
Another Look at Success Probability in Linear Cryptanalysis

Subhabrata Samajder and Palash Sarkar
Applied Statistics Unit

Indian Statistical Institute
203, B.T.Road, Kolkata, India - 700108.

subhabrata.samajder@gmail.com, palash@isical.ac.in

Abstract

This work studies the success probability of key recovery attacks based on using a single linear approxi-
mation. Previous works had analysed success probability under different hypotheses on the distributions of
correlations for the right and wrong key choices. This work puts forward a unifying framework of general key
randomisation hypotheses. All previously used key randomisation hypotheses as also zero correlation attacks
can be seen to special cases of the general framework. Derivations of expressions for the success probability
are carried out under both the settings of the plaintexts being sampled with and without replacements. Com-
pared to previous analysis, we uncover several new cases which have not been considered in the literature. For
most of the cases which have been considered earlier, we provide complete expressions for the respective success
probabilities. Finally, the complete picture of the dependence of the success probability on the data complexity
is revealed. Compared to the extant literature, our work provides a deeper and more thorough understanding
of the success probability of single linear cryptanalysis.
Keywords: linear cryptanalysis, success probability, data complexity.
Mathematics Subject Classification (2010): 94A60, 11T71, 68P25, 62P99

1 Introduction

Linear cryptanalysis [27] is a fundamental method of attacking a block cipher. To apply linear cryptanalysis, it
is required to first obtain an approximate linear relation between the input and the output of a block cipher.
Obtaining such a relation for a well designed cipher is a non-trivial task and requires a great deal of ingenuity
along with a very careful examination of the internal structure of the mapping which defines the target block
cipher. The present work does not address this aspect of linear cryptanalysis and it will be assumed that a linear
relation is available.

The goal of (linear) cryptanalysis of a block cipher is to recover a portion of the secret key in time less than
that required by a brute force algorithm to try out all possible keys. The portion of the key which is proposed to
be recovered is called the target sub-key. An attack with such a goal is called a key recovery attack. A weaker
goal is to be able to distinguish the output of the block cipher from that of a uniform random permutation and
such attacks are called distinguishing attacks. In this work, we will concentrate only on key recovery attacks.

To apply linear cryptanalysis, it is required to obtain some data corresponding to the secret key. Such data
consists of plaintext-ciphertext pairs (Pi, Ci), i = 1, . . . , N , where Ci is obtained by encrypting Pi using the secret
key. The plaintexts are chosen randomly. Typically, they are considered to be chosen under uniform random
sampling with or without replacements.

Any method of determining the secret key from this data is statistical in nature. The output of the attack is
a set of candidate values for the target sub-key. The attack is successful with some probability PS if the correct
value of the target sub-key is in the set of candidate values. The size of the set of candidate values is also an
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important parameter. An attack is said to have a-bit advantage if the size of the set of candidate values is a
fraction 2−a of the number of possible values of the target sub-key [34].

The goal of a statistical analysis of an attack is to be able to obtain a relation between the three fundamental
parameters N , PS and a. In this work, we concentrate on obtaining PS as a function of N and a and closely
examine the behaviour of PS as a function of N .

Broadly speaking, a key recovery attack proceeds by testing each value of the target sub-key against the
linear approximation with respect to the available data. For the correct choice κ∗ of the target sub-key, the
linear approximation holds with some probabilty pκ∗ while for an incorrect choice κ 6= κ∗ of the target sub-key,
the linear approximation holds with some other probability pκ,κ∗ . The basis of the attack is a difference in pκ∗

and pκ,κ∗ . The detailed examination of the internal structure of the block cipher leads to an estimate of pκ∗ ,
while pκ,κ∗ is obtained from an analysis of the behaviour of a uniform random permutation.

To perform a statistical analysis, it is required to hypothesise the values of pκ∗ and pκ,κ∗ . The hypothesis
on pκ∗ is called the right key randomisation hypothesis, while the hypothesis on pκ,κ∗ is called the wrong key
randomisation hypothesis. Until a few years ago, it was typical to hypothesise that pκ∗ is a constant p 6= 1/2
while pκ,κ∗ = 1/2.

The adjusted wrong key randomisation hypothesis was introduced by Bogdanov and Tischhauser in [13].
Based on a previous work by Daemen and Rijmen [16], it was hypothesised that pκ,κ∗ itself is a random variable
following the normal distribution N (1/2, 2−n−2). A later work by Ashur, Beyne and Rijmen [1] also used the
adjusted wrong key randomisation hypothesis. The difference in [13] and [1] is in the manner in which the plain-
texts P1, . . . , PN were assumed to be chosen – sampling with replacement was considered in [13] while sampling
without replacement was considered in [1]. Both the works [13, 1] observed a non-monotonic dependence of the
success probability on N and provided possible explanations for this phenomenon. The statistical methodology
used in [13, 1] is based on an earlier work by Selçuk [34] using order statistics.

Blondeau and Nyberg [8] considered the adjusted right key randomisation hypothesis where pκ∗ was assumed
to followN (p, (ELP−4ε2)/4), where ELP stands for the expected linear probability (or potential) of the underlying
block cipher and ε = p − 1/2. In the formulation in [8], it was assumed that p 6= 1/2 while a later work [7]
by the same authors considered the case p = 1/2. For the case p 6= 1/2, [8] considers the plaintexts to be
sampled with replacement while for the case p = 1/2, [7] considers both sampling with and without replacement.
In both [8] and [7], the adjusted right key randomisation hypothesis was considered in conjunction with the
adjusted wrong key randomisation hypothesis. The statistical methodology used in both of these papers is based
on the hypothesis testing based approach.

Our Contributions

We perform a complete and generalised analysis of success probability in linear cryptanalysis using a single linear
approximation. More specific details of our contributions are given below.

General key randomisation hypotheses: Following the formalisation of the adjusted wrong and right key
randomisation hypotheses, we introduce the general key randomisation hypotheses. The general right key ran-
domisation hypothesis models pκ∗ as a random variable following N (p, s2

0) and the general wrong key randomi-
sation hypothesis models pκ,κ∗ as a random variable following N (1/2, s2

1). The standard (resp. adjusted) right
key randomisation hypothesis is obtained by letting s0 ↓ 0 (resp. s2

0 = (ELP− 4ε2)/4); while the standard (resp.
adjusted) wrong key randomisation hypothesis is obtained by letting s1 ↓ 0 (resp. s2

1 = 2−n−2). A significant
portion of the analysis is done using the generalised key randomisation hypotheses and the results obtained are
then made specific by setting appropriate values of s0 and s1.

Approximate heuristic distributions of the test statistic: For a statistical analysis to be possible, the
distributions of the test statistic under both the right and the wrong key assumptions are required. These
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distributions are obtained as compound distributions. There is, however, a fundamental difficulty. Following
previous works [13, 1, 8, 7], the quantities pκ∗ and pκ,κ∗ are modelled using normal distributions. As a result,
it is possible that these quantities take values outside the range [0, 1]. Since pκ∗ and pκ,κ∗ are probabilities,
this is meaningless. So, the compound distributions of the test statistic cannot be rigorously obtained. Instead,
we provide heuristic derivations of approximations of these distributions under certain assumptions. These
derivations cannot be made formal unless the assumption of normality on pκ∗ and pκ,κ∗ are dropped. We note
that none of the previous works [13, 1, 7, 8] discuss or even identify this issue. In obtaining the distributions of the
test statistic we separately consider the cases where the plaintexts are sampled with and without replacements.

Analysis of the case p 6= 1/2: This is the classical scenario for block ciphers and starting from the seminal
work of Matsui [27], most papers on linear cryptanalysis of block ciphers have addressed this scenario. For this
case, a previous work by Selçuk [34] provided an expression for the success probability. This expression, however,
is incomplete as we substantiate later. The subsequent works [13, 1] follow Selçuk’s approach and hence also
obtain incomplete expressions for the success probability. In contrast, the present work provides the complete
expression for the success probability.

The expression for the success probability can be derived in two different ways. The first method is based on
an order statistics approach while the second method uses statistical hypothesis testing. We derive expressions
for the success probability using both the order statistics and the hypothesis testing methods. The expressions
for the success probability obtained using the two different approaches are different. They turn out to be equal if
certain assumptions and approximations used by Selçuk in [34] are applied to the expression obtained from the
order statistics based approach. Some theoretical limitations of the order statistics approach was pointed out
in [30]. In the present work, we identify two additional implicit independence assumptions that need to be made
to apply this approach. In contrast, the hypothesis testing based analysis does not suffer from the theoretical
limitations and nor are any assumptions or approximations required. So, from a theoretical point of view, the
hypothesis testing based approach is more satisfying. Consequently, we take the expression obtained from the
hypothesis testing based approach to be the correct expression for the success probability. To the best of our
knowledge, the expression for the success probability that we obtain does not appear earlier in the literature.

It has been mentioned in [13, 1] that in certain cases, the success probability does not increase monoton-
ically with the number of plaintexts. In this work, we perform a thorough analysis of the dependence of the
success probability on N . This covers both standard/adjusted right/wrong key randomisation hypotheses as
also sampling with/without replacement. Our analysis shows that in most cases the success probability in-
creases monotonically with N . There are indeed a few cases where this does not hold. For such cases, either
|ε| < 2−n/2−1 · max(1, γ) or 4ε2 ≤ ELP ≤ 4ε2 + 2−n, where γ = Φ−1(1 − 2m−a−1/(2m − 1)), n is the block
size, m is the size of the target sub-key and Φ is the standard normal distribution function. In other words,
non-monotonicity of the success probability on N is observed only for certain cases where either ε is very small
or ELP − 4ε2 is very small. Such cases are unlikely to arise in actual practice. The previous analyses [13, 1]
of the dependence of success probability on N was done only for the standard right key and adjusted wrong
key randomisation hypotheses. Even for this case, the analysis in the works [13, 1] did not reveal the complete
picture that this work presents.

Analysis of the case p = 1/2: For p = 1/2 (equivalently ε = 0) and s0 ↓ 0, pκ∗ takes the constant value
1/2. This corresponds to zero correlation attack introduced in [11]. The case of p = 1/2 and s0 = ELP/4 was
considered in [7]. In this case, the means for both pκ∗ and pκ,κ∗ are 1/2 and a hypothesis test for the means
cannot be done. So, [7] sets up a test of hypothesis for the variance of the two random variables. As mentioned
above, the work [7] only considers the case of adjusted right and adjusted wrong key randomisation hypotheses.
Based on our formulation of the general key randomisation hypotheses, we also set up a test of hypothesis for
the variance leading to a general expression for the success probability. This expression is then instantiated



1 INTRODUCTION 4

to specific combinations of standard/adjusted right and wrong key randomisation hypotheses. In the case of
adjusted wrong and adjusted right key randomisation hypotheses, [7] provides an informal argument that the
success probability increases monotonically with the number of plaintexts. In this work, we provide a formal
proof that for p = 1/2, in all cases (i.e., standard/adjusted right/wrong key randomisation hypotheses as well as
sampling with/without replacement) the success probability increases monotonically with N .

A summary of the results: Table 1 provides a summary of the results for various combinations of stan-
dard/adjusted right/wrong key randomisation hypotheses and whether the plaintexts are sampled with or without
replacements. For each such combination, we indicate whether the case has been previously studied and mention
the place in this work where the new expression for the success probability for that case can be obtained.

For p 6= 1/2, there are a total of eight cases, out of which four cases have been previously tackled. To the best
of our knowledge, for the other four cases, the expressions for the success probabilities that we provide has not
appeared previously. For the four cases where expressions for the success probabilities were previously known,
we provide the complete expressions for the success probabilities.

For p = 1/2, there are also a total of eight cases. Out of these, the settings of standard right and adjusted
wrong key randomisation hypotheses correspond to zero correlation attack. This attack was introduced in [11].
Expressions for the success probability of key recovery zero correlation attack are not given in [11] or in the
follow-up work [14]. As indicated in Table 1, expressions for success probability has previously appeared in only
two of the eight cases arising for p = 1/2. To the best of our knowledge, for the other six cases, the expressions
for the success probabilities that we provide have not appeared earlier. Out of the two cases that were known, in
one case, the expression for success probability that we obtain is the same as that obtained earlier; for the other
case, we obtain a more accurate expression for the success probability as is explained later.

type samp. RKRH WKRH cond. previous PS new PS

p 6= 1/2

wr

std std – [34] Section 5.4, Eqn (41)

std adj – [13] Section 5.5, Eqn (44)

adj std – – Section 5.6, Eqn (46)

adj adj – [8] Section 5.7, Eqn (48)

wor

std std – – Section 5.4, Eqn (42)

std adj – [1] Section 5.5, Eqn (44)

adj std – – Section 5.6, Eqn (47)

adj adj – – Section 5.7, Eqn (49)

p = 1/2

wr

std adj – – Section 7.1, Eqn (57)

adj std – – Section 7.2, Eqn (60)

adj adj ELP > 2−n [7] Section 7.3, Eqn (62)

adj adj ELP < 2−n – Section 7.3, Eqn (63)

wor

std adj – – Section 7.1, Eqn (58)

adj std – – Section 7.2, Eqn (61)

adj adj ELP > 2−n [7] Section 7.3, Eqn (64)

adj adj ELP < 2−n – Section 7.3, Eqn (65)

Table 1: Here “type” denotes whether p = 1/2 or not; wr (resp. wor) denotes sampling with (resp. without)
replacement; RKRH (resp. WKRH) is an abbreviation for right (resp. wrong) key randomisation hypothesis; std

(resp. adj) denotes whether the standard (resp. adjusted) key randomisation hypothesis is considered.



2 LINEAR CRYPTANALYSIS: BACKGROUND AND STATISTICAL MODEL 5

Previous and Related Work

Linear cryptanalysis was first proposed by Matsui in [27]. This paper obtained pκ∗ to be a constant different
from 1/2. Until recently almost all papers on linear cryptanalysis also considered this setting. Junod [22] gave
a detailed analysis of Matsui’s ranking method [27, 28]. This work introduced the notion of order statistics in
linear cryptanalysis. The idea was further developed by Selçuk in [34], where he used a well known asymptotic
result from the theory of order statistic to arrive at an expression for the success probability.

Building on a work by Daemen and Rijmen [16], a paper by Bogdanov and Tischhauser [12] introduced the
adjusted wrong key randomisation hypothesis where pκ,κ∗ is assumed to follow a normal distribution with mean
p 6= 1/2. The work [12] considered the plaintexts to be sampled with replacement. A later work by Ashur,
Beyne and Rijmen [1] analysed success probability under adjusted wrong key randomisation hypothesis in the
setting where the plaintexts are sampled without replacements. Blondeau and Nyberg [8] considered the setting
of adjusted right and wrong key randomisation hypotheses where plaintexts are sampled with replacement.

Zero correlation attack was introduced by Bogdanov and Rijmen in [11]. In the setting of zero correlation
attack pκ∗ is assumed to be equal to 1/2. The work [11] considered a single zero correlation linear approximation.
Both distinguishers and key recovery attacks were proposed in [11]. The distinguisher is general and works for
all block ciphers whereas the key recovery attacks were for specific ciphers. Reduction in data complexity of
zero correlation attacks using several linear approximations was given by Bogdanov and Wang [14]. This work
also described a general distinguishing algorithm. Blondeau and Nyberg [7] considered the case where pκ∗ and
pκ,κ∗ both follow normal distributions with the mean of both distributions equal to 1/2. They analysed both the
settings of sampling of plaintexts with and without replacements.

Analyses of attacks using multiple linear approximations have been reported in the literature [28, 25, 4, 24,
2, 23, 3, 18, 29, 20, 8, 21, 30, 31, 32, 33]. There have also been several subsequent works [10, 6, 36] on multiple
and multidimensional zero correlation attacks. Since this paper is concerned only with the basic setting of a
single linear approximation, we do not discuss the various aspects which arise in the context of multiple linear
approximations.

2 Linear Cryptanalysis: Background and Statistical Model

Let E : {0, 1}k × {0, 1}n 7→ {0, 1}n denote a block cipher such that for each K ∈ {0, 1}k, EK(·) ∆
= E(K, ·) is a

bijection from the set {0, 1}n to itself. Here K is called the secret key. The n-bit input to the block cipher is
called the plaintext and n-bit output of the block cipher is called the ciphertext.

