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Abstract. Fully homomorphic encryption allows cloud servers to evalu-
ate any computable functions for clients without revealing any informa-
tion. It attracts much attention from both of the scientific community and
the industry since Gentry’s seminal scheme. Currently, the Brakerski-
Gentry-Vaikuntanathan scheme with its optimizations is one of the most
potentially practical schemes and has been implemented in a homomor-
phic encryption C++ library HElib. HElib supplies friendly interfaces for
arithmetic operations of polynomials over finite fields. Based on HElib,
Chen and Guang (2015) implemented arithmetic over encrypted integers.
In this paper, we revisit the HElib-based implementation of homomor-
phically arithmetic operations on encrypted integers. Due to several opti-
mizations and more suitable arithmetic circuits for homomorphic encryp-
tion evaluation, our implementation is able to homomorphically evaluate
64-bit addition/subtraction and 16-bit multiplication for encrypted inte-
gers without bootstrapping. Experiments show that our implementation
outperforms Chen and Guang’s significantly.
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1 Introduction

A fully homomorphic encryption (FHE) scheme is an encryption scheme that
allows evaluation of arbitrarily functions on encrypted data. FHE was firstly
pointed out by Rivest et al. [26] and was known to have a lot of applications in
cryptography, especially in cloud security, but no secure scheme was known until
Gentry’s seminal work [12, 11]. Since then, there are many works followed, e.g.,
[10, 4, 9, 3, 14, 2, 13, 6, 16, 28], towards a practical FHE scheme. Among them,
the BGV scheme [3] is one of the most efficient FHE shemes, and is considered
as one of the most potentially practical ones, since it is based on the learning
with error (LWE) assumption [25] or the ring-LWE (RLWE) assumption [21]
and supports single-instruction-multiple-data (SIMD) operations under certain
settings [28]. Also, the BGV scheme has already been implemented by Halevi
and Shoup based on Shoup’s number theory library NTL [27], named HElib [17].



More specifically, HElib includes implementations of all the basic functions
in the BGV scheme with the support of SIMD operations [28] and the Gentry-
Halevi-Smart optimizations [14]. As indicated by the authors of HElib in [19]:
“. . . the lower-level of HElib . . . is executed on a ‘hardware platform’ given by
the underlying HE scheme”, since the BGV scheme (besides almost all of the
currently known FHE schemes) is designed for circuits. However, most often,
when we think of computations, we do not think in terms of circuits, but in terms
of RAM machines, or even high level programming languages. Therefore, for
variants of more advanced applications, it is necessary to build some higher level
functions based on HElib. For instance, the encrypted arithmetic operations over
the integer ring should be included, since it is frequently used in, e.g., statistical
functions such as mean, covariance, standard deviation, linear regression, etc..

In this paper, we use HElib to implement truly integer arithmetic operations
via binary circuits, including addition, subtraction, multiplication and division
with reminder. Our implementation is able to homomorphically evaluate 64-bit
addition/subtraction and 16-bit multiplication for encrypted integers without
bootstrapping; see Section 3 and Section 4 for details. To our best knowledge,
the paper [5] by Chen and Guang is the first published work on this topic. In
[5], the authors only reported their experiments of homomorphically encrypted
arithmetic operations on integers with bits at most 4.

Related work. Here we only focus on implementations of secure computation for
integers, although there are a large number of other applications of FHE which
have been implemented, such as AES [15].

In fact, before the appearance of FHE, there were already some work related
to secure computation for integers. For instance, Kolesnikov et al. [20] presented
several efficient garbled circuit constructions for integer addition, subtraction,
multiplication, and comparison functions.

With the development of FHE, some work related to FHE implementation
appears. In [23], Naehrig et al. discussed integer arithmetic operations based on
their implemention of a RLWE-based somewhat homomorphic encryption in the
computer algebra system Magma [22]. It seems not relevant any more since it
does not feature some key techniques, including modulus switching. Later on,
Wu and Haven [29] presented their implementation for large scale statistical
analysis based on HElib, including linear regression and mean and covariance
computation. However, their method only supports arithmetic operations over
Zp with p > 2128, which implies that the division of two integers (with remainder)
can not be completely performed homomorphically and must be finished offline
by the client, so does the DGHV scheme [10]. The DGHV scheme [10] and its
optimizations [6] are aiming at secrue large integer arithmetic, however, the
integer arithmetic is also over the integers modulo an even larger integer. We
implement the carry computation in present work, so that our implementation
supports arithmetic operations over the integer ring (not Zp).

