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Abstract. Time-memory-data (TMD) tradeoff attacks limit the security level of many
classical stream ciphers (like E0, A5/1, Trivium, Grain) to 1

2 n, where n denotes
the inner state length of the underlying keystream generator. This implies that to
withstand TMD tradeoff attacks, the state size should be at least double the key
size. In 2015, Armknecht and Mikhalev introduced a new line of research, which
pursues the goal of reducing the inner state size of lightweight stream ciphers below
this boundary by deploying a key-dependent state update function in a Grain-like
stream cipher. Although their design Sprout was broken soon after publication, it
has raised interest in the design principle, and a number of related ciphers have been
suggested since, including Plantlet, a follow-up of Sprout, and the cipher Fruit.
In this paper, existing TMD tradeoff attacks are revisited, and new insights on
distinguishers and key recovery related to small-state stream ciphers are derived. A
particular result is the transfer of a generic distinguishing attack suggested in 2007 by
Englund, Hell, and Johansson to this new class of lightweight ciphers. Our analysis
shows that the initial hope of achieving full security against TMD tradeoff attacks
by continuously using the secret key has failed. In particular, we demonstrate that
there are generic distinguishing attacks against Plantlet and Fruit with complexity
significantly smaller than that of exhaustive key search. However, by studying the
assumptions underlying the applicability of these attacks, we are able to come up
with a new design idea for small-state stream ciphers which might allow to finally
achieve full security against TMD tradeoff attacks.
Another contribution of this paper is the first key recovery attack against the most
recent version of Fruit. We show that there are at least 264 weak keys, each of which
does not provide 80-bit security as promised by designers. This new attack against
Fruit, together with previous attacks against Sprout, raises the question whether a
more complicated key schedule than the basic one used in Plantlet is actually beneficial
for the security of such ciphers.
Keywords: Stream Ciphers · Lightweight Cryptography · Time-Memory-Data Tradeoff
Attacks · Plantlet · Fruit

1 Introduction
Stream ciphers have a long history when it comes to protecting digital communication. In
1987, Ronald L. Rivest designed RC4 [Sch95], which was later used in SSL/TLS [DR08]
and the wireless network security protocols WEP [Ins97] and TKIP (often called WPA)
[Ins04]. Other well-known stream cipher examples are E0 of the Bluetooth standard
[SIG14] and A5/1 of GSM [BGW99]. Unfortunately, E0 and A5/1 have been shown to be
highly insecure (see, e.g., [LMV05] and [BB06]) and RC4 also shows severe vulnerabilities,
which led to its removal from the TLS protocol [Pop15] and rendered other protocols like
WEP insecure [FMS01]. In 2004, the eSTREAM project [ECR08] was started in order to
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identify new stream ciphers for different application profiles. In the hardware category,
aiming at devices with restricted resources, three ciphers are still part of the eSTREAM
portfolio after the latest revision in 2012: Grain v1 [HJM06], MICKEY 2.0 [BD06] and
Trivium [CP05].

Common to these three ciphers is that they have an inner state length of at least twice
the size of the targeted security level against key recovery attacks. This is due to the
inherent vulnerability of classical stream ciphers (i.e., stream ciphers which compute the
keystream based on a so-called initial state) against TMD tradeoff attacks like those of
Babbage [Bab95] and Biryukov and Shamir [BS00], which allow to recover some inner state
during keystream generation (and, usually, also the corresponding initial state by clocking
the cipher backwards) with an overall attack complexity of 2n/2, where n denotes the
inner state length of the underlying keystream generator (KSG). If the state initialization
algorithm, which computes the initial state from a given key/IV pair, is efficiently invertible
(as it is, e.g., for Trivium and Grain), knowing the initial state immediately reveals the
secret key. And even if the state initialization algorithm is not efficiently invertible, variants
of such TMD tradeoff attacks can allow for key recovery, e.g., by targeting the inner state
at t = 0, which often contains the secret key (cf. Trivium and Grain). A generic view on
these attacks is provided in [HK15] along with a corresponding complexity analysis.

In 2015, a new line of research emerged with the publication of Sprout [AM15] by
Armknecht and Mikhalev, which pursues the goal of reducing the size of the volatile inner
state of lightweight stream ciphers below this magic boundary formerly induced by TMD
tradeoff attacks. We will refer to such ciphers, whose volatile inner state size is less than
twice the key size, by the term small-state stream cipher. Sprout has a Grain-like structure
and uses two 40-bit feedback shift registers. Compared to conventional stream ciphers like
Grain v1, the characteristic difference of Sprout is that the 80-bit key is not only accessed
during the state initialization but also continuously used as part of the state update during
the subsequent keystream generation phase. Even though Sprout was broken shortly after
publication (see, e.g., [LNP15], [ZG15], [Ban15], [EK16]), it has sparked interest in the
underlying design principle and related ciphers like Fruit [GHX16] have been suggested
since. Please note that as the designers of Fruit have changed the specification of their
cipher several times in the past (e.g., ePrint versions 20160521:111224, 20161124:115414,
20170304:073404 of [GHX16] all contain different algorithms), we will refer to the most
recent version of Fruit (20170304:073404) as Fruit v1 in the rest of this paper and hope
that the designers will follow this versioning scheme for potential future updates.1

Unfortunately, though being elegant in theory, continuously accessing the secret key
often comes at a heavy price in practice. For example, if the key is stored in an EEPROM,
the corresponding access times may significantly slow down the operation speed of the
KSG. This is particularly true if the key bits are not accessed sequentially (as in the case
of Sprout and its successor Plantlet [MAM17]) but at random positions (as in the case
of Fruit v1). In fact, Fruit v1 needs to access six different, non-sequential key bits per
clock cycle. On the other hand, in a scenario where the key is fixed (e.g., via burning
fuses), continuously accessing key bits (in potentially random order) is clearly feasible.
Hence the question whether a more complicated key schedule as in the case of Fruit v1
does provide additional security when compared to, e.g., Plantlet, is not only interesting
from a theoretical point of view but of actual practical relevance. In fact, the designers
of Fruit v1 claim in [GHX16] (version 20170304:073404): “The key bits are not properly
used as a section of the internal state in Sprout and Plantlet (every 80 clocks, each key bit
participates in internal state updating only one time). In Fruit, the balance of participation
of the key (as a section of the internal state) is suitable in the internal state updating. We

1This would not only be beneficial for the cryptographic community but also for the designers themselves
as potential users will immediately recognize, which version of Fruit is actually considered secure. In
analogy, when a weakness in the first version of Grain was discovered, the designers called the updated
design Grain v1.
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predict that very soon some attacks will be published against Plantlet [MS17].”
Ironically, while Plantlet has not been broken in the meantime, this paper now presents

a key recovery attack against Fruit v1 that makes use of the cipher’s insecure key schedule.
In fact, our results seems to raise the question whether there is actually a need for
(respectively a benefit of) a more complicated key schedules than the basic one used in
Plantlet. Because not only Fruit v1 has now been broken due to its nonlinear key schedule
but also Sprout initially suffered from this fate. It seems that simplicity may actually be
preferable here. After all, the original idea underlying the use of key bits for the state
update during keystream generation was simply to protect against TMD tradeoff attacks
aiming at inner state recovery. Sequentially using one key bit per clock cycle as done by
Plantlet already seems to do this job.

