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Abstract. Zero-confirmation transactions, i.e., transactions that have
been broadcast but are still pending to be included in the blockchain,
have gained attention in order to enable fast payments in Bitcoin, short-
ening the time for performing payments. Fast payments are desirable
in certain scenarios, for instance, when buying in vending machines,
fast food restaurants, or withdrawing from an ATM. Despite being fast
propagated through the network, zero-confirmation transactions are not
protected against double-spending attacks, since the double spending
protection Bitcoin offers relays on the blockchain and, by definition,
such transactions are not yet included in it. In this paper, we propose
a double-spending prevention mechanism for Bitcoin zero-confirmation
transactions. Our proposal is based on exploiting the flexibility of the
Bitcoin scripting language together with a well known vulnerability of
the ECDSA signature scheme to discourage attackers from performing
such an attack.

1 Introduction

Double spending, or spending a currency token more than once, is the main
security problem that digital currencies have to deal with. Unlike physical money,
where the physical token is hard to copy and once it has been spent it passes
effectively to the recipients’ hands, digital currency tokens can be easily copied
and double spent if security mechanisms are not properly applied.

Bitcoin deals with this double spending problem by building an append-only
ledger, the blockchain, that is replicated in every single Bitcoin full node. The
blockchain is made of blocks that are stacked on top of each other. Blocks are
made of entries, which contain some source (inputs) and destination (outputs).
Entries in the aforementioned blockchain are called transactions, and they are
used to transfer bitcoins between different users, typically identified by their
Bitcoin addresses. Bitcoin transfer is performed by using an unspent output of
a previous transaction (UTXO) as the input of a new one. Therefore, Bitcoin
transactions consume previous outputs and generate new ones.

Transactions are broadcast over the Bitcoin P2P network aiming to reach
every single node, each one of whom will check the transaction correctness and



store the valid ones in their local memory pool of transactions (mempool). Even-
tually, every valid transaction will be included into a new block by a miner, never
before checking, among other things, that the transaction does not claim already
spent outputs. Hence, double spending is prevented once a transaction has been
included in a block, since it has been proven that no previous transaction spends
from the same outputs, and future transactions will be prevented to do so.1

However, transactions are not automatically included in blocks. In the mean-
time between transaction broadcasting and its publication in a block, transac-
tions are known as zero-confirmation transactions, and they are just stored in
the mempool of the nodes that have received them. Therefore, during this time
window different transactions spending the same outputs can be spread through
the Bitcoin P2P network. Having received a transaction spending from an output
which has been never used before, the default behavior of a node will be to store
the transaction in his local mempool and drop any other incoming transactions
trying to spend from the same source. However, different nodes could receive
different transaction spending from the same source, and double spending could
be attempted. For instance, suppose two transactions (tx1 and tx2) that spend
the same output from a previous transaction (tx0) are created by an attacker
A. tx1 is used to pay for some goods to B, while tx2 is used to return the funds
to the attacker. In this scenario, if A can make B believe that tx1 is the only
transaction spending from tx0’s output, but tx2 finally becomes included into a
block, the attack is successful. Figure 1 depicts the aforementioned example.
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Fig. 1. Double-spending transactions.

Notice that only one of the double-spending transactions will be included in
a block due to the double spending protection that Bitcoin achieves by design.

1 Although it can be argued that Bitcoin transactions are not final since blockchain
forks may always occur, throughout this paper, to simplify the discussion, we assume
that once a transaction appears in the blockchain it is final.



However, in case tx2 is included in a block, tx1 will be discarded and the double-
spending attack will succeed.

In this paper we propose a solution to the double spending problem for Bit-
coin zero-confirmation transactions. In our proposal, any single observer who
identifies a double spending attempt may take part and punish the attacker.
Moreover, our solution discourages the attacker to even attempt the double-
spending, because doing so makes him risk losing an amount of bitcoins big-
ger than the double-spent amount. Our solution benefits fast-payment scenar-
ios, like in-shop purchases or trading platforms, where the transfer bitcoin-
product/service cannot wait until the transaction is confirmed in the blockchain.
Finally, although this paper is focused in Bitcoin transactions for conciseness,
a similar construction can be developed for other cryptocurrencies with zero-
confirmation transactions and based on ECDSA signatures, for instance Litecoin
or Dogecoin.