Chen and Guang [5] reported a similar implementation of integer arithmetic
over ciphertexts based on HElib. Both of [5] and ours use certain basic arith-
metic circuits for corresponding integer operations without bootstrapping. The



main difference is that we design such circuits more carefully. In particular, we
design those circuits with less number of AND gates, since it is well-known that
the number of AND gates of a circuit impacts heavily on the efficiency of FHE
evaluation. For example, we adopt the integer addition circuit from [20, §3.1],
which only needs one-half of AND gates used in [5, §II]. In order to speed up
further, we also implement a homomorphic carry-lookahead adder (CLA). Com-
bining with several other optimizations leads that our implementation is not only
more efficient than [5], but also able to deal with integers with larger size. In
particular, our implementation supports 64-bit addition/subtraction and 16-bit
multiplication with the multiplicative depth at most 17.

We note that Cheon et al. [8] reported their implementation for binary integer
addition (with equality test and comparison) based on SIMD circuits and HElib.
The efficiency reported in [8] is very competitive. Comparing with theirs, our
implementation supports integeral vector operations by means of SIMD, since
we only use one slot for each computation.

2 Preliminaries

In this section, we give some basics related to FHE, the BGV scheme and HElib,
which are useful for the rest of the paper. We refer to [11, 3, 18] for more details.

2.1 Fully homomorphic encryption

A public-key encryption scheme consists of three algorithms: KeyGen, Enc, and
Dec. KeyGen is an algorithm that takes a security parameter λ as input, and
outputs a secret key sk and a public key pk; pk defines a plaintext space P and
a ciphertext space C. Enc is an algorithm that takes pk and a plaintext b ∈ P as
input, and outputs a ciphertext c ∈ C. Dec takes sk and c as input, and outputs
the plaintext b. The computational complexity of all of these three algorithms
must be probabilistic polynomial time in λ. The correctness is defined as: if
(sk, pk)← KeyGen, b ∈ P, and c← Enc(pk, b), then Dec(sk, c)→ b.

A homomorphic encryption (HE) scheme has an efficient algorithm Eval in
addition to the three conventional algorithms. Eval takes as input the public key
pk, a function f and a tuple of ciphertexts c = (c1, · · · , ct), where ci ← Enc(pk, bi)
for bi ∈ P; it outputs a ciphertext c ∈ C. The correctness is defined as follows:
if c← Eval(pk, f, c), then Dec(sk, c)→ f(b1, · · · , b2). In almost all HE schemes,
the function f to be homomorphically evaluated is described in a circuit model
with XOR and AND gates, which correspond to binary addition and multiplica-
tion, respectively. Furthermore, a HE scheme is only able to evaluate circuits of
limited depth as with increasing depth, the noise of ciphertexts increases so dra-
matically that Dec can not recover the correct plaintext from ciphertexts with
large depth.

A fully homomorphic encryption (FHE) scheme is a HE scheme that is able
to evaluate circuits with depth larger than its own Dec function. This condition
allows to perform the so-called “bootstrapping” process successfully, and makes
such a scheme is able to evaluate all computable circuits.



2.2 The BGV scheme

The BGV scheme [3] can be seen as an improvement of the “second generation”
of FHE given by Brakerski and Vaikuntanathan [4], which are based on stan-
dard assumptions supported by worst-case hardness of LWE or RLWE, while
the “first generation” FHE constructions [12, 10] are based on ad-hoc average
case assumptions about ideal lattices and the approximation GCD problem. In
addition, BGV is capable of evaluating arbitrary circuits of a priori bounded
depth without the bootstrapping procedure. Here we only describe a variant of
the basic BGV encryption schmeme that is implemented in HElib and works as
follows.

– Setup(1λ). Given the security parameter λ as input, set an integer m (that
defines the m-th cyclotomic polynomial Φm(x)), an odd modulus q (we will
work over Rq = Zq[x]/Φm(x)), the noise distribution χ over Rq, and N =
polylog(q). Output params = (m, q, χ,N).