Another contribution of this paper is the discussion of TMD tradeoff distinguishing
attacks against ciphers like Sprout, Fruit v1, and Plantlet, which continuously use the
secret key as part of the state update. The existence of such attacks with a complexity
below that of exhaustive key search was considered an exclusion criterion in the eSTREAM
contest. Making use of a result by Englund, Hell and Johansson [EHJ07], we give a
generic keystream-based TMD tradeoff distinguisher with attack complexity way below
the complexity of exhaustive key search for Plantlet and Fruit v1. In fact, Banik already
showed in 2015 [Ban15] that there is a similar distinguisher for Sprout. His attack can also
be seen as a specific variant of the generic distinguisher by Englund, Hell and Johansson
from 2007 (i.e., long before Sprout, Fruit, and Plantlet were introduced).

We would like to point out that, in our opinion, the existence of distinguishing attacks
with a complexity below that of exhaustive key search should not be a knock-out criterion
for stream ciphers targeting ultra-lightweight applications because such attacks might
actually be tolerable depending on the application scenario. Nonetheless, the user needs to
know about the corresponding complexities in order to be able to decide on this question. In
[GHX16] (version 20170304:073404), however, the designers of Fruit v1 do not discuss the
topic of distinguishing attacks at all, which might give potential users the impression that
Fruit v1 is considered 80-bit secure (the general security level claimed in the abstract of the
paper) against this type of attack. The designers of Plantlet, on the other hand, recognize
the possibility of distinguishing attacks and discuss them as part of their cryptanalysis
in [MAM17]. In particular, they point out the aforementioned distinguishing attack of
Banik against Sprout and acknowledge that it would also be applicable to Plantlet (“the
memory complexity of this distinguishing attack against Plantlet is at least 258 which is
about 32,768 terabytes” [MAM17]). However, they also state: “This attack is possible
due to the simplicity of the round key function. It would be possible to make the design
resistant against this attack by either choosing a more complicated key-selection function
or by further increasing internal state size.” While increasing the size of the inner state
would in fact be a valid counter measure (though it would somehow counteract the initial
idea of having a smaller state), having a more complicated key schedule as suggested by
the Plantlet designers would not help.

The fact that the designers of Fruit v1 do not discuss the topic of distinguishing attacks
at all together with the above misconception of the Plantlet authors w.r.t. the effects of
a more complicated key schedule seem to make it beneficial for future research in the
direction of small-state stream ciphers to revisit the distinguishing attack by Englund, Hell,
and Johansson and transfer it, along with a discussion of the now necessary assumptions,
to this new application context. In particular, by analyzing those assumptions, we will
then be able to come up with a new design idea for small-state stream ciphers, which
finally delivers, what continuously using the secret key alone cannot: security against TMD
tradeoff-based key recovery and distinguishing attacks.

Before we sketch the structure of our paper and continue with the details of the attacks,
it should be mentioned that there is another recent lightweight stream cipher, which
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also strives for beyond-the-birthday-bound security w.r.t. key recovery, but based on
another design paradigm. Lizard [HKM17] was presented at FSE 2017 and implements
the FP (1)-mode introduced in [HK15], which is a method for deriving the initial state
from key and IV in a way that provides provable 2

3n-security w.r.t. generic TMD tradeoff
attacks aiming at key recovery. TMD tradeoff attacks aiming at recovering some initial
state, on the other hand, are not hampered by the FP (1)-mode, even though they do not
allow to straightforwardly derive the underlying secret key. As a consequence, not only for
Sprout, Fruit v1, and Plantlet, but also for Lizard there are distinguishing attacks with a
complexity below that of exhaustive key search. More precisely, the designers of Lizard
claim 80-bit security against key recovery and 60-bit security against distinguishing (see
[HKM17] for further details).

Structure of the paper: In section 2, we present a generic distinguishing attack against
ciphers which continuously use the secret key, like Sprout, Fruit v1 and Plantlet. It is is
based on a result by Englund, Hell and Johansson [EHJ07] from 2007 and also related
to the distinguishing attack of Banik against Sprout [Ban15] from 2015. The generic
nature of the attack will clarify that the security against distinguishing of ciphers which
continuously use the secret key cannot be increased by choosing a more complicated key
schedule. Instead, we will introduce a new design idea for small-state stream ciphers,
which not only allows to achieve security against TMD tradeoff-based key recovery but
also against distinguishing. In section 3, we demonstrate that the current version of Fruit
(20170304:073404), which we denote Fruit v1, has at least 264 weak keys, each of which
does not provide the 80-bit security promised by the designers. The corresponding attack
exploits the cipher’s vulnerable key schedule and uses a variant of Babbage’s TMD tradeoff
attack [Bab95] to recover a subset of the unknown key bits together with a certain state of
the feedback shift registers (FSRs) during state initialization. Based on this information,
the cipher is then clocked back and the rest of the key bits is read from the FSRs at t = 0.
Section 4 concludes the paper.

2 A Generic Distinguishing Attack against Stream Ciphers
which Continuously use the Non-volatile Key

In this section, we present a generic distinguishing attack against stream ciphers which
continuously use the non-volatile key. Our description is based on a result by Englund,
Hell, and Johansson [EHJ07] from 2007 and hence also related to the distinguishing attack
of Banik against Sprout [Ban15] from 2015.

2.1 Revisiting the Generic Attack of Englund, Hell, and Johansson
In 2007, Englund, Hell, and Johansson published a note [EHJ07], in which they presented
a “new distinguishing attack scenario for stream ciphers, allowing a resynchronization
collision attack” and pointed out that “[t]he attack can succeed if the part of the state that
depends on both the key and the IV is smaller than twice the key size.” At the time of
publication, the authors did not have ciphers like Sprout, Fruit v1, or Plantlet in mind (the
first of which was only published in 2015), but they were targeting block ciphers in output
feedback (OFB) mode. These can also be interpreted as (though not bitwise working)
stream ciphers and, in fact, the eSTREAM phase-3 candidate LEX [Bir05] is very similar
to a block cipher in OFB mode, so the attack of Englund, Hell, and Johansson could be
applied.