Block ciphers are generally constructed by composing round functions where each round function is parametrised
by a round key. The round functions are also bijections of {0, 1}n to itself. The round keys are produced by
applying an expansion function, called the key scheduling algorithm, to the secret key K. Denote the round keys

by k(0), k(1), . . . and the round functions by R
(0)

k(0)
, R

(1)

k(1)
, . . .. For i ≥ 1, let K(i) denote the concatenation of the

first i round keys, i.e., K(i) = k(0) || · · · || k(i−1) and E
(i)

K(i) denote the composition of the first i round functions,

i.e., E
(1)

K(1) = R
(0)

k(0)
and for i ≥ 2, E

(i)

K(i) = R
(i−1)

k(i−1) ◦ · · · ◦R
(0)

k(0)
= R

(i−1)

k(i−1) ◦ E
(i−1)

k(i−1) .
A block cipher may have many rounds and for the purposes of estimating the strength of a block cipher,

a cryptanalytic attempt may target only some of these rounds. Such an attack is called a reduced round
cryptanalysis. Suppose an attack targets the first r + 1 rounds where the block cipher may possibly have more

than r + 1 rounds. For a plaintext P , we denote by C the output after r + 1 rounds, i.e., C = E
(r+1)

K(r+1)(P ), and

by B the output after r rounds, i.e., B = E
(r)

K(r)(P ) and C = R
(r)

k(r)
(B).

Linear approximation: Any block cipher cryptanalysis starts off with a detailed analysis of the structure of
the block cipher. This results in one or more relations between the plaintext P , the input to the last round B
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and possibly the expanded key K(r). In case of linear cryptanalysis a linear relation of the following form is
obtained.

〈ΓP , P 〉 ⊕ 〈ΓB, B〉 = 〈ΓK ,K(r)〉. (1)

where ΓP ,ΓB ∈ {0, 1}n and ΓK(r) ∈ {0, 1}nr denote the plaintext mask, the mask to the input of the last round
and the key mask.

A relation of the form given by (1) is called a linear approximation of the block cipher. Such a linear
approximation usually holds with some probability which is taken over the random choices of the plaintext P .
Obtaining such a linear approximation and the corresponding probability is a non-trivial task and requires a lot
of ingenuity and experience. This forms the basis on which the statistical analysis of block ciphers is built.

Define
L

∆
= 〈ΓP , P 〉 ⊕ 〈ΓB, B〉. (2)

Inner key bit: Let
z = 〈ΓK ,K(r)〉.

Note that for a fixed but unknown key K(r), z is a single unknown bit. Since the key mask ΓK is known, the bit
z is determined only by the unknown but fixed K(r). Hence, there is no randomness in either of K(r) or z. The
bit z is called the inner key bit.

Target sub-key: A linear relation of the form (1) usually involves only a subset of the bits of B. In order to
obtain these bits from the ciphertext C it is required to partially decrypt C by one round. This involves a subset
of the bits of the last round key k(r). We call this subset of bits of the last round key to be the target sub-key.

The ciphertext C is obtained by encrypting P using a key K. By κ∗ we denote the value of the target sub-key
corresponding to the key K. We are interested in a key recovery attack where the goal is to find κ∗.

Let the size of the target sub-key be m. These m bits are sufficient to partially decrypt C by one round and
obtain the bits of B involved in the linear approximation. There are 2m possible choices of the target sub-key
out of which only one is correct. The purpose of the attack is to identify the correct value.

Probability and bias of a linear approximation: Let P be a plaintext chosen uniformly at random from
{0, 1}n; C be the corresponding ciphertext; and B be the result of partially decrypting C with a choice κ of the
target sub-key. The random variable B depends on the choice κ that is used to partially invert C. Further, C
depends on the correct value κ∗ of the target sub-key and hence so does B. So, the random variable L defined
in (2) depends on κ and κ∗ and we write Lκ,κ∗ to emphasise this dependence. For κ = κ∗, we will simply write
Lκ∗ . Define

pκ,κ∗ = Pr[Lκ,κ∗ = 1], κ 6= κ∗; pκ∗ = Pr[Lκ∗ = 1]; (3)

εκ,κ∗ = pκ,κ∗ − 1/2; εκ∗ = pκ∗ − 1/2. (4)

Here εκ,κ∗ and εκ∗ are the biases corresponding to incorrect and correct choices of the target sub-key respectively.
The secret key K is a fixed quantity and so the randomness arises solely from the uniform random choice of P .

Statistical model of the attack: Let P1, . . . , PN , with N ≤ 2n, be chosen randomly following some dis-
tribution from the set {0, 1}n of all possible plaintexts. It is assumed that the adversary possesses the N
plaintext-ciphertext pairs (Pj , Cj); j = 1, 2, . . . , N where Cj = EK(Pj) for some fixed key K. Using the linear
approximation and the N plaintext-ciphertext pairs, the adversary has to find κ∗ in time faster than a brute
force search on all possible keys of the block cipher.
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For each choice κ of the target sub-key it is possible for the attacker to partially decrypt each Cj by one
round to obtain Bκ,j ; j = 1, 2, . . . , N . Note that Bκ,j depends on κ even though Cj may not do so. Clearly, if
κ = κ∗, then the Cj ’s depend on κ, while if κ 6= κ∗, Cj has no relation to κ.

For κ ∈ {0, 1, . . . , 2m − 1}, z ∈ {0, 1}, j = 1, . . . , N , define

Lκ,j = 〈ΓP , Pj〉 ⊕ 〈ΓB, Bκ,j〉; (5)

Xκ,z,j = Lκ,j ⊕ z; (6)

Xκ,z = Xκ,z,1 + · · ·+Xκ,z,N . (7)

Note that Xκ,z,j ⊕Xκ,1⊕z,j = 1 and so Xκ,0 +Xκ,1 = N .
Xκ,z,j is determined by the pair (Pj , Cj), the choice κ of the target sub-key and the choice z of the inner key

bit. Since Cj depends upon K and hence upon κ∗, Xκ,z,j also depends upon κ∗ through Cj . The randomness in
Xκ,z,j arises from the randomness in Pj and also possibly from the previous choices P1, . . . , Pj−1. Xκ,z,j is binary
valued and the probability Pr[Xκ,z,j = 1] potentially depends upon the following quantities:

z : the choice of the inner key bit;
pκ∗ or pκ,κ∗ : the probabilities of linear approximation as given in (3).
j : the index determining the pair (Pj , Cj).

This models a general scenario which captures a possible dependence on the index j. The dependence on j will
be determined by the joint distribution of the plaintexts P1, . . . , PN . In the case that P1, . . . , PN are independent
and uniformly distributed, Pr[Xκ,z,j = 1] does not depend on j. On the other hand, suppose that P1, . . . , PN are
sampled without replacement. In such a scenario, Pr[Xκ,z,j = 1] does depend on j.

Test statistic: For each choice κ of the target sub-key and each choice z of the inner key bit, let Tκ,z ≡
T (Xκ,z,1, . . . , Xκ,z,N ) denote a test statistic. Then Tκ,z is a random variable whose randomness arises from the
randomness of P1, . . . , PN . Define

Tκ,z = |Wκ,z| where Wκ,z =
Xκ,z

N
− 1

2
.

Then

Tκ,1 = |Wκ,1| =
∣∣∣∣Xκ,1

N
− 1

2

∣∣∣∣ =

∣∣∣∣N −Xκ,0

N
− 1

2

∣∣∣∣ =

∣∣∣∣12 − Xκ,0

N

∣∣∣∣ = | −Wκ,0| = Tκ,0.

So, the test statistic Tκ,z does not depend on the value of z and it is sufficient to consider z = 0.
Remark: To simplify notation, we will write Xκ,j and Xκ instead of Xκ,0,j and Xκ,0 respectively; Wκ and Tκ
instead of Wκ,0 and Tκ,0 respectively.

Using this notation, the test statistic Tκ is defined in the following manner.

Tκ = |Wκ| where Wκ =
Xκ

N
− 1

2
=
Xκ,1 + · · ·+Xκ,N

N
− 1

2
. (8)

This test statistic was considered by Matsui [27].
There are 2m choices of the target sub-key and so there are 2m random variables Tκ. The distribution of

Tκ depends on whether κ is correct or incorrect. To perform a statistical analysis of an attack, it is required to
obtain the distribution of Tκ under both correct and incorrect choices of κ. Later we consider this issue in more
details.

Success probability: An attack will produce a set (or a list) of candidate values of the target sub-key. The
attack is considered successful if the correct value of the target sub-key κ∗ is in the output set. The probability
of this event is called the success probability of the attack.
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Advantage: An attack is said to have advantage a if the size of the set of candidate values of the target
sub-key is equal to 2m−a. In other words, a fraction 2−a portion of the possible 2m values of the target sub-key
is produced by the attack.

Data complexity: The number N of plaintext-ciphertext pairs required for an attack is called the data
complexity of the attack. Clearly, N depends on the success probability PS and the advantage a. One of the
goals of a statistical analysis is to be able to obtain a closed form relation between N , PS and a.

Key-alternating and long-key ciphers: We recall the definitions of key-alternating and long-key block
ciphers from [15]. A key-alternating block cipher consists of an alternating sequence of unkeyed rounds and
simple bitwise additions of the round keys. Well known examples of key-alternating ciphers are AES, Serpent
and Square while ciphers such as DES, IDEA, Twofish, RC5 and RC6 are not key-alternating ciphers. A long-key
block cipher is a key-alternating cipher where the round keys are considered to be independent and uniformly
distributed.

Expected linear probability or potential: The linear probability (or potential) of a linear approximation is
the square of its correlation. In [15], the expected linear probability (ELP) of a characteristic over a key-alternating
cipher is defined to be the average linear probability of that characteristic over the associated long-key cipher.
More generally, the ELP can also be defined for iterative ciphers by taking the average linear probability over all
round keys by ignoring the key schedule.

Notation on normal distributions: By N (µ, σ2) we will denote the normal distribution with mean µ and
variance σ2. The density function of N (µ, σ2) will be denoted by f(x;µ, σ2). The density function of the standard
normal will be denoted by φ(x) while the distribution function of the standard normal will be denoted by Φ(x).

3 General Key Randomisation Hypotheses

Recall the definitions of pκ,κ∗ and pκ∗ from (3). The corresponding biases are εκ,κ∗ and εκ∗ . For obtaining the
distributions of Wκ∗ and Wκ, κ 6= κ∗, it is required to hypothesise the behaviour of pκ∗ and pκ,κ∗ respectively.
The two standard key randomisation hypotheses are the following.

Standard right key randomisation hypothesis: pκ∗ = p, for some constant p for every choice of κ∗.
Standard wrong key randomisation hypothesis: pκ,κ∗ = 1/2 for every choice of κ∗ and κ 6= κ∗.

The standard wrong key randomisation hypothesis was formally considered in [19], though it was used in
earlier works. Modification of this hypothesis has been been considered in the literature. Based on an earlier
work [16] on the distribution of correlations for a uniform random permutation, the standard wrong key ran-
domisation hypothesis was relaxed in [13]. Under the standard wrong key randomisation hypothesis, the bias
εκ,κ∗ = 0. In [13], it was suggested that instead of assuming εκ,κ∗ to be 0, εκ,κ∗ should be assumed to follow a
normal distribution with expectation 0 and variance 2−n−2. This is stated more formally as follows.

Adjusted wrong key randomisation hypothesis:

For κ 6= κ∗, εκ,κ∗ ∼ N
(
0, 2−n−2

)
, or, equivalently pκ,κ∗ ∼ N

(
1/2, 2−n−2

)
.

Remarks:

1. In this hypothesis, there is no explicit dependence of the bias on either κ or κ∗.
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2. From (4), εκ,κ∗ should take values in [−1/2, 1/2]. If εκ,κ∗ is assigned a value which is outside the range
[−1/2, 1/2], then pκ,κ∗ takes a value outside the range [0, 1]. Since pκ,κ∗ is a probability, this is meaningless.
On the other hand, a random variable following a normal distribution can take any real value. So, the
above hypothesis may lead to εκ,κ∗ taking a value outside the range [−1/2, 1/2] which is not meaningful.
The reason why such a situation arises is that in [16], a discrete distribution has been approximated by a
normal distribution without adjusting for the possibility that the values may fall outside the meaningful
range. From a theoretical point of view, assuming εκ,κ∗ to follow a normal distribution cannot be formally
justified. Hence, the adjusted wrong key randomisation hypothesis must necessarily be considered to be a
heuristic assumption.

3. The variance 2−n−2 is an exponentially decreasing function of n and by Chebyshev’s inequality Pr[|pκ,κ∗ −
1/2| > 1/2] ≤ 4 · 2−n−2 = 2−n. In other words, pκ,κ∗ takes values outside [0, 1] with exponentially low
probability.

4. The formal statement of the adjusted wrong key randomisation hypothesis appears as Hypothesis 2 in [13]
and is |εκ,κ∗ | ∼ N

(
1/2, 2−n−2

)
, i.e., the condition in Hypothesis 2 of [13] is on the absolute value of εκ,κ∗

rather than on εκ,κ∗ . Since the absolute value is by definition a non-negative quantity, it is not meaningful
to model its distribution using normal. In fact, the proof of Lemma 5.9 in the thesis [37] makes use of
the hypothesis without the absolute value, i.e., it uses the hypothesis as stated above. Further, the later
work [1] also uses the hypothesis without the absolute value. So, in this work we will use the hypothesis
as stated above and without the absolute sign.

While the adjusted wrong key randomisation hypothesis was used in [13] and later in [1] both of these works
used the standard right key randomisation hypothesis. Modification of the right key randomisation hypothesis
was considered in [8] and [7].

Adjusted right key randomisation hypothesis:

εκ∗ ∼ N
(
ε, ELP−4ε2

4

)
, or, equivalently pκ∗ ∼ N

(
p, ELP−4ε2

4

)
where ε = p− 1/2 and ELP ≥ 4ε2.

Remarks: The first two points made in the context of the adjusted wrong key randomisation hypothesis also
holds in the present case.

1. It is required to assume that the variance (ELP − 4ε2)/4 ≤ 2−n. Then, the variance is an exponentially
decreasing function of n and by Chebyshev’s inequality Pr[|pκ,κ∗ − 1/2| > 1/2] ≤ 2−n. In other words, pκ∗

takes values outside [0, 1] with exponentially low probability. Without the assumption of an exponentially
low value for the variance, it is not possible to argue that the probability of pκ∗ taking values outside [0, 1]
is exponentially small. This point is not mentioned in [7].

2. The work [8] considers the case p 6= 1/2 (equivalently, ε 6= 0). This is the classical case of linear cryptanalysis
which corresponds to the situation where the correlation of the right key is non-zero.

3. The work [7] considers the case p = 1/2 (equivalently, ε = 0). For p = 1/2, ε = 0 and so the variance is
ELP/4. The variance for the adjusted wrong key randomisation hypothesis is 2−n−2. In [7] it is assumed
that the variance for the adjusted right key randomisation hypothesis is greater than that of the adjusted
wrong key randomisation hypothesis which is equivalent to ELP > 2−n. In our analysis, we do not make
this assumption and instead work out both the cases of ELP > 2−n and ELP < 2−n.

Motivated by the above, we formulate the following general key randomisation hypotheses for both the right
and the wrong key.



3 GENERAL KEY RANDOMISATION HYPOTHESES 10

General right key randomisation hypothesis:

pκ∗ ∼ N
(
p, s2

0

)
where p is a fixed value and s2

0 ≤ 2−n; let ε = p− 1/2.

Given p, ε = p− 1/2 is the bias and 2ε is the correlation.

General wrong key randomisation hypothesis:

For κ 6= κ∗, pκ,κ∗ ∼ N
(
1/2, s2

1

)
where s2

1 ≤ 2−n.

We note the following.

1. As s0 ↓ 0, the random variable pκ∗ becomes degenerate and takes the value of the constant p. In this case,
the general right key randomisation hypothesis becomes the standard right key randomisation hypothesis.

2. For p = 1/2 and s0 ↓ 0 the random variable pκ∗ becomes degenerate and takes the constant value 1/2.
The class of attack arising from this setting was introduced in [11] and such attacks called zero correlation
attacks. For such attacks, we must necessarily have s2

1 > 0 as otherwise, both the right and wrong key
randomisation hypotheses become the same and so the attack will fail.

3. In [15], it was shown that the fixed key correlation for a long key block cipher corresponds to the choice
p = 1/2. This had formed the motivation in [7] for considering the case p = 1/2 in the adjusted right key
randomisation hypothesis where s2

0 was taken to be ELP/4. We note, however, that not all block ciphers
are long key ciphers and so the assumption p = 1/2 cannot be made in general. So, while the case p = 1/2
is a valid choice of study for the adjusted right key randomisation hypothesis, it is not the only choice. The
case p 6= 1/2 is also an equally valid choice of study.

4. More generally, for p = 1/2, we must have s0 6= s1 as otherwise both the right and wrong key randomisation
hypotheses become the same and it will not be possible to mount an attack.

5. As s1 ↓ 0, the random variable pκ,κ∗ becomes degenerate and takes the value 1/2. In this case, the general
wrong key randomisation hypothesis becomes the standard wrong key randomisation hypothesis.

