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Abstract. Cryptographic schemes based on supersingular isogenies have
become an active area of research in the field of post-quantum cryp-
tography. We investigate the resistance of these cryptosystems to fault
injection attacks. It appears that the iterative structure of the secret
isogeny computation renders these schemes vulnerable to loop-abort at-
tacks. Loop-abort faults allow to perform a full key recovery, bypassing
all the previously introduced validation methods. Therefore implement-
ing additional countermeasures seems unavoidable for applications where
physical attacks are relevant.
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1 Introduction

Public-key cryptography, the foundation of modern communication security, is
confronted to the prospect of a technology capable of breaking today’s most
widely deployed primitives: quantum computers of sufficient scale to run Shor’s
algorithm [19]. This risk has given rise to the field of post-quantum cryptogra-
phy (PQC), which aims at developing new primitives that would resist crypt-
analysis by both classical and quantum computers.

Cryptographic schemes based on supersingular elliptic curve isogenies were
introduced in [5] which proposed the hardness of path-finding in supersingu-
lar isogeny graphs and gave an application to cryptographic hash functions.
It has since been used as an assumption for other cryptographic systems such
as key-exchange, encryption, and signatures [12]. Several other primitives have
subsequently been built based on supersingular isogeny problems, such as zero-
knowledge proofs of identity and signatures [7,11,13,21]. Efficient implementa-
tions of these primitives have rapidly followed: in software [6,16], in hardware [15]
and on embedded systems [1].

Even though the basic version of the key exchange protocol uses ephemeral
secret values (as with classical Diffie-Hellman), some of these other schemes
require static secret keys for at least one party. Such static secrets constitute



primary material for active attacks, and such an attack was indeed described
in [10] that allows to find all n bits of the secret key with about n interactions
with the victim. This attack can be prevented by the Kirkwood et al. [14] vali-
dation method — which is essentially a Fujisaki–Okamoto transform [9] applied
in the context of supersingular isogenies.

The results of [1], together with the fact that primitives based on supersin-
gular isogenies enjoy significantly smaller keys than the other main candidates
for post-quantum cryptography, suggest that they might be well-suited for use
on embedded devices. This opens new avenues of potential side-channel attacks.

In this paper, we present the first side-channel attack against supersingu-
lar isogeny-based primitives, exploiting a fault-injection technique known as
loop-abort fault injection, previously introduced for pairing based cryptogra-
phy [17]. The iterative structure of isogeny computations render them susceptible
to loop-abort fault attacks, allowing an attacker to recover all n bits of the key,
within O(n) interactions with the token and a negligible amount of computation.
This attack is not prevented by any of the validation methods previously dis-
cussed for isogeny-based cryptosystems. Loop-abort fault injections were proven
to be feasible in practice [3], and should therefore be taken into serious consider-
ation when implementing schemes based on supersingular isogenies in a context
susceptible to physical attacks.

After a brief overview of supersingular isogeny-based cryptography in Sec-
tion 2, we quickly discuss fault injection attacks in Section 3, with a particular
focus on loop-abort faults. The attack is then described and analyzed in Sec-
tion 4, while potential countermeasures are discussed in Section 5.

2 Cryptosystems from supersingular isogenies

This section recalls the necessary background and the cryptosystems based on
supersingular elliptic curve isogenies introduced in [12] and [7].