The paper is structured as follows. First, Section 2 reviews the state of the
art in double spending protection for fast payment transactions within Bitcoin.
Then, Section 3 introduces the most important concepts about Bitcoin trans-
actions, needed to understand our contribution. Next, Section 4 explains our
proposed mechanism for discouraging double spending attempts. After that,
Section 5 analyses the benefits each party obtains when applying the proposed
protocol. Finally, Section 6 presents the conclusions and provides guidelines for
further research. Additionally, Appendix A provides implementation details and
Bitcoin scripts to deploy the proposed scheme.

2 State of the art

Double spending attacks on zero-confirmation transactions in Bitcoin were first
analyzed by Karame et al. [1, 2]. The authors show that, with some reasonable
assumptions and without the need of special computation nor much network
overhead, an attacker has a great probability of succeeding with a double spend-
ing attack. Moreover, the authors also show how basic countermeasures such as
waiting a few seconds before accepting the payment or adding observers that
report back to the payee are not enough on their own to avoid these type of
attacks. Additionally, they propose another countermeasure, consisting of mod-
ifying the protocol rules so that nodes forward double spending transactions
instead of dropping them. By doing so all nodes may be notified of the double
spending attempts. However, this mechanism facilitates denial of service attacks
and, while nodes will indeed be able to see both transactions, they do not have
means to distinguish which of the two is the original one.

The idea of monitoring observers has been somehow implemented by compa-
nies such as GAP600 [3] in order to provide risk evaluation for accepting zero-
confirmation transactions. Nevertheless, the company does not provide details
about how is the monitoring or the evaluation performed.

Regarding the mitigation of double spending attacks, Decker et al. [4] pro-
posed some other countermeasures that can reduce the merchant’s likelihood of



being deceived by an attacker: requiring the merchant to be connected to a large
random sample of nodes of the network and not accepting incoming connections.
This means that the attacker cannot send transactions directly to the merchant
nor is he able to identify the merchant’s neighbors.

Other research works have indeed demonstrated that this kind of attacks
were possible, and not only was the attacker able to identify the merchant’s
neighbors but also force them to be a set of nodes controlled by the attacker
[5–7]. Moreover, non of the countermeasures forces attackers to stop trying, nor
punishes them by not doing so. However, if some penalty could be applied to
anyone who tries to perform such an attack, and this penalty could be applied
by any node who detects it (instead of just dropping the transactions), attackers
may be discouraged to even try it.

As we have seen in other recent Bitcoin proposals, such as the Lightning
network [8], losing all the funds of a transaction between two actors is a good
discouragement for them not to deceive their counterpart. In such a way, and
alternatively to other works [4], we address the double spending problem in fast
payments by introducing a penalty for the attacker.

3 Background on Bitcoin transactions

As we have already stated, Bitcoin transactions are the tool for value transfer in
the Bitcoin protocol. Bitcoin transfer is performed by using an unspent output
of a previous transaction (UTXO) as the input of a new one. Therefore, Bitcoin
transactions consume previous outputs and generate new ones.

The input of a Bitcoin transaction contains three fields. The first one indicates
which output is being spent by providing the identifier of the transaction where
the output is included. The second field includes the index of the output that is
going to be spent (since a single transaction may include multiple outputs). Of
course, such output must not have been spent before, so it must be an unspent
transaction output (UTXO). Finally, the third field, identified as scriptSig,
provides the conditions needed to be met for the transaction to be valid and
the payment be correctly performed. Such conditions were defined in the output
that is going to be spent. Both conditions, the specification in the output and
the fulfillment in the input, are codified using the Bitcoin scripting language [9],
a stack-based language defined in the Bitcoin protocol.

The output of a Bitcoin transaction includes two fields. The first one indicates
the amount of bitcoins that will be deposited in such output.2 The second field,
named scriptPubKey, defines the conditions under which this output could be
spent.

The most general condition for spending an output is to be able to perform
a digital signature using the private key associated with a Bitcoin address (and
this is the reason the field is called scriptSig). However, the Bitcoin scripting

2 Notice that the input does not provide any amount of bitcoins since all bitcoins
of the output that is referenced will be transferred. The difference between those
amounts is the transaction fee collected by the miner.



language is flexible enough to allow the definition of many other scripts that
encode different conditions under which the outputs may be spent, as we describe
in the next section.

3.1 The Bitcoin scripting language

In order to spend an UTXO, the locking conditions specified in its scriptPubkey
field have to be met. The fulfilment of these conditions is provided by the values
included in the scriptSig field of the input that spends the UTXO. To evaluate
if an input is able to spend a corresponding output, the code included in the
scriptPubKey is appended to the values included in the scriptSig, and the
complete set of instructions is executed. Only if the execution returns true, the
input is able to spend the UTXO. Notice that this general approach allows not
only to spend UTXO based on digital signatures but also to create much richer
constructions, the so called smart contracts.