6. For s2
0 = (ELP − 4ε2)/4, the general right key randomisation hypothesis becomes the adjusted right key

randomisation hypothesis.

7. For s2
1 = 2−n−2, the general wrong key randomisation hypothesis becomes the adjusted wrong key ran-

domisation hypothesis.

So, the general key randomisation hypotheses covers both the standard and adjusted right and wrong key ran-
domisation hypotheses. Further, it also covers zero correlation attacks. In view of this, we perform the statistical
analysis of success probability in terms of the general key randomisation hypotheses and later deduce the special
cases of the standard and the adjusted key randomisation hypotheses. This provides a unifying view of the entire
analysis.

Remark: The issues discussed in Points 1 to 3 as part of the remarks after the adjusted wrong key randomisation
hypothesis also hold for both the general right and the general wrong key randomisation hypotheses. In particular,
we note that the requirements s2

0 ≤ 2−n and s2
1 ≤ 2−n have been imposed so that using Chebyshev’s inequality,

we obtain Pr[|pκ∗ − 1/2| > 1/2] ≤ 4s2
0 ≤ 2−n+2 and Pr[|pκ,κ∗ − 1/2| > 1/2] ≤ 4s2

1 ≤ 2−n+2 respectively. In
other words, the requirements s2

0 ≤ 2−n and s2
1 ≤ 2−n ensure that the probabilities of pκ∗ and pκ,κ∗ taking values

outside the range [0, 1] is exponentially small.
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4 Distributions of the Test Statistic

Given the behaviour of pκ and pκ,κ∗ modelled by the two general key randomisation hypotheses, the main task is
to obtain normal approximations of the distributions of Wκ∗ and Wκ as given by (8). The distributions of Wκ∗

and Wκ depend on whether P1, . . . , PN are chosen with or without replacement. We separately consider both
these cases.

In the general key randomisation hypotheses, we have s2
0, s

2
1 ≤ 2−n. Let θ2

0 = s2
02n/2 ≤ 2−n/2. By Chebyshev’s

inequality,

Pr[|pκ∗ − p| > θ0] ≤ s2
0/θ

2
0 = 2−n/2. (9)

So, with exponentially low probability, pκ∗ takes values outside the range [p− θ0, p+ θ0]. For p ∈ [p− θ0, p+ θ0]
and θ = p− 1/2, we have ε− θ0 ≤ θ ≤ ε+ θ0 and so

p(1− p) = 1/4− θ2 ≥ 1/4− (ε+ θ0)2 ≈ 1/4 (10)

under the assumption that (ε+ θ0)2 is negligible.
Similarly, let ϑ2

1 = s2
12n/2 ≤ 2−n/2 and as above, we have by Chebyshev’s inequality

Pr[|pκ,κ∗ − 1/2| > ϑ1] ≤ s2
1/ϑ

2
1 = 2−n/2. (11)

Further, let ϑ = p− 1/2 so that for p ∈ [1/2− ϑ1, 1/2 + ϑ1],

p(1− p) = 1/4− ϑ2 ≥ 1/4− ϑ2
1 = 1/4− s2

12n/2 ≥ 1/4− 2−n/2 ≈ 1/4 (12)

under the assumption that 2−n/2 is negligible.

4.1 Distributions of Wκ∗ and Wκ, κ 6= κ∗ under Uniform Random Sampling with Replace-
ment

In this case, P1, . . . , PN are chosen under uniform random sampling with replacement so that P1, . . . , PN are
assumed to be independent and uniformly distributed over {0, 1}n.

First consider Wκ∗ whose distribution is determined from the distribution of pκ∗ . Recall that Xκ∗ = Xκ∗,1 +
· · · + Xκ∗,N . Since P1, . . . , PN are independent, the random variables Xκ∗,1, . . . , Xκ∗,N are also independent.
Under the general right key randomisation assumption, pκ∗ is modelled as a random variable following N (p, s2

0)
and so the density function of pκ∗ is f(p; p, s2

0). The distribution function of Xκ∗ is approximated as follows:

Pr[Xκ∗ ≤ x]

=
∑
k≤x

Pr[Xκ∗ = k]

≈
∑
k≤x

∫ ∞
−∞

(
N

k

)
pk(1− p)N−kf(p; p, s2

0)dp

=

∫ ∞
−∞

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp. (13)

The sum within the integral is the distribution function of the binomial distribution and can be approximated by
N (Np, Np(1− p)). In this approximation, the variance of the normal also depends on p which makes it difficult
to proceed with further analysis. Using (10), it is possible to approximate p(1− p)) as 1/4. This approximation,
however, is valid only for p ∈ [p− θ0, p+ θ0] and under the assumption that (ε+ θ0)2 is negligible. In particular,
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the approximation is not valid for values of p close to 0 or 1. The probability that p is not in [p − θ0, p + θ0] is
exponentially small as shown in (9). So, we break up the integral in (13) in a manner such that the approximation
p(1− p)) ≈ 1/4 can be made in the range p− θ0 to p+ θ0 and it is possible to show that the contribution to (13)
for p outside this range is negligible.

Pr[Xκ∗ ≤ x]

=

∫ p+θ0

p−θ0

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp

+

∫ p−θ0

−∞

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp +

∫ ∞
p+θ0

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp (14)

≤
∫ p+θ0

p−θ0

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp +

∫ p−θ0

−∞
f(p; p, s2

0)dp +

∫ ∞
p+θ0

f(p; p, s2
0)dp

=

∫ p+θ0

p−θ0

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp + Pr[|pκ∗ − p| > θ0]

≤
∫ p+θ0

p−θ0

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp + 2−n/2 (from (9))

≈
∫ p+θ0

p−θ0

∑
k≤x

(
N

k

)
pk(1− p)N−k

 f(p; p, s2
0)dp. (15)

The sum inside the integral is approximated by the distribution function of N (Np, Np(1 − p)). The range of
the integration over p is from p − θ0 to p + θ0. Using (10), it follows that for p ∈ [p − θ0, p + θ0] the normal
distribution N (Np, Np(1− p)) can be approximated as N (Np, N/4) (i.e., p(1− p) ≈ 1/4) under the assumption
that (ε+ θ0)2 is negligible. Note that the above analysis has been done to ensure that the range of p is such that
this approximation is meaningful.

Pr[Xκ∗ ≤ x] ≈
∫ p+θ0

p−θ0

(∫ x

−∞
f(x;Np, N/4)dx

)
f(p; p, s2

0)dp.

≤
∫ ∞
−∞

(∫ x

−∞
f(x;Np, N/4)dx

)
f(p; p, s2

0)dp. (16)

=

∫ x

−∞

∫ ∞
−∞

(
f(x;Np, N/4)f(p; p, s2

0)dp
)
dx (17)

=

∫ x

−∞
f(x;Np, s2

0N
2 +N/4) dx. (18)

The last equality follows from Proposition 1 in Section A.2. Comparing (13) and (16), it may appear that a
roundabout route has been taken to essentially replace the sum inside the integral by a normal approximation.
On the other hand, without taking this route, we do not see how to justify that the variance of this normal
approximation is approximately N/4.

From (18), the distribution of Xκ∗ is approximately N (Np, s2
0N

2 + N/4). Consequently, the distribution of
Wκ∗ = Xκ∗/N − 1/2 is approximately given as follows:

Wκ∗ ∼ N
(
ε, s2

0 +
1

4N

)
. (19)
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For Wκ with κ 6= κ∗, we need to consider the general wrong key randomisation hypothesis where pκ,κ∗ is
modelled as a random variable following N (1/2, s2

1). A similar analysis as above is carried out where instead
of (9) and (10), the relations (11) and (12) respectively are used. In particular, for p ∈ [1/2 − ϑ1, 1/2 + ϑ1],
it is required to approximate N (Np, Np(1 − p)) by N (N/2, N/4), i.e., p(1 − p) ≈ 1/4. The validity of this
approximation for p ∈ [1/2− ϑ1, 1/2 + ϑ1] follows from (12) where s2

12n/2 is considered to be negligible. Again,
we note that the approximation p(1− p) ≈ 1/4 is not valid for values of p near to 0 or 1. The analysis yields the
following approximation:

Wκ ∼ N
(

0, s2
1 +

1

4N

)
, κ 6= κ∗. (20)

Remark: For the adjusted wrong key randomisation hypothesis, i.e., with s2
1 = 2−n−2, in [13] the distribution of

Wκ for κ 6= κ∗ was stated without proof to be N
(
0, 1

2n+2 + 1
4N

)
. Lemma 5.9 in the thesis [37] also stated this

result and as proof mentioned N (0, 1
2n+2 ) +N (0, 1

4N ) = N (0, 1
2n+2 + 1

4N ). This refers to the fact that the sum of
two independent normal distributed random variables is also normal distributed. While this fact is well known,
it is not relevant to the present analysis.

4.2 Distributions of Wκ∗ and Wκ, κ 6= κ∗ under Uniform Random Sampling without Re-
placement

In this scenario, the plaintexts P1, . . . , PN are chosen according to uniform random sampling without replacement.
As a result, P1, . . . , PN are no longer independent and correspondingly neither areXκ,1, . . . , Xκ,N . So, the analysis
in the case for sampling with replacement needs to be modified.

We first consider the distribution of Wκ∗ in the scenario where pκ∗ is a random variable. A fraction pκ∗ of
the 2n possible plaintexts P satisfies the condition 〈ΓP , P 〉 ⊕ 〈ΓB, B〉 = 1. Let us say that a plaintext P is ‘red’
if the condition 〈ΓP , P 〉 ⊕ 〈ΓB, B〉 = 1 holds for P ; otherwise, we say that P is ‘white’. So there are bpκ∗2nc red
plaintexts in {0, 1}n and the other plaintexts are white. For k ∈ {0, . . . , N}, the event Xκ∗ = k is the event of
picking k red plaintexts in N trials from an urn containing 2n plaintexts out of which bpκ∗2nc are red and the
rest are white. So,

Pr[Xκ∗ = k] =

(bpκ∗2nc
k

)(2n−bpκ∗2nc
N−k

)(
2n

N

) . (21)

Under the general right key randomisation hypothesis it is assumed that pκ∗ follows N (p, s2
0) so that the

density function of pκ∗ is taken to be f(p; p, s2
0). Then

Pr[Xκ∗ ≤ x] =
∑
k≤x

Pr[Xκ = k]

≈
∑
k≤x

∫ ∞
−∞

(bp2nc
k

)(2n−bp2nc
N−k

)(
2n

N

) f(p; p, s2
0)dp

=

∫ ∞
−∞

∑
k≤x

(bp2nc
k

)(2n−bp2nc
N−k

)(
2n

N

)
 f(p; p, s2

0)dp.

An analysis along the lines of (14) to (15) using (9) shows that

Pr[Xκ∗ ≤ x] ≈
∫ p+θ0

p−θ0

∑
k≤x

(bp2nc
k

)(2n−bp2nc
N−k

)(
2n

N

)
 f(p; p, s2

0)dp.
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The sum within the integral can be seen to be the distribution function of the hypergeometric distribution
Hypergeometric(N, 2n, bp2nc). If N � 2n, then the hypergeometric distribution approximately follows Bin(N, p);
on the other hand, if N/2n = t ∈ (0, 1), then the hypergeometric distribution approximately follows N (pN,N(1−
t)p(1− p)) (see Appendix A.3) which using t = N/2n is equal to N (pN,N(1−N/2n)p(1− p)).

For p ∈ [p − θ0, p + θ0], from (10) the normal distribution N (pN,N(1 −N/2n)p(1 − p)) is approximated as
N (Np, N(1−N/2n)/4) under the assumption that (ε+θ0)2 is negligible. Again, we note that the approximation
holds in the mentioned range of p and it is not valid for values of p close to 0 or 1.

Pr[Xκ∗ ≤ x] ≈
∫ p+θ0

p−θ0

(∫ x

−∞
f(x;Np, N(1−N/2n)/4) dx

)
f(p; p, s2

0) dp

≤
∫ ∞
−∞

(∫ x

−∞
f(x;Np, N(1−N/2n)/4) dx

)
f(p; p, s2

0) dp

=

∫ x

−∞

(∫ ∞
−∞

f(x;Np, N(1−N/2n)/4)f(p; p, s2
0) dp

)
dx

=

∫ x

−∞
f(x;Np, s2

0N
2 +N(1−N/2n)/4)dx.

The last equality follows from Proposition 1 in Section A.2. So, Xκ∗ approximately follows N (Np, s2
0N

2 +N(1−
N/2n)/4) and since Wκ∗ = Xκ∗/N − 1/2 we have that the distribution of Wκ∗ is approximately given as follows:

Wκ∗ ∼ N
(
ε, s2

0 +
1−N/2n

4N

)
. (22)

For Wκ with κ 6= κ∗, we need to consider the general wrong key randomisation hypothesis where pκ,κ∗ is
modelled as a random variable following N (1/2, s2

1). In this case, it is required to use (11) and (12) instead
of (9) and (10) respectively. In particular, as in the case of sampling with replacement, we note that for
p ∈ [1/2− ϑ1, 1/2 + ϑ1], it is required to approximate N (Np, Np(1 − p)) by N (N/2, N/4), i.e., p(1 − p) ≈ 1/4.
The validity of this follows from (12) and the approximation is not valid for values of p near to 0 or 1. With
these approximations, the resulting analysis shows the following approximate distribution:

Wκ ∼ N
(

0, s2
1 +

1−N/2n

4N

)
, κ 6= κ∗. (23)

Remark: In [1], for the adjusted wrong key randomisation hypothesis, i.e., with s2
1 = 2−n−2, the distribution of

Wκ for κ 6= κ∗ was stated to be N
(
0, 1

4N

)
. We note the following issues.

1. The supporting argument in [1] was given to be the fact that if two random variables X and Y are such
that X ∼ N (aY, σ2

1) and Y ∼ N (µ, σ2
2), then X ∼ N (aµ, σ2

1 + a2σ2
2) (see Proposition 2 in the appendix for

a proof). This argument, however, is not complete. The distribution function of Xκ for κ 6= κ∗ is

Pr[Xκ∗ ≤ x] =
∑
k≤x

Pr[Xκ = k] =
∑
k≤x

∫ ∞
−∞

(
2n−1

k

)(
2n−2n−1

N−k
)(

2n

N

) f(p; 1/2, s2
1)dp. (24)

After interchanging the order of the sum and the integration, one can apply the normal approximation of
the hypergeometric distribution. It is not justified to directly start with the normal approximation of the
hypergeometric distribution as has been done in [1].

2. The issue is more subtle than simply a question of interchanging the order of the sum and the integral. After
applying the normal approximation of the hypergeometric distribution one ends up with N (N/2, N(1 −
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N/2n)p(1 − p)) which is then approximated as N (N/2, N(1 − N/2n)/4). This requires assuming that
(p − 1/2)2 is negligible. Clearly, this assumption is not valid for values of p close to 0 or 1. On the other
hand, the approximation is justified for p ∈ [1/2−ϑ1, 1/2+ϑ1] under the assumption that s2

12n/2 = 2−2−n/2

is negligible (see (12)). Also, the probability that p takes values outside [1/2−ϑ1, 1/2+ϑ1] is exponentially
low as shown in (11). So, it is required to argue that the integral in (24) is from 1/2 − ϑ1 to 1/2 + ϑ1

and the contribution of the integral outside this range is negligible. This can be done in a manner which
is similar to that done in Steps (14) to (15). In [1], the assumption that (p − 1/2)2 is negligible has been
made for all values of p which is not justified.

5 Success Probability for Attacks with p 6= 1/2

The general right key randomisation hypothesis postulates pκ∗ ∼ N (p, s2
0). In this section, we consider suc-

cess probability of attacks in the case p 6= 1/2. As mentioned earlier, this is the classical scenario of linear
cryptanalysis.

From (8), the test statistic is Tκ = |Wκ| where Wκ = (Xκ,1 + · · · + Xκ,N )/N − 1/2. To obtain the success
probability of the attack it is required to obtain the distributions of Tκ for the two scenarios when κ = κ∗ and
when κ 6= κ∗. This is obtained from the distributions of Wκ∗ and Wκ for κ 6= κ∗. The distributions of Wκ∗ and
Wκ have been obtained in Section 4. Suppose, the following holds.

Wκ∗ ∼ N (µ0, σ
2
0), µ0 6= 0; Wκ ∼ N (0, σ2

1), κ 6= κ∗. (25)

From (19) and (22), note that the condition µ0 6= 0 corresponds to ε 6= 0.
We now consider the derivation of the success probability of linear cryptanalysis in terms of µ0, σ0 and σ1

using both the order statistics based analysis and the hypothesis testing based analysis. From the expressions
given in (19), (20), (22) and (23), we see that σ0 and σ1 depend on N whereas µ0 = ε which is a constant.

