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Abstract

S-boxes are important building blocks in block ciphers. For secure
design one should not choose an S-box that has low degree. In this
work we consider minimum degree of an S-box which is the minimum
value of the degree of the nonzero component functions of the S-box.
For an S-box F : Fn

2 → Fm
2 , there are 2m−1 nonzero component func-

tions, we show that there is a better way to determine the minimum
degree of an S-box which does not require to check all the 2m − 1
component functions. To the best of our knowledge, this is the best
algorithm for determining the minimum degree of an S-box in the
literature.
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1 Introduction

Suppose Fn
2 be the vector space formed by 2n binary n-tuples. An n-variable

Boolean function is a mapping f : Fn
2 7→ F2. Boolean functions play an im-

portant role in the design of Linear Feedback Shift Registers based stream
ciphers Boolean functions should maintain some cryptographic properties
such as high nonlinearity, high correlation immunity, high degree, etc. in

1



order to withstand some cryptanalytic attacks. High nonlinearity resists
the best affine approximation attack [4], high correlation immunity is re-
quired to resist the correlation attack [10]. There is another attack that uses
Berlekamp-Massey algorithm [8] to find the linear complexity of the sequence
generated by the stream cipher. If the Boolean function is of high degree,
then it can increase the linear complexity and thus can raise the difficulty in
mounting this particular attack.

An (n,m) S-box F = (F1, . . . , Fm) is a mapping from Fn
2 to Fm

2 , where
F1, . . . , Fm are n-variable Boolean functions. S-boxes are one of the key
parts in block ciphers (for example, that follow the design of substitution-
permutation network) that are used to build the confusion layer. S-boxes are
also used in constructing secure hash functions, for example Keccak [1]. For
a secure design, an S-box should have some cryptographic properties. For ex-
ample high nonlinearity of the S-box is required to thwart linear cryptanalysis
[9], and high order resilient S-boxes are useful against the correlation attack
like [10].

The S-box should have high algebraic degree and minimum degree; an S-
box with low degree is susceptible to cryptanalytic attacks, namely algebraic
attack, higher-order differential, interpolation, cube attacks etc. One may
read [6] and [5] for details. Therefore, it is important to check the degree
of an S-box that is chosen to be used in a cipher. In this paper, we design
an efficient algorithm to determine the minimum degree of an S-box. Note
that finding the algebraic degree of an S-box is easy as one just needs to
check the maximum degree of the coordinate functions. However, challenge
lies in determining the minimum degree for which one has to consider all the
component functions.

In this paper we design an efficient algorithm to determine the minimum
degree of an S-box.

1.1 Preliminaries

Suppose u0, . . . , u2n−1 are the distinct elements of Fn
2 . Then f can be rep-

resented by the binary string [f(u0), . . . , f(u2n−1)]. This string is called the
truth table of f . The Hamming weight of a binary string S is the number of
1’s in S and it is denoted by wt(S).

An n-variable Boolean function f can be written as a polynomial of
x1, . . . , xn variables as follows,

f(x1, x2, . . . , xn) =
⊕

a=(a1,...,an)∈Fn
2

(
µa

n∏
i=1

xaii

)
,
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where µa =
⊕
x�a

f(x). This is called the algebraic normal form (ANF) of f .

The algebraic degree [7], deg(f), of f is defined as

max
a∈Fn

2

{wt(a)|µa 6= 0}.

Given the truth table of an n-variable Boolean function f , the ANF can
be obtained by Möbius transformation in O(n2n) steps [3]. For the sake of
completeness we describe the algorithm below:

1. Write the truth table of f , in lexicographic order of input vectors.

2. Divide the truth table into two halves say f0 and f1.

3. f1 ← f0 ⊕ f1.

4. If length of f0 is more than one bit, apply step 2 to the functions f0
and f1.

The algorithm ends when each of the functions f0 and f1 contains one bit in
its truth table. The final table gives the values of the ANF of f .

Let Af denote the ANF vector of f , i.e., for a = (a1, . . . , an) ∈ Fn
2 ,

Af [a] =

{
1, if xa11 . . . xann is present in the ANF of f,

0, otherwise.