Such smart contracts can indeed specify complex conditions.3 For instance,
besides Pay-to-Public-Key-Hash (P2PKH) or Pay-to-Public-Key (P2PK) out-
puts where a standard digital signature must be provided to spend the UTXO,
there exist multi-signature constructions, where an UTXO is locked under n pub-
lic keys, and at least m matching signatures must be provided in the correspond-
ing input in order to spend it. Furthermore, even more general constructions can
be deployed using Pay-to-Script-Hash (P2SH) outputs. P2SH outputs encode an
ad-hoc set of instructions. The resulting hash of the instructions set is included
in the scriptPubKey field of the UTXO as the locking condition. The input that
spends such UTXO must provide the corresponding script whose hash matches
the value specified in the scriptPubKey field of the UTXO. Moreover, the script
must also evaluate to true in order to consider the validation a success.

3.2 Digital signatures on Bitcoin

Digital signatures in the Bitcoin system are performed through the Elliptic Curve
Digital Signature Algorithm (ECDSA). ECDSA has a set of system parameters:
an elliptic curve field and equation C, a generator G of the elliptic curve C, and
a prime q which corresponds to the order of G. The values for these parameters
are defined to be secp256k1 [10] for Bitcoin.

Let ∗ be the operation of multiplying an elliptic curve point by a scalar.
Given a specific configuration of the parameters and a private key d, the ECDSA
signature algorithm over the message m is defined as follows:

1. Randomly choose an integer k in [1, q − 1]
2. (x, y) = k ∗G
3. r = x mod q
4. s = k−1(m+ rd) mod q

3 An interested reader could refer to [9] for additional information about Bitcoin smart
contracts and script types.



5. If either s or r are 0, go back to step 1.
6. Output: sig(m) = (r, s)

The ECDSA signature scheme is therefore probabilistic, that is, there exist
many different valid signatures made with the same private key for the same
message. The selection of a specific signature from the set of valid ones is deter-
mined by the election of the integer k.

There exists a well known ECDSA signature vulnerability (also present in the
non-elliptic curve signature scheme of ElGamal and its popular variant, DSA [11,
12]) by which an attacker that observes two signatures of different messages made
with the same private key is able to extract the private key if the signer reuses
the same k selected on step 1. Therefore, the selection of k is critical to the
security of the system.

Indeed, given two ECDSA signatures that have been created using the same k
and the same private key, sig1 = sig(m1) = (r, s1) and sig2 = sig(m2) = (r, s2)
with m1 6= m2, an attacker that obtains m1, sig1 and m2, sig2 may derive the
private key d:

1. Recall that, by the definition of the signature scheme:

s1 = k−1(m1 + rd) mod q ⇒ ks1 = m1 + rd mod q
s2 = k−1(m2 + rd) mod q ⇒ ks2 = m2 + rd mod q

Note that, since r is deterministically generated from k and the fixed pa-
rameters of the scheme, the r values of both signatures will be the same.

2. The attacker learns k by computing k = m2−m1

s2−s1

3. The attacker learns the private key d by computing d = s1k−m1

r or d =
s2k−m2

r

Moreover, the leakage of private key information is not only restricted to the
case where the exact same k values are used, but also to situations when similar
k values are generated [13, 14].

Some Bitcoin wallets adopted deterministic ECDSA after this vulnerability
was found to affect some Bitcoin transactions [15–17].

Taking advantage of such vulnerability to perform a private key disclosure in
Bitcoin has been previously used for timestamping in data commitment schemes
by Clark and Essex [18].

4 Double-spending protection mechanism

Our proposed scheme discourages transaction signers from performing double
spending attacks in zero-confirmation transactions used in fast payment scenar-
ios. Fast payment scenarios are those where the merchant delivers the goods or
services when seeing the payment transaction in the Bitcoin network, without
waiting for the transaction to be confirmed. Examples of such scenarios are on-
site shopping where the buyer cannot wait 10 minutes to leave the shop after



purchase or in trading platforms where a timely transaction can save/earn you
money.

In our scenario, we assume that the adversary is the buyer that pays for some
goods to a merchant, and that may have incentives to try to double-spending the
payment in order to finish the interaction with both the goods and the payment
amount. We assume that he can perform a double-spending attack by generating
multiple transactions that spend from the same output and broadcasting them
selectively in the Bitcoin P2P network. Additionally, we also assume all peers of
the network have the same capabilities, that is, they are able to generate and
broadcast double spend transactions (if they know the private key needed to
generate a signature).

