typical OT
functionality in which the receiver does not need to wait for the receiver to send
his input to the functionality. As noted by Li and Micciancio, the protocol by
CO cannot realize this functionality. The problem is that, in order to simulate an
honest receiver towards a corrupt sender, the simulator needs to know whether
the receiver has sent his input to the functionality. Second, we show a second
functionality in which the sender has to wait for the receiver’s input.

17

First Functionality FOT

FOT is parameterized by a message spaceM.

1. On input (ot.send.ini, sid ,m0 ,m1) from a party T :
– If sid 6= (T ,R, sid ′), or if m0 /∈ M, or if m1 /∈ M, or if there is a

tuple (sid ,m0 ,m1 , 0) stored, send (ot.send.end, sid ,⊥) to T .
– Store (sid ,m0 ,m1 , 0).
– Send (ot.send.sim, sid) to S.

S. On input (ot.send.rep, sid) from the simulator S:
– If (sid ,m0 ,m1 , 0) is not stored or if (sid ,m0 ,m1 , 1) is already stored,

ignore the message.
– Store (sid ,m0 ,m1 , 1) and parse sid as (T ,R, sid ′).
– Send (ot.send.end, sid , ready) to R.

2. On input (ot.receive.ini, sid , c) from R:
– If sid 6= (T ,R, sid ′), or if c /∈ [0, 1], or if (sid ,m0 ,m1 , 1)

is not stored, or if (sid , c, 0) is already stored, then send
(ot.receive.end, sid ,⊥) to R.

– Store (sid , c, 0).
– Send (ot.receive.sim, sid) to S.

S. On input (ot.receive.rep, sid , d) from the simulator S:
– If (sid , c, 0) is not stored or if (sid , c, 1) is already stored, ignore the

message.
– Store (sid , c, 1).
– If T is not corrupt, send (ot.receive.end, sid ,mc) to OT. Else,

if d = OK, then send (ot.receive.end, sid ,mc) to OT, else send
(ot.receive.end, sid , fail) to R.

Second Functionality FOT

FOT is parameterized by a message spaceM.

1. On input (ot.receive.ini, sid , c) from R:
– If sid 6= (T ,R, sid ′), or if c /∈ [0, 1], or if (sid , c, 0) is already stored,

then send (ot.receive.end, sid ,⊥) to R.
– Store (sid , c, 0).
– Send (ot.receive.sim, sid) to S.

S. On input (ot.receive.rep, sid) from the simulator S:
– If (sid , c, 0) is not stored or if (sid , c, 1) is already stored, ignore the

message.

18

– Store (sid , c, 1).
– Send (ot.receive.end, sid , ready) to T .

2. On input (ot.send.ini, sid ,m0 ,m1) from a party T :
– If T is not corrupt do the following.
• If sid 6= (T ,R, sid ′), or m0 /∈ M, or m1 /∈ M, or (sid , c, 1)

is not stored, or if there is a tuple (sid ,m0 ,m1 , 0) stored, send
(ot.send.end, sid ,⊥) to T , else continue with the next steps.

– If T is corrupt do the following.
• If sid 6= (T ,R, sid ′), or (sid , c, 1) is not stored, or if there is a

tuple (sid ,m0 ,m1 , 0) stored, send (ot.send.end, sid ,⊥) to T .
• Else, if m0 /∈ M, set m0 = ⊥, and if m1 /∈ M, set m1 = ⊥.

Continue with the next steps.
– Store (sid ,m0 ,m1 , 0).
– Send (ot.send.sim, sid) to S.

S. On input (ot.send.rep, sid) from the simulator S:
– If (sid ,m0 ,m1 , 0) is not stored or if (sid ,m0 ,m1 , 1) is already stored,

ignore the message.
– Store (sid ,m0 ,m1 , 1) and parse sid as (T ,R, sid ′).
– Send (ot.send.end, sid ,mc) to R.

19

	Too Simple to be UC-Secure: On the UC-Insecurity of the ``Simplest Protocol for Oblivious Transfer'' of Chou and Orlandi