2.1 Elliptic curves and isogenies

For any prime power q = pr, let Fq denote the finite field with q elements.
Let E be an elliptic curve defined over Fq. The set E(Fq) of rational points over
the algebraic closure forms a group, in which the subset E(Fq) of Fq-rational
points forms a finite subgroup. Let E′ be another elliptic curve defined over Fq.
An isogeny E → E′ is a non-constant morphism sending the identity of E to
the identity of E′ (we then say that E′ is isogenous to E). In particular, an
isogeny is a surjective group homomorphism from E(Fq) to E′(Fq), of finite
kernel. All isogenies that we consider in this paper are separable [20, Definition
p.21], so by isogeny we always mean separable isogeny. Then, the degree of an
isogeny is simply defined as the number of points in its kernel. For any finite
subgroup G ⊂ E(Fq), there is a quotient elliptic curve E/G and the canonical
projection πG : E → E/G is an isogeny of degree |G|. In fact, any isogeny arises
in this form, up to an isomorphism of the target.
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2.2 Elliptic curves for supersingular isogeny schemes

Fix a reference elliptic curve E0. In cryptographic schemes based on supersin-
gular isogenies, the public key of Alice is, essentially, an isogenous curve EA,
and its secret is the kernel GA of an isogeny ϕA : E0 → EA. Two things appear
immediately: first, Alice needs an efficient way to represent the secret kernel.
Second, given E0 and EA, it should be difficult to find the kernel GA. The se-
cret isogenies are simply chosen cyclic, so that the secret is a point P ∈ E0(Fq)
generating the kernel. This means in particular that E0(Fq) should contain a
lot of cyclic subgroups. It follows that the traditional constraint in elliptic curve
cryptography that the order of E0(Fq) should have a large prime factor does not
apply here: on the contrary, |E0(Fq)| should be very smooth.

Let m be any positive integer; then E[m] ⊂ E(Fq) is the subgroup of m-
torsion points in E(Fq). Whenever m is coprime to p, we have that E[m] is
isomorphic to the group (Z/mZ)2. Now, fix a prime number ` 6= p, and a positive
integer k. Then E[`k] ∼= (Z/`kZ)2 contains `k−1(`+ 1) distinct cyclic subgroups
of order `k. If all the points of E[`k] are defined over Fq, then the set of cyclic
subgroups of order `k generated by a point defined over Fq is sufficiently large to
constitute a space of secret keys. Typically, to build the cryptographic schemes,
one needs two distinct primes `A and `B (one for the keys of Alice and one for
the keys of Bob). Then, the reference elliptic curve E0 should be chosen so that

E0(Fq) = E0[`nA]⊕ E0[`mB ].

This might be difficult to obtain, so one can simply require E0(Fq) = E0[`nA]⊕
E0[`mB ]⊕F , where the subgroup F contains a few other Fq-rational points whose
orders are coprime to `A and `B .

The schemes also require the reference curve E0 to be supersingular — see [20,
Theorem 3.1] for a few of the numerous equivalent ways to define supersingu-
larity. The first interesting consequence is that all supersingular curves defined
over Fq are actually defined over Fp2 . The curve E0 is constructed as follows.
The primes `A and `B are fixed (typically 2 and 3), together with some expo-
nents n and m whose size depend on the security level. Now, one can find a
cofactor f coprime to `A and `B such that p = `nA`

m
B f ± 1 is a prime number.

Bröker [4] has shown that it is easy to find an elliptic curve E0 over Fp2 such that
|E0(Fp2)| = (p∓ 1)2 = (`nA`

m
B f)2. From [2, Theorem IX.20], the group E0(Fp2)

is isomorphic to (Z/`nA`
m
B fZ)2, and therefore we have the desired decomposition

E0(Fp2) = E0[`nA]⊕ E0[`mB ]⊕ F , with F = E0[f ].

This choice of `A, `B , n, m, p and E0 is fixed for the rest of the paper. We
are working on the class of all elliptic curves E that are Fp2-isogenous to E0.
They are all supersingular, and by Tate’s isogeny theorem [22], they all have the
same number of Fp2 -rational points. It follows that any such E enjoys the same
decomposition

E(Fp2) = E[`nA]⊕ E[`mB ]⊕ F.
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2.3 Computing smooth degree isogenies