In order to discourage double-spending attacks, we propose a mechanism to
construct special transaction outputs. Such outputs can be spent with a single
signature but have the property that if two different signatures for the same
output are disclosed (for instance, in two different transactions spending the
same output as a double-spending attack), the private key used to sign the
transaction is revealed. This allows any observer to generate a third transaction
spending the same output and sending the amount to an address controlled by
himself.

To allow such construction, we propose a new Bitcoin script that we call
fixed-r pay-to-pubkey script (FR-P2PK). Such script is a variant of the
standard pay-to-pubkey (P2PK) script where a signature is required to redeem,
but a FR-P2PK script adds an additional condition to be able to spend the
output: the signature must be made with a specific r value. Then, due to the
ECDSA vulnerability described in Section 3.2, this special condition discourages
double-spending of that output. Indeed, if the sender generates another transac-
tion that spends the same output and propagates it through the P2P network,
the sender risks losing all the funds deposited in the address, because any peer
that captures both transactions will be able to derive the private key.

4.1 Basic protection mechanism

Let Alice be a user that wants to take advantage of the proposed double-spending
protection mechanism and let {PKa, SKa} be an ECDSA key pair belonging to
Alice.

The double spending protection mechanism is made of two phases: initial-
ization, that is performed before the payment is made, and fast-payment, where
the payment is executed.

Initialization: The initialization phase is performed beforehand. During this
phase, Alice generates a funding transaction that transfers some funds from an
output in her control to a FR-P2PK output also under her control. In order
to do so, Alice chooses a random integer k and a public key PKa (for which
she knows the associated secret key SKa), constructs the FR-P2PK output, and
sends some funds to an output in her control (see Figure 2). Alice broadcasts the



funding transaction and waits for the transaction to be confirmed, upon which
the initialization phase is considered terminated.

A single funding transaction may include multiple FR-P2PK outputs (with
different public keys) in order to allow Alice to use the proposed protection
mechanism multiple times. Moreover, Alice may repeat the initialization phase
if she runs out of unspent FR-P2PK outputs. Note that this phase is indepen-
dent of any specific payments and that Alice alone participates in the procedure.
Additionally, notice that Alice remains in control of all the funds deposited by
the funding transaction, and is able to transfer them back to an standard output
whenever she wants.
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Alice

Required to unlock:

funding tx

σ BTC
Signed:

From: Someone

σ BTC
Required to unlock:

To: Alice

Someone

Alice’s  signature

Fig. 2. Creation of the funding transaction.

At some point in the future, Alice wants to send some amount of bitcoins
to another user Bob. Alice does not want to wait for the confirmation of the
transaction and Bob is not willing to accept the transaction without confirma-
tion. So they decide to use the proposed double spending protection mechanism,
executing the fast-payment phase.

Fast payment: Alice creates a fast-payment transaction that pays to Bob
spending from the FR-P2PK output of the funding transaction. The input script
in the fast-payment transaction forces Alice (the redeemer) not only to prove
he has the private key SKa associated to the given public key PKa by creating
a valid signature, but also to deliver a signature that has been made using the
specific k value that Alice chose during the initialization phase (see Figure 3).
Alice broadcasts the fast-payment transaction to the Bitcoin P2P network.

Then, when Bob sees the fast-payment transaction in his mempool, he can
validate that the output script of the funding transaction spent by the fast pay-
ment transaction is indeed a FR-P2PK script. If the validation is correct, Bob
knows that if Alice tries to double spend the transaction she takes the risk of
loosing the Bitcoins of that output.
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If Alice wants to try to double spend the fast-payment transaction (see Fig-
ure 4, double-spending attempt), she needs to create a double spending trans-
action that also spends the FR-P2PK output of the funding transaction. This
double spending transaction has to be valid, so it needs to include a (second) sig-
nature made with SKa and the k value chosen on the initialization phase. Hence
the moment the double spend transaction is created, there exists two different
signatures made with the same private key SKa using the same r. The signatures
will be indeed different, since the signed content (i.e. the transactions) will also
be different. Recall that, because of the aforementioned ECDSA vulnerability,
knowing two different signatures made by the same private key with the same k
value is enough to derive the private key used to sign.

