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Abstract. We present the first fault attack on cryptosystems based on
supersingular isogenies. During the computation of the auxiliary points,
the attack aims to change the base point to a random point on the
curve via a fault injection. We will show that this would reveal the
secret isogeny with one successful perturbation with high probability.
We will exhibit the attack by placing it against signature schemes and
key-exchange protocols with validations in place. Our paper therefore
demonstrates the need to incorporate checks in implementations of the
cryptosystem.

1 Introduction

Cryptosystems based on isogenies between supersingular elliptic curves were pro-
posed by Jao and De Feo in 2011 [13] as a candidate for cryptographic protocols
in the post-quantum world. Instead of relying on the discrete logarithm problem
which is susceptible to Shor’s algorithm [20], it is based on the number-theoretic
problem of finding isogenies between supersingular elliptic curves.

Cryptosystems based on isogenies have their genesis in an unpublished manu-
script by Couveignes [8] and were later rediscovered by Rostovtsev and Stolbunov
[18]. A paper by Charles, Goren and Lauter [3] then used the isogeny graphs to
construct a hash function. However, Childs, Jao and Soukharev [4] managed to
find a quantum algorithm that was able to break the cryptosystems in [8,18]
in sub-exponential time by reducing the problem of finding an isogeny between
isogenous ordinary curves to a hidden shift problem which can be solved by a
quantum algorithm (Kuperberg’s algorithm [16]). The reduction is based on the
abelian group action of the class group of the endomorphism ring of the elliptic
curve. This action is absent in the supersingular case and hence their reduction
does not apply.

Since the publication of [13], protocols such as the interactive identification
protocol [9] and various signature schemes have been introduced [12,24,14,23,19]
to add to the key-exchange and encryption protocols introduced in [13]. A crypt-
analysis paper [11] has highlighted their vulnerability to adaptive attacks and the
importance of countermeasures. Some implementation papers have introduced
side-channel protection such as constant time operations [7]. However, threats
posed by fault attacks have been absent in the literature.

Fault attacks exploit the leakage of sensitive information when the imple-
mentation operates under unexpected circumstances. Biehl, Meyer and Müller



[2] extended fault attacks on RSA cryptosystems to systems using elliptic curves.
Ciet and Joye [5] then refined the methods and made the attack more practical.
The key insight in both papers was the absence of the a6 elliptic curve parameter
in the scalar multiplication computation. The fault changed the base point P to
some P ′. This meant that the output point [λ]P ′, where λ is the secret, might
be in a group where solving the elliptic curve discrete logarithm problem was
feasible, hence allowing for the recovery of some information about λ.

In this work, we will examine the effects of changing a point P to some ran-
dom P ′ and attempt to recover the secret, which in this case is an isogeny φ. The
attack would be able to recover the entire secret φ from a single output φ(P ′)
with high probability. This compares well against the fault attack presented in
[5] where a single successful perturbation only reveals partial information of the
secret. We will present a fault attack in the context of several signature schemes
and key-exchange protocols. The attack would work against the countermeasure
proposed by Kirkwood et al. [15] which is based on the Fujisaki–Okamoto trans-
form. The main observation that underlies the attack is that users should never
reveal the image of random points under the secret isogeny.

The main result of the paper will be presented in Section 3. Prior to that,
Section 2 will cover both the mathematical notions and the cryptographic pro-
tocols required to understand this paper. In Section 4 we will analyse the attack
and discuss its feasibility.