The authors of [EHJ07] start the description of their idea as follows: “Let us divide the
internal state of the cipher into two parts, State = (StateK , StateK+IV ), where StateK is
the part of the state that statically holds the key and StateK+IV is the part of the state that
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is affected by both the key and the IV. Also, let N be the size of StateK+IV in bits. If the
key size |K| > N/2, then the new distinguishing attack will always succeed with complexity
below exhaustive key search.”

Note that this corresponds exactly to the scenario we are facing for Sprout, Fruit v1
and Plantlet.

The attack description in [EHJ07] then continues as follows: “Consider a resynchroni-
zation scenario. We assume that the key is fixed and that the cipher is reinitialized using
many different IVs. Furthermore, we assume that we have access to one long keystream
sequence produced from one of the IVs, denoted IV0. We then intercept many short cip-
hertext messages, each initialized using a different IV, and we assume that we know the
first N plaintext bits in every ciphertext message. Our goal is to recover the rest of the
plaintext for one of the messages. [...] We now proceed as follows. Let a keystream block
be N consecutive bits in a considered keystream sequence. We first store 2N/2 different
keystream blocks from the keystream generated from IV0 in a sorted table. Thus, we have
a table covering a fraction of 2−N/2 of all possible keystream blocks of length N . If the
cipher is reinitialized with a new IV and we know the N first bits of the corresponding
keystream, then the number of reinitializations needed in order to have a collision, i.e.,
receiving N bits that are present in the table, is geometrically distributed with expected
value 2N/2. Denote the IV producing the collision by IVc. If a collision is found, then with
high probability the states are the same and the sequences following the colliding blocks
of IV0 and IVc will be identical. That means that if we know only the first N keystream
bits generated by IVc, then we can predict future keystream bits from IVc. In other words,
by knowing only the first N plaintext bits of the message, we can decrypt the rest of the
ciphertext without knowing the key.”

Depending on the application context and the attack complexity, the fact that the
attacker is not only able to distinguish the cipher from a random bitstream but also obtains
a potentially large amount of previously unknown keystream for the collision IV IVc, might
pose a serious security risk.

Also note that what this attack effectively does is to look for two different IVs which
map to shifted versions of the same key stream. The same idea underlies, e.g., Banik’s
distinguishing attack against Sprout [Ban15].

However, the attack by Englund, Hell, and Johansson cannot be applied carelessly
to stream ciphers like Sprout, Fruit v1, and Plantlet. The reason for this lies in their
assumption that “[i]f the cipher is reinitialized with a new IV and we know the N first bits
of the corresponding keystream, then the number of reinitializations needed in order to have
a collision, i.e., receiving N bits that are present in the table, is geometrically distributed
with expected value 2N/2.” This statement is obviously motivated by their application
context of block ciphers in OFB mode. There, the IV serves as the initial state and thus,
the IV space and the state of inner spaces have the same size. In fact, at a later point
of the paper, the authors even write: “This resynchronization scenario will not give an
attack on a block cipher in counter mode. [...] However, the above scenario applies to block
ciphers used in OFB mode since the output block zi can be viewed as the part of the state
that depends on both the key and the IV, StateK+IV . Similarly, the key used in the block
cipher can be viewed as the part of the state that statically holds the key, StateK+IV . By
reinitializing the OFB mode stream cipher with a new IV, the cipher will enter a new
random state after every encryption.” [EHJ07]

Note that for stream ciphers it is common to have IV sizes below the total size of the
volatile inner state (see, e.g., Trivium and Grain, but also Sprout, Fruit v1, and Plantlet).
Hence reinitializing with a new IV will only allow us to randomly draw elements from a
subset of the set of all volatile inner states. In the next subsection, we will hence see that
for a generic attack description against general stream ciphers, we will need additional
assumptions.
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Such assumptions are also necessary because, for a block cipher in OFB mode, the
mapping of IVs to initial states is the identity and, hence, obviously bijective. While,
under an arbitrarily fixed key, this is also the case for Sprout (cf. [Ban15]) and Plantlet
(see Appenix A), it is not clear for Fruit v1 due to the fact that the IV is introduced ’from
aside’ during the state initialization. As a consequence, in our experiment, we would not
draw uniformly at random from the set of all possible initial states as some of those
states would be more likely due to the fact that they are the result of more than one IV.

Another important difference between a block cipher in OFB mode and common stream
ciphers results from the fact that a block cipher realizes a permutation between plaintext
blocks and ciphertext blocks. Hence, for a block cipher in OFB mode, the mapping of
inner states (corresponding to the block cipher’s plaintext blocks) to keystream blocks
(corresponding to the block cipher’s ciphertext blocks) is also a permutation. For common
stream ciphers, however, we do not have this guarantee as different inner states of size
n can actually lead to identical keystream blocks of size n. As a consequence, when
straightforwardly applying the attack of Englund, Hell, and Johansson to ciphers like
Sprout, Fruit v1, and Plantlet, we might actually experience keystream block collisions
which are not the result of colliding inner states but of collisions in the output function.
To avoid such ’false positives’, we need to slightly increase the size of the keystream blocks
which we save (for practical attacks, usually by only a few bits; see also subsection 2.3).

We will now describe a generic attack scheme for general stream ciphers, which takes
the above considerations into account. In particular, explicitly specifying the required
assumptions will enable us to come up with a new design idea for stream ciphers in
subsection 2.4 that thwarts this type of distinguishing attack. More precisely, we extend
the 2-tuple State = (StateK , StateK+IV ) underlying the model of Englund, Hell, and
Johansson (and also ciphers like Sprout, Fruit v1, and Plantlet) by a third component:
StateIV .

2.2 A Generic Attack Scheme

Definition 2.1: Continuous-Key-Use (CKU) Stream Cipher

A CKU stream cipher is a classical, stepwise working keystream generator with the
additional tweak that, even after the state initialization has been completed, the
secret key is still used as an additional input to the state update function. The
key schedule, which determines the way in which the secret key influences the state
update, can depend on any part of the volatile inner state (FSRs, counters etc.) of
the cipher.

Note that, e.g., Sprout, Fruit v1, and Plantlet are all CKU stream ciphers. Sprout’s
key schedule depends on a separate counter along with bits from the FSRs, while those of
Fruit v1 and Plantlet only depend on a counter.

In the following definition, we do not not speak of any counters, but only of a volatile
inner state, which we consider potential counters to be part of (along with the FSRs
etc.). The reason for doing so is that we want to stay as generic as possible in our attack
description in order to show its applicability for a wide range of CKU stream ciphers.2

2As mentioned in the introduction, the designers of Plantlet (in our opinion falsely) concluded that
Banik’s distinguishing attack against Sprout [Ban15] could have been avoided by using a more involved key
schedule. With our generic attack scheme, we want to emphasize the general applicability of distinguishers
of this type against such ciphers.
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Definition 2.2

Let Cipher be a CKU stream cipher with the following properties:

• n: size of the volatile inner state in bit;

• l: IV length in bit;

• 2λ: limit of keystream bits per IV.