Therefore, if Alice broadcasts the double spend transaction, she risks loosing
her funds. This happens because any observer that receives both transactions
(the fast-payment transaction and the double spend transaction) will be able to
derive Alice’s secret key SKa and, as a consequence, create a third transaction,
the penalty transaction that also spends the FR-P2PK output of the funding
transaction but that sends the bitcoins to the observer. Note that this strategy
may be performed simultaneously by any observer, ending with multiple penalty
transactions, as it is depicted in Figure 4.

4.2 Disincentive-based protection mechanism

The basic protection method described in the previous section has a clear draw-
back. Suppose that Alice performs a purchase to Bob’s shop and Bob accepts
a fast transaction from Alice. When such transaction is received, Bob delivers
the goods to Alice. However, once Alice has the goods, she may try to perform
a double-spending attack. In case an observer sees both the fast-payment trans-
action and the double spend-transaction, he constructs the penalty transaction,
and manages to get it accepted in the blockchain, Alice loses her funds but Bob
does not receive the payment. In that case, Bob may have complied with his
part of the agreement (e.g. delivered the bought goods) but will not receive the
agreed amount of bitcoins in exchange. Alice would have paid the agreed amount
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Fig. 4. Transactions involved in the scheme.

of bitcoins to a third party (the observer) instead of paying them to Bob, but
she would remain in possession of the goods. The observer would obtain the
total amount of the transaction. As a consequence, Alice will not loose anything
by trying the double-spend (just the amount she is already willing to pay for
it), and thus the proposed method may not be discouraging enough to prevent
double spending attempts.

However, a minor modification to the proposed method is enough to dis-
courage Alice from attempting any double-spend: enforcing that the amount
deposited to the FR-P2PK output of the funding transaction is higher than the
paid amount by a certain factor λ. Recall that a Bitcoin UTXO must be spent in
its totality (i.e. it is not possible to spend a part of an UTXO). Therefore, if the
FR-P2PK output has an amount bigger than what Alice must pay to Bob, Alice
proceeds to create the fast-payment transaction including two different outputs:
one that pays to Bob the agreed amount, and the other that pays back to her
the change. This has no consequences on the normal operation of the protocol,
that is, if Alice well-behaves, Bob ends up with his payment and Alice gets her
change back. However, because the entire FR-P2PK output is spent, if Alice
tries to double-spend the fast payment she risks loosing the entire amount of the
FR-P2PK output, and not only the amount paid to Bob.



As we will discuss in Section 5, by adjusting the λ factor Alice’s penalty for
double-spending can also be adjusted (and thus Bob’s confidence on the fast
payment).

Moreover, note that the fast-payment transaction may also have multiple
inputs spending different FR-P2PK outputs. This allows Alice to be able to
perform payments of different amounts and with different penalty levels without
having to freeze a high amount of bitcoins into FR-P2PK outputs.

The role of the observers. The funding transaction is confirmed before start-
ing the fast-payment phase, so any full node of the network is aware of its exis-
tence. Moreover, because it has an output with an easily identifiable script, the
FR-P2PK script, any observer aware of the specification of our proposed mech-
anism is able to identify the transaction as a funding transaction belonging to
our protocol. Therefore, such an observer will be able to monitor his mempool,
looking for transactions that spend the FR-P2PK output. Once a transaction
spending from the FR-P2PK output is seen, the observer is able to actively listen
the network, searching for any other transaction spending the same output. If
the observer is able to catch a double spending transaction, he should be able
to construct a penalty transaction, moving the funds to an address controlled
by himself. If the observer does not capture a double spending transaction, he
may stop this active listening period and return to its normal behaviour when a
transaction spending the FR-P2PK output is included in the blockchain.

5 Proposal analysis

In this section we provide an analysis of the possible outcomes of performing a
payment with the proposed mechanism. The analysis measures the benefits of
each party taking part in the system to show how it discourages double-spending
attacks. Table 1 summarizes the notation used in this section.

Symbol Meaning

τf Fast-payment transaction
τd Double-spending transaction
τpj Penalty transaction j
Pr[τx ∈ B] Probability that transaction τx is included in the blockchain

σ Payment amount
λ · σ Funding transaction output amount
γ Value of goods

Table 1. Notation summary

Our analysis makes the follow assumptions. First of all, we assume that Alice
always generates the fast payment transaction since it is the triggering action for
the payment. Once the fast payment has been generated, we assume that Bob



sees the payment and, at that time and acting honestly, he delivers the goods to
Alice. Furthermore, to focus the analysis in the proposed mechanism, we assume
that at least one of the transactions of the system τf , τd, or τpj will be confirmed
and that transactions do not include fees. Of course, due to the double-spending
protection of Bitcoin for on-chain transactions, at most one of these transactions
gets into the blockchain, that is, the events τf ∈ B, τd ∈ B, and τpj

∈ B are
mutually exclusive. Finally, notice that Pr[τf ∈ B] + Pr[τd ∈ B] +

∑
j Pr[τpj

∈
B] = 1, since such probabilities depend on the distribution hash rate devoted to
the interests of every set of users (Alice, Bob and the rest of the network, acting
as observers) and we can assume that such sets will be disjunct.