5.1 Order Statistics Based Analysis

This approach is based on a ranking methodology used originally by Matsui [27] and later formalised by
Selçuk [34]. The idea is the following. There are 2m random variables Tκ corresponding to the 2m possible
values of the target sub-key. Suppose the variables are denoted as T0, . . . , T2m−1 and assume that T0 = |W0|
corresponds to the choice of the correct target sub-key κ∗, where W0 follows the distribution of Wκ∗ which is
N (µ0, σ

2
0). Let T(1), . . . , T(2m−1) be the order statistics of T1, . . . , T2m−1, i.e., T(1), . . . , T(2m−1) is the ascending

order sort of T1, . . . , T2m−1. So, the event corresponding to a successful attack with a-bit advantage is T0 > T(2mq)

where q = 1− 2−a.
Using a well known result on order statistics, the distribution of T(2mq) can be assumed to approximately

follow N (µq, σ
2
q ) where µq = σ1Φ−1(1 − 2−a−1) and σq = σ1

2φ(Φ−1(1−2−a−1))
2−(m+a)/2 (see Appendix A.1). Using

this result, PS can be approximated in the following manner.
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PS = Pr[T0 > T(2mq)] = Pr[|W0| > T(2mq)]

= Pr[W0 > T(2mq)] + Pr[W0 < −T(2mq)] (26)

= Pr[W0 − T(2mq) > 0] + Pr[W0 + T(2mq) < 0]

≈ 1− Φ

−(µ0 − µq)√
σ2

0 + σ2
q

+ Φ

−(µ0 + µq)√
σ2

0 + σ2
q


= Φ

µ0 − σ1Φ−1(1− 2−a−1)√
σ2

0 + σ2
q

+ Φ

−(µ0 + σ1Φ−1(1− 2−a−1))√
σ2

0 + σ2
q


= Φ

 |µ0| − σ1Φ−1(1− 2−a−1)√
σ2

0 + σ2
q

+ Φ

−|µ0| − σ1Φ−1(1− 2−a−1)√
σ2

0 + σ2
q

 . (27)

Some criticisms: The order statistics based approach is crucially dependent on the normal approximation of
the distribution of the order statistics. In the statistics literature, this result appears in an asymptotic form.
Using the well known Berry-Esséen theorem, a concrete upper bound on the error in such approximation was
obtained in [30]. A key observation is that the order statistics result is applied to 2m random variables and
for the result to be applied even in an asymptotic context, it is necessary that 2m is sufficiently large. A close
analysis of the hypothesis of the theorem and the error bound in the concrete setting showed the following issues.
We refer to [30] for details.

m must be large: This condition arises from a convergence requirement on one of the quantities in the theorem
showing the result on order statistics. For the error in such convergence to be around 10−3, it is required
that m should be at least around 20 bits. So, if the size of the target sub-key is small, then the applicability
of the order statistics based analysis is not clear.

m− a must be large: This condition arises from the requirement that the error in the normal approximation
is small. If the error is to be around 10−3, then m− a should be at least around 20 bits. Recall that a is
the advantage of the attack. So, for attacks with high advantage, the applicability of the order statistics
based analysis is not clear.

Independence assumptions: We identify two assumptions that are required for the analysis to be meaningful.
These were implicitly used by Selçuk in [34]. We know of no previous work where these assumptions have been
explicitly highlighted.

1. The approximation of the distribution of the order statistic T(2mq) by normal is a key step in the order
statistics based approach. As mentioned above, this follows from a standard result in mathematical statis-
tics. The hypothesis of this result requires the random variables T1, T2, . . . , T2m−1 to be independent and
identically distributed. It indeed holds that T1, T2, . . . , T2m−1 are identically distributed. However, the
randomness of all of these random variables arise from the randomness of P1, . . . , PN and so these random
variables are certainly not independent. So, the independence of these random variables is a heuristic
assumption.

2. Considering W0 and T(2mq) to follow normal distributions, it is assumed that W0−T(2mq) (and W0 +T(2mq))
also follows a normal distribution. A sufficient condition for W0 − T(2mq) to follow a normal distribution
is that W0 and T(2mq) are independent. If W0 and T(2mq) are not independent, then it is not necessarily
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true that W0 − T(2mq) follows a normal distribution even if W0 and T(2mq) follow normal distributions. So,
in assuming W0 − T(2mq) to follow a normal distribution, it is implicitly assumed that W0 and T(2mq) are
independent. Since the randomness of both W0 and T(2mq) arise from the randomness in P1, . . . , PN , they
are clearly not independent. As a result, the assumption that W0 − T(2mq) follows a normal distribution is
also a heuristic assumption.

In short, the above two assumptions can be summarised as assuming that the test statistics corresponding to
different choices of the sub-key are independent. We note that such assumptions are sometimes made in the
context of cryptanalysis though it is a bit surprising that the above assumptions do not seem to have been
explicitly mentioned in the literature.

In later works on multiple linear and multiple differential cryptanalysis, the order statistics based analysis
has been used in a number of papers [13, 20, 5]. The above mentioned issues, i.e., both m and m− a have to be
large; and the assumption that the test statistics for different choices of the sub-key are independent, apply to
all such works.

5.2 Hypothesis Testing Based Analysis

Statistical hypothesis testing for analysing block cipher cryptanalysis was carried out long back in [2] in the con-
text of distinguishing attacks. For distinguishing attacks using integral and zero-correlation linear cryptanalysis,
this framework has been used in [10]. For analysing key recovery attacks on block ciphers, hypothesis testing
based approach has been used in [9, 35, 8, 30].

The idea of the hypothesis testing based approach is simple and intuitive. For each choice κ of the target
sub-key, let H0 be the null hypothesis that κ is correct and H1 be the alternative hypothesis that κ is incorrect.
The test statistic Tκ = |Wκ| is used to test H0 against H1 where the distributions of Wκ are as in (25) for both
κ = κ∗ and κ 6= κ∗. The following hypothesis test is considered.

H0 : κ is correct; versus H1 : κ is incorrect.
Decision rule (µ0 > 0): Reject H0 if Tκ ≤ t for some t ∈ (0, µ0).
Decision rule (µ0 < 0): Reject H0 if Tκ ≥ t for some t ∈ (µ0, 0).

 (28)

Here t is a threshold whose exact value is determined depending on the desired success probability and advantage.
Such a hypothesis test gives rise to two kinds of errors: H0 is rejected when it holds which is called the Type-1
error; and H0 is accepted when it does not hold which is called the Type-2 error. If a Type-1 error occurs, then
κ = κ∗ is the correct value of the target sub-key but, the test rejects it and so the attack fails to recover the
correct value. So, the attack is successful if and only if Type-1 error does not occur. So, the success probability
PS = 1− Pr[Type-1 error].

On the other hand, for every Type-2 error, an incorrect value of κ gets labelled as a candidate key. So, the
number of times that Type-2 errors occurs is the size of the list of candidate keys.

Theorem 1. Let κ∗ ∈ {0, 1}m. For κ ∈ {0, 1}m, let Tκ = |Wκ| be 2m random variables, where Wκ∗ ∼ N (µ0, σ
2
0),

µ0 6= 0 and Wκ ∼ N (0, σ2
1) for κ 6= κ∗. Suppose the hypothesis test given in (28) is applied to Tκ for all

κ ∈ {0, 1}m. Let PS = 1− Pr[Type-1 error]. Then

PS = Φ

(
|µ0| − σ1γ

σ0

)
+ Φ

(
−|µ0| − σ1γ

σ0

)
(29)

where γ = Φ−1
(

1− 2m−a−1

2m−1

)
and the expected number of times that Type-2 errors occurs is 2m−a.

Proof. First assume µ0 > 0. Let α = Pr[Type-1 error] and β = Pr[Type-2 error] and so PS = 1 − α. For each
κ 6= κ∗, let Zκ be a binary valued random variable which takes the value 1 if and only if a Type-2 error occurs
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for κ. So, Pr[Zκ = 1] = β. The size of the list of candidate keys returned by the test is
∑

κ6=κ∗ Zκ and so the
expected size of the list of candidate keys is

E

∑
κ6=κ∗

Zκ

 =
∑
κ6=κ∗

E [Zκ] =
∑
κ6=κ∗

Pr[Zκ = 1] = (2m − 1)β. (30)

The expected number of times that Type-2 errors occurs is 2m−a. So,

β =
2m−a

2m − 1
. (31)

The Type-1 and Type-2 error probabilities are calculated as follows.

α = Pr[Type-1 error]

= Pr[Tκ ≤ t|H0 holds]

= Pr[Tκ∗ ≤ t]
= Pr[|Wκ∗ | ≤ t]
= Pr[−t ≤Wκ∗ ≤ t] (32)

= Pr

[
−t− µ0

σ0
≤ Wκ∗ − µ0

σ0
≤ t− µ0

σ0

]
= Φ

(
t− µ0

σ0

)
− Φ

(
−t− µ0

σ0

)
; (33)

β = Pr[Type-2 error]

= Pr[Tκ > t|H1 holds]

= Pr[|Wκ| > t|H1 holds]

= Pr[Wκ > t|H1 holds] + Pr[Wκ < −t|H1 holds]

= Pr

[
Wκ

σ1
>

t

σ1
|H1 holds

]
+ Pr

[
Wκ

σ1
<
−t
σ1
|H1 holds

]
= 1− Φ

(
t

σ1

)
+ Φ

(
−t
σ1

)
= 2(1− Φ(t/σ1)). (34)

Using β = 2m−a/(2m − 1) in (34), we obtain

t = σ1γ where γ = Φ−1

(
1− 2m−a−1

2m − 1

)
. (35)

Substituting t in (33) and noting that PS = 1− α, we obtain

PS = Φ

(
µ0 − σ1γ

σ0

)
+ Φ

(
−(µ0 + σ1γ)

σ0

)
= Φ

(
|µ0| − σ1γ

σ0

)
+ Φ

(
−|µ0| − σ1γ

σ0

)
.

If µ0 < 0, then an analysis similar to the above shows that the resulting expression for the success probability is
still given by (29).

Remarks:
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1. We have γ = Φ−1
(
1− 2m−a−1/(2m − 1)

)
≥ 0 if and only if 1 − 2m−a−1/(2m − 1) ≥ 1/2 if and only

if a ≥ lg(2m/(2m − 1)), where lg is logarithm to base two. We will be interested in attacks where the
advantage a is at least lg(2m/(2m − 1)) so that γ can be assumed to be non-negative.

2. The computation in (30) does not require the Zκ’s or the Tκ’s to be independent.

3. The theoretical limitations of the order statistics based analysis (namely, m and m − a are large and the
heuristic assumption that the Tκ’s are independent) are not present in the hypothesis testing based analysis.

4. Comparing (29) to (27), we find that the two expressions are equal under the following two assumptions:

(a) 2m/(2m − 1) ≈ 1: this holds for moderate values of m, but, is not valid for small values of m.

(b) σ0 � σq: this assumption was used in [34] and we provide more details later.

In the rest of the work, we will use (29) as the expression for the success probability.

5.3 Success Probability under General Key Randomisation Hypotheses

The distributions of Wκ∗ and Wκ for κ 6= κ∗ are respectively given by (19) and (20) for the case of sampling with
replacement and are given by (22) and (23) for the case of sampling without replacement. These expressions can
be compactly expressed in the following form:

Wκ∗ ∼ N (ε, s2
0 + σ2); Wκ ∼ N (0, s2

1 + σ2), for κ 6= κ∗; (36)

where

σ2 =

{ 1
4N for sampling with replacement;
1−N/2n

4N for sampling without replacement.
(37)

Substituting σ2
0 = s2

0 + σ2 and σ2
1 = s2

1 + σ2 in Theorem 1, we obtain the following result.

Theorem 2. Let κ∗ ∈ {0, 1}m. For κ ∈ {0, 1}m, let Tκ = |Wκ| be 2m random variables, where Wκ∗ ∼ N (µ0, s
2
0 +

σ2), µ0 6= 0 and Wκ ∼ N (0, s2
1 + σ2) for κ 6= κ∗. Suppose the hypothesis test given in (28) is applied to Tκ for

all κ ∈ {0, 1}m. Let PS = 1− Pr[Type-1 error]. Then

PS = Φ

(
|ε| −

√
s2

1 + σ2γ√
s2

0 + σ2

)
+ Φ

(
−|ε| −

√
s2

1 + σ2γ√
s2

0 + σ2

)
(38)

where γ = Φ−1
(

1− 2m−a−1

2m−1

)
and the expected number of times that Type-2 errors occurs is 2m−a.

Let P
(wr)
S denote the success probability when sampling with replacement is used and let P

(wor)
S denote

the success probability when sampling without replacement is used. Using the corresponding expressions for σ

from (37) in (38) we obtain the following expressions for P
(wr)
S and P

(wor)
S .

P
(wr)
S = Φ

(
2
√
N |ε| −

√
1 + 4Ns2

1γ√
1 + 4Ns2

0

)
+ Φ

(
−2
√
N |ε| −

√
1 + 4Ns2

1γ√
1 + 4Ns2

0

)
; (39)

P
(wor)
S = Φ

(
2
√
N |ε| −

√
4Ns2

1 + (1−N/2n)γ√
4Ns2

0 + (1−N/2n)

)
+ Φ

(
−2
√
N |ε| −

√
4Ns2

1 + (1−N/2n)γ√
4Ns2

0 + (1−N/2n)

)
. (40)

Remarks:
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1. If N � 2n, then P
(wor)
S ≈ P (wr)

S . So, the expression for P
(wor)
S given by (40) becomes useful only when the

fraction N/2n is non-negligible.

2. In the case of sampling with replacement, due to the birthday paradox, having N to be greater than 2n/2

is not really useful, since repetitions will begin to occur.

In the following sections, we will instantiate the expressions for PS to specific values of s0 and s1. To
differentiate between these cases, we will use superscripts to PS denoting the different possible cases. The
notation for these superscripts are as follows.

1. The superscript nz will denote that the success probabilities are for the case of attacks where p 6= 1/2.

2. The superscripts wr and wor will denote namely sampling with replacement and sampling without replace-
ment respectively.

3. The superscript std will denote that the standard key randomisation hypothesis is considered for both right
and wrong key.

4. The superscript adj will denote that the adjusted key randomisation hypothesis is considered for both right
and wrong key.

5. The superscript radj will denote the adjusted right key randomisation hypothesis and the standard wrong
key randomisation hypothesis.

6. The superscript wadj will denote the adjusted wrong key randomisation hypothesis and the standard right
key randomisation hypothesis.

5.4 Success Probability Under Standard Key Randomisation Hypotheses

As discussed in Section 3, the standard key randomisation hypotheses is obtained from the general key randomi-
sation hypothesis by letting s0 ↓ 0 and s1 ↓ 0. Using these conditions in (39) and (40) lead to the following
expressions for the success probabilities in the two cases of sampling with and without replacement.

P
(wr,std)
S = Φ

(
2
√
N |ε| − γ

)
+ Φ

(
−2
√
N |ε| − γ

)
. (41)

P
(wor,std)
S = Φ

(
2
√
N√

1−N/2n
|ε| − γ

)
+ Φ

(
− 2

√
N√

1−N/2n
|ε| − γ

)
. (42)

For standard right and wrong key randomisation hypotheses, the setting of p = 1/2 is not meaningful, since in
this case, it is not possible to distinguish between right and wrong keys. So, we do not introduce the superscript

nz in P
(wr,std)
S and P

(wor,std)
S .

Success probability in [34]: Selçuk [34] had obtained an expression for the success probability under the
standard key randomisation hypotheses and under the assumption that P1, . . . , PN are chosen uniformly with

replacements. The expression for P
(wr,std)
S given by (41) was not obtained in [34]. This is due to the following

reasons.

1. For analysing the success probability, Selçuk [34] employed the order statistics based approach. As discussed
in Section 5.1, in this approach the T ’s are written as T0, . . . , T2m−1 and it is assumed (without loss of
generality) that T0 corresponds to the right key. With this set-up, an attack with a-bit advantage is
successful, if T0 > T(2mq) where q = 1 − 2−a. Selçuk [34] insteads considers success to be the event
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W0 > T(2mq) and the condition W0/µ0 > 0. Since the T ’s can take only non-negative values, it follows that
T(2mq) ≥ 0 and so the event W0 > T(2mq) implies W0 > 0 and so µ0 > 0. Conversely, if µ0 < 0, then for the
condition W0/µ0 > 0 to hold we must have W0 < 0 in which case the event W0 > T(2mq) is an impossible
event. So, the condition W0 > T(2mq) subsumes the condition W0/µ0 > 0 for µ0 > 0 and has probability
0 for µ0 < 0. No justification is provided in [34] for considering success to be W0 > T(2mq) instead of
T0 > T(2mq). From (26) we see that the event W0 > T(2mq) is a sub-event of T0 > T(2mq) which is the event
that the attack is successful.