2 Preliminaries

2.1 Mathematical background

Let E and E′ be elliptic curves defined over a finite field Fq of characteristic
p, then an isogeny between them is a non-zero morphism that maps the group
identity of E to the group identity of E′. If φ : E → E′ is an isogeny, then it is
a group homomorphism from E(Fq) to E′(Fq) [21, III.4.8] Equivalently, we are
able to represent an isogeny φ as an algebraic morphism of the form

φ(x, y) =

(
f1(x, y)

g1(x, y)
,
f2(x, y)

g2(x, y)

)
where φ(O) = O and fi, gi ∈ Fq[x, y]. In this case, we say that E and E′ are
isogenous over Fq. The degree of an isogeny is defined to be its degree as an
algebraic morphism and is denoted by deg φ. Isogenies with the same domain
and range are known as endomorphisms. The map [n] : E → E given by

[n]P = P + · · ·+ P︸ ︷︷ ︸
n times

is the multiplication-by-n map on E and is an example of an endomorphism.
The kernel of this endomorphism is the set of n-torsion points which we denote
by

E[n] =
{
P ∈ E

(
Fq
) ∣∣ [n]P = O

}
.
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If p - n, then the set of n-torsion points of an elliptic curve has the group
structure E[n] ∼= Z/nZ× Z/nZ [21, III.6.4].

Given an isogeny φ : E → E′, there exists a unique isogeny φ̂ : E′ → E such
that

φ ◦ φ̂ = [deg φ] = φ̂ ◦ φ .

We call φ̂ the dual isogeny of φ [21, III.6.1]. Hence we can see that isogenous
curves form an equivalence class.

An isogeny φ : E → E′ is separable if the induced extension of the function
fields is separable. All of the isogenies that we will encounter in this paper will
be separable. The size of the kernel of a separable isogeny is the same as the
degree of the isogeny [21, III.4.10]. In fact, the link between a separable isogeny
and its kernel goes deeper: the kernel of a separable isogeny uniquely defines
the isogeny up to isomorphism [21, III.4.12]. To express this idea, we use the
notation E/G to represent the codomain of some isogeny φ from E with kernel
G. Given a finite subgroup G, an isogeny with kernel G can be computed using
an algorithm by Vélu [22].

Given an elliptic curve E, the set of all endomorphisms over Fq, together
with the zero isogeny, forms a ring. Addition in the ring is given by point-wise
addition, and multiplication by composing endomorphisms. The endomorphism
ring forms an algebra over Z and is of dimension at most 4 [21, III.4.2,III.7.5]. In
fact dimZ EndE = 2 or 4 and in the first case, we say that E is ordinary and in
the second case, we say that E is supersingular. For the remainder of this paper,
the elliptic curves we will encounter will be supersingular.

2.2 Supersingular isogeny cryptosystem

In this section, we will review the key-exchange protocol, interactive identifica-
tion protocol and the various signature schemes. The key-exchange and the iden-
tification protocols were first introduced in [13,9]. Thereafter, signature schemes
were introduced in [14,12,24], where the latter two are based on the identification
protocol.

Key-exchange Suppose that Alice and Bob wish to establish a shared secret.
There are three steps to the protocol that will achieve this objective.

Set-up: Fix a prime p of the form p = `eAA · `
eB
B · f ± 1 where `A and `B

are small distinct primes, f is a small cofactor, and eA and eB are positive
integers such that `eAA ≈ `eBB . Now fix a supersingular elliptic curve E over
Fp2 and pick bases {PA, QA} and {PB , QB} for the `eAA and `eBB -torsion
subgroups.
Key generation: Alice picks random elements a1, a2 ∈ Z/`eAA Z, not both
divisible by `A, and computes the subgroup GA = 〈[a1]PA + [a2]QA〉. She
then uses the formula from Vélu to compute a curve EA = E/GA and an
isogeny φA : E → EA, where kerφA = GA. Alice also computes the points
φA(PB) and φA(QB). She then sends the tuple (EA, φA(PB), φA(QB)) to
Bob. Bob performs the computation mutatis mutandis on his end.
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Key derivation: Upon receipt of Bob’s tuple (EB , φB(PA), φB(QA)), Alice
computes the subgroup G′A = 〈[a1]φB(PA) + [a2]φB(QA)〉 and uses Vélu’s
formula to compute the elliptic curve EAB = EB/G

′
A. She then uses the

j-invariant of EAB as the shared secret. Bob proceeding likewise would also
obtain the j-invariant of EAB to use as the shared secret. The protocol can
be summarised in Fig. 1.