Taking into account these assumptions, the proposed protocol may end in
three different states, as described by Figure 5. If the fast payment transaction
τf gets confirmed, then Bob receives the payment for the goods, Alice receives the
change (the amount deposited to the funding transaction minus the payment)
and the goods, and the observer does not intervene. If the double spending trans-
action τd is confirmed, then Alice gets everything (the full amount deposited in
the funding transaction and the goods) and therefore both Bob and the ob-
servers do not obtain anything. Finally, if one of the penalty transactions τpj

is confirmed, then Alice obtains the goods but looses the full deposited amount
that goes to the observer. Figure 5 also describes the possible paths that end up
in each of the states.

Fig. 5. Flow chart showing the protocol’s final states and the paths leading to them.



We define the payoff P of any party participating in the protocol as the gains
(or losses) obtained by deviating from the correct operation of the protocol. That
is, the payoff of all parties (Alice, Bob, and the observers) will be 0 when no
double spending is attempted (leftmost box in Figure 5).4 In that case, there
will be an equilibrium, since Alice pays the specified price for some goods and
obtains the goods in exchange; Bob delivers the goods and gets paid for them;
and the observers do not intervene. On the contrary, if Alice tries to double
spend the payment, the equilibrium may be altered and the payoff will reflect
the gains or losses each party assumes.

Then, Bob’s payoff function PB is given by the following expression:

PB = Pr[τf ∈ B] · (σ − γ)− Pr[τd ∈ B] · γ − Pr[τpj
∈ B] · γ =

= Pr[τf ∈ B] · σ − γ

Note that, for fixed σ and γ, Bob’s payoff only depends on Pr[τf ∈ B].
Recall that our mechanism tries to disincentivize Alice from double-spending
the payment transaction, but does not directly benefit the merchant (regardless
of the λ value used by the protocol).5

In a similar way, Alice’s payoff PA is given by:

PA = Pr[τf ∈ B] · (γ − σ) + Pr[τd ∈ B] · (γ) + Pr[τpj
∈ B] · (γ − σλ)

Alice’s maximum payoff is, therefore, γ, and is obtained when Alice’s success-
fully double spends the transaction, thus keeping the goods γ without paying
anything. However, Alice’s minimum payoff (maximum losses) depends on λ, a
parameter that can be adjusted in our protocol. Therefore, by adjusting λ, the
protocol allows to tune Alice’s losses, and so the risks she assumes by trying
to perform a double spending attack. The bigger the λ is, the higher the risks
Alice’s faces on a double spend attempt.

Finally, an observer’s j payoff is given by the expression:

POj
= Pr[τpj

∈ B] · (σλ)

Figure 6 shows the evolution of the parties payoffs as a function of Pr[τf ∈ B]
and Pr[τd ∈ B]6 for the case where σ = γ (the value of goods is equal to the
price it is paid for them), for different values of the parameter λ. The payoff
dimension is measured based on the value σ. That means that a payoff of 3
implies a benefit of 3 times the value of σ while a payoff of −3 implies a lost of
3 times the value of σ. The payoff results are thus proportional to σ.

The graphics show that, as expected, when there is no double spending at-
tempt (Pr[τf ∈ B] = 1) there is an equilibrium in the parties’ payoffs, and in

4 We assume that he price of the goods is equal to the value of the goods.
5 Note, however, that Bob may also act as an observer himself, being able to create a

penalty transaction and trying to gain the observer’s payoff.
6 Since Pr[τf ∈ B]+Pr[τd ∈ B]+

∑
j Pr[τpj ∈ B] = 1, fixing the first two probabilities

uniquely determines the third operand.