2. It is assumed that σ0 � σq. This is justified in [34] by providing numerical values for a in the range
8 ≤ a ≤ 48 and it is mentioned that the assumption especially holds for success probability 0.8 or more.

Under the above two assumptions, the expression for success probability obtained in [34] is the following.

PS ≈ Φ
(

2
√
N |ε| − Φ−1(1− 2−a−1)

)
. (43)

Assume that m is large so that 2m − 1 ≈ 2m and so γ ≈ Φ−1(1 − 2−a−1). Then the right hand side of (43)
becomes equal to the first term of (41). This shows that the expression for the success probability obtained
in [34] is incomplete.

To the best of our knowledge, no prior work has analysed the success probability of linear cryptanalysis
with the standard key randomisation hypotheses and under the condition where P1, . . . , PN are chosen uniformly

without replacement. So, the expression for P
(wor,std)
S given by (42) is the first such result.

5.5 Success Probability Under Adjusted Wrong Key Randomisation Hypothesis

Setting s2
1 = 2−n−2 converts the general wrong key randomisation hypothesis to the adjusted wrong key ran-

domisation hypothesis. Also, we let s0 ↓ 0, so that the general right key randomisation hypothesis simplifies to
the standard right key randomisation hypothesis. Using the conditions for s0 and s1 in (39) and (40) provides
the following expressions for the success probabilities in the two cases of sampling with and without replacement.

P
(nz,wr,wadj)
S = Φ

(
2
√
N |ε| −

√
1 +N/2nγ

)
+ Φ

(
−2
√
N |ε| −

√
1 +N/2nγ

)
; (44)

P
(nz,wor,wadj)
S = Φ

(
2
√
N |ε| − γ√

1−N/2n

)
+ Φ

(
−2
√
N |ε| − γ√

1−N/2n

)
. (45)

Expressions for the success probability with the adjusted wrong key randomisation hypothesis and the standard
right key randomisation hypothesis were obtained in [13] and [1]. Both the works followed the order statistics
approach as used by Selçuk. The work [13] considered the setting of uniform random choice of P1, . . . , PN with
replacement whereas [1] considered the setting of uniform random choice of P1, . . . , PN without replacement.
Under the approximation 2m ≈ 2m−1, the expressions obtained in [13] and [1] are equal to the first terms of (44)
and (45) respectively. The reason why the complete expressions were not obtained in [13, 1] is similar to the

reason why Selçuk was not able to obtain the complete expression for P
(nz,wr,std)
S .

The expressions for both P
(nz,wr,wadj)
S and P

(nz,wor,wadj)
S can be seen to be functions of |ε|, N and γ. Since

γ itself is a function of the advantage a and the size of the target sub-key m, it follows that both P
(nz,wr,wadj)
S

and P
(nz,wor,wadj)
S are functions of |ε|, N , a and m. None of these quantities are random variables, so neither are

P
(nz,wr,wadj)
S and P

(nz,wor,wadj)
S random variables. Consequently, it is not meaningful to talk about the average

value of PS or about the probability that PS is monotonic as has been done in [1].
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5.6 Success Probability Under Adjusted Right Key Randomisation Hypothesis

Setting s2
0 = ELP−4ε2

4 converts the general right key randomisation hypothesis to the adjusted right key randomi-
sation hypothesis. Also, we let s1 ↓ 0, so that the general wrong key randomisation hypothesis simplifies to the
standard wrong key randomisation hypothesis. In this case, we have s2

0 > s2
1. Using these conditions in (39)

and (40) lead to the following expressions for the success probabilities in the two cases of sampling with and
without replacement.

P
(nz,wr,radj)
S = Φ

(
2
√
N |ε| − γ√

1 +N(ELP− 4ε2)

)
+ Φ

(
−2
√
N |ε| − γ√

1 +N(ELP− 4ε2)

)
; (46)

P
(nz,wor,radj)
S = Φ

(
2
√
N |ε| −

√
1−N/2nγ√

N(ELP− 4ε2) + (1−N/2n)

)
+ Φ

(
−2
√
N |ε| −

√
1−N/2nγ√

N(ELP− 4ε2) + (1−N/2n)

)
. (47)

To the best of our knowledge, no prior work has analysed the success probability of single linear cryptanalysis
for the adjusted right key randomisation hypothesis and standard wrong key randomisation hypothesis corre-
sponding to the situation where plaintexts P1, . . . , PN are chosen with and without replacement, respectively.

So, the expressions for P
(nz,wr,radj)
S and P

(nz,wor,radj)
S given by (46) and (47) are the first such results.

5.7 Success Probability Under Adjusted Key Randomisation Hypothesis

Setting s2
0 = ELP−4ε2

4 converts the general right key randomisation hypothesis to the adjusted right key randomi-
sation hypothesis. Also, we let s2

1 = 2−n−2, so that the general wrong key randomisation hypothesis simplifies
to the adjusted wrong key randomisation hypothesis. Assume that, ELP − 4ε2 > 2−n. Using these conditions
in (39) and (40) lead to the following expressions for the success probabilities in the two cases of sampling with
and without replacement.

P
(nz,wr,adj)
S = Φ

(
2
√
N |ε| −

√
1 +N2−nγ√

1 +N(ELP− 4ε2)

)
+ Φ

(
−2
√
N |ε| −

√
1 +N2−nγ√

1 +N(ELP− 4ε2)

)
; (48)

P
(nz,wor,adj)
S = Φ

(
2
√
N |ε| − γ√

N(ELP− 4ε2) + (1−N/2n)

)
+ Φ

(
−2
√
N |ε| − γ√

N(ELP− 4ε2) + (1−N/2n)

)
. (49)

The expression for success probability under adjusted key randomisation hypothesis under sampling with re-
placement was earlier obtained in [8]. For sampling without replacement the authors derived the distribution of
the test statistic under both the null and the alternate hypothesis, but the paper does not give an expression
for the success probability. The expression obtained in [8] for sampling with replacement is approximate and is
given by the first term of (48).

6 Dependence of PS on N for Attacks with p 6= 1/2

Recall that the general key randomisation hypothesis postulates pκ∗ ∼ N (p, s2
0). In this section, we study the

dependence of success probability on N for attacks where p 6= 1/2.
As in Section 5, let Wκ∗ ∼ N (µ0, σ

2
0) and Wκ ∼ N (0, σ2

1) for κ 6= κ∗. Assume µ0 > 0. From (33), we obtain
the expression for α, the probability of Type-1 error, to be α = 1−PS = Φ((t−µ0)/σ0) + Φ((−t−µ0)/σ0). The
first term arises from the upper bound on Wκ∗ given in (32), i.e.,

Pr[Wκ∗ ≤ t] = Φ((t− µ0)/σ0). (50)

From (35), t = σ1γ, where γ is a constant. Let π = Pr[Wκ∗ ≤ t] and then 1−π is the corresponding contribution
to PS . Note that π is the area under the curve of the density function of Wκ∗ from −∞ to t.
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Consider the setting of general key randomisation hypothesis where P1, . . . , PN are chosen with replacement.
From (19) and (20), we have µ0 = ε, σ2

0 = s2
0 + 1

4N and σ2
1 = s2

1 + 1
4N . Since s0 and s1 are constants (i.e.,

independent of N), σ0 and σ1 are both inversely proportional to N . So, as N increases the normal curve for Wκ∗

becomes more concentrated around the mean ε. This is shown in Figures 1, 2 and 3. Also, since γ is a constant,
t = σ1γ is also inversely proportional to N . So, π is a function of N . One may expect π to be a monotonic
decreasing function of N (and 1− π to be a monotonic increasing function of N), but, this does not necessarily
hold as we explain below.

Let N1 < N2. The corresponding density functions for Wκ∗ are f(x; ε, s2
0 + 1/(4N1)) and f(x; ε, s2

0 + 1/(4N2)).
So, there is an x0 such that the following hold:

• f(x; ε, s2
0 + 1/(4N1)) ≥ f(x; ε, s2

0 + 1/(4N2)), for x ≥ x0;
• f(x; ε, s2

0 + 1/(4N1)) < f(x; ε, s2
0 + 1/(4N2)), for x < x0.

The point x0 is shown in Figures 1, 2 and 3.
Let t1 = (s2

1 + 1/(4N1))γ and t2 = (s2
1 + 1/(4N2))γ and so t2 < t1. Let π1 and π2 be the values of π

corresponding to N1 and N2. There are two possibilities.

t2 ≤ x0: In this case, we have either t2 < t1 ≤ x0 or t2 ≤ x0 < t1. From Figures 1 and 2, in both cases, it
can be noted that the area under the curve corresponding to N1 is more than the area under the curve
corresponding to N2. So, π1 > π2. In other words, increasing N leads to π going down and correspondingly
1−π going up. As a result, in this case, the first term in the expression for success probability given by (33)
increases with N .

t2 > x0: In this case, we have x0 < t2 < t1. From Figure 3, it is no longer clear that the area under the curve
corresponding to N1 is more than the area under the curve corresponding to N2. So, it cannot be definitely
said that π1 is more than π2 and so the 1− π does not necessarily go up. As a result, it can no longer be
said that the first term in the expression for success probability given by (33) increases with N .

Note that the above explanation is purely statistical in nature. It is entirely based upon the expressions for the
variances of the two normal distributions.

In the above discussion, we have tried to explain the possible non-monotonic behaviour of the probability of
the event Pr[Wκ∗ ≤ t] for the case of sampling with replacement. Considering this specific case makes it easy to
see the dependence of the variances on N in determining possible non-monotonicity. The explanation extends
to the complete expression for the success probability as well as to the case of sampling without replacement.

Explanations for non-monotonic behaviour have been provided in [13, 1]. In [13], non-monotonicity has
essentially been attributed to the strategy of sampling with replacement leading to duplicates. The later work [1],
observed non-monotonicity even for the strategy of sampling without replacement and so the explanation based
on the occurrence of duplicates could not be applied. Instead, [1] provides an explanation for non-monotonicity
for both sampling with and without replacement based on the ranking strategy used in the order statistics
based approach. As we have seen, expressions for success probability can be obtained without using the order
statistics based approach. So, an explanation of non-monotonicity based on order statistics based approach is
not adequate. Instead, as we have tried to explain above, the phenomenon is better understood by considering
that the variances of the two normal distributions in question are monotone decreasing with N .

6.1 Analysis

Consider the general expression for the success probability PS as given by (38). The subsequent expressions for
success probability with/without replacement and under standard/adjusted key randomisation hypotheses are
all obtained as special cases of (38). In (38), the quantities s0, s1 and γ are constants which are independent of
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Figure 1: Case t2 ≤ x0 < t1.
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Figure 2: Case t2 < t1 < x0.
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Figure 3: Case x0 < t2 < t1.



6 DEPENDENCE OF PS ON N FOR ATTACKS WITH P 6= 1/2 25

N and only σ depends on N as shown in (37). Further, from (37), it is clear that σ is a decreasing function of
N for both the cases of with and without replacements.

We analyse the behaviour of PS as a function of N and identify the situations where PS is a monotonic
increasing function of N .

Theorem 3. Consider PS to be given by (38) where s0, s1 and γ are positive and independent of N while σ > 0
is a monotone decreasing function of N .

1. Suppose s0 ≥ s1. Then PS is an increasing function of N for all N > 0.

2. Suppose s0 < s1 and
(
s2

1 − s2
0

)
γ ≥ |ε|

√
σ2 + s2

1. Then PS is a decreasing function of N .

3. Suppose s0 < s1,
(
s2

1 − s2
0

)
γ < |ε|

√
σ2 + s2

1 and δ =
(s21−s20)γ
|ε|
√
σ2+s21

is such that δ3 and higher powers of δ can

be ignored. Then PS is an increasing function of N if and only if σ2
(
(s2

1 − s2
0)− ε2

)
< ε2s2

1 − (s2
1 − s2

0)s2
0.

Proof. We proceed by taking derivatives with respect to N . Since σ is a decreasing function of N , dσ
dN < 0.

dPS
dN

= φ

(
|ε| −

√
σ2 + s2

1γ√
σ2 + s2

0

)− γσ dσ
dN√

σ2 + s2
1

· 1√
σ2 + s2

0

+

(
|ε| −

√
σ2 + s2

1γ

)
·

− σ dσ
dN√(

σ2 + s2
0

)3
−

φ

(
−|ε|+

√
σ2 + s2

1γ√
σ2 + s2

0

) γσ dσ
dN√

σ2 + s2
1

· 1√
σ2 + s2

0

+

(
|ε|+

√
σ2 + s2

1γ

)
·

− σ dσ
dN√(

σ2 + s2
0

)3


=
σf1(σ) dσdN√

σ2 + s2
1

√(
σ2 + s2

0

)3 , where

f1(σ) = φ

(
|ε| −

√
σ2 + s2

1γ√
σ2 + s2

0

)(
−γ
(
σ2 + s2

0

)
−
(
|ε|
√
σ2 + s2

1 −
(
σ2 + s2

1

)
γ

))

−φ

(
−|ε|+

√
σ2 + s2

1γ√
σ2 + s2

0

)(
γ
(
σ2 + s2

0

)
−
(
|ε|
√
σ2 + s2

1 +
(
σ2 + s2

1

)
γ

))
.

Using the definition of the standard normal density function, we have

f1(σ) =
e

|ε|+
√
σ2+s21γ

2(σ2+s20)

√
2π

− (σ2 + s2
0

)
γ

e 2|ε|γ
√
σ2+s21

σ2+s20 + 1

− |ε|√σ2 + s2
1

e 2|ε|γ
√
σ2+s21

σ2+s20 − 1

+

(
σ2 + s2

1

)
γ

e 2|ε|γ
√
σ2+s21

σ2+s20 + 1


=

−1√
2π

exp

(
|ε|+

√
σ2 + s2

1γ

2(σ2 + s2
0)

)
f2(σ), where

f2(σ) =
(
s2

0 − s2
1

)
γ

e 2|ε|γ
√
σ2+s21

σ2+s20 + 1

+ |ε|
√
σ2 + s2

1

e 2|ε|γ
√
σ2+s21

σ2+s20 − 1

 .

Since dσ/dN < 0 we have that dPS/dN > 0 if and only if f1(σ) < 0 if and only if f2(σ) > 0. If s0 ≥ s1, then
f2(σ) > 0 and so in this case we have dPS/dN > 0 which implies that PS is an increasing function of N . This
proves the first point.
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Now consider the case s0 < s1. We write

f2(σ) = −
(
s2

1 − s2
0

)
γ

e 2|ε|γ
√
σ2+s21

σ2+s20 + 1

+ |ε|
√
σ2 + s2

1

e 2|ε|γ
√
σ2+s21

σ2+s20 − 1

 .

= e

2|ε|γ
√
σ2+s21

σ2+s20

(
|ε|
√
σ2 + s2

1 −
(
s2

1 − s2
0

)
γ

)
− |ε|

√
σ2 + s2

1 −
(
s2

1 − s2
0

)
γ.

If
(
s2

1 − s2
0

)
γ ≥ |ε|

√
σ2 + s2

1, then f2(σ) < 0 and so dPS/dN < 0 which implies that PS is a decreasing function
of N . This proves the second point.

So, suppose that s0 < s1 and
(
s2

1 − s2
0

)
γ < |ε|

√
σ2 + s2

1 both hold. By the condition of this case, we have
0 < δ < 1. Also, we have the assumption that δ is small enough such that δ3 and higher powers of δ can be
ignored. Then f2(σ) > 0 if and only if

2|ε|γ
√
σ2 + s2

1

σ2 + s2
0

> ln

(
1 + δ

1− δ

)
≈ 2δ = 2

(
s2

1 − s2
0

)
γ

|ε|
√
σ2 + s2

1

.

Cancelling 2γ on both sides and rearranging the terms shows the third point.

Fisher information: Suppose a random variable Y follows a distribution whose density is given by a function
g(y; θ1, θ2, . . .), where θ1, θ2, . . . are the finitely many parameters specifying the density function. A relevant
question is how much information does the random variable Y carry about one particular parameter θi. Fisher
information is a well known measure in statistics for quantifying this information. The Fisher information about
a parameter θ ∈ {θ1, θ2, . . .} carried in the random variable Y is defined to be

IY (θ) = Eθ

[(
∂

∂θ
ln g(Y ; θ1, θ2, . . .)

)2
]
. (51)

If Y ∼ N (µ, σ2), then IY (µ) = σ−2. In other words, the information contained in the random variable Y is
inversely proportional to σ2. So, as the variance increases, the information about the mean contained in the
random variable Y decreases.