Let (`, k) ∈ {(`A, n), (`B ,m)}. For any elliptic curve E isogenous to E0, the
subgroup E[`k] ⊂ E(Fp2) is a free Z/`kZ-module of rank two, with a basis
{P,Q}. Any point R = c1P +c2Q has order `k if and only if either c1 or c2 is not
divisible by `. Any such point R of order `k induces an isogeny ϕR : E → E/〈R〉
of degree `k. As described in [7, Section 4.2.2], the only efficient way to compute
the isogeny ϕR is as a sequence of k isogenies of degree `, which can themselves
be computed using Vélu’s formulas [23]. We now recall that method. Set E0 = E,
R0 = R, and for 0 ≤ i < k, recursively define

Ei+1 = Ei/〈`k−i−1Ri〉,
ϕi+1 : Ei → Ei+1 the canonical isogeny,

Ri+1 = ϕi+1(Ri).

Then, E/〈R〉 = Ek, each isogeny ϕi is of degree `, and ϕR = ϕk ◦ · · · ◦ ϕ1.
From this observation, [7, Section 4.2.2] describes a family of strategies to com-
pute ϕR. These strategies allow to optimize the number of point multiplications
and isogeny computations, but all boil down to computing the sequence of iso-
genies (ϕi)

k
i=1 in order.

2.4 Jao–De Feo protocols

We present here two examples of cryptographic protocols based on supersingular
isogenies: a key exchange protocol, and a public key encryption protocol. Our
attack could easily be adapted to other variants of isogeny-based schemes as we
target a component they all have in common: the computation by Alice of a
secret isogeny.

Key exchange. The following key exchange protocol is the first supersingular
isogeny-based protocol, introduced in [12, Section 3.1].

Setup Choose a prime p = `nA`
m
B f±1 and an elliptic curve E0 as in Section 2.2.

As E0[`nA] is a free Z/`nAZ-module of rank two, let {PA, QA} be a basis3.
Similarly, let {PB , QB} be a basis of E0[`mB ].

Key exchange Alice chooses two random elements a1, a2 ∈ Z/`nAZ, not both
nilpotent4, and Bob does the same, with b1, b2 ∈ Z/`mBZ. Let

RA = a1PA + a2QA,

RB = b1PB + b2QB .

3 In [6], the pair (PA, QA) does not form a basis. The protocol still works, but some
caution is required (see Appendix A).

4 Note that an element a ∈ Z/`nAZ is nilpotent if and only if it is the class of a multiple
of `A.
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Write EA = E0/〈RA〉 and EB = E0/〈RB〉, and let ϕA : E0 → EA and
ϕB : E0 → EB denote the canonical isogenies. Alice computes and publishes
(EA, ϕA(PB), ϕA(QB)), and Bob does the same for (EB , ϕB(PA), ϕB(QA)).
Alice can compute the j-invariant of

EAB = EB/〈a1ϕB(PA) + a2ϕB(QA)〉,

while Bob can compute the j-invariant of

EBA = EA/〈b1ϕA(PB) + b2ϕA(QB)〉.

Fortunately EAB
∼= E0/〈RA, RB〉 ∼= EBA, so j(EAB) = j(EBA) is the secret

shared by Alice and Bob, from which they can derive a secret key.

Public-key encryption. The public-key encryption scheme described in [12,
Section 3.2] is very similar to the key exchange. Here, Bob sends an encrypted
message to Alice.

Setup As for the key exchange, choose a prime p = `nA`
m
B f ± 1 and an elliptic

curve E0, together with bases {PA, QA} for E0[`nA] and {PB , QB} for E0[`mB ].
Let H = {Hk | k ∈ K} be a family of hash functions indexed by a finite
set K, where each Hk is a function from Fp2 to the message space {0, 1}w.

Key generation Choose two random elements a1, a2 ∈ Z/`nAZ, not both nilpo-
tent. Let

EA = E0/〈a1PA + a2QA〉,

and ϕA : E0 → EA the canonical isogeny. Choose a random element k ∈ K.
The public key is (EA, ϕA(PB), ϕA(QB), k), and the private key is (a1, a2, k).