We define:
Ik =

{
InitialStatek(v); v ∈ {0, 1}l

}
,

where InitialStatek(v) ∈ {0, 1}n denotes the initial state which the state initializa-
tion algorithm of Cipher computes on the basis of the secret key k and the IV
v.

For our generic distinguishing attack against Cipher, we need the following two
assumptions to hold.

Aussumption 2.1: IV Near-Injectivity

Cipher fulfills the IV Near-Injectivity assumption for the secret key k if |Ik| ≈ 2l.

Aussumption 2.2: Initial State Randomness

Let σ := max {0, (n/2− λ)}, and let T be a set of about 2n/2 different ñ-bit
keystream blocks (with ñ slightly larger than n) that were obtained on the basis
of d2σe different IVs under an arbitrarily fixed key k by sliding an ñ-bit window
over each of the respective d2σe keystreams of length ≤ 2λ bit without experiencing
any collisions. Furthermore, let Sk(T ) denote the set of volatile inner states which
underlie the keystream blocks in T for the secret key k.
Cipher fulfills the Initial State Randomness assumption if for such sets T , it holds
with high probability that:

|Sk(T ) ∩ Ik|
|Sk(T )| '

|Ik|
|{0, 1}n|

.

Note that if a stream cipher violates Assumption 2.1, this in itself opens the door
for a distinguishing attack that looks for IVs which produce identical key streams. For
example, if the IV size is smaller than the key size, even a single such IV collision allows
for a distinguishing attack with complexity lower than that of exhaustive key search.3

Assumption 2.2 ensures that there will actually be a sufficient amount of collision
candidates to look for. Banik makes a similar assumption in his distinguishing attack
against Sprout in [Ban15] by expecting that for a randomly chosen inner state, there is
a probability of 2−10 that an IV exists for which this state is “the 80th keystream phase
state”. In subsection 2.4, we will introduce a new design idea for stream ciphers, which
thwarts such distinguishing attacks by ensuring that two IVs will never lead to shifted
versions of the same keystream. But first, we will now describe the generic distinguishing
attack against CKU stream ciphers and explain its consequences for Fruit v1 and Plantlet
in subsection 2.3.

3A small amount of IV collisions may be tolerable depending on the security claims; see, e.g., Lizard
[HKM17], which claims 80-bit security against key recovery and 60-bit security against distinguishing.
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So let Cipher be a CKU cipher with an ñ-bit volatile inner state, an IV length of l bit,
and a limit of 2λ keystream bits per IV. Moreover, let Cipher fulfill assumptions 2.1 and
2.2, and let σ := max {0, (n/2− λ)}. Then the following algorithm allows to distinguish
the keystream produced by Cipher from a random bitstream with high probability:

1. Obtain about 2n/2 ñ-bit keystream blocks (with ñ slightly larger than n) based
on d2σe different IVs from the oracle by sliding an ñ-bit window over each of the
respective d2σe keystreams of length ≤ 2λ bit and save the keystream blocks in an
efficiently searchable data structure like a hash table. If during this step, a collision
occurs, we can already distinguish Cipher and stop.

2. For 2n/2 different IVs, obtain the corresponding ñ-bit keystream prefix from the
oracle and look for a collision in the data structure created in Step (1). Once such a
collision is found, we can distinguish Cipher and stop.

The success probability of the attack can be derived from the birthday paradox. Under
an arbitrarily fixed key k, the universe of the corresponding experiment will be the set
of all possible initial states Ik, which, according to Assumption 2.1, has size |Ik| ≈ 2l.
Assumption 2.2 ensures that a subset of size about 2n/2−(n−l) ' 2l−n/2 of the volatile
inner states underlying the 2n/2 keystream blocks collected in Step (1) will belong to the
set Ik. Assumption 2.1 guarantees that in Step (2), we draw uniformly and at random
2n/2 elements from Ik. According to the birthday paradox, when drawing uniformly and
at random 2n/2 elements from a set of size 2l, we are likely to find a collision with an
arbitrarily fixed subset of size 2l−n/2.

The complexity of the above attack is:

(1) Obtain 2n/2 keystream blocks of size ñ bit and store them in an efficiently searchable
data structure:

– Data complexity (keystream): 2n/2;
– Memory complexity (keystream blocks): 2n/2 · ñ;
– Time complexity: 2n/2.

(2) Obtain 2n/2 keystream prefixes of size ñ and search for a collision in the data structure
created in Step (1).

– Data complexity (keystream prefixes): 2n/2 · ñ;
– Memory complexity: negligible;
– Time complexity: 2n/2.

Note that, for the time complexity, we consider the computation of each ñ-bit keystream
block to be an atomic operation, independent of whether it is a keystream prefix or a
block that appears in the middle of a keystream. This is motivated by the comparison
to the complexity of exhaustive key search, where, per key candidate, a keystream prefix
needs to be generated and compared to the given keystream prefix for the secret key. In
consequence, Step (1) and Step (2) each have a time complexity of 2n/2. (For Step (1),
where we slide an ñ-bit window over the keystream, we actually need less encryption
operations when we assume that each atomic encryption operation gives ñ new keystream
bits. However, inserting the 2n/2 keystream blocks into the hash table takes 2n/2 ·O(1)
time.)

So the overall complexity of the generic TMD tradeoff distinguishing attack against
CKU stream ciphers is dominated by data and memory complexity, which are both about
2n/2 · ñ. Hence, if the key size of the attacked cipher is larger than (n/2) + log2 (ñ), we
have a distinguishing attack complexity below the complexity of exhaustive key search.4

4Englund, Hell, and Johansson similarly concluded: “If the key size |K| > N/2, then the new
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2.3 Applying the Attack to Plantlet and Fruit v1
In this subsection, we will discuss the consequences of the above distinguishing attack
against the ciphers Plantlet and Fruit v1. Sprout will not be treated due to the respective
distinguishing result already presented by Banik [Ban15]. The reason for including Plantlet
despite the fact that the designers already acknowledged that Banik’s attack against
Sprout could also be transferred to Plantlet is that they point out at the same time: “It
would be possible to make the design resistant against this attack by either choosing a more
complicated key-selection function or by further increasing internal state size.” [MAM17]
We will show that the above attack is completely independent of how complicated the
key-selection function is. Fruit v1, on the other hand, is discussed as the designers do not
mention the possibility of distinguishing attacks at all in their paper, which might give the
impression that the security level against distinguishing is supposed to equal that against
key recovery via exhaustive key search. We will show that this is not the case.