E EA

EB EAB

φA

φB

φ′
A

φ′
B

Fig. 1: Key-exchange protocol

Interactive identification protocol This interactive identification protocol
has four steps: set-up, commitment, challenge and response.

Set-up: Fix a prime p of the form p = `eAA · `
eB
B · f ± 1 where `A and `B

are small distinct primes, f is a small cofactor and eA and eB are positive
integers such that `eAA ≈ `eBB . Now fix a supersingular elliptic curve E over
Fp2 .

The prover picks a random element S ∈ E[`eAA ] with order `eAA and computes
φ : E → E/〈S〉 = ES . Then, the prover generates a basis {PB , QB} for
E[`eBB ]. The prover then computes and publishes the tuple

(E,PB , QB , ES , φ(PB), φ(QB))

as the public key.

The two parties then repeat the next three steps until a security threshold is
reached.

Commitment: The prover chooses random elements r1, r2 ∈ Z/`eBB Z, not
both divisible by `B and computes the point R = [r1]PB + [r2]QB . The
prover then computes the isogeny ψ : E → E/〈R〉 = ER and the curve
ERS = ES/〈φ(R)〉 = ES/〈[r1]φ(PB) + [r2]φ(QB)〉 = E/〈R,S〉. The prover
sends (ER, ERS) to the verifier.

Challenge: The verifier sends the challenge bit c ∈ {0, 1}.

4



Response: In response, the prover reveals (R,φ(R))1 if c = 0 or ψ(S) if
c = 1. In the former case, the verifier would check that E/〈R〉 ∼= ER and
ES/〈φ(R)〉 ∼= ERS . In the latter case, the verifier checks that ER/〈ψ(S)〉 ∼=
ERS .

E ES

ER ERS

φ

ψ ψ′

φ′

Fig. 2: Interactive identification protocol

Digital signature scheme This non-interactive signature scheme is the result
of applying the Fiat–Shamir transform on the interactive identification protocol
presented above. This scheme was introduced in [12] and [24]. The signature
scheme uses the output of the hash as a string of challenge bits to generate a
string of responses corresponding to the challenges. The verification step then
involves verifying the response in the signature for each challenge bit.
Details of the scheme are given in §A.1.

Undeniable signature scheme The undeniable signature scheme [14] is a
“three-dimensional” analogue to key-exchange protocol which is “two-dimensional”
in the sense that we consider a commutative cube instead of a commutative
square. Given a signature, the scheme is able to confirm the signature if the
signature is valid, or disavow an invalid signature without having to reveal a
valid signature.
Details of the scheme are given in §A.2.

2.3 The Kirkwood et al. Validation Method

Kirkwood et al. introduced a method to secure the key-exchange protocol of
isogeny cryptosystems. This is based on the Fujisaki–Okamoto transform [10]
which is also explained by Peikert [17, §5.2] and Galbraith et al. [11, §2.3]. The
method allows for one party to validate the other, but for the ease of exposition,
let us suppose that Alice is using a static secret and Bob needs to prove to her
that he is performing the protocol correctly.

1 It is also possible to compress (R,φ(R)) by sending (r1, r2) instead (c.f. [1]). The
verifier can then recover R and φ(R) given PB , QB , φ(PB) and φ(QB).
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Bob would prove to Alice that he performed the protocol correctly by execut-
ing the key-exchange, encrypting the random seed used to generate his private
key and sending this ciphertext to Alice for her to verify that the random seed
leads to the correct keys.

Applied to the Jao–De Feo protocol, we will briefly explain how Bob can
prove to Alice that he has executed the protocol correctly. This is especially
applicable if Alice is using a static key and Bob is potentially a malicious party.