Encryption Given a public key (EA, ϕA(PB), ϕA(QB), k) and a message m ∈
{0, 1}w, choose two random elements b1, b2 ∈ Z/`mBZ, not both nilpotent.
Fix

EB = E0/〈b1PB + b2QB〉,

and ϕB : E0 → EB the canonical isogeny, and let EBA = EA/〈b1ϕA(PB) +
b2ϕA(QB)〉. Compute the hash value h = Hk(j(EBA)) and c = h⊕m. The
ciphertext is (EB , ϕB(PA), ϕB(QA), c).

Decryption Given the ciphertext (EB , ϕB(PA), ϕB(QA), c), compute

EAB = EB/〈a1ϕB(PA) + a2ϕB(QA)〉.

Let m = Hk(j(EAB))⊕ c. Since j(EAB) = j(EBA), m is the plaintext.

Remark 1. Observe that Alice’s private key (a1, a2) is equivalent to (ra1, ra2)
for any r coprime to `A, since a1PA + a2QA and ra1PA + ra2QA generate the
same subgroup of E0[`nA]. Recall that a1 and a2 are not both nilpotent. Seen
as integers, this means that one of them is not divisible by `A, so is invertible
in Z/`nAZ. Therefore (a1, a2) is equivalent to either (1, a) (if a1 is coprime to `A)
or to (a, 1) (if a2 is coprime to `A).
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2.5 Validation methods against active attacks

Various validation methods have been introduced in order to prevent active
attacks against isogeny-based protocols. Classical methods allowing to check if
an elliptic curve is supersingular, or if two given points P and Q lie on the
curve, have the correct order and are independent are discussed in [6]. In [10,
Section 2.4], some validation steps are simplified, and a new one is introduced
that allows Alice to gain some assurance that the two points of Bob’s public-key
are the images of the two base points PA, QA through an isogeny of degree `mB .
The active attack of [10] allows a dishonest party to send malicious points to
Alice that nevertheless pass all these validations.

The only effective countermeasure that has been proposed to prevent this at-
tack against the key exchange protocol is to apply the Fujisaki–Okamoto trans-
form [9], as explained in [18], which in the context of the isogeny key exchange
has been discussed by Kirkwood et al. [14]. This validation method essentially
forces Bob to send to Alice honestly generated parameters, and to prove that
he has been able to compute the shared secret. More precisely, the following de-
scribes the key exchange protocol resulting from applying the Fujisaki–Okamoto
transform. Here, Alice has a static secret key (a1, a2), and Bob — the potential
adversary — generates an ephemeral key.

Bob’s key generation Bob chooses a random seed r, from which he derives
his secret key (b1, b2) = f(r) via a pseudo-random function f . He pro-
ceeds to compute his message (EB , ϕB(PA), ϕB(QA)) as in the regular key
exchange. He computes the shared secret EAB using Alice’s public key
(EA, ϕA(PB), ϕA(QB)), and derives a session key sk and a validation key vk

via a key derivation function (KDF), as

(sk, vk) = KDF(j(EAB)).

Key exchange Bob sends the tuple (EB , ϕB(PA), ϕB(QA)) and the ciphertext
c = Encvk(r ⊕ sk) to Alice.

Validation Alice first derives E′AB , then sk′ and vk′, to recover the value
r′ = Decvk′(c) ⊕ sk′. From this hypothetical seed r′, she is able to re-
compute Bob’s operations. If the result she finds coincides with the tuple
(EB , ϕB(PA), ϕB(QA)) she has received, she terminates the protocol by ac-
cepting sk′ = sk as the shared secret. Otherwise, she returns an error.

In the fault injection attack we describe, Bob forces Alice to compute a wrong
isogeny. By predicting the output of this wrong isogeny, Bob can make sure the
fault is not detected by the validation, and Alice leaks some faulted information.