– KeyGen(params). Sample t ← χ. Let s = (1, t) ∈ R2
q . Set sk = s. Generate

B ← RNq uniformly at random and a column vector with “small” coefficients
e← χN . Set b = Bt+2e. Output sk = s and the public key A = (b‖−B).

– Enc(params, pk,m). To encrypt a message b ∈ R2, set m = (b, 0) ∈ R2
q ,

sample a colume vector with small coefficients r ← RN2 and output the
ciphertext c = m+ rTA ∈ R2

q .
– Dec(params, sk, c). Output the message b = [[〈c, s〉]q]2.

Remark 1. We limit the plaintext space to R2 in this paper, since it is convenient
for integer arithmetic circuit design, although the scheme described above also
handles plaintext spaces larger than R2.

Note that the quantity [〈c, s〉]q is called the noise of the ciphertext c under
the secret key s. Decryption works correctly as long as we ensure that the noise
of the ciphertext is small enough and does not warp around modulo q. Thus we
have [[〈c, s〉]q]2 = [[〈m+ rTA, s〉]q]2 = [[b+ 2rTe]q]2 = [b+ 2rTe]2 = b.

Homomorphic evaluation. The BGV scheme supports homomorphic addition
and multiplication. Let c1 and c2 be two ciphertexts of two plaintexts b1 and b2
under the same secret key s, and suppose that the noise of c1 and c2 is bounded
from above by B. The addition of two ciphertexts is simply a component-wise
addition, i.e., c+ = c1 + c2 is a ciphertext of b1 + b2 under the secret key s.
The noise of c+ is at most 2B. Multiplication is a bit more complicated, but
we still have that c× = c1 ⊗ c2 is a ciphertext of b1 · b2 under the new secret
key s⊗ s, where ⊗ represents the tensor product. Furthermore, the noise of c×
can only be bounded from above by B2. To keep the secret key with small size
and to decrease the noise of evaluated ciphertext, the key switching procedure
and modulus switching procedure are used in the BGV scheme, respectively.
Theoretically, in the BGV scheme, the cost of each homomorphical addition or
multiplication increases fast as the circuit depth L grows. In the case of R2, the
cost is Õ(λ · L3) (see [3] for more details).



Batching. Batching allows us to evaluate a function homomorphically in paral-
lel on ` blocks of encrypted data. Batching works essentially by packing multiple
plaintexts into one ciphertext. More specifically, when the plaintext space is lim-
ited to R2 = Z[x]/〈Φm(x), 2〉, where Φm(x) is the m-th cyclotomic polynomial,
Φm(x) can be factorized into ` irreducible factors of same degree d = φ(m)/`,
i.e., Φm(x) =

∏`
i=1 fi(x), where φ(·) is the Euler’s totient function. Each factor

corresponds to a plaintext slot. Thus, for each a ∈ R2, it can be represented
as an `-vector (a mod fi)1≤i≤`. Using the techniques in [28, 14], one can per-
form SIMD operations on ` blocks of ciphertexts. Here we note that m is the
dominating parameter for efficiency as it determines the size of computation.

2.3 HElib

HElib [17] is an open-source library which implements the BGV scheme with
some optimizations such as ciphertext packing techniques (SIMD) [28] and op-
timizations in [14]. There are many useful functions in the library besides the
evaluation of the AND gate and the XOR gate, including some initialization
functions, and some helper classes like EncryptedArray which provides us with
easy encryption and manipulation to the ciphertext slots.

In the library one ciphertext contains several large polynomials in Rq, where
q =

∏
pj is the modulus and each pj is a small prime generated by the library.

Every large polynomial is represented as a polynomial matrix. The matrix con-
tains φ(m) columns and the i-th column represents the ciphertext modulo fi(x).
The j-th row contains the FFT representation of a modulo pj . So in HElib, the
homomorphic addition corresponds to the polynomial addition in FFT form,
and homomorphic multiplication corresponds to the polynomial multiplication
in FFT form, which is element-wise multiplication.

From above, it is clear that both the size of matrices and the degree of the
matrix entries depend only on φ(m), and hence the parameter m. In HElib, the
parameter m is chosen such that

φ(m) ≥ (Lc(log φ(m) + 23)− 8.5)(λ+ 110)

7.2
, (1)

where Lc is the minimum number of levels of modulus chain and λ is the security
parameter; see the full version of [15].