1. Alice computes and sends the public key (EA, φA(PB), φA(QB)).
2. Bob receives Alice’s public key (EA, φA(PB), φA(QB)).
3. Bob obtains his random seed rB from a random source and derives his private

key using a key derivation function, KDF1,

(b1, b2) = KDF1(rB) .

He uses the secret key to compute GB = 〈[b1]PB + [b2]QB〉, and uses the
Vélu formula to compute φB and EB = E/GB .

4. Bob derives the shared secret j(EAB) using his private key and Alice’s public
key. He then computes a session key (SK) and a validation key (VK) using
a key derivation function, KDF2,

SK | VK = KDF2(j(EAB)) .

5. Bob sends his public key (EB , φB(PA), φB(QA)) and cB = EncVK(rB⊕SK)
to Alice.

6. Using her private key and Bob’s public key, Alice computes the shared secret
j(E′AB) and derives the session and validation keys SK ′ and VK ′. She uses
these to compute

r′B = DecVK′(cB)⊕ SK ′ .

She then computes Bob’s secret keys from r′B and recomputes all of Bob’s op-
erations and compares (E′B , φ

′
B(PA), φ′B(QA)) with (EB , φB(PA), φB(QA)).

If they are equal, then Alice verifies that Bob has computed the protocol
correctly and proceeds to use SK ′ = SK for future communication with
Bob. Else, the protocol terminates in a non-accepting state.

This validation method can be used for both the key-exchange and the encryption
protocols. It also compels one party to reveal the secret used and so requires a
change in secret keys after each verification. This protocol is summarised in
Fig. 3.

3 Fault attack

Assume that the protocol under attack reveals the x-coordinate of the image of a
point under the secret isogeny. The fault attack aims to force the implementation
to output the image of a random point under the secret isogeny. This would allow
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Alice Bob

Compute PKA
EA, φA(PB), φA(QB)

Compute PKB

Compute SSB
EB , φB(PA), φB(QA)

cB = EncVK(rB ⊕ SK)
Compute SSA

Compute r′B

Compute PK′
B

Fig. 3: The Kirkwood et al. validation method for supersingular key-exchange.

the adversary to recover the secret. We will see how this is accomplished and see
the different scenarios where the fault attack may be employed.

Our first observation is that computations do not involve the y-coordinate of
the points. Given a curve E and a point P , a perturbation in the x-coordinate of
P would result in another point P ′ on the same curve over a quadratic extension.
Indeed, given any x, we recover the y-coordinate of P ′ by solving a quadratic
equation which always has a solution in Fp2 . In particular, any x ∈ Fp2 either
corresponds to a point on E or a point on its quadratic twist E′. In [7], the
most efficient implementation of the cryptosystem thus far, computations do not
distinguish between the curve E and its quadratic twist E′, hence the isogeny
will be evaluated correctly on any x ∈ Fp2 . In a more general setting where the
twists of the curves are treated separately, the faulted point will be on E with
probability 1/2 and on the twist with probability 1/2. Hence the adversary may
assume, after a series of faults, that a perturbed point will lie on E.

The perturbed point would be a random point on the curve. In §3.1, we will
show how one recovers the secret isogeny given the image of the random point.
This is not dissimilar to [14, Remark 3.1], where Jao and Soukharev noted that a
party should never disclose any information that allows an adversary to evaluate
φA on E[`eAA ]. The method to recover φA given the image of a random point in
E[`eAA ] is mentioned in [9, §5.1] and explained in detail in §3.1. In fact, we will
show that a party should never reveal the image of random points under the
secret isogeny.

