
Fully Dynamic Multi Target Homomorphic Attribute-Based
Encryption

Ryo Hiromasa ∗ Yutaka Kawai †

April 27, 2017

Abstract

We propose multi target homomorphic attribute-based encryption (MT-HABE) with fully dynamic
homomorphic evaluation: it can take as input arbitrary additional ciphertexts during homomorphic
computation. In the previous MT-HABE of Brakerski et al. (TCC 2016-B), the output of homomorphic
computation, which is related to a policy set, cannot be computed with a fresh ciphertext whose attribute
does not satisfy any policy in the set. This is because the underlying multi-key fully homomorphic
encryption (MKFHE) is single-hop: some keys are related to the output of homomorphic computation,
which cannot be combined with ciphertexts encrypted under other keys. To implement fully dynamic
homomorphic evaluations, we construct MT-HABE from the multi-hop MKFHE proposed by Peikert
and Shiehian (TCC 2016-B).

∗Mitsubishi Electric. E-mail: Hiromasa.Ryo@aj.MitsubishiElectric.co.jp
†Mitsubishi Electric. E-mail: Kawai.Yutaka@da.MitsubishiElectric.co.jp

Hiromasa.Ryo@aj.MitsubishiElectric.co.jp
Kawai.Yutaka@da.MitsubishiElectric.co.jp

1 Introduction

Fully homomorphic encryption (FHE) allows us to evaluate any function over encrypted data by only using
public information. Since the breakthrough work by Gentry [Gen09a,Gen09b], many different varieties of
FHE have been proposed [DGHV10,BV11b,BV11a,BGV12,Bra12,LTV12,GSW13,CLT14]. FHE can be
used, for example, to outsource computations to remote servers (e.g., cloud servers) without compromising
privacy.

A cloud server may be used by multiple users, so it is required to set access permission among
them. Attribute-based encryption (ABE) is a special type of public key encryption to accomplish this
requirement. In key-policy ABE scheme, a (master) public key mpk is used to generate a ciphertext of a
message µ, which is labeled with a public attribute x ∈ {0, 1}ℓ . The secret key sk f is associated to a policy
f : {0, 1}ℓ → {0, 1} and it can only decrypt ciphertexts that satisfy f (x) = 0. Previously, several ABE
schemes under the learning with errors (LWE) assumption have been proposed [GVW13,BGG+14,BV16],
and it was known that from [GSW13] and [GVW13] we can construct homomorphic ABE (HABE). The
HABE scheme enables us to both set access permission and homomorphically evaluate on the ciphertexts,
but the homomorphism is somewhat limited: the scheme can correctly evaluate only on the ciphertexts
with the same attribute. In [CM16], Clear and McGoldrick proposed a way to compile the above HABE
to an HABE with non-leveled homomorphism, but the resulting scheme still has the limitation over the
attributes.

In [BCTW16], Brakerski et al. proposed target HABE (T-HABE) that enables cross-attribute ho-
momorphic evaluations. A syntactical difference between T-HABE and HABE is in the homomorphic
evaluation algorithm. In T-HABE, a homomorphic evaluation algorithm takes as input a set of policies
F = { fi}i, an operation g, and some ciphertexts {(ct j, xj)}, where each ciphertext encrypts µj . If for
any xj there exists fi such that fi(xj) = 0, the algorithm outputs a ciphertext ct(g)F that can be decrypted
by using all of the secret keys {sk fi }i, and the result of the decryption is g({µj}j) with high probabil-
ity. The paper proposed two types of T-HABE, single target HABE (ST-HABE) and multi target HABE
(MT-HABE). ST-HABE is an T-HABE that can homomorphically evaluate between the ciphertexts each
of whose attributes satisfy a certain single policy, i.e., T-HABE in which F = { f } for a single policy f . In
MT-HABE, a set of policies is related to the homomorphic computation, which can be processed between
ciphertexts whose attribute satisfies some policy in the set. The MT-HABE of [BCTW16] is constructed
from the ST-HABE and multi-key FHE (MKFHE) of [CM15,MW16].

The MT-HABE proposed in [BCTW16] is not fully dynamic: the output of ciphertexts, which depends
on a certain policy set F, cannot be homomorphically evaluated with the fresh ciphertext whose attribute
does not satisfy any policy in F. This forces the evaluator to know all the involved policies before the
computation begins.

1.1 Our Results

We propose fully dynamic MT-HABE: it can take as input arbitrary additional ciphertexts during ho-
momorphic computation. This enables us both dynamic cross-attribute homomorphic computations and
setting access permissions.

In the previous MT-HABE of [BCTW16], the output of homomorphic computation is related to a policy
set F, and it cannot be computed with a fresh ciphertext whose attribute does not satisfy any policy in F.
This is because the underlying multi-key fully homomorphic encryption (MKFHE) is single-hop: some
keys are related to the output of homomorphic computation, which cannot be combined with ciphertexts

1

Key Size Ciphertext size
[BCTW16] Õ(n2d2

BCTWℓ) Õ(ℓn4d6
BCTW) → Õ(d2n2d4

BCTW)
Ours Õ(n2d2

oursℓ) Õ(n3(ℓ + dours)d6
ours) → Õ(n3d7

ours)

Table 1: Comparison of key and ciphertext size between the previous MT-HABE [BCTW16] and our
fully dynamic MT-HABE. The parameter n is the LWE dimension, ℓ is the maximal number of inputs of
policies, dBCTW = dF + dG log d, and dours = d log d + dG + dF log ℓ, where d represents the bound of the
number of involving policies on homomorphic computations, and dF and dG denote the maximal depths
of policies and operations, respectively. The left and right hand sides of the notation→ represent the size
of a fresh and evaluated ciphertext.

encrypted under other keys. To implement dynamic homomorphic evaluation algorithms, we construct
MT-HABE from the multi-hop MKFHE proposed by Peikert and Shiehian [PS16].

The security of the proposed MT-HABE is proven under the same assumption as [BCTW16]: the LWE
assumption with sub-exponential modulus to noise ratio in the random oracle model. A comparison of key
and ciphertext size between the MT-HABE of [BCTW16] and our scheme is shown in Table 1, which says
that the size of the public key of our scheme is almost the same as [BCTW16] ignoring the logarithmic
factor.