In applications, the minimum number of levels in the modulus chain Lc in
HElib is actually the number of modulus switches Ls plus one. And Ls is close
but may not equal to the multiplicative depth L. This is because sometimes the
resulting ciphertext does not exceed the noise threshold after a multiplication, in
which case, it is not necessary to perform the modulus switching process. What’s
more, although the effect is small, additions also accumulate noise which may
contribute to modulus switching. In HElib, Ls ≈ 2

⌈
L
2

⌉
, and thus Lc ≈ 2

⌈
L
2

⌉
+1.

From (1), a larger Lc implies a larger φ(m). This makes both addition and
multiplication over ciphertexts less efficient. Thus, when we design a circuit for
a certain application, we may choose those circuits with the multiplicative depth
as less as possible.



3 Homomorphically encrypted arithmetic operations

In BGV scheme, if we choose R2 as the plaintext space, we can map the addition
and multiplication in the scheme into AND (·) and XOR (⊕) logic gates. They
are actually the foundations of the larger and more complex circuits (functions).

In this section, we present our implementation of integer arithmetic opera-
tions by using AND and XOR gate evaluation in HElib with several optimiza-
tions. Note that in FHE, AND gate evaluation is much more expensive than
XOR gate evaluation because of the potential modulus switching, so the core
problem here we try to solve is to minimize the multiplicative depth as well as
the number of AND gates.

We use one ciphertext to represent one bit in our implementation, and a
binary integer is a double-ended queue of ciphertext. In what follows, all bits we
use are encrypted by the HElib function EncryptedArray::encrypt.

3.1 Addition

Addition is the most basic module in integer arithmetic and can be used in other
arithmetic operations like subtraction, multiplication and division.

In this paper, we implement several different structures of adders, and use
them in different scenarios. We first adapt the full-adder to the FHE, by reducing
the number of AND gates. Based on that, we implement the Ripple Carry Adder
(RCA) which has a simple structure but needs more multiplicative depth. In
contrast, we also implement the Carry Lookahead Adder (CLA) which has a
more complex structure but needs less multiplicative depth since the operations
in the CLA can work in parallel. Besides, we build a “half adder chain” which is
useful in division.

Full Adder. The basic modules of an adder include some half adders and some
full adders. The difference is that a half adder does not accept the carry-in
information while a full adder does. The implementation can be varied as long
as the logic expressions of different implementations are equivalent. In [5], for
example, the expressions of carry-in and sum of the full adder are as follows:

ci+1 = ai · bi ⊕ ci · (ai ⊕ bi),
si = ai ⊕ bi ⊕ ci,

where ai and bi are the i-th bit of two summands, ci is the i-th carry-in bit, and
si is the i-th sum bit. In fact, the number of AND gates for the carry-out can
be reduced from two down to one with the following optimization.

ci+1 = ai · bi ⊕ ci · (ai ⊕ bi)
= ai · bi ⊕ ai · ci ⊕ bi · ci
= ai · bi ⊕ ai · ci ⊕ bi · ci ⊕ ci ⊕ ci · ci
= (ai ⊕ ci) · (bi ⊕ ci)⊕ ci,

which can be found in, e.g., [20, §3.1]. In this way, it needs only one AND gate
per bit, and hence the multiplicative depth of this full adder is L = 1.



Ripple Carry Adder (RCA). An n-bit RCA (Algorithm 1) is constructed
by one half adder and n− 1 full adders. This adder adds one bit at a time, from
the least significant bit to the most significant bit. The multiplicative depth is
L = n − 1, since for every bit except MSB we need one AND gate and every
next bit depends on the previous one.

Algorithm 1 (Ripple carry adder).
Input: n-bit number a, b
Output: the sum s.
1: c0 = 0
2: for i = 0 to n− 2 do
3: si = ai ⊕ bi ⊕ ci
4: ci+1 = (ai ⊕ ci) · (bi ⊕ ci)⊕ ci
5: end for
6: sn−1 = an−1 ⊕ bn−1 ⊕ cn−1

7: return s.