3 Fault injection attacks

Fault injection attacks are a standard kind of attacks assuming physical access to
a device (Alice) using a static private key (in the present context, a pair (a1, a2)).
They rely on the ability of the attacking party to tamper with Alice’s execution
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of the protocol, causing her to commit errors in her computations. For the rest
of the paper, we fix `A = 2 and `B = 3 for simplicity, but the results can easily
be applied to any `A and `B .

3.1 Tampering with bits and bytes

The secret key is a pair of integers a1, a2 ∈ {1, ..., 2n−1}, such that the kernel of
the secret isogeny is RA = a1PA +a2QA. If it is possible to force a particular bit
of (a1, a2) to, say, 0, then the value of that bit can be recovered by checking if the
faulty outcome is valid. A folklore way to make this kind of attack ineffective
is to regularly randomize the representation of the secret key. In the present
context, this could be done by choosing a random odd integer r each time the
private key is used, and to replace (a1, a2) by the equivalent pair (ra1, ra2).

There exist mostly three ways to alter the value of a bit during execution:
forcing it to 0 or 1, flipping it, or randomizing it. The simple attack above as-
sumes that a bit can be forced to some value, but the weakest of these three
assumptions is obviously the bit randomization. Under this assumption, a par-
ticular bit can be made to take a random value among 0 or 1, unknown from
the attacker. This cannot be exploited in such a straightforward way as the
bit-forcing assumption, but suffices for the more elaborate attack we present.

Targeting a particular bit might turn out to be difficult. Rather than a precise
bit error, one could aim for a byte error (or a word error): a fault is injected in
a byte, and the new value of the byte cannot be predicted by the attacker.

3.2 Implementing loop-aborts

A powerful way to exploit fault injections is to implement loop aborts. The
weakest of the above assumptions are sufficient to force a loop to come to an end.
Loop-abort faults have been introduced by Page and Vercauteren in the context
of pairing based cryptography [17], and recently used by Espitau et al. [8] to
attack signature schemes based on lattices. It is explained in [8, Section 5] that
a loop-abort can simply be implemented by injecting a random fault on the loop
counter — or alternatively, by skipping the jump instruction. Loop-abort faults
appear to be feasible in practice, and have already been successfully performed
in attacks against pairing based cryptography by Blömer et al. [3].

As any fault attack, it requires some knowledge on the structure of the im-
plementation being targeted, to know precisely at which place and time the
fault should be injected. Such structure can be recovered by combining some
knowledge of the algorithms involved (and maybe of standard implementations),
reverse-engineering techniques and side-channel analysis. Then, a few circum-
stances make loop-abort attacks easier. First, most of the possible values of the
loop-counter would cause the loop to abort, so it is not necessary to target a
specific bit: some imprecise randomizations should do the trick. Second, to exit
the loop after k iterations, it is sufficient to tamper with the counter at any time
during the execution of the k-th iteration. With that strategy, if an iteration
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takes time to execute, the timing of the fault injection need not be excessively
precise.

4 The loop-abort fault attack

This attack takes advantage of the iterative structure of the isogeny computation,
as described in Section 2.3. The critical point is Alice’s computation of an isogeny
E → E/〈a1R + a2S〉 based on her secret. One can inject a fault to cause Alice
to compute this isogeny only partially, leaking information about the secret
key (a1, a2).

4.1 Attack framework

Alice takes as input the public parameters of a party who wants to initiate
a secure communication, and performs her side of the protocol using a static
private key (a1, a2). We assume that the countermeasures discussed in [10] are
implemented, and in particular the Kirkwood et al. validation method [14], which
essentially prevents attacks based on tricking Alice into computing on maliciously
cooked data. Then, Alice is modeled in the form of an oracle O(E,R, S,E′, b1, b2)
which returns 1 if

j(E′) = j(E/〈a1R+ a2S〉),
j(E) = j(E0/〈b1PB + b2QB〉) and

(R,S) = (ϕB(PA), ϕB(QA))

and 0 otherwise. The first condition corresponds, as in the second oracle of [10,
Section 3], to Alice taking Bob’s protocol message, performing her side of the
protocol, and returning an error if the shared key she finds does not coincide
with Bob’s. The second and third conditions account for the Kirkwood et al. [14]
validation method: Bob can only use honestly generated parameters.