1.2 Our Techniques

We denote a vector in column form (so its transpose is in row form). Let n, q be LWE parameters,
m = O(n log q), N := n⌈log q⌉, M := (m + N + 1)⌈log q⌉, and gT := (1, 2, 22, . . . , 2 ⌈log q⌉). In the
following, we use the notation x ≈ y to represent the noisy equation x = y + e for some noise term e. The
starting point of the proposed scheme is the MKFHE scheme of [PS16].

Multi-hop MKFHE of [PS16]. A ciphertext of the MKFHE is a triple of matrices (C,F,D) such that for
a secret key vector t,

tTC ≈ µ(tT ⊗ gT), F = F̂ + µ(In ⊗ gT), (In ⊗ tT)D ≈ (R ⊗ g),

where F̂ = AR for a random public matrix A and a random binary matrix R. To achieve dynamic
homomorphism on the ciphertexts, the MKFHE has an algorithm to expand a ciphertext C under t into a
ciphertext C′ under t′ = [t, t∗] for an additional key t∗, where C and C′ encrypts the same message. The
expanded ciphertext C′ is generated by

C′ :=
[
C X

F

]
,

for a matrix X that satisfies tTX + tTAR ≈ 0. Since it holds that t′TC′ ≈ µ(t′T ⊗ gT), which is the
approximate eigenvector relation as in [GSW13], we can homomorphically evaluate on these expanded
ciphertexts.

ST-HABE of [BCTW16]. A public parameter contains random matrices A,B0,B1, . . . ,Bℓ and a random
vector v. We define ®Bx := [B1, . . . ,Bℓ], and x ®G := [x1(In ⊗ gT), . . . , xℓ(In ⊗ gT)] for an attribute

2

x ∈ {0, 1}ℓ . A ciphertext of the ST-HABE consists of the following two matrices

C ≈

AT

BT
0

vT

 · S + µ(Im+N+1 ⊗ gT), Cx ≈ (®Bx − x ®G)T · S

for some random matrix S. Let f : {0, 1}ℓ → {0, 1} be a policy and B f be a matrix generated upon f .
The secret key for f is a vector r f such that rTf AT + r′Tf (B0 + B f)T + vT = 0 for a random binary vector
r′f , which is generated by the random oracle in the MT-HABE of [BCTW16]. There exists a matrix H
such that B f − f (x)(In ⊗ gT) = (®Bx − x ®G)H. In homomorphic evaluations, the ST-HABE generates the
functioned ciphertext for the policy f by computing Ĉ f := C+[0M×m,CT

xH, 0M]T . If f (x) = 0 holds, then
the functioned ciphertext satisfies the approximate eigenvector relation of [GSW13] with tTf = [rTf , r′Tf , 1].

Our Scheme. We construct fully dynamic MT-HABE by making the multi-hop MKFHE [PS16] attribute-
based. In the scheme of [PS16], the matrix F contains a message µ, so F̂ must be indistinguishable from
uniform to ensure the security. The matrix F̂ is set to be AR, which is statistically indistinguishable from
uniform by the leftover hash lemma (LHL). To make [PS16] attribute-based, it is required to use the matrix
[A,B, v]T instead of just A, but the number of rows of [A,B, v]T is insufficient for saying [A,B, v]TR
indistinguishable from uniform by LHL. To deal with this problem, we set F̂ = [A,B, v]TR + E ≈
[A,B, v]TR, and say that the matrix is computationally indistinguishable from uniform by the LWE
assumption.

In the proposed MT-HABE, the functioned ciphertext is computed in a similar way to [BCTW16], and
it consists of the following three matrices such that for a secret key t,

tTC ≈ µ(tT ⊗ gT), F ≈

AT

BT

vT

 · R + µ(Im+N+1 ⊗ gT), (IN ⊗ tT)D ≈ (R ⊗ g),

where m = O(n log2 q) for the security reason. To dynamically evaluate on this ciphertext, we need to
implement the ciphertext expansion algorithm, which transforms the ciphertext C under the key t to the
ciphertext C′ under [t, t f] for an additional policy f . The algorithm must compute a matrix X such that
tTX+ tTf F ≈ µ(tTf ⊗ gT), which is in other words tTX+ tTf [A,B, v]T ·R ≈ 0. However, the term rTf A, which
is from expanding tTf [A,B, v]T , cannot be known because r f is a part of the secret key. To overcome this
problem, our algorithm instead computes X such that tTX ≈ r′Tf (B0 +B f −B)T ·R, where r′Tf is obtained
from the random oracle, the matrices B0 and B are the public matrices, and B f can publicly be generated
from f . Then, it holds that

tTX + t f F ≈ r′Tf · (B0 + B f − B)T · R + [rTf , r′Tf , 1]

AT

BT

vT

 · R + µ(tTf ⊗ gT)

= [rTf , r′Tf , 1]

AT

BT
0 + BT

f

vT

 · R + µ(tTf ⊗ gT)

= µ(tTf ⊗ gT).

3

1.3 Organization

In Section 2, we introduce mathematical preliminaries used in this paper. In Section 3, we show the
construction of the proposed fully dynamic MT-HABE In Section 4, we prove the correctness and security
of our construction.

2 Preliminaries

Notations. We denote the set of natural numbers by N, and the set of integers by Z. For any positive
integer d > 0, we represent {1, 2, . . . , d} by [d]. Let S be a set and P be a probability distribution over S.
Then, we denote by a ← S that a ∈ S is chosen uniformly at random from S, and by b← P that b ∈ S is
sampled from P. The notation negl(λ) represents the set of negligible functions for λ ∈ N.

Vectors are in column form and written by bold lower-case letters (e.g., x). The i-th element of the
vector x is represented by xi. We denote the ℓ∞ norm (max norm) of the vector x by ∥x∥∞. The inner-
product of two vectors is written by ⟨x, y⟩. We denote matrices as the bold capital letters (e.g., X) and the
i-th column vector of the matrix X is represented by X[i]. For matrix X ∈ Rm×n, the ℓ∞ norm of X is
defined as ∥X∥∞ := maxi∈[n]{∥X[i]∥∞} The notation XT ∈ Rn×m represents the transpose of X. For two
matrices A ∈ Rm×n1 and B ∈ Rm×n2 , [A,B] ∈ Rm×(n1+n2) is the matrix generated by concatenating A and
B. Let In be the n × n identity matrix, and 0n×m be the n × m matrix all of whose entries are 0. For any
i ∈ [n], ui ∈ {0, 1}n represents the i-th standard basis vector of dimension n.

Tensor Products. The tensor product of an m1 × n1 matrix A and m2 × n2 matrix B over a commutative
ring R is the m1m2 × n1n2 matrix consisting of m2 × n2 blocks whose (i, j)-th block is ai, jB, where ai, j is
the (i, j)-th element of A.