Carry Lookahead Adder (CLA). Since an n-bit ripple carry adder needs
multiplicative depth of n − 1, the overload of polynomial computations soon
becomes unacceptable as n increases. One way to solve this problem is to use
CLA. Unlike the circuit of RCA whose structure is a chain, the circuit of CLA
is like a tree with the root at the bottom. This adder needs more computations
than RCA, but the multiplicative depth L = O(log n) (see [24]) that is much
smaller than RCA (L = n− 1) when n is large.

The two elements of CLA are generate function gi = ai · bi and propagate
function pi = ai ⊕ bi, which have the following properties: if gi is one, ci+1 will
be one and if pi is one, ci+1 will be ci. Thus, we have

ci+1 = gi ⊕ pi · ci.

In our implementation, we use 4-bit CLA adder as a unit to construct the
whole adder, thus an n-bit addition is divided into dlog4 ne levels, and at each
level the dependent calculation is confined inside the 4-bit group, see Fig.1. This
is a recursive procedure: g and p in the lower level is determined by fg(g, p) and
fp(g, p), and cj+4 in the lower level’s group, correspondingly, is

cj+4 = fg(g4j , p4j)⊕ fp(g4j , p4j) · cj ,

where

fg(gi, pi) = gi+3 ⊕ pi+3 · gi+2 ⊕ pi+3 · pi+2 · gi+1 ⊕ pi+3 · pi+2 · pi+1 · gi,
fp(gi, pi) = pi+3 · pi+2 · pi+1 · pi.

First, we compute all the gi and pi from i = 0 to 63. Then we use gi and
pi to compute a 4-bit group generate function named ggj and group propagate
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Fig. 1. The tree structure of CLA

function gpj , from j = 0 to 15. At this stage, there are 64/4 = 16 groups in the
circuit.

Then we use the same method to compute the super group generate and
propagate function sgk and spk, from k = 0 to 3. A super group is consisted
with 4 groups. So there are 16/4 = 4 super groups in the circuit.

Now we get to the base case, and we can compute the carry-in of each super
group c16, c32, c48 with c0, sgk and spk. After that we use these carry-in along
with ggj and gpj to compute the carry-in of each group (e.g., c4, c8, c12, etc.).
Finally, we use the carry-in of each group with gi and pi to compute the carry-in
of each bit(e.g., c1, c2, c3, etc.). At this stage, we have computed all the carry-in
bits, then we have the sum bits si = ai ⊕ bi ⊕ ci.

We describe 64-bit CLA in Algorithm 2. For 16-bit case, there are only two
levels instead of three, but the idea is the same.

Algorithm 2 (Carry Lookahead Adder).
Input: 64-bit number a, b
Output: the sum s.
1: for i = 0 to 63 do gi = ai · bi, pi = ai ⊕ bi, ci = 0 end for
2: for j = 0 to 15 do ggj = fg(g4j , p4j), gpj = fp(g4j , p4j) end for
3: for k = 0 to 3 do sgk = fg(gg4k, gp4k), spk = fp(gg4k, gp4k) end for
4: for k = 0 to 2 do c16(k+1) = sgk ⊕ spk · c16k end for
5: for k = 0 to 3, j = 0 to 2 do

c16k+4(j+1) = gg4k+j ⊕ gp4k+j · c16k+4j

end for
6: for k = 0 to 3, j = 0 to 3, i = 0 to 2 do

c16k+4j+(i+1) = g16k+4j+i ⊕ p16k+4j+i · c16k+4j+i

end for
7: Calculate si = pi ⊕ ci for i = 0 to 63
8: return s.



Half Adder Chain. In the division algorithm, we need to compute the additive
inverse of an integer. This is achieved by adding 1 to the bit-complement of the
number. Since no carry-in is needed in the procedure, it is better to simplify the
addition by using half adders instead of full adders. We add the first bit of the
number to 1, and for the rest of the bits we add the carry-in to the i-th bit to
get the i-th sum bit.

3.2 Subtraction

We can construct a subtractor in two general ways. One way is to derive the logic
expressions of 1-bit subtractor and then chain the unit together like RCA. We
call it Ripple Carry Subtractor (RCS). The logic expression of 1-bit subtractor
is virtually the same as full adder, we just give the optimized expression of the
difference bit di and the borrow bit ci:

ci+1 = (ai ⊕ ci) · (bi ⊕ ci)⊕ bi,
di = ai ⊕ bi ⊕ ci.

