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Abstract. In 2015, Chou and Orlandi presented an oblivious transfer
protocol that already drew a lot of attention both from theorists and
practitioners due to its extreme simplicity and high e�ciency. Chou and
Orlandi claimed that their protocol is UC-secure in the random oracle
model under dynamic corruptions, which is a very strong security guar-
antee. Unfortunately, in this work we point out a �aw in their security
proof for the case of sender corruption.
We de�ne a decisional problem and we prove that, if a correct proof is
provided, then this problem can be solved correctly with overwhelming
probability. Therefore, the protocol by Chou and Orlandi cannot be in-
stantiated securely with groups for which our decisional problem cannot
be solved correctly with overwhelming probability. Our decisional prob-
lem can be solved with overwhelming probability when a DDH oracle
is provided. Therefore, it seems likely that the protocol by Chou and
Orlandi can be instantiated securely with gap-DH groups.
Keywords: oblivious transfer, universal composability.

1 Introduction

Oblivious Transfer. In an oblivious transfer (OT) protocol, a sender receives as
input messages M1, . . .MN and a receiver receives as input indices σ1, . . . , σk ∈
[1, N ]. At the end of the protocol, the receiver outputs Mσ1

, . . . ,Mσk
and learns

nothing about the other messages. The sender does not learn anything about
the indices.

OT was introduced by Rabin [Rab81] and generalized by Even, Goldreich
and Lempel [EGL82] and Brassard, Crépeau and Robert [BCR87]. (The notion
of OT was also developed independently by Wiesner in the 1970's but published
only later [Wie83].) OT has a lot of applications and it is at the core of multi-
party computation [Yao86,GMW87,Kil88].

Chou and Orlandi's OT Protocol. Chou and Orlandi (CO) [CO15] present a
novel OT protocol and claim that it is universally composable (UC) [Can01]
under dynamic corruptions. Their protocol has the advantages of being extremely
simple and e�cient. The work of CO has already gained some popularity both
from theorists and practitioners and has so far been cited 21 times according to
Google Scholar.



CO present a 1-out-of-2 OT protocol and extend it to a 1-out-of-n OT pro-
tocol in a straightforward manner. For the purpose of this work, which focuses
on negative results about the security of the CO protocol, it su�ces to analyze
the 1-out-of-2 OT protocol. We note that our negative results also apply to the
1-out-of-n OT protocol.

The 1-out-of-2 OT protocol by CO is depicted in Figure 1. To run the pro-
tocol, Alice (the sender) and Bob (the receiver) have �rst to agree on a group
G and a generator g of prime order p. In the �rst message, Alice samples a
random element a in Zp and sends A = ga to Bob. Bob picks random b in Zp
and, depending on his index c ∈ [0, 1], sends either B = gb or B = Agb to Alice.
Then, Alice derives two keys k0 and k1 from (B)a and (B/A)a respectively. Alice
encrypts the messagesM0 andM1 by using the keys k0 and k1 respectively. Bob
can derive the key kR from Ab, which allows Bob to obtain Mc. However, it is
computationally hard for him to compute the key that allows the obtention of
M1−c.

The protocol uses as building block a symmetric-key encryption scheme given
by two algorithms Enc and Dec. Security against a corrupt receiver holds in the
random oracle model if the scheme (Enc, Dec) is non-committing and if the CDH
assumption holds in the group G. In [CO15], it is claimed that security against
a corrupt sender holds in the random oracle model if the scheme (Enc, Dec) is
robust.

Sender Receiver

Input: (M0,M1) Input: c
Output: none Output: Mc

a← Zp b← Zp

A=ga−−−−−−−→
if c = 0 : B = gb

if c = 1 : B = A · gb
B←−−−−−

k0 = H(Ba) kR = H(Ab)
k1 = H((B

A
)a)

e0 ← Enc(k0,M0)
e1 ← Enc(k1,M1)

e0,e1−−−−−−−→
Mc = Dec(kR, ec)

Fig. 1. Chou and Orlandi's 1-out-of-2 OT Protocol.
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1.1 Our Results

We show a mistake in the security proof given by CO for the case of a corrupt
sender. Namely, in their security proof, their simulator extracts incorrectly the
messages M0 and M1 that are sent to the ideal functionality.

We also de�ne a decisional problem in the group G and we prove that, if a
correct simulator is provided for the case of a corrupt sender, then this problem
can be solved with overwhelming probability. Therefore, the protocol by CO
cannot be instantiated securely with groups G in which our decisional problem
cannot be solved with overwhelming probability.