For any scalar r ∈ R, we have

r(A ⊗ B) = (rA) ⊗ B = A ⊗ (rB).

We heavily use the mixed product property of tensor products, which say

(A ⊗ B) · (C ⊗ D) = (AC) ⊗ (BD)

for any matrices A,B,C,D with compatible dimensions. In particular, it holds that

A ⊗ B = (A ⊗ Iheight(B)) · (Iwidth(A) ⊗ B)
= (Iheight(A) ⊗ B) · (A ⊗ Iwidth(B)).

Noisy Equations. In this paper, we consider the noisy equations, and we use the notation ≈ to say that the
two sides of the equation are approximately equal within some additive error, For example,

x ≈ y (error: B)

represents x = y + e for some e ∈ [−B, B].

4

2.1 Target Homomorphic Attribute-Based Encryption

In [BCTW16], Brakerski et al. first introduced the notion of target homomorphic attribute based encryption
(T-HABE), which is an homomorphic encryption whose homomorphic operations depend on policies. We
define the syntax of T-HABE and then define its correctness and security.

Definition 2.1 (Target Homomorphic Attribute Based Encryption (T-HABE)). A target homomorphic
attribute based encryption scheme consists of five algorithms THABE = THABE.{Setup,Enc,
Keygen,Dec,Eval} with the following syntax.

• THABE.Setup(1λ) : takes as input a security parameter λ (additionally, the algorithm can take pa-
rameters that specifies classes of policies or admissible operations), and outputs a public parameter
pp and master secret key msk.

• THABE.Encpp(µ, x) : takes as input a public parameter pp, plaintext µ, and attribute x, and outputs
a tuple of a ciphertext and attribute (ct, x).

• THABE.Keygenmsk(f) : takes as input a master secret key msk and policy f , and outputs a secret
key sk f .

• THABE.Evalpp(F, ct(1), . . . , ct(k), g) : takes as input a public parameter pp, set of policies F, cipher-
texts ct(1), . . . , ct(k), and a function g, and outputs a ciphertext ctg.

• THABE.DecskF (ctg) : takes as input a secret key skF（skF = {sk f : f ∈ F}） and ciphertext ctg,
and outputs a plaintext µ ∈ {0, 1}.

The correctness of T-HABE guarantees that the cipheretext is correctly decrypted to the intended value
with high probability when given all the keys for the policies involving in the homomorphic computation.

Definition 2.2 (Correctness of T-HABE). 　 Let {Fλ}λ∈N be a class of policies, and {Gλ}λ∈N be class
of operations. The T-HABE scheme THABE = THABE.{Setup,Enc,Keygen,Eval,Dec} is correct if the
following holds.

Let (pp,msk) ← THABE.Setup(1λ). Consider a set of poly(λ) policy F ⊆ Fλ, set of the corresponding
secret keys skF := {sk f : f ∈ F}, a sequence of k ≥ 1 messages and attributes {(µ(i) ∈ {0, 1}, x(i) ∈
{0, 1}∗)}i∈[k] such that ∀x(i), ∃ f ∈ F, f (x(i)) = 0, their ciphertexts {ct(i) ← THABE.Encpp(µ(i), x(i))}i∈[k].
Then, computing ctg := THABE.Evalpp(F, ct(1), . . . , ct(k), g) for some g ∈ G, it holds that

Pr[THABE.Decsk f (ctg) , g(µ(1), . . . , µ(k))] = negl(λ),

where the probability is take over the randomness in the experiment.

The security is defined in the same way as standard (key-policy) ABE.

Definition 2.3 (Security of T-HABE). Let THABE be a T-HABE scheme described in the above, and
consider the following game between the challenger and adversary.

1. The adversary sends an attribute x∗ to the challenger.

2. The challenger generates (msk, pp) ← THABE.Setup(1λ) and sends pp to the adversary.

5

3. The adversary makes arbitrary many key generation queries by sending fi (represented as cir-
cuits) to the challenger. Upon receiving such functions, the challenger creates a key sk fi ←
THABE.Keygenmsk(fi) and sends sk fi if fi(x∗) = 1, and sends ⊥ otherwise.

4. The adversary sends a pair of messages µ0, µ1 to the challenger. The challenger chooses chooses
b ← {0, 1} uniformly at random, and computes ct∗ ← THABE.Encpp(µb, x∗). It sends ct∗ to the
challenger.

5. The adversary makes arbitrary many key generation queries as in Step 3.

6. The adversary outputs b′ ∈ {0, 1}.

The above game is called the selective security game, and the advantage of the adversary in this game is
defined by AdvSS−THABE

A (λ) := | Pr[b′ = b] − 1/2|, where b and b′ are generated in the game. The scheme
THABE is selectively secure if for any PPT adversary A, it holds that AdvSS−THABE

A (λ) = negl(λ).

As well as the previous attribute-based encryption from lattices, we allow decryption when f (x) = 0,
and all of the queries must satisfy fi(x∗) = 1.

2.2 Learning with Errors (LWE)

The Learning with errors (LWE) assumption was first introduced by Regev [Reg05]. The decision version
of the LWE problem is called Decisional LWE (DLWE) and defined as follows.

Definition 2.4 (DLWE). For a security parameter λ, let n := n(λ) be a integer lattice, q := q(λ) ≥ 2 be a
integer modulus, and χ := χ(λ) be a error distribution over Z. DLWEn,q,χ is the problem to distinguish the
following two distributions: in the first distribution, a pair (ai,bi) is sampled from the uniform distribution
over Znq ×Zq. In the second distribution, a pair (ai, bi) is sampled by sampling ai ← Znq and s← Znq from
the uniform distribution, ei ← χ from the noise distribution, and set bi := ⟨ai, s⟩ + ei mod q. DLWEn,q,χ

assumption states that DLWEn,q,χ is intractable for any PPT adversary.

By letting χ be a discrete Gaussian distribution over Z with parameter r = αq ≥ 2
√

n (represented by
DZ,r) for some 0 < α < 1, there exists a quantum reduction [Reg05] from DLWEn,q,χ=DZ,r to approximating
a short vector over n dimensional lattices within factor of Õ(n/α) 1. Additionally, it is known that there
exists the classical reductions [Pei09,BLP+13] for other parameters.