Chaining the unit together, we get the n-bit RCS.
The other way is simpler because we can use adder to carry out subtraction.

Since we use two’s complement as the data representation, we have a − b =
a+ b̃+1, where b̃ means the bit-wise complement of b, i.e., b̃i = bi⊕1. Thus if we
first change b to b̃, then set the first carry-in bit c0 to 1, we can do subtraction
with an adder.

As we can see, the multiplicative depth of RCS is equal to that of RCA
adder, since we have one AND gate for every borrow bit, and it is used to get
the next borrow bit. Thus, the multiplicative depth of a n-bit RCS is L = n− 1.
And since bit-wise complement only involves FHE addition, it does not increase
multiplicative depth. We still have the multiplicative depth L = O(log n) for the
n-bit CLA subtraction.

3.3 Multiplication

Multiplication is constructed by additions, in a pencil and paper way. We use
one binary number to multiply every bit of the other number, and thus we get n
middle results. After that we left shift each middle results and add them together
using the adder we mentioned above.

Here we have two techniques to reduce the number of AND gates. First, if
we do not concern about the overflow of multiplication and just need a n-bit
result, we can left align the integer and ignore the padding zeros on the right
side. What’s more, we carefully arrange the order of additions, thus to minimize
the number of AND gates.

For example, if we multiply two 4-bit numbers, 2 and 3, we do the arithmetic
as in Fig. 2. We first compute the 4 middle results 0010, 0010, 0000 and 0000, and
shift the results to the correct position. Since we do not consider the overflow
situation, we can truncate the higher bits in the left. Then we perform the



addition in the following way. We add the first and the second number by adding
three highest bits in the left, that is 001 and 010 showed in the dotted line. Since
the lowest bit 0 on the right will not change after the addition, we just keep
it. We also use the same way adding the third and the fourth number. In the
second step, we add the two partial sums together in the same way and get the
final result.

0 0 1 0

0 0 1 1

0
0 0 1 0
0 1 0

}
⊕−→ 0 1 1 0

0 0
0 0 0

0 0
0

}
⊕−→ 0 0

0 1 1 0

truncated bits

×

⊕

Fig. 2. Multiplying two integers 2 and 3 in a 4-bit binary circuit

Here we give the algorithm of multiplying two n-bit numbers in Algorithm
3. (Since the level of additions to sum all middle results is ≈ log n, we assume n
is a power of 2 in the following algorithm description).

The multiplicative depth of multiplication is one level larger than the ad-
dition, since one level is used when we computing the middle results, and the
addition of middle results costs n− 1 levels. Therefore, the multiplicative depth
L = n.

Algorithm 3 (Multiplier).
Input: n-bit encrypted number a, b
Output: the product c.
1: for i = 1 to n− 1 do
2: tempi = a · bi
3: end for
4: level = log2 n, db = 1
5: while level > 0 do
6: for i = 0 to size/(2 · db) do
7: temp2i·db = temp2i·db + temp(2i+1)db

8: end for
9: db = db · 2, level = level − 1
10: end while
11: c = temp0
12: return c.



3.4 Division

We implement division using the non-restoring division method, which is the
same as that in [5], and we omit the algorithmic description here. Note that this
is not an efficient algorithm due to the large multiplicative depth brought by
iterative addition of the partial reminder R and ±b, where b is the divisor. The
multiplicative depth L is about len(a) · len(b), where a is the dividend.

Nonetheless, We have a slight improvement on the algorithm. Since in the
non-restoring division algorithm, we need to compute R+ b or R+(−b) at each
loop, but there is no need to compute −b every time. For this reason, we pre-
compute −b at the very beginning. Furthermore, when using the b̃ + 1 method
to compute −b , we use a half adder chain rather than a full adder, as mentioned
in Section 3.1. This can reduce three XOR gates per bit.

4 Experimental results

In this section, we report the experimental results of our implementation de-
scribed above and compare it with the similar implementation in [5].

Parameter settings. There are many parameters in HElib interface, most
of which are used to compute the integer m. The library provides a function
FindM() which can determine a proper m according to the input parameters.
Among these parameters, security level λ and levels in the modulus chain Lc are
the most important ones, as we explained in Section 2.3.