We view the first point of Theorem 3 in the context of Fisher information. Recall that pκ∗ is a random variable
following N (p, s2

0) and pκ,κ∗ is a random variable following N (1/2, s2
1). So, Ipκ∗ (p) = s−2

0 and Ipκ,κ∗ (1/2) = s−2
1 .

From the first point of Theorem 3 we have that if s0 > s1, then PS is an increasing function of N for all N > 0.
Put in terms of Fisher information, this is equivalent to saying that if Ipκ,κ∗ (1/2) ≥ Ipκ∗ (p), then PS is an
increasing function of N . More explicitly, if the information about the mean contained in pκ∗ is not more than
the information about the mean contained in pκ,κ∗ , then increasing N increases the success probability. Viewed
differently, if the variability of pκ∗ is at least as much as the variability of pκ,κ∗ , then the chances of the attack
being successful increases as the number of observations increases.

Applying Theorem 3 to the case of standard key randomisation hypothesis, we have s0 ↓ 0 and s1 ↓ 0. So,

by the first point of Theorem 3, it follows that both P
(nz,wr,std)
S and P

(nz,wor,std)
S are increasing functions of N for

all N > 0.

6.2 Adjusted Wrong Key Randomisation Hypothesis

In this case s2
1 = 2−n−2. Also, assuming the standard right key randomisation hypothesis (as in [13, 1]), s0 ↓ 0.

So, Points 2 and 3 of Theorem 3 apply. This case is divided into two subcases.
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Sampling with replacement: In this case, σ2 = 1/(4N). Let N
(wr)
0 = (s2

1 − ε2)/(4ε2s2
1) and note that

N
(wr)
0 > 0 if and only if s1 < |ε|.

1. Suppose s1γ > |ε| so that s4
1γ

2 − ε2s2
1 > 0.

(a) By Point 2 of Theorem 3, for N ≥ ε2/(4(s4
1γ

2 − ε2s2
1)), P

(nz,wr,wadj)
S is a decreasing function of N .

(b) By Point 3 of Theorem 3, for (s2
1− ε2)/(4ε2s2

1) < N < ε2/(4(s4
1γ

2− ε2s2
1)), P

(nz,wr,wadj)
S is an increasing

function of N and for N < (s2
1 − ε2)/(4ε2s2

1), P
(nz,wr,wadj)
S is a decreasing function of N .

Recall that N is the number of plaintext-ciphertext pairs and hence is positive and at most 2n. Let

N
(wr)
1 = ε2/(4(s4

1γ
2 − ε2s2

1)). We have s2
1 = 2−n−2 and so, N

(wr)
1 < 2n if and only if |ε| < (s1γ)/

√
2. For

sampling with replacement, it is more meaningful to consider 2n/2 to be the upper bound for N , since

beyond a sample size of 2n/2 there will be too many repetitions in the sample. We have N
(wr)
1 < 2n/2 if and

only if |ε| < s1γ/
√

1 + (2s1)−1. This means that if |ε| < (s1γ)/
√

2, P
(nz,wr,wadj)
S is a decreasing function

of N for N
(wr)
1 ≤ N ≤ 2n. So, for |ε| < s1γ/

√
1 + (2s1)−1, P

(nz,wr,wadj)
S is a decreasing function of N for

N
(wr)
0 ≤ N ≤ 2n/2.

2. Suppose s1γ < |ε| so that s4
1γ

2 − ε2s2
1 < 0.

(a) By Point 2 of Theorem 3, for N ≤ −ε2/(4(ε2s2
1 − s4

1γ
2)), P

(nz,wr,wadj)
S is a decreasing function of N .

(b) By Point 3 of Theorem 3, for N > (s2
1 − ε2)/(4ε2s2

1), P
(nz,wr,wadj)
S is an increasing function of N and

for −ε2/(4(ε2s2
1 − s4

1γ
2)) < N < (s2

1 − ε2)/(4ε2s2
1), P

(nz,wr,wadj)
S is a decreasing function of N .

We have the following.

The above is summarised as follows:

Case |ε| < min(s1, (s1γ)/
√

2) < s1γ:

• P
(nz,wr,wadj)
S is a decreasing function of N in the range 0 < N < N

(wr)
0 ;

• P
(nz,wr,wadj)
S is an increasing function of N in the range N

(wr)
0 < N < N

(wr)
1 ; and

• P
(nz,wr,wadj)
S is a decreasing function of N in the range N

(wr)
1 < N < 2n/2.

• P
(nz,wr,wadj)
S attains a minima at N

(wr)
0 and a maximum at N

(wr)
1 .

Case s1 < |ε| < (s1γ)/
√

2 < s1γ:

• P
(nz,wr,wadj)
S is an increasing function of N in the range 0 < N < N1; and

• P
(nz,wr,wadj)
S is a decreasing function of N in the range N

(wr)
1 < N < 2n/2.

• P
(nz,wr,wadj)
S attains a maximum at N

(wr)
1 .

Case s1γ < |ε| < s1:

• P
(nz,wr,wadj)
S is a decreasing function of N for 0 < N < N

(wr)
0 ; and

• P
(nz,wr,wadj)
S is an increasing function of N for N > N

(wr)
0 .

• P
(nz,wr,wadj)
S attains a minima at N

(wr)
0 .

Case max(s1, s1γ) < |ε|: P (nz,wr,wadj)
S is an increasing function of N for N > 0.
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Sampling without replacement: In this case, σ2 = 1/(4N)−1/2−n−2 = 1/(4N)−s2
1 and so σ2+s2

1 = 1/(4N).

Let N
(wor)
0 = (s2

1 − ε2)/(4s4
1) and so N

(wr)
0 > 0 if and only if |ε| < s1.

1. By Point 2 of Theorem 3, for N ≥ ε2/(4s4
1γ

2), P
(nz,wor,wadj)
S is a decreasing function of N .

2. By Point 3 of Theorem 3, for (s2
1 − ε2)/(4s4

1) < N < ε2/(4s4
1γ

2), P
(nz,wor,wadj)
S is an increasing function of

N .

3. By Point 3 of Theorem 3, for N < (s2
1 − ε2)/(4s4

1), P
(nz,wor,wadj)
S is a decreasing function of N .

Let N
(wor)
1 = ε2/(4s4

1γ
2) and so N

(wor)
1 < 2n if and only if |ε| < s1γ. The above is summarised as follows:

Case |ε| < min(s1, s1γ):

• P
(nz,wor,wadj)
S is a decreasing function of N for 0 < N < N

(wor)
0 ;

• P
(nz,wor,wadj)
S is an increasing function of N for N

(wor)
0 < N < N

(wor)
1 ;

• P
(nz,wor,wadj)
S is a decreasing function of N for N

(wor)
1 < N ≤ 2n;

• PS attains a minima at N
(wor)
0 and a maxima at N

(wor)
1 .

Case s1 < |ε| < s1γ:

• P
(nz,wor,wadj)
S is an increasing function of N for 0 < N < N

(wor)
1 ;

• P
(nz,wor,wadj)
S is a decreasing function of N for N

(wor)
1 < N ≤ 2n;

• PS attains a maxima at N
(wor)
1 .

Case max(s1, s1γ) < |ε|: P (nz,wor,wadj)
S is an increasing function of N for 0 < N ≤ 2n.

We have s1 = 2−1−n/2 and γ = Φ−1
(
1− 2m−a−1/(2m − 1)

)
, where 2m/(2m − 1) < a ≤ m. The maximum

value of γ is achieved for a = m and this value is Φ−1
(
(2m+1 − 3)/(2m+1 − 2)

)
which is around 8.21 for m ≤ 64.

So, s1γ is not much greater than s1. It seems reasonable to assume that in practice the value of ε will turn

out to be such that max(s1, s1γ) < |ε|. Under this condition, both P
(nz,wr,wadj)
S and P

(nz,wor,wadj)
S are increasing

functions of N for 0 < N ≤ 2n. In other words, the anomalous non-monotonic behaviour will mostly not occur
in practice. The non-monotonic behaviour is observed only when the value of |ε| is small enough to be less than
either s1 or s1γ.

We further note the following point. The distribution of Wκ for κ 6= κ∗ is approximated as N (0, 2−n−2 +
1/(4N)) for sampling with replacement and is approximated as N (0, 1/(4N)) for sampling without replace-
ment. As explained in Sections 4.1 and 4.2, both of these approximations require making the assumption that
(p− 1/2)2 is negligible for p ∈ [1/2− ϑ1, 1/2 + ϑ1]. From (12), the assumption is meaningful only if we consider
s2

12−n/2 = 2−2−n/2 to be negligible. So, the derivation of the distribution of Wκ for κ 6= κ∗ is meaningful only
if 2−2−n/2 is considered to be negligible. Consequently, it is perhaps not meaningful to apply the analysis for
values of |ε| lower than 2−2−n/2. This is a further argument that the analysis actually shows PS is a monotonic
increasing function of N in the range where the analysis is actually meaningful.

Remarks: The following comments are based on the assumption that γ ≈ Φ−1(1− 2−a−1), i.e., 2m ≈ 2m − 1.

1. In [13] it was stated without proof that the first term of P
(nz,wr,wadj)
S given by (44) attains a maximum for

N = N
(wr)
1 .
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2. It was shown in [1] that the derivative of the first term of P
(nz,wor,wadj)
S given by (45) is zero for N = N

(wor)
1

from which it was concluded without any further argument that P
(nz,wor,wadj)
S achieves a maxima at N =

N
(wor)
1 .

We note that the complete picture of the dependence of the success probability on N was not provided in
either [13] or [1].

6.3 Monotonicity of Success Probability Under Adjusted Right Key Randomisation Hy-
pothesis

In this case s2
0 = ELP−4ε2

4 . Also, assuming the standard wrong key randomisation hypothesis, s1 ↓ 0. So,
by Point 1 of Theorem 3, the success probability expressions given by (46) and (47) are both monotonically
increasing for both sampling with and without replacement for all N > 0.

6.4 Monotonicity of Success Probability Under Adjusted Key Randomisation Hypothesis

In this case s2
0 = ELP−4ε2

4 and s2
1 = 2−n−2. Depending on the relative values of ELP − 4ε2 and 2−n, we can have

the following two cases.

Case ELP − 4ε2 > 2−n: In this case, we have s2
0 > s2

1. So, by Point 1 of Theorem 3, the success probabil-
ity expressions given by (48) and (49) are both monotonically increasing for both sampling with and without
replacement for all N > 0.

Case ELP − 4ε2 < 2−n: In this case, we have s2
0 < s2

1. So, Points 2 and 3 of Theorem 3 apply. This case is
divided into two subcases.

Sampling with replacement: In this case, σ2 = 1/(4N). Let N
(wr)
0 = ((s2

1− s2
0)− ε2)/(4(ε2s2

1− (s2
1− s2

0)s2
0))

and note that N
(wr)
0 > 0 if and only if s0

√
s2

1 − s2
0/s1 < |ε| <

√
s2

1 − s2
0. Also assume that γ/(

√
2s1) > 1.

1. Suppose (s2
1 − s2

0)γ > s1|ε| so that (s2
1 − s2

0)2γ2 − s2
1ε

2 > 0.

(a) By Point 2 of Theorem 3, for N ≥ ε2/(4((s2
1 − s2

0)2γ2 − s2
1ε

2)), P
(wr,adj)
S is a decreasing function of N .

(b) By Point 3 of Theorem 3, for ((s2
1−s2

0)− ε2)/(4(ε2s2
1− (s2

1−s2
0)s2

0)) < N < ε2/(4((s2
1−s2

0)2γ2−s2
1ε

2)),

P
(wr,adj)
S is an increasing function of N and for N < ((s2

1 − s2
0)− ε2)/(4(ε2s2

1 − (s2
1 − s2

0)s2
0)), P

(wr,adj)
S

is a decreasing function of N .

Recall that N is the number of plaintext-ciphertext pairs and hence is positive and at most 2n. Let

N
(wr)
1 = ε2/(4((s2

1 − s2
0)2γ2 − s2

1ε
2)). Now

N
(wr)
1 < 2n

⇒ 2ε2 < 2n+2(s2
1 − s2

0)2γ2; [Since, s2
1 = 2−n−2]

⇒ |ε| < 2n/2+1/2(s2
1 − s2

0)γ = (s2
1 − s2

0)γ/(
√

2s1).

Therefore, N
(wr)
1 < 2n if and only if |ε| < (s2

1 − s2
0)γ/(

√
2s1). For sampling with replacement, it is more

meaningful to consider 2n/2 to be the upper bound for N , since beyond a sample size of 2n/2 there will be
too many repetitions in the sample. Thus,

N
(wr)
1 < 2n/2

⇒ ε2(1 + 2−n/2) < 2n/2+2(s2
1 − s2

0)2γ2; [Since, s2
1 = 2−n−2]

⇒ |ε| < 2n/4+1/2(s2
1 − s2

0)γ/
√

1 + 2s1.
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Therefore N
(wr)
1 < 2n/2 if and only if |ε| < 2n/4+1/2(s2

1 − s2
0)γ/
√

1 + 2s1. This means that if |ε| < (s2
1 −

s2
0)γ/(

√
2s1), P

(wr,adj)
S is a decreasing function of N for N

(wr)
1 ≤ N ≤ 2n. So, for |ε| < 2n/4+1/2(s2

1 −
s2

0)γ/
√

1 + 2s1, P
(wr,adj)
S is a decreasing function of N for N

(wr)
1 ≤ N ≤ 2n/2.

2. Suppose (s2
1 − s2

0)γ < s1|ε| so that (s2
1 − s2

0)2γ2 − s2
1ε

2 < 0.

(a) By Point 2 of Theorem 3, for N ≤ −ε2/(4(s2
1ε

2 − (s2
1 − s2

0)2γ2)) < 0, P
(wr,adj)
S is a decreasing function

of N . But N > 0. Therefore, this condition does not arise.

(b) Now, the condition σ2((s2
1 − s2

0)− ε2) < ε2s2
1 − (s2

1 − s2
0)s2

0 implies

N >
((s2

1 − s2
0)− ε2)

4(ε2s2
1 − (s2

1 − s2
0)s2

0)
.

Then by Point 3 of Theorem 3, for N > max(0, ((s2
1 − s2

0) − ε2)/(4(ε2s2
1 − (s2

1 − s2
0)s2

0))) = ((s2
1 −

s2
0)− ε2)/(4(ε2s2

1 − (s2
1 − s2

0)s2
0)), P

(wr,adj)
S is an increasing function of N and for 0 < N < ((s2

1 − s2
0)−

ε2)/(4(ε2s2
1 − (s2

1 − s2
0)s2

0)), P
(wr,adj)
S is a decreasing function of N , provided ((s2

1 − s2
0)− ε2)/(4(ε2s2

1 −
(s2

1 − s2
0)s2

0)) > 0.

The above is summarised as follows:

Case |ε| < min(s0

√
s2

1 − s2
0/s1, (s

2
1 − s2

0)γ/(
√

2s1)):

• P
(wr,adj)
S is an increasing function of N in the range 0 < N < N

(wr)
1 ; and

• P
(wr,adj)
S is a decreasing function of N in the range N

(wr)
1 < N < 2n/2.

• P
(wr,adj)
S attains a maximum at N

(wr)
1 .

Case s0

√
s2

1 − s2
0/s1 < |ε| < min(

√
s2

1 − s2
0, (s

2
1 − s2

0)γ/(
√

2s1)) < (s2
1 − s2

0)γ/s1:

• P
(wr,adj)
S is a decreasing function of N in the range 0 < N < N

(wr)
0 ;

• P
(wr,adj)
S is an increasing function of N in the range N

(wr)
0 < N < N

(wr)
1 ; and

• P
(wr,adj)
S is a decreasing function of N in the range N

(wr)
1 < N < 2n/2.

• P
(wr,adj)
S attains a minima at N

(wr)
0 and a maximum at N

(wr)
1 .

Case s0

√
s2

1 − s2
0/s1 <

√
s2

1 − s2
0 < |ε| < (s2

1 − s2
0)γ/(

√
2s1)) < (s2

1 − s2
0)γ/s1:

• P
(wr,adj)
S is an increasing function of N in the range 0 < N < N1; and

• P
(wr,adj)
S is a decreasing function of N in the range N

(wr)
1 < N < 2n/2.

• P
(wr,adj)
S attains a maximum at N

(wr)
1 .

Case max(s0

√
s2

1 − s2
0/s1, (s

2
1 − s2

0)γ/s1) < |ε| <
√
s2

1 − s2
0:

• P
(wr,adj)
S is an decreasing function in the range 0 < N < N

(wr)
0

• P
(wr,adj)
S is an increasing function in the range N > N

(wr)
0 .

• P
(wr,adj)
S attains a minimum at N

(wr)
0 .