2.3 Gadget Matrix and Bit Decomposition

Let gT := (1, 2, . . . , 2 ⌈log q⌉) be a vector consisting of the powers of 2. The operation g−1 : Zq →
{0, 1}1×⌈log q⌉ takes as input x ∈ Zq, and outputs y such that ⟨y, g⟩ = x ∈ Zq. For example, g−1 is
the operation to decompose x into its binary representation. Symmetrically, g−T : Zq → {0, 1} ⌈log q⌉

transforms an element in Zq into the column vector of its binary representation. More generally, the
operation (In ⊗ g−T)(·) generates n · ⌈log q⌉ dimensional vector with coefficients of {0, 1} by applying g−T
to every element of the vector in Znq. Then the following holds

(In ⊗ gT) · (In ⊗ g−T)(x) = x.

It is clear that this operation can be generalized to matrices.

1 Approximating a short vector over n dimensional lattices within factor of γ takes 2Ω̃(n/logγ) computations [Sch87].

6

2.4 Lattice Trapdoors and Discrete Gaussian Distributions

Consider a matrix A ∈ Zn×mq . For all V ∈ Zn×m′q and for any probability distribution P over Zm, let A−1
P (V)

be the random variable whose distribution is P conditioned on A · A−1
P (V) = V. A P-trapdoor for A is an

algorithm that can efficiently sample from a distribution within 2−n statistical distance of A−1
P (V) for any

V. We denote the P-trapdoor by A−1
P , and A−1

P = A−1
τ in the case where P is a Gaussian distribution with

parameter τ.
In the following, we introduce the procedures to generate an almost uniform A with a trapdoor for

sampling from the Gaussian distribution.

Corollary 2.1 (Generating Trapdoors [GPV08, MP12, BLP+13]). There exists an efficient algorithm
TrapGen(1n, q,m) that outputs (A,A−1

τ0), where A ∈ Zn×mq for any m ≥ m0 for m0 = O(n log q), A is
statistically close to uniform over Zn×mq within 2−n distance, and τ0 = O(

√
n log q log n). Given A−1

τ0 , one
can obtain A−1

τ for any τ ≥ τ0.

Corollary 2.2 (Gaussian-Binary Sampler [LW15]). Let n,m, q be such that m ≥ n⌈log q⌉. With all but
O(2−n) probability over the choice of A ← Zn×mq , for all R ∈ Zm×N with N = n⌈log q⌉, one can obtain
[A,AR+ (In ⊗ gT)]−1

P with P = DZm,τ × {0, 1}N for τ = O(N
√

mn · ∥R∥∞). Furthermore, for all v, it holds
that the marginal distribution of the last N coordinates of [A,AR + (In ⊗ gT)]−1

P (v) is statistically close to
uniform over {0, 1}N within 2−n distance.

2.5 Homomorphic Operations

Here we define the procedure used for homomorphic evaluations in our scheme.

Definition 2.5. Let n, q, ℓ ∈ N and N := n⌈log q⌉. Consider B1, . . . ,Bℓ ∈ Zn×Nq , and denote ®B :=
[B1, . . . ,Bℓ]. Let f be a Boolean circuit of depth d that computes a function {0, 1}ℓ → {0, 1} and consists
only of NAND gates. We define B f := Eval(®B, f) recursively: associate B1, . . . ,Bℓ with the ℓ input wires
of f . For every wire w ∈ f , let u, v be its predecessors and define

Bw := (In ⊗ gT) − Bu · (In ⊗ g−T)(Bv).

Finally, B f is the matrix associated with the output wire of f .

The following fact represents the properties of the above homomorphic evaluation algorithm.

Fact 2.1. Consider B1, . . . ,Bℓ ∈ Zn×Nq (N = n⌈log q⌉). Letting ®B := [B1, . . . ,Bℓ], and x ®G := [x1(In ⊗
gT), . . . , xℓ(In ⊗ gT)], there exists a polynomial time algorithm EvRelation such that if H := H

f ,x, ®B :=
EvRelation(f , x, ®B), then ∥H∥∞ ≤ (N + 1)d and

(B f − f (x)(In ⊗ gT))T = HT · [®B − x ®G]T ,

where B f = Eval(f , ®B).
In particular, if Bi := ARi + xi(In ⊗ gT), that is, ®B = A®R + x ®G for ®R := [R1, . . . ,Rℓ], then

B f = AR f + f (x)(In ⊗ gT) for R f = ®R ·H f ,x, ®B.

We can see that this fact holds by verifying that for the NAND operation in Definition 2.5,

EvRelation(NAND, (xu, xv), [Bu,Bv]) =
[
−(In ⊗ g−T)(Bv)
−xuIN×N

]
.

7

3 Fully Dynamic MT-HABE

In this section, we construct fully dynamic MT-HABE from the multi-hop MKFHE scheme of [PS16]. The
proposed MT-HABE can take as input arbitrary additional ciphertexts during homomorphic computations.
We show the construction in Section 3.1 except for homomorphic evaluation algorithms, which are
described in Section 3.2.

3.1 Construction

Let F ⊆ {0, 1}ℓ → {0, 1} be a class of policies computed by depth-dF circuits only from NAND gates, and
G ⊆ {0, 1}∗ → {0, 1} be a class of operations computed by depth-dG circuits only from NAND gates. Let
PRF.{Gen,Eval} be a pseudorandom function, and d be the designed bound of the number of involving
policies on homomorphic computations.

• dMTHABE.Setup(1λ, 1ℓ, 1dF, 1dG, 1d) : choose DLWE parameters n, q, χ as described in Section
4.1. Let B be a bound of samples from error distribution χ. Let m = O(n log2 q), N := n⌈log q⌉,
and M := (m + N + 1)⌈log q⌉. Generate (A,A−1

τ0) ← TrapGen(1n, q,m), where A ∈ Zn×mq and
τ0 = O(

√
n log q log n) from Corollary 2.1. Sample random matrices B,B0,B1, . . . ,Bℓ ← Zn×Nq , and

let ®Bx := [B1, . . . ,Bℓ]. Sample a random vector v← Znq. Choose a PRF seed σ ← PRF.Gen(1λ).
Let H : Zn×mq × F → {0, 1}N be a hash function implemented by the random oracle. Output
pp := (A,B,B0, ®Bx, v,H) and msk := (A−1

τ0 , σ).