3.1 Recovery of isogeny from image of random point

Let E/Fp2 be a supersingular elliptic curve where p = `eAA · `
eB
B ·f ±1. Then with

(PA, QA), (PB , QB), and (PC , QC) being the generators of E[`eAA ], E[`eBB ], and
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E[f ] respectively, a random point X ∈ E(Fp2) takes the form

X = [u]PA + [v]QA + [w]PB + [x]QB + [y]PC + [z]QC

for some u, v, w, x, y, z ∈ Z.
Now suppose that we are given the image of X under the secret isogeny φA,

then we will show how one can use the knowledge of φA(X) to recover φA. Since
φA is a group homomorphism and we know that X can be expressed as a linear
combination of PA, QA, PB , QB , PC , and QC , we have

φA(X) = φA([u]PA + [v]QA + [w]PB + [x]QB + [y]PC + [z]QC)

= [u]φA(PA) + [v]φA(QA) + [w]φA(PB)

+ [x]φA(QB) + [y]φA(PC) + [z]φA(QC) .

Now our aim is to isolate a linear combination of φA(PA) and φA(QA). To
that end, we perform the operation

[`eBB · f ]φA(X) = [`eBB · f ]([u]φA(PA) + [v]φA(QA)) = [u′]φA(PA) + [v′]φA(QA) ,

and we find ourselves in the scenario described in [14, Remark 3.1] and [9,
§5.1].

Once we have [u′]φA(PA)+[v′]φA(QA), the subgroup generated by this point
will help with the construction of the dual isogeny of φA hence recovering φA.

Lemma 1. Let E1 be a supersingular elliptic curve over Fp2 , where p = `eAA `eBB f±
1. Suppose φ : E1 → E2 is an isogeny of degree `eAA with a cyclic kernel and let
{P,Q} be generators of E1[`eAA ]. Then for any X ∈ E1[`eAA ], define ψ : E2 → E′

such that kerψ = 〈φ(X)〉, then there exists some θ : E′ → E1 of degree `εA,
ε ≤ eA, such that

φ̂ = θ ◦ ψ .

Proof. Using [11, Lemma 1], we may suppose that kerφ = 〈P + [α]Q〉. Hence

φ(P ) = φ(P )− φ(P + [α]Q)

= −[α]φ(Q) .

Then expressing X = [u]P + [v]Q for some u, v, we have

〈φ(X)〉 = 〈[u]φ(P ) + [v]φ(Q)〉 = 〈[v − αu]φ(Q)〉 = 〈[`kA]φ(Q)〉 ,

where k is the `A-adic valuation of (v − αu).
Let ψ : E2 → E′ be an isogeny with kernel given by 〈φ(X)〉 = 〈[`kA]φ(Q)〉.

Pick any Y ∈ E1[`eAA ] and write Y = [r]P + [s]Q for some r, s.
If k = 0, then

ψ ◦ φ(Y ) = ψ(φ([r]P + [s]Q))

= ψ([s− rα]φ(Q))

= O .
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So it is clear that E1[`eAA ] ⊆ ker(ψ ◦ φ). The reverse inclusion is obvious since
ker(ψ ◦ φ) does not contain any non-trivial element of order co-prime to `A. So

ψ ◦ φ = [`eAA ], which implies, by the uniqueness of the dual isogeny, that ψ = φ̂,
and θ : E1 → E1 is the identity isogeny.

If k > 0,

ψ ◦ φ(Y ) = ψ(φ([r]P + [s]Q))

= ψ([s− rα]φ(Q)) .

Note that ψ ◦ φ(Y ) has order at most `kA, since

[`kA]ψ ◦ φ(Y ) = [s− rα]ψ([`kA]φ(Q)) = O .

Now denote by γ ∈ Z≥0, the `A-adic valuation of s− rα, then

ord(ψ ◦ φ(Y )) = ord(ψ([s− rα]φ(Q)))

= `k−γA .

[Note that ε = k − γ.]

So choose Y such that γ = 0 and define θ : E′ → E1 such that ker θ = 〈ψ ◦
φ(Y )〉. Then using the above argument, we can see that θ ◦ψ = φ̂. Furthermore,
it is clear that deg θ ≤ `eAA . ut

The lemma tells us that given the image of a point in E1[`eAA ] under an `eAA -
isogeny, φ, we are able to find an isogeny ψ which is close to the dual isogeny of
φ. To obtain the dual isogeny, one has to first recover θ. If ε is sufficiently small,
one will be able to recover θ by brute force. In fact, we will examine the size of
ε in §4 and show that ε is small in most cases.