We further assume, and it is the foundation of our attack, that the attacker
can make Alice abort the main loop after the k-th iteration during her computa-
tion of the isogeny E → E/〈a1R+a2S〉, using techniques discussed in Section 3.2.
As described in Section 2.3, recall that after k iterations, Alice has computed
the intermediate elliptic curve

Ek ∼= E/〈2n−k(a1R+ a2S)〉

The fault injection is modeled by the oracle Ok(E,R, S,E′, b1, b2), that returns 1
if j(E′) = j(Ek), j(E) = j(E0/〈b1PB+b2QB〉) and (R,S) = (ϕB(PA), ϕB(QA)),
and 0 otherwise.

4.2 The attack

Alice’s key (a1, a2) is either equivalent to (1, a) (if a1 is odd) or (a, 1) (if a2 is
odd), and the attacker recover one by one the bits of a from the least significant to
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the most significant5. The attacker, playing the role of Bob, chooses a (random)
secret key (b1, b2) ∈ {1, · · · , 3m}2 that he is going to use for the attack. He
computes EB = E0/〈b1PB + b2QB〉 and lets ϕB : E0 → EB be the canonical
isogeny. Also write P ′A = ϕB(PA) and Q′A = ϕB(QA). First, the attacker needs
to decide whether the key can be represented as (1, a) or (a, 1). We have

E1
B
∼= EB/〈2n−1(a1P

′
A + a2Q

′
A)〉

= EB/〈(2n−1a1 mod 2n)P ′A + (2n−1a2 mod 2n)Q′A)〉.

Therefore a1 is even if and only if the first isogeny EB → E1
B has kernel

〈2n−1Q′A〉 ⊂ E[2]. This can be decided by determining the kernel κ ⊂ EB [2]
of the first isogeny computed by Alice. The attacker guesses one of the three
possible proper subgroups κ ⊂ EB [2], and queries the oracle O1 on the input
(EB , ϕB(P ′A), ϕB(Q′A), EB/κ, b1, b2). If the output is 1, then the guess of κ was
correct. If the output is 0, either the guess is incorrect or the fault injection
failed. This allows simultaneously to determine if the key can be represented as
(1, a) or (a, 1), and to determine the least significant bit of a. More precisely,

if κ = 〈2n−1Q′A〉 then a1 is even and a2 is odd, so the key can be represented
as (a, 1), and the least significant bit of a is 0.

if κ = 〈2n−1P ′A〉 then a2 is even and a1 is odd, so the key can be represented
as (1, a), and the least significant bit of a is 0.

if κ = 〈2n−1(P ′A +Q′A)〉 then both a1 and a2 are odd, so the key can be repre-
sented as (1, a), and the least significant bit of a is 1.

In the following, we assume without loss of generality that the key is represented
as (1, a). Now, it remains to recover all the other bits of a, from the least signif-
icant to the most significant. In order to match the structure of the attack, the
bits of a are indexed from the least significant to the most significant. Observe
that

Ek
B
∼= EB/〈2n−k(P ′A + aQ′A)〉 = EB/〈2n−kP ′A + (2n−ka mod 2n)Q′A)〉

only depends on the k least significant bits of a. If we know the first k − 1 bits
of the key, we can guess the k-th one and compute the corresponding degree-`k

isogeny. Then, it suffices to compare the result with the faulty outcome to deter-
mine if the guess is correct. More precisely, at the k-th step, once the k− 1 first
bits of the key a have already been recovered, we perform the following steps:

1. Choose a guess b ∈ {0, 1};
2. Compute

Ẽk
B = EB/〈2n−kP ′A + ã2n−kQ′A)〉

where ã = b·2k−1+(a mod 2k−1) is the concatenation of b with the first k−1
bits of a;

5 Note the contrast with the simple attack of Section 3.1, in which the way Alice
internally represents her secret key is crucial. In this more evolved attack, Alice’s
representation is irrelevant.
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3. Query the oracle Ok on
(
EB , P

′
A, Q

′
A, Ẽ

k
B , b1, b2

)
;

4. If the oracle returns 1 (i.e. it does not detect an error), then the k-th bit
is b; otherwise, either the bit is 1− b, or the fault injection failed.

Assuming that the fault injection is a success (i.e., the oracle Ok is called
successfully), it is clear that the oracle returns 1 only if Ẽk

B is indeed the k-th
elliptic curve in the sequence of isogenies that Alice should have computed,
meaning that b is a correct guess of the k-th bit of a.

4.3 Analysis of the attack

Let µ denote the probability of successfully aborting the computation6. The
attack above requires about 2n/µ ≈ log2 p/µ fault injections, and as many inter-
actions with Alice7. Considering that Alice is modeled as an oracle that outputs
only one bit, O (n) is optimal in the sense that we cannot hope to recover more
than one bit of the key per interaction. The additional factor µ accounts for the
potential difficulty of injecting faults. In Section 4.4, we describe a way to reduce
the number of faults, assuming a stronger oracle which leaks more information.

To abort after k iterations, the fault must be injected during the execution of
the k-th iteration. All known implementations of the isogeny computation share
the same iterative structure, however the duration of an iteration is not neces-
sarily a constant, and depends on the choice of a strategy — in the sense of [7,
Section 4.2.2]. For instance, in the SIDH Library [16], the first iteration is the
longest, taking about 4.0 · 106 CPU cycles (measured on an Intel(R) Core(TM)
i7-4710MQ CPU @ 2.50GHz), while the other iterations take between 7.9 · 104

and 1.8 · 106 CPU cycles. Finding the right moment to inject the fault can be
easy if Alice is using a public implementation [6], and otherwise requires to
reverse-engineer the strategy by side-channel analysis.

This attack is the first one against isogeny-based schemes that bypasses the
costly Kirkwood et al. validation method [14]. In essence, this validation method
checks these two statements: first, Bob’s parameters are honestly generated (and
in our attack, they indeed are), and Bob knows the shared key computed by Alice
(this is precisely the guess Ẽk

B , which has a probability 1/2 of being correct).

4.4 Alternative with less faults but stronger oracle

Instead of the weak oracle we have considered so far, which outputs a single bit
at each call, one could also consider a more powerful oracle, closer to the first
oracle of [10, Section 3] (but still weaker). Let H be a function with very rare
collisions (it could be the identity, or a hash function), and consider the oracle

6 For simplicity, we assume that this probability is independent of the number k of
iterations after which we want to abort.

7 More precisely, if there exists a way to determine that a fault was successful (for
instance, if µ = 1), we can get rid of the factor 2, because a failure brings the
information that the guess is wrong, so the bit is 1− b.
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O(E,R, S, b1, b2) which outputs H(j(E/〈a1R + a2S〉)) if j(E) = j(E0/〈b1PB +
b2QB〉) and (R,S) = (ϕB(PA), ϕB(QA)), and 0 otherwise. We can then hope to
reduce the number of faults necessary for the attack, at the cost of additional
computations.

As previously, we also define the oracle Ok(E,R, S, b1, b2) which outputs

H(j(E/〈2n−k(a1R+ a2S)〉))

if j(E) = j(E0/〈b1PB + b2QB〉) and (R,S) = (ϕB(PA), ϕB(QA)), and 0 other-
wise. The idea is to consider batches of s > 1 bits instead of recovering one bit
at a time, thereby reducing the required number of faults from n to

⌈
n
s

⌉
.