• dMTHABE.Encpp(µ ∈ {0, 1}, x ∈ {0, 1}ℓ) : sample a random matrix S ← Zn×Mq , error matrix
EA ← χm×M , and error vector ev ← χM . For every i ∈ {0, 1, . . . , ℓ} and j ∈ [M], sample
Ri, j ← {0, 1}m×N , define Ei[j] := RT

i, jEA[j], and compute

C :=

AT

BT
0

vT

 · S +

EA

E0
eTv

 + µ(Im+N+1 ⊗ gT) ∈ Z(m+N+1)×M
q

Cx := (®Bx − x ®G)T · S +

E1
...

Eℓ

 ∈ Z
ℓN×M
q .

Choose a random matrix R← Zn×Mq and sample a noise matrix E(F)
A
← χm×M . For every j ∈ [M],

choose R(F)j ← {0, 1}m×N and define E(F)[j] := (R(F)j)TE(F)
A
[j]. Sample e(F)v ← χM , and compute

F :=

AT

BT

vT

 · R +

E(F)
A

E(F)

(e(F)v)T

 + µ(Im+N+1 ⊗ gT) ∈ Z(m+N+1)×M
q

≈

AT

BT

vT

 · R + µ(Im+N+1 ⊗ gT) (error: mB).

For every i ∈ {0, 1, . . . , ℓ}, j ∈ [M], and k ∈ [N], sample E(k)
A
← χm×M and e(k)v ← χM , compute

E(k)i [j] := RT
i, jE

(k)
A
[j], and set E(k) := [(E(k)

A
)T , (E(k)0)

T , e(k)v]T . Sample S(1), . . . , S(N) ← χn×M , and

8

compute

D := ©«IN ⊗

AT

BT
0

vT

ª®¬ ·

S(1)
...

S(N)

 +

E(1)
...

E(N)

 + R ⊗ g ⊗ um+N+1 ∈ Z(m+N+1)N×M
q ,

D(k)x := (®Bx − x ®G)T · S(k) +

E(k)1
...

E(k)
ℓ

 ∈ Z
ℓN×M
q .

Output ct := (x,C,Cx,F,D, {D(k)x }k).

• dMTHABE.Keygenmsk(f ∈ F) : compute B f := Eval(f , ®Bx). Generate r′f = H(A, f) ∈ {0, 1}N

by using the random oracle. Sample r f ← A−1
τ (−(B0 + B f)r′f − v; ρ) with randomness ρ ←

PRF.Eval(σ, f), where τ = O(
√

mn · N2ℓ(N + 1)dF) ≥ τ0. Then, it holds that

[rTf , r′Tf , 1]

AT

(B0 + B f)T
vT

 = 01×n.

Output sk f := r f .

• dMTHABE.ApplyFpp(ct, f ∈ F) : when given ct and f , first compute H := EvRelation(f , x, ®Bx). Set
C f := HTCx , and compute

Ĉ f := C +

0m×M

C f

01×M

 .
Then it holds that for a secret key tTf := [rTf , r′Tf , 1] with related to f ,

tTf · Ĉ f ≈ µ(tTf ⊗ gT) (error: ∥t f ∥∞ · ((N + 1)dF · ℓN + 1) · mB).

For every k ∈ [N], let D(k)
f

:= HTD(k)x , and

D f := [0M×m, (D(1)f)
T , 0M, . . . , 0M×m, (D(N)f

)T , 0M]T .

Compute D̂ f := D + D f . It holds that for the secret key t f ,

(IN ⊗ tTf) · D̂ f ≈ R ⊗ g ∈ ZN×Mq (error: ∥t f ∥∞ · ((N + 1)dF · ℓN + 1) · mB).

Output the functioned ciphertext ct(f) := (Ĉ f ,F, D̂ f).

• dMTHABE.Eval(ct(1), . . . , ct(k), F := { f1, . . . , fd} ⊆ F, g ∈ G) : for every i ∈ [k], there exists fj such
that fj(xi) = 0. For all i ∈ [k], compute a functioned ciphertext dMTHABE.ApplyFpp(ct(i), fj), and
homomorphically evaluate g between the functioned ciphertexts. Output ct(F).

9

• dMTHABE.Decsk f1,...,sk fd
(ct(F)) : given secret keys sk f1, . . . , sk fd for every policy in F = { f1, . . . , fd},

and an evaluated ciphertext ct(F) = (ĈF,F, D̂F) for F, first, for all j ∈ [d], obtain r′fj := H(A, fj)
by using the random oracle. Construct the concatenated key tTF := [rTf1, r

′T
f1
, 1, . . . , rTfd, r

′T
fd
, 1],

and compute a vector c := tTF ĈF . Let uT := (0, . . . , 0, ⌊q/2⌋) ∈ Z1×d(m+N+1). Compute µ̃ :=
cT · (Id(m+N+1) ⊗ g−T)(u), and output 0 if | µ̃| < q/4, and 1 otherwise.

Correctness and security of this scheme are discussed in Appendix 4.

3.2 The Algorithm Eval

We here describe the algorithms used in homomorphic evaluation of Eval.
Suppose that we obtain a functioned ciphertext ct(f) := (Ĉ f ,F, D̂ f) by applying dMTHABE.ApplyF for

a policy f ∈ F to a fresh ciphertext ct := (x,C,Cx,F,D, {D(k)x }k). Then the functioned ciphertext ct(f)
satisfies the following three noisy equations with a secret key t f ∈ Zm+N+1

q for f and small random matrix
R ∈ Zn×Mq . For ease of notation, let BC, BF, BD be bounds of errors included in Ĉ f ,F, and D̂ f , respectively.

tTf Ĉ f ≈ µ(tTf ⊗ gT) (error: BC) (1)

F ≈

AT

BT

vT

 R + µ(Im+N+1 ⊗ gT) (error: BF) (2)

(IN ⊗ tTf) · D̂ f ≈ R ⊗ g (error: BD). (3)

Ciphertext Expansion. We describe a way to expand ciphertexts so that they can be decrypted by the
concatenation of all the keys related to the target policies. This expansion method is very similar to that
of [PS16]. Given ciphertext (Ĉ,F, D̂) that satisfies the three relations (1), (2), and (3) for secret key t ∈ Zn′

q

(n′ = k(m + N + 1) for some positive integer k) and random matrix R ∈ Zn×Mq , generate (C̃, F̃, D̃) that
satisfies the relations (1), (2), and (3) for the concatenated secret key t̃ := [t, t f] consisted from t and
t f := [rTf , r

′T
f , 1]T ∈ Zm+N+1

q , and random matrix R̃:

• F and R are not changed. That is, F̃ := F and R̃ := R. This preserves the relation (2).