An (n,m) S-box F = (F1, . . . , Fm) is a mapping from Fn
2 to Fm

2 denoted as
F = (F1, . . . , Fm), where each Fi is an n-variable Boolean function. The func-
tions F1, . . . , Fm are called the coordinate functions of F . Let LS(F1, . . . , Fm)
denote the linear span obtained from {F1, . . . , Fm}. We use LS∗(F1, . . . , Fm)
to denote the set of functions that are nonzero linear combinations of {F1, . . . ,
Fm}. Then the functions that belong to LS∗(F1, . . . , Fm) are called the com-
ponent functions of F . Clearly the number of component functions is 2m−1.
The minimum degree of the S-box F is the minimum among all the degrees
of the component functions of F [3, Page9]. We denote the minimum degree
of the S-box F by MinDeg(F ) . Then

MinDeg(F ) = min
f∈LS∗(F1,...,Fm)

{deg(f)}.

On the other hand the maximum degree of the coordinate functions is
defined as the algebraic degree of the S-box [3, Page 9]. In this paper, we
are interested only in the degree which is the minimum of the component
functions.
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1.2 Our contribution

We propose an efficient algorithm (Algorithm 2) for checking the minimum
degree of an S-box. The naive algorithm (describes as Algorithm 1)that fol-
lows the definition of minimum degree, has to consider 2m − 1 component
functions and then check the degree of each function. To do it in a clever
way we apply a property of row echelon matrix, and design an improved algo-
rithm (Algorithm 2) that does not require to check all the 2m−1 component
functions. The complexity of our proposed algorithm is O(mn + m2)2n) as
opposed to O(n2m+n) which is due to the naive algorithm. for an (n,m) S-
box. Our proposed algorithm has asymptotically far better complexity than
the naive one, precisely it drops the factor n2m down to poly(n,m).

Algorithm Complexity
Naive (Algorithm 1) O(n2m+n)

Proposed (Algorithm 2) O((mn+m2)2n)

Table 1: Comparison of complexities of the proposed algorithm and the naive
algorithm for checking the minimum degree of an S-box

To the best of our knowledge, this is the most efficient algorithm for
checking the minimum degree of an S-box.

2 Algorithm for determining the minimum

degree of an S-box

In this section we present a very efficient algorithm for determining the min-
imum degree of an S-box. First we would like to present the naive algorithm
that directly follows the definition.

Algorithm 1: Naive algorithm that calculates the minimum degree of
an S-box F
Input: An (n,m) S-box F = (F1, . . . , Fm).
Output: The minimum degree MinDeg(F ).

1. Take all possible component functions and check their degree.

2. Return the minimum degree of the functions that belong to these
linear combinations.
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Let us now analyze the complexity of this algorithm.
In Step 1, given a component function, it takes O(n2n) steps to determine the
degree of the function using Möbius transformation. As there are total 2m−1
component function, the complexity becomes O(n2n(2m − 1)) = O(n2m+n).
Certainly when m and n grows this algorithm will perform worse.

We investigate how we can improve the naive algorithm so that the min-
imum degree of an S-box of higher dimensions can be determined efficiently.
Below we present an improved algorithm for checking the minimum degree
of an S-box.

2.1 The improved algorithm for checking the minimum
degree of an S-box

First we present some results from linear algebra which are required to de-
velop the algorithm.

Suppose M is a t× s matrix defined over real numbers. The row echelon
form of M is another t × s matrix M ′ obtained by applying row operations
on M such that M ′ has the following properties:

1. All the zero rows occur at the bottom of the matrix.

2. The first nonzero element of every nonzero row is 1, termed as the
leading 1 of the corresponding row.

3. The position of the leading 1 in a row vector is strictly to the right of
the leading 1’s of the previous row vectors.

Note that the rank of the matrix M is the number of nonzero rows that are
present in the matrix M ′. Moreover, the nonzero row vectors of M ′ form a
basis of the linear span of all the row vectors of the matrix M .

Suppose pos(v) denotes the position of the leading 1 of the vector v.
If vi and vk are the i-th and k-th row vectors, respectively of M ′, then
pos(vk) < pos(vi) for all k < i.

Proposition 1. Suppose M is a t × s binary matrix with rank r, and the
row vectors are v1, . . . , vt, where vi is the i-th row vector. Let M ′ be the
row echelon form of M , where u1, . . . , ur are the first r vectors (which are
also all the nonzero vectors) of M ′. Let w be any vector in the linear span
LS(v1, . . . , vt) of {v1, . . . , vt}. Then

pos(w) ≤ pos(ur).
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Proof. It is easy to check that LS(v1, . . . , vt) = LS(u1, . . . , ur). Then the
vector w ∈ LS(v1, . . . , vt), can be written as w = c1u1⊕ . . .⊕crur, where each
ci ∈ {0, 1}. Let ck be first nonzero coefficient. The vector uk has leading 1
at pos(uk). As the pos(uk)-th coordinates of all the vectors uk+1, . . . , ur are
zero, therefore, the pos(uk)-th coordinate of w is 1 which is also the leading
1 of w. Since k ≤ r, therefore, pos(w) ≤ pos(ur).