Fig. 6. Parties payoffs for σ = γ.

all graphics we obtain PB = PA = POj = 0 (green zone). Note that, as λ in-
creases, Bob’s payoff (first three graphics) remains exactly the same since his
payoff is independent of the parameter λ. On the contrary, Alice’s payoff (next
three graphics) depends on λ. With λ = 1, Alice’s payoff is always positive or
zero: Alice does not lose anything by trying to double spend and may even gain
something if the attack is successful. That situation is the basic protection mech-
anism described in Section 4.1. However, by increasing λ the scenario changes
radically for Alice: the probabilities range at which Alice gains something from
the attack decrease fast and, at the same time, for some probability values she
even starts to get a negative payoff (that is, she has to assume losses). Finally,
notice that the observer’s payoff (last three graphics) is never negative, and his
gains increase with λ.

Notice that our analysis does not assume any specific values on the proba-
bilities Pr[τf ∈ B], Pr[τd ∈ B], and Pr[τpj ∈ B]. However, as we have already
indicated, such probabilities depend on the hash distribution of the Bitcoin net-
work among mining the transactions, τf , τd, and τpj

. For that reason, in case
the hash rate devoted to τd with respect the rest is low, the graphics show that
Alice’s payoff, for values λ > 1, is moving in the red zone thus being negative
(Alice is loosing money). The greater the λ value the bigger the red zone.



6 Conclusions

The speed at which payments in blockchain based cryptocurrencies can be per-
formed is lower bounded by the block generation interval, which in Bitcoin is
fixed to 10 minutes. In order to provide fast payments, one of the alternatives
used in these scenarios is to rely on zero-confirmation transactions, that is, trans-
actions that have been seen on the network but have not yet been included in
the blockchain. Experimental analysis have shown that, in Bitcoin, most of the
transactions propagated through the network reach 75% of the nodes in less
than 8 seconds [19], which is two orders of magnitude faster than the block
production interval. However, zero-confirmation transactions are not secured by
the standard Bitcoin double-spending protection mechanism, since this mecha-
nism is applied to transactions included in the blockchain and zero-confirmation
transactions are not yet in blocks by definition.

In this paper, we have presented a mechanism to secure fast payments within
Bitcoin by reducing the risk of double-spending attacks in zero-confirmation
transactions. The proposed mechanism discourages double spending attempts
by creating a special type of outputs that enforce private key disclosure in case
of double-spending attempt. Any Bitcoin network user may act as an observer
and obtain a reward by detecting double-spending attempts. The reward the
observer receives is equal to the price the attacker pays as punishment for having
tried to double spend a transaction.

Further research will be focused on experimentally testing the proposed ap-
proach in a Bitcoin-like P2P network, in order to quantify the probabilities of
each transaction entering the blockchain depending on the exact capabilities of
the attacker (both in terms of network connectivity and hash power) and the per-
centage of nodes of the network that are aware of the existence of the protection
mechanism. In turn, this would allow us to better evaluate the risks the mer-
chant is facing with each transaction and to study the overhead of transactions
relayed through the network by the usage of our protocol.
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Appendix A: Implementation details

In this appendix, we describe how to construct the FR-P2PK output of the
funding transaction as well as the inputs of the transactions that spend it, taking
into account Bitcoin’s signature format and scripting language.

First of all, notice that it would be possible to encapsulate the proposed FR-
P2PK script into a standard P2SH output. However, doing so makes the funding
transaction no longer recognizable as belonging to our protocol by external ob-
servers. Therefore, an observer that is aware of the existence of our protocol
would be able to detect that the mechanism is being used only after one of the
transactions spending the encapsulated FR-P2PK is seen in the network. This
transaction will include the FR-P2PK script in the scriptSig (input script).
The moment the observer processes this script, he can start the active listening
period in which he looks for other transactions spending from the same funding
transaction output. Because timing is critical in our scenario, we argue that using
directly a FR-P2PK output in the funding transaction is the best alternative.
However, encapsulating the FR-P2PK script into a P2SH output offers similar



protection. On the other hand, we assume that the fast payment transactions
in our scheme are not flagged as replaceable with the Bitcoin’s Replace by Fee
mechanism (RBF), so they cannot be replaced by other newer transactions with
higher fees.

In a Bitcoin transaction, signatures are represented by a single hexadecimal
value, which corresponds to the DER encoding of the two-element sequence of
the r and s integers that make up an ECDSA signature. Figure 7 describes the
format of a Bitcoin signature. Each integer r and s (see Section 3.2 regarding the
notation) is encoded with three different fields: a 1-byte field with the 0x02 flag
denoting the integer type, a 1-byte field with the size l of the integer (in bytes),
and an l-byte field with the integer value itself. Then, the signature includes a
1-byte field with a flag denoting a sequence (0x30), a 1-byte field with the length
of the sequence, the sequence of the two integers, and finally a 1-byte field with
the hash type, a flag that indicates the parts of the transaction that are hashed
and signed.