Consequently, the protocol by CO cannot be instantiated with any group G
in which the CDH problem is intractable, but only with groups where both the
CDH problem is intractable and our decisional problem can be solved with over-
whelming probability. Our decisional problem can be solved with overwhelming
probability when the DDH problem is easy in G. Therefore, it seems likely that
the protocol by CO can be instantiated securely with gap-DH groups.

Outline of the Paper. In Section 2, we describe an ideal functionality for OT,
which we use in our proof in Section 4. This ideal functionality takes into account
an observation made by Li and Micciancio [LM16] on the de�nition of ideal
functionality for OT that the protocol by CO realizes. In Section 3, we describe
the �aw in the simulator by CO for the case of sender corruption. In Section 4,
we de�ne a decisional problem and we prove that the CO protocol cannot be
instantiated securely with groups G where this problem cannot be solved with
overwhelming probability. We conclude in Section 5.

Di�erences with the previous versions. In a previous version of this work, we
claimed that the security proof by CO for the case of receiver corruption was
mistaken. As pointed out by Chou and Orlandi, this claim is incorrect. We thank
Chou and Orlandi for their comments and we apologize for not contacting them
before publishing this paper.

2 Ideal Functionality for 1-out-of-2 OT

In this section, we describe an ideal functionality for OT, which we use in our
proof in Section 4. This ideal functionality takes into account an observation
made by Li and Micciancio [LM16] on the de�nition of ideal functionality for
OT that the protocol by CO realizes.

The functionality de�ned by CO does not impose any restriction on the order
in which the sender and the receiver send their inputs to the ideal functionality.
Li and Micciancio [LM16] observe that this is a problem to prove secure the
OT protocol by CO. In the OT protocol by CO, the receiver has to decide his
input bit in order to compute the second message of the protocol. The sender
decides what messages he inputs in order to compute the third message. In the
security proof for the case of sender corruption, the simulator needs to extract
the messages from the adversary. The simulator cannot perform such extraction
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until receiving the third message of the protocol from the adversary. However, to
receive this third message, the simulator has to send before the second message to
the adversary. The problem here is that the simulator does not know whether the
receiver has already input his bit to the functionality, because the functionality
does not tell the sender that the receiver has sent her input. Consequently, the
simulator does not know whether it can send the second message to the adversary,
and so it cannot provide a correct simulation. In the security proof by CO, this
problem is overlooked.

In Figure 2, we show a functionality for 1-out-of-2 OT for static corruptions.
As suggested by Li and Micciancio, this functionality informs the sender when
the receiver sends her input bit. We note that this functionality, like the one
by CO, skips many details, such as the communication with the simulator and
many other elements that are necessary in the UC framework (session identi�ers,
. . . ).

Ideal
(
2
1

)
-OT Functionality

The functionality waits for some input c from the receiver R and before receiving
any input from R will ignore any input coming from the sender S. When the input
c is received from R, if c /∈ {0, 1}, the functionality sends an error message ⊥ to
the receiver, otherwise it noti�es the sender by transmitting a special symbol OK.
The functionality will ignore further inputs from R.
After receiving c ∈ {0, 1} from R, if the functionality did not abort, the function-
ality waits for either a pair of messages (M0,M1) or an error message ⊥ from the
sender S. If the input of S is ⊥ or a non-valid pair of messages (in the message
space) the functionality sends ⊥ to the receiver, otherwise it sends Mc to the
receiver. The functionality ignores further inputs from S.

Fig. 2. Ideal functionality for 1-out-of-2 OT.

We would like to stress that the mistake we found in the simulator of the
security proof by CO is independent of the one found by Li and Micciancio. In
fact, Li and Micciancio [LM16] provide a simulator for the CO protocol for the
case of sender corruption to realize their modi�ed OT functionality and say �we
leave the veri�cation that the simulator is indeed correct to the reader.� However,
the simulator by Li and Micciancio has the same problem as the simulator by
CO.

The mistake we found in the simulator by CO is that the simulator does
not send the correct messages to the functionality when the sender is corrupt.
Therefore, it cannot be patched by using a di�erent ideal functionality because
any existing 1-out-of-2 OT functionality requires the sender to send the messages
to the functionality.
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3 Flaw in CO's Security Proof

In this section, we analyze the security proof provided by CO for the case of
sender corruption. We show that the simulator described by CO for this case is
incorrect. For simplicity, we analyze the instantiation of the protocol as a 1-out-
of-2 OT scheme, but we remark that the mistake we found also holds for the
case of m parallel executions of 1-out-of-n OT for other values of m and n.