Hence we have the following algorithm to recover isogenies given the image
of random points.

Algorithm 1: Recovering the dual isogeny after fault injection.

Data: φ(X)
Result: φ̂

1 Set λ← `eBB · f ;
2 Set T ← [λ]φ(X);
3 Set ψ : E2 → E′ as the isogeny with kernel T ;
4 if ord(T ) = `eAA then
5 Return ψ;
6 else
7 Brute force for θ;
8 Return θ ◦ ψ;
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3.2 Fault Models

We will now demonstrate the fault attack in the following scenarios:

– Interactive identification protocol
– Digital signature scheme
– Undeniable signature protocol
– Static key-exchange protocol
– Static key-exchange protocol with the Kirkwood et al. validation method

The feasibility of each of these will be discussed in §4.1

Interactive identification protocol and signature schemes In the inter-
active identification protocol, to learn the prover’s long-term secret S, the adver-
sary needs to perturb the computation of the point φ(R). During the prover’s
computation, the adversary will introduce a perturbation immediately before
the computation of φ(R). In particular the adversary would attempt to inject
a fault into the fetching operation and cause a fault in R. This will cause the
faulted point R′ to be, with high probability, a point of full order. Successfully
doing so would allow for the recovery of the secret isogeny φ. To obtain the
output of the faulted point, the adversary needs the challenge bit to be 0 as
described in §2.2. This would happen 50% of the time and since identification
schemes typically require a large number of passes, this must happen with high
probability. The adversary could check the order of the points in the responses
(if the challenge bit is 0) and the faulted point would have order larger than
`eAA . Using this information, the adversary would be able to use Algorithm 1 to
recover S.

Due to its similarity to the identification protocol, to learn the signer’s long-
term secret S in the digital signature scheme, the steps the adversary takes
are identical to the process above. The aim now is to inject a fault during the
computation of φ(Ri) (c.f. §A.1) for some i’s. A successful fault coinciding with
the challenge bit being 0 would produce a point of order larger than `eAA , so the
adversary has to find that point in the signature by testing the orders of the
points in the signature.

In the undeniable signature protocol the adversary will be able to learn the
long term secret φA by inducing a fault in φM (PC) before the computation
of φM,AM (φM (PC)) (c.f. §A.2). Using φM,AM (X), the adversary would learn
φM,AM and equivalently, φM (GA). Since φM is computable from the message,
the adversary would be able to recover GA.

Static key-exchange protocol Consider the static key-exchange protocol de-
scribed in §2.2. Suppose an adversary is trying to learn Alice’s static secret
isogeny and has the ability to cause a fault in Alice’s computation. After in-
troducing a fault in the computation of φA(PB), Alice would then proceed to
publish the public key tuple

(EA, φA(X), φA(QB)) .
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The adversary will then be able to recover φA using Algorithm 1.
Notice that this would not be prevented by the validation method presented

in §2.3. Since the validation method will only be able to detect misdemeanours
carried out by Bob, it will not be able to prevent the fault attack. In particular,
throughout the validation process the public key of Alice is only computed once
and is never checked by the method. Hence the fault attack would not be detected
by this validation and an adversary would be able to recover the secret isogeny
as previously described.

Remark 1. The attack may also be implemented on the ephemeral key-exchange
protocol, but in both settings the attack would cause a failure to establish a
shared secret key.

3.3 Countermeasures

A simple countermeasure to this attack is to implement order checking before the
publication of the auxiliary points. Another countermeasure that can be placed
on the identification protocol and hence the signature scheme is the compression
of the points R,φ(R) if the challenge bit is 0. Sending r1 and r2 allows the verifier
to recompute R and φ(R) using the public keys and will prevent the adversary
from learning the faulted auxiliary point. Note that the compression of ψ(S) will
not be useful since the attack does not attack that point.