• D̃ is computed as

D̃ :=
(
IN ⊗

[
In′

0(m+N+1)×n′

])
· D̂.

Then, since the following holds, the relation (3) is preserved.

(IN ⊗ t̃T) · D̃ = (IN ⊗ tT) · D̂
≈ R ⊗ g (error: BD).

• We define
C̃ :=

[
Ĉ X

F

]
,

10

where X is a matrix computed by the following procedure. Let B,B0 ∈ Zn×Nq be matrices included
in the public parameter, generate r′f = H(A, f) ∈ {0, 1}N , and compute B f := Eval(®B, f). Define

s := (In ⊗ g−T)((B0 + B f − B)r′f) ∈ {0, 1}N

X := (sT ⊗ In′) · D̂.
Then, by construction of X, it holds that

tTX = tT · (sT ⊗ In′) · D̂
= (sT ⊗ 1) · (IN ⊗ tT) · D̂
≈ sT · R ⊗ g (error: N · BD)
= sT · (In ⊗ g) · (R ⊗ 1)
= r′Tf · (B0 + B f − B)T · R.

From
tTX + t f F

≈ r′Tf · (B0 + B f − B)T · R + [rTf , r′Tf , 1]

AT

BT

vT

 · R + µ(tTf ⊗ gT) (error: N · BD + ∥t f ∥∞ · (m + N + 1) · BF)

= [rTf , r′Tf , 1]

AT

BT
0 + BT

f

vT

 · R + µ(tTf ⊗ gT)

= µ(tTf ⊗ gT)
we have

t̃T C̃ ≈ µ(t̃T ⊗ gT) (error: BC + N · BD + ∥t f ∥∞ · (m + N + 1) · BF),
and so the relation (1) is preserved for C̃.

Homomorphic Operations. We here describe a way to evaluate homomorphic addition and multiplication.
Consider two ciphertexts (C1,F1,D1) and (C2,F2,D2) that encrypt µ1, µ2 ∈ {0, 1} under the secret key
t ∈ Zn′q . The two ciphertexts satisfy the relations (1), (2), and (3) for two random matrices R1,R2,
respectively.

• Homomorphic addition: to homomorphically add the ciphertexts, we just add the corresponding
matrices:

(Cadd,Fadd,Dadd) := (C1 + C2,F1 + F2,D1 + D2).
It is immediate that the relations (1), (2), and (3) are preserved for message µadd := µ1 + µ2 and
random matrix Radd := R1 + R2.

• Homomorphic multiplication: to homomorphically multiply the ciphertexts, we compute the cipher-
text consisting of the matrices computed as follows:

Cmult := C1 · (In′ ⊗ g−T)(C2)
Fmult := F1 · (Im+N+1 ⊗ g−T)(F2)
Dmult := D1 · (Im+N+1 ⊗ g−T)(F2) + (IN ⊗ C1) · (In′N ⊗ g−T)(D2).

11

We now show that the ciphertext output by the homomorphic multiplication procedure satisfies the
relations (1), (2), and (3). Since Cmult is the ciphertext output by the homomorphic multiplication of GSW
FHE [GSW13], it is easy to see that the relation (1) is preserved. If we let BCi be a upper bound of the
noise included in Ci(i = 1, 2), then we have

tTCmult ≈ µ1(tT ⊗ gT) · (In′ ⊗ g−T)(C2) (error: n′⌈log q⌉BC1)
= µ1tTC2

≈ µ1µ2(tT ⊗ gT) (error: µ1BC2).

Let Rmult := R1 · (Im+N+1 ⊗ g−T)(F2)+ µ1R2 and µmult := µ1µ2. Then the relation (2) is also preserved
for Fmult:

Fmult = F1 · (Im+N+1 ⊗ g−T)(F2)

≈ ©«

AT

BT

vT

 · R1 + µ1(Im+N+1 ⊗ gT)ª®¬ (Im+N+1 ⊗ g−T)(F2) (error: M · BF1)

≈

AT

BT

vT

 · (R1 · (Im+N+1 ⊗ g−T)(F2) + µ1R2) + µ1µ2(Im+N+1 ⊗ gT) (error: µ1BF2)

=

AT

BT

vT

 · Rmult + µmult(Im+N+1 ⊗ gT).

We check that the relation (3) is also preserved. First, we can see that

(IN ⊗ t) · D1 · (Im+N+1 ⊗ g−T)(F2)
≈ (R1 ⊗ g) · (Im+N+1 ⊗ g−T)(F2) (error: M · BD1)
= (R1 · (Im+N+1 ⊗ g−T)(F2)) ⊗ g.

In addition, the following holds:

(IN ⊗ t)(IN ⊗ C1) · (In′N ⊗ g−T)(D2)
= (IN ⊗ tC1) · (In′N ⊗ g−T)(D2)
≈ µ1(IN ⊗ tT ⊗ gT) · (In′N ⊗ g−T)(D2) (error: n′⌈log q⌉BC1)
= µ1(IN ⊗ tT) · D2

≈ (µ1R) ⊗ g (error: µ1BD2).
Hence, by

(IN ⊗ tT)Dmult ≈ Rmult ⊗ g (error: M · BD1 + n′⌈log q⌉BC1 + µ1BD2),
Dmult satisfies the relation (3).

4 Correctness and Security

In this section, we discuss about correctness and security of the proposed MT-HABE described in Section
3. In Section 4.1, we consider parameter settings of the proposed scheme for the correctness and security,
and the proofs of them are described in Section 4.2.

12

4.1 Parameter Settings

The DLWE parameters n, q, χ are chosen according to the conditions decided by the correctness and
security.

It is required to set n ≥ λ and q ≤ 2n. We also set ℓ, d = poly(λ). We estimate the worst-case noise
growth when homomorphically evaluating a depth-dG circuit consisting only of the NAND gate under d
different policies of depth at most dF . We define the max error Bmax of the ciphertext (C,F,D) output by
the algorithm ApplyF or Eval:

Bmax := max(BC, BF, BD).