02len(z) htlen(r) r 02 len(s) s30

1 1 1 1 32-33 1 1 132-33 byte length
hex value

Fig. 7. Bitcoin signature format.

Both r and s are 32 byte integers. However, when the first bit of any of the
values is set (that is, the fist byte is > 0x7f), an additional byte (0x00) is added
in front of the value, thus making it 33 byte long. The reason is that DER rules
interpret this first bit as a sign, and therefore not adding 0x00 would cause the
value to be interpreted as negative. Therefore, Bitcoin signatures range from
71 to 73 bytes. For the sake of simplicity, let us assume that we are dealing
with 71-byte signatures, that is, signatures where both r and s are 32 byte long
(Figure 8a).

Taking into account the format of signatures in Bitcoin, the script of a FR-
P2PK output is defined as follows:

ScriptPubKey: OP DUP <pubKey> OP CHECKSIGVERIFY

OP SIZE <0x47> OP EQUALVERIFY

<sigmask> OP AND <r> OP EQUAL

ScriptSig: <sig>

where

– <pubKey> is the public key that will be used to validate the signature,
– <sigmask> is a 71-byte array that has ones in the positions where r and ht

are specified and zeros in the rest of positions, and
– <r> is the 71-byte array that represents the integer r in DER format in the

positions where it is found in a signature, 0x01 in the ht field, and zeros in
the rest of positions.



Figures 8b-c show the construction of <sigmask> and <r>, respectively. Re-
garding the construction of the byte array <r>, on the one hand the integer r is
derived uniquely from the randomly chosen k value (recall Step 3 of the ECDSA
signature generation algorithm in Section 3.2). Note that any value of k may be
used by the protocol, what matters is that is is fixed beforehand (that is, before
the signature is made). On the other hand, the hash flag tag ht is set to 0x01,
which corresponds to SIGHASH ALL. This flag signals that the signed content
corresponds to the entire transaction (except the signature scripts themselves).
By enforcing that signatures cover the entire transaction, we ensure that a dou-
ble spending attempt will include a signature different from the one found in
the fast-payment transaction, and thus that observing both transactions indeed
allows to derive the private key.

02 ht20 r 02 s30

1 1 1 1 32 1 1 1 byte length

hex value

ff00

1 1 1 1 1 1 1

00

32 32

32

ff 00 0· · ·0f · · ·f

a) <sig>

b) <sigmask>

c) <r>
00

1 1 1 1 1 1 1

00

32 32

00 0· · ·002 r

20

20 01

44

byte length

hex value

byte length

hex value

ff00

00

Fig. 8. Values used in the proposed script.

In order to redeem a FR-P2PK output, the scriptSig of the input only needs
to include a single signature. The signature must be correct when validated with
the specified public key and must be performed with a specific r value. Otherwise,
the validation will fail.

Let’s analyse how does the script perform these validations. First, the script
duplicates the signature (OP DUP). This is needed in order to be able to perform
different validations over the same signature value. Then, the signature is val-
idated against the specified public key (<pubKey> OP CHECKSIGVERIFY). After
that, the length of the signature is checked (OP SIZE <0x47> OP EQUALVERIFY).
Finally, a bitwise AND between the signature and <sigmask> is computed (with
<sigmask> OP AND), and the result is compared with <r> (<r> OP EQUAL). If
both values are equal (that is, the signature was made using the specified r and
with a hash flag of 0x01), the script terminates successfully; otherwise, the script
terminates with a False value on the stack, making it fail.

Note that the only way to ensure that the script succeeds is by providing a
valid signature that matches the specified <r>. Therefore, two different transac-
tions spending the same FR-P2PK output would include two different signatures
made with the same private key and the same k, and thus by obtaining the two
transations one is able to infer the private key that was used to create the sig-
natures.

We have created a funding transaction in the Bitcoin testnet that exemplifies
the proposed protection mechanism. Following the transaction naming used in



Figures 2, 3, and 4, the funding transaction7 contains the output with a FR-
P2PK script. The output of the funding transaction is currently unspendable
due to the fact that it uses an OP AND opcode that is disabled in the standard
Bitcoin software.

7
http://tbtc.blockr.io/api/v1/tx/info/8e27cae62d1df357b65b634a8482672d85f71804a5c7fc392050517a5bfeb04f