4 Analysis of attack

As seen in the proof of Lemma 1, to obtain the dual of the isogeny, we need
k = 0, or failing that, have ε small. But since ε is dependent on k, we will study
k instead.

We start by fixing some α ∈ Z/`eAA Z and suppose that u and v are selected
randomly in Z/`eAA Z, then we have

Pr (`nA divides (u− αv)) =
1

`nA
.

Indeed, it is clear that we can treat ρ = u − αv as a single random variable,
so this reduces to finding Pr(`nA divides ρ), where ρ is randomly selected from
Z/`eAA Z. Since one in every `nA elements is divisible by `nA, we have the claim.

So k = 0 with probability 1 − 1
`A

. More generally, k = κ with probability
`A−1
`κ+1
A

. So we see that the isogeny ψ obtained from the procedure in §3 will be

close to being the dual isogeny and brute forcing for θ is feasible.
Lastly, we will address the issue of the faulted point φ(X) not having an order

divisible by `eAA . This would have the effect of decreasing the degree of ψ and so
increase the degree of θ. But notice that we can repeat the same analysis as the
above to conclude that the degree of θ would be small with high probability.

Hence we have shown that Algorithm 1 has a high probability of recovering
the secret isogeny.
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4.1 Feasibility of attack models

Let us now study the feasibility of the attacks discussed in §3.2. We will see
that the attacks would work well against signature schemes but not against
key-exchange protocols.

Signature schemes The presence of a long-term secret and the availability of
auxiliary points makes the signature schemes extremely attractive for an adver-
sary attempting a fault attack on the supersingular isogeny cryptosystem. Note
that while a fault would affect the validity of the signatures, the signer will not
change the long-term secret due to an invalid signature. Hence the adversary
would be able to break the signature scheme. We have to add that the compres-
sion of points is an effective countermeasure that foils the attack and would also
reduce the size of the responses.

Key-exchange protocols Suppose that one party is using a static key in the
key-exchange protocol. An adversary would be able to recover the secret isogeny
if the static public key is recomputed for each exchange. However, this is unlikely
to happen since φA(PB) and φA(QB) will be hardcoded for efficiency.

Now suppose that the adversary is attacking the key-exchange protocol with
ephemeral keys. If the secrets are not authenticated, the adversary would be able
to compute φA(PB), and send that in place of φA(X). This way, both parties
would be able to derive the same shared secret. Since recovering φA from φA(X)
can be done efficiently, and computing φA(PB) is also efficient, performing the
substitution before a time-out in the connection is very feasible. However, it
should be noted that without authentication, it might be better to use a man-
in-the-middle attack.
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22. Jacques Vélu. Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Série A.,
273:238 – 241, 1971.

23. Sun Xi, Haibo Tian, and Yumin Wang. Toward quantum-resistant strong desig-
nated verifier signature from isogenies. International Journal of Grid and Utility
Computing, 5(2):292–296, September 2012.

24. Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir
Soukharev. A post-quantum digital signature scheme based on supersingular iso-
genies. In To appear in Financial Crypto 2017, 2017.

A Signature schemes in detail

A.1 Digital signature scheme

The signature scheme has three steps: key generation, signing and verifying.

Set-up and key generation: Fix a prime p of the form p = `eAA · `
eB
B · f ±1

where `A and `B are small distinct primes, f is a small cofactor and eA and
eB are positive integers such that `eAA ≈ `

eB
B . Now fix an elliptic curve E over

Fp2 . Next, let t = 0.5blog2 pc and fix a hash function H : {0, 1}∗ → {0, 1}t.
The signer picks a random element S ∈ E[`eAA ] with order `eAA and computes
φ : E → E/〈S〉 = ES . The signer then generates a basis {PB , QB} for
E[`eBB ], and computes and publishes the tuple

(E,PB , QB , ES , φ(PB), φ(QB))

as the public key.
Signing: The signer needs to produce t challenges. So for each i = 1, . . . , t,
choose random elements r1,i, r2,i ∈ Z/`eBB Z such that not both are divisible
by `B and computes the points

Ri = [r1,i]PB + [r2,i]QB ,

Ti = [r1,i]φ(PB) + [r2,i]φ(QB)

and the isogenies

ψi : E → E/〈Ri〉 = ERi ,

φ′i : ES → ES/〈Ti〉 = ETi .