The main question when applying our generic attack scheme is obviously whether
the targeted cipher fulfills the necessary assumptions 2.1(IV Near-Injectivity) and 2.2
(Initial State Randomness). In Appendix A, we show for Plantlet that, under an arbitrarily
fixed key, the mapping of IVs to the corresponding volatile initial state is injective; hence,
Assumption 2.1 is fulfilled. For Fruit v1, we will also suppose Assumption 2.1 to be fulfilled,
despite the fact that here, IV collisions could actually occur. However, as pointed out
above, the existence of a large number of IV collisions would constitute a weakness on its
own. In particular, as the IV space of Fruit has only size 270 whereas the key size is 80 bit,
the existence of even a single IV collision would be sufficient to launch a distinguishing
attack with complexity below that of exhaustive key search by exhaustively searching the
complete IV space for this collision.

The applicability of Assumption 2.2, on the other hand, can neither be proved for
Plantlet nor for Fruit v1. Instead, we have to refer to a plausibility argument based on the
structure of the respective cipher (similarly to what, e.g., Banik did for Sprout in [Ban15]):

• Plantlet: The IV space of Plantlet has size 290 and the corresponding mapping
(under an arbitrarily fixed key) to the set of initial states is injective (see Appendix
A). As two bits of the 9-bit counter will not be used after the state initialization is
completed, the relevant volatile inner state of Plantlet has size 61 + 40 + 7 = 108
bit. From the cipher definition, we know that the remaining 7-bit counter will have
the same binary value 0 . . . 0 for all initial states. During the keystream generation,
this counter, interpreted as a natural number, stepwise takes all values mod 80. In
particular, in every 80th clock cycle, the counter takes binary value 0 . . . 0. Based on
general security assumptions for stream ciphers, we can also expect that the FSR
states will evolve randomly during the keystream generation. As a consequence,
every time the counter takes value 0 . . . 0, we have a chance of 290−101 (101 bit is the
combined size of the FSRs) that there is an IV which has this inner state as an initial
state. So when picking an arbitrary (108 + ε)-bit keystream block, we have a chance
of 80−1 · 290−101 > 2−18 that that underlying 108-bit inner state is also an initial
state for some IV under the given key. This implies that Assumption 2.2 holds.

• Fruit v1: The IV space of Fruit has size 270. Due to the way the IV is introduced
to the inner state, there is a possibility for IV collisions leading to the same initial
state. However, as explained above, for Fruit v1 we will also suppose Assumption 2.1
to be fulfilled. So let 270 be the approximate size of the set of initial states that are
actually possible under the given secret key. Like Plantlet, Fruit v1 has a (7-bit wide)

distinguishing attack will always succeed with complexity below exhaustive key search.” However, they left
out the logarithmic factor, which we chose to include as exhaustive key search has negligible data and
memory complexity, whereas in the above distinguishing attack, these complexities are actually each at a
factor of ñ higher than the time complexity and dominate the overall cost of the attack.
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counter that influences the key bit selection. The volatile inner state of Fruit v1 has
size 37 + 43 + 7 = 87 bit. As in the case of Plantlet, the 7-bit counter is stepwise
incremented during keystream generation. However, there are two differences: (1)
the counter will actually cycle through all possible 27 values; (2) the counter value of
the initial states will not be known as it is set based on FSR values during the state
initialization. We know, however, that each initial state has the property that, when
clocked back 80 times (the respective state transition function is bijective), a certain
position of the LFSR has to be 1 and six positions of the NFSR have to equal six
positions of the counter. One in 27 inner states of size 87 bit will fulfill this property.
Using the same security argument about FSR state randomness as in the case of
Plantlet, we can hence expect that when picking an arbitrary (87 + ε)-bit keystream
block, we have a chance of about 2−7 ·

(
270−80) = 2−17 that that underlying 87-bit

inner state is also an initial state for some IV under the given key. This implies that
Assumption 2.2 holds.

In order to substantiate our assumption w.r.t. the randomly evolving FSR states during
keystream generation and the corresponding implications on the existence of a sufficient
amount of collision candidates, we created a reduced (i.e., ’halved’) version of Fruit v1,
which we call Shrunk Fruit v1 (see Appendix B for a specification). Shrunk Fruit v1 has a
volatile inner state of size 46 bit (19-bit NFSR, 21-bit LFSR, 6-bit counter) and is operated
with 40-bit keys and 35-bit IVs. Assuming that Shrunk Fruit v1 fulfills assumptions 2.1 and
2.2, the distinguishing attack described in the previous subsection should find a collision
pair based on 246/2 keystream blocks collected in Step (1) and 246/2 keystream prefixes
requested in Step (2) with high probability. We created a corresponding simulation with
the computer algebra system Magma. In each iteration of the experiment, a random
key was chosen and 223 46-bit keystream blocks were generated and stored as described
in Step (1) of the above distinguishing algorithm. Then, in line with Step (2), 50-bit
keystream prefixes were computed for randomly chosen IVs until the first collision with
the set generated in Step (1) occurred. We performed 25 such iterations and the average
number of trials needed in Step (2) was 222.3, which is in line with our theoretical results.
The simulations also showed that as few as 4 additional bits per keystream block (i.e., 50
instead of 46) were sufficient to avoid false positives, i.e., keystream block collisions caused
by collisions in the output function instead by colliding inner states.

The complexities (Step (1) + Step (2)) of the above distinguishing attack when applied
to Plantlet and Fruit v1 are as follows:

• Plantlet:

– Data complexity: 2108/2 + 2108/2 · (108 + 20) = 261;
– Memory complexity: 2108/2 · (108 + 20) = 261;
– Time complexity: 2108/2 + 2108/2 = 255.

• Fruit v1:

– Data complexity: 287/2 + 287/2 · (87 + 20) ≈ 250.2;
– Memory complexity: 287/2 · (87 + 20) ≈ 250.2;
– Time complexity: 287/2 + 287/2 = 244.5.

In both cases, we added a ’20-bit security margin’ to the block size in order to avoid
false positives as explained in subsection 2.1. 20 bit are probably way to much as our
experiments with Shrunk Fruit v1 indicate (see above), by the effects on the attack
complexity are minimal anyhow, so we preferred to be on the safe side with our claims.

Note that for Plantlet, complexities could easily be improved by taking the cipher
specifics into account. For example, the attacker actually knows which of the keystream
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blocks collected in Step (1) are impossible to produce a collision (because he knows the
underlying counter values). These values would not have to be stored in the first place,
reducing the memory complexity of the attack. Moreover, the above attack complexities
are based on the assumption that all values can occur in the counter register. For Plantlet,
this is actually not the case, which would further reduce the attack complexity. However,
as pointed out before, we wanted to have a scheme for distinguishing attacks against CKU
ciphers which is as generic as possible.