From the last section, the ciphertext generated by homomorphically evaluating a NAND gate has noise at
most

M · BD1 + d(m + N + 1)⌈log q⌉BC1 + µ1BD2

≤ {M · (d + 1) + 1} · Bmax

= poly(d, n, ⌈log q⌉) · Bmax.

for some polynomial poly(·). The ciphertext generated by the ciphertext expansion algorithm described in
the last section also has noise at most

BC + N · BD + ∥t f ∥∞ · (m + N + 1) · BF

≤ (1 + N + ∥t f ∥∞ · (m + N + 1)) · Bmax

= poly′(n, ⌈log q⌉) · Bmax.

for some polynomial poly′(·).
Since the max error Bmax of fresh functioned ciphertexts is at most ∥t f ∥∞ · ((N + 1)dF · ℓN + 1)mB,

the noise of the evaluated ciphertexts obtained by homomorphic evaluation of a depth-dG circuit under
different d policies is at most

poly(d, n, ⌈log q⌉)d · poly′(n, ⌈log q⌉)dG · ∥t f ∥∞ · ((N + 1)dF · ℓN + 1)mB

≤ poly(d, n, ⌈log q⌉)d · poly′(n, ⌈log q⌉)dG · O(
√

mn · N2 · ℓ(N + 1)dF) ·
√

m · ((N + 1)dF · ℓN + 1)mB.

For the correctness and security, we select the parameters so that the above quantity by a factor of eight is
less than 2nϵ for some 0 < ϵ < 1. To hold this, we set n = Õ(d · log d + dG + dF · log ℓ)1/ϵ and choose q
and χ so that they satisfy q/B ≥ 2nϵ , where B is the upper bound of the noise distribution χ. Selecting
such parameters leads the reduction from the DLWEn,q,χ problem to approximate a short vector on the n
dimensional lattice by a factor of Õ(n · 2nϵ).

4.2 Proofs

Correctness of our dMTHABE scheme are stated on the following theorem.

Theorem 4.1 (Correctness). The scheme dMTHABE with parameters ℓ, dF, dG, d is correct for policy class
Fℓ,dF and homomorphism class GdG .

Proof. Since correctness of the Eval algorithm is described in Section 3.2, and the parameters for correctly
decrypting the evaluated ciphertexts are discussed in Section 4.1, we omit the proof of this theorem. □

Security of our dMTHABE can be proven similar to [BCTW16].

13

Theorem 4.2 (Security). The scheme dMTHABE scheme is selectively secure for function classes F,G in
the random oracle model if the DLWEn,q,χ assumption holds.

Proof. In a similar way to [BCTW16], we prove this theorem by considering about the indistinguishability
of a column vector in the challenge ciphertext C,Cx∗,F, D, {D(k)x∗ }k∈[N], where we let x∗ be the challenge
attribute. That is, we consider the game in which the adversary is given the following vectors

c :=

AT

BT
0

vT

 · s +

eA
e0
ev

 ,cx∗ := (®Bx∗ − x∗ ®G)T · s +

e1
...

eℓ

 , f :=

AT

BT

vT

 · r +

e(F)
A

e(F)

e(F)v

d(1)
...

d(N)

 := d := ©«IN ⊗

AT

BT
0

vT

ª®¬ ·

s(1)
...

s(N)

 +

e(1)
...

e(N)

 ,d
(k)
x∗ := (®Bx∗ − x∗ ®G)T · s(k) +

e(k)1
...

e(k)
ℓ

 (∀k ∈ [N]).

or the uniformly random vectors, and distinguishes them．We call this game column game, and define
the advantage of the adversary in this game as Advcolumn

A (λ). Without loss of generality, we can prove the
security in the column game instead of proving the selective security game defined in Definition 2.3.

We now consider the following sequence of games. Let AdvGamei
A (λ) be the advantage of the adversary

A in Gamei.

• Game0: This game is the same as the column game, so it holds that

Advcolumn
A (λ) = AdvGame0

A (λ).

• Game1: This game is the same as Game0 except that the challenger aborts if the adversary sends
the random oracle query (D, f) such that D = A and f (x∗) = 1 before the challenger outputs the
challenge attribute x∗.
Since the probability that the adversary sends such query is negl(λ), we have

|AdvGame1
A (λ) − AdvGame0

A (λ)| = negl(λ).

• Game2: This game is the same as Game1 except that for every Keygen query the challenger uniformly
choses the randomness and use it for A−1

τ0 instead of generating the randomness for A−1
τ0 by using

PRF. To answer the oracle query consistently, the challenger stores the Keygen query and its secret
key to the table. By the property of the PRF, this game is indistinguishable from Game1:

|AdvGame2
A (λ) − AdvGame1

A (λ)| = negl(λ).

• Game3: This game is the same as Game2 except for the generation of the public parameters
B,B0,B1, . . . ,Bℓ . Here, there exist matrices R0,R1, . . . ,Rℓ such that they are distributed uniformly
over {0, 1}m×Nand satisfies ei = RT

i eA and e(k)i = RT
i e(k)

A
. There exists a matrix R(F) such that it

is distributed uniformly over {0, 1}m×N and satisfies e(F) = (R(F))T e(F)
A

. In this game, the public
matrices B,B0,B1, . . . ,Bℓ are computed as B := AR(F),B0 := AR0,Bi := ARi + x∗i (In ⊗ gT)
(∀i ∈ [ℓ]) instead of choosing them uniformly at random. By the leftover hash lemma, every
distribution of B,B0,B1, . . . ,Bℓ is indistinguishable from uniform over Zn×Nq . Hence we have

|AdvGame3
A (λ) − AdvGame2

A (λ)| = negl(λ).

14

• Game4: This game is the same as Game3 except that the return sk f for the key generation query
(A, f) is generated without using the trapdoor A−1

τ .
Without loss of generality, we can assume that the tuple (A, f) is queried to the Keygen oracle
before querying to the random oracle. By the definition of selective security, the policy f satisfies
f (x∗) = 1 for the challenge attribute x∗, and [r f , r′f] is generated as r′f ← {0, 1}N and r f ←
A−1
τ (−v − (B0 + B f)r′f).

Let H := EvRelation(f , x∗, ®Bx∗). Then it holds that B f − f (x∗)(In ⊗ gT) = (®Bx∗ − x∗ ®G)H. From
f (x∗) = 1, we have B f = A®RH+(In⊗gT). Hence we have [A,B0+B f] = [A,A(R0+ ®RH)+(In⊗gT)].
By Corollary 2.2, when given R0, ®R and H, for any τ ≥ τ′ = O(

√
mn · N · ∥(R0 + ®RH)∥∞), we can

sample from [A,B0 + B f]−1
P for P = DZm,τ × {0, 1}N .