Given a message m, the signer computes

h = H (m,ER1
, . . . , ERt , ET1

, . . . , ETt) .

The bit-string of h would serve as the sequence of challenge bits.
If the i-th bit of h is 0, the signer sets zi = (Ri, φ(Ri))

2. If the i-th bit of h
is 1, the signer sets zi = ψi(S). The signature would then be the tuple

(h, z1, z2, . . . , zt) .

Verifying: To verify the signature, the verifier would use the output of the
hash as the challenge bits and use the same verification procedure as seen in
§2.2 to verify each zi as the response to the challenge bits.

2 It is also possible to compress zi by sending r1,i and r2,i instead. The verifier can
then recover R and φ(R) given PB , QB , φ(PB) and φ(QB).
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A.2 Undeniable signature scheme

This signature scheme has three steps: key generation, signing and verifying.
The last step is split into confirmation or disavowal.

Set-up and key generation: Fix a hash function H : {0, 1}∗ → Z. Fix a
prime p of the form p = `eAA · `

eM
M · `eCC · f ± 1 and fix a supersingular elliptic

curve E over Fp2 . Now pick bases {PA, QA}, {PM , QM} and {PC , QC} for the
`eAA , `eMM and `eCC -torsion points respectively. The signer then randomly picks
elements a1, a2 ∈ Z/`eAA Z not both divisible by `A, computes the subgroup
GA = 〈[a1]PA + [a2]QA〉 and uses Vélu’s formula to compute EA = E/GA
and the isogeny φA : E → EA. The signer computes the image of PC and QC
under this isogeny and publishes the tuple (EA, φA(PC), φA(QC)).
Signing: Given a message M , the signer computes the hash h = H(M) and
the subgroup GM = PM + [h]QM . Next, the signer computes the following
isogenies:
• φM : E → EM = E/GM
• φM,AM : EM → EAM = E/φM (GA)
• φA,AM : EA → EAM = E/φA(GM )

The signature then consists of the tuple

(EAM , φM,AM (φM (PC)), φM,AM (φM (QC))) .

Verification: Since this is an undeniable signature scheme, there are two
components to this: the confirmation protocol and the disavowal protocol.
In the former protocol, given the signature

(EAM , φM,AM (φM (PC)), φM,AM (φM (QC))) ,

the objective is to confirm EAM . In the latter, given the signature (EF , FP , FQ),
the objective is to disavow the signature.

Confirmation:
1. The signer picks random elements c1, c2 ∈ Z/`eCC Z not both divisible

by `C , computes the subgroup GC = 〈[c1]PC + [c2]QC〉 and computes

EC = E/GC , EMC = EM/φM (GC) ,

EAC = EA/φA(GC) , EAMC = EMC/φC,MC(GA) .

2. The signer publishes (EC , EAC , EMC , EAMC , φC(PM ) + [h]φC(QM )).
3. The verifier randomly selects b ∈ {0, 1}.

If b = 0: the signer outputs kerφC . The verifier then computes
φC , φM,MC , φA,AC and φF : EF → EFC and checks that each
isogeny maps between the curves in the commitment. The verifier
also computes φC,MC and checks that it matches the commitment.
If b = 1: the signer outputs kerφC,AC and the verifier then computes
φMC,AMC , φAC,AMC and checks that EAMC is the codomain.

Disavowal: The disavowal step is almost exactly the same as the confir-
mation step with the exception in the last step where if b = 0, the verifier
would see that EFC 6∼= EAMC .
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Fig. 4: Commutative diagrams generated during protocol
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