Thereby, we hope to clarify that a more complicated key schedule (e.g., by having
a nonlinear round key function, making use of FSR bits etc.) will not protect against
the above distinguishing attack. So while continuously using the secret key may protect
against TMD tradeoff inner state recovery attacks, it does not provide security (equal
to the security against key recovery) against TMD tradeoff distinguishing attacks.

A trivial way to thwart the above distinguishing attacks would be to increase the size
of the volatile inner state. However, this would clearly counteract the initial idea of having
a smaller state. In the following subsection, we will introduce a new design idea, which can
provide full security against distinguishing attacks without increasing the volatile inner
state.

2.4 New Design Idea: Stream Ciphers which Continuously use the IV
The assumption which underlies the applicability of the above (and also, e.g., Banik’s
[Ban15]) distinguishing attack against CKU ciphers like Sprout, Fruit v1, and Plantlet, is
that it is possible to find two IVs which, under an arbitrarily fixed key, lead to shifted
versions of the same keystream. In this subsection, we suggest a potential countermeasure,
which ensures that, under an arbitrarily fixed key, any two IVs will always map to different
keystreams.

The prominent innovation of Sprout [AM15] was to continuously (i.e., also during
keystream generation) use the secret key as part of the state update in order to protect
against TMD tradeoff inner state recovery attacks. Our suggestion is now to also
continuously use the public IV as part of the state update in order to protect against TMD
tradeoff distinguishing attacks. By doing so, the public IV would become part of the
inner state, just like the secret key became part of the inner state in Sprout.

Now one may argue from a hardware perspective that, while the secret key has to be
stored anyhow (e.g., also for Trivium, Grain etc.) in order to be reused with other IVs,
this would not be the case for the IV. Hence, at first sight, assuming that the IV is still
accessible after state initialization might be considered cheating.

However, we do not think that this is the case for many application scenarios. Look, for
example, at A5/1. There, the IV used in the encryption of a data packet is the respective
(sequentially incremented) 22-bit frame number. Hence, any A5/1 device needs some
memory containing this frame number anyhow. Generally, especially for ciphers with small
IV spaces, there always has to be a mechanism like a stepwise incremented IV register
to make sure that the same IV is not accidentally used twice under the same secret key.
Similarly, in all communication scenarios like A5/1, where the packet counter serves at the
same time as an IV source, we will always have this information.

Actually, any stream cipher definition which strictly requires “Never use the same
IV twice under a single key!” also needs a mechanism to enforce this requirement.5
Independent of whether this mechanism is to keep a stepwise incremented IV in a writable
storage location like an EEPROM or another register on the device, or whether the device
actually keeps a table of already used IVs, there will always be a source where a cipher
can continuously get the current IV from.

5Though stream cipher designers seem to hardly talk about this issue in their suggestions but usually
leave the problem of IV uniqueness to user.
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In this paper, we will not suggest a specific instantiation of such a cipher, which
continuously uses the secret key and the IV, but leave the development to future work.
However, it might be as easy as changing the “round key function” of Plantlet [MAM17]
from

k̃t = k(t mod 80), t ≥ 0

to
k̃t = k(t mod 80) + iv(t mod 90), t ≥ 0.

As a final note, we would like to point out that our new design idea of continuously using
the IV as part of the state update is mainly targeted at CKU ciphers. Other small-state
ciphers like Lizard [HKM17] would hardly benefit for the following reason: If the secret key
is not used after the state initialization, there is always the possibility of a TMD tradeoff
inner state recovery attack like those by Babbage [Bab95] or Biryukov and Shamir [BS00].
Such an attack will have complexity half the size of the volatile inner state, independent of
whether the IV is continuously used during state update, because the IV is public and the
attacker will be able to evaluate the function (volatile inner state, IV)→ keystream block
for randomly chosen inputs. The only advantage of continuously using the IV would be
that TMD tradeoff precomputations could be prevented.

3 A Key Recovery Attack against Fruit v1
3.1 Description
The following attack against Fruit v1 (our name for the most recent version of Fruit; cf.
Sec. 1 for further remarks) works for the subset {k0, . . . , k63, 0, . . . , 0} ⊂ {0, 1}80 (i.e., for
every 65536th key), for which it allows key recovery faster than exhaustive key search (i.e.,
with complexity < 264) against the remaining bits k0, . . . , k63. In other words: Fruit has
(at least) 264 weak keys, which do not offer the promised 80-bit security.

Observation 3.1

The key schedule of Fruit has the property that if k64 = k65 = . . . = k79 = 0 holds,
then the key schedule bit k′t is always computed as k′t = kq+32, where 0 ≤ q ≤ 31
and q depends on t. In particular, this means that if k64 = k65 = . . . = k79 = 0
holds, then the key bits k0, . . . , k31 are never involved in the computation of k′t.

So let us suppose that k64 = k65 = . . . = k79 = 0 holds. We will use a variant of
Babbage’s TMD TO attack to recover the inner state (composed of the 80-bit FSRs and
the 32 key bits k32, . . . , k63, i.e., 112 bits in total) at t = 130 before the counter values
and the value of l130 are overwritten. Observe that if we know this inner state and the IV
underlying it, then we will be able to clock the cipher back and recover the inner state
at t = 0, which contains the full 80-bit key. Also note that the counter value at t = 130
before it is overwritten is always publicly known.

Attack algorithm:

1. For 252 different IVs obtain the 112-bit keystream prefix from the oracle and save
the tuples (keystream prefix, IV) in an appropriate (i.e., efficiently searchable with
respect to the keystream prefixes) data structure like a hash table.

2. For 260 random choices of elements

((k∗32, . . . , k
∗
63), (l∗130, . . . , l

∗
172), (n∗130, . . . , n

∗
166)) ∈ {0, 1}112

,
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evaluate the function F : {0, 1}112 → {0, 1}112, which computes the first 112 key-
stream bits based on this random KSG state at t = 130, and look for a collision in
the data structure created in Step (1).6 Once a collision is found, clock the cipher
back based on the discovered (IV, inner state) pair and obtain the full secret key as
the FSR contents at t = 0.

Theorem 3.1

According to the birthday paradox, with high probability, we’ll find a collision
between one of the keystream prefixes from Step (1) with a keystream prefix from
Step (2).

Proof. See subsection 3.2.

The complexity of the above attack is:

(1) Get 252 keystream prefixes of size 112 bit and store them, together with the respective
IV of size 70 bit, in an efficiently searchable data structure:

– Time complexity: 252;
– Data complexity (keystream prefixes): 252 · 112 = 258.8;
– Memory complexity ((keystream prefix, IV) tuples):

252 · (112 + 70) = 259.5.