Case max(
√
s2

1 − s2
0, (s

2
1 − s2

0)γ/s1) < |ε|: P (wr,adj)
S is an increasing function of N for N > 0.
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Sampling without replacement: In this case, σ2 = 1/(4N)−1/2n+2 = 1/(4N)−s2
1 and so σ2 +s2

1 = 1/(4N).

Let N
(wor)
0 = (s2

1 − s2
0 − ε2)/(4(s2

1 − s2
0)2) and so N

(wr)
0 > 0 if and only if |ε| <

√
s2

1 − s2
0.

1. By Point 2 of Theorem 3, for N ≥ ε2/(4(s2
1 − s2

0)2γ2), P
(wor,adj)
S is a decreasing function of N .

2. By Point 3 of Theorem 3, for (s2
1−s2

0−ε2)/(4(s2
1−s2

0)2) < N < ε2/(4(s2
1−s2

0)2γ2), P
(wor,adj)
S is an increasing

function of N .

3. By Point 3 of Theorem 3, for N < (s2
1 − s2

0 − ε2)/(4(s2
1 − s2

0)2), P
(wor,adj)
S is a decreasing function of N .

Let N
(wor)
1 = ε2/(4(s2

1 − s2
0)2γ2) and so N

(wor)
1 < 2n if and only if |ε| < γ(s2

1 − s2
0)/s1. The above is summarised

as follows:

Case |ε| < min(
√
s2

1 − s2
0, γ(s2

1 − s2
0)/s1):

• P
(wor,adj)
S is a decreasing function of N for 0 < N < N

(wor)
0 ;

• P
(wor,adj)
S is an increasing function of N for N

(wor)
0 < N < N

(wor)
1 ;

• P
(wor,adj)
S is a decreasing function of N for N

(wor)
1 < N ≤ 2n;

• PS attains a minima at N
(wor)
0 and a maxima at N

(wor)
1 .

Case
√
s2

1 − s2
0 < |ε| < γ(s2

1 − s2
0)/s1:

• P
(wor,adj)
S is an increasing function of N for 0 < N < N

(wor)
1 ;

• P
(wor,adj)
S is a decreasing function of N for N

(wor)
1 < N ≤ 2n;

• PS attains a maxima at N
(wor)
1 .

Case γ(s2
1 − s2

0)/s1 < |ε| <
√
s2

1 − s2
0:

• P
(wor,adj)
S is an decreasing function of N for 0 < N < N

(wor)
0 ;

• P
(wor,adj)
S is a increasing function of N for N

(wor)
0 < N ≤ 2n;

• PS attains a minima at N
(wor)
1 .

Case max(
√
s2

1 − s2
0, γ(s2

1 − s2
0)/s1) < |ε|: P (wor,adj)

S is an increasing function of N for 0 < N ≤ 2n.

Table 2 summarises the results on the detailed analysis of the dependence of the success probability on the
number of plaintexts. Based on this table, we have the following result.

Theorem 4. For p 6= 1/2, a necessary condition for the success probability PS to decrease with increase in N
for some range of N is the following:

either |ε| < 2−n/2−1 ·max(1, γ) or 4ε2 ≤ ELP < 2−n + 4ε2 where γ = Φ−1(1− 2m−a−1/(2m − 1)).

Proof. For both sampling with and without replacement, the monotone decreasing feature occurs either for the
case of standard right key randomisation hypothesis and adjusted wrong key randomisation hypothesis or for the
case of adjusted right key randomisation hypothesis and adjusted wrong key randomisation hypothesis.

First consider the case of standard right key randomisation hypothesis and adjusted wrong key randomisation
hypothesis. In this case s2

1 = 2−n−2 = s2
1. From Table 2, we observe that if max(s1, s1γ) < |ε| then PS increases

monotonically with N . So a necessary condition for PS to decrease with increase in N for some range of N is
ε ≤ max(s1, s1γ).
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In the case of adjusted right key randomisation hypothesis and adjusted wrong key randomisation hypothesis,
we observe from Table 2 that for PS to decrease monotonically with increase in N for some range of N , it must
necessarily hold that 4ε2 ≤ ELP < 4ε2 + 2−n.

Combining the two cases gives the desired result.

Theorem 4 states that for any range of N for PS to decrease with increase in N , either |ε| must be very small
or ELP− 4ε2 must be very small. Both of these conditions are unlikely to occur in practice.

7 Success Probability for Attacks with p = 1/2

The general key randomisation hypothesis postulates pκ∗ ∼ N (p, s2
0). In this section, we consider the case

p = 1/2. We first derive the success probability under general key randomisation hypotheses and then plug in
appropriate values of s0 and s1 to obtain the success probabilities under particular key randomisation hypotheses.
Under the general key randomisation hypotheses, pκ∗ ∼ N (p, s2

0) while pκ,κ∗ ∼ N (1/2, s2
1). In the case of zero

correlation attack, ε = 0 which is equivalent to p = 1/2. So, in this case, pκ∗ ∼ N (1/2, s2
0). As a result, for

zero correlation attacks, there is no difference in the means of pκ∗ and pκ,κ∗ . The statistical methodology then
becomes a test for the variance. So, we assume s2

0 6= s2
1, as otherwise both the distributions are same and it is

not possible to distinguish between them. A consequence of s2
0 6= s2

1 is that the situation of standard right and
standard wrong key randomisation hypotheses does not arise.

The first task in the statistical analysis is to determine the distributions of the test statistics. This is deter-
mined by the distributions of Wκ∗ and Wκ for κ 6= κ∗. The analysis in Section 4 determines these distributions in
the general case. The distribution of Wκ remains unchanged for both sampling with and without replacements
and are respectively given by (20) and (23). The distributions of Wκ∗ for the cases of sampling with and without
replacements are obtained by putting ε = 0 in (19) and (22).

Using σ defined in (37) and setting σ2
0 = s2

0 + σ2, σ2
1 = s2

1 + σ2 as before, we have

Wκ∗ ∼ N (0, σ2
0) Wκ ∼ N (0, σ2

1), for κ 6= κ∗. (52)

Since in this case, the means of Wκ∗ and Wκ are equal, a test of hypothesis for the variance is used. The test
statistics used is 4T 2

κ where Tκ = |Wκ| as defined in (8) and the following hypothesis test is considered.

H0 : κ is correct; versus H1 : κ is incorrect.
Decision rule (s0 > s1): Reject H0 if 4T 2

κ ≤ t for some t ∈ (σ1, σ0).
Decision rule (s0 < s1): Reject H0 if 4T 2

κ ≥ t2 for some t ∈ (σ0, σ1).

 (53)

Theorem 5. Let κ∗ ∈ {0, 1}m. For κ ∈ {0, 1}m, let Tκ = |Wκ| be 2m random variables, where Wκ∗ ∼ N (0, σ2
0)

and Wκ ∼ N (0, σ2
1) for κ 6= κ∗ with s0 6= s1 and σ2

0 = s2
0 + σ2, σ2

1 = s2
1 + σ2 and σ is given by (37). Suppose the

hypothesis test given in (53) is applied to Tκ for all κ ∈ {0, 1}m. Let PS = 1− Pr[Type-1 error]. Then

PS =


2− 2Φ

(√
s21+σ2

s20+σ2 Φ−1
(
1− 2−a−1

))
if s0 > s1;

2Φ

(√
s21+σ2

s20+σ2 Φ−1
(
1− 2−a−1

))
− 1 if s0 < s1;

(54)

where the expected number of times that Type-2 errors occurs is 2m−a.

Proof. We provide the proof for the case σ0 < σ1, the other case being similar. The Type-1 error probability is
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samp. RKRH WKRH cond sub-cond type

wr

std std – – inc

std adj

|ε| < min
(
s1,

(s1γ)√
2

) 0 < N <
s21−ε

2

4ε2s21

dec

s21−ε
2

4ε2s21

< N < ε2

4(s41−ε
2s21)

inc

ε2

4(s41−ε
2s21)

< N < 2n/2 dec

s1 < |ε| <
s1γ√

2

0 < N < ε2

4(s41−ε
2s21

inc

ε2

4(s41−ε
2s21)

< N < 2n/2 dec

s1γ < |ε| < s1
0 < N <

s21−ε
2

4ε2s21

dec

N >
s21−ε

2

4ε2s21

inc

max(s1, s1γ) < |ε| 0 < N ≤ 2n inc

adj std – – inc

adj adj

ELP > 2−n + 4ε2 – inc

4ε2 ≤ ELP < 2−n + 4ε2, 0 < N < ε2

4((s21−s20)2γ2−s21ε
2)

inc

|ε| < min

(
s0

√
s21−s20
s1

,
(s21−s20)γ
√

2s1

)
ε2

4((s21−s20)2γ2−s21ε
2)

< N < 2n/2 dec

4ε2 ≤ ELP < 2−n + 4ε2,
s0

√
s21−s20
s1

< |ε|, 0 < N <
(s21−s20)−ε2

4(ε2s21−(s21−s20)s20)
dec

|ε| < min

(√
s21 − s20,

(s21−s20)γ

(
√

2s1)

)
and

(s21−s20)−ε2

4(ε2s21−(s21−s20)s20)
< N

and N < ε2

4((s21−s20)2γ2−s21ε
2)

inc

min

(√
s21 − s20,

(s21−s20)γ

(
√

2s1)

)
< (s21 − s20)γ/s1

ε2

4((s21−s20)2γ2−s21ε
2)

< N < 2n/2 dec

4ε2 ≤ ELP < 2−n + 4ε2,
√

s21 − s20 < |ε| 0 < N < ε2

4((s21−s20)2γ2−s21ε
2)

inc

and |ε| <
(s21−s20)γ

(
√

2s1)
ε2

4((s21−s20)2γ2−s21ε
2)

< N < 2n/2 dec

4ε2 ≤ ELP < 2−n + 4ε2,

max

(
s0

√
s21−s20
s1

,
(s21−s20)γ

s1

)
< |ε| <

√
s21 − s20

0 < N <
(s21−s20)−ε2

4(ε2s21−(s21−s20)s20)
dec

N >
(s21−s20)−ε2

4(ε2s21−(s21−s20)s20)
inc

4ε2 ≤ ELP < 2−n + 4ε2,

max

(√
s21 − s20,

(s21−s20)γ

s1

)
< |ε|

0 < N ≤ 2n inc

wor

std std – – inc

std adj

|ε| < min(s1, s1γ)

0 < N <
s21−ε

2

4ε2s21

dec

s21−ε
2

4ε2s21

< N < ε2

4(s41−ε
2s21)

inc

ε2

4(s41−ε
2s21)

< N ≤ 2n dec

s1 < |ε| < s1γ
0 < N < ε2

4(s41−ε
2s21)

inc

ε2

4(s41−ε
2s21)

< N ≤ 2n dec

max(s1, s1γ) < |ε| 0 < N ≤ 2n inc

adj std – – inc

adj adj

ELP > 2−n + 4ε2 – inc

4ε2 ≤ ELP < 2−n + 4ε2,

|ε| < min

(√
s21 − s20,

γ(s21−s20)

s1

) 0 < N <
(s21−s20−ε

2)

4(s21−s20)2
dec

(s21−s20−ε
2)

4(s21−s20)2
< N < ε2

4(s21−s20)2γ2
inc

ε2

4(s21−s20)2γ2
< N ≤ 2n dec

4ε2 ≤ ELP < 2−n + 4ε2,√
s21 − s20 < |ε| <

γ(s21−s20)

s1

0 < N < ε2

4(s21−s20)2γ2
inc

ε2

4(s21−s20)2γ2
< N ≤ 2n dec

4ε2 ≤ ELP < 2−n + 4ε2,

γ(s21−s20)

s1
< |ε| <

√
s21 − s20

0 < N <
(s21−s20−ε

2)

4(s21−s20)2
dec

(s21−s20−ε
2)

4(s21−s20)2
< N ≤ 2n inc

4ε2 ≤ ELP < 2−n + 4ε2,
0 < N ≤ 2n inc

max

(√
s21 − s20,

γ(s21−s20)

s1

)
< |ε|

Table 2: Summary of the different cases and sub-cases showing the dependence of the success probability on
the data complexity for p 6= 1/2. Here n is the block size, ε = p − 1/2, s2

0 = (ELP − 4ε2)/4, s2
1 = 2−n−2 and

γ = Φ−1
(

1− 2m−a−1

2m−1

)
.
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given by

1− PS = Pr[Type-1 error] = Pr[4T 2
κ∗ ≥ t2] = Pr[(Wκ∗ − 1/2)2 ≥ t2/4]

= Pr

[
Wκ∗ − 1/2

σ0
≤ − t

2σ0

]
+ Pr

[
Wκ∗ − 1/2

σ0
≥ t

2σ0

]
= Φ

(
− t

2σ0

)
+

(
1− Φ

(
t

2σ0

))
= 2

(
1− Φ

(
t

2σ0

))
⇒ t = 2σ0Φ−1

(
1 + PS

2

)
. (55)

The Type-2 error probability is given by

β = Pr[Type-2 error] = Pr[4T 2
κ < t2|H1 holds] = Pr[(Wκ − 1/2)2 < t2/4|H1 holds]

= Pr

[
− t

2σ1
<
Wκ − 1/2

σ1
<

t

2σ1

∣∣∣∣H1 holds

]
= Φ

(
t

2σ1

)
− Φ

(
− t

2σ1

)
= 2Φ

(
t

2σ1

)
− 1

⇒ t = 2σ1Φ−1

(
1 + β

2

)
. (56)

Putting β = 2−a and equating the expressions for t given in (55) and (56), we obtain the desired expression for
PS .

The general expression for the success probability given by Theorem 5 is instantiated to specific cases to
obtain expressions for the success probability under standard/adjusted, right and wrong key randomisation
hypotheses and also under sampling with and without replacement. The specific cases of the key randomisation
hypotheses are obtained by substituting appropriate values of s0 and s1 while the cases of sampling with and
without replacement are obtained by substituting appropriate values of σ as given by (37). In all cases, we will
work under the assumption that N ≤ 2n.

Notation: As in the case of attacks with non-zero correlation, in this case also to differentiate between these
cases, we will use superscripts to PS denoting the different possible cases. The superscripts will have the same
meaning as in the previous case. The only new superscript that we will use is z which will denote that the
corresponding success probability is for p = 1/2.

7.1 Success Probability Under Adjusted Wrong Key Randomisation Hypothesis

We set s2
1 = 2−n−2, so that the general wrong key randomisation hypothesis simplifies to the adjusted wrong key

randomisation hypothesis. Also, we set s2
0 ↓ 0 so that the general right key randomisation hypothesis simplifies

to the standard right key randomisation hypothesis. In this case, we have s1 > s0 and from Theorem 5 and (37)
we obtain the following.

P
(z,wr,wadj)
S = 2Φ

(√
1 +N2−n · Φ−1

(
1 + 2−a

2

))
− 1; (57)

P
(z,wor,wadj)
S = 2Φ

(√
2n

2n −N
· Φ−1

(
1 + 2−a−1

2

))
− 1. (58)

Remarks:
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1. For the case of sampling with replacement, it is not meaningful to take N to be greater than 2n/2 as then
repetitions will begin to occur. In Section 8, we show that PS increases monotonically with N . So the

maximum value of P
(z,wr,wadj)
S is achieved for N = 2n/2. With this value of N and assuming 2−n/2 � 1,

we have the maximum value that P
(z,wr,wadj)
S can achieve is 2−a. In other words, P

(z,wr,wadj)
S degrades

exponentially with the advantage a.

2. For the case of sampling without replacement as N becomes close to 2n, P
(z,wor,wadj)
S gets close to 1. In

Section 8, we show that PS increases monotonically with N . So, the minimum value of P
(z,wor,wadj)
S is

achieved by setting N = 1. With this value of N and assuming 2n/(2n − 1) ≈ 1, we have that the

minimum value of P
(z,wor,wadj)
S is 2−a−1. More generally, the data complexity N can be expressed in terms

of P
(z,wor,wadj)
S as follows.

N = 2n


(

Φ−1

(
P

(z,wor,wadj)
S +1

2

))2

−
(

Φ−1
(

1+2−a−1

2

))2

(
Φ−1

(
P

(z,wor,wadj)
S +1

2

))2

 . (59)

The setting of p = 1/2 and s2
0 ↓ 0 results in pκ∗ being a constant taking the value 1/2. This is the setting of

zero correlation attacks which has been introduced in [11]. The work [11] provided a distinguisher which requires
2n−1 chosen plaintexts. It is implicit in the analysis that these plaintexts are distinct. While key recovery
attacks on particular ciphers were outlined in [11], a general analysis of zero correlation key recovery attacks
does not appear there. A follow-up work [14] showed how to reduce the data complexity of a distinguishing attack
using multiple zero correlation linear approximations. To the best of our knowledge, no prior work has analysed

the success probability of a single zero correlation key recovery attack. So, the expressions for P
(z,wr,wadj)
S and

P
(z,wor,wadj)
S given by (57) and (58) do not appear in the literature. Further, the expression for data complexity

given by (59) also do not appear in the literature.