In our experiments, we set the security level λ = 80 (that implies the break-
ing time of the encryption sheme is roughly 280) which is a reasonable value.
Unfortunately, there is no good way to choose the parameter Lc, so we use the
multiplicative depth L as a reference. First we choose a Linit which is a little
larger than the estimated Lc (≈ 2dL2 e + 1), then perform the calculation. After
that, we use the library function Ctxt::findBaseLevel() to get the current
level L0 of the ciphertext. Then we set the Lc = Linit − L0 + 1. Once λ and Lc
are determined, we can compute the least integer m satisfying the Eq. (1).

Performance. We test our implementation, which is single-threaded, on a PC
with a Intel Core i7 4790 CPU at 3.60GHz and 8GB RAM. Table 1 provides the
information about the running time of different arithmetic operations. In Table
1, the #bits column represents the current circuit supports #bits encrypted
integer arithmetic, m is decided by the security parameter and Lc as in Eq.
(1), the #slots column is the number of slots, and the timing is counted in
seconds. Since in subtraction, multiplication and division we need addition as
the fundamental module, we point out which adder we use to do the experiments
in the circuit column. Note that for the same Lc, we obtain the same integerm as
in [5], although the authors claimed that their secuirty parameter was λ = 128.

From Table 1, it is clear that the RCA adder needs more multiplicative depth
than CLA adder. Due to the heavy calculation inside the CLA adder, there is



Table 1. Performance of FHE Binary Arithmetic

Arithmetic Circuit #bits m #slots Lc time (s)
Addition RCA 16 14351 504 17 2.16

CLA 16 7781 150 7 2.53
CLA 64 13981 600 13 37.69

Subtraction RCS 16 14351 504 17 2.17
CLA 16 7781 150 7 2.52
CLA 64 13981 600 13 37.16

Multiplication RCA 8 8191 630 9 4.62
RCA 16 14351 504 17 46.32

Division RCA 4 18631 720 21 14.63

no obvious advantage for 16-bit integers. However, for 64-bit integers, the RCA
adder needs Lc = 64 and m = 55831 which is such a large number that HElib
do not have enough resource to continue computing and finally return an error
message. In contrast, CLA adder only needs Lc = 13 and a 64-bit addition is
carried out within 40s. The subtraction basically uses the same running time as
addition, since they share the same structure.

Due to our description of multiplication, we know that there are two time-
consuming parts in the multiplier. One is to compute middle results, and the
other is to sum the middle results. In the experiment for 16-bit mulitplier with
RCA adder, the first part takes about 31s while the second part takes about 15s.
Since both parts can be boosted in parallel, the performance of multiplier can
be further improved.

Since the division needs the most multiplicative depth, it is the least efficient
operation. Only for a 4-bit division, we have to set Lc = 21. In Chen and Guang’s
paper [5], they reported the arithmetic operations over encrypted integers with
bits at most 4. For division with 4-bit encrypted integers, their implementation
costs about 68s on a machine with 8 Intel Xeon E7-L8867 2.13 GHz processors
and 512 GB RAM, while ours only costs about 15s.

At last but not least, thanks to the SIMD operation, our implementation
supports integer vector calculation (element-wise computation with vector length
at most #slots), since we only use the first slot of every ciphertext during the
integer calculation. According to our tests, the cost is the same as that reported
in Table 1 since their procedures of computation are identical.

5 Conclusion and discussion

We presented our HElib-based implementation of homomorphic evaluation of
integer arithmetic circuits on encrypted data without bootstrapping. Our imple-
mentation features different kind of adder circuits, among which we can choose
for different applications. With several optimizations and careful choosing of cir-
cuits, our implementation significantly outperforms the implementation in [5].

We note that the latest version of HElib has included bootstrapping [19]
and it seems going to support threadsafe mode in the very near future, and



hence support parallel computation. With the help of these techniques, it is very
hopeful to make above all integer arithmetic operations even faster, including the
multiplication with CLA addition. Furthermore, how to design efficient SIMD
circuits for integer arithmetic operations is a very interesting topic.

In addition, it would be very meaningful to design and implement FHE
schemes for arithmetic operations over ranges larger than the integer ring, for in-
stance, over the fixed or floating point number system. Very recently, the results
from [1] and [7] seem to be good attempts in this area.
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