We generate [r f , r′f] by [r f , r′f] ← [A,B0+B f]−1
P (−v). Then, r′f is stored as the reply for the random

oracle query (A, f). By Corollary 2.2, the marginal distribution of r′f is statistically indistinguishable
from uniform over {0, 1}N , and the probability distribution of r f conditioned on r′f is a discrete
Gaussian distribution over the appropriate coset of the integer lattice. Since the view of the adversary
in this game is statistically indistinguishable from that of Game3, we have

|AdvGame4
A (λ) − AdvGame3

A (λ)| = negl(λ).

• Game5: This game is the same as Game4 except for the way to choose A. The challenger chooses
random A from Zn×mq instead of generating it by using TrapGen. By Corollary 2.1, the distribution
of the matrix A generated by TrapGen is statistically indistinguishable from uniform over Zn×mq , so
we have

|AdvGame5
A (λ) − AdvGame4

A (λ)| = negl(λ).

• Game6: We change the contents of the challenge ciphertexts as follows:

u(C)
A

:= AT s + eA,u(C)v := vT s + ev, u(F)
A

:= AT r + e(F)
A
,

u(F)v := vT r + e(F)v ,u
(D,k)
A

:= AT s(k) + e(k)
A
, u(D,k)

v := vT s(k) + e(k)v .

The challenge ciphertexts can be rewritten as

c :=

u(C)
A

RT
0 u(C)

A

u(C)v

 ,cx∗ :=

RT

1 u(C)
A
...

RT
ℓ u(C)

A

 , f :=

u(F)
A

(R(F))Tu(F)
A

u(F)v

 ,

d(k) :=

u(D,k)
A

RT
0 u(D,k)

A

u(D,k)
v

 ,d
(k)
x∗ :=

RT

1 u(D,k)
A
...

RT
ℓ u(D,k)

A

 (∀k ∈ [N]).

This game is equivalent to Game5, so we have

AdvGame6
A (λ) = AdvGame5

A (λ).

15

• Game7: We change the distribution of u(C)
A
, u(C)v , u

(F)
A
, u(F)v , u

(D,k)
A
, u(D,k)

v to the uniform distribution.
By the DLWEn,q,χ assumption, this change cannot be distinguished by the adversary A and so we
have

|AdvGame7
A (λ) − AdvGame6

A (λ)| = negl(λ).

• Game8: In this game, we change the distribution of the challenge ciphertexts to the uniform. By the
leftover hash lemma, the view of the adversary in this game is statistically indistinguishable from
Game7, so we have

|AdvGame8
A (λ) − AdvGame7

A (λ)| = negl(λ).

The advantage of the adversary in this game is 0, that is, AdvGame8
A (λ) = 0.

From the above sequences of the games, we can see that Advcolumn
A (λ) = negl(λ), and therefore the proposed

MT-HABE is selectively secure. □

References

[BCTW16] Zvika Brakerski, David Cash, Rotem Tsabary, and Hoeteck Wee. Targeted Homomorphic
Attribute Based Encryption. In TCC 2016-B, pages 330–360, 2016.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, and
Vinod Vaikuntanathan. Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and
Compact Garbled Circuit. In EUROCRYPT, pages 533–556, 2014.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) Fully Homomorphic
Encryption without Bootstrapping. In ITCS, pages 309–325, 2012.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
Hardness of Learning with Errors. In STOC, pages 575–584, 2013.

[Bra12] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical
GapSVP. In CRYPTO, pages 868–886, 2012.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic Encryption from
(Standard) LWE. In FOCS, pages 97–106, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully Homomorphic Encryption from Ring-LWE
and Security for Key Depedent Messages. In CRYPTO, pages 505–524, 2011.

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-ABE from LWE: Unbounded Attributes
and Semi-Adaptive Security. In CRYPTO, pages 363–384, 2016.

[CLT14] Jean-Sébastian Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-Invariant Fully Homo-
morphic Encryption over the Integers. In PKC, pages 311–328, 2014.

[CM15] Michael Clear and Ciarán McGoldrick. Multi-Identity and Multi-Key Leveled FHE from
Learning with Errors. In CRYPTO, pages 630–656, 2015.

16

[CM16] Michael Clear and Ciarán McGoldrick. Attribute-Based Encryption Fully Homomorphic
Encryption with a Bounded Number of Inputs. In AFRICACRYPT, pages 307–324, 2016.

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully Homomorphic
Encryption over the Integers. In EUROCRYPT, pages 24–43, 2010.

[Gen09a] Craig Gentry. A FULLY HOMOMORPHIC ENCRYPTION SCHEME. PhD thesis, Stanford
University, Available at http://crypto.stanford.edu/craig, 2009.

[Gen09b] Craig Gentry. Fully Homomorphic Encryption using Ideal Lattices. In STOC, pages 169–178,
2009.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. How to Use a Short Basis: Trapdoors
for Hard Lattices and New Cryptographic Constructions. In STOC, pages 197–206, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption from Learning with
Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In CRYPTO, pages
75–92, 2013.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based Encryption for
Circuits. In STOC, pages 545–554, 2013.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-Fly Multiparty Compu-
tation on the Cloud via Multikey Fully Homomorphic Encryption. In STOC, pages 1219–1234,
2012.

[LW15] Vadim Lyubashevsky and Daniel Wichs. Simple Lattice Trapdoor Sampling from a Broad
Class of Distributions. In PKC, pages 716–730, 2015.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster,
Smaller. In EUROCRYPT, pages 700–718, 2012.

[MW16] Pratyay Mukherjee and Daniele Wichs. Two-Round Multiparty Computation via Multi-Key
FHE. In EUROCRYPT, pages 735–763, 2016.

[Pei09] Chris Peikert. Public-Key Cryptosystems from the Worst-Case Shortest Vector Problem. In
STOC, pages 333–342, 2009.

[PS16] Chris Peikert and Sina Shiehian. Multi-Key FHE from LWE, Revisited. In TCC 2016-B,
pages 217–238, 2016.

[Reg05] Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography.
In STOC, pages 84–93, 2005.

[Sch87] Clause-Peter Schnorr. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithm.
Theoretical Computer Science, 53(2-3):201–224, 1987.

17

http://crypto.stanford.edu/craig

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Organization

	2 Preliminaries
	2.1 Target Homomorphic Attribute-Based Encryption
	2.2 Learning with Errors (LWE)
	2.3 Gadget Matrix and Bit Decomposition
	2.4 Lattice Trapdoors and Discrete Gaussian Distributions
	2.5 Homomorphic Operations

	3 Fully Dynamic MT-HABE
	3.1 Construction
	3.2 The Algorithm Eval

	4 Correctness and Security
	4.1 Parameter Settings
	4.2 Proofs