7.2 Success Probability Under Adjusted Right Key Randomisation Hypothesis

Setting s2
0 = ELP

4 converts the general right key randomisation hypothesis to the adjusted right key randomisation
hypothesis. Also, we let s2

1 ↓ 0, so that the general wrong key randomisation hypothesis simplifies to the standard
wrong key randomisation hypothesis. In this case, we have s1 > s0 and from Theorem 5 and (37) we obtain the
following.

P
(z,wr,radj)
S = 2− 2Φ

(√
1

1 +N · ELP
· Φ−1(1− 2−a−1)

)
; (60)

P
(z,wor,radj)
S = 2− 2Φ

(√
2n −N

2n +N(2n · ELP− 1)
· Φ−1(1− 2−a−1)

)
. (61)

To the best of our knowledge, no prior work has analysed the success probability for the adjusted right key
randomisation hypothesis and standard wrong key randomisation hypothesis corresponding to sampling with or

without replacement. So, the expressions for P
(z,wr,radj)
S and P

(z,wor,radj)
S given by (60) and (61) are the first such

results.

7.3 Success Probability Under Adjusted Key Randomisation Hypothesis

Setting s2
1 = 2−n−2 converts the general wrong key randomisation hypothesis to the adjusted wrong key randomi-

sation hypothesis. Also, we let s2
0 = ELP/4, so that the general right key randomisation hypothesis simplifies
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to the adjusted right key randomisation hypothesis. There are now two cases, namely, s0 > s1 (equivalently,
ELP > 2−n) and s0 < s1 (equivalently, ELP < 2−n) corresponding to the two cases of Theorem 5.

P
(z,wr,adj)
S = 2− 2Φ

(√
1 +N · 2−n
1 +N · ELP

· Φ−1(1− 2−a−1)

)
if ELP > 2−n; (62)

P
(z,wr,adj)
S = 2Φ

(√
1 +N · 2−n
1 +N · ELP

· Φ−1(1− 2−a−1)

)
− 1 if ELP < 2−n; (63)

P
(z,wor,adj)
S = 2− 2Φ

(√
2n

2n +N(2n · ELP− 1)
· Φ−1(1− 2−a−1)

)
if ELP > 2−n; (64)

P
(z,wor,adj)
S = 2Φ

(√
2n

2n +N(2n · ELP− 1)
· Φ−1(1− 2−a−1)

)
− 1 if ELP < 2−n. (65)

Expressions for the success probability with the adjusted key randomisation hypothesis under both sampling
with and without repetitions were obtained in [7] for the case ELP > 2−n. The expression for success probability
for sampling with replacement obtained in [7] is the same as above. On the other hand, for sampling without
replacement the expression for success probability obtained in [7] is different from the one obtained above.
The reason for the difference arises from the fact that [7] uses (without justification) a non-standard normal
approximation of the hypergeometric distribution which is different from the one available in the literature. (See
Appendix A.3 for a brief summary of the literature on normal approximation of hypergeometric distribution).

8 Dependence of PS on N for Attacks with p = 1/2

Recall that the general key randomisation hypothesis postulates pκ∗ ∼ N (p, s2
0). In this section, we study the

dependence of the success probability PS on N for the case p = 1/2. This is determined in the following result.

Theorem 6. Consider PS to be given by (54) where s0 and s1 are positive and independent of N while σ > 0 is
a monotone decreasing function of N . Then PS is an increasing function of N for all N > 0.

Proof. First consider the case s0 > s1. In this case, (54) can be written as follows.

PS = 2− 2Φ

(
σ1

σ0
Φ−1

(
1− 2−a

))
.

Differentiating both sides with respect to N , we get

dPS
dN

= −2φ

(
σ1

σ0
· Φ−1(1− 2−a−1)

)
Φ−1(1− 2−a−1) · d(σ1/σ0)

dN
.

Since 2φ
(
σ1
σ0
· Φ−1(1− 2−a−1)

)
Φ−1(1 − 2−a−1) > 0, we have dPS

dN > 0 if and only if d(σ1/σ0)
dN < 0. Define b such

that

b =

{
1 for sampling with replacement;
1−N/2n for sampling without replacement.
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Then, we can write σ2 = b/(4N). Now,

d(σ1/σ0)

dN
=

d

dN

(√
b
N + s2

1
b
N + s2

0

)

=
1

b
N + s2

0


√

b

N
+ s2

0 ·
d(b/N)
dN

2
√

b
N + s2

1

−
√

b

N
+ s2

1 ·
d(b/N)
dN

2
√

b
N + s2

0


=

s2
0 − s2

1

2
(
b
N + s2

0

)3/2√ b
N + s2

1

· d(b/N)

dN
.

Since in this case s0 > s1, d(σ1/σ0)
dN < 0 if and only if d(b/N)

dN < 0. Now for sampling with replacement b = 1,
therefore

d(b/N)

dN
= −1/N2 < 0.

For sampling without replacement, we have

d(b/N)

dN
=

d

dN

(
2n

N(2n − 1)
− 1

2n − 1

)
= − 2n

(2n − 1)N2
< 0.

This shows that for s0 > s1, PS is an increasing function of N for all N > 0.
Now consider the case s0 < s1. In this case, (54) can be written as follows.

PS = 2Φ

(
σ1

σ0
Φ−1

(
1− 2−a

))
− 1.

Differentiating both sides with respect to N , we get

dPS
dN

= 2φ

(
σ1

σ0
· Φ−1

(
1 + 2−a−1

2

))
Φ−1

(
1 + 2−a−1

2

)
· d(σ1/σ0)

dN
.

Since 2φ
(
σ1
σ0
· Φ−1

(
1+2−a−1

2

))
Φ−1

(
1+2−a−1

2

)
> 0, we have dPS

dN > 0 if and only if d(σ1/σ0)
dN > 0. Now,

d(σ1/σ0)

dN
= − s2

1 − s2
0

2
(
b
N + s2

0

)3/2√ b
N + s2

1

· d(b/N)

dN
.

Since in this case s0 < s1, d(σ1/σ0)
dN > 0 if and only if d(b/N)

dN < 0. We have seen above that d(b/N)
dN < 0. This shows

that for s0 < s1, PS is an increasing function of N for all N > 0.
So, in all cases, PS is an increasing function of N for all N > 0.

9 Conclusion

In this paper, we have carried out a detailed and complete analysis of success probability of linear cryptanalysis.
This has been done under a single unifying framework which provides a deeper insight and a better understanding
of how the success probability behaves with respect to the data complexity.
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[8] Céline Blondeau and Kaisa Nyberg. Joint data and key distribution of simple, multiple, and multidimensional
linear cryptanalysis test statistic and its impact to data complexity. Des. Codes Cryptography, 82(1-2):319–
349, 2017.

[9] Andrey Bogdanov, Huizheng Geng, Meiqin Wang, Long Wen, and Baudoin Collard. Zero-correlation linear
cryptanalysis with FFT and improved attacks on ISO standards camellia and CLEFIA. In Tanja Lange,
Kristin E. Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th International
Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume 8282 of Lecture
Notes in Computer Science, pages 306–323. Springer, 2013.

[10] Andrey Bogdanov, Gregor Leander, Kaisa Nyberg, and Meiqin Wang. Integral and multidimensional linear
distinguishers with correlation zero. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology
- ASIACRYPT 2012 - 18th International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in
Computer Science, pages 244–261. Springer, 2012.

[11] Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and linear cryptanalysis of block
ciphers. Des. Codes Cryptography, 70(3):369–383, 2014.

[12] Andrey Bogdanov and Elmar Tischhauser. On the wrong key randomisation and key equivalence hypothe-
ses in matsui’s algorithm 2. In Fast Software Encryption - 20th International Workshop, FSE 2013, Sin-
gapore, March 11-13, 2013. Revised Selected Papers, pages 19–38, 2013. http://dx.doi.org/10.1007/

978-3-662-43933-3_2.

[13] Andrey Bogdanov and Elmar Tischhauser. On the Wrong Key Randomisation and Key Equivalence Hy-
potheses in Matsui’s Algorithm 2. In Fast Software Encryption, pages 19–38. Springer, 2014.



REFERENCES 39

[14] Andrey Bogdanov and Meiqin Wang. Zero correlation linear cryptanalysis with reduced data complexity. In
Anne Canteaut, editor, Fast Software Encryption - 19th International Workshop, FSE 2012, Washington,
DC, USA, March 19-21, 2012. Revised Selected Papers, volume 7549 of Lecture Notes in Computer Science,
pages 29–48. Springer, 2012.

[15] Joan Daemen and Vincent Rijmen. Probability distributions of correlation and differentials in block ciphers.
IACR Cryptology ePrint Archive, 2005:212, 2005.

[16] Joan Daemen and Vincent Rijmen. Probability Distributions of Correlation and Differentials in Block
Ciphers. Journal of Mathematical Cryptology JMC, 1(3):221–242, 2007.

[17] Willliam Feller. An Introduction to Probability Theory and Its Applications, Volume 1. John Wiley & Sons,
2008.
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A Some Results on Statistics

A.1 Order Statistics

Selçuk [34] used a result on order statistics to derive an expression for the success probability. We briefly
summarise this result.

Let T1, T2, . . . , T2m−1 be independent and identically distribution random variables with common density
function f(x) and common distribution function F (x). Let T(1), T(2), . . . , T(2m−1) be the random variables
T1, T2, . . . , T2m−1 sorted in ascending order. For 1 ≤ a ≤ 2m − 1, let q = 1 − 2−a. Then the distribution of
T(2mq) approximately follows N (µq, σ

2
q ) where µq = F−1(q) and σq = 2−(m+a)/2/f(µq). This follows from a

standard result in mathematical statistics. (See [38] for a proof of the asymptotic version of the result and [30]
for a proof of the concrete version of the result.)

Further suppose Ti = |Wi| where Wi follows N (0, σ1). Then Ti follows a half-normal distribution whose den-
sity function is f(y) = 2/(σ1

√
2π) exp(−y2/(2σ2

1)) and the distribution function F (y) is obtained by integrating
the density function f(y). In this case, T(2mq) approximately follows N (µq, σ

2
q ) where

µq = F−1(q) = σ1Φ−1(q) = σ1Φ−1(1− 2−a−1);

σq =
1

f(µq)
2−(m+a)/2 =

σ1

2φ (Φ−1 (1− 2−a−1))
2−(m+a)/2.
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A.2 Compound Normal

Recall that the density function of N (µ, σ2) is denoted as f(x;µ, σ2).

Proposition 1. ∫ ∞
−∞

f(x; ay, σ2
1) · f(y;µ, σ2

2) dy = f(x; aµ, σ2
1 + a2σ2

2).

Proof.

f(x; ay, σ2
1) · f(y;µ, σ2

2)

=

[
1√

2πσ1

exp

{
−(x− ay)2

2σ2
1

}]
·
[

1√
2πσ2

exp

{
−(y − µ)2

2σ2
2

}]
=

(
1√
2π

)2 1

σ1σ2
exp

{
−
(

(x− ay)2

2σ2
1

+
(y − µ)2

2σ2
2

)}
=

(
1√
2π

)2 1

σ1σ2
exp

{
− 1

2σ2
1σ

2
2

(
σ2

2x
2 + (σ2

1 + a2σ2
2)y2 − 2y(σ2

2ax+ σ2
1µ) + σ2

1µ
2
)}

=

(
1√
2π

)2 1

σ1σ2
exp

{
−σ

2
1 + a2σ2

2

2σ2
1σ

2
2

(
σ2

2x
2

σ2
1 + a2σ2

2

+ y2 − 2y

(
σ2

2ax+ σ2
1µ

σ2
1 + a2σ2

2

)
+

σ2
1µ

2

σ2
1 + a2σ2

2

)}
=

(
1√
2π

)2 1

σ1σ2
exp

{
−σ

2
1 + a2σ2

2

2σ2
1σ

2
2

((
y − σ2

2ax+ σ2
1µ

σ2
1 + a2σ2

2

)2

+
σ2

2x
2 + σ2

1µ
2

σ2
1 + a2σ2

2

−
(
σ2

2ax+ σ2
1µ

σ2
1 + a2σ2

2

)2
)}

=

(
1√
2π

)2 1

σ1σ2
exp

{
−σ

2
1 + a2σ2

2

2σ2
1σ

2
2

(
y − σ2

2ax+ σ2
1µ

σ2
1 + σ2

2

)2

− (x− aµ)2

2(σ2
1 + a2σ2

2)

}
.

Therefore,∫ ∞
−∞

f(x; ay, σ2
1) · f(y;µ, σ2

2) dy

=

∫ ∞
−∞

(
1√
2π

)2 1

σ1σ2
exp

{
−σ

2
1 + a2σ2

2

2σ2
1σ

2
2

(
y − σ2

2ax+ σ2
1µ

σ2
1 + σ2

2

)2

− (x− aµ)2

2(σ2
1 + a2σ2

2)

}
dy

=
1√
2π

exp

{
− (x− aµ)2

2(σ2
1 + a2σ2

2)

}
· 1√

2π

1

σ1σ2

∫ ∞
−∞

exp

{
−σ

2
1 + a2σ2

2

2σ2
1σ

2
2

(
y − σ2

2ax+ σ2
1µ

σ2
1 + σ2

2

)2
}

dy

=
1√

2π(σ2
1 + a2σ2

2)
exp

{
− (x− aµ)2

2(σ2
1 + a2σ2

2)

}
· 1√

2π

∫ ∞
−∞

exp

−1

2

(
y −

√
σ2

1 + a2σ2
2

σ2
1σ

2
2

σ2
2ax+ σ2

1µ

σ2
1 + σ2

2

)2
 dy

=
1√

2π(σ2
1 + a2σ2

2)
exp

{
− (x− aµ)2

2(σ2
1 + a2σ2

2)

}
= f(x; aµ, σ2

1 + a2σ2
2).

Proposition 2. Let X and Y be two random variables such that X ∼ N (aY, σ2
1) and Y ∼ N (µ, σ2

2), where a is
a constant. Then,

X ∼ N (aµ, σ2
1 + a2σ2

2).
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Proof. Let, fX|Y (x, y), fX,Y (x, y) denote the conditional and joint distributions of the random variables X and
Y , respectively. Also, let fY (y) and fX(x) denote the marginal distributions of the random variables Y and X,
respectively. Then,

fX|Y (x, y) =
1√

2πσ1

exp

{
−(x− ay)2

2σ2
1

}
and fY (y) =

1√
2πσ2

exp

{
−(y − µ)2

2σ2
2

}
.

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ ∞
−∞

fX|Y (x, y)fY (y) dy =
1√
2π
· 1√

σ2
1 + a2σ2

2

· exp

{
− (x− aµ)2

2(σ2
1 + a2σ2

2)

}
.

The last equality follows from Proposition 1. So, X ∼ N (aµ, σ2
1 + a2σ2

2).

A.3 Hypergeometric Distribution

Suppose an urn contains N distinguishable balls out of which R are red and the rest are white. A sample of size
n is chosen from the urn without replacement. For k ∈ {0, . . . , n}, the probability that there are exactly k red
balls in the sample is

p(k; n,N,R) =

(
R
k

)(
N−R
n−k
)(

N
n

) . (66)

Here p(k; n,N,R) is the probability mass function of the hypergeometric distribution H(k; n,N,R).
Let p = R/N and q = 1− p. According to Problem 2 in Section 11 of Chapter II of Feller [17],(

n

k

)(
p− k

N

)(
q − n− k

N

)n−k
< p(k; n,N,R) <

(
n

k

)
pkqn−k

(
1− n

N

)−n
. (67)

Consequently, if N � n, then p(k; n,N,R) ≈
(
n
k

)
pkqn−k. In other words, if N � n, then the hypergeometric

distribution is well approximated by the binomial distribution.
Another approximation of the hypergeometric distribution by the normal distribution appears in Problem 10

in Section 7 of Chapter VII of Feller [17]. Suppose t ∈ (0, 1) and p are such that n
N → t, R

N → p as n,N,R→∞.

Let h = 1/
√

Np(1− p)t(1− t) be such that h(k − np) → x. Then p(k; n,N,R) ∼ hΦ(x). Consequently, if
Y is a random variable following the hypergeometric distribution H(k; n,N,R) then Y approximately follows
N (pn,Np(1 − p)t(1 − t)). Conditions for the normal approximation to be meaningful and bounds on the error
in the approximation have been provided in [26]. Using n = Nt, the random variable Y approximately follows
N (pn, np(1− p)(1− t)).