As in the attack of Section 4.2, the attacker generates parameters b1, b2, EB

and ϕB . Assuming the key is represented as (1, a), the s least significant bits of a
can be recovered as follows: call the oracle Os(EB , ϕB(PA), ϕB(QA), b1, b2), and
call the output h. Find by exhaustive search the value x ∈ {0, 1, . . . , 2s−1} such
that h = H(EB/〈2n−s(P ′A + xQ′A)〉). Unless a collision occurred in H, this x is
exactly a mod 2s, corresponding to the s least significant bits of a. Generalizing
this to the other bits is straightforward. The time complexity to find a batch
of s bits clearly grows as O(2s).

Note that the Kirkwood et al. validation method prevents this trade-off: Alice
always terminates in a non-accepting state unless Bob is able to guess in advance
the value j(ẼAB) of the (faulty) shared secret computed by Alice, bringing the
probability of successfully recovering the s bits down to µ/2s.

This trade-off can be analyzed by simulating the attack in software, based on
the open-source implementation of [6,16]. The loop-abort is simulated by adding
a break instruction at the appropriate moment. We use the default parame-
ters that are provided, that is the curve E : y2 = x3 + x defined over Fp, for
p = 23723239 − 1, claimed to offer 186 bits of classical security.

Timings for various batch sizes (i.e., s in the above description) are provided
in Table 1. The sizes are even because the implementation of [16] computes
4-isogenies instead of 2-isogenies, so the bits have to be considered by pairs.

size of batches 2 4 6 8 10 12 14 16 18 20

time (in seconds) 7.13 9.6 21.1 65.3 201 681 2389 7946 22809 84763

number of faults 185 93 62 47 37 31 27 24 21 19

Table 1. Time of the computations depending on the size of the batches. The tests
were run on an Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz.

5 Countermeasures and conclusion

Previously introduced validation methods are not sufficient to prevent the fault
injection attack we have presented. To patch this vulnerability, it is necessary to

11



implement new countermeasures when such a physical attack is relevant. A few
generic countermeasures have already been discussed in [8].

First, simply checking after the loop if the value of the counter is exactly the
expected number of iterations provides a first protection against attackers who
cannot inject faults with a sufficiently high precision (for instance, attackers who
can only inject random errors in a memory word). This countermeasure can be
strengthened further by adding an additional (or multiple) parallel counter, and
checking that both counters have the expected final value. This protects against
single faults, and to some extent, against random faults.

These countermeasures are very cheap and easy to implement, as they are
not related to the underlying mathematical structures but are simply meant to
check that the loop completed the correct number of iterations.
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A When P and Q are not a basis of the torsion

The implementation proposed by [6,16] uses a pair of points P and Q in E[`k]
that does not generate the full group E[`k], in order to achieve better compres-
sion. The point P is chosen to be a point of order `k, and Q is set as the image
of P by the distortion map (x, y) 7→ (−x, iy) (where i2 = −1).

They prove that because of this construction, when ` = 2, the sum P +Q has
order 2k−1 (instead of the expected 2k). Thus every point of the form P + [a]Q
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for a even has order 2k. Caution is required when applying to P and Q results
that are meant to be applied to a basis of E[2k]. It appears for instance in [10,
Lemma 3.2], where the factor 2k−1 should be replaced by 2k−2 when using this
pair (P,Q).

Also, if a is generated following the guidelines of [6] (as a = 2m for m ∈
{1, 2, . . . , 2k−1}), then its most significant bit is superfluous. Indeed, the kernel
of the first isogeny is necessarily the group generated by [2k−1]P = −[2k−1]Q.
Then, the image of P + [a]Q under this isogeny is the same as the image of
P + [a + 2k−1]Q. It follows that the secret a leads to the same shared secret
as its reduction a mod 2k−1. Therefore the secret a = 2m could be chosen with
m < 2k−2.
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