(2) Evaluate the function F 260 times (we’ll consider this as 260 atomic operations, just
like each encryption under a different key during exhaustive key search is usually
treated as an atomic operation; actually, we are even faster as we do not need to
perform the first 130 clocks of the initialization):

– Time complexity: 260 keystream prefix generations.

Obviously, for the tradeoff parameters we chose (i.e., collecting 252 keystream prefixes
during Step (1) and performing 260 evaluations of F for different random inputs in Step
(2)), the overall attack cost is dominated by the time complexity 260. (Note that we needed
to get below 264 to show that for the targeted subset of 264 keys, the remaining unknown
64 key bits can be recovered with complexity below exhaustive key search, i.e., below 264.)

Final remarks:

• For the related ciphers Grain and Plantlet, it can be shown that, under an arbitrarily
fixed key, the mapping of IVs to initial states is injective. Due to the way the IV
is introduced (i.e., ’from aside’) in Fruit, is not clear to what extend this property
actually holds here. This leads to the situation that during Step (1) of the algorithm,
we could need some more attempts to arrive at a subset of 252 different keystream
prefixes corresponding to a set S, |S| = 252, of different inner states as explained
above. This is, however, is not a problem as we could collect up to 257 keystream
prefixes during Step (1) and still stay below the overall target complexity 264 of
exhaustive key search against the bits k0, . . . , k63 (note that only the data complexity
would be increased as we only save different keystream prefixes, which leaves the

6Note that the 112-bit input ((k∗
32, . . . , k∗

63), (l∗130, . . . , l∗172), (n∗
130, . . . , n∗

166)) contains all necessary
information to compute this keystream prefix, because: the counter at t = 130 before it is overwritten is
publicly known, and we suppose the last 16 key bits to be 0, and the first 32 key bits are never needed
again for the state update (and the keystream generation) after t = 0.
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memory complexity unchanged). If a set of 257 randomly chosen different IVs would
be mapped to fewer than 252 different initial states under an arbitrarily fixed key,
this would obviously constitute a massive weakness on its own (e.g., with respect
to distinguishing attacks and the fact that non-negligible fractions of IVs would be
mapped to identical keystrems).

• In an older version of Fruit ([GHX16], version 20161124:115414), the design descrip-
tion actually contained an upper bound (215) on the number of IVs that should be
used under the same secret key. In the current version of the ePrint paper ([GHX16],
version 20170304:073404), which underlies what we call Fruit v1 here, this restriction
has been dropped.7 Nonetheless, we would like to point out that the above attack
could be easily adapted to a scenario with this restriction still in place. Instead
of targeting the inner state at t = 130, one could also target an arbitrary inner
state during keystream generation. However, in this case the counter would not be
known any longer and it (more precisely, only the six bits c1

t , . . . , c
6
t ) would have to

be included in our TMD tradeoff attack. This would raise the data, memory and
time complexities each by a factor of at most 23 (the counter is also ’halved’ via the
birthday paradox), which would still fall in the boundaries of a successful attack.8 In
Step (1) of the attack, one would then obtain 255 118-bit keystream blocks based on
212 keystreams each of size 243 bit (the limit set by the designers of Fruit v1) for 212

different IVs. In Step (2), one would pick 263 random inputs for a modified function
F : {0, 1}118 → {0, 1}118. The rest of the attack then works analogously to what we
described before.

• An easy way to thwart our key recovery attack against Fruit v1 would obviously be
to add the linear term ’⊕ ks’, with s cyclically taking the values 0, . . . , 31, to the
cipher’s round key function. However, the question remains in what sense (i.e., w.r.t.
which kind of attacks) a more complicated round key function like that of Fruit v1 is
actually supposed to be superior to the basic one used in the yet unbroken Plantlet.

3.2 Proof of Theorem 3.1
In Step (1), we collect keystream prefixes which correspond to a subset S of size 252 of the
set Ω = {0, 1}32 × {0, 1}43 × {0, 1}37 of size 2112. More precisely, the 112-bit inner states
underlying the keystream prefixes collected in Step (1) all belong to the same secret key.
In particular, this implies that S has a special structure:((

k̃32, . . . , k̃63
)
,
(
l̃130, . . . , l̃172

)
, (ñ130, . . . , ñ166)

)
∈ S

and
((
k̂32, . . . , k̂63

)
,
(
l̂130, . . . , l̂172

)
, (n̂130, . . . , n̂166)

)
∈ S

⇒ k̃i = k̂i for i = 32, . . . , 64.

However, we will see that the structure of S is completely irrelevant for the success
probability of our attack. In particular, S does not have to be a random subset of Ω. The
only important aspect is that during Step (2), we are able randomly select elements from
the whole of Ω (which is the case in our attack as we are free to choose the inputs for
F : {0, 1}112 → {0, 1}112; see above).

7In fact, limiting a cipher that is designed for fixed-key scenarios (due to the continuous use of non-
sequential key bits), to 215 IVs per secret key, seems rather unrealistic as this would effectively mean that
a corresponding RFID tag would have to be dumped after at most 32768 keystream generations.

8In fact, e.g. the data complexity would be increased by a factor below 23 (and possibly even decrease)
as now, the keystream blocks can be derived via sliding a 118-bit window over the keystream, just like in
the classical TMD tradeoff attack.
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So let S with |S| = 252 be an arbitrarily fixed subset of Ω with |Ω| = 2112. The
probability of finding a collision during Step (2) can be computed as 1 − p, where p
denotes the probability that the 260 elements we draw during Step (2) all belong to the
set Ω \ S. For simplicity, we assume that our algorithm is ’stupid’ and does not remember
which elements it has already drawn uniformly and at random during Step (2), i.e., the
same non-collision elements in Ω \ S can be drawn multiple times during Step (2). (This
assumption is obviously a disadvantage for the attacker.) Then we get

p =
(

2112 − 252

2112

)260

=
(

1− 1
260

)260

≈ e−1,

which proves our Theorem as 1− p ≈ 0.63. �

4 Conclusion
In this paper, we presented a generic distinguishing attack against ciphers which conti-
nuously use the secret key, like Sprout, Fruit v1 and Plantlet. It is based on a result by
Englund, Hell and Johansson [EHJ07] from 2007 and also related to the distinguishing
attack of Banik against Sprout [Ban15] from 2015. The generic nature of the attack helps
to clarify that the security against distinguishing of ciphers which continuously use the
secret key cannot be increased by choosing a more complicated key schedule. Instead,
we introduced a new design idea for small-state stream ciphers, which not only allows to
achieve security against TMD tradeoff-based key recovery but also against distinguishing.
Furthermore, we demonstrated that the current version of Fruit (20170304:073404), which
we denoted Fruit v1, has at least 264 weak keys, each of which does not provide the
80-bit security promised by the designers. The corresponding attack exploits the cipher’s
vulnerable key schedule and uses a variant of Babbage’s TMD tradeoff attack [Bab95] to
recover a subset of the unknown key bits together with a certain state of the feedback shift
registers during state initialization. Based on this information, the cipher is then clocked
back and the rest of the key bits is read from the FSRs at t = 0.