Now we present our algorithm 2 which improves the naive algorithm im-
mensely.

Algorithm 2: Improved algorithm that calculates the minimum degree
of an S-box F
Input: An (n,m) S-box F = (F1, . . . , Fm).
Output: The minimum degree MinDeg(F ) of the S-box F .

1. Determine the ANF vectors AF1 , . . . , AFm of F1, . . . , Fm from their
respective truth tables.

2. (a) Create n+ 1 arrays V0, . . . , Vn such that each Vi contains
(
n
i

)
cells, and each cell can contain an n-bit vector.

(b) For a vector a = (a1, . . . , an) ∈ Fn
2 , put a into the next

available cell of Vwt(a); repeat this for all the vectors of Fn
2 .

(c) Create the array V of length 2n as V = Vn|| · · · ||V0 .

3. Form the m× 2n binary matrix M , where the (i, j)-th element is
Mi,j = AFi

[V [j]].

4. Apply row operations on M to get the row echelon form M ′ of M .

5. Find the last nonzero row vector in M ′, say A′LAST .

6. If A′LAST is not the m-th row vector of M ′, then return 0, else
return wt(V [pos(A′LAST )]).

Correctness of Algorithm 2

Suppose M1, . . . ,Mm are the row vectors of M , then they are the sorted
vector of AF1 , . . . , AFm , respectively, that follows the order of V . That means,
M1, . . . ,Mm are the sorted ANF vectors of F1, . . . , Fm respectively. For each
Mi, the coefficients corresponding to the same degree reside in the adjacent
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positions, and coefficients corresponding to lower degrees are shifted to the
right. If for the i-th row, the leading 1 occurs at the `-th position, and
V [`] = (di, . . . , dn), then Fi has degree equal to the weight of (d1, . . . , dn).

Suppose Fmin ∈ LS∗(F1, . . . , Fm) that has the lowest degree, i.e., MinDeg(F ).
Let A′Fmin

be the ANF vector of Fmin, which is sorted according to the or-
der of V . Then A′Fmin

belongs to the linear span of the row vectors of M ,
therefore, it is also some linear combination of the vectors of the row echelon
matrix M ′.

Clearly, if the rank of M is not m, then the last row of M ′ is zero,
hence the minimum degree in the linear span of them is zero. Suppose
FLAST is the function whose ANF vector (which follows the order of V )
is A′LAST . Using Proposition 1, we have pos(AFmin

) ≤ pos(A′LAST ), i.e.,
the degree of Fmin cannot be smaller than the degree of FLAST . More-
over, A′LAST itself belongs to LS∗(M1, . . . ,Mm), hence the minimum de-
gree of the functions in LS(F1, . . . , Fm) is the degree of the FLAST , i.e.,
degS(F ) = wt(V [pos(A′LAST )]).

Complexity analysis

In Step 1, determining the ANF vector of each Fi requires O(n2n) steps,
i.e., O(mn2n) in total. Creating the vector V in Step 2 takes O(2n) steps,
and creating the matrix in Step 3 takes O(m2n) steps. To get the row
echelon matrix M ′ in Step 4 from the m × 2n matrix M requires O(m22n)
steps. Then a linear check for each row to find the last nonzero row in Step 5
requires O(m2n) steps. Therefore, in total the complexity is O((mn+m2)2n).
Certainly the new algorithm gives far better complexity than the naive one
(refer to Table 1).

2.2 Illustration of the Algorithm with an Example

For a better understanding, we illustrate our algorithm by taking an example
of the PRESENT S-box F = (F1, F2, F3, F4) which is an (4, 4) S-box [2].
Each Fi is a Boolean function of 4-variables, x1, x2, x3, x4. The co-ordinate
functions of F namely F1, F2, F3 and F4 are given in table 2.