The simulator needs to extract the messages from the corrupt sender in order
to send them to the ideal functionality. To do this, when the corrupt sender makes
a random oracle query, the simulator described by CO picks a random key, stores
it and replies the query with this random key. After that, when the corrupt sender
sends the ciphertexts, the simulator tries to decrypt the ciphertexts (e0, e1) by
using all the stored keys until the result of one of the decryptions is not ⊥. If
the result of decryption is ⊥ in all cases, then the message is set to ⊥.

The problem in this simulator is the following. The corrupt sender can submit
an oracle query on input X 6= Ba (resp. Y 6= (BA )

a) and compute the ciphertexts
e0 (resp. e1) using key k

′
0 = H(X) (resp. k′1 = H(Y )). Then the simulator would

decrypt using (k′0, k
′
1) and obtain messages di�erent from ⊥. However, the honest

receiver in the real world would obtain ⊥ because the oracle query made by the
receiver is for the correct value Z = Ab, and so the key kR that the honest
receiver obtains is di�erent from both k′0 and k′1.

CO argue that their simulator is correct thanks to the robustness of the
encryption scheme. They claim that, because there is only one key that, for
any ciphertext, decrypts the ciphertext to a message di�erent from ⊥, then the
message decrypted by the simulator and the one obtained by the honest receiver
have to be equal. However, this is untrue. The problem is that the corrupt sender
can compute a ciphertext with a key di�erent from the correct key used by the
honest receiver. I.e., the corrupt sender can send a random oracle query for an
incorrect value and then compute a ciphertext by using the key obtained for this
query. In this case, the honest receiver obtains ⊥, but the simulator decrypts the
ciphertext to a message di�erent from ⊥ by using the key that was sent to the
corrupt sender to answer the random oracle query for an incorrect value.

To �x the simulator, we would need a mechanism that allows the simulator
to check whether a random oracle query from the corrupt sender is for a correct
value, i.e., X = Ba or Y = (BA )

a, or not. In Section 4, we show that the simulator
cannot perform this check for both X and Y unless the simulator can solve a
decisional problem with overwhelming probability.

4 On the Security Against a Corrupt Sender of CO's OT

In this section, we de�ne a decisional problem in the group G. We prove that,
if a correct simulator for CO's OT protocol for the case of a corrupt sender
exists, then this simulator can be used to solve this decisional problem with
overwhelming probability. Therefore, if we assume that our decisional problem
cannot be solved with overwhelming probability in G, then a correct simulator
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cannot be provided. However, if our problem can be solved with overwhelming
probability in G, then a correct simulator can still be provided. Our decisional
problem can be solved with overwhelming probability if the DDH problem is
easy to solve in G. Therefore, it seems likely that a correct simulator can be
provided if the CO's OT protocol is instantiated with gap-DH groups.

As a consequence, security for a corrupt sender does not hold solely in the
random oracle model under the assumption that the encryption scheme Enc and
Dec is robust, as claimed by CO. An additional requirement is that, in the group
G, our decisional problem can be solved with overwhelming probability.

Decisional problem in G. Our decisional problem is parameterized by a group
generator G that on input a security parameter λ outputs a group description
(G, p, g). We de�ne the following game between a challenger and an adversary A.
The challenger runs G on input the security parameter λ to get a group descrip-
tion (G, p, g) for a group G of prime order p with generator g. The challenger
picks a random value a from Zp. The adversary A receives as input the group
description (G, p, g) and ga. The adversary returns to the challenger a group
element B. B draws a bit b at random and proceeds as follows:

� If b = 0, set Z0 = Ba and Z1 = Ba/ga
2

.
� If b = 1, draw randomly another bit d and proceed as follows.
• If d = 0, set Z0 as a random element in G and Z1 = Ba/ga

2

.
• If d = 1, set Z0 = Ba and set Z1 as a random element in G.

The challenger sends the pair (Z0, Z1) to the adversary. The adversary out-
puts its guess b′. The adversary wins the game if b′ = b.