In general, our paper shows that the search for small-state stream ciphers which
completely ’defeat’ the birthday bound, is far from being finished. The initial hope that
continuously using the secret key would fully solve this problem has been shattered by
TMD tradeoff distinguishing attacks. While the new design principle of continuously using
key and IV, which we introduced in this paper, might actually lead to ciphers that resist
TMD tradeoff key recovery and distinguishing attacks, it is obvious that the necessary
hardware conditions will not be present in all application scenarios. Hence, the search for
alternative solutions remains a field which is not only interesting from a theoretical point
of view, but also of actual practical relevance. The results presented in this paper seem to
indicate, that a more complicated key schedule (as used by Fruit v1) will probably not be
the way to go.
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A Plantlet: Injectivity of IV → Initial State
The following algorithm computes (under an arbitrarily fixed key) for any given FSR
content at t = 320 a corresponding FSR content at t = 0, which, according to the Plantlet
algorithm, would lead to the given FSR content at t = 320. (Moreover, it returns the
IV contained in the FSRs at t = 0.) This shows that the corresponding mapping of FSR
contents at t = 0 to FSR contents at t = 320 under an arbitrarily fixed key is surjective.
As domain and codomain have the same size, this also implies injectivity and shows that,
under an arbitrarily fixed key, different IVs will always be mapped to different initial states
by Plantlet’s state initialization algorithm.

Given:

• 80-bit Key: (k0, . . . , k79)

• 60-bit LFSR part of initial state:
(
l320
0 , . . . , l320

59
)

Note that l60 is irrelevant for us as it is not used during initialization.

• 40-bit NFSR part of initial state:
(
n320

0 , . . . , n320
39
)

•
(
c0
t , . . . , c

8
t

)
is known for all t = 0, . . .

This is particularly important for ct4. (see below)

Algorithm:
for t = 319 down to 0 do

for i = 0 to 58 do
lti+1 ← lt+1

i

end for
for i = 0 to 38 do

nti+1 ← nt+1
i

end for
(xt0, . . . , xt8)← (nt4, lt6, lt8, lt10, l

t
32, l

t
17, l

t
19, l

t
23, n

t
38)

ht ← xt0 · xt1 ⊕ xt2 · xt3 ⊕ xt4 · xt5 ⊕ xt6 · xt7 ⊕ xt0 · xt4 · xt8
zt ← ht ⊕ lt30 ⊕ (nt1 ⊕ nt6 ⊕ nt15 ⊕ nt17 ⊕ nt23 ⊕ nt28 ⊕ nt34)
lt0 ← ⊕lt+1

59 ⊕ lt54 ⊕ lt43 ⊕ lt34 ⊕ lt20 ⊕ lt14 ⊕ zt
k̃t = k(t mod 80)
nt0 ← nt+1

39 ⊕ k̃t ⊕ lt0 ⊕ ct4 ⊕ nt2 · nt25 ⊕ nt3 · nt5 ⊕ nt7 · nt8 ⊕ nt14 · nt21 ⊕ nt16 · nt18 ⊕ nt22 ·
nt24 ⊕ nt26 · nt32 ⊕ nt33 · nt36 · nt37 · nt38 ⊕ nt10 · nt11 · nt12 ⊕ nt27 · nt30 · nt31
end for
for i = 0 to 39 do

ivi ← n0
i

end for
for i = 40 to 89 do

ivi ← l0i−40
end for

return (iv0, . . . , iv89)

B Shrunk Fruit v1
• 40-bit Key (k0 . . . k39), 35-bit IV (v0 . . . v34)

• Keystream limit per IV: 221 bit (due to the 21-bit MLLFSR; corresponding to a
limit of 243 bit and a 43-bit MLLFSR in Fruit v1)

• 6-Bit Counter: Cr =
(
c1
t c

2
t c

3
t c

4
t c

5
t c

6
t

)
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• Key Schedule:
k′t = ks · ky+32 ⊕ ku+36 · kp ⊕ kq+16 ⊕ kr+32
s =

(
c1
t c

2
t c

3
t c

4
t c

5
t

)
y =

(
c4
t c

5
t

)
u =

(
c5
t c

6
t

)
p =

(
c1
t c

2
t c

3
t c

4
t

)
q =

(
c2
t c

3
t c

4
t c

5
t

)
r =

(
c4
t c

5
t c

6
t

)
• NFSR: 19 Bit

nt+19 =k′t ⊕ lt ⊕ c4
t ⊕ nt ⊕ nt+5 ⊕ nt+10 ⊕ nt+6 · nt+2

⊕ nt+8 · nt+13 ⊕ nt+3 · nt+11 · nt+15

⊕ nt+4 · nt+9 ⊕ nt+14 · nt+15 · nt+16 · nt+17

• LFSR: 21 Bit (MLLFSR like in Fruit v1)

lt+21 = lt ⊕ lt+4 ⊕ lt+9 ⊕ lt+12 ⊕ lt+14 ⊕ lt+17

• Keybit zt

ht = lt+3 · lt+7 ⊕ lt+1 · lt+11 ⊕ nt+18 · lt+13

⊕ lt+5 · lt+16 ⊕ nt+1 · nt+17 · lt+20

zt = ht ⊕ nt ⊕ nt+3 ⊕ nt+7 ⊕ nt+9 ⊕ nt+12

nt+14 ⊕ nt+18 ⊕ lt+19

• IV ′ (extension of 35-bit IV to 70 bits):
IV ′ := 10000v0v1 . . . v33v34000 . . . 000

• Key loading:
(n0, . . . , n18) := (k0, . . . , k18)
(l0, . . . , l20) := (k19, . . . , k39)

• Key schedule counter initialization:(
c1

0, c
2
0, c

3
0, c

4
0, c

5
0, c

6
0
)

:= (0, . . . , 0)

• Initialization:

1. 65 IV loading and mixing steps as described in the Fruit v1 paper [GHX16]
(there: 130 steps)

2. Set (
c1

65, c
2
65, c

3
65, c

4
65, c

5
65, c

6
65
)

:= (n65, n66, n67, n68, n69, l65)

and then l65 := 1.
3. Clock 40 times as described in the Fruit v1 paper paper (there: 80 times).

• The first keystream bit that is output is z105.
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