Step 1: Computation of ANFs of co-ordinate functions

Using the algorithm given in section (1.1) we calculate ANF vectors of
F1, F2, F3 and F4 as given table 3 below.
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Variables Co-
ordinate
functions

x1 x2 x3 x4 F1 F2 F3 F4

0 0 0 0 1 1 0 0
0 0 0 1 0 1 0 1
0 0 1 0 0 1 1 0
0 0 1 1 1 0 1 1
0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0
0 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1
1 0 0 0 0 0 1 1
1 0 0 1 1 1 1 0
1 0 1 0 1 1 1 1
1 0 1 1 1 0 0 0
1 1 0 0 0 1 0 0
1 1 0 1 0 1 1 1
1 1 1 0 0 0 0 1
1 1 1 1 0 0 1 0

Table 2: PRESENT S-box

Step 2: Formation of array V

V0 = (0, 0, 0, 0)

V1 = (1, 0, 0, 0), (0, 0, 0, 1), (0, 1, 0, 0), (0, 0, 1, 0)

V2 = (0, 1, 0, 1), (0, 1, 1, 0), (0, 0, 1, 1), (1, 1, 0, 0),

(1, 0, 0, 1), (1, 0, 1, 0)

V3 = (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 0)

V4 = (1, 1, 1, 1)
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Variables ANF vector
x1 x2 x3 x4 AF1 AF2 AF3 AF4

0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 1 1 1
1 0 0 1 0 1 0 0
1 0 1 0 0 1 1 0
1 0 1 1 1 1 1 0
1 1 0 0 0 0 1 0
1 1 0 1 1 1 1 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0

Table 3: ANFs of the Co-ordinate Functions

9



Therefore,

V [0− 15] = V4‖V3‖V2‖V1‖V0
= (1, 1, 1, 1), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1),

(1, 1, 1, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 0, 1, 1),

(1, 1, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 0, 0),

(0, 0, 0, 1), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 0).

Step 3: Formation of matrix
First the ANF vectors are rearranged with respect to input array V (Refer
to table 4).

V ANF vector
x1 x2 x3 x4 AF1 AF2 AF3 AF4

1 1 1 1 0 0 0 0
1 1 0 1 1 1 1 0
1 0 1 1 1 1 1 0
0 1 1 1 1 0 1 0
1 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 1 0 0 1
0 0 1 1 0 1 0 0
1 1 0 0 0 0 1 0
1 0 0 1 0 1 0 0
1 0 1 0 0 1 1 0
1 0 0 0 1 1 1 1
0 0 0 1 1 0 0 1
0 1 0 0 0 1 0 1
0 0 1 0 1 0 1 0
0 0 0 0 1 1 0 0

Table 4: Rearrangement of ANFs with respect to input array V

The arranged ANF vectors are made the rows of a matrix M as

M =


0 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1
0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 1
0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0
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Step 4: Row echelon form of the matrix M

The matrix M when transformed to row echelon form becomes

M ′ =


0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 1
0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0
0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1


Step 5: Finding A′LAST

Here
A′LAST =

(
0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1

)
Step 6: Determination of the minimum degree of S-box

As A′LAST is the last row of matrix M ′, the minimum degree of the S-box
is non-zero, note that pos(A′LAST ) is the position of leftmost one in A′LAST

which is 8 (here the counting starts from zero). We have V [8] = (1, 1, 0, 0).
So the minimum degree of F is

MinDeg(F ) = wt(V [pos(A′LAST )]) = wt(V [8]) = 2.

3 Conclusions

In this paper we have presented a novel algorithm for checking the minimum
degree of an S-box which improves the complexity of the naive algorithm
immensely. We are not aware of any existing algorithm other than the naive
one. In this regard we also checked SageMath which is an open source soft-
ware for mathematical computations. It has a function called min degree()
that computes the minimum degree of an S-box. We checked that they use
the naive algorithm. We implemented our algorithm in Sage and compared
the runtime of our algorithm with that of the Sage library. We saw that
our algorithm was much faster. For example, we considered the (8, 8) S-box
generated by the multiplicative inverse X 7→ X−1 over the field GF (28).
The minimum degree of this S-box is 7. Our algorithm took 0.023 seconds
whereas Sage’s own algorithm took 8.624 seconds to finish. This establishes
the impact of our algorithm 1. In case of checking the minimum degree of a
large class of S-boxes or S-boxes with larger dimensions the impact will be
significant.

1Interested readers can approach us for the Sage implementation of our algorithm.
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Note that the nonlinearity of the S-box F = (F1, . . . , Fm) is the minimum
nonlinearity of the functions in LS(F1, . . . , Fm). Thus to determine the non-
linearity one has to consider 2m functions and then measure the nonlinearity
of each of those functions. Therefore, the complexity is O(n2m+n). Similar to
our algorithm that has improved the naive algorithm to check the minimum
degree, improving the naive algorithm for determining the nonlinearity of the
S-box will be very interesting.
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