The hardness of our decisional problem is based on the di�culty of deciding
whether a value given by the challenger equals ga

2

or random. We conjecture
that our decisional problem cannot be solved with overwhelming probability in
groups G in which the DDH assumption holds. Concretely, we conjecture that,
in such groups, the advantage of an adversary in winning the game described
above is non-negligibly greater than 3/4+ ν(λ). On the other hand, it is easy to
see that, if the DDH assumption does not hold in G, then our decisional problem
can be solved with overwhelming probability.

Theorem 1 Under the assumption that our decisional problem cannot be solved
with overwhelming probability in the group G, the CO's OT protocol cannot be
proven UC-secure in the random oracle model when the sender is corrupt.

Proof. We prove Theorem 1 by contradiction. We show that, if a correct simu-
lator for the case of a corrupt sender exists, then we can use that simulator to
solve our decisional problem with overwhelming probability.

First, we make the following observation. Consider an environment that sends
a random bit c as input to the honest receiver. Given such an environment, any
correct simulator must be able to extract correctly the messages M0 and M1

from the corrupt sender in order to send them to the ideal functionality. As can
be seen, if the message Mc′ (c

′ ∈ {0, 1}) sent by the simulator is not correct,
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i.e., if it does not equal the message that the honest receiver outputs in the real
world, then the simulation fails whenever the environment sends c = c′ to the
honest receiver. We omit a formal proof of this observation.

Second, we show that, given a simulator that is able to extract both M0 and
M1 correctly for the CO protocol, we can build a reduction R to solve our de-
cisional problem with overwhelming probability. R interacts with the challenger
and runs a copy of the simulator. R plays the role of the environment, the cor-
rupt sender and the ideal functionality towards the simulator. The reduction R
works as follows:

� R receives the instance (G, p, g, ga) from the challenger.
� R, acting as the corrupt sender, sends the message A = ga to the simulator.
� R, acting as the ideal functionality, informs the simulator that the receiver
has input his bit c.

� R receives a message B from the simulator. We observe that, after being
informed by the ideal functionality that the receiver has input his bit c, a
correct simulator must always send a message B indistinguishable from the
message B produced by the honest receiver in the real world. Otherwise the
simulation fails.

� R sends B to the challenger.
� The challenger sends (Z0, Z1) to R.
� R, acting as the corrupt sender, sends (Z0, Z1) as a random oracle query to
the simulator.

� R receives the reply (k0, k1) from the simulator.
� R picks two random messages M0 and M1, computes e0 ← Enc(k0,M0) and
e1 ← Enc(k1,M1), and, acting as the corrupt sender, sends e0 and e1 to the
simulator.

� R receives two messages M ′0 and M ′1 from the simulator. If M0 = M ′0 and
M1 = M ′1, R sends b′ = 0 to the challenger, else R sends b′ = 1 to the
challenger.

The simulator must extract the messagesM ′0 andM
′
1 from e0 and e1 correctly

with overwhelming probability. Therefore, b = b′ with overwhelming probability,
i.e. R solves our decisional problem with overwhelming probability. As can be
seen, if b = 0, then both Z0 and Z1 are correctly computed by the challenger,
and thus the keys (k0, k1) used to compute e0 and e1 equal the correct key used
by the honest receiver in the real world. Because the simulator must send correct
messages M ′0 and M ′1 to the functionality, if M0 = M ′0 and M1 = M ′1 we are in
the case in which Z0 and Z1 are correctly computed by the challenger. If b = 1,
either Z0 or Z1 is computed randomly by the challenger. In this case, either k0
or k1 di�ers from the key used by the honest receiver in the real world. Namely,
if Zc′ (c

′ ∈ {0, 1}) is random, then kc′ di�ers from the key kc used by the honest
receiver in the real world whenever c = c′. Because of the robustness of the
encryption scheme, the honest receiver in the real world outputs ⊥ whenever
c = c′. Because the simulator must send correct messages to the functionality,
in this case the simulator must send M ′c′ = ⊥ to the functionality and never
M ′c′ =Mc′ .
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5 Conclusion

We have shown that the OT protocol by CO cannot be instantiated securely
with every group G in which the CDH assumption holds, as originally claimed
by CO. We have de�ned a decisional problem and we have shown that, for
the protocol to be secure, this decisional problem should be solvable in G with
overwhelming probability for the protocol to be secure. Our decisional problem
can be conjectured to be hard in groups G in which the DDH assumption is
hard. If the DDH assumption does not hold in G, our decisional problem can be
solved correctly with overwhelming probability. Therefore, it is likely that the
CO protocol can be securely instantitated with gap-DH groups.
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